US20140074195A1 - Apparatus for delivering multiple forms of electromagnetic radiation and method for its use - Google Patents

Apparatus for delivering multiple forms of electromagnetic radiation and method for its use Download PDF

Info

Publication number
US20140074195A1
US20140074195A1 US14/077,831 US201314077831A US2014074195A1 US 20140074195 A1 US20140074195 A1 US 20140074195A1 US 201314077831 A US201314077831 A US 201314077831A US 2014074195 A1 US2014074195 A1 US 2014074195A1
Authority
US
United States
Prior art keywords
radiation
frequency generator
electromagnetic radiation
laser diodes
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/077,831
Inventor
Dror Irge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US14/077,831 priority Critical patent/US20140074195A1/en
Publication of US20140074195A1 publication Critical patent/US20140074195A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0635Radiation therapy using light characterised by the body area to be irradiated
    • A61N2005/0642Irradiating part of the body at a certain distance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/065Light sources therefor
    • A61N2005/0651Diodes
    • A61N2005/0652Arrays of diodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/067Radiation therapy using light using laser light

Definitions

  • the present invention is generally directed to an apparatus for delivering multiple forms of electromagnetic radiation, and methods for using the apparatus.
  • a light emitting diode, or LED is formed from a semiconducting material having a p-n junction.
  • the p-n junction creates an electric field that separates charge carriers, namely free electrons and holes. When an electron reaches a hole, the two recombine and release energy in the process which generates a photon.
  • the photon generally has a specific wavelength based on the band gap energy of the materials used to form the p-n junction.
  • the materials used to form an LED have a direct band gap that corresponds to electromagnetic energies near the visible spectrum.
  • electromagnetic radiation may be used to cause the emission of electromagnetic radiation.
  • One such technique is known as light amplification by stimulated emission of radiation, or a laser.
  • the electromagnetic radiation emitted from a laser is in the form of photons of light energy that are monochromatic, meaning they have the same wavelength.
  • the photons are also generally coherent and travel in a very tight beam toward the same direction.
  • a laser diode is a type of laser formed from a semiconductor much like an LED. Laser diodes differ, however, in that they employ an optical cavity that confines the emitted light into a very narrow line like a laser and may employ lenses to form a collimated beam. Thus, unlike LEDs, laser diodes exhibit the same properties described above that define a laser.
  • Laser diodes and LEDs may be used for treating patients in various fields of medicine including dermatology, dentistry, ophthalmology, gastroenterology, urology, gynecology, orthopedics, etc.
  • the current methods for employing laser diodes and LEDs in treating patients in these fields suffer from various drawbacks. Some techniques use very low frequencies that may be too low to be optimally effective in treatment. Other techniques require significantly higher frequencies to be effective, which may be dangerous and uncomfortable for patients due to the higher operating temperatures and additional heat that is emitted.
  • Embodiments of an apparatus for delivering multiple forms of electromagnetic radiation are herein disclosed. These embodiments of the invention overcome one or more of the above-described disadvantages associated with previous technologies. Embodiments of the invention provide several advantages for production of a radiation device that improves treatment and limits the cost required for its production.
  • an apparatus for providing treatment using electromagnetic radiation therapy comprises one or more light emitting diodes configured to provide for the emission of electromagnetic radiation in continuous wave form.
  • the apparatus further comprises one or more laser diodes configured to provide for the emission of electromagnetic radiation in continuous wave form.
  • the apparatus comprises a frequency generator configured to provide a frequency generator waveform at a frequency.
  • the frequency generator waveform converts the electromagnetic radiation of the one or more laser diodes from continuous wave form to pulse wave form and maintains the electromagnetic radiation of the one or more light emitting diodes in continuous wave form.
  • the frequency generator is further configured to cause the emission of an electromagnetic field proximate the apparatus.
  • a method for providing treatment using electromagnetic radiation therapy.
  • the method comprises receiving a power input initiating a radiation unit.
  • the radiation unit comprises one or more light emitting diodes, one or more laser diodes, and a frequency generator.
  • the method further comprises initiating the one or more light emitting diodes to provide for the emission of electromagnetic radiation in continuous wave form mode.
  • the method comprises initiating the one or more laser diodes to provide for the emission of electromagnetic radiation in continuous wave form mode.
  • the method further comprises controlling the frequency generator to provide a frequency generator waveform at a frequency to convert the output of the one or more laser diodes from continuous wave form mode to pulse wave form mode, maintain the output of the one or more light emitting diodes in continuous wave form mode, and cause the emission of an electromagnetic field proximate the radiation unit.
  • Another example embodiment of the invention is directed to a method for providing radiation treatment.
  • the method comprises providing continuous wave electromagnetic radiation of a first wavelength. Additionally, the method comprises providing pulse wave electromagnetic radiation of a second wavelength. The method further comprises providing an electromagnetic field of a third wavelength. The first, second, and third wavelengths are different from one another.
  • the continuous wave electromagnetic radiation, the pulse wave electromagnetic radiation, and the electromagnetic field are provided simultaneously by a single device.
  • FIG. 1 illustrates a radiation apparatus in accordance with an example embodiment of the present invention
  • FIG. 2 illustrates a schematic representation of a radiation apparatus in accordance with an example embodiment of the present invention.
  • FIG. 3 illustrates a flowchart according to an example embodiment of a method for using a radiation apparatus of the present invention.
  • the radiation apparatus 5 may provide laser therapy through the combination of multiple types of electromagnetic radiation in a single device.
  • the radiation apparatus 5 may allow a user to determine the desired combination among laser energy and other types of electromagnetic energy according to a patient's level of pain in addition to the level of inflammation.
  • a user may be able to raise or lower the frequency of the radiation output according to the level of pain experienced by the patient alone.
  • the type, form, frequency, and amount of radiation output may be adjusted during the operation of the radiation apparatus 5 , without any side effects and at very low cost.
  • the present invention may further be directed to treating cardiac cells affected by cardiac injury, for instance for treating a patient who suffers a myocardial infarction.
  • Treatments based on the combination of various forms of electromagnetic radiation as in the present radiation apparatus 5 may decrease the infarct size, ventricular dilation post-myocardial infarction, and the size of the septum, among other things.
  • similar treatment using the present invention may be provided to other types of muscle, skeletal and soft tissue as well as smooth muscle, which may assist in treatment of colitis, colitis ulcerosa, Crohn's disease, inflammation of the jejunum, and other chronic diseases.
  • FIG. 1 illustrates one embodiment of a radiation apparatus 5 in accordance with the present invention.
  • the radiation apparatus 5 may comprise elements that emit light radiation energy.
  • the light emitting elements may include one or more light emitting diodes (LEDs) 10 .
  • the LEDs 10 may be selected based on the wavelength of the light they emit. In some embodiments, each LED 10 may emit the same or approximately the same wavelength of radiation as the other LEDs 10 . Alternatively, one or more LEDs 10 may emit radiation of a different wavelength than one or more other LEDs 10 . In fact, any number of different types of LEDs 10 emitting different wavelengths of radiation may be used in combination in the same radiation apparatus.
  • the selection of an LED 10 of a given wavelength may be based on the form of treatment desired to be achieved by the radiation apparatus.
  • the LEDs 10 may be selected such that the wavelength of the emitted light is within the range of 635 to 650 nm, for example 650 nm.
  • the LEDs 10 may emit radiation in the form of visible light, in particular red light. It should be understood that the present invention is not limited to LEDs 10 emitting radiation of this wavelength and may include LEDs 10 that emit radiation at any wavelength, including radiation of other wavelengths within the visible spectrum, infrared spectrum, ultraviolet spectrum, broad spectrum (such as white light), and beyond.
  • the light emitting elements may comprise one or more laser diodes 15 .
  • the laser diode elements 15 may be chosen based on the wavelength of the light they emit. In some embodiments, each laser diode 15 may emit the same or approximately the same wavelength of radiation as the other laser diodes 15 . Alternatively, one or more laser diodes 15 may emit radiation of a different wavelength than one or more other laser diodes 15 . In fact, any number of different types of laser diodes 15 emitting different wavelengths of radiation may be used in combination in the same radiation apparatus.
  • the selection of a laser diode 15 of a given wavelength may be based on the form of treatment desired to be achieved by the radiation apparatus.
  • the laser diodes 15 may be selected such that the wavelength of the emitted light is within the range of 780 to 785 nm, for example 785 nm.
  • the laser diodes 15 may emit radiation in the form of infrared radiation, which is invisible to the human eye. It should be understood that the present invention is not limited to laser diodes 15 emitting radiation of this wavelength and may include laser diodes 15 that emit radiation at any wavelength, including radiation of other wavelengths within the infrared spectrum, visible spectrum, ultraviolet spectrum, broad spectrum (such as white light), and beyond.
  • the radiation apparatus 5 comprises a combination of one or more LED 10 elements and one or more laser diode 15 elements.
  • the radiation apparatus may comprise only laser diodes 15 .
  • the LEDs 10 and laser diodes 15 may be arranged in a matrix layout.
  • the number of LEDs 10 and laser diodes 15 in the radiation unit may be varied to achieve a particular treatment objective.
  • the radiation unit may comprise 64 LEDs 10 and 64 laser diodes 15 . Although these embodiments employ the same number of LEDs 10 and laser diodes 15 , alternatively, the number of LEDs 10 may differ from the number of laser diodes 15 .
  • the LEDs 10 and laser diodes 15 may be arranged in the matrix in a number of rows and columns, for example 16 rows and 8 columns.
  • An example embodiment of a base laser radiation unit that may be modified according to the present invention is the Hyper Photon 3D from Medical Electronics GmbH. It is appreciated that various other types of base laser radiation units may be modified according to the present invention.
  • the LEDs 10 and laser diodes 15 may be disposed along the inside of a curved surface of the radiation apparatus 5 , for example a surface that approximates a lateral half of a cylinder.
  • each LED 10 and laser diode 15 may be positioned such that the radiation from the element emits toward the axis of the cylinder.
  • the LEDs 10 and laser diodes 15 may be spaced evenly along the curve.
  • the distance between the centers of two adjacent elements may be approximately 20 mm.
  • the length of the arc of a row of elements may be 290 mm and have a sagittal distance of 90 mm.
  • the curvature radius of a row may be approximately 160 mm.
  • each radiation element may be either a light emitting diode 10 or a laser diode 15 .
  • the radiation apparatus 5 may further include additional elements for controlling the radiation emitting elements, as shown in the schematic representation of FIG. 2 .
  • the radiation apparatus 5 may comprise for example, a power supply element 205 , a time control element 210 , an internal safety control element 215 , a poly/alpha frequency generator element 220 , one or more buffer and protection logic elements 225 , one or more laser power control elements 230 , a laser radiator area element 235 , and/or the like.
  • the radiation apparatus 5 may also include various other components for controlling and powering the radiation apparatus 5 and its radiation elements, for example a processing device (e.g., a processor, controller, and/or the like). It will be appreciated that one or more of these radiation apparatus 5 components may be located remotely from one another. Furthermore, one or more of the components may be combined and additional components performing functions described herein may be included.
  • the radiation apparatus 5 may further comprise a frequency generator 240 , or modulator.
  • the frequency generator 240 may be used to generate an electrical waveform as an input to the radiation apparatus 5 .
  • the frequency generator 240 may be external to the radiation apparatus 5 .
  • the external frequency generator 240 may be any commercially available frequency generator 240 that can be connected or disconnected based on the type of treatment to be applied.
  • An example of such an external frequency generator 240 is model MXG 9802 manufactured by Voltcraft (Lindenweg 15, D-92242 Hirschau/Germany).
  • an output of the frequency generator 240 may be connected to an input of the radiation apparatus 5 , for example via an optional input jack 20 .
  • the optional input jack 20 of the radiation apparatus 5 may be a type of pin connector commonly used in electrical instruments that accepts inputs in the form of a plug.
  • the frequency generator 240 may be a component internal to the radiation apparatus 5 and connected to one or more of the other internal components of the radiation apparatus 5 .
  • a user of the radiation apparatus 5 may be able to control the output waveform of the frequency generator 240 .
  • the frequency generator 240 may have an accessible control that allows a user to increase or decrease the frequency of the output waveform during the operation of the radiation apparatus 5 .
  • the frequency generator 240 may have a toggle control such that the frequency generator 240 may be initiated or terminated during the operation of the radiation apparatus 5 .
  • the frequency generator 240 may be alternatively initiated and terminated as many times as desired during the operation of the radiation apparatus 5 .
  • FIG. 3 illustrates a flowchart according to an example method for using the radiation apparatus 5 according to an example embodiment of the present invention.
  • Other embodiments of the present invention may use different steps or different variations of the radiation apparatus 5 . Accordingly, the described example of FIG. 3 is provided for illustrative purposes only and should not be taken in any way as limiting embodiments of the present invention to the example provided.
  • a radiation apparatus may receive an electrical power input.
  • the power input may be provided by an external voltage source such as a standard wall socket supplying mains power, for example an alternating current (AC) voltage source in the range of 110 to 250 volts at a frequency of 50-60 hertz (Hz).
  • the power supply may be an internal power supply that allows the radiation apparatus 5 to benefit from added mobility.
  • the components of the radiation apparatus 5 may provide power to the radiation elements 10 , 15 of the radiation apparatus 5 .
  • the LED elements 10 may be configured to receive power sufficient to produce a continuous wave radiation output at a power density of approximately 1 milliwatt per centimeter squared (mW/cm 2 ).
  • the laser diode elements 15 may be configured to receive power sufficient to produce a continuous wave radiation output at a power density of approximately 6 mW/cm 2 .
  • the intensity of radiation for either the LED elements 10 or laser diode elements 15 may range from approximately 1 mW/cm 2 to approximately 55 mW/cm 2 .
  • Operation 315 may comprise generating a waveform at a particular frequency using the frequency generator 240 .
  • the waveform of the frequency generator 240 may be applied to the radiation elements 10 , 15 of the radiation apparatus 5 .
  • the frequency generator 240 may apply the waveform to the radiation elements 10 , 15 via the one or more laser power control elements 230 .
  • the waveform of the frequency generator 240 may be applied to the laser diodes 15 but not the LEDs 10 . It will be appreciated that the waveform from the frequency generator 240 may be applied to the radiation elements 10 , 15 via various other components of the radiation apparatus 5 .
  • the continuous wave output of the laser diodes 15 may be converted to pulse wave output due at least in part to the waveform applied by the frequency generator 240 .
  • the frequency of the pulse wave of the laser diode 15 radiation output may equal or approximate the frequency of the waveform supplied by the frequency generator 240 .
  • the frequency of the pulse wave of the laser diodes 15 may be controlled by modifying the frequency of the waveform supplied by the frequency generator 240 . That is, the pulse rate of the laser diodes 15 may correspond closely or identically with the frequency of the waveform of the frequency generator 240 .
  • the output waveform of the frequency generator 240 may have any frequency desired, which may depend on the type of treatment to be provided by the radiation apparatus 5 .
  • the output waveform of the frequency generator 240 may range from 0.1 hertz to over 2.5 megahertz (MHz).
  • the frequency of the waveform of the frequency generator 240 and therefore the frequency of the pulse wave output of the laser diodes 15 , may be increased without compromising the integrity of the pulse wave output of the laser diodes 15 .
  • it may be possible to obtain pulses with variable repetition rates and pulse widths by controlling the frequency and shape of the modulating waveform of the frequency generator 240 as well as its duty cycle.
  • the radiation apparatus 5 may provide enhanced pain relief without any relation or dependence on the wavelength of the radiation output.
  • the conversion of the continuous wave output of the laser diodes 15 to pulse wave output may be achieved without the use of a laser tube or pulse generator. That is, there is no need to bombard the laser diodes 15 with different types of radiation to achieve the conversion, but rather the user need only modulate the continuous wave output of the laser diodes 15 . As a result, the amount of energy delivered to the patient is not increased, as the output is simply modulated.
  • the present invention provides the advantages of simplicity, control, and reduced cost in comparison to the alternatives.
  • an electromagnetic field may be generated in close proximity to the radiation apparatus 5 .
  • the electromagnetic field may form as a result of enabling the frequency generator 240 .
  • the electromagnetic field may be in the form of RF radiation, that is, radiation having a frequency in the range of 9 kilohertz (kHz) to 300 gigahertz (GHz).
  • the intensity of the electromagnetic radiation may vary depending on the modulating frequency of the frequency generator 240 .
  • the detectable intensity of the electromagnetic field proximate the radiation apparatus 5 when the frequency generator 240 is disabled may be approximately 0.3 volts per meter (V/m).
  • V/m volts per meter
  • the intensity of the electromagnetic field may be approximately 0.72 V/m.
  • the intensity of the electromagnetic field may be approximately 1.73 V/m.
  • the intensity of the electromagnetic field may increase at relatively higher modulating frequencies by approximately 250% more than at relatively lower modulating frequencies.
  • an unexpected result of the present invention is the fact that the continuous wave output of the LED elements 10 is not affected by the waveform of the frequency generator 240 .
  • the frequency generator 240 may be enabled thereby both converting the continuous wave output of the laser diodes 15 to pulse wave output and generating an electromagnetic field without affecting the continuous wave output of the LED elements 10 .
  • the radiation apparatus 5 may simultaneously provide pulse wave laser diode output, continuous wave LED output, and an electromagnetic field output in a single device when the frequency generator 240 is enabled.
  • the frequency generator 240 may be enabled or disabled during operation of the radiation apparatus 5 as desired in order to switch the output of the laser diodes 15 back and forth between pulse wave and continuous wave. Additionally, the frequency generator 240 may be enabled or disabled during operation of the radiation apparatus 5 to increase or decrease the intensity of the electromagnetic field generated proximate the radiation apparatus 5 . Similarly, the modulating frequency of the frequency generator 240 may be increased or decreased during operation of the radiation apparatus 5 as desired in order to increase or decrease the pulse rate of the output pulse wave of the laser diodes 15 . The modulating frequency of the frequency generator 240 may also be increased or decreased during operation of the radiation apparatus 5 as desired in order to increase or decrease the intensity of the electromagnetic field generated proximate the radiation apparatus 5 .
  • the output levels of the radiation apparatus 5 can be adjusted, namely via the frequency generator 240 , thus enabling the radiation apparatus 5 to switch the laser diodes 15 outputs between continuous wave and pulse wave, and to increase and decrease the electromagnetic field proximate the radiation apparatus 5 without the need for building separate devices.
  • the wavelengths of the radiation outputs of the LEDs 10 and the laser diodes 15 outputs may be adjusted for treatment of different pain or inflammation conditions.
  • the use of the example embodiment of the radiation apparatus 5 according to the example method provided, as well as additional embodiments of the radiation apparatus 5 and additional methods for using the radiation apparatus 5 may be useful in the field of laser therapy.
  • the radiation apparatus 5 may be useful in the general treatment of both pain and inflammation in a patient.
  • the continuous wave output of the LEDs 10 may provide anti-inflammation relief.
  • the continuous wave output of the laser diodes 15 may provide analgesic relief.
  • the pulse wave output of the laser diodes 15 may similarly provide analgesic relief. In some instances the pulse wave output of the laser diodes 15 provides greater analgesic relief than the continuous wave output of the laser diodes 15 .
  • the electromagnetic field generated proximate the radiation apparatus 5 may also provide pain relief.
  • the radiation apparatus 5 is also directed to methods of treating pain generally.
  • the present invention includes methods of treating orthopedic pain, neurological pain, rheumatic pain, muscle pain, tendon pain, joint pain, nerve pain, as well as pain and inflammation of smooth, skeletal, and cardiac muscle, including cardiac pain and myocardial infarction (MI).
  • treatment of the smooth muscle may assist with treatment of colitis, colitis ulcerosa, Crohn's disease, inflammation of the jejunum, and other chronic diseases.
  • Use of the frequency generator in the present invention will allow for a patient's pain relief to be varied over time.
  • the radiation apparatus 5 may be positioned proximate the treatment area of the patient during operation.
  • the radiation apparatus 5 may be positioned from one to ten inches from the treatment area of the patient.
  • the radiation apparatus 5 may be pressed directly against the patient's skin, covering an area of approximately 20 cm ⁇ 10 cm in front of the treatment area.
  • the combination of the three types of radiation outputs may provide additional benefits over their separate use.
  • the combination of the electromagnetic field with the laser diodes may improve pain treatments of a patient.
  • the radiation output of the laser diodes 15 may lower the impedance of the target area on a patient, in some embodiments by warming the target area, so that the RF radiation from the electromagnetic field may penetrate more deeply and more easily into the target area.
  • Such improved penetration may allow the RF radiation to reach the soft tissue of the patient at the target area thereby increasing the intensity of the effect on the patient.
  • the more penetrating radiation outputs may provide significantly improved treatment on the peripheral nervous system, including the sympathetic system.
  • Pain alleviation may be felt by the patient when the modulating frequency of the frequency generator 240 is approximately 20 kHz and when the corresponding electromagnetic field intensity is 0.72 V/m. Generally, beyond this intensity, pain relief may be mainly due to the RF field, which is still weak enough not to produce erythema on skin.
  • the laser diodes 15 may achieve pain relief when the modulating frequency is at least 10 kHz. It is appreciated, however, that the present invention is not limited to a certain frequency range of the pulse wave laser diodes 15 .
  • the radiation apparatus 5 may achieve pain relief by applying a modulating frequency of approximately 1 to 2 MHz such that the pulse wave output of the laser diodes 15 achieves the same frequency pulse rate.
  • Alternatives to the present invention are less favorable due to the use of low level laser therapy, which is typically limited to noninvasive treatments up to 10 kHz.
  • the present invention may provide significantly higher frequencies of radiation output that will further reduce pain beyond the capacity of devices limited to 10 kHz.
  • the operation of the present invention according to the design of the radiation apparatus 5 does not produce the expected negative effects due to the higher frequencies used in the embodiment described above.
  • the present invention does not produce additional heat or elevated temperatures that can be damaging to the patient.
  • the lack of additional heat output at the higher frequency output may be a result of the ability of the present invention to modulate the radiation outputs at higher frequencies without the need to increase the overall energy of the radiation apparatus 5 .
  • the use of the present invention does not require invasive techniques such as the injection of needles into the patient parallel to the target nerve at high temperatures, as practiced with RF treatments in pain clinics.
  • an additional benefit in the treatment of patients with radiation apparatus 5 of the present invention is the ability to simultaneously provide anti-inflammation and analgesic relief with a single device. Due to the fact that the radiation outputs of the LEDs 10 are not affected by the modulating waveform of the frequency generator 240 , the single radiation apparatus 5 of the present invention may provide the anti-inflammatory benefits of the LEDs 10 along with the pain-relieving benefits of the laser diodes 15 and the electromagnetic field. Of additional significance is the fact that the radiation output of the LEDs 10 does not affect the ability of the frequency generator 240 to modulate the pulse wave output of the laser diodes 15 at a given frequency or to increase the intensity of the electromagnetic field.
  • the radiation apparatus 5 of the present invention may help achieve significant, if not complete, resolution of pain resulting from cardiac injury, such as a myocardial infarction.
  • the present invention may be useful not only for treatment of patients with high risk of cardiac injury, but also, in certain embodiments, the present invention may be used to treat persons suffering from definite cardiac injury.
  • the use of the radiation apparatus 5 to provide laser therapy to patients suffering from or at risk of cardiac injury may enhance ATP synthesis, mitochondrial survival and maintenance of cytochrome C oxidase activity, accelerate wound healing, promote skeletal muscle regeneration, decrease inflammatory response, reduce infarct size, reduce the size of the septum, reduce release of troponin, reduce scar tissue, reduce ventricular dilatation, up-regulate key factors that regulate angiogenesis and cardioprotection in the ischemic heart (vascular endothelial growth factor (VEGF) and inducible nitric oxide synthase (iNOS)), elevate inducible heat shock protein (HSP70i), increase presence of loose matrix containing sparse collagen post MI, and induce proliferation of existing cardiac stem cells (CSCs), among other things.
  • VEGF vascular endothelial growth factor
  • iNOS inducible nitric oxide synthase
  • HSP70i elevate inducible heat shock protein
  • CSCs cardiac stem cells
  • the present invention provides the additional benefit that it does not require the chest cavity to be open, or the skin removed to the side, to provide treatment to patients with cardiac injury. That is, the present invention may treat a myocardial infarction and its effects without undertaking any invasive procedures. Instead, the radiation apparatus 5 may be positioned closely above the patient's chest directed toward the patient's heart. In one example embodiment the radiation apparatus 5 may be placed very close to the patient's chest. In another preferred embodiment, the radiation apparatus 5 may be pressed directly against the patient's skin, covering an area of approximately 20 cm ⁇ 10 cm in front of the heart. As a result of the combined effect of the various forms of electromagnetic radiation along with the ability to change the wave mode of the laser diodes 15 (i.e., from continuous to pulse and back), the present invention may achieve penetration of the heart muscle.
  • the administration of the radiation apparatus 5 treatment to the heart may be made either before a patient's diagnosis of a myocardial infarction, after the diagnosis, or both before and after diagnosis.
  • the radiation apparatus 5 of the present invention may be used to treat a patient suffering from symptoms related to a myocardial infarction.
  • the use of the radiation apparatus 5 may achieve reduction in the size of the ischemic area of the patient's heart, reduction in any necrotic area of the patient's heart, reduction in dilation of the left ventricle, and reduction in the size of the septum.
  • the radiation apparatus 5 of the present invention may reduce the septum to normal size.
  • Treatment with the radiation apparatus 5 may reduce blood viscosity for a limited period of time, thereby increasing oxidation and increasing blood supply to the heart.
  • Such treatment according to the present invention may be used before, during, and after diagnosis of acute myocardial infarction to achieve significant health benefits. Additional benefits may be accomplished by using the radiation apparatus 5 in combination with blood diluting medication, such as, for example, heparin.
  • the operation of the radiation apparatus 5 of the present invention is simple and reliable. It can easily be operated by any doctor, nurse, or technician seeking to treat a patient with several conditions generally involving pain and inflammation.
  • the present radiation apparatus 5 may allow for improved treatment of pain and inflammation at lower cost because, as previously mentioned, it operates without inputting more energy than is required for a laser device that solely operates in continuous mode.
  • the radiation apparatus 5 may be embodied as a single device that does not require the use of expensive techniques to form a pulse wave from the continuous wave output of the laser diodes 15 .
  • a computer, processor, controller, or the like may be connected to the radiation apparatus 5 to establish the proper treatment energy level in joules for the particular medical syndrome to be treated.
  • the radiation apparatus 5 and the above treatment may be administrated in addition to the conventional treatment.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

An apparatus for delivering multiple forms of electromagnetic radiation and method for its use are disclosed. One embodiment provides a method for providing treatment using electromagnetic radiation therapy. The method comprises receiving a power input initiating a radiation unit. The radiation unit comprises one or more light emitting diodes, one or more laser diodes, and a frequency generator. The light emitting diodes are initiated to provide emission of electromagnetic radiation in continuous wave form mode and the laser diodes are initiated to provide for emission of electromagnetic radiation in continuous wave form mode. The frequency generator is controlled to provide a frequency generator waveform at a frequency to convert the output of the laser diodes from continuous wave form mode to pulse wave form mode, maintain the output of the light emitting diodes in continuous wave form mode, and cause emission of an electromagnetic field proximate the radiation unit.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional of U.S. patent application Ser. No. 12/884,475, filed Sep. 17, 2010, which claims priority to U.S. Patent Application Ser. No. 61/243,696, filed Sep. 18, 2009 and U.S. Patent Application Ser. No. 61/316,701, filed Mar. 23, 2010, which are hereby incorporated herein in their entireties by reference.
  • FIELD OF THE INVENTION
  • The present invention is generally directed to an apparatus for delivering multiple forms of electromagnetic radiation, and methods for using the apparatus.
  • BACKGROUND
  • A light emitting diode, or LED, is formed from a semiconducting material having a p-n junction. The p-n junction creates an electric field that separates charge carriers, namely free electrons and holes. When an electron reaches a hole, the two recombine and release energy in the process which generates a photon. The photon generally has a specific wavelength based on the band gap energy of the materials used to form the p-n junction. In particular, the materials used to form an LED have a direct band gap that corresponds to electromagnetic energies near the visible spectrum.
  • Other techniques may be used to cause the emission of electromagnetic radiation. One such technique is known as light amplification by stimulated emission of radiation, or a laser. Typically, the electromagnetic radiation emitted from a laser is in the form of photons of light energy that are monochromatic, meaning they have the same wavelength. The photons are also generally coherent and travel in a very tight beam toward the same direction.
  • One specific type of laser is known as a laser diode. A laser diode is a type of laser formed from a semiconductor much like an LED. Laser diodes differ, however, in that they employ an optical cavity that confines the emitted light into a very narrow line like a laser and may employ lenses to form a collimated beam. Thus, unlike LEDs, laser diodes exhibit the same properties described above that define a laser.
  • Laser diodes and LEDs may be used for treating patients in various fields of medicine including dermatology, dentistry, ophthalmology, gastroenterology, urology, gynecology, orthopedics, etc. The current methods for employing laser diodes and LEDs in treating patients in these fields, however, suffer from various drawbacks. Some techniques use very low frequencies that may be too low to be optimally effective in treatment. Other techniques require significantly higher frequencies to be effective, which may be dangerous and uncomfortable for patients due to the higher operating temperatures and additional heat that is emitted.
  • Many electromagnetic radiation therapy devices are too limiting, allowing the production of radiation output of only a single type, frequency, wavelength, etc. Furthermore, the devices allow only a static form of treatment, meaning that the selected type, frequency, wavelength, etc., of the radiation device may not be adjusted, added, or removed during operation of the device for treatment. Due to the various drawbacks of these devices, a patient generally will require recurring treatments as the derived benefit only lasts for a short duration of time.
  • Therefore, there is a strong need in the art for producing a radiation device for treating patients using laser diodes and LEDs that overcomes the above-mentioned and other disadvantages and deficiencies of previous technologies.
  • BRIEF SUMMARY OF SOME EMBODIMENTS OF THE INVENTION
  • Various embodiments of an apparatus for delivering multiple forms of electromagnetic radiation are herein disclosed. These embodiments of the invention overcome one or more of the above-described disadvantages associated with previous technologies. Embodiments of the invention provide several advantages for production of a radiation device that improves treatment and limits the cost required for its production.
  • According to an example embodiment of the invention, an apparatus for providing treatment using electromagnetic radiation therapy is provided. The apparatus comprises one or more light emitting diodes configured to provide for the emission of electromagnetic radiation in continuous wave form. The apparatus further comprises one or more laser diodes configured to provide for the emission of electromagnetic radiation in continuous wave form. Additionally, the apparatus comprises a frequency generator configured to provide a frequency generator waveform at a frequency. The frequency generator waveform converts the electromagnetic radiation of the one or more laser diodes from continuous wave form to pulse wave form and maintains the electromagnetic radiation of the one or more light emitting diodes in continuous wave form. Additionally, the frequency generator is further configured to cause the emission of an electromagnetic field proximate the apparatus.
  • According to another example embodiment of the invention, a method is disclosed for providing treatment using electromagnetic radiation therapy. The method comprises receiving a power input initiating a radiation unit. The radiation unit comprises one or more light emitting diodes, one or more laser diodes, and a frequency generator. The method further comprises initiating the one or more light emitting diodes to provide for the emission of electromagnetic radiation in continuous wave form mode. Additionally, the method comprises initiating the one or more laser diodes to provide for the emission of electromagnetic radiation in continuous wave form mode. The method further comprises controlling the frequency generator to provide a frequency generator waveform at a frequency to convert the output of the one or more laser diodes from continuous wave form mode to pulse wave form mode, maintain the output of the one or more light emitting diodes in continuous wave form mode, and cause the emission of an electromagnetic field proximate the radiation unit.
  • Another example embodiment of the invention is directed to a method for providing radiation treatment. The method comprises providing continuous wave electromagnetic radiation of a first wavelength. Additionally, the method comprises providing pulse wave electromagnetic radiation of a second wavelength. The method further comprises providing an electromagnetic field of a third wavelength. The first, second, and third wavelengths are different from one another. The continuous wave electromagnetic radiation, the pulse wave electromagnetic radiation, and the electromagnetic field are provided simultaneously by a single device.
  • The above summary is provided merely for purposes of summarizing some example embodiments of the invention so as to provide a basic understanding of some aspects of the invention. Accordingly, it will be appreciated that the above described example embodiments should not be construed to narrow the scope or spirit of the invention in any way more restrictive than as defined by the specification and appended claims. It will be appreciated that the scope of the invention encompasses many potential embodiments, some of which will be further described below, in addition to those here summarized.
  • BRIEF DESCRIPTION OF THE DRAWING(S)
  • Having thus described embodiments of the invention in general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:
  • FIG. 1 illustrates a radiation apparatus in accordance with an example embodiment of the present invention;
  • FIG. 2 illustrates a schematic representation of a radiation apparatus in accordance with an example embodiment of the present invention; and
  • FIG. 3 illustrates a flowchart according to an example embodiment of a method for using a radiation apparatus of the present invention.
  • DETAILED DESCRIPTION
  • Some embodiments of the present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which some, but not all embodiments of the invention are shown. Those skilled in this art will understand that the invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Like reference numerals refer to like elements throughout.
  • The radiation apparatus 5 according to the present invention may provide laser therapy through the combination of multiple types of electromagnetic radiation in a single device. The radiation apparatus 5 may allow a user to determine the desired combination among laser energy and other types of electromagnetic energy according to a patient's level of pain in addition to the level of inflammation. In certain embodiments, a user may be able to raise or lower the frequency of the radiation output according to the level of pain experienced by the patient alone. According to embodiments of the present invention, the type, form, frequency, and amount of radiation output may be adjusted during the operation of the radiation apparatus 5, without any side effects and at very low cost.
  • Within the application of treating pain and inflammation, the present invention may further be directed to treating cardiac cells affected by cardiac injury, for instance for treating a patient who suffers a myocardial infarction. Treatments based on the combination of various forms of electromagnetic radiation as in the present radiation apparatus 5 may decrease the infarct size, ventricular dilation post-myocardial infarction, and the size of the septum, among other things. Furthermore, similar treatment using the present invention may be provided to other types of muscle, skeletal and soft tissue as well as smooth muscle, which may assist in treatment of colitis, colitis ulcerosa, Crohn's disease, inflammation of the jejunum, and other chronic diseases.
  • FIG. 1 illustrates one embodiment of a radiation apparatus 5 in accordance with the present invention. The radiation apparatus 5 may comprise elements that emit light radiation energy. According to various embodiments, the light emitting elements may include one or more light emitting diodes (LEDs) 10. The LEDs 10 may be selected based on the wavelength of the light they emit. In some embodiments, each LED 10 may emit the same or approximately the same wavelength of radiation as the other LEDs 10. Alternatively, one or more LEDs 10 may emit radiation of a different wavelength than one or more other LEDs 10. In fact, any number of different types of LEDs 10 emitting different wavelengths of radiation may be used in combination in the same radiation apparatus.
  • The selection of an LED 10 of a given wavelength may be based on the form of treatment desired to be achieved by the radiation apparatus. According to example embodiments, the LEDs 10 may be selected such that the wavelength of the emitted light is within the range of 635 to 650 nm, for example 650 nm. In such example embodiments, the LEDs 10 may emit radiation in the form of visible light, in particular red light. It should be understood that the present invention is not limited to LEDs 10 emitting radiation of this wavelength and may include LEDs 10 that emit radiation at any wavelength, including radiation of other wavelengths within the visible spectrum, infrared spectrum, ultraviolet spectrum, broad spectrum (such as white light), and beyond.
  • According to various embodiments, the light emitting elements may comprise one or more laser diodes 15. The laser diode elements 15 may be chosen based on the wavelength of the light they emit. In some embodiments, each laser diode 15 may emit the same or approximately the same wavelength of radiation as the other laser diodes 15. Alternatively, one or more laser diodes 15 may emit radiation of a different wavelength than one or more other laser diodes 15. In fact, any number of different types of laser diodes 15 emitting different wavelengths of radiation may be used in combination in the same radiation apparatus.
  • The selection of a laser diode 15 of a given wavelength may be based on the form of treatment desired to be achieved by the radiation apparatus. According to example embodiments, the laser diodes 15 may be selected such that the wavelength of the emitted light is within the range of 780 to 785 nm, for example 785 nm. In such example embodiments, the laser diodes 15 may emit radiation in the form of infrared radiation, which is invisible to the human eye. It should be understood that the present invention is not limited to laser diodes 15 emitting radiation of this wavelength and may include laser diodes 15 that emit radiation at any wavelength, including radiation of other wavelengths within the infrared spectrum, visible spectrum, ultraviolet spectrum, broad spectrum (such as white light), and beyond.
  • According to an example embodiment, the radiation apparatus 5 comprises a combination of one or more LED 10 elements and one or more laser diode 15 elements. In alternative embodiments, the radiation apparatus may comprise only laser diodes 15. The LEDs 10 and laser diodes 15 may be arranged in a matrix layout. The number of LEDs 10 and laser diodes 15 in the radiation unit may be varied to achieve a particular treatment objective. In an example embodiment, the radiation unit may comprise 64 LEDs 10 and 64 laser diodes 15. Although these embodiments employ the same number of LEDs 10 and laser diodes 15, alternatively, the number of LEDs 10 may differ from the number of laser diodes 15. The LEDs 10 and laser diodes 15 may be arranged in the matrix in a number of rows and columns, for example 16 rows and 8 columns. An example embodiment of a base laser radiation unit that may be modified according to the present invention is the Hyper Photon 3D from Medical Electronics GmbH. It is appreciated that various other types of base laser radiation units may be modified according to the present invention.
  • According to some embodiments, the LEDs 10 and laser diodes 15 may be disposed along the inside of a curved surface of the radiation apparatus 5, for example a surface that approximates a lateral half of a cylinder. In some embodiments, each LED 10 and laser diode 15 may be positioned such that the radiation from the element emits toward the axis of the cylinder. The LEDs 10 and laser diodes 15 may be spaced evenly along the curve. In example embodiments, the distance between the centers of two adjacent elements may be approximately 20 mm. The length of the arc of a row of elements may be 290 mm and have a sagittal distance of 90 mm. According to these example embodiments, the curvature radius of a row may be approximately 160 mm. As illustrated in FIG. 1, each radiation element may be either a light emitting diode 10 or a laser diode 15.
  • In certain embodiments, the radiation apparatus 5 may further include additional elements for controlling the radiation emitting elements, as shown in the schematic representation of FIG. 2. The radiation apparatus 5 may comprise for example, a power supply element 205, a time control element 210, an internal safety control element 215, a poly/alpha frequency generator element 220, one or more buffer and protection logic elements 225, one or more laser power control elements 230, a laser radiator area element 235, and/or the like. Although not shown, the radiation apparatus 5 may also include various other components for controlling and powering the radiation apparatus 5 and its radiation elements, for example a processing device (e.g., a processor, controller, and/or the like). It will be appreciated that one or more of these radiation apparatus 5 components may be located remotely from one another. Furthermore, one or more of the components may be combined and additional components performing functions described herein may be included.
  • According to example embodiments, the radiation apparatus 5 may further comprise a frequency generator 240, or modulator. The frequency generator 240 may be used to generate an electrical waveform as an input to the radiation apparatus 5. According to certain embodiments, the frequency generator 240 may be external to the radiation apparatus 5. The external frequency generator 240 may be any commercially available frequency generator 240 that can be connected or disconnected based on the type of treatment to be applied. An example of such an external frequency generator 240 is model MXG 9802 manufactured by Voltcraft (Lindenweg 15, D-92242 Hirschau/Germany). In embodiments with an external frequency generator 240, an output of the frequency generator 240 may be connected to an input of the radiation apparatus 5, for example via an optional input jack 20. The optional input jack 20 of the radiation apparatus 5 may be a type of pin connector commonly used in electrical instruments that accepts inputs in the form of a plug. According to alternative embodiments, the frequency generator 240 may be a component internal to the radiation apparatus 5 and connected to one or more of the other internal components of the radiation apparatus 5.
  • According to certain embodiments, a user of the radiation apparatus 5 may be able to control the output waveform of the frequency generator 240. In particular, the frequency generator 240 may have an accessible control that allows a user to increase or decrease the frequency of the output waveform during the operation of the radiation apparatus 5. Additionally, in certain embodiments, the frequency generator 240 may have a toggle control such that the frequency generator 240 may be initiated or terminated during the operation of the radiation apparatus 5. In these embodiments, the frequency generator 240 may be alternatively initiated and terminated as many times as desired during the operation of the radiation apparatus 5.
  • FIG. 3 illustrates a flowchart according to an example method for using the radiation apparatus 5 according to an example embodiment of the present invention. Other embodiments of the present invention may use different steps or different variations of the radiation apparatus 5. Accordingly, the described example of FIG. 3 is provided for illustrative purposes only and should not be taken in any way as limiting embodiments of the present invention to the example provided.
  • Referring to FIG. 3, according to one embodiment, at operation 305 a radiation apparatus may receive an electrical power input. The power input may be provided by an external voltage source such as a standard wall socket supplying mains power, for example an alternating current (AC) voltage source in the range of 110 to 250 volts at a frequency of 50-60 hertz (Hz). Alternatively, the power supply may be an internal power supply that allows the radiation apparatus 5 to benefit from added mobility.
  • At operation 310, the components of the radiation apparatus 5 may provide power to the radiation elements 10, 15 of the radiation apparatus 5. In certain embodiments, the LED elements 10 may be configured to receive power sufficient to produce a continuous wave radiation output at a power density of approximately 1 milliwatt per centimeter squared (mW/cm2). The laser diode elements 15 may be configured to receive power sufficient to produce a continuous wave radiation output at a power density of approximately 6 mW/cm2. According to various embodiments of the present invention, the intensity of radiation for either the LED elements 10 or laser diode elements 15 may range from approximately 1 mW/cm2 to approximately 55 mW/cm2.
  • Operation 315 may comprise generating a waveform at a particular frequency using the frequency generator 240. The waveform of the frequency generator 240 may be applied to the radiation elements 10, 15 of the radiation apparatus 5. According to an example embodiment, the frequency generator 240 may apply the waveform to the radiation elements 10, 15 via the one or more laser power control elements 230. Alternatively, the waveform of the frequency generator 240 may be applied to the laser diodes 15 but not the LEDs 10. It will be appreciated that the waveform from the frequency generator 240 may be applied to the radiation elements 10, 15 via various other components of the radiation apparatus 5.
  • At operation 320, the continuous wave output of the laser diodes 15 may be converted to pulse wave output due at least in part to the waveform applied by the frequency generator 240. According to various embodiments, the frequency of the pulse wave of the laser diode 15 radiation output may equal or approximate the frequency of the waveform supplied by the frequency generator 240. As a result, the frequency of the pulse wave of the laser diodes 15 may be controlled by modifying the frequency of the waveform supplied by the frequency generator 240. That is, the pulse rate of the laser diodes 15 may correspond closely or identically with the frequency of the waveform of the frequency generator 240.
  • The output waveform of the frequency generator 240 may have any frequency desired, which may depend on the type of treatment to be provided by the radiation apparatus 5. In certain embodiments, the output waveform of the frequency generator 240 may range from 0.1 hertz to over 2.5 megahertz (MHz). The frequency of the waveform of the frequency generator 240, and therefore the frequency of the pulse wave output of the laser diodes 15, may be increased without compromising the integrity of the pulse wave output of the laser diodes 15. Additionally, it may be possible to obtain pulses with variable repetition rates and pulse widths by controlling the frequency and shape of the modulating waveform of the frequency generator 240 as well as its duty cycle. By changing the laser diodes 15 output from continuous wave to pulse wave and adjusting its frequency, the radiation apparatus 5 may provide enhanced pain relief without any relation or dependence on the wavelength of the radiation output.
  • By using the method of the present invention, no additional components aside from the frequency generator 240 are required to convert the continuous wave output of the laser diodes 15 to pulse wave output. In particular, the conversion of the continuous wave output of the laser diodes 15 to pulse wave output may be achieved without the use of a laser tube or pulse generator. That is, there is no need to bombard the laser diodes 15 with different types of radiation to achieve the conversion, but rather the user need only modulate the continuous wave output of the laser diodes 15. As a result, the amount of energy delivered to the patient is not increased, as the output is simply modulated. Thus, the present invention provides the advantages of simplicity, control, and reduced cost in comparison to the alternatives.
  • At operation 325, an electromagnetic field may be generated in close proximity to the radiation apparatus 5. The electromagnetic field may form as a result of enabling the frequency generator 240. In some embodiments, the electromagnetic field may be in the form of RF radiation, that is, radiation having a frequency in the range of 9 kilohertz (kHz) to 300 gigahertz (GHz). According to example embodiments, the intensity of the electromagnetic radiation may vary depending on the modulating frequency of the frequency generator 240.
  • In an example embodiment, the detectable intensity of the electromagnetic field proximate the radiation apparatus 5 when the frequency generator 240 is disabled may be approximately 0.3 volts per meter (V/m). In this example embodiment, when the frequency generator 240 is enabled at a relatively low modulating frequency in the range of approximately 0.1 to 0.2 MHz, the intensity of the electromagnetic field may be approximately 0.72 V/m. In this same example embodiment, when the frequency generator 240 is enabled at a relatively high modulating frequency in the range of approximately 1 to 2.5 MHz, the intensity of the electromagnetic field may be approximately 1.73 V/m. Thus, the intensity of the electromagnetic field may increase at relatively higher modulating frequencies by approximately 250% more than at relatively lower modulating frequencies.
  • An unexpected result of the present invention is the fact that the continuous wave output of the LED elements 10 is not affected by the waveform of the frequency generator 240. In certain embodiments, the frequency generator 240 may be enabled thereby both converting the continuous wave output of the laser diodes 15 to pulse wave output and generating an electromagnetic field without affecting the continuous wave output of the LED elements 10. As a result, the radiation apparatus 5 may simultaneously provide pulse wave laser diode output, continuous wave LED output, and an electromagnetic field output in a single device when the frequency generator 240 is enabled.
  • As noted above, the frequency generator 240 may be enabled or disabled during operation of the radiation apparatus 5 as desired in order to switch the output of the laser diodes 15 back and forth between pulse wave and continuous wave. Additionally, the frequency generator 240 may be enabled or disabled during operation of the radiation apparatus 5 to increase or decrease the intensity of the electromagnetic field generated proximate the radiation apparatus 5. Similarly, the modulating frequency of the frequency generator 240 may be increased or decreased during operation of the radiation apparatus 5 as desired in order to increase or decrease the pulse rate of the output pulse wave of the laser diodes 15. The modulating frequency of the frequency generator 240 may also be increased or decreased during operation of the radiation apparatus 5 as desired in order to increase or decrease the intensity of the electromagnetic field generated proximate the radiation apparatus 5. Accordingly, the output levels of the radiation apparatus 5 can be adjusted, namely via the frequency generator 240, thus enabling the radiation apparatus 5 to switch the laser diodes 15 outputs between continuous wave and pulse wave, and to increase and decrease the electromagnetic field proximate the radiation apparatus 5 without the need for building separate devices. Additionally, the wavelengths of the radiation outputs of the LEDs 10 and the laser diodes 15 outputs may be adjusted for treatment of different pain or inflammation conditions.
  • The use of the example embodiment of the radiation apparatus 5 according to the example method provided, as well as additional embodiments of the radiation apparatus 5 and additional methods for using the radiation apparatus 5, may be useful in the field of laser therapy. In particular, the radiation apparatus 5 may be useful in the general treatment of both pain and inflammation in a patient. According to certain embodiments, the continuous wave output of the LEDs 10 may provide anti-inflammation relief. The continuous wave output of the laser diodes 15 may provide analgesic relief. The pulse wave output of the laser diodes 15 may similarly provide analgesic relief. In some instances the pulse wave output of the laser diodes 15 provides greater analgesic relief than the continuous wave output of the laser diodes 15. Like the outputs of the laser diodes 15, the electromagnetic field generated proximate the radiation apparatus 5 may also provide pain relief.
  • The radiation apparatus 5 according to the present invention is also directed to methods of treating pain generally. In several example embodiments, the present invention includes methods of treating orthopedic pain, neurological pain, rheumatic pain, muscle pain, tendon pain, joint pain, nerve pain, as well as pain and inflammation of smooth, skeletal, and cardiac muscle, including cardiac pain and myocardial infarction (MI). In some embodiments, treatment of the smooth muscle may assist with treatment of colitis, colitis ulcerosa, Crohn's disease, inflammation of the jejunum, and other chronic diseases. Use of the frequency generator in the present invention will allow for a patient's pain relief to be varied over time.
  • In example embodiments, the radiation apparatus 5 may be positioned proximate the treatment area of the patient during operation. In particular, the radiation apparatus 5 may be positioned from one to ten inches from the treatment area of the patient. According to alternative embodiments, the radiation apparatus 5 may be pressed directly against the patient's skin, covering an area of approximately 20 cm×10 cm in front of the treatment area.
  • According to various embodiments, the combination of the three types of radiation outputs may provide additional benefits over their separate use. In particular, the combination of the electromagnetic field with the laser diodes may improve pain treatments of a patient. The radiation output of the laser diodes 15 may lower the impedance of the target area on a patient, in some embodiments by warming the target area, so that the RF radiation from the electromagnetic field may penetrate more deeply and more easily into the target area. Such improved penetration may allow the RF radiation to reach the soft tissue of the patient at the target area thereby increasing the intensity of the effect on the patient. In particular, the more penetrating radiation outputs may provide significantly improved treatment on the peripheral nervous system, including the sympathetic system.
  • Pain alleviation may be felt by the patient when the modulating frequency of the frequency generator 240 is approximately 20 kHz and when the corresponding electromagnetic field intensity is 0.72 V/m. Generally, beyond this intensity, pain relief may be mainly due to the RF field, which is still weak enough not to produce erythema on skin. In additional embodiments of the present invention, the laser diodes 15 may achieve pain relief when the modulating frequency is at least 10 kHz. It is appreciated, however, that the present invention is not limited to a certain frequency range of the pulse wave laser diodes 15.
  • According to example embodiments, the radiation apparatus 5 according to the present invention may achieve pain relief by applying a modulating frequency of approximately 1 to 2 MHz such that the pulse wave output of the laser diodes 15 achieves the same frequency pulse rate. Alternatives to the present invention are less favorable due to the use of low level laser therapy, which is typically limited to noninvasive treatments up to 10 kHz. The present invention, however, may provide significantly higher frequencies of radiation output that will further reduce pain beyond the capacity of devices limited to 10 kHz.
  • Additionally, the operation of the present invention according to the design of the radiation apparatus 5 does not produce the expected negative effects due to the higher frequencies used in the embodiment described above. For example, unlike certain cosmetic devices used in dermatological clinics that are limited to a single radiation output at very high frequencies of 4 to 8 MHz, the present invention does not produce additional heat or elevated temperatures that can be damaging to the patient. The lack of additional heat output at the higher frequency output may be a result of the ability of the present invention to modulate the radiation outputs at higher frequencies without the need to increase the overall energy of the radiation apparatus 5. Moreover, the use of the present invention does not require invasive techniques such as the injection of needles into the patient parallel to the target nerve at high temperatures, as practiced with RF treatments in pain clinics.
  • As noted above, an additional benefit in the treatment of patients with radiation apparatus 5 of the present invention is the ability to simultaneously provide anti-inflammation and analgesic relief with a single device. Due to the fact that the radiation outputs of the LEDs 10 are not affected by the modulating waveform of the frequency generator 240, the single radiation apparatus 5 of the present invention may provide the anti-inflammatory benefits of the LEDs 10 along with the pain-relieving benefits of the laser diodes 15 and the electromagnetic field. Of additional significance is the fact that the radiation output of the LEDs 10 does not affect the ability of the frequency generator 240 to modulate the pulse wave output of the laser diodes 15 at a given frequency or to increase the intensity of the electromagnetic field.
  • Through the use of the various forms of electromagnetic radiation outputs at different wavelengths, the radiation apparatus 5 of the present invention may help achieve significant, if not complete, resolution of pain resulting from cardiac injury, such as a myocardial infarction. The present invention may be useful not only for treatment of patients with high risk of cardiac injury, but also, in certain embodiments, the present invention may be used to treat persons suffering from definite cardiac injury.
  • The use of the radiation apparatus 5 to provide laser therapy to patients suffering from or at risk of cardiac injury may enhance ATP synthesis, mitochondrial survival and maintenance of cytochrome C oxidase activity, accelerate wound healing, promote skeletal muscle regeneration, decrease inflammatory response, reduce infarct size, reduce the size of the septum, reduce release of troponin, reduce scar tissue, reduce ventricular dilatation, up-regulate key factors that regulate angiogenesis and cardioprotection in the ischemic heart (vascular endothelial growth factor (VEGF) and inducible nitric oxide synthase (iNOS)), elevate inducible heat shock protein (HSP70i), increase presence of loose matrix containing sparse collagen post MI, and induce proliferation of existing cardiac stem cells (CSCs), among other things.
  • The present invention provides the additional benefit that it does not require the chest cavity to be open, or the skin removed to the side, to provide treatment to patients with cardiac injury. That is, the present invention may treat a myocardial infarction and its effects without undertaking any invasive procedures. Instead, the radiation apparatus 5 may be positioned closely above the patient's chest directed toward the patient's heart. In one example embodiment the radiation apparatus 5 may be placed very close to the patient's chest. In another preferred embodiment, the radiation apparatus 5 may be pressed directly against the patient's skin, covering an area of approximately 20 cm×10 cm in front of the heart. As a result of the combined effect of the various forms of electromagnetic radiation along with the ability to change the wave mode of the laser diodes 15 (i.e., from continuous to pulse and back), the present invention may achieve penetration of the heart muscle.
  • The administration of the radiation apparatus 5 treatment to the heart may be made either before a patient's diagnosis of a myocardial infarction, after the diagnosis, or both before and after diagnosis. In several example embodiments, the radiation apparatus 5 of the present invention may be used to treat a patient suffering from symptoms related to a myocardial infarction. In these embodiments, the use of the radiation apparatus 5 may achieve reduction in the size of the ischemic area of the patient's heart, reduction in any necrotic area of the patient's heart, reduction in dilation of the left ventricle, and reduction in the size of the septum. In another example embodiment, the radiation apparatus 5 of the present invention may reduce the septum to normal size.
  • Treatment with the radiation apparatus 5 may reduce blood viscosity for a limited period of time, thereby increasing oxidation and increasing blood supply to the heart. Such treatment according to the present invention may be used before, during, and after diagnosis of acute myocardial infarction to achieve significant health benefits. Additional benefits may be accomplished by using the radiation apparatus 5 in combination with blood diluting medication, such as, for example, heparin.
  • The operation of the radiation apparatus 5 of the present invention is simple and reliable. It can easily be operated by any doctor, nurse, or technician seeking to treat a patient with several conditions generally involving pain and inflammation. The present radiation apparatus 5 may allow for improved treatment of pain and inflammation at lower cost because, as previously mentioned, it operates without inputting more energy than is required for a laser device that solely operates in continuous mode. Moreover, the radiation apparatus 5 may be embodied as a single device that does not require the use of expensive techniques to form a pulse wave from the continuous wave output of the laser diodes 15.
  • In an additional embodiment of the present invention, a computer, processor, controller, or the like may be connected to the radiation apparatus 5 to establish the proper treatment energy level in joules for the particular medical syndrome to be treated. According to various embodiments, the radiation apparatus 5 and the above treatment may be administrated in addition to the conventional treatment.
  • Many modifications and other embodiments of the inventions set forth herein will come to mind to one skilled in the art to which these inventions pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the embodiments of the invention are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Moreover, although the foregoing descriptions and the associated drawings describe exemplary embodiments in the context of certain exemplary combinations of elements and/or functions, it should be appreciated that different combinations of elements and/or functions may be provided by alternative embodiments without departing from the scope of the appended claims. In this regard, for example, different combinations of steps, elements, and/or materials than those explicitly described above are also contemplated as may be set forth in some of the appended claims. Accordingly, the specification and drawings are to be regarded in an illustrative rather than restrictive sense. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.

Claims (18)

That which is claimed:
1. A method for providing treatment using electromagnetic radiation therapy comprising:
receiving a power input initiating a radiation unit, wherein the radiation unit comprises one or more light emitting diodes, one or more laser diodes, and a frequency generator;
initiating the one or more light emitting diodes to provide for the emission of electromagnetic radiation in continuous wave form mode;
initiating the one or more laser diodes to provide for the emission of electromagnetic radiation in continuous wave form mode;
controlling the frequency generator to provide a frequency generator waveform at a frequency to:
convert the output mode of the one or more laser diodes from continuous wave form mode to pulse wave form mode;
maintain the output mode of the one or more light emitting diodes in continuous wave form mode; and
cause the emission of an electromagnetic field proximate the radiation unit.
2. The method of claim 1 further comprising:
adjusting the frequency of the frequency generator waveform one or more times during a single treatment to adjust the pulse rate of the electromagnetic radiation of the one or more laser diodes; and
wherein the pulse rate of the electromagnetic radiation of the one or more laser diodes is substantially the same as the frequency of the frequency generator waveform.
3. The method of claim 2, wherein the range of frequency of the frequency generator waveform is from about 0.1 hertz to about 2.5 megahertz.
4. The method of claim 1, wherein controlling the frequency generator further comprises:
initiating the output of the frequency generator waveform; and
terminating the output of the frequency generator waveform.
5. The method of claim 4, wherein the output of the frequency generator waveform is initiated one or more times and the output of the frequency generator is terminated one or more times during a single treatment.
6. The method of claim 2, wherein increasing the frequency of the frequency generator waveform increases the intensity of the electromagnetic field.
7. The method of claim 1, further comprising positioning the radiation unit proximate a treatment area to simultaneously provide analgesic and anti-inflammatory relief.
8. The method of claim 7, wherein the electromagnetic radiation of the one or more light emitting diodes and the electromagnetic radiation of the one or more laser diodes and the electromagnetic field provide anti-inflammatory relief and analgesic relief.
9. The method of claim 8, wherein:
the electromagnetic radiation of the one or more light emitting diodes primarily provides anti-inflammatory relief; and
the electromagnetic radiation of the one or more laser diodes and the electromagnetic field primarily provide analgesic relief.
10. The method of claim 8, wherein the electromagnetic radiation of the one or more laser diodes, the one or more light emitting diodes, and the electromagnetic field provide at least one of an analgesic relief or an anti-inflammatory effect on one or more of skeletal muscle, cardiac muscle, smooth muscle, soft tissue, or joints.
11. The method of claim 1, further comprising:
positioning the radiation unit proximate cardiac muscle to provide treatment related to at least one of cardiac injury or a cardiac related disease.
12. The method of claim 11, wherein the cardiac injury or disease is related to at least one of epicarditis, myocarditis, a myocardial infarction, acute myocardial infarction, or a cardiac insufficiency.
13. The method of claim 12, wherein the treatment provides at least one of a reduction in size of the ischemic area of the heart, a reduction in the necrotic area of the heart, a reduction in dilation of the left ventricle, or a reduction in the size of the septum.
14. The method of claim 12, wherein the treatment at least one of improves cardiac transplantation or acts as a blood thinner.
15. The method of claim 1, further comprising positioning the radiation unit proximate smooth muscle to provide treatment for a bowel related disease.
16. The method of claim 15, wherein the bowel related disease for which treatment is provided is at least one of: colitis, colitis ulcerosa, Crohn's disease, inflammatory bowel disease (IBD), or inflammation of the jejunum.
17. The method of claim 1, wherein providing treatment using electromagnetic radiation therapy does not require any invasive techniques.
18. A method for providing radiation treatment comprising:
providing continuous wave electromagnetic radiation for a first wavelength;
providing pulse wave electromagnetic radiation of a second wavelength; and
providing an electromagnetic field of a third wavelength, wherein
the first, second and third wavelengths are different from one another, and
the continuous wave electromagnetic radiation, the pulse wave electromagnetic radiation, and the electromagnetic field are provided simultaneously by a single device.
US14/077,831 2009-09-18 2013-11-12 Apparatus for delivering multiple forms of electromagnetic radiation and method for its use Abandoned US20140074195A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/077,831 US20140074195A1 (en) 2009-09-18 2013-11-12 Apparatus for delivering multiple forms of electromagnetic radiation and method for its use

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US24369609P 2009-09-18 2009-09-18
US31670110P 2010-03-23 2010-03-23
US12/884,475 US8608786B2 (en) 2009-09-18 2010-09-17 Apparatus for delivering multiple forms of electromagnetic radiation and method for its use
US14/077,831 US20140074195A1 (en) 2009-09-18 2013-11-12 Apparatus for delivering multiple forms of electromagnetic radiation and method for its use

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/884,475 Division US8608786B2 (en) 2009-09-18 2010-09-17 Apparatus for delivering multiple forms of electromagnetic radiation and method for its use

Publications (1)

Publication Number Publication Date
US20140074195A1 true US20140074195A1 (en) 2014-03-13

Family

ID=43382473

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/884,475 Expired - Fee Related US8608786B2 (en) 2009-09-18 2010-09-17 Apparatus for delivering multiple forms of electromagnetic radiation and method for its use
US14/077,831 Abandoned US20140074195A1 (en) 2009-09-18 2013-11-12 Apparatus for delivering multiple forms of electromagnetic radiation and method for its use

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/884,475 Expired - Fee Related US8608786B2 (en) 2009-09-18 2010-09-17 Apparatus for delivering multiple forms of electromagnetic radiation and method for its use

Country Status (3)

Country Link
US (2) US8608786B2 (en)
EP (1) EP2477696A1 (en)
WO (1) WO2011033515A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080172105A1 (en) * 2007-01-17 2008-07-17 Ws Far Ir Medical Technology Co., Ltd. Method for preventing and/or ameliorating inflammation
JP6215841B2 (en) * 2012-01-17 2017-10-18 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Heating system for heating organisms
US20160051829A1 (en) * 2014-06-17 2016-02-25 Amir Porat Multifunctional device for the treatment of headache and mood disorders
USD849942S1 (en) 2017-07-12 2019-05-28 Colgate-Palmolive Company Illuminated oral care device
US11865356B1 (en) * 2019-04-03 2024-01-09 Theralight, LLC Light therapy device
US11963831B2 (en) 2022-05-20 2024-04-23 William H. Chen Living Trust Analgesic device and procedure for use

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0273682A (en) * 1988-09-08 1990-03-13 Nippon Digital Equip Kk Laser diode driving method and device
JP2747311B2 (en) * 1989-02-06 1998-05-06 日本ディジタルイクイップメント株式会社 Apparatus and method for controlling enable response time of optical transmitter used in digital optical communication device
US5280536A (en) * 1991-10-11 1994-01-18 Coherent, Inc. Method and apparatus for supplying pulsed power to an ophthalmic laser system
US5640978A (en) * 1991-11-06 1997-06-24 Diolase Corporation Method for pain relief using low power laser light
US6267779B1 (en) * 1999-03-29 2001-07-31 Medelaser, Llc Method and apparatus for therapeutic laser treatment
US6157661A (en) * 1999-05-12 2000-12-05 Laserphysics, Inc. System for producing a pulsed, varied and modulated laser output
JP2001059981A (en) * 1999-08-23 2001-03-06 Oki Electric Ind Co Ltd Optical short pulse generator
US7101384B2 (en) * 2001-03-08 2006-09-05 Tru-Light Corporation Light processing of selected body components
US6872221B2 (en) * 2002-08-05 2005-03-29 Larry Robert Lytle Therapeutic low level laser apparatus and method
US20040153131A1 (en) * 2003-02-04 2004-08-05 Yorke John A. Apparatus and method for hair retention and regeneration
CA2478267C (en) * 2003-08-19 2013-10-15 Jeffrey Van Zuylen Photon therapy method and apparatus
US20080288007A1 (en) 2005-10-28 2008-11-20 United Laboratories & Manufacturing, Llc Hygienic-Therapeutic Multiplex Devices
US7559945B2 (en) * 2006-01-13 2009-07-14 Clarimedix Inc. Multi-spectral photon therapy device and methods of use
US8136531B2 (en) * 2006-05-08 2012-03-20 Chariff Mark D Device and method for treating musculo-skeletal injury and pain by application of laser light therapy
CA2696857A1 (en) 2007-08-20 2009-02-26 Universite Laval Artificial light apparatus and its use for influencing a condition in a subject

Also Published As

Publication number Publication date
US8608786B2 (en) 2013-12-17
WO2011033515A1 (en) 2011-03-24
EP2477696A1 (en) 2012-07-25
US20110071602A1 (en) 2011-03-24

Similar Documents

Publication Publication Date Title
US20140074195A1 (en) Apparatus for delivering multiple forms of electromagnetic radiation and method for its use
US11464993B2 (en) Device including RF source of energy and vacuum system
US10569094B2 (en) Aesthetic method of biological structure treatment by magnetic field
US20170106201A1 (en) Combination of magnetic and electromagnetic treatment method
KR102550410B1 (en) System for cosmetic skin rejuvenation with heterogeneous energy and method with the same
US20070219604A1 (en) Treatment of tissue with radiant energy
US20070213792A1 (en) Treatment Of Tissue Volume With Radiant Energy
US20160220834A1 (en) Method and system for skin treatment
KR101009462B1 (en) Phototherapeutic apparatus
CA2251551C (en) Method for treating pathological conditions of tissues with non-coherent radiation and device therefor
US20220370814A1 (en) Esthetic apparatus useful for increasing skin rejuvenation and methods thereof
KR101472983B1 (en) Hot heat medical apparatus using radio frequency
CN211068798U (en) Coupled laser acupuncture point therapeutic apparatus
CN110694174A (en) Multifunctional photoelectric stimulation hair-growing cap
Sveshtarov et al. Superluminous devices versus low-level laser for temporomandibular disorders
Watson Tissue repair: the current state of the art
CN211434774U (en) Light radiation beta amyloid dermatitis treatment instrument, treatment blanket and treatment coat
KR20100092077A (en) Multi laser system for medical treatment
de Sousa What is Low-Level Laser (Light) Therapy?
Lalabonova et al. Clinical evaluation of the healing process of oral soft tissue surgical wounds stimulated by low-level laser therapy
CN210933471U (en) Laser acupuncture therapeutic pen
Edge et al. Biophotonic Therapy Induced Photobiomodulation
US20240108407A1 (en) Therapeutic laser system and method of use for activating the tissue stem cell niche for the treatment of medical conditions
Ulashcyk et al. Current and long-term technologies of laser therapy
KR20160004022U (en) Laser treatment machine for fingernail and toenail tinea pedis treatment

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION