US20140056750A1 - Method And Apparatus For The Production Of A Casting - Google Patents

Method And Apparatus For The Production Of A Casting Download PDF

Info

Publication number
US20140056750A1
US20140056750A1 US13/764,695 US201313764695A US2014056750A1 US 20140056750 A1 US20140056750 A1 US 20140056750A1 US 201313764695 A US201313764695 A US 201313764695A US 2014056750 A1 US2014056750 A1 US 2014056750A1
Authority
US
United States
Prior art keywords
casting
chamber
cooling
mould
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/764,695
Inventor
James Vernon Pezzutti
Ewan O'Leary
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Weir Minerals Australia Ltd
Original Assignee
Weir Minerals Australia Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2007904899A external-priority patent/AU2007904899A0/en
Application filed by Weir Minerals Australia Ltd filed Critical Weir Minerals Australia Ltd
Priority to US13/764,695 priority Critical patent/US20140056750A1/en
Publication of US20140056750A1 publication Critical patent/US20140056750A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D30/00Cooling castings, not restricted to casting processes covered by a single main group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/04Influencing the temperature of the metal, e.g. by heating or cooling the mould
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/84Controlled slow cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D5/00Heat treatments of cast-iron
    • C21D5/04Heat treatments of cast-iron of white cast-iron

Definitions

  • a method and apparatus are disclosed for the production of a casting.
  • the method and apparatus find particular application to the casting of metals such as white cast irons as defined in Australian Standard AS2027-2007 (equivalent to International Standard IS021988:2006).
  • the method and apparatus can be applied to the casting of certain other ferrous metals including steel.
  • Certain materials are cast in a mould and then allowed to solidify and cool in the mould over a number of days/weeks.
  • a thick section say, >150 mm
  • white cast iron component is cast from molten metal and placed in a sand mould, to avoid cracking it may be allowed to solidify and cool in the mould over a long period (in extreme cases up to around fourteen days).
  • Slow cooling is employed to prevent cracking of the resulting component which can occur if the component is removed from the mould too early and exposed to the atmosphere for a time.
  • a long cooling time results in significant delays in the production process, as well as occupying capital equipment and space.
  • U.S. Pat. No. 6,199,618, EP 625390, GB1600405 and JP 04-344859 each disclose controlled cooling processes and apparatus for castings. In each case the casting is conveyed through successively cooled stages of oven-like apparatus.
  • the method can allow the casting to be removed from a mould much earlier than is usually the case, and then the cooling of the casting can be controlled over a much shorter time period.
  • the cast can be removed from the mould when it solidifies and then cooled in the chamber over a few days (rather than over as much as fourteen days in the mould, for example).
  • Such removal from the mould is known variously in the art as “knock-out”, “shake-out” or “break-out”, whereby the method can provide for early “knock-out”, “shake-out” or “break-out”, and can also provide the cooled casting sooner to subsequent finishing procedures.
  • the method can reduce delays in the casting process, and consequently reduce delays in the overall production process. Furthermore, the method can make capital equipment and space available again more quickly for production of the next casting.
  • the method is typically though not exclusively used for the casting of brittle materials. Such materials are most susceptible to cracking as a result of thermal shock and so, prior to the present method, casting of these materials has required lengthy mould residence times to permit gradual cooling to occur. Such materials can include certain ferrous alloys such as white cast irons and steel. The method can thus find use in the reduction of the cooling time of a wide range of brittle cast materials and/or materials susceptible to thermal shock.
  • the chamber can reduce any effect on the casting caused by air movement and flow immediately outside of the chamber.
  • this can mitigate against thermal shock, which can otherwise lead to cracking of the casting during the cooling process.
  • the chamber can be insulated to facilitate the controlled rate of cooling of the casting.
  • Parameters such as the materials of construction of the chamber itself, the type of insulation material selected, and the thickness and/or heat transfer coefficient of that insulation material, can be selected to control the rate of cooling of the casting. For example, for a white cast iron casting, the rate of cooling can be controlled by the appropriate selection of such parameters so as not to exceed about 40° C./hour.
  • the chamber can be insulated so as to maintain a pre-selected temperature differential between a hottest portion and a coolest portion of the solidified casting, for example across the thickness of the casting. Maintaining this temperature differential can prevent weakening, cracking or breakage of the casting.
  • the hottest portion can be located within the solidified casting and the coolest portion can be located at an external surface of the solidified casting. However, these locations can vary depending on the specific casting geometry.
  • the chamber can be insulated so as to maintain a pre-selected temperature differential between:
  • an impeller used in a centrifugal pump can generally be annular in shape and some of the moulding material may be retained in the central hollow region.
  • the temperature of the casting external surface can be determined from the chamber atmospheric temperature surrounding the casting.
  • the pre-selected temperature differential that is maintained across the thickness of the solidified casting may be less than approximately 100° C.
  • the differential is pre-selected to accommodate for a difference in material cooling rates (and thus a difference in contraction between, for instance, a casting interior and exterior), thereby tending to prevent or avoid material cracking or breaking
  • the mould prior to locating the solidified casting in the chamber, can be fully removed from an exterior of the casting.
  • the moulding material comprises sand
  • the moulding sand can be removed from the casting exterior by scraping or otherwise dislodging the sand particles before the casting is located in the chamber.
  • the casting comprises a hollow interior, at least some if not all of the moulding material may be retained therein when the solidified casting is located in the chamber.
  • gases emitted from the casting as it cools may be ventilated, for example by being drawn or moved away from the casting and the mould by a fan and directed towards a ventilation installation.
  • gases emitted from the casting as it cools may be ventilated, for example by being drawn or moved away from the casting and the mould by a fan and directed towards a ventilation installation.
  • operator(s) can be protected from exposure to noxious gases (such as carbon monoxide and sulfur dioxide) that are emitted from the casting.
  • the casting after removing the mould at least in part from the solidified casting, the casting can be lifted and deposited onto a base for the chamber. After that, a housing which forms the remainder the chamber can be located on the base to enclose the casting.
  • This procedure can be simply configured and thus quickly enacted to thereby reduce the exposure time of the casting to the surrounding atmosphere before it is enclosed within the chamber.
  • ventilation can be employed to dissipate/capture noxious mould off-gases such as carbon monoxide and sulfur dioxide.
  • the method of the first aspect can be used in conjunction with both sand casting and the so-called Replicast® moulding and casting technique (developed by Castings Technology International).
  • the inventors surmise that the method works because the apparatus simulates the thermal insulation properties of the sand mould, but replaces that mould with a relatively large air barrier, which is of lower thermal capacity and permits more rapid cooling.
  • the inventors further surmise that when a white cast iron material is cooling, over time there is a transformation of the metallurgy to form martensite, which has excellent hardness properties and is desirable in the final product.
  • martensite when martensite is formed it also results in a small expansion in size of the metal that has undergone sufficient cooling. If the temperature differential between a hottest portion and a coolest portion of a solidified casting is too great, then during cooling a ‘skin’ or outer layer of hard martensite can form on the outside of the casting well before such metallurgy is formed within the centre of a section of the casting.
  • the present inventive method and apparatus can address this by suitable, controlled cooling across casting sections.
  • the chamber can be operatively connected to an external heating source to enable it to be heated.
  • the heating of the chamber subsequent to the controlled cooling of the casting can achieve an in-situ tempering of the casting. In one example, for a white cast iron product the chamber can be heated to around 1000° C. for a pre-determined interval of around 4 hours to effect the heat treatment process.
  • the method of the first aspect can comprise a further step of removing the casting from the chamber once it has cooled to a predetermined temperature.
  • a predetermined temperature may be well above room temperature but not so high that when the casting is removed from the chamber it then cracks or breaks.
  • the predetermined temperature at which the casting is removed from the chamber can be approximately 150° C.
  • a method for cooling a newly solidified casting comprising the step of locating the casting in a chamber that completely surrounds and facilitates a controlled rate of cooling of the casting.
  • the method of the second aspect can reduce delays in the casting production process, as well as more quickly making capital equipment and space available again.
  • newly solidified is to be understood to refer to a casting that has solidified in a mould sufficiently such that it can be transferred to the chamber.
  • the method of the second aspect can form part of and be implemented as per the method of the first aspect.
  • the step of locating the casting in a chamber is to be understood to include the in-situ locating of a chamber around the newly solidified casting by formation of the chamber, or the positioning of a pre-made chamber, in position. For example, removal of just a cope of a moulding box may expose a sufficient amount of the casting to then enable the controlled rate of casting cooling to take place within the chamber.
  • apparatus for cooling of a casting comprising a chamber which is adapted to completely surround and facilitate a controlled rate of cooling of the casting.
  • the apparatus of the third aspect can speed up the casting production process, whereby the apparatus can be more quickly re-used in the production procedure.
  • the use of a surrounding chamber is also simple, cost-effective and space-effective, as compared to conveyor-type apparatus.
  • Such apparatus can be easily moved by one operator using a forklift truck, stored and even stacked during cooling, in situations where there is limited working space.
  • Such apparatus is well suited to a batch-type casting production process, as described herein.
  • the chamber is insulated.
  • the chamber can be insulated with an insulation material having a pre-selected thickness and/or a pre-selected heat transfer coefficient, each of which may be selected so as to facilitate the controlled rate of cooling of the casting.
  • the insulation material can be a refractory blanket that lines an interior surface of the chamber.
  • the refractory blanket can be formed from a magnesium-calcium-silicate blanket material (such as is marketed under the trade mark Kaowool®, owned by Thermal Ceramics, Inc).
  • Kaowool® owned by Thermal Ceramics, Inc.
  • the particular insulation material employed, its thickness and its heat transfer coefficient can be selected from many alternative materials so as to best control and optimise the rate of cooling of the casting.
  • the chamber comprises a base and a housing that is locatable on the base to close the chamber.
  • the base and housing can be shaped and configured to define a square or rectangular enclosed box.
  • the shape and configuration of the base and the housing may be optimised or approximated to the particular casting, depending on the circumstances.
  • the chamber is typically formed of a material that can withstand the temperature of a newly solidified casting.
  • the chamber can be fabricated from steel (such as mild steel).
  • the insulation can be pared back and optionally vents and/or extractor fans may be incorporated into the housing.
  • gases having an insulating/blanketing or even a heating effect may be initially introduced into and then optionally enclosed within the chamber during cooling.
  • a casting that is produced by the method of the first and second aspects, or that is produced in the apparatus of the third aspect.
  • the casting of the fourth aspect is typically though not exclusively a brittle material and/or a material that is susceptible to thermal shock.
  • the casting is of white cast iron.
  • the white cast iron may have a chromium content ranging from 1.5 to 40 wt % and a carbon content varying from 0.5 to 5.5 wt %.
  • the white cast iron may have a chromium content of 25 to 35 wt %.
  • the casting can form any component of a pump, such as an impeller, a volute (shell/casing/housing), a pump lining, a throat bush, and so on.
  • a vast array of components and shapes can be produced in accordance with the method and apparatus of the first to third aspects, not at all limited to pump components.
  • FIG. 1 shows a perspective view of a cooling chamber embodiment
  • FIGS. 2 to 6 schematically depict the sequence of steps that is followed in a method for the production of a casting.
  • FIG. 1 shows a perspective view of an embodiment of a chamber suitable for facilitating controlled cooling.
  • a chamber for facilitating a controlled rate of cooling is shown in the form of a cooling box 10 .
  • the box 10 comprises a generally rectangular base panel 12 and a housing in the form of a cover 14 which is arranged with four rectangular side panels 19 that are joined orthogonally to one another, and each of which depending from a top plate 20 .
  • the base panel 12 is spaced from the ground by hollow beams 16 , which are also shaped and located to receive the tines of a forklift therein for lifting of the base panel 12 and for lifting an assembled/laden cooling box 10 .
  • the cover 14 comprises a lower opening 18 which is mountable snugly at the base panel 12 and through which a casting which is located on the base 12 is received in use into the interior of the cover 14 .
  • the cover 14 has a top plate 20 that closes its uppermost end in use and which is arranged opposite to the opening 18 .
  • Four hook loops 22 are fastened to the outermost, upper surface of the top plate 20 , to which the grappling hooks of an overhead crane can be attached (as shown in FIG. 5 ). This enables raising, lowering and movement of the cover 14 with respect to the base 12 .
  • the base panel 12 and the cover 14 are fabricated from mild steel panels which have been welded together.
  • the entire interior surfaces of the base panel 12 and cover 14 are lined with a refractory blanket 24 formed from a magnesium-calcium-silicate (MgCaSiO 2 ) blanket material (such as Kaowool® owned by Thermal Ceramics, Inc).
  • MgCaSiO 2 magnesium-calcium-silicate
  • Kaowool® owned by Thermal Ceramics, Inc.
  • the thickness and heat transfer coefficient of the blanket material is selected to best control and optimise the rate of cooling of the casting.
  • the cooling box 10 In use, the cooling box 10 completely surrounds a casting to enable it to cool at a controlled rate.
  • the use of a box, as opposed to a more complex cooling oven with a conveyor arrangement, is simple as well as being cost effective and space efficient.
  • a white cast iron component 30 for a centrifugal pump was cast from molten metal in a sand-containing moulding box 32 having a cope (top half) 34 and drag (bottom half) 36 .
  • the component 30 was allowed to solidify and cool in the mould over a period of about 3 hours (a time determined by the modulus of the casting or the ratio of the total volume divided by surface area).
  • For white cast iron pump components it was observed that the component temperature dropped from around 1390° C. to about 990-1000° C. over this period.
  • the cope 34 of the moulding box 32 was removed by being lifted by a crane 38 and moved away from the drag 36 .
  • the moulding itself being formed from a set sand material, was then generally broken away from the exterior of the component (for example, by being manually broken apart or by use of a remotely operated machine).
  • some sand was retained within its core (eg. a pump impeller had an internal cavity that was observed to remain partially sand-filled).
  • a fan 40 was positioned behind the operator 42 to generate a flow of air to move noxious gases released from the casting 30 and the mould to be moved towards and into a fume extraction system 43 . This mitigated exposure of any operators 42 to such gases.
  • the component 30 was then engaged and lifted by grappling hooks to move it out of the drag 36 , and to place it onto the base panel 12 ′ of the cooling box 10 ′.
  • the cover 14 ′ was then moved into position by an overhead crane 38 so as to be seated on the base panel 12 ′.
  • Thermocouples were positioned on, and inside of, the component 30 , and within the cooling box 10 ′ in a location that is spaced away from the component 30 . Over time, recordings from these thermocouples have enabled the type of insulation material to be optimised. In one example, this was achieved by selecting a heat transfer coefficient and material thickness so that the rate of cooling of the casting 30 was able to be controlled to not exceed around 40° C./hour.
  • the component 30 was enclosed in the insulated, air-filled cooling box 10 and allowed to cool in a controlled manner over a period of around 2-5 days. Temperature recordings taken using the thermocouples ensured that the temperature differential between the interior and exterior of the component was maintained at less than approximately 100° C. to prevent the casting material from cracking over the cooling period. Any required adjustments in insulation material to maintain this differential were noted and made.
  • the end of the cooling period was denominated by a component temperature at which the component 30 could be removed from the cooling box 10 ′ and into the surrounding atmosphere without cracking due to thermal shock. This varied according to component shape, size and material, but for white cast iron components was generally around 150° C.
  • FIGS. 2 to 6 A schematic cooling methodology sequence is depicted in FIGS. 2 to 6 and will now be described as follows:
  • FIG. 2 shows a moulding box 32 being positioned by a crane at a work area A.
  • the base 12 ′ of a cooling box 10 ′ is positioned adjacent to the work area A.
  • an extraction unit 43 is also located adjacent to the work area to extract SO 2 and CO emissions (eg. which are emitted when the moulding box is opened).
  • FIG. 2 also shows that an operator 42 has positioned a fan unit 40 so as to draw or move atmospheric air across the moulding box 32 and towards the extraction unit 43 , to prevent the noxious gases from reaching the operator 42 . This movement of atmospheric air was maintained throughout the knock-out procedure.
  • FIG. 3 illustrates the removal of the cope 34 of the moulding box 32 which was then placed on the floor of the work area A adjacent to the moulding box 30 .
  • the removal of the cope 34 exposes a moulded pump component 30 seated in the drag 36 of the moulding box 32 .
  • the operator 42 then proceeded to break away the sand moulding from the exterior of the component 30 , for example by manually breaking the set sand apart or by use of some type of drilling machine.
  • FIG. 4 illustrates the component 30 being lifted out of the drag 36 by using grappling hooks 50 connected to an overhead crane 38 to lift and to then lower the component 30 onto the base panel 12 ′ of the cooling box 10 ′. During this time it will be seen that ventilation from the fan 40 and extraction of gases via the extraction unit 43 are maintained.
  • FIG. 5 illustrates the cooling box cover 14 ′ being lifted and lowered onto the base panel 12 ′ to thus enclose the component 30 within the box 10 ′.
  • FIG. 6 indicates that the cooling box 10 ′ can then be removed from the work area A (for example by means of a forklift which inserts its tines into the hollow beams 16 ′).
  • the cooling box 10 ′ housing the component 30 is taken to another location where controlled cooling of the component can take place, thus freeing up the work area A for more of the activities shown in FIGS. 2 to 5 .
  • the boxes 10 ′ can be engineered so that they can be stacked one upon another (for instance, up to three boxes high).
  • the operator 42 is generally isolated from the casting 30 as much as possible, through the careful use and placement of ventilation and of the overhead crane and grappling hooks.
  • Percentage Lead time improvement refers to the improvement in white cast iron casting cooling time calculated, for example (a), by the difference between 72 hours (normal mould cooling time) and 42 hours (time in the cooling box) divided by 72 hours—this results in 42%.
  • Max. cooling box removal temp refers to the maximum temperature at which the casting can be removed from the cooling box without risk of cracking (below the temperature when expansion resulting from the formation of martensite occurs)
  • the method and apparatus described herein can be used in conjunction with both sand casting and the Replicast® moulding and casting technique.
  • the cooling box can be provided with air ventilation holes in the sides or top plate for an increased rate of release of gas and heat. This may be controlled in such a way so as not to set up significant air movement within the box, which might otherwise induce thermal shock and cracking or breaking of the component.
  • extractor fans may be incorporated into the housing in situations where higher cooling rates can be tolerated.
  • the thickness and/or performance parameters of insulation material can also be pared back to increase cooling rate
  • gases having an insulating/blanketing or even a heating effect may be initially introduced into and then optionally enclosed and maintained within the chamber during cooling. This retarding of rate can be performed in conjunction with increases of thickness and insulating performance of insulation material.
  • the chamber and the casting therein can be heated for a pre-determined interval to achieve a tempering or some other in-situ heat treatment of the casting.
  • the chamber can be connected to a direct source of heating to positively raise the internal temperature. This heating can be direct, for example by use of gas burners to generate heat in the box, or indirectly by passing hot gases into the chamber.
  • the casting in the chamber can be reheated, which saves on reheating and cycle time costs.
  • the casting is cooled to ambient temperature in the chamber, and then moved to a second position to be trimmed and fettled.
  • the casting may then need to be subjected to heat treatment, which necessitates reheating the casting in a second chamber or furnace, for example in the case of a white cast iron product by heating the casting to around 1000° C. for a pre-determined interval of around 4 hours to effect the heat treatment process.
  • the method and apparatus can be particularly and effectively applied for the cooling of castings of pump components such as impellers, shells/casings/housings (volutes), pump linings (such as frame plate liners), throat bushes and so on.
  • pump components such as impellers, shells/casings/housings (volutes), pump linings (such as frame plate liners), throat bushes and so on.
  • pump linings such as frame plate liners
  • throat bushes and so on a vast array of unrelated cast components and shapes can be cooled in accordance with the method and using the apparatus described herein.
  • the method and apparatus can be particularly and effectively applied to the cooling of cast ferrous alloys and certain other metals and metal-containing materials, especially brittle casting materials and/or casting materials that are susceptible to thermal shock.
  • a refractory blanket formed from a magnesium-calcium-silicate material has been described and tested, other blanket materials may be employed with certain casting materials, such as ceramic fibre blankets, vitreous magnesium-silicate fibre blankets, and other silica-type blankets including those spun from an alumina-silica-zirconia fibre, etc.
  • the step of locating the casting in a chamber can take place in-situ of the mould—that is, the chamber may be formed around the newly solidified casting after knock-out but without moving the casting. In such an instance, all that may be required is removal of the cope of a moulding box.
  • a chamber housing may then be adapted for placement directly onto the drag of the moulding box. This variation may arise when, for example, a sufficient amount of the casting is exposed by cope removal.
  • the moulding box may also be re-designed to help facilitate this in-situ housing placement and controlled cooling.

Abstract

A method and apparatus for the production of a casting comprises:
    • pouring molten material into a mould for forming the casting;
    • allowing the molten material to solidify;
    • removing the mould at least in part from the resulting solidified casting; and
    • locating the solidified casting in a chamber 10 that completely surrounds and facilitates a controlled rate of cooling of the casting.

Description

    TECHNICAL FIELD
  • A method and apparatus are disclosed for the production of a casting. The method and apparatus find particular application to the casting of metals such as white cast irons as defined in Australian Standard AS2027-2007 (equivalent to International Standard IS021988:2006). However, it should be appreciated that the method and apparatus can be applied to the casting of certain other ferrous metals including steel.
  • BACKGROUND ART
  • Certain materials (such as brittle materials, for example white cast iron) are cast in a mould and then allowed to solidify and cool in the mould over a number of days/weeks. For example, when a thick section (say, >150 mm) white cast iron component is cast from molten metal and placed in a sand mould, to avoid cracking it may be allowed to solidify and cool in the mould over a long period (in extreme cases up to around fourteen days). Slow cooling is employed to prevent cracking of the resulting component which can occur if the component is removed from the mould too early and exposed to the atmosphere for a time. However, a long cooling time results in significant delays in the production process, as well as occupying capital equipment and space.
  • U.S. Pat. No. 6,199,618, EP 625390, GB1600405 and JP 04-344859 each disclose controlled cooling processes and apparatus for castings. In each case the casting is conveyed through successively cooled stages of oven-like apparatus.
  • A reference herein to the prior art is not an admission that the prior art forms part of the common general knowledge of a person of ordinary skill in the art in Australia or elsewhere.
  • SUMMARY OF THE DISCLOSURE
  • In a first aspect there is disclosed a method for the production of a casting, the method comprising the steps of:
      • pouring molten material into a mould for forming the casting;
      • allowing the molten material to solidify;
      • removing the mould at least in part from around the resulting solidified casting; and
      • locating the solidified casting in a chamber that completely surrounds and facilitates a controlled rate of cooling of the casting.
  • By locating the solidified casting in a chamber that completely surrounds the casting, the method can allow the casting to be removed from a mould much earlier than is usually the case, and then the cooling of the casting can be controlled over a much shorter time period. For example, for certain thick section white cast iron components cast in a sand mould, the cast can be removed from the mould when it solidifies and then cooled in the chamber over a few days (rather than over as much as fourteen days in the mould, for example). Such removal from the mould is known variously in the art as “knock-out”, “shake-out” or “break-out”, whereby the method can provide for early “knock-out”, “shake-out” or “break-out”, and can also provide the cooled casting sooner to subsequent finishing procedures.
  • Thus, the method can reduce delays in the casting process, and consequently reduce delays in the overall production process. Furthermore, the method can make capital equipment and space available again more quickly for production of the next casting.
  • It should be understood that the terminology “completely surrounds the casting” as employed herein, does not exclude the chamber having gas ventilation passages and the like in wall(s) or a base thereof.
  • The method is typically though not exclusively used for the casting of brittle materials. Such materials are most susceptible to cracking as a result of thermal shock and so, prior to the present method, casting of these materials has required lengthy mould residence times to permit gradual cooling to occur. Such materials can include certain ferrous alloys such as white cast irons and steel. The method can thus find use in the reduction of the cooling time of a wide range of brittle cast materials and/or materials susceptible to thermal shock.
  • By completely surrounding the casting, the chamber can reduce any effect on the casting caused by air movement and flow immediately outside of the chamber. Advantageously, this can mitigate against thermal shock, which can otherwise lead to cracking of the casting during the cooling process.
  • In one form the chamber can be insulated to facilitate the controlled rate of cooling of the casting. Parameters such as the materials of construction of the chamber itself, the type of insulation material selected, and the thickness and/or heat transfer coefficient of that insulation material, can be selected to control the rate of cooling of the casting. For example, for a white cast iron casting, the rate of cooling can be controlled by the appropriate selection of such parameters so as not to exceed about 40° C./hour.
  • In addition, the chamber can be insulated so as to maintain a pre-selected temperature differential between a hottest portion and a coolest portion of the solidified casting, for example across the thickness of the casting. Maintaining this temperature differential can prevent weakening, cracking or breakage of the casting. In at least some casting embodiments the hottest portion can be located within the solidified casting and the coolest portion can be located at an external surface of the solidified casting. However, these locations can vary depending on the specific casting geometry.
  • In one particular example, when the casting comprises a body with a hollow interior in which some moulding material (such as moulding sand) has been retained, the chamber can be insulated so as to maintain a pre-selected temperature differential between:
    • (a) that part of the solidified casting hollow interior that is in contact with that moulding material; and
    • (b) an external surface of the solidified casting from which moulding material has been removed or mostly removed.
  • For example, an impeller used in a centrifugal pump can generally be annular in shape and some of the moulding material may be retained in the central hollow region. In this regard, the temperature of the casting external surface can be determined from the chamber atmospheric temperature surrounding the casting.
  • In one example, when the material being cast is white cast iron, the pre-selected temperature differential that is maintained across the thickness of the solidified casting may be less than approximately 100° C.
  • Again, whilst such a temperature differential can vary for different materials, the differential is pre-selected to accommodate for a difference in material cooling rates (and thus a difference in contraction between, for instance, a casting interior and exterior), thereby tending to prevent or avoid material cracking or breaking
  • In one form, prior to locating the solidified casting in the chamber, the mould can be fully removed from an exterior of the casting. For example, when the moulding material comprises sand, the moulding sand can be removed from the casting exterior by scraping or otherwise dislodging the sand particles before the casting is located in the chamber. However, as mentioned above, when the casting comprises a hollow interior, at least some if not all of the moulding material may be retained therein when the solidified casting is located in the chamber.
  • In addition, during removal of the mould from the casting exterior, gases emitted from the casting as it cools may be ventilated, for example by being drawn or moved away from the casting and the mould by a fan and directed towards a ventilation installation. Thus operator(s) can be protected from exposure to noxious gases (such as carbon monoxide and sulfur dioxide) that are emitted from the casting.
  • In the method of the first aspect, after removing the mould at least in part from the solidified casting, the casting can be lifted and deposited onto a base for the chamber. After that, a housing which forms the remainder the chamber can be located on the base to enclose the casting. This procedure can be simply configured and thus quickly enacted to thereby reduce the exposure time of the casting to the surrounding atmosphere before it is enclosed within the chamber. During this procedure, ventilation can be employed to dissipate/capture noxious mould off-gases such as carbon monoxide and sulfur dioxide.
  • The method of the first aspect can be used in conjunction with both sand casting and the so-called Replicast® moulding and casting technique (developed by Castings Technology International).
  • The inventors surmise that the method works because the apparatus simulates the thermal insulation properties of the sand mould, but replaces that mould with a relatively large air barrier, which is of lower thermal capacity and permits more rapid cooling.
  • The inventors further surmise that when a white cast iron material is cooling, over time there is a transformation of the metallurgy to form martensite, which has excellent hardness properties and is desirable in the final product. However, when martensite is formed it also results in a small expansion in size of the metal that has undergone sufficient cooling. If the temperature differential between a hottest portion and a coolest portion of a solidified casting is too great, then during cooling a ‘skin’ or outer layer of hard martensite can form on the outside of the casting well before such metallurgy is formed within the centre of a section of the casting. When the central core of the casting eventually does cool sufficiently to form martensite, the resulting small amount of expansion which then occurs in the metal can lead to cracking of the already hardened outermost ‘skin’ of the casting. This can cause a catastrophic failure of the casting and total wastage. The present inventive method and apparatus can address this by suitable, controlled cooling across casting sections.
  • In the method of the first aspect, and subsequent to the cooling process, there can also be a step of heating the chamber and the casting therein for a pre-determined interval. This heating step can be done to effect a heat treatment process on the casting which is enclosed in the chamber. Rather than removing the casting from the chamber after the interval in which a controlled rate of cooling occurs, the chamber can be operatively connected to an external heating source to enable it to be heated. The heating of the chamber subsequent to the controlled cooling of the casting can achieve an in-situ tempering of the casting. In one example, for a white cast iron product the chamber can be heated to around 1000° C. for a pre-determined interval of around 4 hours to effect the heat treatment process.
  • The method of the first aspect can comprise a further step of removing the casting from the chamber once it has cooled to a predetermined temperature. Such a temperature may be well above room temperature but not so high that when the casting is removed from the chamber it then cracks or breaks. For example, when the material being cast is a white cast iron, the predetermined temperature at which the casting is removed from the chamber can be approximately 150° C.
  • In a second aspect there is disclosed a method for cooling a newly solidified casting comprising the step of locating the casting in a chamber that completely surrounds and facilitates a controlled rate of cooling of the casting.
  • As with the first aspect, the method of the second aspect can reduce delays in the casting production process, as well as more quickly making capital equipment and space available again.
  • The terminology “newly solidified” is to be understood to refer to a casting that has solidified in a mould sufficiently such that it can be transferred to the chamber.
  • In other respects the method of the second aspect can form part of and be implemented as per the method of the first aspect.
  • Furthermore, in the method of the first and second aspects, the step of locating the casting in a chamber is to be understood to include the in-situ locating of a chamber around the newly solidified casting by formation of the chamber, or the positioning of a pre-made chamber, in position. For example, removal of just a cope of a moulding box may expose a sufficient amount of the casting to then enable the controlled rate of casting cooling to take place within the chamber.
  • In a third aspect there is disclosed apparatus for cooling of a casting, the apparatus comprising a chamber which is adapted to completely surround and facilitate a controlled rate of cooling of the casting.
  • Again, as with the first aspect, the apparatus of the third aspect can speed up the casting production process, whereby the apparatus can be more quickly re-used in the production procedure. The use of a surrounding chamber is also simple, cost-effective and space-effective, as compared to conveyor-type apparatus. Such apparatus can be easily moved by one operator using a forklift truck, stored and even stacked during cooling, in situations where there is limited working space. Such apparatus is well suited to a batch-type casting production process, as described herein.
  • In one form of the apparatus the chamber is insulated. For example, the chamber can be insulated with an insulation material having a pre-selected thickness and/or a pre-selected heat transfer coefficient, each of which may be selected so as to facilitate the controlled rate of cooling of the casting.
  • In one embodiment, the insulation material can be a refractory blanket that lines an interior surface of the chamber. The refractory blanket can be formed from a magnesium-calcium-silicate blanket material (such as is marketed under the trade mark Kaowool®, owned by Thermal Ceramics, Inc). However, the particular insulation material employed, its thickness and its heat transfer coefficient can be selected from many alternative materials so as to best control and optimise the rate of cooling of the casting.
  • In one form of the apparatus, the chamber comprises a base and a housing that is locatable on the base to close the chamber. For example, when the base and housing are combined they can be shaped and configured to define a square or rectangular enclosed box. However, the shape and configuration of the base and the housing may be optimised or approximated to the particular casting, depending on the circumstances.
  • Further, the chamber is typically formed of a material that can withstand the temperature of a newly solidified casting. For example, for a white cast iron casting, the chamber can be fabricated from steel (such as mild steel).
  • For certain cast materials where a faster rate of cooling can be tolerated (eg. faster than 40° C./hour) the insulation can be pared back and optionally vents and/or extractor fans may be incorporated into the housing. Alternatively, to retard cooling rate, gases having an insulating/blanketing or even a heating effect may be initially introduced into and then optionally enclosed within the chamber during cooling.
  • In a fourth aspect there is disclosed a casting that is produced by the method of the first and second aspects, or that is produced in the apparatus of the third aspect.
  • The casting of the fourth aspect is typically though not exclusively a brittle material and/or a material that is susceptible to thermal shock. In one form the casting is of white cast iron. Further, the white cast iron may have a chromium content ranging from 1.5 to 40 wt % and a carbon content varying from 0.5 to 5.5 wt %. In further embodiments, the white cast iron may have a chromium content of 25 to 35 wt %.
  • The casting can form any component of a pump, such as an impeller, a volute (shell/casing/housing), a pump lining, a throat bush, and so on. However, a vast array of components and shapes can be produced in accordance with the method and apparatus of the first to third aspects, not at all limited to pump components.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Notwithstanding any other forms which may fall within the scope of the method and apparatus as set forth in the Summary, specific embodiments of the method and apparatus will now be described, by way of example, and with reference to the accompanying drawings in which:
  • FIG. 1 shows a perspective view of a cooling chamber embodiment; and
  • FIGS. 2 to 6 schematically depict the sequence of steps that is followed in a method for the production of a casting.
  • DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS
  • Before describing a methodology for cooling of a casting, reference will first be made to FIG. 1 which shows a perspective view of an embodiment of a chamber suitable for facilitating controlled cooling.
  • In FIG. 1, a chamber for facilitating a controlled rate of cooling is shown in the form of a cooling box 10. The box 10 comprises a generally rectangular base panel 12 and a housing in the form of a cover 14 which is arranged with four rectangular side panels 19 that are joined orthogonally to one another, and each of which depending from a top plate 20. The base panel 12 is spaced from the ground by hollow beams 16, which are also shaped and located to receive the tines of a forklift therein for lifting of the base panel 12 and for lifting an assembled/laden cooling box 10.
  • The cover 14 comprises a lower opening 18 which is mountable snugly at the base panel 12 and through which a casting which is located on the base 12 is received in use into the interior of the cover 14. The cover 14 has a top plate 20 that closes its uppermost end in use and which is arranged opposite to the opening 18. Four hook loops 22 are fastened to the outermost, upper surface of the top plate 20, to which the grappling hooks of an overhead crane can be attached (as shown in FIG. 5). This enables raising, lowering and movement of the cover 14 with respect to the base 12.
  • The base panel 12 and the cover 14 are fabricated from mild steel panels which have been welded together. The entire interior surfaces of the base panel 12 and cover 14 are lined with a refractory blanket 24 formed from a magnesium-calcium-silicate (MgCaSiO2) blanket material (such as Kaowool® owned by Thermal Ceramics, Inc). The thickness and heat transfer coefficient of the blanket material is selected to best control and optimise the rate of cooling of the casting.
  • In use, the cooling box 10 completely surrounds a casting to enable it to cool at a controlled rate. The use of a box, as opposed to a more complex cooling oven with a conveyor arrangement, is simple as well as being cost effective and space efficient.
  • Some non-limiting Examples of a methodology for cooling of a casting will now be provided and which make use of the apparatus shown in FIG. 1. Reference will also be made to the schematic method sequence depicted in FIGS. 2 to 6.
  • EXAMPLE 1
  • An investigation was made to develop a casting process that incorporated an early “knock-out” (removal) of a cast component from a sand mould. It was noted that many such components would normally be allowed to solidify and slowly cool in the mould over a period of several (3-6) days to prevent component cracking and breaking
  • A white cast iron component 30 for a centrifugal pump was cast from molten metal in a sand-containing moulding box 32 having a cope (top half) 34 and drag (bottom half) 36. The component 30 was allowed to solidify and cool in the mould over a period of about 3 hours (a time determined by the modulus of the casting or the ratio of the total volume divided by surface area). For white cast iron pump components it was observed that the component temperature dropped from around 1390° C. to about 990-1000° C. over this period.
  • Once the component 30 had solidified (but was still red hot) the cope 34 of the moulding box 32 was removed by being lifted by a crane 38 and moved away from the drag 36. The moulding itself, being formed from a set sand material, was then generally broken away from the exterior of the component (for example, by being manually broken apart or by use of a remotely operated machine). Depending on the shape of the component, some sand was retained within its core (eg. a pump impeller had an internal cavity that was observed to remain partially sand-filled).
  • During removal of the cope 34 and removal of the sand from the exterior of the component 30 and up until enclosure of the component 30 within the cooling box 10′, a fan 40 was positioned behind the operator 42 to generate a flow of air to move noxious gases released from the casting 30 and the mould to be moved towards and into a fume extraction system 43. This mitigated exposure of any operators 42 to such gases.
  • The component 30 was then engaged and lifted by grappling hooks to move it out of the drag 36, and to place it onto the base panel 12′ of the cooling box 10′. The cover 14′ was then moved into position by an overhead crane 38 so as to be seated on the base panel 12′. Thermocouples were positioned on, and inside of, the component 30, and within the cooling box 10′ in a location that is spaced away from the component 30. Over time, recordings from these thermocouples have enabled the type of insulation material to be optimised. In one example, this was achieved by selecting a heat transfer coefficient and material thickness so that the rate of cooling of the casting 30 was able to be controlled to not exceed around 40° C./hour.
  • The component 30 was enclosed in the insulated, air-filled cooling box 10 and allowed to cool in a controlled manner over a period of around 2-5 days. Temperature recordings taken using the thermocouples ensured that the temperature differential between the interior and exterior of the component was maintained at less than approximately 100° C. to prevent the casting material from cracking over the cooling period. Any required adjustments in insulation material to maintain this differential were noted and made.
  • The end of the cooling period was denominated by a component temperature at which the component 30 could be removed from the cooling box 10′ and into the surrounding atmosphere without cracking due to thermal shock. This varied according to component shape, size and material, but for white cast iron components was generally around 150° C.
  • A schematic cooling methodology sequence is depicted in FIGS. 2 to 6 and will now be described as follows:
  • FIG. 2 shows a moulding box 32 being positioned by a crane at a work area A. In the work area, the base 12′ of a cooling box 10′ is positioned adjacent to the work area A. Also located adjacent to the work area is an extraction unit 43 to extract SO2 and CO emissions (eg. which are emitted when the moulding box is opened).
  • FIG. 2 also shows that an operator 42 has positioned a fan unit 40 so as to draw or move atmospheric air across the moulding box 32 and towards the extraction unit 43, to prevent the noxious gases from reaching the operator 42. This movement of atmospheric air was maintained throughout the knock-out procedure.
  • FIG. 3 illustrates the removal of the cope 34 of the moulding box 32 which was then placed on the floor of the work area A adjacent to the moulding box 30. The removal of the cope 34 exposes a moulded pump component 30 seated in the drag 36 of the moulding box 32. The operator 42 then proceeded to break away the sand moulding from the exterior of the component 30, for example by manually breaking the set sand apart or by use of some type of drilling machine.
  • FIG. 4 illustrates the component 30 being lifted out of the drag 36 by using grappling hooks 50 connected to an overhead crane 38 to lift and to then lower the component 30 onto the base panel 12′ of the cooling box 10′. During this time it will be seen that ventilation from the fan 40 and extraction of gases via the extraction unit 43 are maintained.
  • FIG. 5 illustrates the cooling box cover 14′ being lifted and lowered onto the base panel 12′ to thus enclose the component 30 within the box 10′.
  • Finally, FIG. 6 indicates that the cooling box 10′ can then be removed from the work area A (for example by means of a forklift which inserts its tines into the hollow beams 16′). The cooling box 10′ housing the component 30 is taken to another location where controlled cooling of the component can take place, thus freeing up the work area A for more of the activities shown in FIGS. 2 to 5. In this regard, to minimise the amount of space occupied by such cooling boxes 10′, the boxes 10′ can be engineered so that they can be stacked one upon another (for instance, up to three boxes high).
  • During the whole operation, the operator 42 is generally isolated from the casting 30 as much as possible, through the careful use and placement of ventilation and of the overhead crane and grappling hooks.
  • EXAMPLE 2
  • Applying the methodology of Example 1 the following results for different pump components were observed:
    • (a) A 900 kg centrifugal pump impeller was knocked out of the sand mould 93 minutes after pouring, and placed into the cooling box. The impeller was then able to be removed from the cooling box after 42 hrs. This compared favorably with a normal mould residence time for cooling of 72 hrs before knock-out.
    • (b) A 2190 kg centrifugal pump impeller was knocked out of the sand mould 180 minutes after pouring, and placed into the cooling box. The impeller was then able to be removed from the cooling box after 50 hrs. This compared favorably with a normal mould residence time for cooling of 120 hrs before knock-out.
    • (c) A 1200 kg centrifugal pump impeller was knocked out of the sand mould 95 minutes after pouring, and placed into the cooling box. The impeller was then able to be removed from the cooling box after 44 hrs. This compared favorably with a normal mould residence time for cooling of 144 hrs before knock-out.
      In general, the results can be summarised in the following table:
  • Removed
    from Percentage Lead Max. cooling
    Knock-out cooling box time box removal
    Component after: after: improvement temp.
    (a) 93 min. 42 hours 42% 219° C.
    (b)  3 hours 50 hours 58% 200° C.
    (c) 95 min. 44 hours 69% 220° C.
  • In the table the following terminology applies:
  • “Percentage Lead time improvement”—refers to the improvement in white cast iron casting cooling time calculated, for example (a), by the difference between 72 hours (normal mould cooling time) and 42 hours (time in the cooling box) divided by 72 hours—this results in 42%.
  • “Max. cooling box removal temp.”—refers to the maximum temperature at which the casting can be removed from the cooling box without risk of cracking (below the temperature when expansion resulting from the formation of martensite occurs)
  • Observations
  • Although castings of white cast iron are very susceptible to cracking from thermal stress caused by premature mould knock-out, the faster cooling rate achieved by the method and apparatus described herein did not have any adverse effect on the strength or integrity of the final casting product. Furthermore, the method and apparatus allowed an increase in the production process throughput. Further benefits can be summarised as leading to:
  • improved moulding box availability;
  • a reduction in the number of moulding boxes required;
  • an increase re-use availability of mould sand;
  • a reduced casting cooling time of the order of 30-60%;
  • a casting lead time improvement of the order of 40-70%;
  • an increased flexibility in workspace floor layout;
  • an improved plant space utilisation.
  • The method and apparatus described herein can be used in conjunction with both sand casting and the Replicast® moulding and casting technique.
  • Whilst a method and apparatus for producing and cooling a cast component has been described with reference to some specific embodiments, it should be appreciated that the method and apparatus can be embodied in many other forms.
  • For example, depending on the component material, the cooling box can be provided with air ventilation holes in the sides or top plate for an increased rate of release of gas and heat. This may be controlled in such a way so as not to set up significant air movement within the box, which might otherwise induce thermal shock and cracking or breaking of the component. Optionally, extractor fans may be incorporated into the housing in situations where higher cooling rates can be tolerated. The thickness and/or performance parameters of insulation material can also be pared back to increase cooling rate
  • Alternatively, to retard cooling rate, gases having an insulating/blanketing or even a heating effect (for example, controlled heated gases) may be initially introduced into and then optionally enclosed and maintained within the chamber during cooling. This retarding of rate can be performed in conjunction with increases of thickness and insulating performance of insulation material.
  • In one form of this, the chamber and the casting therein can be heated for a pre-determined interval to achieve a tempering or some other in-situ heat treatment of the casting. Instead of introducing heated gases merely as a means of controlling the chamber cooling rate, the chamber can be connected to a direct source of heating to positively raise the internal temperature. This heating can be direct, for example by use of gas burners to generate heat in the box, or indirectly by passing hot gases into the chamber.
  • Rather than removing the casting from the chamber after the interval in which a controlled rate of cooling occurs, the casting in the chamber can be reheated, which saves on reheating and cycle time costs. For example, in one embodiment the casting is cooled to ambient temperature in the chamber, and then moved to a second position to be trimmed and fettled. Depending on what it is, the casting may then need to be subjected to heat treatment, which necessitates reheating the casting in a second chamber or furnace, for example in the case of a white cast iron product by heating the casting to around 1000° C. for a pre-determined interval of around 4 hours to effect the heat treatment process.
  • By maintaining the casting in the chamber after the cooling interval, and then subjecting the casting to reheating can save on reheating costs by around 20-25% because there is no need to fully reheat the casting from ambient temperature up to the treatment temperature. Additionally the cycle time can be considerably shortened because the delay in reheating the product, as well as the losses in transfer time to and from reheating apparatus, are reduced.
  • The method and apparatus can be particularly and effectively applied for the cooling of castings of pump components such as impellers, shells/casings/housings (volutes), pump linings (such as frame plate liners), throat bushes and so on. However, a vast array of unrelated cast components and shapes can be cooled in accordance with the method and using the apparatus described herein.
  • In addition, the method and apparatus can be particularly and effectively applied to the cooling of cast ferrous alloys and certain other metals and metal-containing materials, especially brittle casting materials and/or casting materials that are susceptible to thermal shock.
  • Also, whilst a refractory blanket formed from a magnesium-calcium-silicate material has been described and tested, other blanket materials may be employed with certain casting materials, such as ceramic fibre blankets, vitreous magnesium-silicate fibre blankets, and other silica-type blankets including those spun from an alumina-silica-zirconia fibre, etc.
  • In a further alternative arrangement, the step of locating the casting in a chamber can take place in-situ of the mould—that is, the chamber may be formed around the newly solidified casting after knock-out but without moving the casting. In such an instance, all that may be required is removal of the cope of a moulding box. A chamber housing may then be adapted for placement directly onto the drag of the moulding box. This variation may arise when, for example, a sufficient amount of the casting is exposed by cope removal. The moulding box may also be re-designed to help facilitate this in-situ housing placement and controlled cooling.
  • In the foregoing description of preferred embodiments, specific terminology has been resorted to for the sake of clarity. However, the invention is not intended to be limited to the specific terms so selected, and it is to be understood that each specific term includes all technical equivalents which operate in a similar manner to accomplish a similar technical purpose. Terms such as “upper”, “lower”, “upwardly”, “outermost”, and the like are used as words of convenience to provide reference points and are not to be construed as limiting terms.
  • In order to avoid repetition, and for ease of reference, similar components and features of alternative embodiments that are shown in different drawings have been designated with an additional apostrophe, such as the base panel 12 in FIG. 1 and base panel 12′ in FIGS. 2 to 6.
  • While the method and apparatus has been described with reference to a number of preferred embodiments it should be appreciated that the method and apparatus can be embodied in many other forms.
  • In the claims which follow and in the preceding description, except where the context requires otherwise due to express language or necessary implication, the words “comprise” and variations such as “comprises” or “comprising” are used in an inclusive sense, i.e. to specify the presence of the stated features but not to preclude the presence or addition of further features in various embodiments of the method and apparatus.

Claims (14)

1-20. (canceled)
21. Apparatus for cooling of a casting, the apparatus comprising a chamber which is adapted to completely surround and facilitate a controlled rate of cooling of the casting.
22. Apparatus as claimed in claim 21 wherein the chamber is insulated.
23. Apparatus as claimed in claim 22 wherein the chamber is insulated with an insulation material having a pre-selected thickness, a pre-selected heat transfer coefficient or both.
24. Apparatus as claimed in claim 23 wherein the insulation material is a refractory blanket that lines an interior surface of the chamber.
25. Apparatus as claimed in claim 24 wherein the refractory blanket is formed from a magnesium-calcium-silicate material.
26. Apparatus as claimed in claim 21 wherein the chamber comprises a base, and a housing that is locatable on the base to close the chamber.
27. Apparatus as claimed in claim 21 wherein the chamber is formed of a material that can withstand the temperature of a newly solidified casting.
28. A casting produced by in the apparatus as set forth in claim 21.
29. A casting as claimed in claim 28 that is made of a brittle material and/or a material that is susceptible to thermal shock.
30. A casting as claimed in claim 28 that is made of white cast iron.
31. A casting as claimed in claim 30 wherein the white cast iron has a chromium content ranging from 1.5 to 40 wt %.
32. A casting as claimed in claim 28 that forms a component of a pump.
33. The casting according to claim 31, wherein the white cast iron has a chromium content of between 25 to 35 wt %.
US13/764,695 2007-09-10 2013-02-11 Method And Apparatus For The Production Of A Casting Abandoned US20140056750A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/764,695 US20140056750A1 (en) 2007-09-10 2013-02-11 Method And Apparatus For The Production Of A Casting

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
AU2007904899A AU2007904899A0 (en) 2007-09-10 A method and apparatus for the production of a casting
AU2007904899 2007-09-10
PCT/AU2008/001335 WO2009033211A1 (en) 2007-09-10 2008-09-09 A method and apparatus for the production of a casting
US45234009A 2009-12-21 2009-12-21
US13/764,695 US20140056750A1 (en) 2007-09-10 2013-02-11 Method And Apparatus For The Production Of A Casting

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US12/452,340 Continuation US8371362B2 (en) 2007-09-10 2008-09-09 Method and apparatus for the production of a casting
PCT/AU2008/001335 Continuation WO2009033211A1 (en) 2007-09-10 2008-09-09 A method and apparatus for the production of a casting

Publications (1)

Publication Number Publication Date
US20140056750A1 true US20140056750A1 (en) 2014-02-27

Family

ID=40451469

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/452,340 Active 2029-04-23 US8371362B2 (en) 2007-09-10 2008-09-09 Method and apparatus for the production of a casting
US13/764,695 Abandoned US20140056750A1 (en) 2007-09-10 2013-02-11 Method And Apparatus For The Production Of A Casting

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/452,340 Active 2029-04-23 US8371362B2 (en) 2007-09-10 2008-09-09 Method and apparatus for the production of a casting

Country Status (12)

Country Link
US (2) US8371362B2 (en)
EP (1) EP2185302B1 (en)
CN (1) CN101801564B (en)
AR (1) AR068394A1 (en)
AU (2) AU2008299571A1 (en)
BR (1) BRPI0814824B1 (en)
CA (2) CA2689475C (en)
CL (1) CL2008002676A1 (en)
PE (1) PE20091124A1 (en)
PH (1) PH12014502557A1 (en)
RU (1) RU2516417C2 (en)
WO (1) WO2009033211A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2557683A (en) * 2016-12-15 2018-06-27 Rolls Royce Plc An insulated container for and method of cooling a heated tooling component

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150050271A (en) * 2013-10-31 2015-05-08 현대모비스 주식회사 Manufacture method of pump housing for motors
CN105899311B (en) * 2013-12-30 2020-07-14 伟尔矿物澳大利亚私人有限公司 Composite metal product
US9950361B2 (en) * 2014-06-25 2018-04-24 Halliburton Energy Services, Inc. Insulation enclosure with a thermal mass
DE102014217701A1 (en) * 2014-09-04 2016-03-10 Huppert Engineering Gmbh & Co. Kg Process for producing metal casts
CN104625032A (en) * 2014-12-09 2015-05-20 宁夏共享铸钢有限公司 Slow cooling device for high-temperature steel casting knockout
CN108080619A (en) * 2017-12-14 2018-05-29 重庆同益机械有限公司 A kind of foundry's energy conservation and environmental protection heat sink
CN109290556A (en) * 2018-11-23 2019-02-01 安徽应流铸业有限公司 A kind of workshop casting moulds arranging apparatus
CN111640569A (en) * 2020-06-11 2020-09-08 赣州智晟知识产权咨询服务有限公司 Preparation method and equipment of neodymium iron boron magnet

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2020184A (en) * 1930-01-27 1935-11-05 Walter D Hodson Portable hood
US3915440A (en) * 1974-02-19 1975-10-28 Airco Inc Apparatus for controlling the cooling rate of metallic bodies
US3990203A (en) * 1976-03-29 1976-11-09 Greaves James R Insulated ceramic fiber panels for portable high temperature chambers
US4168013A (en) * 1977-10-17 1979-09-18 Trans Temp Inc. High temperature insulating container
US4202148A (en) * 1978-06-26 1980-05-13 Industrial Insulations, Inc. Method of making thick-walled refractory fiber modules and the product formed thereby
US4207066A (en) * 1978-09-25 1980-06-10 Fire Rite, Inc. Retractable gantry heat treat furnace
US4798368A (en) * 1987-07-30 1989-01-17 The Babcock & Wilcox Company Apparatus for controlled slow cooling of steel tubulars
US5101652A (en) * 1990-07-26 1992-04-07 Allegheny Ludlum Corporation Insulating heat retention system and method
US5209038A (en) * 1991-08-19 1993-05-11 Robbins Michael K Heat chamber lining
US20090014557A1 (en) * 2004-01-22 2009-01-15 Ewald Schmon Flow Reservoir for a Paint Spray Gun
US20100326009A1 (en) * 2009-06-30 2010-12-30 A.P. Green Industries, Inc. Ceramic fiber modules

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1600405A (en) 1978-05-04 1981-10-14 Carrier Drysys Ltd Cooling of articles
SU925546A1 (en) * 1980-05-21 1982-05-07 Предприятие П/Я Р-6205 Method and its versions for producing shaped iron castings
JPS62243717A (en) * 1986-04-15 1987-10-24 Kawasaki Steel Corp Slow cooling pot for wire-bar coil
CN2043899U (en) 1988-09-19 1989-09-06 上海宝山钢铁总厂 Thermal isolation casing for steels ingot
US5183518A (en) 1989-05-01 1993-02-02 Townley Foundry & Machine Co., Inc. Cryogenically super-hardened high-chromium white cast iron and method thereof
JPH04344859A (en) 1991-05-17 1992-12-01 Kobe Steel Ltd Device for cooling continuous cast slab
US5505247A (en) * 1993-05-21 1996-04-09 General Kinematics Corporation Casting process and system
JPH07195163A (en) 1993-12-29 1995-08-01 Katsuhiko Yamada Continuous casting secondary cooling method and its device
DE19632195C1 (en) 1996-08-09 1998-03-05 Michael Fenne Process for the production of castings
CN2522197Y (en) 2002-01-23 2002-11-27 武汉钢铁(集团)公司 Casting blank heat-insulating cover
CN2551374Y (en) * 2002-06-22 2003-05-21 唐山钢铁股份有限公司 Continuous casting blank heat insulation cover
AU2003902535A0 (en) * 2003-05-22 2003-06-05 Weir Warman Ltd Wear resistant cast iron
JP4227970B2 (en) 2005-03-17 2009-02-18 トヨタ自動車株式会社 High temperature component cooling device and method of cooling high temperature component
DE102005046027A1 (en) * 2005-09-05 2007-03-08 HOS Hottinger Systems GbR (vertretungsberechtigter Gesellschafter: Walter Leo Pöhlandt, 68782 Brühl) Method for casting molded parts
WO2008032378A1 (en) * 2006-09-13 2008-03-20 Toyota Jidosha Kabushiki Kaisha Hot part cooling apparatus and method of cooling hot part

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2020184A (en) * 1930-01-27 1935-11-05 Walter D Hodson Portable hood
US3915440A (en) * 1974-02-19 1975-10-28 Airco Inc Apparatus for controlling the cooling rate of metallic bodies
US3990203A (en) * 1976-03-29 1976-11-09 Greaves James R Insulated ceramic fiber panels for portable high temperature chambers
US4168013A (en) * 1977-10-17 1979-09-18 Trans Temp Inc. High temperature insulating container
US4202148A (en) * 1978-06-26 1980-05-13 Industrial Insulations, Inc. Method of making thick-walled refractory fiber modules and the product formed thereby
US4207066A (en) * 1978-09-25 1980-06-10 Fire Rite, Inc. Retractable gantry heat treat furnace
US4798368A (en) * 1987-07-30 1989-01-17 The Babcock & Wilcox Company Apparatus for controlled slow cooling of steel tubulars
US5101652A (en) * 1990-07-26 1992-04-07 Allegheny Ludlum Corporation Insulating heat retention system and method
US5209038A (en) * 1991-08-19 1993-05-11 Robbins Michael K Heat chamber lining
US20090014557A1 (en) * 2004-01-22 2009-01-15 Ewald Schmon Flow Reservoir for a Paint Spray Gun
US20100326009A1 (en) * 2009-06-30 2010-12-30 A.P. Green Industries, Inc. Ceramic fiber modules

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2557683A (en) * 2016-12-15 2018-06-27 Rolls Royce Plc An insulated container for and method of cooling a heated tooling component
GB2557683B (en) * 2016-12-15 2019-09-11 Rolls Royce Plc An insulated container for and method of cooling a heated tooling component

Also Published As

Publication number Publication date
CA2970418A1 (en) 2009-03-19
RU2010114162A (en) 2011-10-20
BRPI0814824A2 (en) 2015-02-03
CA2689475A1 (en) 2009-03-19
CA2689475C (en) 2018-03-20
AU2012203241B2 (en) 2013-05-16
EP2185302A1 (en) 2010-05-19
AR068394A1 (en) 2009-11-11
CN101801564B (en) 2013-11-20
AU2008299571A1 (en) 2009-03-19
RU2516417C2 (en) 2014-05-20
PE20091124A1 (en) 2009-07-25
EP2185302A4 (en) 2012-01-11
BRPI0814824B1 (en) 2016-10-18
CL2008002676A1 (en) 2010-01-04
US20100135842A1 (en) 2010-06-03
WO2009033211A1 (en) 2009-03-19
AU2012203241A1 (en) 2012-06-21
US8371362B2 (en) 2013-02-12
CN101801564A (en) 2010-08-11
EP2185302B1 (en) 2020-05-13
PH12014502557A1 (en) 2015-01-26

Similar Documents

Publication Publication Date Title
US8371362B2 (en) Method and apparatus for the production of a casting
JPS6161899B2 (en)
US20070289715A1 (en) Methods and apparatus for heat treatment and sand removal for castings
US20020084052A1 (en) Methods and apparatus for heat treatment and sand removal for castings
DK2844409T3 (en) A method of casting a molding part which is provided with at least one passage opening
RU2420368C2 (en) Continuous casting of reactive metals in using glass coat
KR20090056923A (en) Refractory crucibles capable of managing thermal stress and suitable for melting highly reactive alloys
CN105855468A (en) Ceramic shell manufacturing method and method for manufacturing ceramic shell of turbine blade
EP1225993B1 (en) Heat treatment and sand removal for castings
JP2006504531A (en) Method and apparatus for heat treatment and sand removal for castings
KR20070024675A (en) Integrated metal processing facility
US7275582B2 (en) Methods and apparatus for heat treatment and sand removal for castings
CN105478671A (en) Microseismic casting process for aluminum alloy precision-investment casting
US11235379B2 (en) Foundry process with hot mold casting
US5213149A (en) Mold and method for making variable thickness cast articles
EP3357602B1 (en) Shell mold sintering method and apparatus
US2020184A (en) Portable hood
JP6126746B2 (en) A method of releasing a casting cast from a molten metal from a mold
US2102258A (en) Method of producing ingots
JP2003013142A (en) Heat treatment method for cast-iron pipe and device therefor
JP2649724B2 (en) Casting method
JPH0635047B2 (en) How to remove the core
JPS59141345A (en) Ingot casting method and apparatus
CN117583548A (en) High-temperature alloy casting sequential solidification temperature gradient shell presintering method
US1957456A (en) Method of and apparatus for treating metal castings

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION