US20140065242A1 - Biodegradable Chewing Gum Comprising At Least One High Molecular Weight Biodegradable Polymer - Google Patents

Biodegradable Chewing Gum Comprising At Least One High Molecular Weight Biodegradable Polymer Download PDF

Info

Publication number
US20140065242A1
US20140065242A1 US14/075,897 US201314075897A US2014065242A1 US 20140065242 A1 US20140065242 A1 US 20140065242A1 US 201314075897 A US201314075897 A US 201314075897A US 2014065242 A1 US2014065242 A1 US 2014065242A1
Authority
US
United States
Prior art keywords
chewing gum
poly
lactide
mol
biodegradable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/075,897
Inventor
Lone Andersen
Helle Wittorff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gumlink AS
Original Assignee
Gumlink AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32039038&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20140065242(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Gumlink AS filed Critical Gumlink AS
Priority to US14/075,897 priority Critical patent/US20140065242A1/en
Assigned to GUMLINK A/S reassignment GUMLINK A/S ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ANDERSEN, LONE, WITTORFF, HELLE
Publication of US20140065242A1 publication Critical patent/US20140065242A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G4/00Chewing gum
    • A23G4/06Chewing gum characterised by the composition containing organic or inorganic compounds
    • A23G4/08Chewing gum characterised by the composition containing organic or inorganic compounds of the chewing gum base
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G4/00Chewing gum
    • A23G4/02Apparatus specially adapted for manufacture or treatment of chewing gum
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G4/00Chewing gum
    • A23G4/06Chewing gum characterised by the composition containing organic or inorganic compounds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G4/00Chewing gum
    • A23G4/06Chewing gum characterised by the composition containing organic or inorganic compounds
    • A23G4/064Chewing gum characterised by the composition containing organic or inorganic compounds containing inorganic compounds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G4/00Chewing gum
    • A23G4/06Chewing gum characterised by the composition containing organic or inorganic compounds
    • A23G4/10Chewing gum characterised by the composition containing organic or inorganic compounds characterised by the carbohydrates used, e.g. polysaccharides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G4/00Chewing gum
    • A23G4/06Chewing gum characterised by the composition containing organic or inorganic compounds
    • A23G4/12Chewing gum characterised by the composition containing organic or inorganic compounds containing microorganisms or enzymes; containing paramedical or dietetical agents, e.g. vitamins
    • A23G4/126Chewing gum characterised by the composition containing organic or inorganic compounds containing microorganisms or enzymes; containing paramedical or dietetical agents, e.g. vitamins containing vitamins, antibiotics
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G4/00Chewing gum
    • A23G4/18Chewing gum characterised by shape, structure or physical form, e.g. aerated products
    • A23G4/20Composite products, e.g. centre-filled, multi-layer, laminated

Definitions

  • the present invention relates to biodegradable chewing gum.
  • U.S. Pat. No. 5,672,367 discloses a chewing gum made on the basis of a biodegradable polymer having polymeric properties, i.e. a polymer.
  • a significant advantage, as explained in the patent, is that the resulting chewing gum may be degraded when disposed in the nature or e.g. on streets as a result of normal environmental influence.
  • the disclosed chewing gum is claimed as having a structure and chewing characteristics comparable to those of chewing gum based on conventional, non-degradable polymers. It has moreover been realized, that the exchange of polymers provides a reduced tackness.
  • U.S. Pat. No. 6,153,231 discloses a chewing gum comprising a biodegradable polymer and where the polymer comprises a poly(lactic acid-dimer fatty acid oxazoline) copolymers or a poly(lactic acid-diol-urethane) copolymer.
  • a problem of the above disclosed chewing gums is that the biodegradable polymers as such does not simply replace the polymer or polymers of conventional chewing gum. It has been realized that the simple polymer substitution results in an overall chewing gum having different characteristics than conventional chewing gum. This problem indicates that the substituted polymer reacts differently with the remaining chewing ingredients than the biodegradable polymers thereby rendering conventional chewing gum formulations more or less useless.
  • the invention relates to chewing gum comprising at least one biodegradable polymer, wherein the molecular weight of said at least one polymer is at least 105,000 g/mol (Mn).
  • chewing gums made on the basis of biodegradable polymers are somewhat vulnerable to different conventional chewing gum additives or components.
  • softeners which are highly needed when obtaining the desired chewing gum texture, tend to dissolve the chewing gums even when applied in small amounts.
  • this problem may be effectively dealt with by increasing of the molecular weight of at least one of the biodegradable polymers in the chewing gum when compared to conventional chewing gum polymers and thereby increasing the robustness of the chewing gum with respect to softeners, emulsifiers and e.g. flavor.
  • an increasing of the molecular weight of at least one of the biodegradable polymers and thereby an increasing of the rheological stiffness (G′) may in fact be more than compensated by addition of softeners.
  • an improved texture of a biodegradable polymer containing chewing gum may in fact surprisingly be obtained by an initial worsening of the rheological properties of the biodegradable polymer and finally be more than compensated by the addition of suitable softeners.
  • biodedegradable polymers Due to the hydrophilic nature of biodedegradable polymers, the polymers tends to swallow water, e.g. from mouth induced saliva. Thereby, the intermolecular forces between the neighboring molecular chains will decrease and the chewing gum structure will weaken.
  • a higher resistance to the decreasing of intermolecular forces has been obtained partly due to the fact that the resulting intermolecular forces are increased between the polymer chain and moreover due to the fact that the increasing of the size of the molecular chains results in increased entanglement between the polymer chains of neighboring polymers.
  • the molecular weight of said at least one biodegradable polymer is at least 150,000 g/mol (Mn).
  • the molecular weight of said at least one biodegradable polymer is within the range of 105,000 g/mol (Mn) to 1,000,000 g/mol (Mn).
  • the molecular weight of said at least one biodegradable polymer is within the range of 105,000 g/mol (Mn) to 500,000 g/mol (Mn).
  • the molecular weight of said at least one biodegradable polymer is within the range of 105,000 g/mol (Mn) to 350,000 g/mol (Mn).
  • the molecular weight of said at least one biodegradable polymer is within the range of 105,000 g/mol (Mn) to 250,000 g/mol (Mn).
  • the molecular weight of said at least one biodegradable polymer is less than 2,000,000 g/mol (Mn).
  • the polydispersity of said at least one biodegradable polymer is within the range of 1 to 5.
  • the polydispersity of said at least one biodegradable polymer is within the range of 1 to 2.5 (21 ⁇ 2).
  • the at least one biodegradable polymer comprises at least 25% of the chewing gum polymers, preferably at least 50%.
  • all the biodegradable polymers comprised in the chewing gum comprise at least 25%, preferably at least 50% of the chewing gum polymers.
  • all the biodegradable polymers comprised in the chewing gum comprise at least 80%, preferably at least 90% of the chewing gum polymers.
  • said chewing gum ingredients comprise flavoring agents.
  • said flavoring agents comprise natural and synthetic flavourings in the form of natural vegetable components, essential oils, essences, extracts, powders, including acids and other substances capable of affecting the taste profile
  • said chewing gum comprise flavor in an amount of 0.01 to about 30 wt %, said percentage being based on the total weight of the chewing gum
  • said chewing gum comprising flavor in an amount of 0.2 to about 4 wt %, said percentage being based on the total weight of the chewing gum
  • said flavor comprises water soluble ingredients.
  • said water soluble flavor comprises acids.
  • said flavor comprises water insoluble ingredients.
  • said chewing gum ingredients comprise sweeteners.
  • said sweetener comprises bulk sweeteners
  • the chewing gum comprises bulk sweeteners in an amount of about 5 to about 95% by weight of the chewing gum, more typically about 20 to about 80% by weight of the chewing gum.
  • the high intensity sweeteners comprise sucralose, aspartame, salts of acesulfame, alitame, saccharin and its salts, cyclamnic acid and its salts, glycyrrhizin, dihydrochalcones, thaumatin, monellin, sterioside, alone or in combination
  • the chewing gum comprises high intensity sweeteners in an amount of about 0 to about 1% by weight of the chewing gum, more typically about 0.05 to about 0.5% by weight of the chewing gum.
  • the chewing gum comprises at least one softener.
  • the at least one softener comprises tallow, hydrogenated tallow, hydrogenated and partially hydrogenated vegetable oils, cocoa butter, glycerol monostearate, glycerol triacetate, lecithin, mono-, di- and triglycerides, acetylated monoglycerides, fatty acids, such as stearic, palmitic, oleic and linoleic acids mixtures thereof.
  • the chewing gum comprises softeners in an amount of about 0 to about 18% by weight of the chewing gum, more typically about 0 to about 12% by weight of the chewing gum.
  • the chewing gum ingredients comprise active ingredients.
  • said active ingredients are selected from the group of: Acetaminophen, Acetylsalicylic acid, Buprenorphine, Bromhexin, Celcoxib, Codeine, Diphenhydramin, Diclofenac, Etoricoxib, Ibuprofen, Indometacin, Ketoprofen, Lumiracoxib, Morphine, Naproxen, Oxycodon, Parecoxib, Piroxicam, Rofecoxib, Tenoxicam, Tramadol, Valdecoxib, Calciumcarbonat, Magaldrate, Disulfuram, Bupropion, Nicotine, Azithromycin, Clarithromycin, Clotrimazole, Erythromycin, Tetracycline, Granisetron, Ondansetron, Prometazin, Tropisetron, Brompheniramine, Ceterizin, leco-Ceterizin, Chlorcyclizine, Chlorpheniramin, Chlorpheniramin, Difenhydr
  • Chloride Benzeth. Chloride, Cetylpyrid. Chloride, Chlorhexidine, Ecabet-sodiun, Haloperidol, Allopurinol, Colchinine, Theophylline, Propanolol, Prednisolone, Prednisone, Fluoride, Urea, Miconazole, Actot, Glibenclamide, Glipizide, Metformin, Miglitol, Repaglinide, Rosiglitazone, Apomorfin, Clalis, Sildenafil, Vardenafil, Diphenoxylate, Simethicone, Cimetidine, Famotidine, Ranitidine, Ratinidine, cetrizin, Loratadine, Aspirin, Benzocaine, Dextrometorphan, Ephedrine, Phenylpropanolamine, Pseudoephedrine, Cisapride, Domperidone, Metoclopramide, Acyclovir,
  • the chewing gum is substantially free of non-biodegradable polymers
  • the at least two or more cyclic esters are selected from the groups of glycolides, lactides, lactones, cyclic carbonates or mixtures thereof.
  • the lactone monomers are chosen from the group of ⁇ -caprolactone, ⁇ -valerolactone, ⁇ -butyrolactone, and ⁇ -propiolactone. It also includes ⁇ -caprolactones, ⁇ -valerolactones, ⁇ -butyrolactones, or ⁇ -propiolactones that have been substituted with one or more alkyl or aryl substituents at any non-carbonyl carbon atoms along the ring, including compounds in which two substituents are contained on the same carbon atom.
  • the carbonate monomer is selected from the group of trimethylene carbonate, 5-alkyl-1,3-dioxan-2-one, 5,5-dialkyl-1,3-dioxan-2-one, or 5-alkyl-5-alkyloxycarbonyl-1,3-dioxan-2-one, ethylene carbonate, 3-ethyl-3-hydroxymethyl, propylene carbonate, trimethylolpropane monocarbonate, 4,6-dimethyl-1,3-propylene carbonate, 2,2-dimethyl trimethylene carbonate, and 1,3-dioxepan-2-one and mixtures thereof.
  • the cyclic ester polymers and their copolymers resulting from the polymerization of cyclic ester monomers include, but are not limited to: poly (L-lactide); poly (D-lactide); poly (D,L-lactide); poly (mesolactide); poly (glycolide); poly (trimethylenecarbonate); poly (epsilon-caprolactone); poly (L-lactide-co-D,L-lactide); poly (L-lactide-co-meso-lactide); poly (L-lactide-co-glycolide); poly (L-lactide-co-trimethylenecarbonate); poly (L-lactide-co-epsilon-caprolactone); poly (D,L-lactide-co-meso-lactide); poly (D, L lactide-co-glycolide); poly (D,L-lactide-co-trimethylenecarbonate); poly (D,L-lactide-co-trimethylenecarbon
  • the chewing gum comprises filler.
  • a chewing gum base formulation may, if desired, include one or more fillers/texturisers including as examples, magnesium and calcium carbonate, sodium sulphate, ground limestone, silicate compounds such as magnesium and aluminium silicate, kaolin and clay, aluminium oxide, silicium oxide, talc, titanium oxide, mono-, di- and tri-calcium phosphates, cellulose polymers, such as wood, and combinations thereof.
  • fillers/texturisers including as examples, magnesium and calcium carbonate, sodium sulphate, ground limestone, silicate compounds such as magnesium and aluminium silicate, kaolin and clay, aluminium oxide, silicium oxide, talc, titanium oxide, mono-, di- and tri-calcium phosphates, cellulose polymers, such as wood, and combinations thereof.
  • the chewing gum comprises filler in an amount of about 0 to about 50% by weight of the chewing gum, more typically about 10 to about 40% by weight of the chewing gum.
  • the chewing gum comprises at least one coloring agent.
  • the chewing gum may comprise color agents and whiteners such as FD&C-type dyes and lakes, fruit and vegetable extracts, titanium dioxide and combinations thereof.
  • Further useful chewing gum base components include antioxidants, e.g. butylated hydroxytoluene (BHT), butyl hydroxyanisol (BHA), propylgallate and tocopherols, and preservatives.
  • the chewing gum is coated with an outer coating.
  • the outer coating is a hard coating.
  • the hard coating is a coating selected from the group consisting of a sugar coating and a sugarless coating and a combination thereof.
  • the hard coating comprises 50 to 100% by weight of a polyol selected from the group consisting of sorbitol, maltitol, mannitol, xylitol, erythritol, lactitol and isomalt.
  • the outer coating is an edible film comprising at least one component selected from the group consisting of an edible film-forming agent and a wax.
  • the film-forming agent is selected from the group consisting of a cellulose derivative, a modified starch, a dextrin, gelatine, shellac, gum arabic, zein, a vegetable gum, a synthetic polymer and any combination thereof.
  • the outer coating comprises at least one additive component selected from the group consisting of a binding agent, a moisture absorbing component, a film forming agent, a dispersing agent, an antisticking component, a bulking agent, a flavouring agent, a colouring agent, a pharmaceutically or cosmetically active component, a lipid component, a wax component, a sugar, an acid and an agent capable of accelerating the after-chewing degradation of the degradable polymer.
  • a binding agent e.g., a moisture absorbing component, a film forming agent, a dispersing agent, an antisticking component, a bulking agent, a flavouring agent, a colouring agent, a pharmaceutically or cosmetically active component, a lipid component, a wax component, a sugar, an acid and an agent capable of accelerating the after-chewing degradation of the degradable polymer.
  • the outer coating is a soft coating.
  • the soft coating comprises a sugar free coating agent.
  • the chewing gum comprises conventional chewing gum polymers or resins.
  • the at least one biodegradable polymer comprises at least 5% of the chewing gum polymers.
  • all the biodegradable polymers comprised in the chewing gum comprises at least 25%, preferably at least 50% of the chewing gum polymers.
  • the biodegradable polymers comprised in the chewing gum comprises at least 80%, preferably at least 90% of the chewing gum polymers.
  • the chewing gum comprises said at least one biodegradable polyester copolymer forming a plasticizer of the chewing gum and at least one non-biodegradable conventional elastomer.
  • a biodegradable polymer according to the invention may form a substitute of a conventional natural or synthetic resin.
  • the chewing gum comprises the at least one biodegradable polyester copolymer forming an elastomer of the chewing gum and at least one non-biodegradable conventional natural or synthetic resin.
  • a biodegradable polymer according to the invention may form a substitute of a conventional low or high molecular weight elastomer.
  • said chewing gum comprises at least one biodegradable elastomer in the amount of about 0.5 to about 70% wt of the chewing gum,
  • At least one biodegradable plasticizer in the amount of about 0.5 to about 70% wt of the chewing gum and
  • At least one chewing gum ingredient chosen from the groups of softeners, sweeteners, flavoring agents, active ingredients and fillers in the amount of about 2 to about 80% wt of the chewing gum.
  • edible polyesters may be applied as a degradable chewing gum polymer.
  • Edible polyesters are obtained by esterification of at least one alcohol and one acid.
  • the edible polyester is produced by condensation polymerization reaction of at least one alcohol chosen from the group of trihydroxyl alcohol and dihydroxyl alcohol, and at least one acid chosen from the group consisting of dicarboxylic acid and tricarboxylic acid.
  • Edible polyesters can replace both elastomers and elastomer plasticizers and form 1-80% of the gum base.
  • FIG. 1 illustrates G′ (storage modulus) versus oscillation torque for chewing gums 1002 , 1003 and 1005 , all containing 3% lecithin and where
  • FIG. 2 illustrates tan(delta) versus oscillation torque for chewing gums 1002 , 1003 and 1005 , all containing 3% lecithin.
  • environmentally or biologically degradable polymer compounds refers to chewing gum-base components which, after dumping the chewing gum, is capable of undergoing a physical, chemical and/or biological degradation whereby the dumped chewing gum waste becomes more readily removable from the site of dumping or is eventually disintegrated to lumps or particles which are no longer recognizable as being chewing gum remnants.
  • the degradation or disintegration of such degradable polymers can be effected or induced by physical factors such as temperature, light, moisture, by chemical factors such as hydrolysis caused by a change in pH or by the action of enzymes capable of degrading the polymers.
  • all of the polymer components of the gum base are environmentally degradable or biodegradable polymers.
  • the ultimate degradation products are carbon dioxide, methane and water.
  • biodegradability is a property of certain organic molecules whereby, when exposed to the natural environment or placed within a living organism, they react through an enzymatic or microbial process, often in combination with a pure chemical process such as hydrolysis, to form simpler compounds, and ultimately, carbon dioxide, nitrogen oxides, and water.
  • suitable examples of additional environmentally or biologically degradable chewing gum base polymers which can be applied in accordance with the gum base of the present invention include degradable polyesters, polycarbonates, polyester amides, polypeptides, homopolymers of amino acids such as polylysine, and proteins including derivatives hereof such as e.g. protein hydrolysates including a zein hydrolysate.
  • Particularly useful compounds of this type include polyester polymers obtained by the polymerization of one or more cyclic esters such as lactide, glycolide, trimethylene carbonate, 5-valerolactone, 0-propiolactone and -caprolactone.
  • Such degradable polymers may be homopolymers or copolymers, including block-polymers.
  • molecular weight means number average molecular weight (Mn).
  • variable parameters i.e. the molecular weight of the applied high molecular weight elastomers, and chewing gum ingredients has been kept low in order to highlight the actual difference between the chewing gums made on a conventional basis and chewing gum made on the basis of biodegradable polymers.
  • gumbases 103 and 104 have been made by means of the same process, but the conventional high molecular weight elastomer has now been exchanged with a biodegradable substitute having almost the same molecular weight.
  • gumbase 105 has the molecular weight of the biodegradable high molecular weight elastomer has been further increased.
  • a resin sample was produced using a cylindrical glass, jacketed 10 L pilot reactor equipped with glass stir shaft and Teflon stir blades and bottom outlet. Heating of the reactor contents was accomplished by circulation of silicone oil, thermostated to 130° C., through the outer jacket. D,L-lactide (4.877 kg, 33.84 mol) was charged to the reactor and melted by heating to 140° C. for 6 h.
  • a 515 g LMWE sample was synthesized within a dry N 2 glove box, as follows. Into a 500 mL resin kettle equipped with overhead mechanical stirrer, 0.73 g 1,2-propane diol (3.3 mL of a 22.0% (w/v) solution in methylene chloride), and 0.152 g Sn(Oct) 2 (3.56 ml of a 4.27% (w/v) solution in methylene chloride) were charged under dry N 2 gas purge. The methylene chloride was allowed to evaporate under the N 2 purge for 15 min. Then c-caprolactone (300 g, 2.63 mol) and ⁇ -valerolactone (215 gm. 2.15 mol) were added.
  • the resin kettle was submerged in a 130° C. constant temperature oil bath and stirred for 14 h. Subsequently the kettle was removed from the oil bath and allowed to coos at room temperature. The solid, elastic product was removed in small pieces using a knife, and placed into a plastic container.
  • a HMWE sample according to the invention was synthesized in a dry N 2 glove box, as follows. Into a 500 mL resin kettle equipped with overhead mechanical stirrer was charged 0.037 g Sn(Oct) 2 (3.4 ml of a 1.10% (w/v) solution in methylene chloride) under dry N 2 gas purge. The methylene chloride was allowed to evaporate under the N 2 purge for 15 min. Then, pentaerythritol (0.210 g, 1.54 ⁇ 10-3 mol), ⁇ -caprolactone (79.0 g, 0.692 mol), TMC (8.0 g, 0.078 mol) and ⁇ -valerolactone (38.0 g, 0.380 mol) were added.
  • the resin kettle was submerged in a 130° C. constant temperature oil bath and stirred for 14 h. Subsequently the kettle was removed from the oil bath and allowed to cool at room temperature. The solid, elastic product was removed in small pieces using a knife, and placed into a plastic container.
  • HMWE sample was synthesized in a dry N 2 glove box, as follows. Into a 500 mL resin kettle equipped with overhead mechanical stirrer was charged 0.037 g Sn(Oct) 2 (2.4 ml of a 1.54% (w/v) solution in methylene chloride) under dry N 2 gas purge. The methylene chloride was allowed to evaporate under the N 2 purge for 15 min. Then, pentaerythritol (0.068 g, 4.99 ⁇ 100 4 mol), ⁇ -caprolactone (68.0 g, 0.596 mol), TMC (7.0 g, 0.069 mol), and ⁇ -valerolactone (33.0 g, 0.33 mol) were added.
  • the resin kettle was then submerged in a 130° C. constant-temperature oil bath and stirred for about 2-2.5 h, at which time the mass solidified and could no longer be stirred.
  • the reacting mass was then maintained at 130° C. for an additional 11.5-12 h for a total reaction time of 14 h. Subsequently the kettle was removed from the oil bath and allowed to cool to room temperature. The solid, elastic product was removed in small pieces using a knife, and placed into a plastic container.
  • a 219 g HMWE sample was synthesized as follows in a dry N 2 glove box.
  • Into a 500 mL resin kettle, equipped with overhead mechanical stirrer was charged Stannous ethoxide (0.077 g, 3.69 ⁇ 10 4 mol), c-caprolactone (137 g, 1.2 mol), and TMC (82 g, 0.804 mol) were added.
  • the resin kettle was then submerged in a 130° C. constant-temperature oil bath and stirred for 14 h. Subsequently the kettle was removed from the oil bath and allowed to cool to room temperature. The solid, elastic product was removed in small pieces using a knife, and placed into a plastic container.
  • the gumbases are prepared as follows:
  • HMWE elastomer is added to a mixing kettle provided with mixing means like e.g. horizontally placed Z-shaped arms.
  • the kettle had been preheated for 15 minutes to a temperature of about 60-80° C.
  • the rubber is broken into small pieces and softened with mechanical action on the kettle.
  • the resin is slowly added to the elastomer until the mixture becomes homogeneous.
  • the remaining resin is then added to the kettle and mixed for 10-20 minutes.
  • the LMWE elastomer is added and mixed for 20-40 minutes until the whole mixture becomes homogeneous.
  • the mixture is then discharged into the pan and allowed to cool to room temperature from the discharged temperature of 60-80° C., or the gumbase mixture is used directly for chewing gum by adding all chewing gum components in an appropriate order under continuous mixing.
  • the gum bases used in the above chewing gum formulations are relatively hard and the chewing gum system needs additional softening in order to get an acceptable texture.
  • the two standard formulation 1001 and 1002 containing HAVE elastomers with Mn of 73,000 and 117,000 showed improved texture with 3% lecithin.
  • the same gumbase ( 103 ) was used in a chewing gum formulation ( 1004 ) where the softening system comprises 1% lecithin and 0.3% fat, this formulation was also too soft.
  • biodegradable gumbases appears to be less resistant to softeners and emulsifiers.
  • Chewing gum formulation 1005 and 1006 was prepared with a new biodegradable gumbase ( 104 ) containing a polymer with a higher Mn of 114,000 (EXAMPLE 4). When adding 3% lecithin or 4% fat the chewing gum has a pleasant and acceptable texture compared to conventional chewing gum formulations.
  • Chewing gum formulation 1007 was made with a biodegradable gumbase 105 , where a polymer with Mn of 350,000 was used (EXAMPLE 5). When adding 3% lecithin the texture is harder but acceptable.
  • an increase of molecular weight results in an increased polymer resistance to chewing gum ingredients such as for instance softeners and fat.
  • 1001 and 1002 are two standard formulations containing elastomers with Mn of 73,000 and 117,000.
  • 1003 is a 100% biodegradable formulation containing elastomer polymer Mn of 65,000 and 1005 is a 100% biodegradable formulation containing elastomer polymer with Mn of 114,000.
  • the gum centres were chewed in a chewing machine (CF Jansson).
  • the chewing frequency was set to 1 Hz
  • a pH buffer was used as saliva and the temperature was set at 37° C.
  • the chewing time was set to 30 seconds.
  • the chewed cud was measured on a rheometer, type AR1000 from TA Instruments.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Nutrition Science (AREA)
  • Molecular Biology (AREA)
  • Confectionery (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

A chewing gum including at least one biodegradable polymer, wherein the molecular weight of the polymer is at least 105,000 g/mol (Mn). According to the invention, it has moreover been realized that various problems associated with the prior art may be effectively dealt with by increasing the molecular weight of at least one of the biodegradable polymers in the chewing gum when compared to conventional chewing gum polymers and thereby increasing the robustness of the chewing gum with respect to softeners, emulsifiers and e.g. flavor.

Description

    FIELD OF THE INVENTION
  • The present invention relates to biodegradable chewing gum.
  • BACKGROUND OF THE INVENTION
  • U.S. Pat. No. 5,672,367 discloses a chewing gum made on the basis of a biodegradable polymer having polymeric properties, i.e. a polymer. A significant advantage, as explained in the patent, is that the resulting chewing gum may be degraded when disposed in the nature or e.g. on streets as a result of normal environmental influence. The disclosed chewing gum is claimed as having a structure and chewing characteristics comparable to those of chewing gum based on conventional, non-degradable polymers. It has moreover been realized, that the exchange of polymers provides a reduced tackness.
  • U.S. Pat. No. 6,153,231 discloses a chewing gum comprising a biodegradable polymer and where the polymer comprises a poly(lactic acid-dimer fatty acid oxazoline) copolymers or a poly(lactic acid-diol-urethane) copolymer.
  • A problem of the above disclosed chewing gums is that the biodegradable polymers as such does not simply replace the polymer or polymers of conventional chewing gum. It has been realized that the simple polymer substitution results in an overall chewing gum having different characteristics than conventional chewing gum. This problem indicates that the substituted polymer reacts differently with the remaining chewing ingredients than the biodegradable polymers thereby rendering conventional chewing gum formulations more or less useless.
  • It is an object of the invention to provide a biodegradable chewing gum capable of incorporating at least certain important chewing gum ingredients.
  • SUMMARY OF THE INVENTION
  • The invention relates to chewing gum comprising at least one biodegradable polymer, wherein the molecular weight of said at least one polymer is at least 105,000 g/mol (Mn).
  • According to the invention, it has been realized that chewing gums made on the basis of biodegradable polymers are somewhat vulnerable to different conventional chewing gum additives or components. Most critically, it has been realized that softeners, which are highly needed when obtaining the desired chewing gum texture, tend to dissolve the chewing gums even when applied in small amounts.
  • According to the invention, it has moreover been realized that this problem may be effectively dealt with by increasing of the molecular weight of at least one of the biodegradable polymers in the chewing gum when compared to conventional chewing gum polymers and thereby increasing the robustness of the chewing gum with respect to softeners, emulsifiers and e.g. flavor.
  • According to the invention, it has moreover been realized that an increasing of the molecular weight of at least one of the biodegradable polymers and thereby an increasing of the rheological stiffness (G′) may in fact be more than compensated by addition of softeners.
  • In other words, according to the invention an improved texture of a biodegradable polymer containing chewing gum may in fact surprisingly be obtained by an initial worsening of the rheological properties of the biodegradable polymer and finally be more than compensated by the addition of suitable softeners.
  • Due to the hydrophilic nature of biodedegradable polymers, the polymers tends to swallow water, e.g. from mouth induced saliva. Thereby, the intermolecular forces between the neighboring molecular chains will decrease and the chewing gum structure will weaken.
  • According to the invention, a higher resistance to the decreasing of intermolecular forces has been obtained partly due to the fact that the resulting intermolecular forces are increased between the polymer chain and moreover due to the fact that the increasing of the size of the molecular chains results in increased entanglement between the polymer chains of neighboring polymers.
  • According to the invention, it has moreover been realized that an improved long-term release of chewing gum ingredients may be obtained, with increased molecular weight of the applied biodegradable polymer.
  • In an embodiment of the invention the molecular weight of said at least one biodegradable polymer is at least 150,000 g/mol (Mn).
  • In an embodiment of the invention the molecular weight of said at least one biodegradable polymer is within the range of 105,000 g/mol (Mn) to 1,000,000 g/mol (Mn).
  • According to the invention, it has been concluded that a sufficient amount of softeners may be added to a biodegradable polymer having a molecular weight of Mn=113,900 g/mol.
  • In an embodiment of the invention the molecular weight of said at least one biodegradable polymer is within the range of 105,000 g/mol (Mn) to 500,000 g/mol (Mn).
  • In an embodiment of the invention the molecular weight of said at least one biodegradable polymer is within the range of 105,000 g/mol (Mn) to 350,000 g/mol (Mn).
  • In an embodiment of the invention the molecular weight of said at least one biodegradable polymer is within the range of 105,000 g/mol (Mn) to 250,000 g/mol (Mn).
  • In an embodiment of the invention the molecular weight of said at least one biodegradable polymer is less than 2,000,000 g/mol (Mn).
  • In an embodiment of the invention the polydispersity of said at least one biodegradable polymer is within the range of 1 to 5.
  • In an embodiment of the invention the polydispersity of said at least one biodegradable polymer is within the range of 1 to 2.5 (2½).
  • In an embodiment of the invention the at least one biodegradable polymer comprises at least 25% of the chewing gum polymers, preferably at least 50%.
  • In an embodiment of the invention all the biodegradable polymers comprised in the chewing gum comprise at least 25%, preferably at least 50% of the chewing gum polymers.
  • In an embodiment of the invention all the biodegradable polymers comprised in the chewing gum comprise at least 80%, preferably at least 90% of the chewing gum polymers.
  • In an embodiment of the invention the chewing gum is substantially free of non-biodegradable polymers
  • In an embodiment of the invention said chewing gum ingredients comprise flavoring agents.
  • In an embodiment of the invention said flavoring agents comprise natural and synthetic flavourings in the form of natural vegetable components, essential oils, essences, extracts, powders, including acids and other substances capable of affecting the taste profile
  • In an embodiment of the invention said chewing gum comprise flavor in an amount of 0.01 to about 30 wt %, said percentage being based on the total weight of the chewing gum
  • In an embodiment of the invention said chewing gum comprising flavor in an amount of 0.2 to about 4 wt %, said percentage being based on the total weight of the chewing gum
  • In an embodiment of the invention said flavor comprises water soluble ingredients.
  • In an embodiment of the invention said water soluble flavor comprises acids.
  • According to the invention, a surprising initial release of acids has been obtained.
  • In an embodiment of the invention said flavor comprises water insoluble ingredients.
  • In an embodiment of the invention, said chewing gum ingredients comprise sweeteners.
  • In an embodiment of the invention said sweetener comprises bulk sweeteners In an embodiment of the invention the chewing gum comprises bulk sweeteners in an amount of about 5 to about 95% by weight of the chewing gum, more typically about 20 to about 80% by weight of the chewing gum.
  • In an embodiment of the invention the sweetener comprises high intensity sweeteners
  • In an embodiment of the invention the high intensity sweeteners comprise sucralose, aspartame, salts of acesulfame, alitame, saccharin and its salts, cyclamnic acid and its salts, glycyrrhizin, dihydrochalcones, thaumatin, monellin, sterioside, alone or in combination
  • In an embodiment of the invention wherein the chewing gum comprises high intensity sweeteners in an amount of about 0 to about 1% by weight of the chewing gum, more typically about 0.05 to about 0.5% by weight of the chewing gum.
  • In an embodiment of the invention, the chewing gum comprises at least one softener.
  • In an embodiment of the invention, the at least one softener comprises tallow, hydrogenated tallow, hydrogenated and partially hydrogenated vegetable oils, cocoa butter, glycerol monostearate, glycerol triacetate, lecithin, mono-, di- and triglycerides, acetylated monoglycerides, fatty acids, such as stearic, palmitic, oleic and linoleic acids mixtures thereof.
  • In an embodiment of the invention the chewing gum comprises softeners in an amount of about 0 to about 18% by weight of the chewing gum, more typically about 0 to about 12% by weight of the chewing gum.
  • In an embodiment of the invention, the chewing gum ingredients comprise active ingredients.
  • In an embodiment of the invention, said active ingredients are selected from the group of: Acetaminophen, Acetylsalicylic acid, Buprenorphine, Bromhexin, Celcoxib, Codeine, Diphenhydramin, Diclofenac, Etoricoxib, Ibuprofen, Indometacin, Ketoprofen, Lumiracoxib, Morphine, Naproxen, Oxycodon, Parecoxib, Piroxicam, Rofecoxib, Tenoxicam, Tramadol, Valdecoxib, Calciumcarbonat, Magaldrate, Disulfuram, Bupropion, Nicotine, Azithromycin, Clarithromycin, Clotrimazole, Erythromycin, Tetracycline, Granisetron, Ondansetron, Prometazin, Tropisetron, Brompheniramine, Ceterizin, leco-Ceterizin, Chlorcyclizine, Chlorpheniramin, Chlorpheniramin, Difenhydramine, Doxylamine, Fenofenadin, Guaifenesin, Loratidin, des-Loratidin, Phenyltoloxamine, Promethazin, Pyridamine, Terfenadin, Troxerutin, Methyldopa, Methylphenidate, Benzalcon. Chloride, Benzeth. Chloride, Cetylpyrid. Chloride, Chlorhexidine, Ecabet-sodiun, Haloperidol, Allopurinol, Colchinine, Theophylline, Propanolol, Prednisolone, Prednisone, Fluoride, Urea, Miconazole, Actot, Glibenclamide, Glipizide, Metformin, Miglitol, Repaglinide, Rosiglitazone, Apomorfin, Clalis, Sildenafil, Vardenafil, Diphenoxylate, Simethicone, Cimetidine, Famotidine, Ranitidine, Ratinidine, cetrizin, Loratadine, Aspirin, Benzocaine, Dextrometorphan, Ephedrine, Phenylpropanolamine, Pseudoephedrine, Cisapride, Domperidone, Metoclopramide, Acyclovir, Dioctylsulfosucc., Phenolphtalein, Almotriptan, Eletriptan, Ergotamine, Migea, Naratriptan, Rizatriptan, Sumatriptan, Zolmitriptan, Aluminium salts, Calcium salts, Ferro salts, Silver salts, Zinc-salte, Amphotericin B, Chlorhexidine, Miconazole, Triamcinolonacetonid, Melatonine, Phenobarbitol, Caffeine, Benzodiazepiner, Hydroxyzine, Meprobamate, Phenothiazine, Buclizine, Brometazine, Cinnarizine, Cyclizine, Difenhydramine, Dimenhydrinate, Buflomedil, Amphetamine, Caffeine, Ephedrine, Orlistat, Phenylephedrine, Phenylpropanolamin, Pseudoephedrine, Sibutramin, Ketoconazole, Nitroglycerin, Nystatin, Progesterone, Testosterone, Vitamin B12, Vitamin C, Vitamin A, Vitamin D, Vitamin E, Pilocarpin, Aluminiumaminoacetat, Cimetidine, Esomeprazole, Famotidine, Lansoprazole, Magnesiumoxide, Nizatide and/or Ratinidine or derivates and mixtures thereof.
  • In an embodiment of the invention, the chewing gum is substantially free of non-biodegradable polymers
  • In an embodiment of the invention the at least two or more cyclic esters are selected from the groups of glycolides, lactides, lactones, cyclic carbonates or mixtures thereof.
  • In an embodiment of the invention the lactone monomers are chosen from the group of ε-caprolactone, δ-valerolactone, γ-butyrolactone, and β-propiolactone. It also includes ε-caprolactones, δ-valerolactones, γ-butyrolactones, or β-propiolactones that have been substituted with one or more alkyl or aryl substituents at any non-carbonyl carbon atoms along the ring, including compounds in which two substituents are contained on the same carbon atom.
  • In an embodiment of the invention the carbonate monomer is selected from the group of trimethylene carbonate, 5-alkyl-1,3-dioxan-2-one, 5,5-dialkyl-1,3-dioxan-2-one, or 5-alkyl-5-alkyloxycarbonyl-1,3-dioxan-2-one, ethylene carbonate, 3-ethyl-3-hydroxymethyl, propylene carbonate, trimethylolpropane monocarbonate, 4,6-dimethyl-1,3-propylene carbonate, 2,2-dimethyl trimethylene carbonate, and 1,3-dioxepan-2-one and mixtures thereof.
  • In an embodiment of the invention the cyclic ester polymers and their copolymers resulting from the polymerization of cyclic ester monomers include, but are not limited to: poly (L-lactide); poly (D-lactide); poly (D,L-lactide); poly (mesolactide); poly (glycolide); poly (trimethylenecarbonate); poly (epsilon-caprolactone); poly (L-lactide-co-D,L-lactide); poly (L-lactide-co-meso-lactide); poly (L-lactide-co-glycolide); poly (L-lactide-co-trimethylenecarbonate); poly (L-lactide-co-epsilon-caprolactone); poly (D,L-lactide-co-meso-lactide); poly (D, L lactide-co-glycolide); poly (D,L-lactide-co-trimethylenecarbonate); poly (D,L-lactide-co-epsilon-caprolactone); poly (meso-lactide-co-glycolide); poly (meso-lactide-co-trimethylenecarbonate); poly (meso-lactide-co-epsilon-caprolactone); poly (glycolide-cotrimethylenecarbonate); poly (glycolide-co-epsilon-caprolactone).
  • In an embodiment of the invention the chewing gum comprises filler.
  • A chewing gum base formulation may, if desired, include one or more fillers/texturisers including as examples, magnesium and calcium carbonate, sodium sulphate, ground limestone, silicate compounds such as magnesium and aluminium silicate, kaolin and clay, aluminium oxide, silicium oxide, talc, titanium oxide, mono-, di- and tri-calcium phosphates, cellulose polymers, such as wood, and combinations thereof.
  • In an embodiment of the invention the chewing gum comprises filler in an amount of about 0 to about 50% by weight of the chewing gum, more typically about 10 to about 40% by weight of the chewing gum.
  • In an embodiment of the invention the chewing gum comprises at least one coloring agent.
  • According to an embodiment of the invention, the chewing gum may comprise color agents and whiteners such as FD&C-type dyes and lakes, fruit and vegetable extracts, titanium dioxide and combinations thereof. Further useful chewing gum base components include antioxidants, e.g. butylated hydroxytoluene (BHT), butyl hydroxyanisol (BHA), propylgallate and tocopherols, and preservatives.
  • In an embodiment of the invention the chewing gum is coated with an outer coating.
  • In an embodiment of the invention the outer coating is a hard coating.
  • In an embodiment of the invention the hard coating is a coating selected from the group consisting of a sugar coating and a sugarless coating and a combination thereof.
  • In an embodiment of the invention the hard coating comprises 50 to 100% by weight of a polyol selected from the group consisting of sorbitol, maltitol, mannitol, xylitol, erythritol, lactitol and isomalt.
  • In an embodiment of the invention the outer coating is an edible film comprising at least one component selected from the group consisting of an edible film-forming agent and a wax.
  • In an embodiment of the invention the film-forming agent is selected from the group consisting of a cellulose derivative, a modified starch, a dextrin, gelatine, shellac, gum arabic, zein, a vegetable gum, a synthetic polymer and any combination thereof.
  • In an embodiment of the invention the outer coating comprises at least one additive component selected from the group consisting of a binding agent, a moisture absorbing component, a film forming agent, a dispersing agent, an antisticking component, a bulking agent, a flavouring agent, a colouring agent, a pharmaceutically or cosmetically active component, a lipid component, a wax component, a sugar, an acid and an agent capable of accelerating the after-chewing degradation of the degradable polymer.
  • In an embodiment of the invention the outer coating is a soft coating.
  • In an embodiment of the invention the soft coating comprises a sugar free coating agent.
  • In an embodiment of the invention the chewing gum comprises conventional chewing gum polymers or resins.
  • In an embodiment of the invention the at least one biodegradable polymer comprises at least 5% of the chewing gum polymers.
  • In an embodiment of the invention all the biodegradable polymers comprised in the chewing gum comprises at least 25%, preferably at least 50% of the chewing gum polymers.
  • In an embodiment of the invention the biodegradable polymers comprised in the chewing gum comprises at least 80%, preferably at least 90% of the chewing gum polymers.
  • In an embodiment of the invention the chewing gum comprises said at least one biodegradable polyester copolymer forming a plasticizer of the chewing gum and at least one non-biodegradable conventional elastomer.
  • According to the invention, a biodegradable polymer according to the invention may form a substitute of a conventional natural or synthetic resin.
  • In an embodiment of the invention the chewing gum comprises the at least one biodegradable polyester copolymer forming an elastomer of the chewing gum and at least one non-biodegradable conventional natural or synthetic resin.
  • According to the invention, a biodegradable polymer according to the invention may form a substitute of a conventional low or high molecular weight elastomer.
  • In an embodiment of the invention said chewing gum comprises at least one biodegradable elastomer in the amount of about 0.5 to about 70% wt of the chewing gum,
  • at least one biodegradable plasticizer in the amount of about 0.5 to about 70% wt of the chewing gum and
  • at least one chewing gum ingredient chosen from the groups of softeners, sweeteners, flavoring agents, active ingredients and fillers in the amount of about 2 to about 80% wt of the chewing gum.
  • In an embodiment of the invention edible polyesters may be applied as a degradable chewing gum polymer.
  • Edible polyesters are obtained by esterification of at least one alcohol and one acid.
  • The edible polyester is produced by condensation polymerization reaction of at least one alcohol chosen from the group of trihydroxyl alcohol and dihydroxyl alcohol, and at least one acid chosen from the group consisting of dicarboxylic acid and tricarboxylic acid.
  • It is possible to use edible or food grade materials. Because the starting acids and alcohols are food grade materials the resultant polymers is edible.
      • Alcohols: Glycerol, propylene glycol, 1,3 butylene diol
      • Acids: Citric acid, fumaric acid, adipic add, malic acid, succinic acid suberic acid, sebacic acid, dodecanedioic add, glucaric acid, glutamic add, glutaric, azelaic add, tartaric acid
  • Edible polyesters can replace both elastomers and elastomer plasticizers and form 1-80% of the gum base.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention will now be described with reference to the drawings of which
  • FIG. 1 illustrates G′ (storage modulus) versus oscillation torque for chewing gums 1002, 1003 and 1005, all containing 3% lecithin and where
  • FIG. 2 illustrates tan(delta) versus oscillation torque for chewing gums 1002, 1003 and 1005, all containing 3% lecithin.
  • DETAILED DESCRIPTION OF THE INVENTION
  • In the present context the terms environmentally or biologically degradable polymer compounds refers to chewing gum-base components which, after dumping the chewing gum, is capable of undergoing a physical, chemical and/or biological degradation whereby the dumped chewing gum waste becomes more readily removable from the site of dumping or is eventually disintegrated to lumps or particles which are no longer recognizable as being chewing gum remnants. The degradation or disintegration of such degradable polymers can be effected or induced by physical factors such as temperature, light, moisture, by chemical factors such as hydrolysis caused by a change in pH or by the action of enzymes capable of degrading the polymers. In other useful embodiments all of the polymer components of the gum base are environmentally degradable or biodegradable polymers.
  • Preferably, the ultimate degradation products are carbon dioxide, methane and water.
  • According to a preferred definition of biodegradability according to the invention biodegradability is a property of certain organic molecules whereby, when exposed to the natural environment or placed within a living organism, they react through an enzymatic or microbial process, often in combination with a pure chemical process such as hydrolysis, to form simpler compounds, and ultimately, carbon dioxide, nitrogen oxides, and water.
  • Accordingly, suitable examples of additional environmentally or biologically degradable chewing gum base polymers which can be applied in accordance with the gum base of the present invention include degradable polyesters, polycarbonates, polyester amides, polypeptides, homopolymers of amino acids such as polylysine, and proteins including derivatives hereof such as e.g. protein hydrolysates including a zein hydrolysate. Particularly useful compounds of this type include polyester polymers obtained by the polymerization of one or more cyclic esters such as lactide, glycolide, trimethylene carbonate, 5-valerolactone, 0-propiolactone and -caprolactone. Such degradable polymers may be homopolymers or copolymers, including block-polymers.
  • Unless otherwise indicated, as used herein, the term “molecular weight” means number average molecular weight (Mn).
  • In the following examples, two different conventional chewing gumbases are made. The main difference between the two gumbases 101 and 102 of EXAMPLE 6 is the difference in molecular weight of the high molecular weight elastomer, i.e. the butylrubber.
  • The following examples are provided for the purpose of demonstrating the different properties of conventional and non-biodegradable elastomers when incorporated in a gumbase and a chewing gum formulation. The variable parameters, i.e. the molecular weight of the applied high molecular weight elastomers, and chewing gum ingredients has been kept low in order to highlight the actual difference between the chewing gums made on a conventional basis and chewing gum made on the basis of biodegradable polymers.
  • In EXAMPLE 6, gumbases 103 and 104 have been made by means of the same process, but the conventional high molecular weight elastomer has now been exchanged with a biodegradable substitute having almost the same molecular weight.
  • In the EXAMPLE 6, gumbase 105 has the molecular weight of the biodegradable high molecular weight elastomer has been further increased.
  • Example 1 Preparation of Resin
  • A resin sample was produced using a cylindrical glass, jacketed 10 L pilot reactor equipped with glass stir shaft and Teflon stir blades and bottom outlet. Heating of the reactor contents was accomplished by circulation of silicone oil, thermostated to 130° C., through the outer jacket. D,L-lactide (4.877 kg, 33.84 mol) was charged to the reactor and melted by heating to 140° C. for 6 h. After the D,L-lactide was completely molten, the temperature was reduced to 130° C., and stannous octoate (1.79 g, 4.42×10−3 mol), 1,2-propylene glycol (79.87 g, 1.050 mol), and ε-caprolactone (290.76 g, 2.547 mol) were charged to the reactor. After the mixture became homogeneous, stirring was continued for 24 h at 130° C. At the end of this time, the bottom outlet was opened, and molten polymer was allowed to drain into a Teflon-lined paint can.
  • Characterization of the product indicated Mn=5,700 g/mol and Mw=7,100 g/mol (gel permeation chromatography with online MALLS detector) and Tg=30.7° C. (DSC, heating rate 10° C./min).
  • Example 2 Preparation of LMWE Elastomer
  • A 515 g LMWE sample was synthesized within a dry N2 glove box, as follows. Into a 500 mL resin kettle equipped with overhead mechanical stirrer, 0.73 g 1,2-propane diol (3.3 mL of a 22.0% (w/v) solution in methylene chloride), and 0.152 g Sn(Oct)2 (3.56 ml of a 4.27% (w/v) solution in methylene chloride) were charged under dry N2 gas purge. The methylene chloride was allowed to evaporate under the N2 purge for 15 min. Then c-caprolactone (300 g, 2.63 mol) and δ-valerolactone (215 gm. 2.15 mol) were added. The resin kettle was submerged in a 130° C. constant temperature oil bath and stirred for 14 h. Subsequently the kettle was removed from the oil bath and allowed to coos at room temperature. The solid, elastic product was removed in small pieces using a knife, and placed into a plastic container.
  • Characterization of the product indicated Mn=59,900 g/mol and Mw=74,200 g/mol (gel permeation chromatography with online MALLS detector) and Tg=−70° C. (DSC, heating rate 10° C./min).
  • Example 3 Preparation of HMVE
  • A HMWE sample according to the invention was synthesized in a dry N2 glove box, as follows. Into a 500 mL resin kettle equipped with overhead mechanical stirrer was charged 0.037 g Sn(Oct)2 (3.4 ml of a 1.10% (w/v) solution in methylene chloride) under dry N2 gas purge. The methylene chloride was allowed to evaporate under the N2 purge for 15 min. Then, pentaerythritol (0.210 g, 1.54×10-3 mol), ε-caprolactone (79.0 g, 0.692 mol), TMC (8.0 g, 0.078 mol) and δ-valerolactone (38.0 g, 0.380 mol) were added. The resin kettle was submerged in a 130° C. constant temperature oil bath and stirred for 14 h. Subsequently the kettle was removed from the oil bath and allowed to cool at room temperature. The solid, elastic product was removed in small pieces using a knife, and placed into a plastic container.
  • Characterization of the product indicated Mn=64,600 g/mol and M.=165,200 g/mol (gel permeation chromatography with online MALLS detector) and Tg=−66° C. (DSC, heating rate 10° C./min).
  • Example 4 Preparation of High HMWE
  • A HMWE sample was synthesized in a dry N2 glove box, as follows. Into a 500 mL resin kettle equipped with overhead mechanical stirrer was charged 0.037 g Sn(Oct)2 (2.4 ml of a 1.54% (w/v) solution in methylene chloride) under dry N2 gas purge. The methylene chloride was allowed to evaporate under the N2 purge for 15 min. Then, pentaerythritol (0.068 g, 4.99×1004 mol), ε-caprolactone (68.0 g, 0.596 mol), TMC (7.0 g, 0.069 mol), and δ-valerolactone (33.0 g, 0.33 mol) were added. The resin kettle was then submerged in a 130° C. constant-temperature oil bath and stirred for about 2-2.5 h, at which time the mass solidified and could no longer be stirred. The reacting mass was then maintained at 130° C. for an additional 11.5-12 h for a total reaction time of 14 h. Subsequently the kettle was removed from the oil bath and allowed to cool to room temperature. The solid, elastic product was removed in small pieces using a knife, and placed into a plastic container.
  • Characterization of the product indicated Mn=113,900 g/mol and Mw=369,950 g/mol (gel permeation chromatography with online MALLS detector).
  • Example 5 Preparation of a High HMWE
  • A 219 g HMWE sample was synthesized as follows in a dry N2 glove box. Into a 500 mL resin kettle, equipped with overhead mechanical stirrer was charged Stannous ethoxide (0.077 g, 3.69×10 4 mol), c-caprolactone (137 g, 1.2 mol), and TMC (82 g, 0.804 mol) were added. The resin kettle was then submerged in a 130° C. constant-temperature oil bath and stirred for 14 h. Subsequently the kettle was removed from the oil bath and allowed to cool to room temperature. The solid, elastic product was removed in small pieces using a knife, and placed into a plastic container.
  • Characterization of the product indicated Mn=254,900 g/mol (gel permeation chromatography with online MALLS detector).
  • Example 6 Preparation of Gumbases
  • All the gumbases are prepared with following basic formulation:
  • Percent by
    Ingredients weight
    Elastomer HMWE 20
    Elastomer LMWE 40
    Resin 40
  • TABLE 1
    Gumbase Preparation
    Elastomer Elastomer
    No Type HMWE LMWE Resin
    101 Standard Poly- Poluisobutylene Polyvinylacetate
    isobutylene Mn = 30,000 Mn = 5,000
    Mn = 73,000
    102 Standard Butylrubber Polyisobutylene Polyvinylacetate
    Mn = 117,000 Mn = 30,000 Mn = 5,000
    103 Bio- Elastomer Elastomer Resin polymer
    degradable polymer polymer from example 1
    from example 3 from example 2
    104 Bio- Elastomer Elastomer Resin polymer
    degradable polymer polymer from example 1
    from example 4 from example 2
    105 Bio- Elastomer Elastomer Resin polymer
    degradable polymer polymer from example 1
    from example 5 from example 2
  • The gumbases are prepared as follows:
  • HMWE elastomer is added to a mixing kettle provided with mixing means like e.g. horizontally placed Z-shaped arms. The kettle had been preheated for 15 minutes to a temperature of about 60-80° C. The rubber is broken into small pieces and softened with mechanical action on the kettle.
  • The resin is slowly added to the elastomer until the mixture becomes homogeneous.
  • The remaining resin is then added to the kettle and mixed for 10-20 minutes. The LMWE elastomer is added and mixed for 20-40 minutes until the whole mixture becomes homogeneous.
  • The mixture is then discharged into the pan and allowed to cool to room temperature from the discharged temperature of 60-80° C., or the gumbase mixture is used directly for chewing gum by adding all chewing gum components in an appropriate order under continuous mixing.
  • Example 7 Preparation of Chewing Gum
  • The gumbases listed in table 1 were mixed into a final chewing gum during addition of different chewing gum ingredients as illustrated in the table below.
  • TABLE 2
    Preparation of chewing gum
    1001 1002 1003 1004 1005 1006 1007
    Parts (weight) % % % % % % %
    Gumbase 40% 40% 40% 40% 40% 40% 40%
    of of of of of of of
    101 102 103 103 104 104 105
    Sorbitol powder 45.6 45.6 45.6 47.3 45.6 44.6 45.6
    Lycasin 3 3 3 3 3 3 3
    Peppermint oil 1.5 1.5 1.5 1.5 1.5 1.5 1.5
    Menthol (crystal) 0.5 0.5 0.5 0.5 0.5 0.5 0.5
    Aspartame 0.2 0.2 0.2 0.2 0.2 0.2 0.2
    Acesulfame 0.2 0.2 0.2 0.2 0.2 0.2 0.2
    Xylitol 6 6 6 6 6 6 6
    Fat 0 0 0 0.3 0 4 0
    Lecithin 3 3 3 1.0 3 0 3
  • The gum bases used in the above chewing gum formulations are relatively hard and the chewing gum system needs additional softening in order to get an acceptable texture.
  • The two standard formulation 1001 and 1002, containing HAVE elastomers with Mn of 73,000 and 117,000 showed improved texture with 3% lecithin. A biodegradable gum base (103) including a polymer with Mn of 65,000 (EXAMPLE 3) was tested in chewing gum with 3% lecithin (1003), the chewing gum became very soft, and it almost dissolved while chewing. The same gumbase (103) was used in a chewing gum formulation (1004) where the softening system comprises 1% lecithin and 0.3% fat, this formulation was also too soft.
  • It can therefore be concluded that the biodegradable gumbases appears to be less resistant to softeners and emulsifiers.
  • Chewing gum formulation 1005 and 1006 was prepared with a new biodegradable gumbase (104) containing a polymer with a higher Mn of 114,000 (EXAMPLE 4). When adding 3% lecithin or 4% fat the chewing gum has a pleasant and acceptable texture compared to conventional chewing gum formulations.
  • Chewing gum formulation 1007 was made with a biodegradable gumbase 105, where a polymer with Mn of 350,000 was used (EXAMPLE 5). When adding 3% lecithin the texture is harder but acceptable.
  • Hence, an increase of molecular weight results in an increased polymer resistance to chewing gum ingredients such as for instance softeners and fat.
  • Example 8
  • An experiment was set up in order to test different chewing gum formulations containing 3% lecithin.
  • 1001 and 1002 are two standard formulations containing elastomers with Mn of 73,000 and 117,000.
  • 1003 is a 100% biodegradable formulation containing elastomer polymer Mn of 65,000 and 1005 is a 100% biodegradable formulation containing elastomer polymer with Mn of 114,000.
  • The gum centres were chewed in a chewing machine (CF Jansson). The chewing frequency was set to 1 Hz, a pH buffer was used as saliva and the temperature was set at 37° C. The chewing time was set to 30 seconds. After chewing, the chewed cud was measured on a rheometer, type AR1000 from TA Instruments. The oscillation-measurement is performed at a stress within the linear viscoelastic region and a temperature of 37° C. with a parallel plate system (d=2.0 cm, hatched). G′, and tan delta vs. shear rate.
  • The results are summarized in FIG. 1 and FIG. 2, and as it appears, the biodegradable formulations containing 3% lecithin show different rheological behavior. The low Mn of 65,000 (1003) is very soft and less elastic compared to the formulation with high Mn (1005).
  • This is confirming the sensorial evaluation described in the above EXAMPLE 7.

Claims (20)

What is claimed is:
1. Chewing gum comprising:
at least one biodegradable polymer having a molecular weight within the range of 105,000 g/mol (Mn) to 350,000 g/mol (Mn); and
at least one softener in an amount of less than 12% by weight of the chewing gum;
wherein the chewing gum is free of non-biodegradable polymers.
2. Chewing gum according to claim 1, wherein the molecular weight of said at least one biodegradable polymer is within the range of 150,000 g/mol (Mn) to 350,000 g/mol (Mn).
3. Chewing gum according to claim 1, wherein the molecular weight of said at least one biodegradable polymer is within the range of 105,000 g/mol (Mn) to 250,000 g/mol (Mn).
4. Chewing gum according to claim 1, wherein the polydispersity of said at least one biodegradable polymer is within the range of 1 to 5.
5. Chewing gum according to claim 1, wherein the polydispersity of said at least one biodegradable polymer is within the range of 1 to 2.5.
6. Chewing gum according to claim 1, wherein said chewing gum comprises flavoring agents.
7. Chewing gum according to claim 6, wherein said chewing gum comprises flavoring agents in an amount of 0.2 to about 4 wt %, said percentage being based on the total weight of the chewing gum.
8. Chewing gum according to claim 1, wherein the at least one softener comprises tallow, hydrogenated tallow, hydrogenated and partially hydrogenated vegetable oils, cocoa butter, glycerol monostearate, glycerol triacetate, lecithin, mono-, di- and triglycerides, acetylated monoglycerides, fatty acids, stearic acid, palmitic acid, oleic acid, linoleic acid or mixtures thereof.
9. Chewing gum according to claim 1, wherein said chewing gum comprises active ingredients.
10. Chewing gum according to claim 9, wherein said active ingredients are selected from the group consisting of:
Acetaminophen, Acetylsalicylic acid, Buprenorphine, Bromhexin, Celcoxib, Codeine, Diphenhydramin, Diclofenac, Etoricoxib, Ibuprofen, Indometacin, Ketoprofen, Lumiracoxib, Morphine, Naproxen, Oxycodon, Parecoxib, Piroxicam, Rofecoxib, Tenoxicam, Tramadol, Valdecoxib, Calciumcarbonat, Magaldrate, Disulfuram, Bupropion, Nicotine, Azithromycin, Clarithromycin, Clotrimazole, Erythromycin, Tetracycline, Granisetron, Ondansetron, Prometazin, Tropisetron, Brompheniramine, Ceterizin, leco-Ceterizin, Chlorcyclizine, Chlorpheniramin, Difenhydramine, Doxylamine, Fenofenadin, Guaifenesin, Loratidin, des-Loratidin, Phenyltoloxamine, Promethazin, Pyridamine, Terfenadin, Troxerutin, Methyldopa, Methylphenidate, Benzalcon. Chloride, Benzeth. Chloride, Cetylpyrid. Chloride, Chlorhexidine, Ecabet-sodium, Haloperidol, Allopurinol, Colchinine, Theophylline, Propanolol, Prednisolone, Prednisone, Fluoride, Urea, Miconazole, Actot, Glibenclamide, Glipizide, Metformin, Miglitol, Repaglinide, Rosiglitazone, Apomorfin, Clalis, Sildenafil, Vardenafil, Diphenoxylate, Simethicone, Cimetidine, Famotidine, Ranitidine, Ratinidine, cetrizin, Loratadine, Aspirin, Benzocaine, Dextrometorphan, Ephedrine, Phenylpropanolamine, Pseudoephedrine, Cisapride, Domperidone, Metoclopramide, Acyclovir, Dioctylsulfosucc., Phenolphtalein, Almotriptan, Eletriptan, Ergotamine, Migea, Naratriptan, Rizatriptan, Sumatriptan, Zolmitriptan, Aluminium salts, Calcium salts, Ferro salts, Silver salts, Zinc-salte, Amphotericin B, Chlorhexidine, Miconazole, Triamcinolonacetonid, Melatonine, Phenobarbital, Caffeine, Benzodiazepines, Hydroxyzine, Meprobamate, Phenothiazine, Buclizine, Brometazine, Cinnarizine, Cyclizine, Difenhydramine, Dimenhydrinate, Buflomedil, Amphetamine, Ephedrine, Orlistat, Phenylephedrine, Phenylpropanolamin, Pseudoephedrine, Sibutramin, Ketoconazole, Nitroglycerin, Nystatin, Progesterone, Testosterone, Vitamin B12, Vitamin C, Vitamin A, Vitamin D, Vitamin E, Pilocarpin, Aluminiumaminoacetat, Cimetidine, Esomeprazole, Famotidine, Lansoprazole, Magnesiumoxide, Nizatide and/or Ratinidine or derivates and mixtures thereof.
11. Chewing gum according to claim 1, wherein the at least one biodegradable polymer is obtained by the polymerization of one or more cyclic esters by ring-opening and where at least one of the cyclic esters is selected from the group consisting of glycolides, lactides, lactones, cyclic carbonates and mixtures thereof.
12. Chewing gum according to claim 11, wherein cyclicester polymers and their copolymers resulting from the polymerization of cyclic ester monomers are selected from the group consisting of:
poly(L-lactide); poly(D-lactide); poly(D,L-lactide); poly(mesolactide); poly(glycolide); poly(trimethylenecarbonate); poly(epsilon-caprolactone); poly(L lactide-co-D,L-lactide); poly(L-lactide-co-meso-lactide); poly(L-lactide co-glycolide); poly(L-lactide-co-trimethylenecarbonate); poly(L-lactide co-epsilon-caprolactone); poly(D,L-lactide-co-meso-lactide); poly(D,L-lactide-co-glycolide); poly(D,L-lactide-co-trimethylenecarbonate); poly(D, L-lactide-co-epsilon-caprolactone); poly(mesolactide-co-glycolide); poly(meso-lactide-co-trimethylenecarbonate); poly(meso-lactide-co-epsilon-caprolactone); poly(glycolide-co-trimethylenecarbonate); poly(glycolide-co-epsilon-caprolactone); and mixtures thereof.
13. Chewing gum according to claim 1, where the chewing gum is coated with an outer coating.
14. Chewing gum according to claim 13, wherein the outer coating is a hard coating.
15. Chewing gum according claim 14, wherein the hard coating comprises 50 to 100% by weight of a polyol selected from the group consisting of sorbitol, maltitol, mannitol, xylitol, erythritol, lactitol and isomalt.
16. Chewing gum according to claim 1, wherein said chewing gum comprises
at least one biodegradable elastomer in the amount of about 0.5 to about 70% wt. of the chewing gum,
at least one biodegradable plasticizer in the amount of about 0.5 to about 70% wt. of the chewing gum and
at least one chewing gum ingredient chosen from the group consisting of softeners, sweeteners, flavoring agents, active ingredients and fillers in the amount of about 2 to about 80% wt. of the chewing gum.
17. Method of creating a chewing gum with increased robustness comprising the steps of:
providing at least one biodegradable polymer;
adjusting the molecular weight of the at least one biodegradable polymer to be within the range of 105,000 g/mol (Mn) to 350,000 g/mol (Mn); and
mixing the at least one biodegradable polymer with at least one softener in an amount of less than 12% by weight of the chewing gum.
18. Method of creating a chewing gum with increased robustness according to claim 17, wherein the molecular weight of said biodegradable polymer is adjusted to be within the range of 150,000 g/mol (Mn) to 350,000 g/mol (Mn).
19. Method of creating a chewing gum with increased robustness according to claim 17, whereby the molecular weight of said biodegradable polymer is adjusted to be within the range of 250,000 g/mol (Mn) to 350,000 g/mol (Mn).
20. Method of creating a chewing gum with increased robustness to claim 17, wherein the molecular weight of said at least one biodegradable polymer is adjusted to be within the range of 105,000 g/mol (Mn) to 250,000 g/mol (Mn).
US14/075,897 2002-09-24 2013-11-08 Biodegradable Chewing Gum Comprising At Least One High Molecular Weight Biodegradable Polymer Abandoned US20140065242A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/075,897 US20140065242A1 (en) 2002-09-24 2013-11-08 Biodegradable Chewing Gum Comprising At Least One High Molecular Weight Biodegradable Polymer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/DK2002/000625 WO2004028266A1 (en) 2002-09-24 2002-09-24 Biodegradable chewing gum comprising at least one high molecular weight biodegradable polymer
US52892705A 2005-12-16 2005-12-16
US14/075,897 US20140065242A1 (en) 2002-09-24 2013-11-08 Biodegradable Chewing Gum Comprising At Least One High Molecular Weight Biodegradable Polymer

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US10/528,927 Continuation US8591967B2 (en) 2002-09-24 2002-09-24 Biodegradable chewing gum comprising at least one high molecular weight biodegradable polymer
PCT/DK2002/000625 Continuation WO2004028266A1 (en) 2002-09-24 2002-09-24 Biodegradable chewing gum comprising at least one high molecular weight biodegradable polymer

Publications (1)

Publication Number Publication Date
US20140065242A1 true US20140065242A1 (en) 2014-03-06

Family

ID=32039038

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/528,927 Active 2026-07-09 US8591967B2 (en) 2002-09-24 2002-09-24 Biodegradable chewing gum comprising at least one high molecular weight biodegradable polymer
US14/075,897 Abandoned US20140065242A1 (en) 2002-09-24 2013-11-08 Biodegradable Chewing Gum Comprising At Least One High Molecular Weight Biodegradable Polymer

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/528,927 Active 2026-07-09 US8591967B2 (en) 2002-09-24 2002-09-24 Biodegradable chewing gum comprising at least one high molecular weight biodegradable polymer

Country Status (13)

Country Link
US (2) US8591967B2 (en)
EP (1) EP1542542B2 (en)
JP (1) JP4287817B2 (en)
CN (1) CN1668209A (en)
AT (1) ATE404072T1 (en)
AU (1) AU2002342578B2 (en)
BR (1) BR0215890A (en)
CA (1) CA2500022C (en)
DE (1) DE60228341D1 (en)
DK (1) DK1542542T3 (en)
ES (1) ES2311631T3 (en)
MX (1) MXPA05002964A (en)
WO (1) WO2004028266A1 (en)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4354700B2 (en) 2001-03-23 2009-10-28 ガムリンク エー/エス Coated degradable chewing gum with improved shelf life and process for its preparation
GB0216413D0 (en) * 2002-07-15 2002-08-21 Nestle Sa Tabletted chewing gum sweet
JP2006500041A (en) 2002-09-24 2006-01-05 ガムリンク エー/エス Chewing gum containing at least two different biodegradable polymers
RU2303365C2 (en) * 2002-09-24 2007-07-27 Гумлинк А/С Chewing gum of improved release of its ingredients
JP4708795B2 (en) 2002-12-20 2011-06-22 ニコノヴァム エービー Physically and chemically stable nicotine-containing particulate matter
ATE405170T1 (en) * 2003-05-06 2008-09-15 Gumlink As METHOD FOR PRODUCING CHEWING GUM GRANULES AND COMPRESSED CHEWING GUM PRODUCTS, AND A CHEWING GUM GRANULATING SYSTEM
EP1474995B1 (en) 2003-05-06 2012-11-14 Gumlink A/S A method for producing chewing gum granules, a gum composition extruder and granulating system, and a chewing gum product
DK200401195A (en) * 2004-08-06 2004-08-06 Gumlink As Layered chewing gum tablet has layer comprising gum base in compressed gum granules having specified average diameter
DK1866402T3 (en) 2005-03-22 2008-12-01 Gumlink As A method for cleaning a surface with at least one adherent gum lump
US8263143B2 (en) 2005-08-22 2012-09-11 Kraft Foods Global Brands Llc Degradable chewing gum
US20070042079A1 (en) * 2005-08-22 2007-02-22 Cadbury Adams Usa Llc Environmentally-friendly chewing gum having reduced stickiness
US8282971B2 (en) 2005-08-22 2012-10-09 Kraft Foods Global Brands Llc Degradable chewing gum
US8287928B2 (en) 2005-08-22 2012-10-16 Kraft Foods Global Brands Llc Degradable chewing gum
US8268371B2 (en) * 2005-08-22 2012-09-18 Kraft Foods Global Brands Llc Degradable chewing gum
US20070042078A1 (en) * 2005-08-22 2007-02-22 Cadbury Adams Usa Llc Biodegradable chewing gum
CA2646942C (en) 2006-03-16 2014-07-29 Niconovum Ab Improved snuff composition
BRPI0709892B1 (en) 2006-04-05 2020-12-22 Intercontinental Great Brands Llc oral delivery system and composition for remineralization of mammalian tooth enamel
CA2648313C (en) 2006-04-05 2013-02-12 Cadbury Adams Usa Llc Calcium phosphate complex in acid containing chewing gum
US20100260690A1 (en) * 2007-09-18 2010-10-14 Arne Kristensen Stable chewing gum compositions comprising maltitol and providing rapid release of nicotine
US8556912B2 (en) 2007-10-30 2013-10-15 DePuy Synthes Products, LLC Taper disengagement tool
WO2010031552A1 (en) * 2008-09-17 2010-03-25 Niconovum Ab Process for preparing snuff composition
US20110268809A1 (en) 2010-04-28 2011-11-03 Paul Andrew Brinkley Nicotine-Containing Pharmaceutical Compositions
US20110274628A1 (en) 2010-05-07 2011-11-10 Borschke August J Nicotine-containing pharmaceutical compositions
US8533921B2 (en) 2010-06-15 2013-09-17 DePuy Synthes Products, LLC Spiral assembly tool
US9095452B2 (en) 2010-09-01 2015-08-04 DePuy Synthes Products, Inc. Disassembly tool
AU2012225286B2 (en) * 2011-03-09 2015-03-12 Regents Of The University Of Minnesota Chewing gums and gum bases comprising multi-block copolymers
CN106943216B (en) 2011-04-06 2019-12-31 德普伊新特斯产品有限责任公司 Instrument assembly for implanting revision hip prosthesis
US9907748B2 (en) 2011-10-21 2018-03-06 Niconovum Usa, Inc. Excipients for nicotine-containing therapeutic compositions
WO2014026122A2 (en) 2012-08-10 2014-02-13 Wm. Wrigley Jr. Company Chewing gums and gum bases comprising block copolymers having crystallizable hard blocks
CA2883768A1 (en) * 2012-09-07 2014-03-13 Wm. Wrigley Jr. Company Improved gum bases and chewing gums employing block polymers and processes for preparing them
US20170165252A1 (en) 2015-12-10 2017-06-15 Niconovum Usa Inc. Protein-enriched therapeutic composition
BR112020025604A2 (en) 2018-06-15 2021-03-23 R.J. Reynolds Tobacco Company nicotine purification
US11969502B2 (en) 2019-12-09 2024-04-30 Nicoventures Trading Limited Oral products
US11883527B2 (en) 2019-12-09 2024-01-30 Nicoventures Trading Limited Oral composition and method of manufacture
US11889856B2 (en) 2019-12-09 2024-02-06 Nicoventures Trading Limited Oral foam composition
US11617744B2 (en) 2019-12-09 2023-04-04 Nico Ventures Trading Limited Moist oral compositions
US11793230B2 (en) 2019-12-09 2023-10-24 Nicoventures Trading Limited Oral products with improved binding of active ingredients
US11872231B2 (en) 2019-12-09 2024-01-16 Nicoventures Trading Limited Moist oral product comprising an active ingredient
US11672862B2 (en) 2019-12-09 2023-06-13 Nicoventures Trading Limited Oral products with reduced irritation
US11826462B2 (en) 2019-12-09 2023-11-28 Nicoventures Trading Limited Oral product with sustained flavor release
CA3160750A1 (en) 2019-12-09 2021-06-17 Anthony Richard Gerardi Oral product comprising a cannabinoid
US11839602B2 (en) 2020-11-25 2023-12-12 Nicoventures Trading Limited Oral cannabinoid product with lipid component

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2007965A (en) 1929-06-29 1935-07-16 Ellis Foster Co Edible synthetic ester resins
US2353927A (en) 1942-10-05 1944-07-18 Hercules Powder Co Ltd Chewing gum material
US2635964A (en) 1951-01-23 1953-04-21 American Chicle Co Chewing gum base material
US3262784A (en) 1963-12-02 1966-07-26 Frank H Fleer Corp Chewing gum product and method of making same
US3440060A (en) 1965-12-23 1969-04-22 Union Carbide Corp Chewing gums
US3800006A (en) * 1968-05-25 1974-03-26 Denki Onkyo Co Ltd Graft polymers from vinyl compounds with beta-propiolactone, epsilon-caprolactone and ethylene oxide
US4057537A (en) 1975-01-28 1977-11-08 Gulf Oil Corporation Copolymers of L-(-)-lactide and epsilon caprolactone
US4317838A (en) 1979-09-24 1982-03-02 Life Savers, Inc. Method for applying sugarless coating to chewing gum and confections
JPS5918973B2 (en) 1980-03-03 1984-05-01 株式会社ロツテ Chewing gum manufacturing method
US4525363A (en) 1983-06-29 1985-06-25 Nabisco Brands, Inc. Single compatibilizing agents for elastomer-resin combination gum base
US4753805A (en) 1984-01-31 1988-06-28 Warner-Lambert Company Tabletted chewing gum composition and method of preparation
CA1240875A (en) 1984-01-31 1988-08-23 Subraman R. Cherukuri Tableted chewing gum composition and method of preparation
US4671967A (en) 1984-05-18 1987-06-09 Wm. Wrigley Jr. Company Carbohydrate syrups and methods of preparation
IE58110B1 (en) 1984-10-30 1993-07-14 Elan Corp Plc Controlled release powder and process for its preparation
ES2058081T3 (en) 1986-09-05 1994-11-01 American Cyanamid Co POLYESTERS CONTAINING BLOCKS OF ALKYLENE OXIDE AS SYSTEMS FOR ADMINISTRATION OF MEDICINES.
US4882168A (en) 1986-09-05 1989-11-21 American Cyanamid Company Polyesters containing alkylene oxide blocks as drug delivery systems
US4731435A (en) 1986-11-10 1988-03-15 E. I. Du Pont De Nemours And Company Elastomers
AR243329A1 (en) 1989-08-25 1993-08-31 Warner Lambert Co Production of sorbitol coated comestible
DE3937272A1 (en) 1989-11-09 1991-05-16 Boehringer Ingelheim Kg NEW COPOLYMERS FROM TRIMETHYLENE CARBONATE AND OPTICALLY INACTIVE LACTIDS
IT1249045B (en) 1991-02-21 1995-02-11 Himont Inc SOLID STATE SYNTHESIS PROCESS OF LACTIC ACID POLYMERS AND PRODUCTS SO OBTAINED
US5352515A (en) 1992-03-02 1994-10-04 American Cyanamid Company Coating for tissue drag reduction
US5286502A (en) * 1992-04-21 1994-02-15 Wm. Wrigley Jr. Company Use of edible film to prolong chewing gum shelf life
US5424080A (en) 1992-06-30 1995-06-13 Wm. Wrigley Jr. Company Wax-free chewing gum base
NL9201949A (en) 1992-11-06 1994-06-01 Univ Groningen Rubber-modified polylactide composition.
WO1994016575A1 (en) 1992-12-23 1994-08-04 Yatka Robert J Chewing gum containing guar gum hydrolyzate
US5366740A (en) 1993-02-04 1994-11-22 Warner-Lambert Company Chewing gum containing wheat gluten
US5424081A (en) 1993-11-02 1995-06-13 Mcgrath Farms Chewing gum
EP0664309B1 (en) * 1994-01-21 1999-06-02 Shimadzu Corporation Method for producing polylactic acid
US5429827A (en) 1994-04-12 1995-07-04 Wm. Wrigley Jr. Company Method of making improved gum base for fruit-flavored chewing gum
NL9401703A (en) 1994-10-14 1996-05-01 Rijksuniversiteit Chewing gum.
JP3129163B2 (en) 1995-08-10 2001-01-29 アサマ化成株式会社 New sweets
US5866179A (en) 1996-05-03 1999-02-02 Avant-Garde Technologies & Products S.A. Medicated chewing gum and a process for preparation thereof
WO1998017123A1 (en) 1996-10-22 1998-04-30 Wm. Wrigley Jr. Company Gum base and chewing gum containing edible polyesters
WO2000035296A1 (en) 1996-11-27 2000-06-22 Wm. Wrigley Jr. Company Improved release of medicament active agents from a chewing gum coating
US6153231A (en) 1997-06-25 2000-11-28 Wm. Wrigley Jr. Company Environmentally friendly chewing gum bases
US6194008B1 (en) 1998-02-09 2001-02-27 Wm. Wrigley Jr. Company Environmentally friendly chewing gum bases including polyhydroxyalkanoates
AU6652398A (en) 1998-02-09 1999-08-23 Wm. Wrigley Jr. Company Environmentally friendly chewing gum bases including polyhydroxyalkanoates
JP3861500B2 (en) 1998-04-23 2006-12-20 大日本インキ化学工業株式会社 Production method of self-dispersible particles made of biodegradable polyester
AU9678298A (en) 1998-10-02 2000-04-26 Wm. Wrigley Jr. Company Biodegradable chewing gum bases including plasticized poly(d,l-lactic acid) and copolymers thereof
AU1031500A (en) 1998-11-03 2000-05-22 Dandy A/S Sucrose fatty acid esters for use as increased release of active ingredients
WO2000035297A1 (en) 1998-12-17 2000-06-22 Wm. Wrigley Jr. Company Gum base and chewing gum containing edible polyesters
US6846500B1 (en) 1999-03-25 2005-01-25 Cadbury Adams Usa Llc Oral care chewing gums and method of use
US6322806B1 (en) 1999-04-06 2001-11-27 Wm. Wrigley Jr. Company Over-coated chewing gum formulations including tableted center
US6441126B1 (en) 1999-04-26 2002-08-27 Eastman Chemical Company Branched aliphatic polyesters
WO2001001788A1 (en) 1999-06-30 2001-01-11 Wm. Wrigley Jr. Company Ingestible and degradable chewing gum including enzymatic hydrolysates of proteins
GB9915787D0 (en) 1999-07-07 1999-09-08 Cerestar Holding Bv The development of vital wheat gluten in non-aqueous media
US6541048B2 (en) * 1999-09-02 2003-04-01 Wm. Wrigley Jr. Company Coated chewing gum products containing an acid blocker and process of preparing
AU2608701A (en) 1999-12-29 2001-07-09 Daniel Goldberg Degradable copolymers for chewing gum base
US7056542B1 (en) 2000-01-27 2006-06-06 Fonferra Tech Limited Gum base
KR20030068162A (en) 2000-11-30 2003-08-19 다이셀 가가꾸 고교 가부시끼가이샤 Aliphatic polyester copolymer and process for producing the same, biodegradable resin molding based on aliphatic polyester, and lactone-containing resin
IT1320136B1 (en) 2000-12-22 2003-11-18 Atp Avant Garde Technologies P PROCEDURE FOR THE PREPARATION OF MEDICATED RUBBERS CONTAINING HUMIDITY LABILE PRINCIPLES.
ES2554389T3 (en) 2001-03-23 2015-12-18 Gumlink A/S Biodegradable chewing gum and method of manufacturing such chewing gum
WO2002076230A1 (en) 2001-03-23 2002-10-03 Gumlink A/S Degradable elastomers for chewing gum base
JP4354700B2 (en) 2001-03-23 2009-10-28 ガムリンク エー/エス Coated degradable chewing gum with improved shelf life and process for its preparation
DK1370150T3 (en) 2001-03-23 2008-03-25 Gumlink As t-step process for chewing gum
AU2002247620B2 (en) 2001-03-23 2005-10-20 Gumlink A/S Biodegradable chewing gum and method manufacturing such chewing gum
US20040156949A1 (en) * 2001-03-23 2004-08-12 Lone Andersen Degradable elastomers for chewing gum base
EA007772B1 (en) 2001-03-23 2007-02-27 Гумлинк А/С Degradable resin substitute for chewing gum
ITTO20010290A1 (en) * 2001-03-27 2002-09-27 Framatome Connectors Italia ELECTRIC CONNECTOR.
EP1306013A1 (en) 2001-03-28 2003-05-02 Hycail B.V. Biodegradable gum base
BR0215885A (en) 2002-09-24 2005-07-26 Gumlink As Degradable Chewing Gum Polymer
JP2006500038A (en) 2002-09-24 2006-01-05 ガムリンク エー/エス Low moisture chewing gum
JP2006500041A (en) 2002-09-24 2006-01-05 ガムリンク エー/エス Chewing gum containing at least two different biodegradable polymers
RU2303365C2 (en) 2002-09-24 2007-07-27 Гумлинк А/С Chewing gum of improved release of its ingredients
AU2003214016A1 (en) 2003-02-04 2004-08-30 Gumlink A/S Compressed chewing gum tablet
US20060051455A1 (en) 2003-02-04 2006-03-09 Lone Andersen Compressed chewing gum tablet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Garlotta. 2001. A Literature Review of Poly (Lactic Acid). Journal of Polymers and the Environment, Vol. 9, No. 2. *

Also Published As

Publication number Publication date
AU2002342578B2 (en) 2008-05-15
EP1542542B2 (en) 2013-09-04
AU2002342578A1 (en) 2004-04-19
CA2500022C (en) 2011-02-22
EP1542542A1 (en) 2005-06-22
EP1542542B1 (en) 2008-08-13
US8591967B2 (en) 2013-11-26
WO2004028266A1 (en) 2004-04-08
DK1542542T3 (en) 2009-01-19
US20060165842A1 (en) 2006-07-27
CN1668209A (en) 2005-09-14
DE60228341D1 (en) 2008-09-25
MXPA05002964A (en) 2005-06-03
ATE404072T1 (en) 2008-08-15
ES2311631T3 (en) 2009-02-16
JP2006500039A (en) 2006-01-05
JP4287817B2 (en) 2009-07-01
BR0215890A (en) 2005-07-26
CA2500022A1 (en) 2004-04-08

Similar Documents

Publication Publication Date Title
US8591967B2 (en) Biodegradable chewing gum comprising at least one high molecular weight biodegradable polymer
CA2500000C (en) Low moisture chewing gum
US8293295B2 (en) Chewing gum comprising at least two different biodegradable polymers
CA2501059C (en) Degradable chewing gum polymer
US20090226383A1 (en) Chewing Gum Having Improved Release of Chewing Gum Ingredients
RU2303366C2 (en) Biologically decomposable chewing gum containing, at least, one high-molecular biologically decomposable polymer

Legal Events

Date Code Title Description
AS Assignment

Owner name: GUMLINK A/S, DENMARK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ANDERSEN, LONE;WITTORFF, HELLE;SIGNING DATES FROM 20050308 TO 20050310;REEL/FRAME:031777/0496

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION