US20140069084A1 - Metering System for Spraying a Urea Solution into the Exhaust Gas Stream of an Internal Combustion Engine - Google Patents

Metering System for Spraying a Urea Solution into the Exhaust Gas Stream of an Internal Combustion Engine Download PDF

Info

Publication number
US20140069084A1
US20140069084A1 US14/066,917 US201314066917A US2014069084A1 US 20140069084 A1 US20140069084 A1 US 20140069084A1 US 201314066917 A US201314066917 A US 201314066917A US 2014069084 A1 US2014069084 A1 US 2014069084A1
Authority
US
United States
Prior art keywords
metering system
exhaust gas
urea solution
compressed air
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/066,917
Inventor
Georg Huthwohl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Albonair GmbH
Original Assignee
Albonair GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102008013960A external-priority patent/DE102008013960A1/en
Application filed by Albonair GmbH filed Critical Albonair GmbH
Priority to US14/066,917 priority Critical patent/US20140069084A1/en
Assigned to ALBONAIR GMBH reassignment ALBONAIR GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HUTHWOHL, GEORG
Publication of US20140069084A1 publication Critical patent/US20140069084A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/30Arrangements for supply of additional air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/08Adding substances to exhaust gases with prior mixing of the substances with a gas, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1433Pumps
    • F01N2610/144Control thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1404Exhaust gas temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1411Exhaust gas flow rate, e.g. mass flow rate or volumetric flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1804Properties of secondary air added directly to the exhaust
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a metering system for spraying a urea solution into the exhaust gas stream of an internal combustion engine for selective catalytic reduction, whereby the metering system can be connected to a urea solution tank from which the urea solution can be removed, and whereby the metering system can be connected to a compressed air supply, whereby the metering system has at least one nozzle, through which the urea solution can be sprayed into the exhaust gas stream by means of compressed air.
  • the invention relates to a method for controlling the spraying of a urea solution by means of compressed air into the exhaust gas stream of an internal combustion engine for selective catalytic reduction.
  • SCR catalysts are used to prevent nitrogen oxide emissions from diesel engines.
  • a reducing agent is sprayed into the exhaust gas system with a metering device.
  • Ammonia is used as a reducing agent.
  • urea is used in aqueous solution usually with a proportion of 32.5% urea.
  • the urea decomposes at temperatures of above 150° Celsius in gaseous ammonia and CO 2 .
  • Parameters for the decomposition of urea are essentially time (evaporation and reaction time), temperature, and droplet size of the sprayed urea solution.
  • SCR selective catalytic reduction
  • Various systems for spraying urea are known.
  • the spraying of urea can be supported by compressed air.
  • the compressed air is used as an energy distributor. This is advantageous for achieving small droplets.
  • the urea can decompose and form deposits that are difficult to remove. These deposits can clog the nozzles.
  • the compressed air can therefore be used in addition to cool around the urea nozzle at high exhaust gas temperatures.
  • the urea solution is metered by means of a metering system, injected into the exhaust gas stream, and it ensures the desired chemical reaction in the SCR catalyst. In this connection, nitrogen oxides are converted into nitrogen and water vapor.
  • the object of the invention is to make available a metering system with support of the atomization by compressed air, in which the consumption of compressed air is minimized.
  • the metering system can be connected to a urea solution tank from which the urea solution can be removed and whereby the metering system can be connected to a compressed air supply, whereby the metering system has at least one nozzle through which the urea solution can be sprayed into the exhaust gas stream by means of compressed air—that the metering system has an air-control valve—by means of which the pressure, and/or the amount of air, and/or the valve opening times of the compressed air supply can be adjusted—and that a sensor for measuring the pressure and/or the amount of air in the compressed air supply is arranged between the air-control valve and the nozzle.
  • the air pressure of the compressed air supply is monitored and adjusted corresponding to the requirements.
  • the compressed air is thus fed in a regulated manner via a corresponding control valve.
  • the amount of air that is fed is countersunk at each operating point to the extent that the droplet quality is just barely sufficient for the action of the catalyst. This takes place by the matching of the amount of metering air at each operating point of the engine based on the operating parameters.
  • operating parameters in this case, in particular the exhaust gas temperature and/or the exhaust gas mass stream are acquired and fed to the regulation of the amount of air, i.e., the amount of air is readjusted in each case based on the current engine operating points.
  • a reduction of the amount of air in the nozzle means a worsening of the droplet quality, i.e., a larger droplet diameter.
  • the minimum required droplet quality is based on the degree of efficiency of the catalyst that is required at the respective operating point.
  • the amount of air pressure is lowered to the respective requirement corresponding to the required minimum. For this purpose, the consumption of the engine in motor vehicles is lowered more significantly.
  • the air-control valve is a proportional control valve.
  • a proportional control valve By the use of a proportional control valve, it is possible to regulate exactly the amount of air of the compressed air supply, i.e., the amount of air that is fed into the exhaust gas stream for spraying the urea solution.
  • the senor which is arranged between the air-control valve and the nozzle, is a pressure sensor, by means of which the pressure in the compressed air system is monitored behind the air-control valve.
  • the metering system receives a signal of the exhaust gas mass stream from the engine control system.
  • the exhaust gas mass stream is calculated by the engine control device from the suctioned air mass stream and fuel mass stream and is provided as a signal of the exhaust gas mass stream.
  • the metering system has a sensor for measuring the exhaust gas mass stream.
  • the metering system has a sensor for measuring the exhaust gas temperature.
  • exhaust gas mass stream signal and/or the exhaust gas temperature From the exhaust gas mass stream signal and/or the exhaust gas temperature, it is possible to detect the operating parameters of exhaust gas temperature and/or exhaust gas mass stream that are present based on the respective engine operating point and to make an evaluation on a corresponding control electronics of the metering system, and to adjust the pressure and/or the amount of air and/or the valve opening times of the compressed air supply based on the operating parameters that are measured.
  • the influencing factors for the matching of the metering of the amount of air are in particular:
  • the compressed air supply has a butterfly valve.
  • a butterfly valve By the arrangement of a butterfly valve, it is possible to lower the air pressure correspondingly in the air pressure system before the supply to the nozzle.
  • the metering system has a metering pump for carrying the urea solution.
  • a metering pump can be a metering pump that can be controlled relative to the required mass stream of the urea solution in such a way that the feed rate of the urea solution can be matched at the respective operating point by a corresponding activation of the metering pump.
  • a connecting line is preferably arranged between the urea output and a line of the compressed air supply, whereby the connecting line has a nonreturn valve.
  • a compressed-air line i.e., a connecting line between a urea line and a line of the compressed air supply
  • deposits can be prevented by the build-up of urea being blown free by means of compressed air during metering pauses.
  • a nonreturn valve whose opening pressure is above the air pressure that is set in the metering after the air valve, is inserted into this connecting line.
  • this nonreturn valve In the metering operation, this nonreturn valve is closed, since the pressure in the compressed-air line lies below the opening pressure of the nonreturn valve.
  • the urea supply In order to blow the urea line free with compressed air, the urea supply is turned off by the metering pump, and the air valve is opened for a short time, enough to allow the pressure to rise above the opening pressure of the nonreturn valve. Because of the regulator in the compressed-air line, a pressure drop is produced in the metering line, and the compressed air drives the urea into the exhaust gas system. The line is thus blown free. After a short air burst, the urea is blown out of the metering nozzle, and the air supply can be completely turned off.
  • the metering system has a compressed air compressor.
  • a compressed air compressor By means of such a compressed air compressor, it is possible to prepare the compressed air that is required for the metering system unless no compressed air supply or an insufficient compressed air supply is present in the installation environment of the metering system.
  • the metering system preferably has a control device by means of which the air valve and/or a butterfly valve and/or a metering pump and/or a compressed air compressor can be controlled based on the measured values that are acquired by the sensor or the sensors.
  • control device which controls one or more components of the metering system based on the sensor measured values, i.e., based on the current operating parameters
  • an optimization of the operation of the metering system i.e., an air optimization
  • the metering system has a urea solution tank. Because the metering system itself has a urea solution tank, it is possible to retrofit the metering system in corresponding environments in which a urea solution tank is not already present.
  • the metering system has a binary nozzle.
  • the binary nozzle is an outward-mixing nozzle.
  • the metering system does not have a mixing chamber.
  • the mixing is accomplished in-situ by the formation of an aerosol produced outwards by the outward-mixing binary nozzle.
  • the metering system comprises at least one selective catalytic reduction catalyst.
  • the urea solution is sprayed into the exhaust gas stream ahead of the selective catalytic reduction catalyst, in which the reduction of NOx occurs.
  • the metering system has a sensor positioned rearward the selective catalytic reduction catalyst measuring the NOx-portion of the exhaust gas.
  • a sensor positioned rearward the selective catalytic reduction catalyst measuring the NOx-portion of the exhaust gas.
  • the signal of the NOx-sensor can be incorporated by the control device, preferably an electronic control unit such as a computer, CPU or an ASIC, which controls one or more components of the metering system based on the sensor measured values, i.e., based on the current operating parameters and the quality of NOx reduction, an optimization of the operation of the metering system, i.e., an air optimization and/or an optimization of the urea dosing and mass flow, can be realized in an advantageous way to achieve an optimum of NOx reduction.
  • an electronic control unit such as a computer, CPU or an ASIC
  • the great advantage of a metering system comprising a sensor positioned rearward the selective catalytic reduction catalyst measuring the NOx-portion of the exhaust gas is, that it is possible to continuously monitor the function of the metering system and the quality and quantity of NOx-reduction in the SCR-catalyst.
  • the metering system can be a part of an On-Board-Diagnostic system of the vehicle; further the data acquired with the NOx-sensor can be stored to be enabled to monitor the compliance with the domestic exhaust gas regulations.
  • the method according to the invention for controlling the spraying or injection of a urea solution by means of compressed air into the exhaust gas stream of an internal combustion engine for selective catalytic reduction is preferably configured in such a way that when the spraying of urea solution is interrupted or completed, the urea solution is cleaned from the urea solution-carrying lines by means of compressed air.
  • the method is thus preferably configured in such a way that a completion or interruption of the supply of urea solution is carried out over time before the compressed air supply is completed or interrupted, and the compressed air is used after the supply of the urea solution is interrupted or completed in order to clean the urea solution-carrying parts by means of compressed air.
  • the urea in particular is removed from the hot areas of the metering system. Otherwise, the urea would decompose at high temperatures and would form deposits and could lead to clogs.
  • the urea supply is turned off by the metering pump, and the air-control valve is opened for a short time, enough to allow the pressure to rise above the opening pressure of a nonreturn valve in a connecting line between a urea line and a compressed-air line. Because of this, a pressure drop is produced in the metering line, so that the compressed air drives the urea into the exhaust gas system and thus the urea-carrying line is blown free. After a brief air burst, the urea is blown out from the metering nozzle, and the air supply can also be turned off completely.
  • the spraying of the urea solution can thus be interrupted or completed by a metering pump being turned off.
  • Blowing out the urea from the lines is also advantageous when the entire system is turned off.
  • Urea freezes at temperatures of below ⁇ 11° Celsius.
  • the urea water solution expands by about 10%. This leads to frost pressure, by which components could be destroyed. It is therefore necessary to blow the urea out of the nozzle before the system is turned off completely.
  • an activation of at least one metering pump and/or at least one compressed air compressor and/or at least one air-control valve is carried out based on the operating parameters of exhaust gas temperature and exhaust gas mass stream in the method according to the invention for controlling the spraying or injection of the urea solution.
  • the various acquired operating parameters can be evaluated, so that an activation of the components can be carried out exactly.
  • FIG. 1 shows an installation diagram of a first embodiment of a metering system
  • FIG. 2 shows an installation diagram of a second embodiment of a metering system.
  • FIG. 1 shows the diagrammatic visualization of a first embodiment of the urea metering system.
  • Urea is suctioned off from a tank 1 via a suction line 2 by the metering pump 3 .
  • the metering pump 3 is, for example, a membrane pump or a reciprocating pump, which carries a defined amount of urea solution with each stroke and thus meters equally.
  • the urea is sent to a binary nozzle 5 via a pressure line 4 .
  • the binary nozzle 5 is preferably an outward-mixing nozzle, in which an air jet atomizes the urea.
  • Compressed air is sent from a compressed air container 6 to a proportional air valve 7 .
  • the proportional air valve 7 cuts off the pressure flow at a value that is specified by the electronic control unit 12 .
  • Input values for the calculation of this value by means of the electronic control unit 12 are engine data, such as the exhaust gas mass streams that are delivered by the engine electronic system, and, in addition, the exhaust gas temperature, as well as the pressure of the compressed air before that of the binary nozzle 5 .
  • the pressure before the binary nozzle 5 is a measurement of the accepted air volume flow.
  • the air is sent via a compressed-air line and a nonreturn valve 8 to the binary nozzle 5 .
  • the urea is atomized in the binary nozzle 5 from the compressed air and fed to the exhaust gas stream 9 .
  • the metering system comprises a selective catalytic reduction catalyst 10 .
  • the urea solution is sprayed into the exhaust gas stream 9 ahead of the selective catalytic reduction catalyst 10 , in which the reduction of NOx occurs.
  • a sensor 11 for detecting the exhaust gas mass stream a pressure sensor 16 for detecting the pressure of the compressed air before the binary nozzle 5 , as well as a temperature sensor 17 for detecting the exhaust gas temperature in the exhaust gas stream 9 .
  • a temperature sensor 17 for detecting the exhaust gas temperature in the exhaust gas stream 9 .
  • an exhaust gas mass stream signal from the engine management system is provided.
  • the measured values of the sensors 11 , 16 , 17 are fed to the control unit 12 .
  • the electronic control unit 12 the acquired sensor data and engine data are evaluated, and an activation of the proportional air valve 7 and the metering pump 3 is carried out based on the temporary operating data.
  • the nozzle tip of the binary nozzle 5 is arranged in the exhaust gas stream 9 .
  • the urea is sent via the exhaust gas line to the SCR catalyst 10 . In this connection, a larger part of the liquid droplets evaporates. The urea converts into ammonia. In the catalyst 10 itself, the nitrogen oxide emission from the engine is reduced with ammonia.
  • the system comprises a sensor 18 positioned rearward the selective catalytic reduction catalyst 10 measuring the NOx-portion of the exhaust gas.
  • a sensor 18 positioned rearward the selective catalytic reduction catalyst 10 measuring the NOx-portion of the exhaust gas.
  • the signal of the sensor 18 is fed to the control unit 12 .
  • the acquired sensor data and engine data are evaluated, as described above, and the system is operated by the control unit on the basis of the acquired sensor data continuously monitoring the quality of NOx-reduction within the SCR catalyst 10 .
  • the nonreturn valve 8 in the pressure line between the proportional air valve 7 and the binary nozzle 5 prevents urea from being able to be pressed into the compressed-air lines if the nozzle 5 becomes clogged.
  • FIG. 2 shows a second embodiment of a metering system according to the invention in which it is possible—without additional actively actuated components—to drive the urea with the compressed air from the pressure line and the nozzle in order to remove the urea from the hot areas in the metering pauses in order to prevent the urea from decomposing at high temperatures and forming deposits.
  • the compressed-air line after the proportional air valve 7 with the urea line 4 is connected via a spring-loaded nonreturn valve 14 with the line 13 .
  • a flow regulator 15 is incorporated into the compressed-air line after the proportional compressed air valve 7 and after the branching of the line 13 .
  • the line itself can take over the function of the flow regulator 15 when said line is long enough.
  • the pressure in the line of the regulator 15 is below the opening pressure of the spring-loaded nonreturn valve 14 .
  • the compressed air flows through the nozzle 5 .
  • the added urea is atomized. If, in the deactivated metering pump 3 , the pressure after the proportional pressure valve 7 is raised to a value above the opening pressure of the nonreturn valve 14 , air flows into the pressure line 4 of the urea.
  • the urea is expelled in line 4 and nozzle 5 .
  • the area of the nozzle 5 is urea-free and thus frost-resistant.
  • no deposits can form at high exhaust gas temperatures without metering.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

A metering system for injecting a urea solution into the exhaust gas flow of an internal combustion engine for selective catalytic reduction, and method for controlling the injecting of a urea solution by means of compressed air, wherein the metering system is connected to a urea solution tank and a compressed air supply, wherein the metering system comprises at least one nozzle through which the urea solution can be injected into the exhaust gas flow by compressed air, including an electronic control unit and air valve for regulating the pressure and/or the quantity of air and/or the valve opening times of the compressed air supply and a sensor for measuring the pressure and/or the quantity of air disposed in the compressed air supply between the air valve and the nozzle so that the quantity of compressed air fed in for atomizing the urea solution is controlled.

Description

    CROSS-REFERENCE TO RELATED PATENT APPLICATIONS
  • The present patent application is a continuation in part application of U.S. patent application Ser. No. 12/810,335, filed on Jun. 24, 2010, which is a U.S. national stage application under 35 U.S.C. §371 of PCT Application No. PCT/EP2009/000664, filed Feb. 2, 2009, which in turn claims the priority of benefit of German Patent Application No. 203008024960.3, filed Mar. 12, 2008, the entireties of which is hereby incorporated by reference.
  • FIELD OF THE INVENTION
  • The invention relates to a metering system for spraying a urea solution into the exhaust gas stream of an internal combustion engine for selective catalytic reduction, whereby the metering system can be connected to a urea solution tank from which the urea solution can be removed, and whereby the metering system can be connected to a compressed air supply, whereby the metering system has at least one nozzle, through which the urea solution can be sprayed into the exhaust gas stream by means of compressed air. In addition, the invention relates to a method for controlling the spraying of a urea solution by means of compressed air into the exhaust gas stream of an internal combustion engine for selective catalytic reduction.
  • BACKGROUND OF THE INVENTION
  • SCR catalysts are used to prevent nitrogen oxide emissions from diesel engines. In this respect, a reducing agent is sprayed into the exhaust gas system with a metering device. Ammonia is used as a reducing agent.
  • Since the entrainment of ammonia in motor vehicles is relevant to safety, urea is used in aqueous solution usually with a proportion of 32.5% urea. In exhaust gas, the urea decomposes at temperatures of above 150° Celsius in gaseous ammonia and CO2. Parameters for the decomposition of urea are essentially time (evaporation and reaction time), temperature, and droplet size of the sprayed urea solution. In these SCR catalysts, the emission of nitrogen oxides is reduced by approximately 90% by selective catalytic reduction (SCR).
  • Various systems for spraying urea are known. The spraying of urea can be supported by compressed air. The compressed air is used as an energy distributor. This is advantageous for achieving small droplets.
  • At high temperatures of above approximately 200° Celsius, the urea can decompose and form deposits that are difficult to remove. These deposits can clog the nozzles. The compressed air can therefore be used in addition to cool around the urea nozzle at high exhaust gas temperatures. The urea solution is metered by means of a metering system, injected into the exhaust gas stream, and it ensures the desired chemical reaction in the SCR catalyst. In this connection, nitrogen oxides are converted into nitrogen and water vapor.
  • In the systems that are now used in motor vehicles, compressed air and urea are combined in a mixing chamber and sprayed into the exhaust gas via a simple perforated die. In this connection, the air-mass stream is adjusted to a constant value to keep the urea from streaming back into the air stream in front of the mixing chamber. In this respect, a defined boundary between urea-carrying areas and urea-free areas is shown, and a crystallization of the urea in the mixing system is avoided. Areas in the metering system in which urea only enters at times have to be avoided, since there is a risk here that the aqueous urea solution dries, which forms urea crystals, and the air channels or the urea channels become clogged.
  • The clogging tendency following a crystallization by the ureas is disadvantageous in the known systems. By means of liquid urea, such crystals can be dissolved again. However, clogging of the systems cannot be avoided at least at times.
  • Commercial vehicles in general have a compressed air system for the braking system as well as several additional users. The air pressure of the systems in most cases is above 10 bar. In the known systems, the compressed air of these compressed air systems of the commercial vehicles is also used for the atomization or spraying of urea by means of the known metering systems.
  • It is disadvantageous in this case, however, that a higher consumption of fuel by the engine is the result because of the continuous air consumption of the metering system. It is also disadvantageous that the supply of air has to be matched to the additional consumers in the form of the urea metering system. It is especially disadvantageous in this case that multiple compressors with increased output are necessary.
  • The object of the invention is to make available a metering system with support of the atomization by compressed air, in which the consumption of compressed air is minimized.
  • This object is achieved according to the invention by a metering system according to Claim 1 as well as by a method for controlling the spraying of a urea solution according to Claim 12. Advantageous configurations of the invention are indicated in the respective dependent claims.
  • It is especially advantageous in the metering system for spraying a urea solution into the exhaust gas stream of an internal combustion engine for selective catalytic reduction—whereby the metering system can be connected to a urea solution tank from which the urea solution can be removed and whereby the metering system can be connected to a compressed air supply, whereby the metering system has at least one nozzle through which the urea solution can be sprayed into the exhaust gas stream by means of compressed air—that the metering system has an air-control valve—by means of which the pressure, and/or the amount of air, and/or the valve opening times of the compressed air supply can be adjusted—and that a sensor for measuring the pressure and/or the amount of air in the compressed air supply is arranged between the air-control valve and the nozzle.
  • Thus, in the metering system according to the invention for injecting or spraying a urea solution into the exhaust gas stream, the air pressure of the compressed air supply is monitored and adjusted corresponding to the requirements.
  • It is especially advantageous in the method according to the invention for controlling the spraying of a urea solution by means of compressed air into the exhaust gas stream of an internal combustion engine for selective catalytic reduction that the amount of compressed air fed to the urea solution for atomization is controlled at each operating point based on the operating parameters of exhaust gas temperature and exhaust gas mass stream and is reduced to the minimum amount of air that is required in each case so that the droplet quality of the sprayed urea solution is sufficient for the action of the catalyst.
  • In the metering system according to the invention and the method for controlling the spraying of the urea solution according to the invention, the compressed air is thus fed in a regulated manner via a corresponding control valve. The amount of air that is fed is countersunk at each operating point to the extent that the droplet quality is just barely sufficient for the action of the catalyst. This takes place by the matching of the amount of metering air at each operating point of the engine based on the operating parameters. As operating parameters, in this case, in particular the exhaust gas temperature and/or the exhaust gas mass stream are acquired and fed to the regulation of the amount of air, i.e., the amount of air is readjusted in each case based on the current engine operating points.
  • A reduction of the amount of air in the nozzle means a worsening of the droplet quality, i.e., a larger droplet diameter. The minimum required droplet quality is based on the degree of efficiency of the catalyst that is required at the respective operating point. The amount of air pressure is lowered to the respective requirement corresponding to the required minimum. For this purpose, the consumption of the engine in motor vehicles is lowered more significantly.
  • In an especially preferred embodiment of the metering system, the air-control valve is a proportional control valve. By the use of a proportional control valve, it is possible to regulate exactly the amount of air of the compressed air supply, i.e., the amount of air that is fed into the exhaust gas stream for spraying the urea solution.
  • Preferably, the sensor, which is arranged between the air-control valve and the nozzle, is a pressure sensor, by means of which the pressure in the compressed air system is monitored behind the air-control valve.
  • In an especially preferred embodiment, the metering system receives a signal of the exhaust gas mass stream from the engine control system. The exhaust gas mass stream is calculated by the engine control device from the suctioned air mass stream and fuel mass stream and is provided as a signal of the exhaust gas mass stream. As an alternative, the metering system has a sensor for measuring the exhaust gas mass stream. Preferably, as an alternative or cumulatively, the metering system has a sensor for measuring the exhaust gas temperature.
  • From the exhaust gas mass stream signal and/or the exhaust gas temperature, it is possible to detect the operating parameters of exhaust gas temperature and/or exhaust gas mass stream that are present based on the respective engine operating point and to make an evaluation on a corresponding control electronics of the metering system, and to adjust the pressure and/or the amount of air and/or the valve opening times of the compressed air supply based on the operating parameters that are measured.
  • The influencing factors for the matching of the metering of the amount of air are in particular:
      • Exhaust gas temperature
      • Exhaust gas mass stream
      • Urea mass stream
      • Required degree of efficiency of the catalyst
      • Catalyst size
      • Preparation section between urea metering and catalyst
  • It is thus possible with the metering system according to the invention to optimize the amount of air at each individual operating point based on the respective boundary conditions.
  • In an especially preferred embodiment, the compressed air supply has a butterfly valve. By the arrangement of a butterfly valve, it is possible to lower the air pressure correspondingly in the air pressure system before the supply to the nozzle.
  • In an especially preferred embodiment, the metering system has a metering pump for carrying the urea solution. In particular, such a metering pump can be a metering pump that can be controlled relative to the required mass stream of the urea solution in such a way that the feed rate of the urea solution can be matched at the respective operating point by a corresponding activation of the metering pump.
  • A connecting line is preferably arranged between the urea output and a line of the compressed air supply, whereby the connecting line has a nonreturn valve.
  • To interrupt the air supply completely in metering pauses, it is necessary to remove the urea from the hot areas in order to prevent deposits from forming. Otherwise, the urea would decompose at high temperatures and would result in deposits and thus in clogs. By the arrangement of a compressed-air line, i.e., a connecting line between a urea line and a line of the compressed air supply, such deposits can be prevented by the build-up of urea being blown free by means of compressed air during metering pauses. A nonreturn valve, whose opening pressure is above the air pressure that is set in the metering after the air valve, is inserted into this connecting line.
  • In the metering operation, this nonreturn valve is closed, since the pressure in the compressed-air line lies below the opening pressure of the nonreturn valve. In order to blow the urea line free with compressed air, the urea supply is turned off by the metering pump, and the air valve is opened for a short time, enough to allow the pressure to rise above the opening pressure of the nonreturn valve. Because of the regulator in the compressed-air line, a pressure drop is produced in the metering line, and the compressed air drives the urea into the exhaust gas system. The line is thus blown free. After a short air burst, the urea is blown out of the metering nozzle, and the air supply can be completely turned off.
  • Preferably, the metering system has a compressed air compressor. By means of such a compressed air compressor, it is possible to prepare the compressed air that is required for the metering system unless no compressed air supply or an insufficient compressed air supply is present in the installation environment of the metering system.
  • The metering system preferably has a control device by means of which the air valve and/or a butterfly valve and/or a metering pump and/or a compressed air compressor can be controlled based on the measured values that are acquired by the sensor or the sensors.
  • By the arrangement of such a control device, which controls one or more components of the metering system based on the sensor measured values, i.e., based on the current operating parameters, an optimization of the operation of the metering system, i.e., an air optimization can be achieved in an especially advantageous way. By means of such a control device, it is thus possible to match—and thus to regulate—the urea feed rate and the air feed rate in an optimal way to the current operating parameters of the internal combustion engine and the catalyst for selective, catalytic reduction.
  • Preferably, the metering system has a urea solution tank. Because the metering system itself has a urea solution tank, it is possible to retrofit the metering system in corresponding environments in which a urea solution tank is not already present.
  • In a preferred embodiment, the metering system has a binary nozzle. Especially preferably, the binary nozzle is an outward-mixing nozzle.
  • Additionally, unlike prior art metering systems, in this case the metering system does not have a mixing chamber. The mixing is accomplished in-situ by the formation of an aerosol produced outwards by the outward-mixing binary nozzle.
  • In a preferred embodiment, the metering system comprises at least one selective catalytic reduction catalyst. In the metering operation, the urea solution is sprayed into the exhaust gas stream ahead of the selective catalytic reduction catalyst, in which the reduction of NOx occurs.
  • Preferably, the metering system has a sensor positioned rearward the selective catalytic reduction catalyst measuring the NOx-portion of the exhaust gas. With an integrated NOx-sensor within the system, an online-diagnostic of the system can be realized and the quality of the reduction of NOx in the selective catalytic reduction catalyst can be constantly be monitored. The signal of the NOx-sensor can be incorporated by the control device, preferably an electronic control unit such as a computer, CPU or an ASIC, which controls one or more components of the metering system based on the sensor measured values, i.e., based on the current operating parameters and the quality of NOx reduction, an optimization of the operation of the metering system, i.e., an air optimization and/or an optimization of the urea dosing and mass flow, can be realized in an advantageous way to achieve an optimum of NOx reduction.
  • The great advantage of a metering system comprising a sensor positioned rearward the selective catalytic reduction catalyst measuring the NOx-portion of the exhaust gas is, that it is possible to continuously monitor the function of the metering system and the quality and quantity of NOx-reduction in the SCR-catalyst. The metering system can be a part of an On-Board-Diagnostic system of the vehicle; further the data acquired with the NOx-sensor can be stored to be enabled to monitor the compliance with the domestic exhaust gas regulations.
  • The method according to the invention for controlling the spraying or injection of a urea solution by means of compressed air into the exhaust gas stream of an internal combustion engine for selective catalytic reduction is preferably configured in such a way that when the spraying of urea solution is interrupted or completed, the urea solution is cleaned from the urea solution-carrying lines by means of compressed air.
  • The method is thus preferably configured in such a way that a completion or interruption of the supply of urea solution is carried out over time before the compressed air supply is completed or interrupted, and the compressed air is used after the supply of the urea solution is interrupted or completed in order to clean the urea solution-carrying parts by means of compressed air. In this respect, the urea in particular is removed from the hot areas of the metering system. Otherwise, the urea would decompose at high temperatures and would form deposits and could lead to clogs.
  • To blow the urea line free with compressed air, the urea supply is turned off by the metering pump, and the air-control valve is opened for a short time, enough to allow the pressure to rise above the opening pressure of a nonreturn valve in a connecting line between a urea line and a compressed-air line. Because of this, a pressure drop is produced in the metering line, so that the compressed air drives the urea into the exhaust gas system and thus the urea-carrying line is blown free. After a brief air burst, the urea is blown out from the metering nozzle, and the air supply can also be turned off completely.
  • The spraying of the urea solution can thus be interrupted or completed by a metering pump being turned off.
  • Before the metering is restarted, it is useful first to set the compressed air to a value that is above the normal metering air supply in order to cool off the nozzle before the urea enters into the latter.
  • Blowing out the urea from the lines is also advantageous when the entire system is turned off. Urea freezes at temperatures of below −11° Celsius. In this connection, the urea water solution expands by about 10%. This leads to frost pressure, by which components could be destroyed. It is therefore necessary to blow the urea out of the nozzle before the system is turned off completely.
  • This can take place in particular in that after the urea supply is completed, the entire system is cleaned by means of compressed air, i.e., the urea is blown out from the system by means of compressed air.
  • Preferably, an activation of at least one metering pump and/or at least one compressed air compressor and/or at least one air-control valve is carried out based on the operating parameters of exhaust gas temperature and exhaust gas mass stream in the method according to the invention for controlling the spraying or injection of the urea solution. To this end, by means of a corresponding control device, the various acquired operating parameters can be evaluated, so that an activation of the components can be carried out exactly.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In the figures, two embodiments of a metering system according to the invention for spraying a urea solution into the exhaust gas stream of an internal combustion engine are shown and are explained below.
  • FIG. 1 shows an installation diagram of a first embodiment of a metering system;
  • FIG. 2 shows an installation diagram of a second embodiment of a metering system.
  • In the figures, identical components and assemblies are referred to with identical reference numbers. FIG. 1 shows the diagrammatic visualization of a first embodiment of the urea metering system.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Urea is suctioned off from a tank 1 via a suction line 2 by the metering pump 3. The metering pump 3 is, for example, a membrane pump or a reciprocating pump, which carries a defined amount of urea solution with each stroke and thus meters equally. The urea is sent to a binary nozzle 5 via a pressure line 4. The binary nozzle 5 is preferably an outward-mixing nozzle, in which an air jet atomizes the urea.
  • Compressed air is sent from a compressed air container 6 to a proportional air valve 7. The proportional air valve 7 cuts off the pressure flow at a value that is specified by the electronic control unit 12. Input values for the calculation of this value by means of the electronic control unit 12 are engine data, such as the exhaust gas mass streams that are delivered by the engine electronic system, and, in addition, the exhaust gas temperature, as well as the pressure of the compressed air before that of the binary nozzle 5. The pressure before the binary nozzle 5 is a measurement of the accepted air volume flow. The air is sent via a compressed-air line and a nonreturn valve 8 to the binary nozzle 5. The urea is atomized in the binary nozzle 5 from the compressed air and fed to the exhaust gas stream 9.
  • The metering system comprises a selective catalytic reduction catalyst 10. In the metering operation, the urea solution is sprayed into the exhaust gas stream 9 ahead of the selective catalytic reduction catalyst 10, in which the reduction of NOx occurs.
  • To acquire the operating parameters of exhaust gas mass stream, air pressure and exhaust gas temperature, the following are arranged: a sensor 11 for detecting the exhaust gas mass stream, a pressure sensor 16 for detecting the pressure of the compressed air before the binary nozzle 5, as well as a temperature sensor 17 for detecting the exhaust gas temperature in the exhaust gas stream 9. In one alternative, not shown, an exhaust gas mass stream signal from the engine management system is provided.
  • The measured values of the sensors 11, 16, 17 are fed to the control unit 12. In the electronic control unit 12, the acquired sensor data and engine data are evaluated, and an activation of the proportional air valve 7 and the metering pump 3 is carried out based on the temporary operating data. The nozzle tip of the binary nozzle 5 is arranged in the exhaust gas stream 9. The urea is sent via the exhaust gas line to the SCR catalyst 10. In this connection, a larger part of the liquid droplets evaporates. The urea converts into ammonia. In the catalyst 10 itself, the nitrogen oxide emission from the engine is reduced with ammonia.
  • Further the system comprises a sensor 18 positioned rearward the selective catalytic reduction catalyst 10 measuring the NOx-portion of the exhaust gas. On the basis of the sensor signal of the NOx sensor 18 it is possible to monitor the quality of NOx reduction within the selective catalytic reduction catalyst 10. Therefore the signal of the sensor 18 is fed to the control unit 12. In the control unit 12, the acquired sensor data and engine data are evaluated, as described above, and the system is operated by the control unit on the basis of the acquired sensor data continuously monitoring the quality of NOx-reduction within the SCR catalyst 10.
  • The nonreturn valve 8 in the pressure line between the proportional air valve 7 and the binary nozzle 5 prevents urea from being able to be pressed into the compressed-air lines if the nozzle 5 becomes clogged.
  • FIG. 2 shows a second embodiment of a metering system according to the invention in which it is possible—without additional actively actuated components—to drive the urea with the compressed air from the pressure line and the nozzle in order to remove the urea from the hot areas in the metering pauses in order to prevent the urea from decomposing at high temperatures and forming deposits.
  • In this connection, the compressed-air line after the proportional air valve 7 with the urea line 4 is connected via a spring-loaded nonreturn valve 14 with the line 13. In addition, a flow regulator 15 is incorporated into the compressed-air line after the proportional compressed air valve 7 and after the branching of the line 13.
  • In the simplest case, the line itself can take over the function of the flow regulator 15 when said line is long enough. During the metering operation, the pressure in the line of the regulator 15 is below the opening pressure of the spring-loaded nonreturn valve 14. The compressed air flows through the nozzle 5. In this connection, the added urea is atomized. If, in the deactivated metering pump 3, the pressure after the proportional pressure valve 7 is raised to a value above the opening pressure of the nonreturn valve 14, air flows into the pressure line 4 of the urea. The urea is expelled in line 4 and nozzle 5. Thus, after the engine is displayed, the area of the nozzle 5 is urea-free and thus frost-resistant. During the operation of the engine, no deposits can form at high exhaust gas temperatures without metering.

Claims (20)

What is claimed is:
1. A metering system for spraying a urea solution into an exhaust gas stream (9) of an internal combustion engine for selective catalytic reduction comprising:
a urea solution tank (1) for delivering a urea solution;
at least one nozzle (5) through which said urea solution is sprayed into said exhaust gas stream;
a compressed air supply (6) operatively connected to said nozzle (5);
an air valve (7) operatively connected to said at least one nozzle; and
a sensor positioned between said air valve (7) and said at least one nozzle (5) for measuring the pressure and/or the amount of air present in the compressed air supply,
at least one selective catalytic reduction catalyst (10),
a sensor positioned rearward the selective catalytic reduction catalyst (10) measuring the NOx-portion of the exhaust gas,
wherein said sensor, is in operative communication with said air valve (7) and said air valve (7) regulates the pressure and/or the amount of air and/or the valve opening times of the compressed air supply (6) and further wherein said at least one nozzle (5) is an outward-mixing binary nozzle,
wherein said urea solution is sprayed into said exhaust gas stream ahead said at least one selective catalytic reduction catalyst.
2. A metering system according to claim 1, wherein the air valve (7) is a proportional control valve.
3. A metering system according to claim 1, wherein the sensor is a pressure sensor (16).
4. A metering system according to claim 1, wherein the metering system has means for calculating the exhaust gas mass stream or a sensor (11) for measuring the exhaust gas mass stream.
5. A metering system according to claim 1, wherein the metering system has a sensor (17) for measuring the exhaust gas temperature.
6. A metering system according to claim 1, wherein the compressed air supply (6) has a butterfly valve (15).
7. A metering system according to claim 1, wherein the metering system has a metering pump (3) for supplying the urea solution.
8. A metering system according to claim 1, wherein a connecting line (13) is arranged between a urea line (4) and a line of the compressed air supply, whereby the connecting line (13) has a nonreturn valve (14).
9. A metering system according to claim 1, wherein the metering system has a compressed air compressor.
10. A metering system according to claim 1, wherein the metering system has a control device (12), by means of which the air valve (7) and/or a butterfly valve (15) and/or a metering pump (3) and/or a compressed air compressor can be controlled based on the measured value/s acquired by the sensor/s (11, 16, 17).
11. A metering system according to claim 1, wherein the metering system has a urea solution tank (1).
12. A method for controlling spraying of a urea solution by means of compressed air into the exhaust gas stream (9) of an internal combustion engine for selective catalytic reduction, wherein the amount of compressed air that is fed to the urea solution for atomization is controlled at each operating point based on the operating parameters of exhaust gas temperature and exhaust gas mass stream and is reduced to the minimum amount of air that is required in each case, so that the droplet quality of the sprayed urea solution is sufficient for the action of the catalyst.
13. A method according to claim 12, wherein when the spraying of the urea solution is interrupted or completed, the urea solution is cleaned from the urea solution-carrying lines by means of compressed air.
14. A method according to claim 12, wherein the spraying of the urea solution is interrupted or completed by turning off a metering pump (3).
15. A method according to claim 12, wherein an activation of at least one metering pump (3) and/or at least one compressed air compressor and/or at least one air-control valve (7) is carried out based on the operating parameters of exhaust gas temperature and exhaust gas mass stream.
16. A Method according to claim 13, wherein the spraying of the urea solution is interrupted or completed by turning off a metering pump (3).
17. A Method according to claim 13, wherein an activation of at least one metering pump (3) and/or at least one compressed air compressor and/or at least one air-control valve (7) is carried out based on the operating parameters of exhaust gas temperature and exhaust gas mass stream.
18. A Metering system according to claim 2, wherein the sensor is a pressure sensor (16).
19. A Metering system according to claim 4, wherein the sensor is a pressure sensor (16).
20. A Metering system according to claim 10, wherein the sensor is a pressure sensor (16).
US14/066,917 2008-03-12 2013-10-30 Metering System for Spraying a Urea Solution into the Exhaust Gas Stream of an Internal Combustion Engine Abandoned US20140069084A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/066,917 US20140069084A1 (en) 2008-03-12 2013-10-30 Metering System for Spraying a Urea Solution into the Exhaust Gas Stream of an Internal Combustion Engine

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE2030080249603 2008-03-12
DE102008013960A DE102008013960A1 (en) 2008-03-12 2008-03-12 Dosing system for injecting a urea solution into the exhaust stream of an internal combustion engine
EPPCT/EP2009/000664 2009-02-02
PCT/EP2009/000664 WO2009112129A1 (en) 2008-03-12 2009-02-02 Metering system for injecting a urea solution into the exhaust gas flow of an internal combustion engine
US81033510A 2010-06-24 2010-06-24
US14/066,917 US20140069084A1 (en) 2008-03-12 2013-10-30 Metering System for Spraying a Urea Solution into the Exhaust Gas Stream of an Internal Combustion Engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US81033510A Continuation-In-Part 2008-03-12 2010-06-24

Publications (1)

Publication Number Publication Date
US20140069084A1 true US20140069084A1 (en) 2014-03-13

Family

ID=50231811

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/066,917 Abandoned US20140069084A1 (en) 2008-03-12 2013-10-30 Metering System for Spraying a Urea Solution into the Exhaust Gas Stream of an Internal Combustion Engine

Country Status (1)

Country Link
US (1) US20140069084A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180087423A1 (en) * 2016-09-23 2018-03-29 Eberspächer Exhaust Technology GmbH & Co. KG Exhaust gas treatment device and nozzle for the same
CN108590820A (en) * 2018-06-20 2018-09-28 中国第汽车股份有限公司 A kind of urea injection system and its control method of crystallization-preventive
US11098626B2 (en) 2019-04-22 2021-08-24 Denso Corporation Fluid injection device and fluid injection system
CN113482750A (en) * 2021-08-04 2021-10-08 无锡威孚力达催化净化器有限责任公司 Urea supply injection system with double-stage injection function
CN113530655A (en) * 2021-08-11 2021-10-22 一汽解放汽车有限公司 Urea crystal detection device, urea crystal treatment method, urea crystal treatment device, urea crystal treatment equipment and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040035952A1 (en) * 2001-03-15 2004-02-26 Stefan Gerstner External mixing nozzle
US20050284136A1 (en) * 2002-12-23 2005-12-29 Grundfos A/S Dosing pump assembly
US20070113544A1 (en) * 2003-10-03 2007-05-24 Nissan Diesel Motor Co., Ltd. Engine exhaust emission control device and exhaust emission control method
US20070163232A1 (en) * 2003-10-02 2007-07-19 Nissan Diesel Motor Co., Ltd. Exhaust gas purifying apparatus for engine
US20090038299A1 (en) * 2007-08-09 2009-02-12 Caterpillar Inc. Reducing agent injector having purge heater

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040035952A1 (en) * 2001-03-15 2004-02-26 Stefan Gerstner External mixing nozzle
US20050284136A1 (en) * 2002-12-23 2005-12-29 Grundfos A/S Dosing pump assembly
US20070163232A1 (en) * 2003-10-02 2007-07-19 Nissan Diesel Motor Co., Ltd. Exhaust gas purifying apparatus for engine
US20070113544A1 (en) * 2003-10-03 2007-05-24 Nissan Diesel Motor Co., Ltd. Engine exhaust emission control device and exhaust emission control method
US20090038299A1 (en) * 2007-08-09 2009-02-12 Caterpillar Inc. Reducing agent injector having purge heater

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180087423A1 (en) * 2016-09-23 2018-03-29 Eberspächer Exhaust Technology GmbH & Co. KG Exhaust gas treatment device and nozzle for the same
CN108590820A (en) * 2018-06-20 2018-09-28 中国第汽车股份有限公司 A kind of urea injection system and its control method of crystallization-preventive
US11098626B2 (en) 2019-04-22 2021-08-24 Denso Corporation Fluid injection device and fluid injection system
CN113482750A (en) * 2021-08-04 2021-10-08 无锡威孚力达催化净化器有限责任公司 Urea supply injection system with double-stage injection function
CN113530655A (en) * 2021-08-11 2021-10-22 一汽解放汽车有限公司 Urea crystal detection device, urea crystal treatment method, urea crystal treatment device, urea crystal treatment equipment and storage medium

Similar Documents

Publication Publication Date Title
US9057304B2 (en) Metering system for injecting a urea solution into the exhaust gas flow of an internal combustion engine
US20140069084A1 (en) Metering System for Spraying a Urea Solution into the Exhaust Gas Stream of an Internal Combustion Engine
US9273580B2 (en) Metering system for injecting a reducing agent into the exhaust gas flow of an internal combustion engine
US8984862B2 (en) Component carrier for a dosing system
US20100115932A1 (en) Metering system
US8459012B2 (en) Method for purging a dosing system
US8671663B2 (en) Method and metering system for reducing pollutants in motor vehicle exhaust gases
US8359833B2 (en) Method for introducing a reductant into an exhaust stream
CN101328827B (en) Exhaust gas purifying apparatus for engine
US20090205316A1 (en) System and processes for storing an additive and injecting it into the exhaust gases of an engine
US20120042635A1 (en) Method for Operating a Reducing Agent Supply System
KR102447698B1 (en) Reductant supply system and method for managing the same
US9272244B2 (en) Metering system
US9163542B2 (en) Reducing agent dosing system for injection reducing agent into the exhaust gas flow of an internal combustion engine
KR102550063B1 (en) Selective catalytic reduction system
CN107532495B (en) Reductant metering system with modular structure
KR102466782B1 (en) Reductant supply system
KR102402332B1 (en) Reductant supply system
KR20180024745A (en) Reductant supply system
WO2019131594A1 (en) Urine water spraying device
CN113494339A (en) Reductant metering system with at least two metering points
CN114278415A (en) High-power engine urea injection device and control method
US20120085320A1 (en) High Volume Combustion Catalyst Delivery System
KR20160102755A (en) Reactant dosing apparatus in selective catalytic reduction system and method using the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: ALBONAIR GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HUTHWOHL, GEORG;REEL/FRAME:031652/0167

Effective date: 20131112

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION