US20140061052A1 - Outdoor suitable antique copper color aluminum material and process - Google Patents

Outdoor suitable antique copper color aluminum material and process Download PDF

Info

Publication number
US20140061052A1
US20140061052A1 US14/075,497 US201314075497A US2014061052A1 US 20140061052 A1 US20140061052 A1 US 20140061052A1 US 201314075497 A US201314075497 A US 201314075497A US 2014061052 A1 US2014061052 A1 US 2014061052A1
Authority
US
United States
Prior art keywords
copper
aluminum material
bath
salt
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/075,497
Inventor
Kevin H. Darcy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lorin Industries Inc
Original Assignee
Lorin Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lorin Industries Inc filed Critical Lorin Industries Inc
Priority to US14/075,497 priority Critical patent/US20140061052A1/en
Assigned to LORIN INDUSTRIES, INC. reassignment LORIN INDUSTRIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DARCY, KEVIN H.
Publication of US20140061052A1 publication Critical patent/US20140061052A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/20Electrolytic after-treatment
    • C25D11/22Electrolytic after-treatment for colouring layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/12Anodising more than once, e.g. in different baths
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/24Chemical after-treatment
    • C25D11/243Chemical after-treatment using organic dyestuffs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component

Definitions

  • the present disclosure relates generally to electrolytically coloring aluminum to simulate antique copper in a way that is also ultra-violet (UV) light stable, making it useable for outdoor applications.
  • UV ultra-violet
  • Copper is a well known metal used for everything from electrical wiring, to decorative metal works, to rain gutters and down spouts. It is equally well known that copper is a relatively expensive material, especially when compared to aluminum. Copper also patinas over time meaning it oxidizes when exposed to the outdoor elements. The color of the exposed copper darkens and then turns green.
  • Aluminum is a silver-white, light weight metal that is often formed into sheets and used for a myriad of purposes including gutters, appliance panels, architectural panels, ceiling panels, mailboxes, roofing, signage, windows, doors, elevators, and the like.
  • Aluminum can be colored by a variety of means, including electrolytic plating. Different metallic salts create a variety of colors such as cobalt and tin providing brown or bronze tints on the surface of the aluminum.
  • Anodizing creates a layer of aluminum oxide on the top surface of the aluminum. This protects the aluminum underneath because the oxide layer has a higher corrosion and abrasion resistance than bare aluminum.
  • An illustrative process includes oxidizing the surface and the coloring the oxidized surface. Creating the aluminum oxide surface involves applying an electrical charge to a tank containing a bath of sulfuric acid and water. When the aluminum is submerged in the tank, aluminum oxide forms on the surface. The aluminum is then submerged into a second tank coloring the oxidized surface. This second tank includes a bath of metal salts of cobalt, tin, zinc or copper. An electrical current is applied to the bath causing the metal salt to deposit into anodic pores on the aluminum oxide layer. The type of metal oxide in the bath and the length of time the aluminum is held in the bath can determine the color and shade of that color.
  • Aluminum can be anodized through either a continuous roll or a batch process. These are not the same processes, however.
  • continuous roll anodizing involves the continuous unwinding of coils through a series of anodizing tanks and then rewinding the coil upon completion of the circuit. The sheet is not attached to a rack that conducts current.
  • batch or piece anodizing involves anodizing individual extrusions, castings and formed parts. Each part is individually attached to racking and then immersed into treatment tanks. Bus bars are attached to the racking to attract the charge from the bath.
  • Aluminum can be conventionally anodized to create a copper color using organic colorant. This application is not UV stable, however. Copper metal salt has also been utilized with the electrolytic process to obtain a copper color. Problems with this include, first, the color being very bright. Shiny new copper is a familiar color, but for certain applications, such as outdoor rain gutters and down spouts, it may not look appropriate. Typically, copper that is used outside quickly loses its shiny new luster. Again, real copper patinas when exposed to the outdoor elements. The color of the exposed copper darkens and then turns green. “Antique copper” is the dark copper color. As such, “new” looking copper color may appear odd in outdoor applications.
  • copper anodized aluminum cannot hold its color.
  • the anodize is not UV stable. It tends to fade over time, losing the copper appearance it once had. This may be why copper anodized aluminum is not used for applications such as gutters and downspouts.
  • This present disclosure describes a copper substitute that is more the color of an antique copper and can be used outdoors, unlike conventional copper-color anodized aluminum.
  • the aluminum described in this disclosure can be used for applications such as (although not limited to) rain gutters and downspouts.
  • the process can be used with continuous roll anodizing as distinguished from batch anodizing. In another embodiment, the process can be used with batch anodizing.
  • An embodiment of this disclosure includes combining both copper and cobalt salts in a coloring bath at a low pH.
  • a problem with the copper salt is it may fall out of solution at a higher pH.
  • Cobalt is conventionally used at a higher pH, about 4.5. Because of the problem with copper falling out of solution over a period of time, just combining the two salts is not workable. Instead, the pH is adjusted lower to about the 2+/ ⁇ 1 range, for example, which has the effect of keeping the copper salt in solution. Despite this lower pH, the copper and cobalt salts unexpectedly produced color and a consistent plating. In addition, the amperage of the current applied to the bath was lowered to only about 70 to 80 amps, rather than a conventional 200-300 amps.
  • An illustrative embodiment of a process of producing a copper-substitute aluminum material comprises the steps of: cleaning aluminum material with an alkali or acid; anodizing the aluminum material by submersing it in a basic sulfuric acid to build an anodic layer producing anodized aluminum material; combining copper and cobalt salts together in one bath; lowering the pH of the bath to between about 1.0 and about 3.0; coloring the anodized aluminum material electrolyticly by submersing the anodized aluminum material in the bath of copper and cobalt salts; and applying an electrical current to the bath plating the copper and cobalt salts into the anodized aluminum material.
  • the process of producing the copper-substitute aluminum material may further comprise the steps of: sealing the anodized aluminum material after coloring by submersing the anodized aluminum material in a bath of nickel acetate followed by hot water; pretreating the aluminum material after cleaning it in alkali or acid and before anodizing by etching or chemically brightening it; lowering the pH of the bath from about 1 to about 3; and lowering the pH of the bath from about 2 to about 2.5.
  • the above and other illustrative embodiments may further include: the bath comprising about 3-7 grams per liter copper salt and about 40-80 grams per liter cobalt salt; the bath comprising copper salt, cobalt salt, magnesium salt, boric acid, tartaric acid, sulfuric acid, and magnesium oxide; the bath comprising about 3-7 grams per liter copper salt, about 40-80 grams per liter cobalt salt, about 40-80 grams per liter magnesium salt, about 10-30 grams per liter boric acid, about 0-10 grams per liter tartaric acid, sulfuric acid, and magnesium oxide; the copper-substitute aluminum material being a continuous roll of aluminum sheet with a charge applied to the bath of about 70 to 80 amps; and the copper-substitute aluminum material being a plurality of aluminum pieces wherein the antique copper color is generated as a function of time the aluminum pieces are submersed in the bath.
  • Another illustrative embodiment of a process of producing a copper-substitute aluminum material comprising the steps of submersing the aluminum material in a bath comprising a copper salt and a cobalt salt that colors and UV stabilizes the aluminum material.
  • the above and other processes of producing a copper-substitute aluminum material may further include the bath comprising about 3-7 grams per liter copper salt and about 40-80 grams per liter cobalt salt; the bath comprising copper salt, cobalt salt, magnesium salt, boric acid, tartaric acid, sulfuric acid, and magnesium oxide; the bath comprising about 3-7 grams per liter copper salt, about 40-80 grams per liter cobalt salt, about 40-80 grams per liter magnesium salt, about 10-30 grams per liter boric acid, about 0-10 grams per liter tartaric acid, sulfuric acid, and magnesium oxide; and comprising the step of producing two or more anodized layers.
  • Another illustrative embodiment of the present disclosure provides a copper-substitute comprising an anodized aluminum material.
  • the surface coloring is from a combination of copper and cobalt salts that is UV stable.
  • the illustrative processes described herein are repeatable and produce a uniform color and can obtain various depths of color shades. They also allow for a variety of color depths along with the variety of various anodize oxide films for continued protection of the aluminum surface.
  • FIG. 1 is a side schematic view illustrating a process for anodizing aluminum.
  • the present disclosure is directed to anodizing aluminum and then electrolytically coloring the aluminum in a bath including both copper salt and cobalt salt.
  • the electrolytic coloring process produces various copper and bronze shades that are light resistant. Copper salt provides a copper or red hue and the cobalt salt in contrast provides a bronze tint.
  • the process may, for example, be used to produce bronze tints with red hues for an “antique copper” color appearance.
  • the bath solution can be modified to produce a variety of shades.
  • the process in accordance with an embodiment of the present disclosure can be readily repeated and produces a uniform color.
  • the process can also readily be modified to obtain different color shades and enable different depths of anodize oxide films.
  • FIG. 1 shows a process for anodizing a continuous roll of aluminum.
  • the process shown is a known process for anodizing aluminum except for the particular coloring bath added.
  • a web of aluminum sheet is unrolled at 1 .
  • the aluminum is then fed through a raw coil accumulator so the machine may continue running while the start of the roll is attached to metal already threaded in the machine.
  • the aluminum sheet can then be submerged in an alkaline or acid cleaner bath 3 . It is appreciated that in illustrative embodiments there is a rinse between each tank. After cleaning, a light, medium, or heavy caustic etching 4 and/or bright dip 5 can be applied to the aluminum.
  • a tank 6 of sulfuric acid is used to anodize the aluminum.
  • the continuous roll submerges in the sulfuric acid oxidizing the surfaces of the aluminum.
  • the aluminum can be submerged in either a colored tank 7 of organic dye or an inorganic metal salt 11 . As shown in the drawing, tank 11 can substitute for tank 7 . A preseal nickel acetate tank 8 can also be applied to the aluminum. Lastly, the aluminum can be submerged in a tank of boiling distilled water to apply a final seal. The aluminum is then rewound where it can be used for various applications.
  • the process for electrolytically coloring metal in accordance with the present disclosure including submersing the metal in a bath that includes both copper salts and cobalt salts to electrolytically color the metal, may be carried out in any suitable manner, such as in bath 11 of FIG. 1 .
  • Step 1 Metal in the form of raw aluminum is cleaned of its mill oils. This can be done in any suitable manner such as, for example, submersing the metal in an alkali bath or acid bath for about 30-90 seconds.
  • Step 2 The metal is pretreated. This can be done in any suitable manner such as, for example, by cleaning, chemically brightening, or etching or dulling the metal. The actual process may depend upon the desired look to be achieved.
  • Step 3 The metal is anodized in any suitable manner, such as a basic sulfuric acid process to build the anodic layer.
  • the time in the tank is usually between 1-4 minutes.
  • the number of anodized layers may vary depending on the end use of the product or the desired results.
  • Step 4 The metal is colored by the electrolytic coloring process. Copper and cobalt salts are diluted in the bath, such as tank 11 of FIG. 11 , and an electrical current is applied to the solution, thus plating the metal salts into the anodic pore.
  • the parameters may be as follows: the metal is submerged 1-6 minutes in the tank at 80-100 degrees F. temp with a pH of 1.0-3.0. The lower pH level assists DC current flow, thus coloring the sheet in a more uniform manner while also keeping the copper sulfate in solution.
  • Step 5 The metal is sealed in any suitable manner such as, for example, by a duplex seal formed by submersing the metal in a tank of nickel acetate for 30-90 seconds followed by a hot water seal to hydrate the pore for 5-20 minutes depending on the anodize film thickness.
  • a duplex seal formed by submersing the metal in a tank of nickel acetate for 30-90 seconds followed by a hot water seal to hydrate the pore for 5-20 minutes depending on the anodize film thickness.
  • the cobalt salt and copper salt used in the electrolytic coloring process may be any suitable concentration and the bath solution may include any other suitable ingredients, including, for example, magnesium salt, boric acid, tartaric acid, sulfuric acid, and magnesium oxide.
  • the bath solution may comprise:
  • plating cobalt occurs when applying about 200-300 DC Amps. This new copper color, however, was found to plate better at only about 70 to 80 amps. These amperages can be adjusted to affect the precise desired color.
  • the copper color process can be regulated by changing the time the metal is submerged in the bath.
  • the present disclosure provides many other benefits. For example, because the cost of true copper alloys has risen dramatically, the present disclosure enables anodized aluminum to be used as a substitute for copper alloys. Further, the metal will not patina over time like true copper alloys. It will also resist UV light and, thus, is suitable for exterior use. The present disclosure also allows for a variety of color depths along with the variety of various anodize oxide films for continued protection of the aluminum surface. The present disclosure can be used in connection with extrusion or batch processes, continuous coil processes, or any other aluminum coloring process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

A copper-substitute aluminum material made from a copper and cobalt anodizing process. The process includes the steps of: anodizing the aluminum material by submersing it in a basic sulfuric acid to build an anodic layer producing anodized aluminum material; combining copper and cobalt salts together in one bath; lowering the pH of the bath to between about 1.0 and about 3.0; coloring the anodized aluminum material electrolyticly by submersing the anodized aluminum material in the bath of copper and cobalt salts; and applying an electrical current to the bath plating the copper and cobalt salts into the anodized aluminum material.

Description

    RELATED APPLICATIONS
  • This present application is a divisional application of U.S. patent application Ser. No. 12/571,885, filed on Oct. 1, 2009, entitled “Outdoor-Suitable Antique Copper Color Aluminum Material and Process” and claims priority to U.S. Provisional Patent Application Ser. No. 61/101,875, filed on Oct. 1, 2008, entitled Aluminum Coloring Process. The subject matter disclosed in that provisional applicant is hereby expressly incorporated into the present application.
  • TECHNICAL FIELD AND SUMMARY
  • The present disclosure relates generally to electrolytically coloring aluminum to simulate antique copper in a way that is also ultra-violet (UV) light stable, making it useable for outdoor applications.
  • Copper is a well known metal used for everything from electrical wiring, to decorative metal works, to rain gutters and down spouts. It is equally well known that copper is a relatively expensive material, especially when compared to aluminum. Copper also patinas over time meaning it oxidizes when exposed to the outdoor elements. The color of the exposed copper darkens and then turns green.
  • Aluminum is a silver-white, light weight metal that is often formed into sheets and used for a myriad of purposes including gutters, appliance panels, architectural panels, ceiling panels, mailboxes, roofing, signage, windows, doors, elevators, and the like. Aluminum can be colored by a variety of means, including electrolytic plating. Different metallic salts create a variety of colors such as cobalt and tin providing brown or bronze tints on the surface of the aluminum.
  • Anodizing creates a layer of aluminum oxide on the top surface of the aluminum. This protects the aluminum underneath because the oxide layer has a higher corrosion and abrasion resistance than bare aluminum. An illustrative process includes oxidizing the surface and the coloring the oxidized surface. Creating the aluminum oxide surface involves applying an electrical charge to a tank containing a bath of sulfuric acid and water. When the aluminum is submerged in the tank, aluminum oxide forms on the surface. The aluminum is then submerged into a second tank coloring the oxidized surface. This second tank includes a bath of metal salts of cobalt, tin, zinc or copper. An electrical current is applied to the bath causing the metal salt to deposit into anodic pores on the aluminum oxide layer. The type of metal oxide in the bath and the length of time the aluminum is held in the bath can determine the color and shade of that color.
  • Aluminum can be anodized through either a continuous roll or a batch process. These are not the same processes, however. For example, continuous roll anodizing involves the continuous unwinding of coils through a series of anodizing tanks and then rewinding the coil upon completion of the circuit. The sheet is not attached to a rack that conducts current. In contrast, batch or piece anodizing involves anodizing individual extrusions, castings and formed parts. Each part is individually attached to racking and then immersed into treatment tanks. Bus bars are attached to the racking to attract the charge from the bath.
  • Aluminum can be conventionally anodized to create a copper color using organic colorant. This application is not UV stable, however. Copper metal salt has also been utilized with the electrolytic process to obtain a copper color. Problems with this include, first, the color being very bright. Shiny new copper is a familiar color, but for certain applications, such as outdoor rain gutters and down spouts, it may not look appropriate. Typically, copper that is used outside quickly loses its shiny new luster. Again, real copper patinas when exposed to the outdoor elements. The color of the exposed copper darkens and then turns green. “Antique copper” is the dark copper color. As such, “new” looking copper color may appear odd in outdoor applications.
  • Second, like using the organic colorant, copper anodized aluminum cannot hold its color. The anodize is not UV stable. It tends to fade over time, losing the copper appearance it once had. This may be why copper anodized aluminum is not used for applications such as gutters and downspouts.
  • This present disclosure describes a copper substitute that is more the color of an antique copper and can be used outdoors, unlike conventional copper-color anodized aluminum. The aluminum described in this disclosure can be used for applications such as (although not limited to) rain gutters and downspouts. In one embodiment, the process can be used with continuous roll anodizing as distinguished from batch anodizing. In another embodiment, the process can be used with batch anodizing.
  • An embodiment of this disclosure includes combining both copper and cobalt salts in a coloring bath at a low pH. A problem with the copper salt, however, is it may fall out of solution at a higher pH. Cobalt is conventionally used at a higher pH, about 4.5. Because of the problem with copper falling out of solution over a period of time, just combining the two salts is not workable. Instead, the pH is adjusted lower to about the 2+/−1 range, for example, which has the effect of keeping the copper salt in solution. Despite this lower pH, the copper and cobalt salts unexpectedly produced color and a consistent plating. In addition, the amperage of the current applied to the bath was lowered to only about 70 to 80 amps, rather than a conventional 200-300 amps.
  • The net effect produced a color anodized aluminum that looks like “antique copper.” This antique copper aluminum is also more UV stable which is also needed for outdoor use and not characteristic of conventionally anodized copper colored aluminum.
  • An illustrative embodiment of a process of producing a copper-substitute aluminum material comprises the steps of: cleaning aluminum material with an alkali or acid; anodizing the aluminum material by submersing it in a basic sulfuric acid to build an anodic layer producing anodized aluminum material; combining copper and cobalt salts together in one bath; lowering the pH of the bath to between about 1.0 and about 3.0; coloring the anodized aluminum material electrolyticly by submersing the anodized aluminum material in the bath of copper and cobalt salts; and applying an electrical current to the bath plating the copper and cobalt salts into the anodized aluminum material.
  • In the above and other illustrative embodiments, the process of producing the copper-substitute aluminum material may further comprise the steps of: sealing the anodized aluminum material after coloring by submersing the anodized aluminum material in a bath of nickel acetate followed by hot water; pretreating the aluminum material after cleaning it in alkali or acid and before anodizing by etching or chemically brightening it; lowering the pH of the bath from about 1 to about 3; and lowering the pH of the bath from about 2 to about 2.5.
  • The above and other illustrative embodiments may further include: the bath comprising about 3-7 grams per liter copper salt and about 40-80 grams per liter cobalt salt; the bath comprising copper salt, cobalt salt, magnesium salt, boric acid, tartaric acid, sulfuric acid, and magnesium oxide; the bath comprising about 3-7 grams per liter copper salt, about 40-80 grams per liter cobalt salt, about 40-80 grams per liter magnesium salt, about 10-30 grams per liter boric acid, about 0-10 grams per liter tartaric acid, sulfuric acid, and magnesium oxide; the copper-substitute aluminum material being a continuous roll of aluminum sheet with a charge applied to the bath of about 70 to 80 amps; and the copper-substitute aluminum material being a plurality of aluminum pieces wherein the antique copper color is generated as a function of time the aluminum pieces are submersed in the bath.
  • Another illustrative embodiment of a process of producing a copper-substitute aluminum material comprising the steps of submersing the aluminum material in a bath comprising a copper salt and a cobalt salt that colors and UV stabilizes the aluminum material.
  • The above and other processes of producing a copper-substitute aluminum material may further include the bath comprising about 3-7 grams per liter copper salt and about 40-80 grams per liter cobalt salt; the bath comprising copper salt, cobalt salt, magnesium salt, boric acid, tartaric acid, sulfuric acid, and magnesium oxide; the bath comprising about 3-7 grams per liter copper salt, about 40-80 grams per liter cobalt salt, about 40-80 grams per liter magnesium salt, about 10-30 grams per liter boric acid, about 0-10 grams per liter tartaric acid, sulfuric acid, and magnesium oxide; and comprising the step of producing two or more anodized layers.
  • Another illustrative embodiment of the present disclosure provides a copper-substitute comprising an anodized aluminum material. The surface coloring is from a combination of copper and cobalt salts that is UV stable.
  • The illustrative processes described herein are repeatable and produce a uniform color and can obtain various depths of color shades. They also allow for a variety of color depths along with the variety of various anodize oxide films for continued protection of the aluminum surface.
  • Additional features and advantages of this anodizing process will become apparent to those skilled in the art upon consideration of the following detailed description of the illustrated embodiment exemplifying the best mode of carrying out the anodizing process as presently perceived.
  • BRIEF DESCRIPTION OF DRAWINGS
  • The present disclosure will be described hereafter with reference to the attached drawings which are given as non-limiting examples only, in which:
  • FIG. 1 is a side schematic view illustrating a process for anodizing aluminum.
  • DETAILED DISCLOSURE OF ILLUSTRATIVE EMBODIMENTS
  • The present disclosure is directed to anodizing aluminum and then electrolytically coloring the aluminum in a bath including both copper salt and cobalt salt. The electrolytic coloring process produces various copper and bronze shades that are light resistant. Copper salt provides a copper or red hue and the cobalt salt in contrast provides a bronze tint. The process may, for example, be used to produce bronze tints with red hues for an “antique copper” color appearance. The bath solution can be modified to produce a variety of shades.
  • The process in accordance with an embodiment of the present disclosure can be readily repeated and produces a uniform color. The process can also readily be modified to obtain different color shades and enable different depths of anodize oxide films.
  • A schematic view of FIG. 1 shows a process for anodizing a continuous roll of aluminum. The process shown is a known process for anodizing aluminum except for the particular coloring bath added. As shown in this view, a web of aluminum sheet is unrolled at 1. The aluminum is then fed through a raw coil accumulator so the machine may continue running while the start of the roll is attached to metal already threaded in the machine. In an illustrative embodiment, the aluminum sheet can then be submerged in an alkaline or acid cleaner bath 3. It is appreciated that in illustrative embodiments there is a rinse between each tank. After cleaning, a light, medium, or heavy caustic etching 4 and/or bright dip 5 can be applied to the aluminum. A tank 6 of sulfuric acid is used to anodize the aluminum. The continuous roll submerges in the sulfuric acid oxidizing the surfaces of the aluminum.
  • To color the aluminum, it can be submerged in either a colored tank 7 of organic dye or an inorganic metal salt 11. As shown in the drawing, tank 11 can substitute for tank 7. A preseal nickel acetate tank 8 can also be applied to the aluminum. Lastly, the aluminum can be submerged in a tank of boiling distilled water to apply a final seal. The aluminum is then rewound where it can be used for various applications.
  • The process for electrolytically coloring metal in accordance with the present disclosure, including submersing the metal in a bath that includes both copper salts and cobalt salts to electrolytically color the metal, may be carried out in any suitable manner, such as in bath 11 of FIG. 1.
  • An illustrative embodiment of the preparation and anodization process may include the following steps:
  • Step 1: Metal in the form of raw aluminum is cleaned of its mill oils. This can be done in any suitable manner such as, for example, submersing the metal in an alkali bath or acid bath for about 30-90 seconds.
  • Step 2: The metal is pretreated. This can be done in any suitable manner such as, for example, by cleaning, chemically brightening, or etching or dulling the metal. The actual process may depend upon the desired look to be achieved.
  • Step 3: The metal is anodized in any suitable manner, such as a basic sulfuric acid process to build the anodic layer. The time in the tank is usually between 1-4 minutes. The number of anodized layers may vary depending on the end use of the product or the desired results.
  • Step 4: The metal is colored by the electrolytic coloring process. Copper and cobalt salts are diluted in the bath, such as tank 11 of FIG. 11, and an electrical current is applied to the solution, thus plating the metal salts into the anodic pore. The parameters may be as follows: the metal is submerged 1-6 minutes in the tank at 80-100 degrees F. temp with a pH of 1.0-3.0. The lower pH level assists DC current flow, thus coloring the sheet in a more uniform manner while also keeping the copper sulfate in solution.
  • Step 5: The metal is sealed in any suitable manner such as, for example, by a duplex seal formed by submersing the metal in a tank of nickel acetate for 30-90 seconds followed by a hot water seal to hydrate the pore for 5-20 minutes depending on the anodize film thickness.
  • The cobalt salt and copper salt used in the electrolytic coloring process may be any suitable concentration and the bath solution may include any other suitable ingredients, including, for example, magnesium salt, boric acid, tartaric acid, sulfuric acid, and magnesium oxide. In accordance with one embodiment of the present disclosure, for example, the bath solution may comprise:
      • Copper salt: 3-7 grams per liter
      • Cobalt salt: 40-80 grams per liter
      • Magnesium salt: 40-80 grams per liter
      • Boric acid: 10-30 grams per liter
      • Tartaric acid: 0-10 grams per liter
      • Sulfuric acid to lower pH
      • Magnesium oxide to raise pH
  • During continuous roll anodizing, the bath of cobalt and copper is charged. The anodized metal attracts the current causing the plating of the color on the metal to occur. Because of this, plating the antique copper is more difficult for continuous roll anodizing. Using conventional setting fails to achieve consistent plating. Too much current causes the edges to burn, whereas too little causes the color to be too light.
  • To that end, in addition to lowering the pH, lowering the strength of the current below typical levels was found to produce a more consistent antique copper plating. Typically, plating cobalt occurs when applying about 200-300 DC Amps. This new copper color, however, was found to plate better at only about 70 to 80 amps. These amperages can be adjusted to affect the precise desired color.
  • In contrast, with batch anodizing the bath is charged, but a bulbar or busbars are attached to the rack to draw the current in the bath. Illustratively, the copper color process can be regulated by changing the time the metal is submerged in the bath.
  • In addition to the benefits described above, the present disclosure provides many other benefits. For example, because the cost of true copper alloys has risen dramatically, the present disclosure enables anodized aluminum to be used as a substitute for copper alloys. Further, the metal will not patina over time like true copper alloys. It will also resist UV light and, thus, is suitable for exterior use. The present disclosure also allows for a variety of color depths along with the variety of various anodize oxide films for continued protection of the aluminum surface. The present disclosure can be used in connection with extrusion or batch processes, continuous coil processes, or any other aluminum coloring process.
  • While embodiments have been illustrated and described in the drawings and foregoing description, such illustrations and descriptions are considered to be exemplary and not restrictive in character, it being understood that only illustrative embodiments have been shown and described and that all changes and modifications that come within the spirit of the disclosure are desired to be protected. The description and figures are intended as illustrations of embodiments of the disclosure, and are not intended to be construed as having or implying limitation of the disclosure to those embodiments. There is a plurality of advantages of the present disclosure arising from various features set forth in the description. It will be noted that alternative embodiments of the disclosure may not include all of the features described yet still benefit from at least some of the advantages of such features. Those of ordinary skill in the art may readily devise their own implementations of the disclosure and associated methods, without undue experimentation, that incorporate one or more of the features of the disclosure and fall within the spirit and scope of the present disclosure and the appended claims.

Claims (6)

What is claimed is:
1. A process of producing a copper-substitute aluminum material comprising the steps of submersing the aluminum material in a bath comprising a copper salt and a cobalt salt that colors and UV stabilizes the aluminum material; and applying an electrical current of about 70 to about 80 amps to the bath.
2. The process of producing the copper-substitute aluminum material of claim 1, wherein the bath comprises about 3-7 grams per liter copper salt and about 40-80 grams per liter cobalt salt.
3. The process of producing the copper-substitute aluminum material of claim 1, wherein the bath comprises copper salt, cobalt salt, magnesium salt, boric acid, tartaric acid, sulfuric acid, and magnesium oxide.
4. The process of producing the copper-substitute aluminum material of claim 1, wherein the bath comprises about 3-7 grams per liter copper salt, about 40-80 grams per liter cobalt salt, about 40-80 grams per liter magnesium salt, about 10-30 grams per liter boric acid, about 0-10 grams per liter tartaric acid, sulfuric acid, and magnesium oxide.
5. The process of producing the copper-substitute aluminum material claim 1, further comprising the step of producing two or more anodized layers.
6. A copper-substitute comprising an anodized aluminum material having a surface coloring of a combination of copper and cobalt salts and having a UV stable surface.
US14/075,497 2008-10-01 2013-11-08 Outdoor suitable antique copper color aluminum material and process Abandoned US20140061052A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/075,497 US20140061052A1 (en) 2008-10-01 2013-11-08 Outdoor suitable antique copper color aluminum material and process

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10187508P 2008-10-01 2008-10-01
US12/571,885 US8580101B2 (en) 2008-10-01 2009-10-01 Outdoor-suitable antique copper color aluminum material and process
US14/075,497 US20140061052A1 (en) 2008-10-01 2013-11-08 Outdoor suitable antique copper color aluminum material and process

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/571,885 Division US8580101B2 (en) 2008-10-01 2009-10-01 Outdoor-suitable antique copper color aluminum material and process

Publications (1)

Publication Number Publication Date
US20140061052A1 true US20140061052A1 (en) 2014-03-06

Family

ID=42073879

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/571,885 Active 2030-06-11 US8580101B2 (en) 2008-10-01 2009-10-01 Outdoor-suitable antique copper color aluminum material and process
US14/075,497 Abandoned US20140061052A1 (en) 2008-10-01 2013-11-08 Outdoor suitable antique copper color aluminum material and process

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/571,885 Active 2030-06-11 US8580101B2 (en) 2008-10-01 2009-10-01 Outdoor-suitable antique copper color aluminum material and process

Country Status (3)

Country Link
US (2) US8580101B2 (en)
CA (1) CA2739433C (en)
WO (1) WO2010039937A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105821461A (en) * 2016-05-19 2016-08-03 广东伟业铝厂集团有限公司 Aluminum alloy copper salt coloring electrophoresis process
CN105862105A (en) * 2016-06-08 2016-08-17 广东伟业铝厂集团有限公司 Purple bronze aluminum alloy coloring system
CN109537020A (en) * 2019-01-18 2019-03-29 佛山泰铝新材料有限公司 A kind of organic coloring process of aluminum alloy coiled materials medium temperature and aluminum alloy sheet

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201004544D0 (en) * 2010-03-18 2010-05-05 J P Imaging Ltd Improvements in or relating to printing
CN102634834B (en) * 2012-04-27 2014-12-10 江门市安诺特炊具制造有限公司 Electrolytic coloring technique of aluminum alloy cooker
US9951959B2 (en) * 2013-12-20 2018-04-24 Bsh Home Appliances Corporation Home appliance with improved burner

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3382160A (en) * 1960-03-31 1968-05-07 Asada Tahei Process for inorganically coloring aluminum
US3616309A (en) * 1967-11-24 1971-10-26 Alcan Res & Dev Method of producing colored coatings on aluminum
US3989605A (en) * 1973-03-09 1976-11-02 Sumitomo Chemical Company, Limited Method for continuous electrolytic coloring of aluminum articles
US4070255A (en) * 1975-03-06 1978-01-24 Yoshida Kogyo K.K. Process for electrolytically coloring aluminum and aluminum alloys
JPS61243195A (en) * 1985-04-18 1986-10-29 Nippon Light Metal Co Ltd Coloring method for al and al alloy material

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1000000A (en) * 1910-04-25 1911-08-08 Francis H Holton Vehicle-tire.
FR2219437B1 (en) * 1973-02-23 1975-08-22 Pechiney Aluminium
JPS5334107B2 (en) * 1974-04-23 1978-09-19
US4251330A (en) * 1978-01-17 1981-02-17 Alcan Research And Development Limited Electrolytic coloring of anodized aluminium by means of optical interference effects
US4180443A (en) * 1978-06-28 1979-12-25 Reynolds Metals Company Method for coloring aluminum
US4737246A (en) * 1984-09-19 1988-04-12 Aluminum Company Of America Anodizing process for producing highly reflective aluminum materials without preliminary brightening processing
US5290424A (en) * 1992-01-31 1994-03-01 Aluminum Company Of America Method of making a shaped reflective aluminum strip, doubly-protected with oxide and fluoropolymer coatings
US5955147A (en) * 1992-01-31 1999-09-21 Aluminum Company Of America Reflective aluminum trim
US5478414A (en) * 1992-01-31 1995-12-26 Aluminum Company Of America Reflective aluminum strip, protected with fluoropolymer coating and a laminate of the strip with a thermoplastic polymer
US5637404A (en) * 1992-01-31 1997-06-10 Aluminum Company Of America Reflective aluminum strip
US20020096434A1 (en) * 2001-01-19 2002-07-25 Marczak Gregory S. Continuous anodizing and coloring process
US7029597B2 (en) * 2001-01-23 2006-04-18 Lorin Industries, Inc. Anodized aluminum etching process and related apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3382160A (en) * 1960-03-31 1968-05-07 Asada Tahei Process for inorganically coloring aluminum
US3616309A (en) * 1967-11-24 1971-10-26 Alcan Res & Dev Method of producing colored coatings on aluminum
US3989605A (en) * 1973-03-09 1976-11-02 Sumitomo Chemical Company, Limited Method for continuous electrolytic coloring of aluminum articles
US4070255A (en) * 1975-03-06 1978-01-24 Yoshida Kogyo K.K. Process for electrolytically coloring aluminum and aluminum alloys
JPS61243195A (en) * 1985-04-18 1986-10-29 Nippon Light Metal Co Ltd Coloring method for al and al alloy material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105821461A (en) * 2016-05-19 2016-08-03 广东伟业铝厂集团有限公司 Aluminum alloy copper salt coloring electrophoresis process
CN105862105A (en) * 2016-06-08 2016-08-17 广东伟业铝厂集团有限公司 Purple bronze aluminum alloy coloring system
CN109537020A (en) * 2019-01-18 2019-03-29 佛山泰铝新材料有限公司 A kind of organic coloring process of aluminum alloy coiled materials medium temperature and aluminum alloy sheet

Also Published As

Publication number Publication date
CA2739433A1 (en) 2010-04-08
CA2739433C (en) 2016-03-29
US8580101B2 (en) 2013-11-12
WO2010039937A1 (en) 2010-04-08
US20100092797A1 (en) 2010-04-15

Similar Documents

Publication Publication Date Title
US20140061052A1 (en) Outdoor suitable antique copper color aluminum material and process
CN100400716C (en) Bronze coloring process of pack alloy
CN103352244A (en) High-light anode oxidation and electrophoresis process of aluminium alloy
HU205973B (en) Process for electrolytic metal-colouring anodized aluminium surfaces
US7097756B2 (en) Method for producing gold-colored surfaces pertaining to aluminum or aluminum alloys, by means of formulations containing silver salt
JP3445134B2 (en) Method for producing gray-colored aluminum material and its colored body
US4632735A (en) Process for the electrolytic coloring of aluminum or aluminum alloys
US4115212A (en) Electrolytic coloring process for non anodized aluminum and its alloys
CN109137040A (en) A kind of aluminium alloy mantoquita electrolysis coloring processes and product
JP3816754B2 (en) Aluminum material and aluminum alloy material having gray color composite film and method for producing the same
KR100266454B1 (en) A method for coloring nonferrous metal using ti-plating
JPS5948960B2 (en) How to color aluminum or aluminum alloy with primary colors
EP0936288A2 (en) A process for producing colour variations on electrolytically pigmented anodized aluminium
KR950012426B1 (en) Method for forming a grained board pattern of aluminum material
JP3817772B2 (en) Method for coloring anodized film of aluminum material
JP3202949B2 (en) Method for forming colored film of aluminum and aluminum alloy
JP3140165B2 (en) Method for electrolytic coloring of anodized aluminum surface
JPH11335892A (en) Preparation of aluminum material having composite coating film composed of translucent or opaque anodically oxidized film and coating film
JP3344973B2 (en) How to color aluminum material
KR950012427B1 (en) Method for a grained board pattern of aluminum materials
CN114990660A (en) Variable-angle different-color anodic oxidation method
JP3562123B2 (en) Achromatic gray coloring method for aluminum material
Yamamuro et al. Effects of anodic electrodeposition coating on the structure of three-step coloring films on aluminum
CN115803483A (en) Method for producing interference coatings
KR950012428B1 (en) Method for treating a surface of aluminum materials

Legal Events

Date Code Title Description
AS Assignment

Owner name: LORIN INDUSTRIES, INC., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DARCY, KEVIN H.;REEL/FRAME:031632/0001

Effective date: 20131118

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION