US20140106558A1 - Semiconductor device having metal gate and manufacturing method thereof - Google Patents
Semiconductor device having metal gate and manufacturing method thereof Download PDFInfo
- Publication number
- US20140106558A1 US20140106558A1 US14/144,584 US201314144584A US2014106558A1 US 20140106558 A1 US20140106558 A1 US 20140106558A1 US 201314144584 A US201314144584 A US 201314144584A US 2014106558 A1 US2014106558 A1 US 2014106558A1
- Authority
- US
- United States
- Prior art keywords
- semiconductor device
- gate
- dummy
- auxiliary
- metal gate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 76
- 239000002184 metal Substances 0.000 title claims abstract description 76
- 239000004065 semiconductor Substances 0.000 title claims abstract description 65
- 238000004519 manufacturing process Methods 0.000 title claims description 31
- 239000000758 substrate Substances 0.000 claims abstract description 29
- 238000002955 isolation Methods 0.000 claims abstract description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 31
- 229920005591 polysilicon Polymers 0.000 claims description 31
- 125000006850 spacer group Chemical group 0.000 claims description 23
- 238000000059 patterning Methods 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 85
- 238000000034 method Methods 0.000 description 48
- 230000008569 process Effects 0.000 description 43
- 239000000463 material Substances 0.000 description 9
- 230000004888 barrier function Effects 0.000 description 7
- 238000005530 etching Methods 0.000 description 6
- 229910021332 silicide Inorganic materials 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 2
- OQPDWFJSZHWILH-UHFFFAOYSA-N [Al].[Al].[Al].[Ti] Chemical compound [Al].[Al].[Al].[Ti] OQPDWFJSZHWILH-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 229910052454 barium strontium titanate Inorganic materials 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910021324 titanium aluminide Inorganic materials 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- 229910015846 BaxSr1-xTiO3 Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910020696 PbZrxTi1−xO3 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- CEPICIBPGDWCRU-UHFFFAOYSA-N [Si].[Hf] Chemical compound [Si].[Hf] CEPICIBPGDWCRU-UHFFFAOYSA-N 0.000 description 1
- ILCYGSITMBHYNK-UHFFFAOYSA-N [Si]=O.[Hf] Chemical compound [Si]=O.[Hf] ILCYGSITMBHYNK-UHFFFAOYSA-N 0.000 description 1
- VNSWULZVUKFJHK-UHFFFAOYSA-N [Sr].[Bi] Chemical compound [Sr].[Bi] VNSWULZVUKFJHK-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- VQYHBXLHGKQYOY-UHFFFAOYSA-N aluminum oxygen(2-) titanium(4+) Chemical compound [O-2].[Al+3].[Ti+4] VQYHBXLHGKQYOY-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- KQHQLIAOAVMAOW-UHFFFAOYSA-N hafnium(4+) oxygen(2-) zirconium(4+) Chemical compound [O--].[O--].[O--].[O--].[Zr+4].[Hf+4] KQHQLIAOAVMAOW-UHFFFAOYSA-N 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(iv) oxide Chemical compound O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28026—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
- H01L21/28123—Lithography-related aspects, e.g. sub-lithography lengths; Isolation-related aspects, e.g. to solve problems arising at the crossing with the side of the device isolation; Planarisation aspects
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/31051—Planarisation of the insulating layers
- H01L21/31053—Planarisation of the insulating layers involving a dielectric removal step
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/16—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
- H01L29/161—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
- H01L29/165—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66545—Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66568—Lateral single gate silicon transistors
- H01L29/66575—Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
- H01L29/6659—Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66568—Lateral single gate silicon transistors
- H01L29/66636—Lateral single gate silicon transistors with source or drain recessed by etching or first recessed by etching and then refilled
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7833—Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7842—Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
- H01L29/7848—Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/4966—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/51—Insulating materials associated therewith
- H01L29/517—Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/665—Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
Definitions
- the invention relates to a semiconductor device having metal gate and manufacturing method thereof, and more particularly, to a semiconductor device having metal gate and manufacturing method thereof integrated with the gate last process.
- Polysilicon is conventionally used as the gate electrode in a semiconductor device, such as the metal-oxide-semiconductor (MOS) transistor.
- MOS metal-oxide-semiconductor
- the conventional polysilicon gate has faced problems such as inferior performance due to boron penetration and unavoidable depletion effect which increases equivalent thickness of the gate dielectric layer, reduces gate capacitance, and worsens a driving force of the devices. Therefore, work function metals are used to replace the conventional polysilicon gate to be the control electrode that competent to the high dielectric constant (high-K) gate dielectric layer.
- a manufacturing method for a semiconductor device having metal gate includes providing a substrate having a plurality of shallow trench isolations (hereinafter abbreviated as STIs) formed therein and a polysilicon layer formed thereon; patterning the polysilicon layer to form at least a dummy gate and at least a pair of auxiliary dummy structures, the auxiliary dummy structures being positioned on the STI respectively at two sides of the dummy gate; forming at least a semiconductor device having the dummy gate on the substrate; forming a dielectric structure on the substrate; and removing a portion of the dielectric structure to expose the dummy gate of the semiconductor device and the auxiliary dummy structures.
- STIs shallow trench isolations
- a semiconductor device having metal gate includes a substrate having a plurality of STIs formed therein, at least a metal gate positioned on the substrate, and at least a pair of auxiliary dummy structures respectively positioned at two sides of the metal gate and on the STIs.
- FIGS. 1-2 are schematic drawings illustrating a manufacturing method for a semiconductor device having metal gate.
- FIGS. 3-9 are schematic drawings illustrating a manufacturing method for a semiconductor device having metal gate provided by a first preferred embodiment of the present invention, wherein
- FIG. 9 is a top view illustrating the preferred embodiment of the present invention.
- FIG. 3 is a cross-sectional view taken along line A-A′ of FIG. 9 ;
- FIG. 4 is a cross-sectional view in a step subsequent to FIG. 3 ;
- FIG. 5 is a cross-sectional view in a step subsequent to FIG. 4 ;
- FIG. 6 is a cross-sectional view in a step subsequent to FIG. 5 ;
- FIG. 7 is a cross-sectional view in a step subsequent to FIG. 6 ;
- FIG. 8 is a cross-sectional view in a step subsequent to FIG. 7 .
- FIG. 10 is a top view illustrating a manufacturing method for a semiconductor device having metal gate provided by a second preferred embodiment of the present invention.
- FIG. 11 is a graph showing the height loss comparison of the dummy gate with or without the auxiliary dummy structures
- FIGS. 1-2 are schematic drawings illustrating a manufacturing method for a semiconductor device having metal gate.
- a substrate 100 is first provided with a dummy gate or a replacement gate 120 formed thereon.
- the dummy gate 120 includes a high-k gate dielectric layer 102 , a titanium nitride (TiN) layer (not shown) serving as a bottom barrier layer, and a polysilicon layer 104 defined by a patterned hard mask (not shown).
- the dummy gate 120 has a height h 1 that is almost equal to a thickness of the polysilicon layer 104 . More important, the height h 1 of the dummy gate 120 is to be a height of a following formed metal gate.
- the gate last process is to remove the polysilicon layer 104 of the dummy gate 120 .
- a planarization process such as a chemical mechanical polishing (CMP) process is performed to remove a portion of the ILD layer 116 and the CESL 114 , thus the patterned hard mask is exposed.
- CMP chemical mechanical polishing
- another CMP process is performed to remove a portion of the ILD layer 116 , a portion of the CESL 114 , and the patterned hard mask to expose the polysilicon layer 104 .
- the CMP process is supposed to stop at the polysilicon layer 104 and thus exposes the polysilicon layer 104 .
- the CMP process always consumes the polysilicon layer 104 at edges of the polysilicon layer 104 , particularly at where the polysilicon layer 104 adjoining the patterned hard mask, even at wherein the polysilicon layer 104 adjoining the spacer 108 .
- the edges of the polysilicon layer 104 is consumed and removed by the CMP process and thus a height deviation is resulted between the center of the polysilicon layer 104 and the edges of the polysilicon layer 104 .
- the center of the dummy gate 120 has the original height h 1 while edges of the dummy gate 120 have a reduced height h 2 due to the CMP consumption. More important, the original height h 1 is larger than the reduced height h 2 .
- the polysilicon layer 104 of the dummy gate 120 is removed to form a gate trench 130 .
- the original height h 1 of the removed dummy gate 120 is depicted by the dashed line in FIG. 2 for emphasizing the height deviation.
- a depth of the gate trench 130 is equal to the reduced height h 2 instead of the expected original height h 1 .
- a metal gate (not shown) is subsequently formed in the gate trench 130 , and the metal gate inherently obtains the reduced height h 2 .
- the reduced height h 2 of the metal gate formed by filling the gate trench 130 with work function metal material and filling metal material is not the same with the original and expected height h 1 of the dummy gate 120 , which means the metal gate unavoidably and undesirably suffers height loss.
- the reduced height h 2 of the metal gate is significantly lower than an expected value, and thus the reliability and the electrical performance of the metal gate are adversely impacted.
- the height loss is more serious when the density of the dummy gate 120 is increased. For example, it is found the height deviation between the reduced height h 2 and the original height h 1 reaches 400 angstroms ( ⁇ ) and the serious height deviation inevitably induces adverse impact to the reliability and performance of the metal gate.
- FIGS. 3-9 are schematic drawings illustrating a manufacturing method for a semiconductor device having metal gate provided by a first preferred embodiment of the present invention, wherein FIG. 9 is a top view illustrating the preferred embodiment of the present invention and FIGS. 3-8 are cross-sectional view taken along line A-A′ in FIG. 9 .
- the preferred embodiment first provides a substrate 200 such as a silicon substrate, a silicon-containing substrate, or a silicon-on-insulator (SOI) substrate.
- the substrate 200 includes a plurality of STIs 202 formed therein.
- the STIs provide electrical isolation between devices and define a plurality of active regions 202 a (show in FIG. 9 ).
- a gate dielectric layer 204 and a polysilicon layer 206 are sequentially formed on the substrate 200 .
- the preferred embodiment can be integrated with the high-k first process or the high-k last process.
- the dielectric layer 204 serves as the gate dielectric layer and includes high dielectric constant (hereinafter abbreviated as high-k) material such as metal oxide, particularly the rare earth metal oxide.
- the high-k gate dielectric layer 204 can include material selected from the group consisting of hafnium oxide (HfO 2 ), hafnium silicon oxide (HfSiO 4 ), hafnium silicon oxynitride (HfSiON), aluminum oxide (Al 2 O 3 ), lanthanum oxide (La 2 O 3 ), tantalum oxide (Ta 2 O 5 ), yttrium oxide (Y 2 O 3 ), zirconium oxide (ZrO 2 ), strontium titanate oxide (SrTiO 3 ), zirconium silicon oxide (ZrSiO 4 ), hafnium zirconium oxide (HfZrO 4 ), strontium bismuth tantalate, (SrBi 2 Ta 2 O 9 , SBT), lead zirconate titanate (PbZr x Ti 1-x O 3 , PZT), and barium strontium titanate (Ba x Sr 1-x TiO 3 , BST).
- hafnium oxide
- an interfacial layer (not shown) is preferably formed between the high-k gate dielectric layer 204 and the substrate 200 and a bottom barrier layer (not shown) is preferably formed between the high-k gate dielectric layer 204 and the polysilicon layer 206 .
- the bottom barrier layer can include titanium nitride (TiN), but not limited to this.
- the gate dielectric layer 204 can include a conventional silicon oxide layer.
- an etching process is performed with a patterned hard mask 208 serving as an etching mask. Accordingly, the polysilicon layer 206 and the gate dielectric layer 204 are etched and thus at least a dummy gate 210 crossing the plurality of active regions 202 a is formed on the substrate 200 .
- the dummy gate 210 includes a first height H 1 . As shown in FIG. 3 , the dummy gate 210 upwardly includes the gate dielectric layer 204 and the polysilicon layer 206 . It is noteworthy that at least a pair of auxiliary dummy structures 212 is formed simultaneously with forming the dummy gate 210 .
- the auxiliary dummy structures 212 are parallel with the dummy gate 210 , and more important, are respectively formed at two sides of the dummy gate 210 as shown in FIG. 3 .
- the auxiliary dummy structures 212 are formed on the substrate 200 and particularly on the STI 202 at the two sides of the dummy gate 210 .
- the auxiliary dummy structures 212 are formed within the STIs 202 , thus the auxiliary dummy structures 212 never contact the active regions 202 a.
- the auxiliary dummy structure 212 includes a width W (shown in FIG. 9 ), and the width is between about 0.03 micrometer (hereinafter abbreviated as ⁇ m) and about 0.1 ⁇ m.
- the dummy gate 210 and the auxiliary dummy structure 212 include a first spacing width D 1 defined therebetween, and the first spacing width D 1 is between about 0.1 ⁇ m and about 0.18 ⁇ m. It is noteworthy that the first spacing width D 1 corresponds to a line width S of the dummy gate 210 .
- the first spacing width D 1 (between about 0.1 ⁇ m and about 0.18 ⁇ m in the preferred embodiment) is provided for the dummy gate 210 having the line width S of about larger than 1 micrometer ( ⁇ m).
- the first spacing width D 1 can be reduced correspondingly when the line width S of the dummy gate is reduced.
- the auxiliary dummy structures 212 always provide sufficient assistance which is described in the following description. It is noteworthy that the preferred embodiment always forms the auxiliary dummy structures 212 when the dummy gate 210 has the line width S larger than 1 ⁇ m. Additionally, the auxiliary dummy structure 212 includes a single bar-like structure in the preferred embodiment.
- steps for forming elements of a semiconductor device such as a metal oxide semiconductor (MOS) device are sequentially performed: For example, an ion implantation is first performed to form lightly-doped drains (LDDs) 220 in the substrate 200 respectively at two sides of the dummy gate 210 . Additionally, an offset spacer (not shown) can be formed on sidewalls of the dummy gate 210 before forming the LDDs 220 . Then, an insulating layer or a multiple insulating layer (not shown) is formed on the substrate 200 and followed by performing an etching back process.
- LDDs lightly-doped drains
- a first spacer 222 is formed on sidewalls of the dummy gate 210 . It is noteworthy that during performing the etching back process, a second spacer 224 having layer(s) the same with the first spacer 222 is formed on sidewalls of the auxiliary dummy structures 212 according to the preferred embodiment.
- FIG. 5 and FIG. 9 After forming the first spacer 222 and the second spacer 224 , another ion implantation is performed to forma source/drain 226 in the substrate 200 at two sides of dummy gate 210 , particularly at two sides of the first spacer 222 . Furthermore, silicides 228 are formed on the surface of the source/drain 226 . Additionally, selective strain scheme (SSS) can be used in the preferred embodiment.
- SSS selective strain scheme
- a selective epitaxial growth (SEG) method can be used to form the source/drain 226 : after forming a trench (not shown) and performing a trench cleaning process, the SEG method is used to form epitaxial silicon layers with silicon germanium (SiGe) for p-type source/drain 226 or to form epitaxial silicon layers with silicon carbide (SiC) for n-type source/drain 226 . Accordingly, a semiconductor device 230 having the dummy gate 210 as shown in FIG. 5 is obtained. Since the steps and materials for the abovementioned elements are well-known to those skilled in the art, the details are omitted herein in the interest of brevity.
- the LDDs 220 , the first spacer 222 , the second spacer 224 , and the silicides 228 are omitted from FIG. 9 .
- the semiconductor devices 230 share the same the dummy gate 210 are electrically connected in series by the dummy gate 210 and the metal gate which is formed afterwards, and the dummy gates 210 of each semiconductor device 230 are electrically isolated from the auxiliary dummy structures 212 .
- the auxiliary dummy structures 212 are electrically isolated from any dummy gate 210 , metal gate, and the active regions 202 a.
- a multilayered dielectric structure 240 including at least a contact etch stop layer (CESL) 242 and an inter-layer dielectric (ILD) layer 244 is formed on the substrate 200 .
- the multilayered dielectric structure 240 covers the semiconductor device 230 , the auxiliary dummy structures 212 , and vacancy between the semiconductor device 230 and the auxiliary dummy structure 212 .
- two planarization processes such as two chemical mechanical polishing (CMP) processes are sequentially performed: a first CMP process is performed to remove a portion of the dielectric structure 240 .
- the first CMP process stops at the patterned hard mask 208 .
- a second CMP process is performed to remove a portion of the dielectric structure 240 and the patterned hard mask 208 to expose the dummy gate 210 (that is the polysilicon layer 206 ) of the semiconductor device 230 .
- the CMP consumption to edges of the dummy gate 210 is transferred to edges of the auxiliary dummy structures 212 , particularly at where the auxiliary dummy structure 212 adjoining the dielectric structure 240 or the second spacer 224 . Therefore, the semiconductor device 230 , the dummy gate 210 of the semiconductor device 230 , and the dielectric structure 240 between the dummy gate 210 and the auxiliary dummy structures 212 are coplanar after the two CMP processes.
- the first height H 1 of the dummy gate 210 is impervious to the CMP process. Moreover, because the CMP consumption is transferred to the auxiliary dummy structure 212 and the second spacer 224 , particularly on the side that is opposite to the dummy gate 210 , a portion of the auxiliary dummy structure 212 and the second spacer 224 are consumed during the CMP processes. Therefore, surfaces of a portion of the auxiliary dummy structures 212 and the second spacer 224 are lower than the semiconductor device 230 , the dummy gate 210 of the semiconductor device 230 , and the dielectric structure 240 between the dummy gate 210 and the auxiliary dummy structures 212 .
- the auxiliary dummy structure 212 serves a sufficient buffer structure and thus CMP consumption is transferred to the auxiliary dummy structures 212 . Accordingly, the first height H 1 of the dummy gate 210 is protected from the CMP consumption.
- the prior art used to position different dummies not shown for improving uniformity of the CMP process.
- the conventionally dummies cannot protect the first height H 1 of the dummy gate 210 from the CMP consumption as the auxiliary dummy structures 212 provided by the preferred embodiment.
- FIG. 11 is a graph showing the height loss comparison of the dummy gate 210 with or without the auxiliary dummy structures.
- the auxiliary dummy structure 212 transfers the consumption from the edges of the dummy gate to the edges of the auxiliary dummy structures. Consequently, consumption to the polysilicon layer and the height loss are both mitigated.
- the line width S of the dummy gate 210 is larger than 2 ⁇ m, the height loss problem can be efficiently mitigated by the auxiliary dummy structures 212 .
- the dummy gate 210 of the semiconductor device 230 is removed to form a gate trench (not shown).
- the auxiliary dummy structures 212 can be removed simultaneously with removing the dummy gate 210 .
- dummy trenches are formed on the substrate 200 .
- a work function metal layer 252 and a filling metal layer 254 are sequentially formed in the gate trench and the dummy trench and followed by performing another CMP process for removing unnecessary metal layers. Consequently, a metal gate 250 and an auxiliary dummy structure 214 are respectively formed in the gate trench and the dummy trench as shown in FIG. 8 .
- an etch stop layer (not shown) can be formed between the work function metal layer 252 and high-k gate dielectric layer 204 , and a top barrier layer (not shown) can be formed between the work function metal layer 252 and the filling metal layer 254 if required.
- the etch stop layer can include tantalum nitride (TaN) and the top barrier layer can include TiN, but both not limited to this.
- the work function metal layer 252 can include suitable materials providing an appropriate work function for the p-type semiconductor device or n-type semiconductor device. Therefore, the work function metal layer 252 has a work function, and the work function can be between 4.8 eV and 5.2 eV, or alternatively between 3.9 eV and 4.3 eV.
- the filling metal layer 254 includes materials with low resistance and superior gap-filling characteristic, such as aluminum (Al), titanium aluminide (TiAl) or titanium aluminum oxide (TiAlO), but not limited to this.
- the gate dielectric layer 204 can include the conventional SiO layer and serve as the interfacial layer after forming the gate trench. Subsequently, a high-k gate dielectric layer (not shown), a bottom barrier layer (not shown), an etch stop layer (not shown), a work function metal layer 252 , a top barrier layer (not shown), and a filling metal layer 254 are sequentially formed on the interfacial layer 204 in the gate trench 250 and on the substrate 200 and the metal gate 250 is obtained. More important, the metal gate 250 always includes a second height H 2 no matter the preferred embodiment is integrated with the high-k first or high-k last process.
- a depth of the gate trench is the same with the first height H 1
- the second height H 2 of the metal gate 250 that is formed in the gate trench inherently is equal to the first height H 1 of the dummy gate 210 .
- the ILD layer 244 and the CESL 242 can be selectively removed and sequentially reformed on the substrate 200 for improving performance of the semiconductor device 230 in the preferred embodiment.
- each semiconductor device 230 includes a pair of auxiliary dummy structures 214 positioned respectively at the two sides of the metal gate 250 on the substrate 200 . Furthermore, the auxiliary dummy structures 214 are electrically isolated from the metal gate 250 .
- the conductive material also fills up the dummy trench as well the gate trench when forming the work function metal layer 252 and the filling metal layer 254 and thus the auxiliary dummy structures 214 are formed as shown in FIG. 8 , the auxiliary dummy structures 214 are still electrically isolated from other elements. It is because the auxiliary dummy structures 214 are formed on the STIs 202 and surrounded by the dielectric structure 240 . Accordingly, the metal materials remained in the auxiliary dummy structures 214 renders no influence or impact to the electrical performance of the semiconductor device 230 .
- FIG. 10 is a top view illustrating a manufacturing method for a semiconductor device having metal gate provided by a second preferred embodiment of the present invention.
- the steps of the second materials are the same with those of the first preferred embodiment; therefore those steps are omitted for simplicity.
- elements the same in both first and second embodiments are designated by the same numerals. More important, for clarifying and emphasizing the spatial relationship between the auxiliary dummy structures 212 and the dummy gate 210 , the LDDs 220 , the first spacer 222 , the second spacer 224 , and the silicides 228 are omitted from FIG. 10 . However those skilled in the art would easily realize that those elements should not be ignored.
- the second preferred embodiment provides auxiliary dummy structures 212 a , and each auxiliary dummy structure 212 a comprises a multiple bar-like structure.
- the auxiliary dummy structure 212 a includes a width W that is the same with the auxiliary dummy structure 212 described in the first preferred embodiment, and the width W is between about 0.03 ⁇ m and about 0.1 ⁇ m.
- the dummy gate 210 and the auxiliary dummy structure 212 a proximal to the dummy gate 210 include a first spacing width D 1 defined therebetween.
- the first spacing width D 1 is between about 0.1 ⁇ m and about 0.18 ⁇ m.
- the preferred embodiment always forms the auxiliary dummy structures 212 a when the line width S of the dummy gate 210 is larger than 1 ⁇ m. More important, the multiple bar-like structure 212 a includes a second spacing width D 2 defined therebetween and the second spacing width D 2 is between about 0.12 ⁇ m and about 0.23 ⁇ m. As mentioned above, since the steps for forming the auxiliary dummy structures 212 a are all the same with those described in the first preferred embodiment, a second spacer (not shown) is respectively formed on sidewalls of the auxiliary dummy structures 212 a simultaneously with forming the first spacer 222 of the semiconductor device 230 .
- the buffer function rendered by the auxiliary dummy structures 212 a is improved and thus the first height H 1 of the dummy gate is more impervious to the CMP consumption. Furthermore, since the auxiliary dummy structures 212 a include the multiple bar-like structure, the adjacent dummy gates 210 can share one set of the auxiliary dummy structures 212 a. However, it is not limited to form the multiple bar-like auxiliary dummy structures 212 a respectively at two sides of the adjacent dummy gates 210 as shown in FIG. 10 .
- a pair of auxiliary dummy structures is formed respectively at the two sides of the dummy gate simultaneously with forming the dummy gate. Because of the auxiliary dummy structures, the consumption to edges of the dummy gate, particularly at where the dummy gate adjoining the dielectric structure, is transferred to the edges of the auxiliary dummy structures, particularly at where the auxiliary dummy structure adjoining the dielectric structure. In other words, the auxiliary dummy structure serves a sufficient buffer structure and thus CMP consumption is transferred to the auxiliary dummy structure. Consequently, no consumption is occurred to the polysilicon layer, and thus no height deviation is resulted between the center of the dummy gate and the edges of the dummy gate.
- the present invention provides a semiconductor device having metal gate and a manufacturing method thereof ensures the electrical performance and reliability of the metal gate.
- the manufacturing method of the present invention is provided without increasing any process cost. Additionally, it is found that height loss is more serious when the density of the dummy gate is increased, therefore the manufacturing method of the present invention is preferably provided to solve the height loss issue when the density of the dummy gate is larger than 65%. Briefly speaking, the manufacturing method provided by the present invention is more preferably used to form the semiconductor device having high device density.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Electrodes Of Semiconductors (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
A semiconductor device having a metal gate includes a substrate having a plurality of shallow trench isolations (STIs) formed therein, at least a metal gate positioned on the substrate, and at least a pair of auxiliary dummy structures respectively positioned at two sides of the metal gate and on the substrate.
Description
- This application is a division of U.S. application Ser. No. 13/180,556 filed on Jul. 12, 2011, and all benefits of such earlier application are hereby claimed for this division application.
- 1. Field of the Invention
- The invention relates to a semiconductor device having metal gate and manufacturing method thereof, and more particularly, to a semiconductor device having metal gate and manufacturing method thereof integrated with the gate last process.
- 2. Description of the Prior Art
- Polysilicon is conventionally used as the gate electrode in a semiconductor device, such as the metal-oxide-semiconductor (MOS) transistor. However, with a trend toward scaling down the size of the semiconductor device, the conventional polysilicon gate has faced problems such as inferior performance due to boron penetration and unavoidable depletion effect which increases equivalent thickness of the gate dielectric layer, reduces gate capacitance, and worsens a driving force of the devices. Therefore, work function metals are used to replace the conventional polysilicon gate to be the control electrode that competent to the high dielectric constant (high-K) gate dielectric layer.
- The conventional dual metal gate methods are categorized into the gate first process and the gate last process. In a conventional dual metal gate method applied with the gate first process, the anneal process for forming the source/drain ultra-shallow junction, and the silicide process are performed after forming the metal gate. The thermal budgets always make the gate first process face challenges for material choices. Consequently, the gate last process is developed to provide more material choices for the high-K gate dielectric layer and the metal gate, and thus replaces the gate first process.
- Though the gate last process is able to avoid processes of high thermal budget and to provide more material choices for the high-K gate dielectric layer and the metal gate, the gate last process still faces integration requirements, such as to ensure the metal gate obtains the expected height, for the complicated processes.
- According to an aspect of the present invention, a manufacturing method for a semiconductor device having metal gate is provided. The manufacturing method includes providing a substrate having a plurality of shallow trench isolations (hereinafter abbreviated as STIs) formed therein and a polysilicon layer formed thereon; patterning the polysilicon layer to form at least a dummy gate and at least a pair of auxiliary dummy structures, the auxiliary dummy structures being positioned on the STI respectively at two sides of the dummy gate; forming at least a semiconductor device having the dummy gate on the substrate; forming a dielectric structure on the substrate; and removing a portion of the dielectric structure to expose the dummy gate of the semiconductor device and the auxiliary dummy structures.
- According to another aspect of the present invention, a semiconductor device having metal gate is provided. The semiconductor device includes a substrate having a plurality of STIs formed therein, at least a metal gate positioned on the substrate, and at least a pair of auxiliary dummy structures respectively positioned at two sides of the metal gate and on the STIs.
- According to the manufacturing method for a semiconductor device having metal gate provided by the present invention, a pair of auxiliary dummy structures is formed respectively at the two sides of the dummy gate simultaneously with forming the dummy gate. Because of the auxiliary dummy structures, the consumption to edges of the dummy gate, particularly at where the dummy gate adjoining the dielectric structure, is transferred to the edges of the auxiliary dummy structures, particularly at where the auxiliary dummy structures adjoining the dielectric structure. Consequently, no consumption is occurred to the polysilicon layer, and thus no height loss is resulted in the dummy gate after the dummy gate is exposed. More important, a metal gate subsequently formed obtains a height equal to the original height of the dummy gate. In other words, the metal gate is ensured to have a height the same with original height of dummy gate without any loss. Accordingly, the present invention provides a semiconductor device having metal gate and a manufacturing method thereof that ensures the electrical performance and reliability of the metal gate.
- These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
-
FIGS. 1-2 are schematic drawings illustrating a manufacturing method for a semiconductor device having metal gate. -
FIGS. 3-9 are schematic drawings illustrating a manufacturing method for a semiconductor device having metal gate provided by a first preferred embodiment of the present invention, wherein -
FIG. 9 is a top view illustrating the preferred embodiment of the present invention; -
FIG. 3 is a cross-sectional view taken along line A-A′ ofFIG. 9 ; -
FIG. 4 is a cross-sectional view in a step subsequent toFIG. 3 ; -
FIG. 5 is a cross-sectional view in a step subsequent to FIG. 4; -
FIG. 6 is a cross-sectional view in a step subsequent toFIG. 5 ; -
FIG. 7 is a cross-sectional view in a step subsequent toFIG. 6 ; and -
FIG. 8 is a cross-sectional view in a step subsequent toFIG. 7 . -
FIG. 10 is a top view illustrating a manufacturing method for a semiconductor device having metal gate provided by a second preferred embodiment of the present invention. -
FIG. 11 is a graph showing the height loss comparison of the dummy gate with or without the auxiliary dummy structures - Please refer to
FIGS. 1-2 , which are schematic drawings illustrating a manufacturing method for a semiconductor device having metal gate. As shown inFIG. 1 , asubstrate 100 is first provided with a dummy gate or areplacement gate 120 formed thereon. Thedummy gate 120 includes a high-k gatedielectric layer 102, a titanium nitride (TiN) layer (not shown) serving as a bottom barrier layer, and apolysilicon layer 104 defined by a patterned hard mask (not shown). Thedummy gate 120 has a height h1 that is almost equal to a thickness of thepolysilicon layer 104. More important, the height h1 of thedummy gate 120 is to be a height of a following formed metal gate. After forming elements for the n-type transistor or p-type transistor such as lightly-doped drains (LDDs) 106, aspacer 108, and a source/drain 110, and other elements such assilicides 112, a contact etch stop layer (CESL) 114, and an inter-layer dielectric (ILD)layer 116, the gate last process is to remove thepolysilicon layer 104 of thedummy gate 120. - Please still refer to
FIG. 1 . During removing thepolysilicon layer 104, a planarization process, such as a chemical mechanical polishing (CMP) process is performed to remove a portion of theILD layer 116 and theCESL 114, thus the patterned hard mask is exposed. Then, another CMP process is performed to remove a portion of theILD layer 116, a portion of theCESL 114, and the patterned hard mask to expose thepolysilicon layer 104. Because an etching rate of thepolysilicon layer 104 is significantly different from etching rates of theILD layer 116, theCESL 114 and the patterned hard mask that all include insulating material, the CMP process is supposed to stop at thepolysilicon layer 104 and thus exposes thepolysilicon layer 104. However, it is found that the CMP process always consumes thepolysilicon layer 104 at edges of thepolysilicon layer 104, particularly at where thepolysilicon layer 104 adjoining the patterned hard mask, even at wherein thepolysilicon layer 104 adjoining thespacer 108. Consequently, the edges of thepolysilicon layer 104, even thespacer 108, is consumed and removed by the CMP process and thus a height deviation is resulted between the center of thepolysilicon layer 104 and the edges of thepolysilicon layer 104. As shown inFIG. 1 , the center of thedummy gate 120 has the original height h1 while edges of thedummy gate 120 have a reduced height h2 due to the CMP consumption. More important, the original height h1 is larger than the reduced height h2. - Please refer to
FIG. 2 . Next, thepolysilicon layer 104 of thedummy gate 120 is removed to form agate trench 130. It is noteworthy that the original height h1 of the removeddummy gate 120 is depicted by the dashed line inFIG. 2 for emphasizing the height deviation. As shown inFIG. 2 , a depth of thegate trench 130 is equal to the reduced height h2 instead of the expected original height h1. A metal gate (not shown) is subsequently formed in thegate trench 130, and the metal gate inherently obtains the reduced height h2. Accordingly, the reduced height h2 of the metal gate formed by filling thegate trench 130 with work function metal material and filling metal material is not the same with the original and expected height h1 of thedummy gate 120, which means the metal gate unavoidably and undesirably suffers height loss. In other word, the reduced height h2 of the metal gate is significantly lower than an expected value, and thus the reliability and the electrical performance of the metal gate are adversely impacted. In addition, it is found that the height loss is more serious when the density of thedummy gate 120 is increased. For example, it is found the height deviation between the reduced height h2 and the original height h1 reaches 400 angstroms (Å) and the serious height deviation terribly induces adverse impact to the reliability and performance of the metal gate. - Please refer to
FIGS. 3-9 , which are schematic drawings illustrating a manufacturing method for a semiconductor device having metal gate provided by a first preferred embodiment of the present invention, whereinFIG. 9 is a top view illustrating the preferred embodiment of the present invention andFIGS. 3-8 are cross-sectional view taken along line A-A′ inFIG. 9 . As shown inFIG. 3 , the preferred embodiment first provides asubstrate 200 such as a silicon substrate, a silicon-containing substrate, or a silicon-on-insulator (SOI) substrate. Thesubstrate 200 includes a plurality ofSTIs 202 formed therein. The STIs provide electrical isolation between devices and define a plurality ofactive regions 202 a (show inFIG. 9 ). And agate dielectric layer 204 and apolysilicon layer 206 are sequentially formed on thesubstrate 200. It is noteworthy that the preferred embodiment can be integrated with the high-k first process or the high-k last process. When the preferred embodiment is integrated with the high-k first process, thedielectric layer 204 serves as the gate dielectric layer and includes high dielectric constant (hereinafter abbreviated as high-k) material such as metal oxide, particularly the rare earth metal oxide. For instance, the high-kgate dielectric layer 204 can include material selected from the group consisting of hafnium oxide (HfO2), hafnium silicon oxide (HfSiO4), hafnium silicon oxynitride (HfSiON), aluminum oxide (Al2O3), lanthanum oxide (La2O3), tantalum oxide (Ta2O5), yttrium oxide (Y2O3), zirconium oxide (ZrO2), strontium titanate oxide (SrTiO3), zirconium silicon oxide (ZrSiO4), hafnium zirconium oxide (HfZrO4), strontium bismuth tantalate, (SrBi2Ta2O9, SBT), lead zirconate titanate (PbZrxTi1-xO3, PZT), and barium strontium titanate (BaxSr1-xTiO3, BST). In addition, an interfacial layer (not shown) is preferably formed between the high-kgate dielectric layer 204 and thesubstrate 200 and a bottom barrier layer (not shown) is preferably formed between the high-kgate dielectric layer 204 and thepolysilicon layer 206. The bottom barrier layer can include titanium nitride (TiN), but not limited to this. In addition, when the preferred embodiment is integrated with the high-k last process, thegate dielectric layer 204 can include a conventional silicon oxide layer. - Please refer to
FIG. 3 andFIG. 9 . Next, an etching process is performed with a patternedhard mask 208 serving as an etching mask. Accordingly, thepolysilicon layer 206 and thegate dielectric layer 204 are etched and thus at least adummy gate 210 crossing the plurality ofactive regions 202 a is formed on thesubstrate 200. Thedummy gate 210 includes a first height H1. As shown inFIG. 3 , thedummy gate 210 upwardly includes thegate dielectric layer 204 and thepolysilicon layer 206. It is noteworthy that at least a pair ofauxiliary dummy structures 212 is formed simultaneously with forming thedummy gate 210. According to the preferred embodiment, theauxiliary dummy structures 212 are parallel with thedummy gate 210, and more important, are respectively formed at two sides of thedummy gate 210 as shown inFIG. 3 . Theauxiliary dummy structures 212 are formed on thesubstrate 200 and particularly on theSTI 202 at the two sides of thedummy gate 210. As shown inFIG. 9 , theauxiliary dummy structures 212 are formed within theSTIs 202, thus theauxiliary dummy structures 212 never contact theactive regions 202 a. Theauxiliary dummy structure 212 includes a width W (shown inFIG. 9 ), and the width is between about 0.03 micrometer (hereinafter abbreviated as μm) and about 0.1 μm. Thedummy gate 210 and theauxiliary dummy structure 212 include a first spacing width D1 defined therebetween, and the first spacing width D1 is between about 0.1 μm and about 0.18 μm. It is noteworthy that the first spacing width D1 corresponds to a line width S of thedummy gate 210. For example, the first spacing width D1 (between about 0.1 μm and about 0.18 μm in the preferred embodiment) is provided for thedummy gate 210 having the line width S of about larger than 1 micrometer (μm). However, the first spacing width D1 can be reduced correspondingly when the line width S of the dummy gate is reduced. Thus theauxiliary dummy structures 212 always provide sufficient assistance which is described in the following description. It is noteworthy that the preferred embodiment always forms theauxiliary dummy structures 212 when thedummy gate 210 has the line width S larger than 1 μm. Additionally, theauxiliary dummy structure 212 includes a single bar-like structure in the preferred embodiment. - Please refer to
FIG. 4 . After forming thedummy gate 210 and theauxiliary dummy structures 212, steps for forming elements of a semiconductor device such as a metal oxide semiconductor (MOS) device are sequentially performed: For example, an ion implantation is first performed to form lightly-doped drains (LDDs) 220 in thesubstrate 200 respectively at two sides of thedummy gate 210. Additionally, an offset spacer (not shown) can be formed on sidewalls of thedummy gate 210 before forming theLDDs 220. Then, an insulating layer or a multiple insulating layer (not shown) is formed on thesubstrate 200 and followed by performing an etching back process. Consequently afirst spacer 222 is formed on sidewalls of thedummy gate 210. It is noteworthy that during performing the etching back process, asecond spacer 224 having layer(s) the same with thefirst spacer 222 is formed on sidewalls of theauxiliary dummy structures 212 according to the preferred embodiment. - Please refer to
FIG. 5 andFIG. 9 . After forming thefirst spacer 222 and thesecond spacer 224, another ion implantation is performed to forma source/drain 226 in thesubstrate 200 at two sides ofdummy gate 210, particularly at two sides of thefirst spacer 222. Furthermore,silicides 228 are formed on the surface of the source/drain 226. Additionally, selective strain scheme (SSS) can be used in the preferred embodiment. For example, a selective epitaxial growth (SEG) method can be used to form the source/drain 226: after forming a trench (not shown) and performing a trench cleaning process, the SEG method is used to form epitaxial silicon layers with silicon germanium (SiGe) for p-type source/drain 226 or to form epitaxial silicon layers with silicon carbide (SiC) for n-type source/drain 226. Accordingly, asemiconductor device 230 having thedummy gate 210 as shown inFIG. 5 is obtained. Since the steps and materials for the abovementioned elements are well-known to those skilled in the art, the details are omitted herein in the interest of brevity. Furthermore, for clarifying and emphasizing the spatial relationship between theauxiliary dummy structures 212 and thedummy gate 210, theLDDs 220, thefirst spacer 222, thesecond spacer 224, and thesilicides 228 are omitted fromFIG. 9 . However those skilled in the art would easily realize that those elements should not be ignored. Furthermore, as shown inFIG. 9 , thesemiconductor devices 230 share the same thedummy gate 210 are electrically connected in series by thedummy gate 210 and the metal gate which is formed afterwards, and thedummy gates 210 of eachsemiconductor device 230 are electrically isolated from theauxiliary dummy structures 212. In other words, theauxiliary dummy structures 212 are electrically isolated from anydummy gate 210, metal gate, and theactive regions 202 a. - Please refer to
FIG. 6 . After forming thesemiconductor device 230, amultilayered dielectric structure 240 including at least a contact etch stop layer (CESL) 242 and an inter-layer dielectric (ILD)layer 244 is formed on thesubstrate 200. As shown inFIG. 6 , themultilayered dielectric structure 240 covers thesemiconductor device 230, theauxiliary dummy structures 212, and vacancy between thesemiconductor device 230 and theauxiliary dummy structure 212. - Please refer to
FIG. 7 . Next, two planarization processes such as two chemical mechanical polishing (CMP) processes are sequentially performed: a first CMP process is performed to remove a portion of thedielectric structure 240. The first CMP process stops at the patternedhard mask 208. Then, a second CMP process is performed to remove a portion of thedielectric structure 240 and the patternedhard mask 208 to expose the dummy gate 210 (that is the polysilicon layer 206) of thesemiconductor device 230. It is noteworthy that because of theauxiliary dummy structures 212, the CMP consumption to edges of thedummy gate 210, particularly at where thedummy gate 210 adjoining thedielectric structure 240 or thefirst spacer 222, is transferred to edges of theauxiliary dummy structures 212, particularly at where theauxiliary dummy structure 212 adjoining thedielectric structure 240 or thesecond spacer 224. Therefore, thesemiconductor device 230, thedummy gate 210 of thesemiconductor device 230, and thedielectric structure 240 between thedummy gate 210 and theauxiliary dummy structures 212 are coplanar after the two CMP processes. On the other hands, the first height H1 of thedummy gate 210 is impervious to the CMP process. Moreover, because the CMP consumption is transferred to theauxiliary dummy structure 212 and thesecond spacer 224, particularly on the side that is opposite to thedummy gate 210, a portion of theauxiliary dummy structure 212 and thesecond spacer 224 are consumed during the CMP processes. Therefore, surfaces of a portion of theauxiliary dummy structures 212 and thesecond spacer 224 are lower than thesemiconductor device 230, thedummy gate 210 of thesemiconductor device 230, and thedielectric structure 240 between thedummy gate 210 and theauxiliary dummy structures 212. - It should be noted that since the first spacing width D1 between the
auxiliary dummy structure 212 and thedummy gate 210 is between 0.1 μm and 0.18 μm, theauxiliary dummy structure 212 serves a sufficient buffer structure and thus CMP consumption is transferred to theauxiliary dummy structures 212. Accordingly, the first height H1 of thedummy gate 210 is protected from the CMP consumption. In addition, it is well-known that the prior art used to position different dummies (not shown) for improving uniformity of the CMP process. However, it should be noted that when the spacing width between the conventional dummy and thedummy gate 210 is larger than 0.18 μm, the CMP consumption cannot be transferred to those dummies and thus the conventional dummies cannot serve as the buffer structure. Briefly speaking, the conventionally dummies cannot protect the first height H1 of thedummy gate 210 from the CMP consumption as theauxiliary dummy structures 212 provided by the preferred embodiment. - Please refer to
FIG. 11 , which is a graph showing the height loss comparison of thedummy gate 210 with or without the auxiliary dummy structures. According toFIG. 11 , it is found that theauxiliary dummy structure 212 transfers the consumption from the edges of the dummy gate to the edges of the auxiliary dummy structures. Consequently, consumption to the polysilicon layer and the height loss are both mitigated. Furthermore, it is observed when the line width S of thedummy gate 210 is larger than 2 μm, the height loss problem can be efficiently mitigated by theauxiliary dummy structures 212. - Please refer to
FIG. 8 andFIG. 9 . After the two CMP processes, thedummy gate 210 of thesemiconductor device 230 is removed to form a gate trench (not shown). Additionally, theauxiliary dummy structures 212 can be removed simultaneously with removing thedummy gate 210. And thus dummy trenches (not shown) are formed on thesubstrate 200. Subsequently, a workfunction metal layer 252 and a fillingmetal layer 254 are sequentially formed in the gate trench and the dummy trench and followed by performing another CMP process for removing unnecessary metal layers. Consequently, ametal gate 250 and anauxiliary dummy structure 214 are respectively formed in the gate trench and the dummy trench as shown inFIG. 8 . Additionally, an etch stop layer (not shown) can be formed between the workfunction metal layer 252 and high-kgate dielectric layer 204, and a top barrier layer (not shown) can be formed between the workfunction metal layer 252 and the fillingmetal layer 254 if required. The etch stop layer can include tantalum nitride (TaN) and the top barrier layer can include TiN, but both not limited to this. According to the preferred embodiment, the workfunction metal layer 252 can include suitable materials providing an appropriate work function for the p-type semiconductor device or n-type semiconductor device. Therefore, the workfunction metal layer 252 has a work function, and the work function can be between 4.8 eV and 5.2 eV, or alternatively between 3.9 eV and 4.3 eV. The fillingmetal layer 254 includes materials with low resistance and superior gap-filling characteristic, such as aluminum (Al), titanium aluminide (TiAl) or titanium aluminum oxide (TiAlO), but not limited to this. - It is noteworthy that when the preferred embodiment is integrated with the high-k last process, the
gate dielectric layer 204 can include the conventional SiO layer and serve as the interfacial layer after forming the gate trench. Subsequently, a high-k gate dielectric layer (not shown), a bottom barrier layer (not shown), an etch stop layer (not shown), a workfunction metal layer 252, a top barrier layer (not shown), and a fillingmetal layer 254 are sequentially formed on theinterfacial layer 204 in thegate trench 250 and on thesubstrate 200 and themetal gate 250 is obtained. More important, themetal gate 250 always includes a second height H2 no matter the preferred embodiment is integrated with the high-k first or high-k last process. Since the first height H1 (depicted by the dashed line for comparing as shown inFIG. 8 ) does not suffer any loss in the CMP process, a depth of the gate trench is the same with the first height H1, and the second height H2 of themetal gate 250 that is formed in the gate trench inherently is equal to the first height H1 of thedummy gate 210. In addition, theILD layer 244 and theCESL 242 can be selectively removed and sequentially reformed on thesubstrate 200 for improving performance of thesemiconductor device 230 in the preferred embodiment. - Please refer to
FIG. 8 again. According to the manufacturing method provided by the first preferred embodiment, asemiconductor device 230 havingmetal gate 250 is obtained. Furthermore, eachsemiconductor device 230 includes a pair ofauxiliary dummy structures 214 positioned respectively at the two sides of themetal gate 250 on thesubstrate 200. Furthermore, theauxiliary dummy structures 214 are electrically isolated from themetal gate 250. - It is noteworthy that though the conductive material also fills up the dummy trench as well the gate trench when forming the work
function metal layer 252 and the fillingmetal layer 254 and thus theauxiliary dummy structures 214 are formed as shown inFIG. 8 , theauxiliary dummy structures 214 are still electrically isolated from other elements. It is because theauxiliary dummy structures 214 are formed on theSTIs 202 and surrounded by thedielectric structure 240. Accordingly, the metal materials remained in theauxiliary dummy structures 214 renders no influence or impact to the electrical performance of thesemiconductor device 230. - Please refer to
FIG. 10 , which is a top view illustrating a manufacturing method for a semiconductor device having metal gate provided by a second preferred embodiment of the present invention. It should be noted that the steps of the second materials are the same with those of the first preferred embodiment; therefore those steps are omitted for simplicity. Furthermore, elements the same in both first and second embodiments are designated by the same numerals. More important, for clarifying and emphasizing the spatial relationship between theauxiliary dummy structures 212 and thedummy gate 210, theLDDs 220, thefirst spacer 222, thesecond spacer 224, and thesilicides 228 are omitted fromFIG. 10 . However those skilled in the art would easily realize that those elements should not be ignored. - Please refer to
FIG. 10 , what difference between the first preferred embodiment and the second preferred embodiment is: The second preferred embodiment providesauxiliary dummy structures 212 a, and eachauxiliary dummy structure 212 a comprises a multiple bar-like structure. Theauxiliary dummy structure 212 a includes a width W that is the same with theauxiliary dummy structure 212 described in the first preferred embodiment, and the width W is between about 0.03 μm and about 0.1 μm. Thedummy gate 210 and theauxiliary dummy structure 212 a proximal to thedummy gate 210 include a first spacing width D1 defined therebetween. The first spacing width D1 is between about 0.1 μm and about 0.18 μm. As mentioned above, the preferred embodiment always forms theauxiliary dummy structures 212 a when the line width S of thedummy gate 210 is larger than 1 μm. More important, the multiple bar-like structure 212 a includes a second spacing width D2 defined therebetween and the second spacing width D2 is between about 0.12 μm and about 0.23 μm. As mentioned above, since the steps for forming theauxiliary dummy structures 212 a are all the same with those described in the first preferred embodiment, a second spacer (not shown) is respectively formed on sidewalls of theauxiliary dummy structures 212 a simultaneously with forming thefirst spacer 222 of thesemiconductor device 230. - According to the
auxiliary dummy structures 212 a that includes multiple bar-like structure, the buffer function rendered by theauxiliary dummy structures 212 a is improved and thus the first height H1 of the dummy gate is more impervious to the CMP consumption. Furthermore, since theauxiliary dummy structures 212 a include the multiple bar-like structure, theadjacent dummy gates 210 can share one set of theauxiliary dummy structures 212 a. However, it is not limited to form the multiple bar-likeauxiliary dummy structures 212 a respectively at two sides of theadjacent dummy gates 210 as shown inFIG. 10 . - According to the manufacturing method for a metal gate provided by the present invention, a pair of auxiliary dummy structures is formed respectively at the two sides of the dummy gate simultaneously with forming the dummy gate. Because of the auxiliary dummy structures, the consumption to edges of the dummy gate, particularly at where the dummy gate adjoining the dielectric structure, is transferred to the edges of the auxiliary dummy structures, particularly at where the auxiliary dummy structure adjoining the dielectric structure. In other words, the auxiliary dummy structure serves a sufficient buffer structure and thus CMP consumption is transferred to the auxiliary dummy structure. Consequently, no consumption is occurred to the polysilicon layer, and thus no height deviation is resulted between the center of the dummy gate and the edges of the dummy gate. In other words, no height loss is resulted in the dummy gate after the dummy gate is exposed. More important, the metal gate subsequently formed obtains a height equal to the original height of the dummy gate. In other words, the metal gate is ensured to have a height the same with original height of dummy gate without any loss. Accordingly, the present invention provides a semiconductor device having metal gate and a manufacturing method thereof ensures the electrical performance and reliability of the metal gate.
- Moreover, because the auxiliary dummy structure is integrated in the fabrication of the semiconductor device, the manufacturing method of the present invention is provided without increasing any process cost. Additionally, it is found that height loss is more serious when the density of the dummy gate is increased, therefore the manufacturing method of the present invention is preferably provided to solve the height loss issue when the density of the dummy gate is larger than 65%. Briefly speaking, the manufacturing method provided by the present invention is more preferably used to form the semiconductor device having high device density.
- Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
Claims (11)
1. A manufacturing method for a semiconductor device having metal gate, comprising:
providing a substrate having a plurality of shallow trench isolations (STIs) formed therein and a polysilicon layer formed thereon;
patterning the polysilicon layer to form at least a dummy gate and at least a pair of auxiliary dummy structures, the auxiliary dummy structures being positioned on the STI respectively at two sides of the dummy gate;
forming at least a semiconductor device having the dummy gate on the substrate;
forming a dielectric structure on the substrate; and
removing a portion of the dielectric structure to expose the dummy gate of the semiconductor device and the auxiliary dummy structures.
2. The manufacturing method for a semiconductor device having metal gate according to claim 1 , wherein the dummy gate and the auxiliary dummy structure comprise a first spacing width defined therebetween, and the first spacing width is between 0.1 micrometer (μm) and 0.18 μm.
3. The manufacturing method for a semiconductor device having metal gate according to claim 1 , wherein the auxiliary dummy structure comprises a width, and the width is between 0.03 μm and 0.1 μm.
4. The manufacturing method for a semiconductor device having metal gate according to claim 1 , wherein the dummy gate has a line width, and the line width is larger than 1 micrometer (μm).
5. The manufacturing method for a semiconductor device having metal gate according to claim 1 , wherein the auxiliary dummy structure comprises a multiple bar-like structure.
6. The manufacturing method for a semiconductor device having metal gate according to claim 5 , wherein the multiple bar-like structure comprises a second spacing width defined therebetween, and the second spacing width is between 0.12 μm and 0.23 μm.
7. The manufacturing method for a semiconductor device having metal gate according to claim 1 , wherein the step of forming the semiconductor device further comprises forming a first spacer on sidewalls of the dummy gate, and simultaneously forming a second spacer on sidewalls of the auxiliary dummy structure.
8. The manufacturing method for a semiconductor device having metal gate according to claim 1 , wherein the dielectric structure covers the semiconductor device and the auxiliary dummy structures and fills up vacancy between the semiconductor device and the auxiliary dummy structures.
9. The manufacturing method for a semiconductor device having metal gate according to claim 8 , wherein the semiconductor device, the dummy gate of the semiconductor device, and the dielectric structure between the semiconductor device and the auxiliary dummy structures are coplanar after removing the portion of the dielectric structure to expose the dummy gate of the semiconductor device and the auxiliary dummy structures.
10. The manufacturing method for a semiconductor device having metal gate according to claim 1 , further comprising steps of removing the dummy gate of the semiconductor device and forming a metal gate.
11. The manufacturing method for a semiconductor device having metal gate according to claim 10 , wherein the dummy gate comprises a first height, the metal gate comprises a second height, and the second height is substantially equal to the first height.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/144,584 US20140106558A1 (en) | 2011-07-12 | 2013-12-31 | Semiconductor device having metal gate and manufacturing method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/180,556 US8643069B2 (en) | 2011-07-12 | 2011-07-12 | Semiconductor device having metal gate and manufacturing method thereof |
US14/144,584 US20140106558A1 (en) | 2011-07-12 | 2013-12-31 | Semiconductor device having metal gate and manufacturing method thereof |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/180,556 Division US8643069B2 (en) | 2011-07-12 | 2011-07-12 | Semiconductor device having metal gate and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140106558A1 true US20140106558A1 (en) | 2014-04-17 |
Family
ID=47518462
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/180,556 Active 2032-01-01 US8643069B2 (en) | 2011-07-12 | 2011-07-12 | Semiconductor device having metal gate and manufacturing method thereof |
US14/144,584 Abandoned US20140106558A1 (en) | 2011-07-12 | 2013-12-31 | Semiconductor device having metal gate and manufacturing method thereof |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/180,556 Active 2032-01-01 US8643069B2 (en) | 2011-07-12 | 2011-07-12 | Semiconductor device having metal gate and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
US (2) | US8643069B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150072511A1 (en) * | 2013-09-11 | 2015-03-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Oxidation and Etching Post Metal Gate CMP |
US9711411B2 (en) * | 2015-11-10 | 2017-07-18 | United Microelectronics Corp. | Semiconductor device and method for fabricating the same |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8853035B2 (en) | 2011-10-05 | 2014-10-07 | International Business Machines Corporation | Tucked active region without dummy poly for performance boost and variation reduction |
US9209182B2 (en) * | 2012-12-28 | 2015-12-08 | Taiwan Semiconductor Manufacturing Company, Ltd. | Dummy metal gate structures to reduce dishing during chemical-mechanical polishing |
US9093298B2 (en) | 2013-08-22 | 2015-07-28 | Texas Instruments Incorporated | Silicide formation due to improved SiGe faceting |
US9991285B2 (en) | 2013-10-30 | 2018-06-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Mechanisms for forming FinFET device |
US9362275B1 (en) * | 2015-02-13 | 2016-06-07 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor device with dummy gate structures |
US9634138B1 (en) * | 2016-08-24 | 2017-04-25 | Qualcomm Incorporated | Field-effect transistor (FET) devices employing adjacent asymmetric active gate / dummy gate width layout |
US9924160B1 (en) * | 2016-09-22 | 2018-03-20 | Fluke Corporation | Imaging device with alignment analysis |
US9893086B1 (en) * | 2016-11-16 | 2018-02-13 | Globalfoundries Inc. | Contact punch through mitigation in SOI substrate |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5950090A (en) * | 1998-11-16 | 1999-09-07 | United Microelectronics Corp. | Method for fabricating a metal-oxide semiconductor transistor |
US20090315116A1 (en) * | 2008-06-19 | 2009-12-24 | Fujitsu Microelectronics Limited | Semiconductor device with hetero junction |
US20120295187A1 (en) * | 2011-05-20 | 2012-11-22 | Chen-Hua Tsai | Dummy patterns and method for generating dummy patterns |
US20130015497A1 (en) * | 2010-04-21 | 2013-01-17 | Institute of Microelectronics, Chinese Academy of Sciences | Source/drain region, contact hole and method for forming the same |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5563096A (en) | 1995-11-20 | 1996-10-08 | Digital Equipment Corporation | Semiconductor device fabrication with planar gate interconnect surface |
JP3311244B2 (en) | 1996-07-15 | 2002-08-05 | 株式会社東芝 | Basic cell library and method of forming the same |
US5896870A (en) | 1997-03-11 | 1999-04-27 | International Business Machines Corporation | Method of removing slurry particles |
KR100378180B1 (en) | 2000-05-22 | 2003-03-29 | 삼성전자주식회사 | Slurry for chemical mechanical polishing process and method of manufacturing semiconductor device using the same |
US6372605B1 (en) | 2000-06-26 | 2002-04-16 | Agere Systems Guardian Corp. | Additional etching to decrease polishing time for shallow-trench isolation in semiconductor processing |
US6664190B2 (en) | 2001-09-14 | 2003-12-16 | Chartered Semiconductor Manufacturing Ltd. | Pre STI-CMP planarization scheme |
JP2003277734A (en) | 2001-12-31 | 2003-10-02 | Hynix Semiconductor Inc | Cmp (chemical mechanical polishing) slurry for metal and method for forming metal wiring contact plug of semiconductor element using the same |
JP4212861B2 (en) | 2002-09-30 | 2009-01-21 | 株式会社フジミインコーポレーテッド | Polishing composition and silicon wafer polishing method using the same, and rinsing composition and silicon wafer rinsing method using the same |
JP2005026586A (en) * | 2003-07-04 | 2005-01-27 | Semiconductor Leading Edge Technologies Inc | Semiconductor device and its manufacturing method |
US7195535B1 (en) | 2004-07-22 | 2007-03-27 | Applied Materials, Inc. | Metrology for chemical mechanical polishing |
US7166506B2 (en) | 2004-12-17 | 2007-01-23 | Intel Corporation | Poly open polish process |
TWI372108B (en) | 2005-04-06 | 2012-09-11 | Rohm & Haas Elect Mat | Method for forming a porous reaction injection molded chemical mechanical polishing pad |
KR100712996B1 (en) * | 2005-09-20 | 2007-05-02 | 주식회사 하이닉스반도체 | Semiconductor device having pattern dummy and method of manufacturing the semiconductor device using the pattern dummy |
TWI312192B (en) * | 2006-09-18 | 2009-07-11 | Promos Technologies Inc | Semiconductor device and manufacture method thereof |
US7838366B2 (en) | 2008-04-11 | 2010-11-23 | United Microelectronics Corp. | Method for fabricating a metal gate structure |
US8048733B2 (en) * | 2009-10-09 | 2011-11-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method for fabricating a gate structure |
-
2011
- 2011-07-12 US US13/180,556 patent/US8643069B2/en active Active
-
2013
- 2013-12-31 US US14/144,584 patent/US20140106558A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5950090A (en) * | 1998-11-16 | 1999-09-07 | United Microelectronics Corp. | Method for fabricating a metal-oxide semiconductor transistor |
US20090315116A1 (en) * | 2008-06-19 | 2009-12-24 | Fujitsu Microelectronics Limited | Semiconductor device with hetero junction |
US20130015497A1 (en) * | 2010-04-21 | 2013-01-17 | Institute of Microelectronics, Chinese Academy of Sciences | Source/drain region, contact hole and method for forming the same |
US20120295187A1 (en) * | 2011-05-20 | 2012-11-22 | Chen-Hua Tsai | Dummy patterns and method for generating dummy patterns |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150072511A1 (en) * | 2013-09-11 | 2015-03-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Oxidation and Etching Post Metal Gate CMP |
US9209272B2 (en) * | 2013-09-11 | 2015-12-08 | Taiwan Semiconductor Manufacturing Company, Ltd. | Oxidation and etching post metal gate CMP |
US9564511B2 (en) | 2013-09-11 | 2017-02-07 | Taiwan Semiconductor Manufacturing Company, Ltd. | Oxidation and etching post metal gate CMP |
US9917173B2 (en) | 2013-09-11 | 2018-03-13 | Taiwan Semiconductor Manufacturing Company, Ltd. | Oxidation and etching post metal gate CMP |
US9711411B2 (en) * | 2015-11-10 | 2017-07-18 | United Microelectronics Corp. | Semiconductor device and method for fabricating the same |
Also Published As
Publication number | Publication date |
---|---|
US8643069B2 (en) | 2014-02-04 |
US20130015524A1 (en) | 2013-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10109630B2 (en) | Semiconductor device and method of forming the same | |
US9054187B2 (en) | Semiconductor structure | |
US8643069B2 (en) | Semiconductor device having metal gate and manufacturing method thereof | |
US10014227B2 (en) | Semiconductor device having strained fin structure and method of making the same | |
US9142649B2 (en) | Semiconductor structure with metal gate and method of fabricating the same | |
US9024393B2 (en) | Manufacturing method for semiconductor device having metal gate | |
US8536038B2 (en) | Manufacturing method for metal gate using ion implantation | |
US8975672B2 (en) | Metal oxide semiconductor transistor and manufacturing method thereof | |
US8673758B2 (en) | Structure of metal gate and fabrication method thereof | |
US8981527B2 (en) | Resistor and manufacturing method thereof | |
US20150118836A1 (en) | Method of fabricating semiconductor device | |
US20130168816A1 (en) | Resistor and fabrication method thereof | |
US20160104786A1 (en) | Semiconductor device and method for fabricating the same | |
US20130099307A1 (en) | Semiconductor device having metal gate and manufacturing method thereof | |
US8853041B2 (en) | Method for fabricating semiconductor device | |
US9105623B2 (en) | Semiconductor device having metal gate and manufacturing method thereof | |
US8551876B2 (en) | Manufacturing method for semiconductor device having metal gate | |
US20120256275A1 (en) | Metal gate structure and manufacturing method thereof | |
US11545560B2 (en) | Semiconductor device and method for fabricating the same | |
US20160126139A1 (en) | Semiconductor device and method for fabricating the same | |
US8710593B2 (en) | Resistor and manufacturing method thereof | |
US8486790B2 (en) | Manufacturing method for metal gate | |
US10505007B1 (en) | Semiconductor device having asymmetric work function metal layer | |
TWI509667B (en) | Structure of metal gate and fabrication method thereof | |
TWI508293B (en) | Semiconductor device having metal gate and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: UNITED MICROELECTRONICS CORP., TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HSU, CHUN-WEI;HUANG, PO-CHENG;TSAI, TENG-CHUN;AND OTHERS;REEL/FRAME:032024/0467 Effective date: 20110708 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |