US20140056740A1 - Switched reluctance motor assembly - Google Patents

Switched reluctance motor assembly Download PDF

Info

Publication number
US20140056740A1
US20140056740A1 US13/737,761 US201313737761A US2014056740A1 US 20140056740 A1 US20140056740 A1 US 20140056740A1 US 201313737761 A US201313737761 A US 201313737761A US 2014056740 A1 US2014056740 A1 US 2014056740A1
Authority
US
United States
Prior art keywords
rotor
switched reluctance
coupled
reluctance motor
motor assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/737,761
Inventor
Jung Kyu Yim
Yong Wan CHO
Sang Ho Seo
Myung Geun Oh
Sung Tai Jung
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electro Mechanics Co Ltd
Original Assignee
Samsung Electro Mechanics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electro Mechanics Co Ltd filed Critical Samsung Electro Mechanics Co Ltd
Assigned to SAMSUNG ELECTRO-MECHANICS CO., LTD. reassignment SAMSUNG ELECTRO-MECHANICS CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHO, YONG WAN, JUNG, SUNG TAI, OH, MYUNG GEUN, SEO, SANG HO, YIM, JUNG KYU
Publication of US20140056740A1 publication Critical patent/US20140056740A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • F04D29/444Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/52Outlet

Definitions

  • the present invention relates to a switched reluctance motor assembly.
  • a switched reluctance motor called an SR motor is a motor in which both of a stator and a rotor have a magnetic structure, which is a salient pole, the stator has a concentrated type coil wound therearound, and the rotor is configured only of an iron core without any type of excitation device (a winding or a permanent magnet), such that a competitive cost is excellent.
  • the switched reluctance motor which rotates a rotor using a reluctance torque according to a change in magnetic reluctance, has a low manufacturing cost, hardly requires maintenance, and has an almost permanent lifespan due to high reliability.
  • the switched reluctance motor is configured to include: a stator part, which is a stator, including a stator yoke and a plurality of stator salient poles protruded from the stator yoke; and a rotor part, which is a rotor, including a rotor core and a plurality of rotor salient poles protruded from the rotor core so as to face the stator salient poles and rotatably received in the stator part.
  • a stator part which is a stator, including a stator yoke and a plurality of stator salient poles protruded from the stator yoke
  • a rotor part which is a rotor, including a rotor core and a plurality of rotor salient poles protruded from the rotor core so as to face the stator salient poles and rotatably received in the stator part.
  • This switched reluctance motor has been used in various fields such as a vacuum cleaner, or the like.
  • SRM switched reluctance motor
  • operation performance of a product is deteriorated.
  • coupling force of two bearing parts coupled to upper and lower portions of a shaft are reduced, such that it is difficult to secure concentricity of the two bearing parts.
  • vibration and noise are generated due to the bearing parts at the time of an operation of the motor. Therefore, a lifespan of the entire product including the motor is reduced.
  • the present invention has been made in an effort to provide a switched reluctance motor assembly that is capable of improving productivity by integrally forming a diffuser and a housing of a vacuum cleaner module including a switched reluctance motor with each other to simplify a product structure and is capable of improving operation performance and reliability of a product by implementing a more stable support structure of a bearing part.
  • a switched reluctance motor assembly including: a shaft forming the center of rotation of a motor; a rotor part rotatably coupled to the shaft; a first stopper coupled to an upper portion of the rotor part in an axial direction to support the rotor part; a second stopper coupled to a lower portion of the rotor part in the axial direction to support the rotor part; a first bearing part coupled to an upper portion of the first stopper in the axial direction; a second bearing part coupled to a lower portion of the second stopper in the axial direction; a diffuser part supporting the first bearing part and coupled to an upper end of the first stopper; and a motor housing formed integrally with the diffuser part and receiving the first and second bearing parts therein.
  • the rotor part may include an annular rotor core and a plurality of rotor poles protruded outwardly from the rotor core.
  • the first stopper may be formed as a balancing member for maintaining rotation balance of a switched reluctance motor.
  • the switched reluctance motor assembly may further include a stator part including a stator yoke receiving the rotor part therein and stator salient poles formed to be spaced apart from the rotor poles so as to correspond to the rotor poles and formed to be protruded inwardly of the stator yoke.
  • the switched reluctance motor assembly may further include an impeller part coupled to an upper portion of the diffuser part in the axial direction and rotatably coupled to the shaft.
  • the diffuser part may include at least one connecting member coupled integrally with the motor housing.
  • the connecting member may be formed along an outer circumference of the diffuser part and be protruded from an outer circumferential surface of the diffuser part to thereby be coupled integrally with the motor housing.
  • the switched reluctance motor assembly may further include a sensing magnet formed at a lower portion of the second bearing part in the axial direction and corresponding to the rotor part; and a printed circuit board disposed at a lower portion of the sensing magnet in the axial direction and having a hall sensor attached thereto so as to face the sensing magnet.
  • FIG. 1 is a cross-sectional view of a switched reluctance motor assembly according to a preferred embodiment of the present invention
  • FIG. 2 is a partial perspective view of an integral structure of a diffuser part and a motor housing according to the preferred embodiment of the present invention
  • FIG. 3 is a cut-away perspective view of the integral structure of the diffuser part and the motor housing shown in FIG. 2 ;
  • FIG. 4 is a schematic cross-sectional view of a rotor part and a stator part according to the preferred embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of a switched reluctance motor assembly according to a preferred embodiment of the present invention
  • FIG. 2 is a partial perspective view of an integral structure of a diffuser part and a motor housing according to the preferred embodiment of the present invention
  • FIG. 3 is a cut-away perspective view of the integral structure of the diffuser part and the motor housing shown in FIG. 2
  • FIG. 4 is a schematic cross-sectional view of a rotor part 20 and a stator part 30 according to the preferred embodiment of the present invention.
  • the switched reluctance motor assembly may include a shaft 10 forming the center of rotation of a motor, a rotor part 20 rotatably coupled to the shaft 10 , a first stopper 41 coupled to an upper portion of the rotor part 20 in an axial direction to support the rotor part 20 , a second stopper 42 coupled to a lower portion of the rotor part 20 in the axial direction to support the rotor part 20 , a first bearing part 71 coupled to an upper portion of the first stopper 41 in the axial direction, a second bearing part 72 coupled to a lower portion of the second stopper 42 in the axial direction, a diffuser part 60 supporting the first bearing part 71 and coupled to an upper end of the first stopper 41 ; and a motor housing 80 formed integrally with the diffuser part 60 and receiving the first and second bearing parts 71 and 72 therein.
  • an integral structure of the diffuser part 60 and the motor housing 80 is implemented, such that separate components for the support structures of upper and lower bearing parts are omitted, thereby making it possible to improve precision of concentricity of the upper and lower bearing parts.
  • distortion of concentric parts of the bearing parts due to an assembling error that may be generated at the time of assembling the bearing parts is prevented, thereby making it possible to improve driving reliability and operation performance of the switched reluctance motor assembly.
  • the shaft 10 forms the center of rotation of the motor and is extended in the axial direction.
  • the axial direction in the present invention which is based on a direction in which the shaft 10 is formed, refers to directions toward upper or lower portions based on the shaft 10 shown in FIG. 1 .
  • a rotor part 20 to be described below is coupled to the shaft 10 forming the center of rotation of the motor.
  • the rotor part 20 may be configured to include an annular rotor core 21 and a plurality of rotor poles 22 protruded outwardly from the rotor core 21 .
  • the rotor core 21 has a hollow hole formed at a central portion thereof, and the shaft 10 is fixedly coupled to the hollow hole to transfer rotation of the rotor part 20 to the outside.
  • the plurality of rotor poles 22 may be formed to be protruded outwardly along an outer circumferential surface of the rotor core 21 and be formed to correspond to stator salient poles 32 to be described below.
  • the first stopper 41 is coupled to the upper portion of the rotor part 20 in the axial direction to serve to support the rotor part 20 .
  • the first stopper 41 is coupled to the shaft 10 while supporting the rotor part 20 , thereby rotating together with the rotor part 20 .
  • the first stopper 41 may support the rotor part 20 in the axial direction and be formed as a balancing member made of a resin such as a plastic, or the like, to adjust rotation balance at the time of rotation of the motor.
  • the first stopper When the first stopper is used as the balancing member, it senses a position at which rotation unbalance is generated and performs a cutting-process, thereby making it possible to balance the rotation of the motor.
  • the balancing member may be formed by processing a plastic, or the like, or be formed integrally with the rotor part 20 through injection-molding.
  • the second stopper 42 is coupled to the lower portion of the rotor part 20 in the axial direction to serve to support the rotor part 20 .
  • the second stopper 42 has a configuration similar to that of the first stopper 41 described above.
  • a material and a manufacturing method of the second stopper 42 are the same as those of the first stopper 41 described above.
  • the second stopper 42 may also be used as a balancing member made of a plastic material to maintain balance for rotation of the rotor part 20
  • a balancing member made of a plastic material to maintain balance for rotation of the rotor part 20
  • the position of the rotor part 20 may be detected using a sensing magnet 91 and a hall sensor 93 attached on a printed circuit board 92 .
  • the hall sensor 93 which is an element having a voltage varied according to strength of a magnetic field, uses a phenomenon (a hall effect) in which when a magnetic field is formed vertically to a direction of a current flowing in a conductor, a potential difference is generated in a direction vertical to that of the current flowing in the conductor. Therefore, the sensing magnet 91 is formed so that N and S poles intersect with each other, and rotates together with the rotor part 20 coupled to the shaft according to the rotation of the rotor part 20 to sense magnetic fields of the N and S poles and sense the position of the rotor part 20 , thereby making it possible to detect revolutions per minute (RPM).
  • RPM revolutions per minute
  • the first bearing part 71 is a component rotating the rotor part 20 while supporting weight in the axial direction in the shaft 10 including the rotating rotor part 20 and a load applied to the shaft 10 .
  • the first bearing part 71 is coupled to the upper portion of the first stopper 41 in the axial direction and is formed to be received in a motor housing to be described below.
  • the first bearing part 71 since the first bearing part 71 may be supported and fixed by an integral structure of a diffuser part 60 and a motor housing 80 to be described below, distortion due to an assembling error generated at the time of assembling the first bearing part 71 is prevented, thereby making it possible to improve precision of assembling concentricity with the second bearing part 72 disposed at a lower portion.
  • the second bearing part 72 may be coupled to the lower portion of the second stopper 42 in the axial direction.
  • the second bearing part 72 is also coupled so as to be disposed in the motor housing 80 together with the first bearing part 71 . Since a description of specific functions and actions of the second bearing part 72 is overlapped with that of the first bearing part 71 , it will be omitted.
  • the first bearing part 71 is supported by the integral structure of the diffuser part 60 and the motor housing 80 , thereby making it possible to easily secure the concentricity of the first and second bearing parts 71 and 72 .
  • the diffuser part 60 may be formed integrally with the motor housing 80 enclosing an outer side of the switched reluctance motor assembly.
  • a meaning that the diffuser part 60 is formed integrally with the motor housing 80 is that the diffuser part 60 is formed integrally with the motor housing 80 through a single mold at the time of being manufactured or is coupled to or supported by the motor housing 80 through a separate member.
  • a separate connecting member 63 may be formed at an outer circumferential surface of the diffuser part 60 so as to be coupled integrally with the motor housing 80 .
  • the connecting member 63 , the motor housing 80 , and the diffuser part 60 may be formed integrally with each other through a single mold.
  • the diffuser part 60 is formed integrally with the motor housing 80 , a separate member that has been used in order to fix the diffuser part 60 in the prior art is unnecessary, and the bearing part 71 may be fixed and supported through the integral structure of the diffuser part 60 and the motor housing 80 . Therefore, the distortion, or the like, of the first bearing part 71 is prevented, thereby making it possible to more stably perform an operation, or the like, of the first bearing part 71 .
  • the diffuser part 60 pressure of air sucked by an impeller part 50 to be described below increases in diffusers 61 of the diffuser part 60 , the air of which the pressure increases as described above, is supplied to return channels 62 disposed at a lower side through a space formed between an inner circumferential surface of the motor housing 80 covering an upper portion and an outer circumferential surface of the diffuser part 60 , and the air supplied to the return channels 62 as described above is guided to a central portion by the return channels 62 and is blown toward the motor, such that the air is discharged while cooling the motor.
  • the impeller part 50 is coupled to an upper portion of the diffuser part 60 in the axial direction and is coupled to the shaft 10 .
  • the impeller part 50 is coupled to the shaft 10 to rotate together with the shaft 10 at the time of the rotation of the motor, thereby sucking external air.
  • FIG. 1 an example of a vacuum cleaner module including the switched reluctance motor assembly is shown in FIG. 1 .
  • the impeller part 50 rotates in order to introduce the air from the outside at the time of an operation of the cleaner.
  • a stator part 30 is configured to include a stator yoke 31 and stator salient poles 32 .
  • the stator yoke 31 may include a hollow hole formed therein so as to receive the rotor part 20 therein, and a plurality of stator salient poles 32 may be formed to be protruded from an inner surface of the stator yoke 31 and correspond to the rotor poles 22 of the rotor part 20 .
  • a current is applied to the stator salient poles 32 of the stator yoke 31 to form a magnetic flux path through the stator salient poles 32 and the rotor poles 22 of the rotor part 20 facing the stator salient poles 32 , such that the rotor part 20 rotates.
  • the motor housing 80 is formed at an outer side of the rotor part 20 , the stoppers, and the first and second bearing parts 71 and 72 so as to be spaced apart from the rotor part 20 , the stoppers, and the first and second bearing parts 71 and 72 and to enclose the rotor part 20 , the stoppers, and the first and second bearing parts 71 and 72 .
  • the motor housing 80 structurally protects components received therein, such as the rotor part 20 , the stator part 30 , and the like, and prevents other foreign materials from being introduced from the outside thereinto, thereby making it possible to improve reliability in the operation of the motor.
  • the diffuser part of the switched reluctance motor assembly is manufactured and formed integrally with the motor housing, thereby making it possible to improve reliability and productivity in manufacturing the motor.
  • the diffuser part of the switched reluctance motor assembly is coupled integrally with the motor housing, thereby making it possible to omit a separate member for fixing the diffuser part and reduce vibration generated according to driving of the motor and noise according to the vibration.
  • the diffuser part of the switched reluctance motor assembly is coupled integrally with the motor housing, such that a coupling process using a separate screw for assembling the diffuser part and the bearing part to each other is omitted, thereby making it possible to more easily secure the concentricity of the upper and lower bearing parts.
  • the concentricity of the bearing parts is easily secured, thereby making it possible to reduce vibration and noise of the bearing parts that may be generated according to the driving of the motor.
  • the concentricity of the bearing parts is secured to reduce the generation of the vibration and the noise in the bearing parts, thereby making it possible to secure operation performance and driving reliability of the product according to the driving of the motor.
  • the diffuser part and the motor housing of the switched reluctance motor assembly are integrated with each other, thereby making it possible to more stably form a fixing and supporting structure of the bearing part and stably perform an operation of a product to which the switched reluctance motor assembly is used. Therefore, a fault and an operation error of the product are prevented, thereby making it possible to increase a lifespan of the product.

Abstract

Disclosed herein is a switched reluctance motor assembly capable of reducing an assembling error that is generated according to separate assembling and improving precision of assembling of bearing parts by forming a diffuser part and a motor housing integrally with each other. In the switched reluctance motor assembly, the diffuser is coupled integrally with the housing, such that a separate member for fixing the diffuser is omitted, thereby making it possible to reduce vibration according to driving of a motor and noise according to the vibration.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application claims the benefit of Korean Patent Application No. 10-2012-0091814, filed on Aug. 22, 2012, entitled “Switched Reluctance Motor Assembly”, which is hereby incorporated by reference in its entirety into this application.
  • BACKGROUND OF THE INVENTION
  • 1. Technical Field
  • The present invention relates to a switched reluctance motor assembly.
  • 2. Description of the Related Art
  • Generally, a switched reluctance motor (SRM) called an SR motor is a motor in which both of a stator and a rotor have a magnetic structure, which is a salient pole, the stator has a concentrated type coil wound therearound, and the rotor is configured only of an iron core without any type of excitation device (a winding or a permanent magnet), such that a competitive cost is excellent.
  • More specifically, the switched reluctance motor (SRM), which rotates a rotor using a reluctance torque according to a change in magnetic reluctance, has a low manufacturing cost, hardly requires maintenance, and has an almost permanent lifespan due to high reliability. The switched reluctance motor is configured to include: a stator part, which is a stator, including a stator yoke and a plurality of stator salient poles protruded from the stator yoke; and a rotor part, which is a rotor, including a rotor core and a plurality of rotor salient poles protruded from the rotor core so as to face the stator salient poles and rotatably received in the stator part.
  • This switched reluctance motor (SRM) has been used in various fields such as a vacuum cleaner, or the like. However, due to vibration or noise generated at the time of driving the switched reluctance motor (SRM) mounted in a vacuum cleaner module, operation performance of a product is deteriorated. In addition, coupling force of two bearing parts coupled to upper and lower portions of a shaft are reduced, such that it is difficult to secure concentricity of the two bearing parts. As a result, vibration and noise are generated due to the bearing parts at the time of an operation of the motor. Therefore, a lifespan of the entire product including the motor is reduced.
  • SUMMARY OF THE INVENTION
  • The present invention has been made in an effort to provide a switched reluctance motor assembly that is capable of improving productivity by integrally forming a diffuser and a housing of a vacuum cleaner module including a switched reluctance motor with each other to simplify a product structure and is capable of improving operation performance and reliability of a product by implementing a more stable support structure of a bearing part.
  • According to a preferred embodiment of the present invention, there is provided a switched reluctance motor assembly including: a shaft forming the center of rotation of a motor; a rotor part rotatably coupled to the shaft; a first stopper coupled to an upper portion of the rotor part in an axial direction to support the rotor part; a second stopper coupled to a lower portion of the rotor part in the axial direction to support the rotor part; a first bearing part coupled to an upper portion of the first stopper in the axial direction; a second bearing part coupled to a lower portion of the second stopper in the axial direction; a diffuser part supporting the first bearing part and coupled to an upper end of the first stopper; and a motor housing formed integrally with the diffuser part and receiving the first and second bearing parts therein.
  • The rotor part may include an annular rotor core and a plurality of rotor poles protruded outwardly from the rotor core.
  • The first stopper may be formed as a balancing member for maintaining rotation balance of a switched reluctance motor.
  • The switched reluctance motor assembly may further include a stator part including a stator yoke receiving the rotor part therein and stator salient poles formed to be spaced apart from the rotor poles so as to correspond to the rotor poles and formed to be protruded inwardly of the stator yoke.
  • The switched reluctance motor assembly may further include an impeller part coupled to an upper portion of the diffuser part in the axial direction and rotatably coupled to the shaft.
  • The diffuser part may include at least one connecting member coupled integrally with the motor housing.
  • The connecting member may be formed along an outer circumference of the diffuser part and be protruded from an outer circumferential surface of the diffuser part to thereby be coupled integrally with the motor housing.
  • The switched reluctance motor assembly may further include a sensing magnet formed at a lower portion of the second bearing part in the axial direction and corresponding to the rotor part; and a printed circuit board disposed at a lower portion of the sensing magnet in the axial direction and having a hall sensor attached thereto so as to face the sensing magnet.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and other objects, features and advantages of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
  • FIG. 1 is a cross-sectional view of a switched reluctance motor assembly according to a preferred embodiment of the present invention;
  • FIG. 2 is a partial perspective view of an integral structure of a diffuser part and a motor housing according to the preferred embodiment of the present invention;
  • FIG. 3 is a cut-away perspective view of the integral structure of the diffuser part and the motor housing shown in FIG. 2; and
  • FIG. 4 is a schematic cross-sectional view of a rotor part and a stator part according to the preferred embodiment of the present invention.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The objects, features and advantages of the present invention will be more clearly understood from the following detailed description of the preferred embodiments taken in conjunction with the accompanying drawings. Throughout the accompanying drawings, the same reference numerals are used to designate the same or similar components, and redundant descriptions thereof are omitted. Further, in the following description, the terms “first”, “second”, “one side”, “the other side” and the like are used to differentiate a certain component from other components, but the configuration of such components should not be construed to be limited by the terms. Further, in the description of the present invention, when it is determined that the detailed description of the related art would obscure the gist of the present invention, the description thereof will be omitted.
  • Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the attached drawings.
  • FIG. 1 is a cross-sectional view of a switched reluctance motor assembly according to a preferred embodiment of the present invention; FIG. 2 is a partial perspective view of an integral structure of a diffuser part and a motor housing according to the preferred embodiment of the present invention; FIG. 3 is a cut-away perspective view of the integral structure of the diffuser part and the motor housing shown in FIG. 2; and FIG. 4 is a schematic cross-sectional view of a rotor part 20 and a stator part 30 according to the preferred embodiment of the present invention.
  • The switched reluctance motor assembly according to the preferred embodiment of the present invention may include a shaft 10 forming the center of rotation of a motor, a rotor part 20 rotatably coupled to the shaft 10, a first stopper 41 coupled to an upper portion of the rotor part 20 in an axial direction to support the rotor part 20, a second stopper 42 coupled to a lower portion of the rotor part 20 in the axial direction to support the rotor part 20, a first bearing part 71 coupled to an upper portion of the first stopper 41 in the axial direction, a second bearing part 72 coupled to a lower portion of the second stopper 42 in the axial direction, a diffuser part 60 supporting the first bearing part 71 and coupled to an upper end of the first stopper 41; and a motor housing 80 formed integrally with the diffuser part 60 and receiving the first and second bearing parts 71 and 72 therein.
  • In the switched reluctance motor assembly according to the preferred embodiment of the present invention, an integral structure of the diffuser part 60 and the motor housing 80 is implemented, such that separate components for the support structures of upper and lower bearing parts are omitted, thereby making it possible to improve precision of concentricity of the upper and lower bearing parts. In addition, distortion of concentric parts of the bearing parts due to an assembling error that may be generated at the time of assembling the bearing parts is prevented, thereby making it possible to improve driving reliability and operation performance of the switched reluctance motor assembly. A detailed description of each component of the switched reluctance motor and the integral structure of the diffuser part 60 and the motor housing 80 will be provided below.
  • The shaft 10 forms the center of rotation of the motor and is extended in the axial direction. Particularly, the axial direction in the present invention, which is based on a direction in which the shaft 10 is formed, refers to directions toward upper or lower portions based on the shaft 10 shown in FIG. 1. A rotor part 20 to be described below is coupled to the shaft 10 forming the center of rotation of the motor.
  • The rotor part 20 may be configured to include an annular rotor core 21 and a plurality of rotor poles 22 protruded outwardly from the rotor core 21. The rotor core 21 has a hollow hole formed at a central portion thereof, and the shaft 10 is fixedly coupled to the hollow hole to transfer rotation of the rotor part 20 to the outside. The plurality of rotor poles 22 may be formed to be protruded outwardly along an outer circumferential surface of the rotor core 21 and be formed to correspond to stator salient poles 32 to be described below.
  • The first stopper 41 is coupled to the upper portion of the rotor part 20 in the axial direction to serve to support the rotor part 20. The first stopper 41 is coupled to the shaft 10 while supporting the rotor part 20, thereby rotating together with the rotor part 20. The first stopper 41 may support the rotor part 20 in the axial direction and be formed as a balancing member made of a resin such as a plastic, or the like, to adjust rotation balance at the time of rotation of the motor. When the first stopper is used as the balancing member, it senses a position at which rotation unbalance is generated and performs a cutting-process, thereby making it possible to balance the rotation of the motor. The balancing member may be formed by processing a plastic, or the like, or be formed integrally with the rotor part 20 through injection-molding.
  • The second stopper 42 is coupled to the lower portion of the rotor part 20 in the axial direction to serve to support the rotor part 20. The second stopper 42 has a configuration similar to that of the first stopper 41 described above. In addition, a material and a manufacturing method of the second stopper 42 are the same as those of the first stopper 41 described above. The second stopper 42 may also be used as a balancing member made of a plastic material to maintain balance for rotation of the rotor part 20 Although not shown, it is obvious to those skilled in the art to change the design so as to detect a rotation position of the rotor part 20 by forming a sensing groove in a lower end surface of the second stopper 42 in the axial direction and forming a sensor part 70 at a position corresponding to that of the sensing groove formed in the lower end surface of the second stopper 42. However, in the preferred embodiment of the present invention, as shown in FIG. 1, the position of the rotor part 20 may be detected using a sensing magnet 91 and a hall sensor 93 attached on a printed circuit board 92. The hall sensor 93, which is an element having a voltage varied according to strength of a magnetic field, uses a phenomenon (a hall effect) in which when a magnetic field is formed vertically to a direction of a current flowing in a conductor, a potential difference is generated in a direction vertical to that of the current flowing in the conductor. Therefore, the sensing magnet 91 is formed so that N and S poles intersect with each other, and rotates together with the rotor part 20 coupled to the shaft according to the rotation of the rotor part 20 to sense magnetic fields of the N and S poles and sense the position of the rotor part 20, thereby making it possible to detect revolutions per minute (RPM). Since a method of sensing the rotor part 20 using the sensing magnet 91 and the hall sensor 93 is the same as a general sensing method of detecting a magnetic field of a magnet using a hall sensor, a detailed description thereof will be omitted.
  • The first bearing part 71 is a component rotating the rotor part 20 while supporting weight in the axial direction in the shaft 10 including the rotating rotor part 20 and a load applied to the shaft 10. The first bearing part 71 is coupled to the upper portion of the first stopper 41 in the axial direction and is formed to be received in a motor housing to be described below. Particularly, in the preferred embodiment of the present invention, since the first bearing part 71 may be supported and fixed by an integral structure of a diffuser part 60 and a motor housing 80 to be described below, distortion due to an assembling error generated at the time of assembling the first bearing part 71 is prevented, thereby making it possible to improve precision of assembling concentricity with the second bearing part 72 disposed at a lower portion.
  • The second bearing part 72 may be coupled to the lower portion of the second stopper 42 in the axial direction. The second bearing part 72 is also coupled so as to be disposed in the motor housing 80 together with the first bearing part 71. Since a description of specific functions and actions of the second bearing part 72 is overlapped with that of the first bearing part 71, it will be omitted. As described above, the first bearing part 71 is supported by the integral structure of the diffuser part 60 and the motor housing 80, thereby making it possible to easily secure the concentricity of the first and second bearing parts 71 and 72.
  • The diffuser part 60 may be formed integrally with the motor housing 80 enclosing an outer side of the switched reluctance motor assembly. Here, a meaning that the diffuser part 60 is formed integrally with the motor housing 80 is that the diffuser part 60 is formed integrally with the motor housing 80 through a single mold at the time of being manufactured or is coupled to or supported by the motor housing 80 through a separate member. As shown in FIGS. 2 and 3, a separate connecting member 63 may be formed at an outer circumferential surface of the diffuser part 60 so as to be coupled integrally with the motor housing 80. In addition, the connecting member 63, the motor housing 80, and the diffuser part 60 may be formed integrally with each other through a single mold. Since the diffuser part 60 is formed integrally with the motor housing 80, a separate member that has been used in order to fix the diffuser part 60 in the prior art is unnecessary, and the bearing part 71 may be fixed and supported through the integral structure of the diffuser part 60 and the motor housing 80. Therefore, the distortion, or the like, of the first bearing part 71 is prevented, thereby making it possible to more stably perform an operation, or the like, of the first bearing part 71.
  • Meanwhile, in the diffuser part 60, pressure of air sucked by an impeller part 50 to be described below increases in diffusers 61 of the diffuser part 60, the air of which the pressure increases as described above, is supplied to return channels 62 disposed at a lower side through a space formed between an inner circumferential surface of the motor housing 80 covering an upper portion and an outer circumferential surface of the diffuser part 60, and the air supplied to the return channels 62 as described above is guided to a central portion by the return channels 62 and is blown toward the motor, such that the air is discharged while cooling the motor.
  • The impeller part 50 is coupled to an upper portion of the diffuser part 60 in the axial direction and is coupled to the shaft 10. The impeller part 50 is coupled to the shaft 10 to rotate together with the shaft 10 at the time of the rotation of the motor, thereby sucking external air. Particularly, an example of a vacuum cleaner module including the switched reluctance motor assembly is shown in FIG. 1. Here, the impeller part 50 rotates in order to introduce the air from the outside at the time of an operation of the cleaner.
  • As shown in FIG. 4, a stator part 30 is configured to include a stator yoke 31 and stator salient poles 32. The stator yoke 31 may include a hollow hole formed therein so as to receive the rotor part 20 therein, and a plurality of stator salient poles 32 may be formed to be protruded from an inner surface of the stator yoke 31 and correspond to the rotor poles 22 of the rotor part 20. A current is applied to the stator salient poles 32 of the stator yoke 31 to form a magnetic flux path through the stator salient poles 32 and the rotor poles 22 of the rotor part 20 facing the stator salient poles 32, such that the rotor part 20 rotates.
  • The motor housing 80 is formed at an outer side of the rotor part 20, the stoppers, and the first and second bearing parts 71 and 72 so as to be spaced apart from the rotor part 20, the stoppers, and the first and second bearing parts 71 and 72 and to enclose the rotor part 20, the stoppers, and the first and second bearing parts 71 and 72. The motor housing 80 structurally protects components received therein, such as the rotor part 20, the stator part 30, and the like, and prevents other foreign materials from being introduced from the outside thereinto, thereby making it possible to improve reliability in the operation of the motor.
  • According to the preferred embodiment of the present invention, the diffuser part of the switched reluctance motor assembly is manufactured and formed integrally with the motor housing, thereby making it possible to improve reliability and productivity in manufacturing the motor.
  • In addition, the diffuser part of the switched reluctance motor assembly is coupled integrally with the motor housing, thereby making it possible to omit a separate member for fixing the diffuser part and reduce vibration generated according to driving of the motor and noise according to the vibration.
  • Further, the diffuser part of the switched reluctance motor assembly is coupled integrally with the motor housing, such that a coupling process using a separate screw for assembling the diffuser part and the bearing part to each other is omitted, thereby making it possible to more easily secure the concentricity of the upper and lower bearing parts.
  • Furthermore, the concentricity of the bearing parts is easily secured, thereby making it possible to reduce vibration and noise of the bearing parts that may be generated according to the driving of the motor.
  • Moreover, the concentricity of the bearing parts is secured to reduce the generation of the vibration and the noise in the bearing parts, thereby making it possible to secure operation performance and driving reliability of the product according to the driving of the motor.
  • In addition, the diffuser part and the motor housing of the switched reluctance motor assembly are integrated with each other, thereby making it possible to more stably form a fixing and supporting structure of the bearing part and stably perform an operation of a product to which the switched reluctance motor assembly is used. Therefore, a fault and an operation error of the product are prevented, thereby making it possible to increase a lifespan of the product.
  • Although the embodiments of the present invention have been disclosed for illustrative purposes, it will be appreciated that the present invention is not limited thereto, and those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention.
  • Accordingly, any and all modifications, variations or equivalent arrangements should be considered to be within the scope of the invention, and the detailed scope of the invention will be disclosed by the accompanying claims.

Claims (8)

What is claimed is:
1. A switched reluctance motor assembly comprising:
a shaft forming the center of rotation of a motor;
a rotor part rotatably coupled to the shaft;
a first stopper coupled to an upper portion of the rotor part in an axial direction to support the rotor part;
a second stopper coupled to a lower portion of the rotor part in the axial direction to support the rotor part;
a first bearing part coupled to an upper portion of the first stopper in the axial direction;
a second bearing part coupled to a lower portion of the second stopper in the axial direction;
a diffuser part supporting the first bearing part and coupled to an upper end of the first stopper; and
a motor housing formed integrally with the diffuser part and receiving the first and second bearing parts therein.
2. The switched reluctance motor assembly as set forth in claim 1, wherein the rotor part includes an annular rotor core and a plurality of rotor poles protruded outwardly from the rotor core.
3. The switched reluctance motor assembly as set forth in claim 1, wherein the first stopper is formed as a balancing member for maintaining rotation balance of a switched reluctance motor.
4. The switched reluctance motor assembly as set forth in claim 1, further comprising a stator part including a stator yoke receiving the rotor part therein and stator salient poles formed to be spaced apart from the rotor poles so as to correspond to the rotor poles and formed to be protruded inwardly of the stator yoke.
5. The switched reluctance motor assembly as set forth in claim 1, further comprising an impeller part coupled to an upper portion of the diffuser part in the axial direction and rotatably coupled to the shaft.
6. The switched reluctance motor assembly as set forth in claim 1, wherein the diffuser part includes at least one connecting member coupled integrally with the motor housing.
7. The switched reluctance motor assembly as set forth in claim 6, wherein the connecting member is formed along an outer circumference of the diffuser part and is protruded from an outer circumferential surface of the diffuser part to thereby be coupled integrally with the motor housing.
8. The switched reluctance motor assembly as set forth in claim 1, further comprising:
a sensing magnet formed at a lower portion of the second bearing part in the axial direction and corresponding to the rotor part; and
a printed circuit board disposed at a lower portion of the sensing magnet in the axial direction and having a hall sensor attached thereto so as to face the sensing magnet.
US13/737,761 2012-08-22 2013-01-09 Switched reluctance motor assembly Abandoned US20140056740A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20120091814 2012-08-22
KR10-2012-0091814 2012-08-22

Publications (1)

Publication Number Publication Date
US20140056740A1 true US20140056740A1 (en) 2014-02-27

Family

ID=50148139

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/737,761 Abandoned US20140056740A1 (en) 2012-08-22 2013-01-09 Switched reluctance motor assembly

Country Status (2)

Country Link
US (1) US20140056740A1 (en)
JP (1) JP2014042441A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180235417A1 (en) * 2015-09-10 2018-08-23 Nidec Corporation Air blowing device and vacuum cleaner
EP3306102A4 (en) * 2015-05-29 2019-02-27 Nidec Corporation Blower apparatus and vacuum cleaner
WO2021016557A1 (en) * 2019-07-25 2021-01-28 Sharkninja Operating Llc Suction motor assembly with magnetic transmission
US11274672B2 (en) * 2017-08-01 2022-03-15 Mitsubishi Electric Corporation Rotation driving device, method for mounting rotation driving device, axial blower, method for mounting axial blower, and laser oscillator

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2726807A (en) * 1950-09-28 1955-12-13 Finnell System Inc Vacuum apparatus for water and dirt removal
US2915237A (en) * 1956-06-13 1959-12-01 Electrolux Corp Centrifugal blowers
US3096929A (en) * 1962-02-01 1963-07-09 Ametek Inc Vacuum cleaner motor fan unit
US3263909A (en) * 1964-07-30 1966-08-02 Black & Decker Mfg Co High-efficiency fan assembly for vacuum cleaner
US3366316A (en) * 1965-04-28 1968-01-30 Electrolux Corp Vacuum cleaner having a divergent diffuser
US4527960A (en) * 1984-02-03 1985-07-09 General Signal Corporation Bearing air seal for vacuum cleaner motor
US4767285A (en) * 1986-04-14 1988-08-30 Hitachi, Ltd. Electric blower
US5110266A (en) * 1989-03-01 1992-05-05 Hitachi, Ltd. Electric blower having improved return passage for discharged air flow
US5152676A (en) * 1990-07-16 1992-10-06 Zexel Corporation Aspirator fan
US6232696B1 (en) * 1999-07-23 2001-05-15 Amotron Co., Ltd. Vacuum generating apparatus with multiple rotors
US20030198563A1 (en) * 2002-04-19 2003-10-23 Angle Thomas L. Centrifugal pump with switched reluctance motor drive
US6703754B1 (en) * 2001-10-01 2004-03-09 Ametek, Inc. Electric motor and brush retaining assembly
US20050206258A1 (en) * 2004-03-19 2005-09-22 Gustafson James R Fluid-submerged electric motor
US7057318B2 (en) * 2001-12-21 2006-06-06 Johnson Electric S.A. Electric motor
US20070056139A1 (en) * 2005-09-09 2007-03-15 Myung-Won Lee Vacuum cleaner having brush motor using deceleration rate
US20070194637A1 (en) * 2003-09-19 2007-08-23 Dyson Technology Limited Rotor assembly with balancing member
US20080014080A1 (en) * 2006-07-12 2008-01-17 Johnson Electric S.A. Blower
US7334987B2 (en) * 2005-11-28 2008-02-26 Samsung Gwangju Electronics Co., Ltd. Fan assembly for vacuum cleaner

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08200295A (en) * 1995-01-27 1996-08-06 Hitachi Ltd Electric motor-driven blower
JPH10127019A (en) * 1996-11-08 1998-05-15 Fuji Koki Corp Motor
US7281908B2 (en) * 2001-12-21 2007-10-16 Matsushita Electric Indutrial Co., Ltd. Electrically powered blower with improved heat dissipation
JP5093748B2 (en) * 2007-03-01 2012-12-12 日本電産株式会社 motor

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2726807A (en) * 1950-09-28 1955-12-13 Finnell System Inc Vacuum apparatus for water and dirt removal
US2915237A (en) * 1956-06-13 1959-12-01 Electrolux Corp Centrifugal blowers
US3096929A (en) * 1962-02-01 1963-07-09 Ametek Inc Vacuum cleaner motor fan unit
US3263909A (en) * 1964-07-30 1966-08-02 Black & Decker Mfg Co High-efficiency fan assembly for vacuum cleaner
US3366316A (en) * 1965-04-28 1968-01-30 Electrolux Corp Vacuum cleaner having a divergent diffuser
US4527960A (en) * 1984-02-03 1985-07-09 General Signal Corporation Bearing air seal for vacuum cleaner motor
US4767285A (en) * 1986-04-14 1988-08-30 Hitachi, Ltd. Electric blower
US5110266A (en) * 1989-03-01 1992-05-05 Hitachi, Ltd. Electric blower having improved return passage for discharged air flow
US5152676A (en) * 1990-07-16 1992-10-06 Zexel Corporation Aspirator fan
US6232696B1 (en) * 1999-07-23 2001-05-15 Amotron Co., Ltd. Vacuum generating apparatus with multiple rotors
US6703754B1 (en) * 2001-10-01 2004-03-09 Ametek, Inc. Electric motor and brush retaining assembly
US7057318B2 (en) * 2001-12-21 2006-06-06 Johnson Electric S.A. Electric motor
US20030198563A1 (en) * 2002-04-19 2003-10-23 Angle Thomas L. Centrifugal pump with switched reluctance motor drive
US20070194637A1 (en) * 2003-09-19 2007-08-23 Dyson Technology Limited Rotor assembly with balancing member
US20050206258A1 (en) * 2004-03-19 2005-09-22 Gustafson James R Fluid-submerged electric motor
US20070056139A1 (en) * 2005-09-09 2007-03-15 Myung-Won Lee Vacuum cleaner having brush motor using deceleration rate
US7334987B2 (en) * 2005-11-28 2008-02-26 Samsung Gwangju Electronics Co., Ltd. Fan assembly for vacuum cleaner
US20080014080A1 (en) * 2006-07-12 2008-01-17 Johnson Electric S.A. Blower

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3306102A4 (en) * 2015-05-29 2019-02-27 Nidec Corporation Blower apparatus and vacuum cleaner
US10517448B2 (en) 2015-05-29 2019-12-31 Nidec Corporation Blower apparatus and vacuum cleaner
US20180235417A1 (en) * 2015-09-10 2018-08-23 Nidec Corporation Air blowing device and vacuum cleaner
US10638900B2 (en) * 2015-09-10 2020-05-05 Nidec Corporation Air blowing device and vacuum cleaner
US11274672B2 (en) * 2017-08-01 2022-03-15 Mitsubishi Electric Corporation Rotation driving device, method for mounting rotation driving device, axial blower, method for mounting axial blower, and laser oscillator
WO2021016557A1 (en) * 2019-07-25 2021-01-28 Sharkninja Operating Llc Suction motor assembly with magnetic transmission

Also Published As

Publication number Publication date
JP2014042441A (en) 2014-03-06

Similar Documents

Publication Publication Date Title
US20140062226A1 (en) Switched reluctance motor assembly
US10084361B2 (en) Motor
US10193416B2 (en) Motor
US9653960B2 (en) Motor and blower
US11588360B2 (en) Brushless motor and stator therefor
US20140134012A1 (en) Impeller and electric blower having the same
US10047754B2 (en) Brushless motor and fan using the motor
US9893590B2 (en) Inner-rotor brushless motor
US20140147311A1 (en) Switched reluctance motor assembly
US20140056740A1 (en) Switched reluctance motor assembly
JP7293680B2 (en) motor and blower
US20140042852A1 (en) Axial flux permanent magnet motor
US20130154406A1 (en) Switched reluctance motor assembly
JP2016129473A (en) motor
US20140001926A1 (en) Assembling structure for resolver and motor assembly having the same
JP2024015110A (en) rotating equipment
WO2018193944A1 (en) Vacuum pump, magnetic bearing device, and rotor
US20140154114A1 (en) Switched reluctance motor assembly and method of assembling the same
US20130082548A1 (en) Switched reluctance motor
KR101010836B1 (en) Motor for driving fan
US20200161926A1 (en) Stator, motor, and blowing device
US20140003972A1 (en) Fan motor structure
KR101123675B1 (en) Hall sensor board type of motor stator core sheet and brushless dc motor including the same
KR102129104B1 (en) Motor of outer rotor type
KR20150106207A (en) Switched Reluctance Motor

Legal Events

Date Code Title Description
AS Assignment

Owner name: SAMSUNG ELECTRO-MECHANICS CO., LTD., KOREA, REPUBL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YIM, JUNG KYU;CHO, YONG WAN;SEO, SANG HO;AND OTHERS;REEL/FRAME:029599/0107

Effective date: 20121122

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION