US20140039558A1 - Surgical tether apparatus and methods of use - Google Patents

Surgical tether apparatus and methods of use Download PDF

Info

Publication number
US20140039558A1
US20140039558A1 US13/962,847 US201313962847A US2014039558A1 US 20140039558 A1 US20140039558 A1 US 20140039558A1 US 201313962847 A US201313962847 A US 201313962847A US 2014039558 A1 US2014039558 A1 US 2014039558A1
Authority
US
United States
Prior art keywords
constraint device
implanting
spinous process
spinal
fusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/962,847
Inventor
Todd Alamin
Colin Cahill
Louis Fielding
Manish Kothari
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Empirical Spine Inc
Original Assignee
Simpirica Spine Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Simpirica Spine Inc filed Critical Simpirica Spine Inc
Priority to US13/962,847 priority Critical patent/US20140039558A1/en
Publication of US20140039558A1 publication Critical patent/US20140039558A1/en
Assigned to SIMPIRICA SPINE, INC. reassignment SIMPIRICA SPINE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALAMIN, TODD, CAHILL, COLIN, FIELDING, LOUIS, KOTHARI, MANISH
Assigned to SIMPIRICA (ASSIGNMENT FOR THE BENEFIT OF CREDITORS), LLC reassignment SIMPIRICA (ASSIGNMENT FOR THE BENEFIT OF CREDITORS), LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SIMPIRICA SPINE, INC.
Assigned to EMPIRICAL SPINE, INC. reassignment EMPIRICAL SPINE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SIMPIRICA (ASSIGNMENT FOR THE BENEFIT OF CREDITORS), LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7062Devices acting on, attached to, or simulating the effect of, vertebral processes, vertebral facets or ribs ; Tools for such devices
    • A61B17/7067Devices bearing against one or more spinous processes and also attached to another part of the spine; Tools therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7062Devices acting on, attached to, or simulating the effect of, vertebral processes, vertebral facets or ribs ; Tools for such devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7055Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant connected to sacrum, pelvis or skull
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7097Stabilisers comprising fluid filler in an implant, e.g. balloon; devices for inserting or filling such implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/4455Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages

Definitions

  • the present invention generally relates to medical methods and apparatus. More particularly, the present invention relates to methods and apparatus used to restrict flexion of a fused spinal segment.
  • the methods and apparatus disclosed herein may be used alone or in combination with fusion or other orthopedic procedures intended to treat patients with spinal disorders such as back pain.
  • discogenic pain also known as internal disc disruption.
  • Discogenic pain can be quite disabling, and for some patients, can dramatically affect their ability to work and otherwise enjoy their lives. Patients suffering from discogenic pain tend to be young, otherwise healthy individuals who present with pain localized to the back. Discogenic pain usually occurs at the discs located at the L4-L5 or L5-S 1 junctions of the spine. Pain tends to be exacerbated when patients put their lumbar spines into flexion (i.e. by sitting or bending forward) and relieved when they put their lumbar spines into extension (i.e. by standing or arching backwards).
  • the patient may also be required to wear an external back brace for three to six months in order to allow the fusion to heal.
  • external braces are not always desirable since such braces can be uncomfortable, expensive, and inconvenient to use, and patient compliance often is low.
  • An alternative to the back brace is to instrument the spinal segment with traditional instrumentation. Traditional instrumentation also facilitates fusion and prevents subsequent motion along the fused segment. While this treatment may be effective, it can also have shortcomings. For example, the fusion procedure with traditional instrumentation is more invasive, and when rigid instrumentation is used (e.g.
  • the instrumented region of the spinal segment becomes very stiff, and motion is prevented across the fusing segment.
  • Loads can be borne by the instrumentation rather than the tissue, and loads and motion at adjacent segments can be increased. This is not always desirable, since a certain amount of motion and loading may actually help the healing process, promote fusion, and prevent excessive wear and tear on adjacent implants and tissue. Also, loading on the instrumentation may result in loosening or other mechanical failure of the instrumentation. Therefore, it would be desirable to have an improved device for instrumenting a fused spinal segment. It would also be desirable if an improved device minimized loads at the device/bone interface to minimize the potential of loosening and other mechanical failure. It would also be desirable if the device diminished the peak loading patterns at the bone/implant interface.
  • Patents and published applications of interest include: U.S. Pat. Nos. 3,648,691; 4,643,178; 4,743,260; 4,966,600; 5,011,494; 5,092,866; 5,116,340; 5,180,393; 5,282,863; 5,395,374; 5,415,658; 5,415,661; 5,449,361; 5,456,722; 5,462,542; 5,496,318; 5,540,698; 5,562,737; 5,609,634; 5,628,756; 5,645,599; 5,725,582; 5,902,305; Re.
  • the present invention generally relates to medical methods and apparatus. More particularly, the present invention relates to methods and apparatus used to restrict flexion of a spinal segment to be fused.
  • the methods and apparatus disclosed herein may be used alone or in combination with fusion or other orthopedic procedures intended to treat patients with spinal disorders such as back pain.
  • a method for controlling flexion in a spinal segment of a patient comprises performing a spinal fusion procedure on a pair of adjacent vertebrae in the spinal segment and implanting a constraint device into the patient.
  • the step of implanting comprises coupling the constraint device with the spinal segment.
  • the method also includes adjusting length or tension in the constraint device so that the constraint device provides a force resistant to flexion of the spinal segment undergoing fusion.
  • the constraint device also modulates loads borne by the spinal segment undergoing fusion, including the bone grafting material and tissue adjacent thereto.
  • the constraint device may have an upper tether portion, a lower tether portion and a compliance member coupled therebetween.
  • An upper portion of the constraint device may be engaged with a superior spinous process and a lower portion of the constraint device may be engaged with an inferior spinous process or a sacrum.
  • the length or tension of the constraint device may be adjusted to a desired value. The length or tension may be adjusted to encourage the fusion to form in a position consistent with the natural lordotic curve of the patient.
  • the step of performing the spinal fusion procedure may comprise applying bone grafting material to at least one of posterior, lateral, posterolateral or interbody locations on the adjacent vertebrae.
  • Bone graft may be placed between or alongside the spinous processes of the vertebrae to be fused, and to which the constraint is coupled.
  • Sometimes performing the spinal fusion procedure may comprise intervertebral grafting in a disc space between the pair of adjacent vertebrae or applying bone grafting material to the superior spinous process and the inferior spinous process.
  • Performing the spinal fusion procedure may also comprise implanting a first prosthesis into the patient.
  • the first prosthesis may be engaged with at least a portion of the spinal segment.
  • the constraint device may modulate loads borne by the first prosthesis or tissue adjacent thereto.
  • the constraint device may be implanted and coupled with the spinal segment during the same surgical procedure as the fusion procedure. Additionally, the constraint device stabilizes the segment as it fuses together, which may take several months to form following the fusion procedure. After fusion has occurred, the constraint no longer provides any further benefit and it may be removed or left in place. If left in place, the constraint device may last longer than traditional instrumentation. Because of the compliance of the constraint device, it is able to accommodate micromotion in the fused segment and therefore the constraint device experiences lower loading and wear as compared to rigid instrumentation systems which transmit complex segmental loads and are more likely to fail in service.
  • implanting the first prosthesis may comprise positioning an intervertebral device between the pair of adjacent vertebrae.
  • the intervertebral device may be configured to maintain alignment and distance between the pair of adjacent vertebrae during arthrodesis.
  • the intervertebral device may comprise an interbody fusion cage.
  • implanting the first prosthesis may comprise positioning bone grafting material between the pair of adjacent vertebrae and the bone grafting material may be selected from the group consisting of an allograft or an autograft of bone tissue, a xenograft and also synthetic bone graft material, or agents such as bone morphogenetic protein designed to stimulate bone growth.
  • the step of implanting the first prosthesis may further comprise positioning an interbody fusion cage between the pair of adjacent vertebrae during the development of arthrodesis.
  • Implanting the constraint device may comprise engaging the constraint device with the superior spinous process and the inferior spinous process or sacrum without implanting a prosthesis directly in an interspinous region extending between an inferior surface of the superior spinous process and a superior surface of the inferior spinous process or sacrum.
  • the step of implanting the constraint device may also comprise piercing an interspinous ligament to form a penetration superior to a superior surface of the superior spinous process and advancing the upper tether portion through the penetration.
  • the tether may also be advanced through a gap between the superior spinous process and an adjacent spinous process that has been created by surgical removal of the interspinous ligament therefrom.
  • Implanting the constraint device may also comprise piercing an interspinous ligament to form a penetration inferior to an inferior surface of the inferior spinous process and advancing the lower tether portion through the penetration.
  • the tether may also be advanced through a gap between the inferior spinous process and an adjacent spinous process or a sacrum that has been created by surgical removal of the interspinous ligament therefrom.
  • the constraint device may be advanced through a gap between the spinous processes created by surgical removal of an interspinous ligament.
  • Adjusting length or tension in the constraint device may comprise adjusting the length or tension a plurality of times during treatment of the spinal segment and during or after healing of the spinal segment. Adjustment may be performed transcutaneously.
  • At least one of the first prosthesis or the constraint device may comprise a therapeutic agent adapted to modify tissue in the spinal segment.
  • the therapeutic agent may comprise a bone morphogenetic protein.
  • a system for controlling flexion in a spinal segment of a patient comprises a constraint device disposed at least partially around a region of the spinal segment that is to be fused.
  • the constraint device has an upper tether portion, a lower tether portion and a compliance member coupled therebetween.
  • the upper tether portion is coupled with a superior spinous process along the spinal segment to be fused and the lower tether portion is coupled with an inferior spinous process or sacrum along the spinal segment to be fused.
  • Length or tension in the constraint device is adjustable so that the constraint device provides a force resistant to flexion of the spinal segment undergoing fusion.
  • the constraint device modulates loads borne by the spinal segment to be fused including the graft material and tissue adjacent thereto.
  • the constraint device may be engaged with the superior spinous process and the inferior spinous process or sacrum and an interspinous region extending directly between an inferior surface of the superior spinous process and a superior surface of the inferior spinous process or sacrum may remain free of an implanted prosthesis.
  • the system may further comprise a first prosthesis coupled with the region of the spinal segment to be fused.
  • the constraint device may modulate loads borne by the first prosthesis or by tissue adjacent thereto.
  • the first prosthesis may comprise an intervertebral device disposed between two adjacent vertebrae in the region of the spinal segment to be fused.
  • the intervertebral device may be configured to maintain alignment and distance between the two adjacent vertebrae after intervertebral disc material has been disposed between the two adjacent vertebrae during development of arthrodesis.
  • the intervertebral device may comprise an interbody fusion cage that is adapted to facilitate fusion of the two adjacent vertebrae in the region of the spinal segment to be fused.
  • the first prosthesis may also comprise bone grafting material disposed between two adjacent vertebrae where the bone grafting material is adapted to facilitate fusion of the two adjacent vertebrae in the spinal segment.
  • the bone grafting material may be selected from the group consisting of an allograft, an autograft, a xenograft, a synthetic material and combinations thereof combination thereof.
  • FIG. 1A is a schematic diagram illustrating the lumbar region of the spine.
  • FIG. 1B a schematic illustration showing a portion of the lumbar region of the spine taken along a sagittal plane.
  • FIG. 2 illustrates a spinal implant of the type described in U.S. Patent Publication No. 2005/0216017A1.
  • FIG. 3A illustrates an instrumented region of a fused spinal segment.
  • FIG. 3B illustrates the use of a constraint device in a fused region of a spinal segment.
  • FIG. 4A illustrates fusion of the transverse processes.
  • FIGS. 4B-4C illustrate the use of a constraint device along with fusion of the transverse processes.
  • FIG. 1A is a schematic diagram illustrating the lumbar region of the spine including the spinous processes (SP), facet joints (FJ), lamina (L), transverse processes (TP), and sacrum (S).
  • FIG. 1B is a schematic illustration showing a portion of the lumbar region of the spine taken along a sagittal plane and is useful for defining the terms “neutral position,” “flexion,” and “extension” that are often used in this disclosure.
  • neutral position refers to the position in which the patient's spine rests in a relaxed standing position.
  • the “neutral position” will vary from patient to patient. Usually, such a neutral position will be characterized by a slight curvature or lordosis of the lumbar spine where the spine has a slight anterior convexity and slight posterior concavity.
  • the presence of the constraint of the present invention may modify the neutral position, e.g. the device may apply an initial force which defines a “new” neutral position having some extension of the untreated spine.
  • neutral position of the spinal segment refers to the position of a spinal segment when the spine is in the neutral position.
  • flexion refers to the motion between adjacent vertebrae in a spinal segment as the patient bends forward.
  • the distance between individual vertebrae L on the anterior side decreases so that the anterior portion of the intervertebral disks D are compressed.
  • the individual spinous processes SP on the posterior side move apart in the direction indicated by arrow B. Flexion thus refers to the relative movement between adjacent vertebrae as the patient bends forward from the neutral position illustrated in FIG. 1B .
  • extension refers to the motion of the individual vertebrae L as the patient bends backward and the spine extends from the neutral position illustrated in FIG. 1B . As the patient bends backward, the anterior ends of the individual vertebrae will move apart. The individual spinous processes SP on adjacent vertebrae will move closer together in a direction opposite to that indicated by arrow B.
  • discogenic pain also known as internal disc disruption. Pain experienced by patients with discogenic low back pain can be thought of as flexion instability, and is related to flexion instability manifested in other conditions such as spondylolisthesis, a spinal condition in which abnormal segmental translation is exacerbated by segmental flexion. Discogenic pain usually occurs at the discs located at the L4-L5 or L5-S 1 junctions of the spine. Pain tends to be exacerbated when patients put their lumbar spines into flexion (i.e. by sitting or bending forward) and relieved when they put their lumbar spines into extension (i.e. by standing or arching backwards).
  • Flexion and extension are known to change the mechanical loading pattern of a lumbar segment.
  • the segment When the segment is in extension, the axial loads borne by the segment are shared by the disc and facet joints (approximately 30% of the load is borne by the facet joints).
  • the segmental load In flexion, the segmental load is borne almost entirely by the disc.
  • the nucleus shifts posteriorly, changing the loads on the posterior portion of the annulus (which is innervated), likely causing its fibers to be subject to tension and shear forces.
  • Segmental flexion increases both the loads borne by the disc and causes them to be borne in a more painful way.
  • Patients with discogenic pain accommodate their syndrome by avoiding positions such as sitting, which cause their painful segment to go into flexion, preferring positions such as standing, which maintain their painful segment in extension.
  • Discogenic pain may be treated in a number of ways ranging from conservative treatments to surgery and implantation of prostheses.
  • Conservative treatments include physical therapy, massage, anti-inflammatory and analgesic medications, muscle relaxants, and epidural steroid injections. These treatments have varying degrees of success and often patients typically continue to suffer with a significant degree of pain.
  • Other patients elect to undergo spinal fusion surgery, which sometimes requires discectomy (removal of the disk) together with fusion of adjacent vertebra. Fusion may or may not also include instrumentation of the affected spinal segment including, for example, pedicle screws and stabilization rods, and/or intervertebral devices. Fusion is not lightly recommended for discogenic pain because it is irreversible, costly, associated with high morbidity, and has questionable effectiveness.
  • Fusion is, however, still used for discogenic pain despite these drawbacks, and fusion is also used for many other spinal disorders related to pain and instability. While fusion with traditional instrumentation is promising, in some circumstances it may have drawbacks. Because most instrumentation is rigid or only provides limited motion, motion around the fused segment is prevented and loads can be fully borne by the instrumentation rather than the tissue. While prevention of significant motion is important during the fusion healing process, a certain amount of micromotion and loading of the tissue is desirable as this can promote fusion. Furthermore, allowing such motion and loading may enable the segment to fuse in a natural position, enabling maintenance of the lordotic curve in the treated region of the spine and avoiding the creation of kyphosis or “flat back” with fusion instrumentation.
  • FIG. 2 shows a spinal implant of the type described in related U.S. Patent Publication No. 2005/02161017 A1, now U.S. Pat. No. 7,458,981 the entire contents of which are incorporated herein by reference.
  • the constraint device of FIG. 2 may be used alone or in combination with other spinal treatments to allow micromotion in a spinal segment that is fused or that is undergoing fusion, and to reduce loads borne by the region undergoing fusion or devices implanted into the patient as well as loads borne by adjacent tissue, thereby facilitating healing and reducing tissue damage and wear and tear.
  • the constraint device may be used to provide greater stability to the spinal segment and to encourage the healing of the fusion at an intervertebral angle consistent with the lordotic curve of the patient.
  • an implant 10 typically comprises a tether structure having an upper strap component 12 and a lower strap component 14 joined by a pair of compliance elements 16 .
  • a small aperture is pierced through the interspinous ligament (not illustrated) and the upper strap is passed through the aperture.
  • the upper strap 12 may then be disposed over the top of the spinous process SP4 of L4.
  • a similar lower aperture is pierced through the interspinous ligament allowing the lower strap 14 to extend over the bottom of the spinous process SP5 of L5.
  • the compliance element 16 will typically include an internal element, such as a spring or rubber block, which is attached to the straps 12 and 14 in such a way that the straps may be “elastically” or “compliantly” pulled apart as the spinous processes SP4 and SP5 move apart during flexion. In this way, the implant provides an elastic tension on the spinous processes which is a force that resists flexion. The force increases as the processes move further apart. Usually, the straps themselves will be essentially non-compliant so that the degree of elasticity or compliance may be controlled and provided solely by the compliance elements 16 . Additional details on implant 10 and the methods of use are disclosed in International PCT Applications Nos. PCT/US2009/055914 (Attorney Docket No.
  • FIG. 3A illustrates traditional fusion and instrumentation of a spinal segment.
  • the intervertebral disc D between adjacent vertebrae V has been removed and bone graft material 304 has been implanted therebetween.
  • a spinal fusion cage 304 is also implanted between the adjacent vertebrae in order to facilitate fusion between the vertebrae.
  • the bone graft material may be an allograft or an autograft of bone material. Xenografts and synthetic graft material may also be used.
  • Spinal fusion between the vertebral bodies (within the disc space) as described above is known as interbody fusion.
  • FIG. 3A illustrates an alternative embodiment of fusing a spinal segment using a constraint device such as the one illustrated in FIG. 2 .
  • FIG. 3B the spinal segment is fused in a similar fashion as previously described with respect to FIG. 3A above.
  • An intervertebral disc D is removed from between adjacent vertebrae V and bone grafting material 304 is implanted along with an optional fusion cage 302 .
  • a constraint device is attached to the fused region of the spinal segment.
  • constraint device 310 generally takes the same form as the constraint device of FIG. 2 above, although any of the constraint devices disclosed herein may also be used.
  • the constraint device 310 has an upper tether portion 310 , a lower tether portion 314 and a compliance member 316 coupled therebetween.
  • the upper tether portion 310 is disposed around a superior surface of a superior spinous process and the lower tether portion 314 is disposed around an inferior surface of an inferior spinous process.
  • the constraint device may be implanted and coupled with the spinal segment such that the interspinous region extending from an inferior surface of the superior spinous process and a superior surface of the inferior spinous process remains free of any implants such as spacers or other prostheses (although in some embodiments, bone graft may be implanted in this space).
  • the length or tension of the constraint device may be adjusted in order to tighten the resulting loop in order to control how much force compliance member 316 provides against flexion of the spinal segment. Additionally, the spring constant of the compliance member may be selected based on desired operating characteristics.
  • the constraint device 310 may be adjusted so that is provides enough resistance to flexion so that fusion can occur, while at the same time allowing some micromotion between the adjacent fused vertebrae in order to further promote fusion and the rate of fusion and to enable healing of the fusion at an intervertebral angle that preserves the patient's lordotic curve.
  • the constraint device also allows dynamic loading of the bone grafting material and/or the bone-cage interface, further promoting fusion and the rate of fusion. It should also be appreciated that the same benefits may be derived when the graft is applied to the transverse processes (as in postero-lateral fusion), or the posterior elements of the fused vertebrae. Unlike traditional instrumentation where screws and rods unload the spine directly, using constraint device 310 helps unload the spine indirectly.
  • FIG. 4A illustrates bone graft 402 applied to the transverse processes TP, without any stabilizing instrumentation. This is known as an uninstrumented fusion. When the patient bends forward, the transverse processes move apart. This may disrupt the healing of the graft and result in non-union (pseudoarthrosis), or the fusion may heal in a flexed position (kyphosis).
  • FIG. 4B illustrates use of a constraint device 404 engaged with the spinous processes SP, for resisting segmental flexion, so that the graft will heal and fusion will develop in a more natural lordosis posture.
  • FIG. 4C is a posterior view of FIG. 4B that more clearly shows the fused regions and attachment of the constraint device.
  • the constraint device 402 generally takes the same form as those described herein.
  • the present devices and methods are also advantageous over traditional instrumentation with screws and rods since the constraint device directly controls flexion and involves engagement of the facets more than pedicle screws and rods. This results in some indirect restriction of both axial rotation and sagittal translation, which may further help with the fusion and provide additional spinal segment stability.
  • Another advantage of using the present devices and methods is that loading, other than tensile loading, is not transferred to the constraint device, and thus the constraint device is likely to experience fewer failure modes than traditional instrumentation in which all loading is transferred to the screws and rods.
  • the present constraint device therefore, not only attempts to maximize therapeutic effectiveness, but also attempts to minimize failure, unlike most existing instrumentation devices which only attempt to maximize the therapy.
  • the present device disclosed herein intentionally allows backward motion (extension) which helps avoid issues with extension loading and may help with balancing of the patient's vertebral column. Most other instrumentation devices or systems do not permit backward motion of the spinal segment.
  • a constraint device may be applied using minimally invasive techniques and does not require that screws be threaded into the pedicles.
  • the constraint device is delivered through small incisions in the patient's back and the tether portions of the constraint device are passed through a small hole pierced in the interspinous ligament. Therefore, the procedure may be performed faster and with less blood loss and may require less operating room time than traditional instrumentation, resulting in a safer and more cost-effective procedure.
  • traditional instrumentation requires that tissue be resected, unlike the present method for implanting a constraint device which requires no resection at the affected level, e.g.

Landscapes

  • Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Neurology (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)
  • Surgical Instruments (AREA)

Abstract

Methods and apparatus for controlling flexion in a spinal segment of a patient include performing a spinal fusion procedure on a pair of adjacent vertebrae in the spinal segment and implanting a constraint device into the patient. Adjusting length or tension in the constraint device allows the constraint device to provide a force a force resistant to flexion of the spinal segment undergoing fusion. The constraint device also modulates loads borne by the spinal segment undergoing fusion or tissue adjacent thereto.

Description

    CROSS-REFERENCE
  • The present application is continuation of U.S. patent application Ser. No. 12/721,238 (Attorney Docket No. 41564-714.201) filed on Mar. 10, 2010, now U.S. Pat. No. ______, which is a non-provisional of, and claims the benefit of U.S. Provisional Patent Application Ser. No. 61/158,886 (Attorney Docket No. 41564-714.101) filed Mar. 10, 2009, now expired; the entire contents of each of which are incorporated herein by reference.
  • The present application is also related to the U.S. Provisional Patent Application Ser. No. 61/158,892 (Attorney Docket No. 41564-713.101) filed Mar. 10, 2009, the entire contents of which is incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention generally relates to medical methods and apparatus. More particularly, the present invention relates to methods and apparatus used to restrict flexion of a fused spinal segment. The methods and apparatus disclosed herein may be used alone or in combination with fusion or other orthopedic procedures intended to treat patients with spinal disorders such as back pain.
  • A host of spinal conditions exist which often result in instability issues and/or back pain. A major source of chronic low back pain is discogenic pain, also known as internal disc disruption. Discogenic pain can be quite disabling, and for some patients, can dramatically affect their ability to work and otherwise enjoy their lives. Patients suffering from discogenic pain tend to be young, otherwise healthy individuals who present with pain localized to the back. Discogenic pain usually occurs at the discs located at the L4-L5 or L5-S 1 junctions of the spine. Pain tends to be exacerbated when patients put their lumbar spines into flexion (i.e. by sitting or bending forward) and relieved when they put their lumbar spines into extension (i.e. by standing or arching backwards). Flexion and extension are known to change the mechanical loading pattern of a lumbar segment. When the segment is in extension, the axial loads borne by the segment are shared by the disc and facet joints (approximately 30% of the load is borne by the facet joints). In flexion, the segmental load is borne almost entirely by the disc. Furthermore, the nucleus shifts posteriorly, changing the loads on the posterior portion of the annulus (which is innervated), likely causing its fibers to be subject to tension and shear forces. Segmental flexion, then, increases both the loads borne by the disc and causes them to be borne in a more painful way. It would therefore be desirable to provide methods and apparatus that can be used alone or in combination with other spinal treatments to reduce loading in the area of the disc and adjacent tissue.
  • A number of treatments exist for addressing back pain and spinal instability. Some of these include, but are not limited to, fusion of the affected spinal segment. The patient may also be required to wear an external back brace for three to six months in order to allow the fusion to heal. Unfortunately, external braces are not always desirable since such braces can be uncomfortable, expensive, and inconvenient to use, and patient compliance often is low. An alternative to the back brace is to instrument the spinal segment with traditional instrumentation. Traditional instrumentation also facilitates fusion and prevents subsequent motion along the fused segment. While this treatment may be effective, it can also have shortcomings. For example, the fusion procedure with traditional instrumentation is more invasive, and when rigid instrumentation is used (e.g. pedicle screws and spinal stabilization rods), the instrumented region of the spinal segment becomes very stiff, and motion is prevented across the fusing segment. Loads can be borne by the instrumentation rather than the tissue, and loads and motion at adjacent segments can be increased. This is not always desirable, since a certain amount of motion and loading may actually help the healing process, promote fusion, and prevent excessive wear and tear on adjacent implants and tissue. Also, loading on the instrumentation may result in loosening or other mechanical failure of the instrumentation. Therefore, it would be desirable to have an improved device for instrumenting a fused spinal segment. It would also be desirable if an improved device minimized loads at the device/bone interface to minimize the potential of loosening and other mechanical failure. It would also be desirable if the device diminished the peak loading patterns at the bone/implant interface.
  • For the aforementioned reasons, it would therefore be advantageous to provide methods and apparatus that can be used with spinal fusion to help facilitate fusion of the vertebrae while still allowing some motion and loading of the fusion graft. It would be further desirable to provide methods and apparatus that are minimally invasive to the patient, cost effective and easy to use.
  • 2. Description of the Background Art
  • Patents and published applications of interest include: U.S. Pat. Nos. 3,648,691; 4,643,178; 4,743,260; 4,966,600; 5,011,494; 5,092,866; 5,116,340; 5,180,393; 5,282,863; 5,395,374; 5,415,658; 5,415,661; 5,449,361; 5,456,722; 5,462,542; 5,496,318; 5,540,698; 5,562,737; 5,609,634; 5,628,756; 5,645,599; 5,725,582; 5,902,305; Re. 36,221; 5,928,232; 5,935,133; 5,964,769; 5,989,256; 6,053,921; 6,248,106; 6,312,431; 6,364,883; 6,378,289; 6,391,030; 6,468,309; 6,436,099; 6,451,019; 6,582,433; 6,605,091; 6,626,944; 6,629,975; 6,652,527; 6,652,585; 6,656,185; 6,669,729; 6,682,533; 6,689,140; 6,712,819; 6,689,168; 6,695,852; 6,716,245; 6,761,720; 6,835,205; 7,029,475; 7,163,558; Published U.S. Patent Application Nos. US 2002/0151978; US 2004/0024458; US 2004/0106995; US 2004/0116927; US 2004/0117017; US 2004/0127989; US 2004/0172132; US 2004/0243239; US 2005/0033435; US 2005/0049708; 2005/0192581; 2005/0216017; US 2006/0069447; US 2006/0136060; US 2006/0240533; US 2007/0213829; US 2007/0233096; 2008/0009866; 2008/0108993; Published PCT Application Nos. WO 01/28442 A1; WO 02/03882 A2; WO 02/051326 A1; WO 02/071960 A1; WO 03/045262 A1; WO2004/052246 A1; WO 2004/073532 A1; WO2008/051806; WO2008/051423; WO2008/051801; WO2008/051802; and Published Foreign Application Nos. EP0322334 A1; and FR 2 681 525 A1. The mechanical properties of flexible constraints applied to spinal segments are described in Papp et al. (1997) Spine 22:151-155; Dickman et al. (1997) Spine 22:596-604; and Garner et al. (2002) Eur. Spine J. S186-S191; Al Baz et al. (1995) Spine 20, No. 11, 1241-1244; Heller, (1997) Arch. Orthopedic and Trauma Surgery, 117, No. 1-2:96-99; Leahy et al. (2000) Proc. Inst. Mech. Eng. Part H: J. Eng. Med. 214, No. 5: 489-495; Minns et al., (1997) Spine 22 No. 16:1819-1825; Miyasaka et al. (2000) Spine 25, No. 6: 732-737; Shepherd et al. (2000) Spine 25, No. 3: 319-323; Shepherd (2001) Medical Eng. Phys. 23, No. 2: 135-141; and Voydeville et al (1992) Orthop Traumatol 2:259-264.
  • BRIEF SUMMARY OF THE INVENTION
  • The present invention generally relates to medical methods and apparatus. More particularly, the present invention relates to methods and apparatus used to restrict flexion of a spinal segment to be fused. The methods and apparatus disclosed herein may be used alone or in combination with fusion or other orthopedic procedures intended to treat patients with spinal disorders such as back pain.
  • In a first aspect of the present invention, a method for controlling flexion in a spinal segment of a patient comprises performing a spinal fusion procedure on a pair of adjacent vertebrae in the spinal segment and implanting a constraint device into the patient. The step of implanting comprises coupling the constraint device with the spinal segment. The method also includes adjusting length or tension in the constraint device so that the constraint device provides a force resistant to flexion of the spinal segment undergoing fusion. The constraint device also modulates loads borne by the spinal segment undergoing fusion, including the bone grafting material and tissue adjacent thereto. In some embodiments, the constraint device may have an upper tether portion, a lower tether portion and a compliance member coupled therebetween. An upper portion of the constraint device may be engaged with a superior spinous process and a lower portion of the constraint device may be engaged with an inferior spinous process or a sacrum. The length or tension of the constraint device may be adjusted to a desired value. The length or tension may be adjusted to encourage the fusion to form in a position consistent with the natural lordotic curve of the patient.
  • The step of performing the spinal fusion procedure may comprise applying bone grafting material to at least one of posterior, lateral, posterolateral or interbody locations on the adjacent vertebrae. Bone graft may be placed between or alongside the spinous processes of the vertebrae to be fused, and to which the constraint is coupled. Sometimes performing the spinal fusion procedure may comprise intervertebral grafting in a disc space between the pair of adjacent vertebrae or applying bone grafting material to the superior spinous process and the inferior spinous process. Performing the spinal fusion procedure may also comprise implanting a first prosthesis into the patient. The first prosthesis may be engaged with at least a portion of the spinal segment. The constraint device may modulate loads borne by the first prosthesis or tissue adjacent thereto. The constraint device may be implanted and coupled with the spinal segment during the same surgical procedure as the fusion procedure. Additionally, the constraint device stabilizes the segment as it fuses together, which may take several months to form following the fusion procedure. After fusion has occurred, the constraint no longer provides any further benefit and it may be removed or left in place. If left in place, the constraint device may last longer than traditional instrumentation. Because of the compliance of the constraint device, it is able to accommodate micromotion in the fused segment and therefore the constraint device experiences lower loading and wear as compared to rigid instrumentation systems which transmit complex segmental loads and are more likely to fail in service.
  • In some embodiments, implanting the first prosthesis may comprise positioning an intervertebral device between the pair of adjacent vertebrae. The intervertebral device may be configured to maintain alignment and distance between the pair of adjacent vertebrae during arthrodesis. The intervertebral device may comprise an interbody fusion cage. In other embodiments, implanting the first prosthesis may comprise positioning bone grafting material between the pair of adjacent vertebrae and the bone grafting material may be selected from the group consisting of an allograft or an autograft of bone tissue, a xenograft and also synthetic bone graft material, or agents such as bone morphogenetic protein designed to stimulate bone growth. In addition to positioning bone grafting material, the step of implanting the first prosthesis may further comprise positioning an interbody fusion cage between the pair of adjacent vertebrae during the development of arthrodesis.
  • Implanting the constraint device may comprise engaging the constraint device with the superior spinous process and the inferior spinous process or sacrum without implanting a prosthesis directly in an interspinous region extending between an inferior surface of the superior spinous process and a superior surface of the inferior spinous process or sacrum. The step of implanting the constraint device may also comprise piercing an interspinous ligament to form a penetration superior to a superior surface of the superior spinous process and advancing the upper tether portion through the penetration. The tether may also be advanced through a gap between the superior spinous process and an adjacent spinous process that has been created by surgical removal of the interspinous ligament therefrom. Implanting the constraint device may also comprise piercing an interspinous ligament to form a penetration inferior to an inferior surface of the inferior spinous process and advancing the lower tether portion through the penetration. The tether may also be advanced through a gap between the inferior spinous process and an adjacent spinous process or a sacrum that has been created by surgical removal of the interspinous ligament therefrom. Alternatively, the constraint device may be advanced through a gap between the spinous processes created by surgical removal of an interspinous ligament.
  • Adjusting length or tension in the constraint device may comprise adjusting the length or tension a plurality of times during treatment of the spinal segment and during or after healing of the spinal segment. Adjustment may be performed transcutaneously.
  • Sometimes, at least one of the first prosthesis or the constraint device may comprise a therapeutic agent adapted to modify tissue in the spinal segment. The therapeutic agent may comprise a bone morphogenetic protein.
  • In another aspect of the present invention, a system for controlling flexion in a spinal segment of a patient comprises a constraint device disposed at least partially around a region of the spinal segment that is to be fused. The constraint device has an upper tether portion, a lower tether portion and a compliance member coupled therebetween. The upper tether portion is coupled with a superior spinous process along the spinal segment to be fused and the lower tether portion is coupled with an inferior spinous process or sacrum along the spinal segment to be fused. Length or tension in the constraint device is adjustable so that the constraint device provides a force resistant to flexion of the spinal segment undergoing fusion. Also, the constraint device modulates loads borne by the spinal segment to be fused including the graft material and tissue adjacent thereto.
  • The constraint device may be engaged with the superior spinous process and the inferior spinous process or sacrum and an interspinous region extending directly between an inferior surface of the superior spinous process and a superior surface of the inferior spinous process or sacrum may remain free of an implanted prosthesis.
  • The system may further comprise a first prosthesis coupled with the region of the spinal segment to be fused. The constraint device may modulate loads borne by the first prosthesis or by tissue adjacent thereto. Sometimes, the first prosthesis may comprise an intervertebral device disposed between two adjacent vertebrae in the region of the spinal segment to be fused. The intervertebral device may be configured to maintain alignment and distance between the two adjacent vertebrae after intervertebral disc material has been disposed between the two adjacent vertebrae during development of arthrodesis. The intervertebral device may comprise an interbody fusion cage that is adapted to facilitate fusion of the two adjacent vertebrae in the region of the spinal segment to be fused. The first prosthesis may also comprise bone grafting material disposed between two adjacent vertebrae where the bone grafting material is adapted to facilitate fusion of the two adjacent vertebrae in the spinal segment. The bone grafting material may be selected from the group consisting of an allograft, an autograft, a xenograft, a synthetic material and combinations thereof combination thereof.
  • These and other embodiments are described in further detail in the following description related to the appended drawing figures.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A is a schematic diagram illustrating the lumbar region of the spine.
  • FIG. 1B a schematic illustration showing a portion of the lumbar region of the spine taken along a sagittal plane.
  • FIG. 2 illustrates a spinal implant of the type described in U.S. Patent Publication No. 2005/0216017A1.
  • FIG. 3A illustrates an instrumented region of a fused spinal segment.
  • FIG. 3B illustrates the use of a constraint device in a fused region of a spinal segment.
  • FIG. 4A illustrates fusion of the transverse processes.
  • FIGS. 4B-4C illustrate the use of a constraint device along with fusion of the transverse processes.
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIG. 1A is a schematic diagram illustrating the lumbar region of the spine including the spinous processes (SP), facet joints (FJ), lamina (L), transverse processes (TP), and sacrum (S). FIG. 1B is a schematic illustration showing a portion of the lumbar region of the spine taken along a sagittal plane and is useful for defining the terms “neutral position,” “flexion,” and “extension” that are often used in this disclosure.
  • As used herein, “neutral position” refers to the position in which the patient's spine rests in a relaxed standing position. The “neutral position” will vary from patient to patient. Usually, such a neutral position will be characterized by a slight curvature or lordosis of the lumbar spine where the spine has a slight anterior convexity and slight posterior concavity. In some cases, the presence of the constraint of the present invention may modify the neutral position, e.g. the device may apply an initial force which defines a “new” neutral position having some extension of the untreated spine. As such, the use of the term “neutral position” is to be taken in context of the presence or absence of the device. As used herein, “neutral position of the spinal segment” refers to the position of a spinal segment when the spine is in the neutral position.
  • Furthermore, as used herein, “flexion” refers to the motion between adjacent vertebrae in a spinal segment as the patient bends forward. Referring to FIG. 1B, as a patient bends forward from the neutral position of the spine, i.e. to the right relative to a curved axis A, the distance between individual vertebrae L on the anterior side decreases so that the anterior portion of the intervertebral disks D are compressed. In contrast, the individual spinous processes SP on the posterior side move apart in the direction indicated by arrow B. Flexion thus refers to the relative movement between adjacent vertebrae as the patient bends forward from the neutral position illustrated in FIG. 1B.
  • Additionally, as used herein, “extension” refers to the motion of the individual vertebrae L as the patient bends backward and the spine extends from the neutral position illustrated in FIG. 1B. As the patient bends backward, the anterior ends of the individual vertebrae will move apart. The individual spinous processes SP on adjacent vertebrae will move closer together in a direction opposite to that indicated by arrow B.
  • A major source of chronic low back pain is discogenic pain, also known as internal disc disruption. Pain experienced by patients with discogenic low back pain can be thought of as flexion instability, and is related to flexion instability manifested in other conditions such as spondylolisthesis, a spinal condition in which abnormal segmental translation is exacerbated by segmental flexion. Discogenic pain usually occurs at the discs located at the L4-L5 or L5-S 1 junctions of the spine. Pain tends to be exacerbated when patients put their lumbar spines into flexion (i.e. by sitting or bending forward) and relieved when they put their lumbar spines into extension (i.e. by standing or arching backwards). Flexion and extension are known to change the mechanical loading pattern of a lumbar segment. When the segment is in extension, the axial loads borne by the segment are shared by the disc and facet joints (approximately 30% of the load is borne by the facet joints). In flexion, the segmental load is borne almost entirely by the disc. Furthermore, the nucleus shifts posteriorly, changing the loads on the posterior portion of the annulus (which is innervated), likely causing its fibers to be subject to tension and shear forces. Segmental flexion, then, increases both the loads borne by the disc and causes them to be borne in a more painful way. Patients with discogenic pain accommodate their syndrome by avoiding positions such as sitting, which cause their painful segment to go into flexion, preferring positions such as standing, which maintain their painful segment in extension.
  • Discogenic pain may be treated in a number of ways ranging from conservative treatments to surgery and implantation of prostheses. Conservative treatments include physical therapy, massage, anti-inflammatory and analgesic medications, muscle relaxants, and epidural steroid injections. These treatments have varying degrees of success and often patients typically continue to suffer with a significant degree of pain. Other patients elect to undergo spinal fusion surgery, which sometimes requires discectomy (removal of the disk) together with fusion of adjacent vertebra. Fusion may or may not also include instrumentation of the affected spinal segment including, for example, pedicle screws and stabilization rods, and/or intervertebral devices. Fusion is not lightly recommended for discogenic pain because it is irreversible, costly, associated with high morbidity, and has questionable effectiveness. Fusion is, however, still used for discogenic pain despite these drawbacks, and fusion is also used for many other spinal disorders related to pain and instability. While fusion with traditional instrumentation is promising, in some circumstances it may have drawbacks. Because most instrumentation is rigid or only provides limited motion, motion around the fused segment is prevented and loads can be fully borne by the instrumentation rather than the tissue. While prevention of significant motion is important during the fusion healing process, a certain amount of micromotion and loading of the tissue is desirable as this can promote fusion. Furthermore, allowing such motion and loading may enable the segment to fuse in a natural position, enabling maintenance of the lordotic curve in the treated region of the spine and avoiding the creation of kyphosis or “flat back” with fusion instrumentation. Therefore it would be desirable to provide a device that can stabilize a fused region like traditional instrumentation while still allowing some micromotion and loading in the fused region. Furthermore, loading along the spinal column may be modified due to the fusion and this may result in excessive loading on the fused region, adjacent tissue or devices used. It would therefore be desirable to provide methods and apparatus that can be used alone or in conjunction with spinal fusion or other spinal treatments that allow micromotion at the level of the fusion and that help to reduce the excessive loading and provide additional flexion stability.
  • FIG. 2 shows a spinal implant of the type described in related U.S. Patent Publication No. 2005/02161017 A1, now U.S. Pat. No. 7,458,981 the entire contents of which are incorporated herein by reference. The constraint device of FIG. 2 may be used alone or in combination with other spinal treatments to allow micromotion in a spinal segment that is fused or that is undergoing fusion, and to reduce loads borne by the region undergoing fusion or devices implanted into the patient as well as loads borne by adjacent tissue, thereby facilitating healing and reducing tissue damage and wear and tear. Furthermore, the constraint device may be used to provide greater stability to the spinal segment and to encourage the healing of the fusion at an intervertebral angle consistent with the lordotic curve of the patient.
  • As illustrated in FIG. 2, an implant 10 typically comprises a tether structure having an upper strap component 12 and a lower strap component 14 joined by a pair of compliance elements 16. A small aperture is pierced through the interspinous ligament (not illustrated) and the upper strap is passed through the aperture. The upper strap 12 may then be disposed over the top of the spinous process SP4 of L4. A similar lower aperture is pierced through the interspinous ligament allowing the lower strap 14 to extend over the bottom of the spinous process SP5 of L5. The compliance element 16 will typically include an internal element, such as a spring or rubber block, which is attached to the straps 12 and 14 in such a way that the straps may be “elastically” or “compliantly” pulled apart as the spinous processes SP4 and SP5 move apart during flexion. In this way, the implant provides an elastic tension on the spinous processes which is a force that resists flexion. The force increases as the processes move further apart. Usually, the straps themselves will be essentially non-compliant so that the degree of elasticity or compliance may be controlled and provided solely by the compliance elements 16. Additional details on implant 10 and the methods of use are disclosed in International PCT Applications Nos. PCT/US2009/055914 (Attorney Docket No. 026398-000910PC); PCT/US2009/046492 (Attorney Docket No. 026398-000810PC); U.S. Provisional Patent Application Nos. 61/093,922 (Attorney Docket No. 026398-000900US); 61/059,543 (Attorney Docket No. 026398-000800US); 61/059,538 (Attorney Docket No. 026398-000700US); U.S. patent application Ser. No. 12/106,103 (Attorney Docket No. 026398-000410US); U.S. Patent Publication Nos. 2010/0023060 (Attorney Docket No. 02398-000710US); 2008/0262549 (Attorney Docket No. 026398-000151US); and U.S. Pat. No. 7,458,981 (Attorney Docket No. 026398-000210US); the entire contents, each of which is incorporated in its entirety herein by reference. The constraint device of FIG. 2 may be used along with fusion to provide better clinical outcomes than traditionally instrumented fusion procedures. Additionally, in some situations, it may be desirable to couple the constraint device with the sacrum rather than an inferior spinous process. Additional disclosure on sacral attachment may be found in U.S. Provisional Patent Application No. 61/149,224 (Attorney Docket No. 026398-001200US); International PCT Application PCT/US2010/022767 (Attorney Docket No. 026398-001210PC); and U.S. patent application Ser. No. 11/827,980 (Attorney Docket No. 026398-000120US), the entire contents of which are incorporated herein by reference.
  • FIG. 3A illustrates traditional fusion and instrumentation of a spinal segment. In FIG. 3A, the intervertebral disc D between adjacent vertebrae V has been removed and bone graft material 304 has been implanted therebetween. Optionally, a spinal fusion cage 304 is also implanted between the adjacent vertebrae in order to facilitate fusion between the vertebrae. The bone graft material may be an allograft or an autograft of bone material. Xenografts and synthetic graft material may also be used. Spinal fusion between the vertebral bodies (within the disc space) as described above is known as interbody fusion. Another common spinal fusion technique is posterolateral fusion, where the bone graft is applied between the transverse processes of the motion segment to be fused. The methods and systems described here are applicable to both fusion techniques. Once the bone grafting material and/or fusion cage have been implanted, the spinal segment is often instrumented with pedicle screws 306 and stabilization rods 308 in order to prevent motion around the fused region thereby promoting fusion. Often four pedicle screws (two on either side of the spinal segment midline) and two stabilization rods (one on either side of the midline) are used, although FIG. 3A only illustrates two pedicle screws and one spinal rod since it is a lateral view. Some of the problems and challenges of an instrumented fusion have been previously discussed above. FIG. 3B illustrates an alternative embodiment of fusing a spinal segment using a constraint device such as the one illustrated in FIG. 2.
  • In FIG. 3B, the spinal segment is fused in a similar fashion as previously described with respect to FIG. 3A above. An intervertebral disc D is removed from between adjacent vertebrae V and bone grafting material 304 is implanted along with an optional fusion cage 302. Instead of instrumenting the fused segment with pedicle screws and rigid spinal rods, a constraint device is attached to the fused region of the spinal segment. Here, constraint device 310 generally takes the same form as the constraint device of FIG. 2 above, although any of the constraint devices disclosed herein may also be used. The constraint device 310 has an upper tether portion 310, a lower tether portion 314 and a compliance member 316 coupled therebetween. The upper tether portion 310 is disposed around a superior surface of a superior spinous process and the lower tether portion 314 is disposed around an inferior surface of an inferior spinous process. The constraint device may be implanted and coupled with the spinal segment such that the interspinous region extending from an inferior surface of the superior spinous process and a superior surface of the inferior spinous process remains free of any implants such as spacers or other prostheses (although in some embodiments, bone graft may be implanted in this space). The length or tension of the constraint device may be adjusted in order to tighten the resulting loop in order to control how much force compliance member 316 provides against flexion of the spinal segment. Additionally, the spring constant of the compliance member may be selected based on desired operating characteristics. Thus, the constraint device 310 may be adjusted so that is provides enough resistance to flexion so that fusion can occur, while at the same time allowing some micromotion between the adjacent fused vertebrae in order to further promote fusion and the rate of fusion and to enable healing of the fusion at an intervertebral angle that preserves the patient's lordotic curve. The constraint device also allows dynamic loading of the bone grafting material and/or the bone-cage interface, further promoting fusion and the rate of fusion. It should also be appreciated that the same benefits may be derived when the graft is applied to the transverse processes (as in postero-lateral fusion), or the posterior elements of the fused vertebrae. Unlike traditional instrumentation where screws and rods unload the spine directly, using constraint device 310 helps unload the spine indirectly.
  • Spinal segment fusion may also be accomplished by fusing adjacent transverse processes. FIG. 4A illustrates bone graft 402 applied to the transverse processes TP, without any stabilizing instrumentation. This is known as an uninstrumented fusion. When the patient bends forward, the transverse processes move apart. This may disrupt the healing of the graft and result in non-union (pseudoarthrosis), or the fusion may heal in a flexed position (kyphosis). FIG. 4B illustrates use of a constraint device 404 engaged with the spinous processes SP, for resisting segmental flexion, so that the graft will heal and fusion will develop in a more natural lordosis posture. FIG. 4C is a posterior view of FIG. 4B that more clearly shows the fused regions and attachment of the constraint device. The constraint device 402 generally takes the same form as those described herein.
  • The present devices and methods are also advantageous over traditional instrumentation with screws and rods since the constraint device directly controls flexion and involves engagement of the facets more than pedicle screws and rods. This results in some indirect restriction of both axial rotation and sagittal translation, which may further help with the fusion and provide additional spinal segment stability. Another advantage of using the present devices and methods is that loading, other than tensile loading, is not transferred to the constraint device, and thus the constraint device is likely to experience fewer failure modes than traditional instrumentation in which all loading is transferred to the screws and rods. The present constraint device therefore, not only attempts to maximize therapeutic effectiveness, but also attempts to minimize failure, unlike most existing instrumentation devices which only attempt to maximize the therapy. The present device disclosed herein intentionally allows backward motion (extension) which helps avoid issues with extension loading and may help with balancing of the patient's vertebral column. Most other instrumentation devices or systems do not permit backward motion of the spinal segment.
  • Applying the constraint device as opposed to using traditional instrumentation techniques is also less invasive. A constraint device may be applied using minimally invasive techniques and does not require that screws be threaded into the pedicles. The constraint device is delivered through small incisions in the patient's back and the tether portions of the constraint device are passed through a small hole pierced in the interspinous ligament. Therefore, the procedure may be performed faster and with less blood loss and may require less operating room time than traditional instrumentation, resulting in a safer and more cost-effective procedure. Moreover, traditional instrumentation requires that tissue be resected, unlike the present method for implanting a constraint device which requires no resection at the affected level, e.g. no bone is required to be resected from the affected vertebral body or its posterior elements. Traditional instrumentation therefore may have more complications and safety concerns than a minimally invasive constraint device. The absence of screws and rods also frees up space in the patient's back, permitting easier access in case additional back surgery is required and also allowing other devices to be implanted in the area without the need to avoid interfering with screws and rods.
  • Additional disclosure on the methods and tools for implanting the constraint device are disclosed in greater detail in U.S. Patent Publication No. 2008/0262549 (Attorney Docket No. 026398-000151US); U.S. Provisional Patent Application No. 61/093,922 (Attorney Docket No. 026398-000900US); and International PCT Application No. PCT/US2009/055914 (Attorney Docket No. 026398-000910PC); the entire contents of which were previously incorporated herein by reference. Additionally, several other length and tensioning adjustment mechanisms for a constraint device are disclosed in U.S. Provisional Patent Application Nos. 61/059,543 (Attorney Docket No. 026398-000800US); 61/059,538 (Attorney Docket No. 026398-000700US); U.S. Patent Publication No. 2010/0023060 (Attorney Docket No. 026398-000710US); International PCT Application No. PCT/US2009/046492 (Attorney Docket No. 026398-000810PC); the entire contents of which were previously incorporated by reference. Additional embodiments of constraint devices are also disclosed in U.S. patent application Ser. No. 12/106,103 (Attorney Docket No. 026398-000410US) and U.S. Pat. No. 7,458,981 (Attorney Docket No. 026398-000210US); the entire contents of which were previously incorporate herein by reference.
  • While the exemplary embodiments have been described in some detail for clarity of understanding and by way of example, a number of modifications, changes, and adaptations may be implemented and/or will be obvious to those skilled in the art. Hence, the scope of the present invention is limited solely by the independent claims.

Claims (22)

1. A method for controlling flexion in a spinal segment of a patient, said method comprising:
providing a constraint device comprising at least one compliance member and at least one tether, wherein the at least one compliance member comprises an elastic member, and wherein the at least one tether comprises an upper tether portion and a lower tether portion with the at least one compliance member coupled therebetween;
performing a spinal fusion procedure on a pair of adjacent vertebrae in the spinal segment, wherein the pair of adjacent vertebrae comprises a superior vertebra and an inferior vertebra, the superior vertebra having a spinous process with a superior surface and the inferior vertebra having a spinous process with an inferior surface;
implanting a constraint device into the patient, wherein the step of implanting comprises coupling the constraint device with the spinal segment,
and wherein the coupling comprises engaging the upper tether portion with the superior surface and engaging the lower tether portion with the inferior surface or a sacrum.
2. The method of claim 1, wherein the constraint device provides an elastic force resistant to flexion of the spinal segment.
3. The method of claim 2, wherein the elastic force encourages the spinal segment to fuse in a position consistent with a natural lordotic curve of the patient.
4. The method of claim 1, wherein the step of performing the spinal fusion procedure comprises posterolateral grafting of the adjacent vertebrae.
5. The method of claim 1, wherein the step of performing the spinal fusion procedure comprises intervertebral grafting in a disc space between the pair of adjacent vertebrae.
6. The method of claim 5, wherein the intervertebral grafting comprises applying bone grafting material to the spinous process of the superior vertebra and the spinous process of the inferior vertebra.
7. The method of claim 1, wherein the step of performing the spinal fusion procedure comprises implanting a first prosthesis into the patient, the first prosthesis engaged with at least a portion of the spinal segment, wherein the constraint device modulates loads borne by the first prosthesis or tissue adjacent thereto.
8. The method of claim 1, wherein implanting the first prosthesis comprises positioning an intervertebral device between the pair of adjacent vertebrae, the intervertebral device configured to maintain an alignment and a distance between the pair of adjacent vertebrae during a development of arthrodesis.
9. The method of claim 8, wherein the intervertebral device comprises an interbody fusion cage.
10. The method of claim 7, wherein implanting the first prosthesis comprises positioning bone grafting material between the pair of adjacent vertebrae.
11. The method of claim 10, wherein the bone grafting material is selected from the group consisting of an allograft, an autograft, a synthetic graft, and a xenograft.
12. The method of claim 7, wherein the first prosthesis or the constraint device comprises a therapeutic agent adapted to modify tissue in the spinal segment.
13. The method of claim 12, wherein the therapeutic agent comprises a bone morphogenic protein.
14. The method of claim 1, wherein implanting the constraint device occurs without implanting a prosthesis directly in an interspinous region extending between an inferior surface of the spinous process of the superior vertebra and a superior surface of the spinous process of the inferior vertebra or the sacrum.
15. The method of claim 1, wherein the step of implanting the constraint device comprises:
piercing an interspinous ligament to form a penetration superior to the superior surface of the spinous process of the superior vertebra; and
advancing the upper tether portion through the penetration.
16. The method of claim 1, wherein the step of implanting the constraint device comprises:
advancing the upper tether portion through a gap between the spinous process of the superior vertebra and an adjacent process, the gap created by surgical removal of an interspinous ligament therefrom.
17. The method of claim 1, wherein the step of implanting the constraint device comprises:
piercing an interspinous ligament to form a penetration inferior to the inferior surface of the spinous process of the inferior vertebra; and
advancing the lower tether portion through the penetration.
18. The method of claim 1, wherein the step of implanting the constraint device comprises:
advancing the lower tether portion through a gap between the inferior surface of the spinous process of the inferior vertebra and an adjacent spinous process or a sacrum, the gap created by surgical removal of an interspinous ligament therefrom.
19. The method of claim 1, wherein the compliance member has a spring constant, the method further comprising selecting the spring constant such that the elastic force provides enough resistance to flexion so that fusion can occur between the pair of adjacent vertebra, while at the same time allowing for micromotion between the pair of adjacent vertebrae.
20. The method of claim 1, wherein loading, other than tensile loading, is not transferred to the constraint device.
21. The method of claim 1, wherein implanting the constraint device is performed without resecting tissue of the spinal segment.
22. The method of claim 1, wherein implanting the constraint device is performed without resecting bone tissue of the spinal segment.
US13/962,847 2009-03-10 2013-08-08 Surgical tether apparatus and methods of use Abandoned US20140039558A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/962,847 US20140039558A1 (en) 2009-03-10 2013-08-08 Surgical tether apparatus and methods of use

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15888609P 2009-03-10 2009-03-10
US12/721,238 US8529606B2 (en) 2009-03-10 2010-03-10 Surgical tether apparatus and methods of use
US13/962,847 US20140039558A1 (en) 2009-03-10 2013-08-08 Surgical tether apparatus and methods of use

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/721,238 Continuation US8529606B2 (en) 2009-03-10 2010-03-10 Surgical tether apparatus and methods of use

Publications (1)

Publication Number Publication Date
US20140039558A1 true US20140039558A1 (en) 2014-02-06

Family

ID=42728738

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/721,238 Active 2030-06-30 US8529606B2 (en) 2009-03-10 2010-03-10 Surgical tether apparatus and methods of use
US13/962,847 Abandoned US20140039558A1 (en) 2009-03-10 2013-08-08 Surgical tether apparatus and methods of use

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/721,238 Active 2030-06-30 US8529606B2 (en) 2009-03-10 2010-03-10 Surgical tether apparatus and methods of use

Country Status (4)

Country Link
US (2) US8529606B2 (en)
EP (1) EP2405839A4 (en)
JP (1) JP2012520131A (en)
WO (1) WO2010104935A1 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170147669A1 (en) * 2015-11-24 2017-05-25 Cisco Technology, Inc. Cursor-based state-collapse scheme for shared databases
US9931143B2 (en) 2012-08-31 2018-04-03 New South Innovations Pty Limited Bone stabilization device and methods of use
US10016220B2 (en) 2011-11-01 2018-07-10 Nuvasive Specialized Orthopedics, Inc. Adjustable magnetic devices and methods of using same
US10238427B2 (en) 2015-02-19 2019-03-26 Nuvasive Specialized Orthopedics, Inc. Systems and methods for vertebral adjustment
US10271885B2 (en) 2014-12-26 2019-04-30 Nuvasive Specialized Orthopedics, Inc. Systems and methods for distraction
US10349995B2 (en) 2007-10-30 2019-07-16 Nuvasive Specialized Orthopedics, Inc. Skeletal manipulation method
US10405891B2 (en) 2010-08-09 2019-09-10 Nuvasive Specialized Orthopedics, Inc. Maintenance feature in magnetic implant
US10441323B2 (en) 2013-08-30 2019-10-15 New South Innovations Pty Limited Spine stabilization device
US10478232B2 (en) 2009-04-29 2019-11-19 Nuvasive Specialized Orthopedics, Inc. Interspinous process device and method
US10517643B2 (en) 2009-02-23 2019-12-31 Nuvasive Specialized Orthopedics, Inc. Non-invasive adjustable distraction system
US10617453B2 (en) 2015-10-16 2020-04-14 Nuvasive Specialized Orthopedics, Inc. Adjustable devices for treating arthritis of the knee
US10646262B2 (en) 2011-02-14 2020-05-12 Nuvasive Specialized Orthopedics, Inc. System and method for altering rotational alignment of bone sections
US10660675B2 (en) 2010-06-30 2020-05-26 Nuvasive Specialized Orthopedics, Inc. External adjustment device for distraction device
US10729470B2 (en) 2008-11-10 2020-08-04 Nuvasive Specialized Orthopedics, Inc. External adjustment device for distraction device
US10743794B2 (en) 2011-10-04 2020-08-18 Nuvasive Specialized Orthopedics, Inc. Devices and methods for non-invasive implant length sensing
US10751094B2 (en) 2013-10-10 2020-08-25 Nuvasive Specialized Orthopedics, Inc. Adjustable spinal implant
US10835290B2 (en) 2015-12-10 2020-11-17 Nuvasive Specialized Orthopedics, Inc. External adjustment device for distraction device
US10918425B2 (en) 2016-01-28 2021-02-16 Nuvasive Specialized Orthopedics, Inc. System and methods for bone transport
US11191579B2 (en) 2012-10-29 2021-12-07 Nuvasive Specialized Orthopedics, Inc. Adjustable devices for treating arthritis of the knee
US11202707B2 (en) 2008-03-25 2021-12-21 Nuvasive Specialized Orthopedics, Inc. Adjustable implant system
US11234849B2 (en) 2006-10-20 2022-02-01 Nuvasive Specialized Orthopedics, Inc. Adjustable implant and method of use
US11246694B2 (en) 2014-04-28 2022-02-15 Nuvasive Specialized Orthopedics, Inc. System for informational magnetic feedback in adjustable implants
US11357549B2 (en) 2004-07-02 2022-06-14 Nuvasive Specialized Orthopedics, Inc. Expandable rod system to treat scoliosis and method of using the same

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7846183B2 (en) 2004-02-06 2010-12-07 Spinal Elements, Inc. Vertebral facet joint prosthesis and method of fixation
US8523904B2 (en) 2004-03-09 2013-09-03 The Board Of Trustees Of The Leland Stanford Junior University Methods and systems for constraint of spinous processes with attachment
US7458981B2 (en) 2004-03-09 2008-12-02 The Board Of Trustees Of The Leland Stanford Junior University Spinal implant and method for restricting spinal flexion
US9504583B2 (en) 2004-06-10 2016-11-29 Spinal Elements, Inc. Implant and method for facet immobilization
US7901437B2 (en) 2007-01-26 2011-03-08 Jackson Roger P Dynamic stabilization member with molded connection
US8162982B2 (en) 2006-10-19 2012-04-24 Simpirica Spine, Inc. Methods and systems for constraint of multiple spine segments
US8029541B2 (en) 2006-10-19 2011-10-04 Simpirica Spine, Inc. Methods and systems for laterally stabilized constraint of spinous processes
US8187307B2 (en) 2006-10-19 2012-05-29 Simpirica Spine, Inc. Structures and methods for constraining spinal processes with single connector
US8992533B2 (en) 2007-02-22 2015-03-31 Spinal Elements, Inc. Vertebral facet joint drill and method of use
EP2129304B1 (en) 2007-02-22 2014-09-03 Spinal Elements, Inc. Vertebral articular process drill
US20100036424A1 (en) 2007-06-22 2010-02-11 Simpirica Spine, Inc. Methods and systems for increasing the bending stiffness and constraining the spreading of a spinal segment
US8403961B2 (en) * 2007-06-22 2013-03-26 Simpirica Spine, Inc. Methods and devices for controlled flexion restriction of spinal segments
EP2326267B1 (en) 2008-06-06 2018-04-25 Empirical Spine, Inc. Apparatus for locking an implantable band
US8187305B2 (en) * 2008-06-06 2012-05-29 Simpirica Spine, Inc. Methods and apparatus for deploying spinous process constraints
US11241257B2 (en) 2008-10-13 2022-02-08 Nuvasive Specialized Orthopedics, Inc. Spinal distraction system
WO2010104975A1 (en) * 2009-03-10 2010-09-16 Simpirica Spine, Inc. Surgical tether apparatus and methods of use
JP5681122B2 (en) 2009-03-10 2015-03-04 シンピライカ スパイン, インコーポレイテッド Surgical tether device and method of use
US8668719B2 (en) * 2009-03-30 2014-03-11 Simpirica Spine, Inc. Methods and apparatus for improving shear loading capacity of a spinal segment
US9668771B2 (en) 2009-06-15 2017-06-06 Roger P Jackson Soft stabilization assemblies with off-set connector
US8449543B2 (en) 2009-09-04 2013-05-28 Ellipse Technologies, Inc. Bone growth device and method
US8740949B2 (en) 2011-02-24 2014-06-03 Spinal Elements, Inc. Methods and apparatus for stabilizing bone
USD724733S1 (en) 2011-02-24 2015-03-17 Spinal Elements, Inc. Interbody bone implant
US9271765B2 (en) 2011-02-24 2016-03-01 Spinal Elements, Inc. Vertebral facet joint fusion implant and method for fusion
USD739935S1 (en) 2011-10-26 2015-09-29 Spinal Elements, Inc. Interbody bone implant
US9078711B2 (en) 2012-06-06 2015-07-14 Ellipse Technologies, Inc. Devices and methods for detection of slippage of magnetic coupling in implantable medical devices
US20130338714A1 (en) 2012-06-15 2013-12-19 Arvin Chang Magnetic implants with improved anatomical compatibility
US9044281B2 (en) 2012-10-18 2015-06-02 Ellipse Technologies, Inc. Intramedullary implants for replacing lost bone
US9179938B2 (en) 2013-03-08 2015-11-10 Ellipse Technologies, Inc. Distraction devices and method of assembling the same
US9421044B2 (en) 2013-03-14 2016-08-23 Spinal Elements, Inc. Apparatus for bone stabilization and distraction and methods of use
US9820784B2 (en) * 2013-03-14 2017-11-21 Spinal Elements, Inc. Apparatus for spinal fixation and methods of use
USD765853S1 (en) 2013-03-14 2016-09-06 Spinal Elements, Inc. Flexible elongate member with a portion configured to receive a bone anchor
US10226242B2 (en) 2013-07-31 2019-03-12 Nuvasive Specialized Orthopedics, Inc. Noninvasively adjustable suture anchors
US9801734B1 (en) 2013-08-09 2017-10-31 Nuvasive, Inc. Lordotic expandable interbody implant
US9456855B2 (en) 2013-09-27 2016-10-04 Spinal Elements, Inc. Method of placing an implant between bone portions
US9839450B2 (en) 2013-09-27 2017-12-12 Spinal Elements, Inc. Device and method for reinforcement of a facet
US11478275B2 (en) 2014-09-17 2022-10-25 Spinal Elements, Inc. Flexible fastening band connector
WO2016065205A1 (en) 2014-10-23 2016-04-28 Ellipse Technologies, Inc. Remotely adjustable interactive bone reshaping implant
CA2972788A1 (en) 2015-01-27 2016-08-04 Spinal Elements, Inc. Facet joint implant
WO2017139548A1 (en) 2016-02-10 2017-08-17 Nuvasive Specialized Orthopedics, Inc. Systems and methods for controlling multiple surgical variables
US10034693B2 (en) 2016-07-07 2018-07-31 Mark S. Stern Spinous laminar clamp assembly
US11577097B2 (en) 2019-02-07 2023-02-14 Nuvasive Specialized Orthopedics, Inc. Ultrasonic communication in medical devices
US11589901B2 (en) 2019-02-08 2023-02-28 Nuvasive Specialized Orthopedics, Inc. External adjustment device
US11457959B2 (en) 2019-05-22 2022-10-04 Spinal Elements, Inc. Bone tie and bone tie inserter
WO2020236229A1 (en) 2019-05-22 2020-11-26 Spinal Elements, Inc. Bone tie and bone tie inserter
US11304733B2 (en) 2020-02-14 2022-04-19 Spinal Elements, Inc. Bone tie methods
US20220265324A1 (en) 2021-02-23 2022-08-25 Nuvasive Specialized Orthopedics, Inc. Adjustable implant, system and methods
US11737787B1 (en) 2021-05-27 2023-08-29 Nuvasive, Inc. Bone elongating devices and methods of use
WO2023014564A1 (en) 2021-08-03 2023-02-09 Nuvasive Specialized Orthopedics, Inc. Adjustable implant
US11883080B1 (en) * 2022-07-13 2024-01-30 Globus Medical, Inc Reverse dynamization implants

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5645599A (en) * 1994-07-26 1997-07-08 Fixano Interspinal vertebral implant
US6312431B1 (en) * 2000-04-24 2001-11-06 Wilson T. Asfora Vertebrae linking system
US20020032483A1 (en) * 1998-05-06 2002-03-14 Nicholson James E. Apparatus and method for spinal fusion using implanted devices
US20080262549A1 (en) * 2006-10-19 2008-10-23 Simpirica Spine, Inc. Methods and systems for deploying spinous process constraints
US7452351B2 (en) * 2004-04-16 2008-11-18 Kyphon Sarl Spinal diagnostic methods and apparatus
US20100049251A1 (en) * 2008-03-28 2010-02-25 Kuslich Stephen D Method and device for interspinous process fusion

Family Cites Families (164)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5021A (en) * 1847-03-20 Jambs haworth
US3648691A (en) 1970-02-24 1972-03-14 Univ Colorado State Res Found Method of applying vertebral appliance
US4246660A (en) 1978-12-26 1981-01-27 Queen's University At Kingston Artificial ligament
US4643178A (en) 1984-04-23 1987-02-17 Fabco Medical Products, Inc. Surgical wire and method for the use thereof
US4743260A (en) 1985-06-10 1988-05-10 Burton Charles V Method for a flexible stabilization system for a vertebral column
US4708132A (en) 1986-01-24 1987-11-24 Pfizer-Hospital Products Group, Inc. Fixation device for a ligament or tendon prosthesis
ZA875425B (en) 1986-07-23 1988-04-27 Gore & Ass Mechanical ligament
US4794916A (en) 1986-11-20 1989-01-03 Porterfield James A Lumbar stabilizer
US4772286A (en) 1987-02-17 1988-09-20 E. Marlowe Goble Ligament attachment method and apparatus
FR2623085B1 (en) 1987-11-16 1992-08-14 Breard Francis SURGICAL IMPLANT TO LIMIT THE RELATIVE MOVEMENT OF VERTEBRES
FR2625097B1 (en) 1987-12-23 1990-05-18 Cote Sarl INTER-SPINOUS PROSTHESIS COMPOSED OF SEMI-ELASTIC MATERIAL COMPRISING A TRANSFILING EYE AT ITS END AND INTER-SPINOUS PADS
US4870957A (en) 1988-12-27 1989-10-03 Marlowe Goble E Ligament anchor system
US5116340A (en) 1989-01-26 1992-05-26 Songer Robert J Surgical securance apparatus
US4966600A (en) 1989-01-26 1990-10-30 Songer Robert J Surgical securance method
FR2642645B1 (en) 1989-02-03 1992-08-14 Breard Francis FLEXIBLE INTERVERTEBRAL STABILIZER AND METHOD AND APPARATUS FOR CONTROLLING ITS VOLTAGE BEFORE PLACEMENT ON THE RACHIS
USRE36221E (en) 1989-02-03 1999-06-01 Breard; Francis Henri Flexible inter-vertebral stabilizer as well as process and apparatus for determining or verifying its tension before installation on the spinal column
US4955910A (en) 1989-07-17 1990-09-11 Boehringer Mannheim Corporation Fixation system for an elongated prosthesis
US5108433A (en) 1989-08-18 1992-04-28 Minnesota Mining And Manufacturing Company Tensioning means for prosthetic devices
US5002574A (en) 1989-08-18 1991-03-26 Minnesota Mining And Manufacturing Co. Tensioning means for prosthetic devices
DE59100448D1 (en) 1990-04-20 1993-11-11 Sulzer Ag Implant, in particular intervertebral prosthesis.
FR2666981B1 (en) 1990-09-21 1993-06-25 Commarmond Jacques SYNTHETIC LIGAMENT VERTEBRAL.
FR2681525A1 (en) 1991-09-19 1993-03-26 Medical Op Device for flexible or semi-rigid stabilisation of the spine, in particular of the human spine, by a posterior route
FR2693364B1 (en) 1992-07-07 1995-06-30 Erpios Snc INTERVERTEBRAL PROSTHESIS FOR STABILIZING ROTATORY AND FLEXIBLE-EXTENSION CONSTRAINTS.
GB9217578D0 (en) 1992-08-19 1992-09-30 Surgicarft Ltd Surgical implants,etc
US5540703A (en) 1993-01-06 1996-07-30 Smith & Nephew Richards Inc. Knotted cable attachment apparatus formed of braided polymeric fibers
US5456722A (en) 1993-01-06 1995-10-10 Smith & Nephew Richards Inc. Load bearing polymeric cable
US5496318A (en) 1993-01-08 1996-03-05 Advanced Spine Fixation Systems, Inc. Interspinous segmental spine fixation device
US5415661A (en) 1993-03-24 1995-05-16 University Of Miami Implantable spinal assist device
US5540698A (en) 1993-04-21 1996-07-30 Amei Technologies Inc. System and method for securing a medical cable
US5449361A (en) 1993-04-21 1995-09-12 Amei Technologies Inc. Orthopedic cable tensioner
FR2709246B1 (en) 1993-08-27 1995-09-29 Martin Jean Raymond Dynamic implanted spinal orthosis.
US5395374A (en) 1993-09-02 1995-03-07 Danek Medical, Inc. Orthopedic cabling method and apparatus
US5354917A (en) 1993-11-12 1994-10-11 Texaco Chemical Company Use of supported rhodium catalysts in the preparation of tertiary butyl alcohol from tertiary butyl hydroperoxide
FR2712481B1 (en) 1993-11-18 1996-01-12 Graf Henry Improvements to flexible inter-vertebral stabilizers.
US5415658A (en) 1993-12-14 1995-05-16 Pioneer Laboratories, Inc. Surgical cable loop connector
FR2714591B1 (en) 1994-01-06 1996-03-01 Euros Sa Prosthetic element for the lumbosacral joint.
US5462542A (en) 1994-01-24 1995-10-31 United States Surgical Corporation Sternum buckle with serrated strap
CA2141911C (en) 1994-02-24 2002-04-23 Jude S. Sauer Surgical crimping device and method of use
FR2717675B1 (en) 1994-03-24 1996-05-03 Jean Taylor Interspinous wedge.
US5458601A (en) 1994-03-28 1995-10-17 Medical University Of South Carolina Adjustable ligament anchor
DE69526113D1 (en) 1994-11-16 2002-05-02 Advanced Spine Fixation Syst GRAPPING HOOKS FOR FIXING THE SPINE SEGMENTS
US5645084A (en) 1995-06-07 1997-07-08 Danek Medical, Inc. Method for spinal fusion without decortication
EP0873718A3 (en) 1995-04-28 1998-11-04 Gazzani, Romolo Igino Devices for osteosynthesis
US5707379A (en) 1995-10-20 1998-01-13 Coral Medical Method and apparatus for intracorporeal suturing
US5797915A (en) * 1996-04-17 1998-08-25 Pierson, Iii; Raymond H. Cerclage system
DE19627864C2 (en) 1996-07-11 2003-05-08 Aesculap Ag & Co Kg Surgical jig
US6835207B2 (en) 1996-07-22 2004-12-28 Fred Zacouto Skeletal implant
KR100189371B1 (en) 1996-08-23 1999-06-01 전주범 An interpolator of digital decoder
AU4480097A (en) 1996-09-20 1998-04-14 Medicinelodge, Inc. Adjustable length strap and footing for ligament mounting and method for its use
US6068630A (en) 1997-01-02 2000-05-30 St. Francis Medical Technologies, Inc. Spine distraction implant
US7201751B2 (en) 1997-01-02 2007-04-10 St. Francis Medical Technologies, Inc. Supplemental spine fixation device
US6451019B1 (en) 1998-10-20 2002-09-17 St. Francis Medical Technologies, Inc. Supplemental spine fixation device and method
US6712819B2 (en) 1998-10-20 2004-03-30 St. Francis Medical Technologies, Inc. Mating insertion instruments for spinal implants and methods of use
DE69842242D1 (en) 1997-02-11 2011-06-09 Zimmer Spine Inc Plate for the anterior cervical spine with fixation system for screws
US6828357B1 (en) 1997-07-31 2004-12-07 Metabolix, Inc. Polyhydroxyalkanoate compositions having controlled degradation rates
US6053921A (en) 1997-08-26 2000-04-25 Spinal Concepts, Inc. Surgical cable system and method
US5964769A (en) 1997-08-26 1999-10-12 Spinal Concepts, Inc. Surgical cable system and method
US6322279B1 (en) 1997-11-04 2001-11-27 Sports Carriers, Inc. Adjustable attachment device
US6395018B1 (en) 1998-02-09 2002-05-28 Wilfrido R. Castaneda Endovascular graft and process for bridging a defect in a main vessel near one of more branch vessels
FR2775183B1 (en) 1998-02-20 2000-08-04 Jean Taylor INTER-SPINOUS PROSTHESIS
US6224630B1 (en) 1998-05-29 2001-05-01 Advanced Bio Surfaces, Inc. Implantable tissue repair device
US6652527B2 (en) 1998-10-20 2003-11-25 St. Francis Medical Technologies, Inc. Supplemental spine fixation device and method
US5989256A (en) 1999-01-19 1999-11-23 Spineology, Inc. Bone fixation cable ferrule
US6296643B1 (en) 1999-04-23 2001-10-02 Sdgi Holdings, Inc. Device for the correction of spinal deformities through vertebral body tethering without fusion
US6299613B1 (en) 1999-04-23 2001-10-09 Sdgi Holdings, Inc. Method for the correction of spinal deformities through vertebral body tethering without fusion
US6436099B1 (en) 1999-04-23 2002-08-20 Sdgi Holdings, Inc. Adjustable spinal tether
FR2799640B1 (en) 1999-10-15 2002-01-25 Spine Next Sa IMPLANT INTERVETEBRAL
US6378289B1 (en) 1999-11-19 2002-04-30 Pioneer Surgical Technology Methods and apparatus for clamping surgical wires or cables
US6558389B2 (en) 1999-11-30 2003-05-06 Ron Clark Endosteal tibial ligament fixation with adjustable tensioning
GB9929599D0 (en) 1999-12-15 2000-02-09 Atlantech Medical Devices Limi A graft suspension device
US6629975B1 (en) 1999-12-20 2003-10-07 Pioneer Laboratories, Icn. Multiple lumen crimp
US6899716B2 (en) 2000-02-16 2005-05-31 Trans1, Inc. Method and apparatus for spinal augmentation
US6248106B1 (en) 2000-02-25 2001-06-19 Bret Ferree Cross-coupled vertebral stabilizers
US6402750B1 (en) 2000-04-04 2002-06-11 Spinlabs, Llc Devices and methods for the treatment of spinal disorders
US6605091B1 (en) 2000-06-30 2003-08-12 Pioneer Laboratories, Inc. Surgical cable assembly and method
FR2811543B1 (en) 2000-07-12 2003-07-04 Spine Next Sa INTERSOMATIC IMPLANT
FR2811540B1 (en) 2000-07-12 2003-04-25 Spine Next Sa IMPORTING INTERVERTEBRAL IMPLANT
EP1192908A3 (en) 2000-10-02 2004-05-26 Howmedica Osteonics Corp. System and method for spinal reconstruction
US6468309B1 (en) 2000-10-05 2002-10-22 Cleveland Clinic Foundation Method and apparatus for stabilizing adjacent bones
KR20030038556A (en) 2000-10-24 2003-05-16 스파인올로지 그룹, 엘엘씨 Tension band clip
FR2817461B1 (en) 2000-12-01 2003-08-15 Henry Graf INTERVERTEBRAL STABILIZATION DEVICE
US6752831B2 (en) 2000-12-08 2004-06-22 Osteotech, Inc. Biocompatible osteogenic band for repair of spinal disorders
FR2818530B1 (en) 2000-12-22 2003-10-31 Spine Next Sa INTERVERTEBRAL IMPLANT WITH DEFORMABLE SHIM
US6364883B1 (en) 2001-02-23 2002-04-02 Albert N. Santilli Spinous process clamp for spinal fusion and method of operation
US6652585B2 (en) 2001-02-28 2003-11-25 Sdgi Holdings, Inc. Flexible spine stabilization system
FR2822051B1 (en) 2001-03-13 2004-02-27 Spine Next Sa INTERVERTEBRAL IMPLANT WITH SELF-LOCKING ATTACHMENT
US6582433B2 (en) 2001-04-09 2003-06-24 St. Francis Medical Technologies, Inc. Spine fixation device and method
GB0114783D0 (en) 2001-06-16 2001-08-08 Sengupta Dilip K A assembly for the stabilisation of vertebral bodies of the spine
FR2828398B1 (en) * 2001-08-08 2003-09-19 Jean Taylor VERTEBRA STABILIZATION ASSEMBLY
US6736815B2 (en) 2001-09-06 2004-05-18 Core Medical, Inc. Apparatus and methods for treating spinal discs
US6695852B2 (en) 2001-10-31 2004-02-24 Spineology, Inc. Tension tools for tension band clip
US7285121B2 (en) 2001-11-05 2007-10-23 Warsaw Orthopedic, Inc. Devices and methods for the correction and treatment of spinal deformities
FR2832917B1 (en) 2001-11-30 2004-09-24 Spine Next Sa ELASTICALLY DEFORMABLE INTERVERTEBRAL IMPLANT
US6669729B2 (en) 2002-03-08 2003-12-30 Kingsley Richard Chin Apparatus and method for the replacement of posterior vertebral elements
FR2844179B1 (en) 2002-09-10 2004-12-03 Jean Taylor POSTERIOR VERTEBRAL SUPPORT KIT
US7608094B2 (en) 2002-10-10 2009-10-27 U.S. Spinal Technologies, Llc Percutaneous facet fixation system
US7909853B2 (en) 2004-09-23 2011-03-22 Kyphon Sarl Interspinous process implant including a binder and method of implantation
US20040210310A1 (en) 2002-12-10 2004-10-21 Trieu Hai H. Implant system and method for intervertebral disc augmentation
US7101398B2 (en) 2002-12-31 2006-09-05 Depuy Acromed, Inc. Prosthetic facet joint ligament
FR2850009B1 (en) 2003-01-20 2005-12-23 Spine Next Sa TREATMENT ASSEMBLY FOR THE DEGENERATION OF AN INTERVERTEBRAL DISC
US8172876B2 (en) 2003-02-05 2012-05-08 Pioneer Surgical Technology, Inc. Spinal fixation systems
FR2851154B1 (en) 2003-02-19 2006-07-07 Sdgi Holding Inc INTER-SPINOUS DEVICE FOR BRAKING THE MOVEMENTS OF TWO SUCCESSIVE VERTEBRATES, AND METHOD FOR MANUFACTURING THE SAME THEREOF
US7029475B2 (en) 2003-05-02 2006-04-18 Yale University Spinal stabilization method
WO2004105577A2 (en) 2003-05-23 2004-12-09 Globus Medical, Inc. Spine stabilization system
FR2858546B1 (en) 2003-08-04 2006-04-28 Spine Next Sa INTERVERTEBRAL DISC PROSTHESIS
WO2005037150A1 (en) 2003-10-16 2005-04-28 Osteotech, Inc. System and method for flexible correction of bony motion segment
US7591837B2 (en) 2003-10-28 2009-09-22 Pyramid Spine, Llc Facet triangle spinal fixation device and method of use
US8632570B2 (en) 2003-11-07 2014-01-21 Biedermann Technologies Gmbh & Co. Kg Stabilization device for bones comprising a spring element and manufacturing method for said spring element
US8133500B2 (en) 2003-12-04 2012-03-13 Kensey Nash Bvf Technology, Llc Compressed high density fibrous polymers suitable for implant
US7553320B2 (en) 2003-12-10 2009-06-30 Warsaw Orthopedic, Inc. Method and apparatus for replacing the function of facet joints
US20050192581A1 (en) 2004-02-27 2005-09-01 Molz Fred J. Radiopaque, coaxial orthopedic tether design and method
US7458981B2 (en) 2004-03-09 2008-12-02 The Board Of Trustees Of The Leland Stanford Junior University Spinal implant and method for restricting spinal flexion
US8523904B2 (en) 2004-03-09 2013-09-03 The Board Of Trustees Of The Leland Stanford Junior University Methods and systems for constraint of spinous processes with attachment
US20050267518A1 (en) 2004-04-07 2005-12-01 Tiax, Llc Tourniquet and method of using same
US7524324B2 (en) 2004-04-28 2009-04-28 Kyphon Sarl System and method for an interspinous process implant as a supplement to a spine stabilization implant
US20050267470A1 (en) 2004-05-13 2005-12-01 Mcbride Duncan Q Spinal stabilization system to flexibly connect vertebrae
JP4382092B2 (en) 2004-05-17 2009-12-09 ウリドル スパイン ヘルス インスティチュート シーオー. Intervertebral insert
US20060036324A1 (en) 2004-08-03 2006-02-16 Dan Sachs Adjustable spinal implant device and method
FR2874167B1 (en) 2004-08-12 2006-11-10 Philippe Mengus INTER SPINE DAMPER
US20060084976A1 (en) 2004-09-30 2006-04-20 Depuy Spine, Inc. Posterior stabilization systems and methods
US7559951B2 (en) 2004-09-30 2009-07-14 Depuy Products, Inc. Adjustable, remote-controllable orthopaedic prosthesis and associated method
US7766940B2 (en) 2004-12-30 2010-08-03 Depuy Spine, Inc. Posterior stabilization system
US7918875B2 (en) 2004-10-25 2011-04-05 Lanx, Inc. Interspinous distraction devices and associated methods of insertion
US20060106381A1 (en) 2004-11-18 2006-05-18 Ferree Bret A Methods and apparatus for treating spinal stenosis
WO2006066053A1 (en) 2004-12-15 2006-06-22 Stryker Spine Spinal rods having segments of different elastic properties and methods of using them
US20060195102A1 (en) 2005-02-17 2006-08-31 Malandain Hugues F Apparatus and method for treatment of spinal conditions
US7862590B2 (en) 2005-04-08 2011-01-04 Warsaw Orthopedic, Inc. Interspinous process spacer
FR2884136B1 (en) 2005-04-08 2008-02-22 Spinevision Sa INTERVERTEBRAL SURGICAL IMPLANT FORMING BALL
US7780709B2 (en) 2005-04-12 2010-08-24 Warsaw Orthopedic, Inc. Implants and methods for inter-transverse process dynamic stabilization of a spinal motion segment
US20060271055A1 (en) 2005-05-12 2006-11-30 Jeffery Thramann Spinal stabilization
WO2006138690A2 (en) 2005-06-17 2006-12-28 Abbott Laboratories Improved method of treating degenerative spinal disorders
US8273088B2 (en) 2005-07-08 2012-09-25 Depuy Spine, Inc. Bone removal tool
GB0516034D0 (en) * 2005-08-04 2005-09-14 Blacklock T Orthopaedic medical device
US20080183209A1 (en) 2005-09-23 2008-07-31 Spinal Kinetics, Inc. Spinal Stabilization Device
US20070083200A1 (en) 2005-09-23 2007-04-12 Gittings Darin C Spinal stabilization systems and methods
US7837711B2 (en) 2006-01-27 2010-11-23 Warsaw Orthopedic, Inc. Artificial spinous process for the sacrum and methods of use
US20070233096A1 (en) 2006-02-13 2007-10-04 Javier Garcia-Bengochea Dynamic inter-spinous device
US7806911B2 (en) * 2006-04-14 2010-10-05 Warsaw Orthopedic, Inc. Fixation plate and method of use
US8105357B2 (en) 2006-04-28 2012-01-31 Warsaw Orthopedic, Inc. Interspinous process brace
US20070299445A1 (en) 2006-06-22 2007-12-27 Shadduck John H Spine treatment devices and methods
US7862569B2 (en) 2006-06-22 2011-01-04 Kyphon Sarl System and method for strengthening a spinous process
US20080021466A1 (en) 2006-07-20 2008-01-24 Shadduck John H Spine treatment devices and methods
US20080051784A1 (en) 2006-08-03 2008-02-28 Sohrab Gollogly Bone repositioning apparatus and methodology
US20080097431A1 (en) 2006-09-22 2008-04-24 Paul Peter Vessa Flexible spinal stabilization
US8029541B2 (en) 2006-10-19 2011-10-04 Simpirica Spine, Inc. Methods and systems for laterally stabilized constraint of spinous processes
US8187307B2 (en) 2006-10-19 2012-05-29 Simpirica Spine, Inc. Structures and methods for constraining spinal processes with single connector
US8162982B2 (en) 2006-10-19 2012-04-24 Simpirica Spine, Inc. Methods and systems for constraint of multiple spine segments
EP2083701A4 (en) 2006-10-19 2013-06-12 Simpirica Spine Inc Methods and systems for constraint of multiple spine segments
US20080177298A1 (en) 2006-10-24 2008-07-24 St. Francis Medical Technologies, Inc. Tensioner Tool and Method for Implanting an Interspinous Process Implant Including a Binder
US20080114357A1 (en) 2006-11-15 2008-05-15 Warsaw Orthopedic, Inc. Inter-transverse process spacer device and method for use in correcting a spinal deformity
US8109978B2 (en) 2006-11-28 2012-02-07 Anova Corporation Methods of posterior fixation and stabilization of a spinal segment
MX2009005843A (en) 2006-12-10 2009-06-16 Paradigm Spine Llc Posterior functionally dynamic stabilization system.
US9173686B2 (en) 2007-05-09 2015-11-03 Ebi, Llc Interspinous implant
EP1994901A1 (en) 2007-05-24 2008-11-26 Bio Medical S.r.L. Intervertebral support device
US20100036424A1 (en) 2007-06-22 2010-02-11 Simpirica Spine, Inc. Methods and systems for increasing the bending stiffness and constraining the spreading of a spinal segment
US8403961B2 (en) 2007-06-22 2013-03-26 Simpirica Spine, Inc. Methods and devices for controlled flexion restriction of spinal segments
US8696714B2 (en) 2007-11-02 2014-04-15 The Board Of Trustees Of The Leland Stanford Junior University Intervertebral stabilization devices
EP2326267B1 (en) 2008-06-06 2018-04-25 Empirical Spine, Inc. Apparatus for locking an implantable band
US8187305B2 (en) 2008-06-06 2012-05-29 Simpirica Spine, Inc. Methods and apparatus for deploying spinous process constraints
WO2009149407A1 (en) 2008-06-06 2009-12-10 Simpirica Spine, Inc. Methods and apparatus for locking a band
ES2523801T3 (en) 2008-09-03 2014-12-01 Simpirica Spine, Inc. Apparatus for coupling a prosthesis to a segment of the spine
WO2010088621A1 (en) 2009-02-02 2010-08-05 Simpirica Spine, Inc. Sacral tether anchor and methods of use
WO2010104975A1 (en) 2009-03-10 2010-09-16 Simpirica Spine, Inc. Surgical tether apparatus and methods of use
US8668719B2 (en) 2009-03-30 2014-03-11 Simpirica Spine, Inc. Methods and apparatus for improving shear loading capacity of a spinal segment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5645599A (en) * 1994-07-26 1997-07-08 Fixano Interspinal vertebral implant
US20020032483A1 (en) * 1998-05-06 2002-03-14 Nicholson James E. Apparatus and method for spinal fusion using implanted devices
US6312431B1 (en) * 2000-04-24 2001-11-06 Wilson T. Asfora Vertebrae linking system
US7452351B2 (en) * 2004-04-16 2008-11-18 Kyphon Sarl Spinal diagnostic methods and apparatus
US20080262549A1 (en) * 2006-10-19 2008-10-23 Simpirica Spine, Inc. Methods and systems for deploying spinous process constraints
US20100049251A1 (en) * 2008-03-28 2010-02-25 Kuslich Stephen D Method and device for interspinous process fusion

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11357549B2 (en) 2004-07-02 2022-06-14 Nuvasive Specialized Orthopedics, Inc. Expandable rod system to treat scoliosis and method of using the same
US11234849B2 (en) 2006-10-20 2022-02-01 Nuvasive Specialized Orthopedics, Inc. Adjustable implant and method of use
US11672684B2 (en) 2006-10-20 2023-06-13 Nuvasive Specialized Orthopedics, Inc. Adjustable implant and method of use
US10349995B2 (en) 2007-10-30 2019-07-16 Nuvasive Specialized Orthopedics, Inc. Skeletal manipulation method
US11172972B2 (en) 2007-10-30 2021-11-16 Nuvasive Specialized Orthopedics, Inc. Skeletal manipulation method
US11202707B2 (en) 2008-03-25 2021-12-21 Nuvasive Specialized Orthopedics, Inc. Adjustable implant system
US10729470B2 (en) 2008-11-10 2020-08-04 Nuvasive Specialized Orthopedics, Inc. External adjustment device for distraction device
US10517643B2 (en) 2009-02-23 2019-12-31 Nuvasive Specialized Orthopedics, Inc. Non-invasive adjustable distraction system
US10478232B2 (en) 2009-04-29 2019-11-19 Nuvasive Specialized Orthopedics, Inc. Interspinous process device and method
US10660675B2 (en) 2010-06-30 2020-05-26 Nuvasive Specialized Orthopedics, Inc. External adjustment device for distraction device
US10405891B2 (en) 2010-08-09 2019-09-10 Nuvasive Specialized Orthopedics, Inc. Maintenance feature in magnetic implant
US10646262B2 (en) 2011-02-14 2020-05-12 Nuvasive Specialized Orthopedics, Inc. System and method for altering rotational alignment of bone sections
US10743794B2 (en) 2011-10-04 2020-08-18 Nuvasive Specialized Orthopedics, Inc. Devices and methods for non-invasive implant length sensing
US10016220B2 (en) 2011-11-01 2018-07-10 Nuvasive Specialized Orthopedics, Inc. Adjustable magnetic devices and methods of using same
US10349982B2 (en) 2011-11-01 2019-07-16 Nuvasive Specialized Orthopedics, Inc. Adjustable magnetic devices and methods of using same
US11123107B2 (en) 2011-11-01 2021-09-21 Nuvasive Specialized Orthopedics, Inc. Adjustable magnetic devices and methods of using same
US9931143B2 (en) 2012-08-31 2018-04-03 New South Innovations Pty Limited Bone stabilization device and methods of use
US11213330B2 (en) 2012-10-29 2022-01-04 Nuvasive Specialized Orthopedics, Inc. Adjustable devices for treating arthritis of the knee
US11191579B2 (en) 2012-10-29 2021-12-07 Nuvasive Specialized Orthopedics, Inc. Adjustable devices for treating arthritis of the knee
US11413075B2 (en) 2013-08-30 2022-08-16 New South Innovations Pty Limited Spine stabilization device
US10441323B2 (en) 2013-08-30 2019-10-15 New South Innovations Pty Limited Spine stabilization device
US11576702B2 (en) 2013-10-10 2023-02-14 Nuvasive Specialized Orthopedics, Inc. Adjustable spinal implant
US10751094B2 (en) 2013-10-10 2020-08-25 Nuvasive Specialized Orthopedics, Inc. Adjustable spinal implant
US11246694B2 (en) 2014-04-28 2022-02-15 Nuvasive Specialized Orthopedics, Inc. System for informational magnetic feedback in adjustable implants
US10271885B2 (en) 2014-12-26 2019-04-30 Nuvasive Specialized Orthopedics, Inc. Systems and methods for distraction
US11439449B2 (en) 2014-12-26 2022-09-13 Nuvasive Specialized Orthopedics, Inc. Systems and methods for distraction
US11612416B2 (en) 2015-02-19 2023-03-28 Nuvasive Specialized Orthopedics, Inc. Systems and methods for vertebral adjustment
US10238427B2 (en) 2015-02-19 2019-03-26 Nuvasive Specialized Orthopedics, Inc. Systems and methods for vertebral adjustment
US12076051B2 (en) 2015-02-19 2024-09-03 Nuvasive Specialized Orthopedics, Inc. Systems and methods for vertebral adjustment
US10617453B2 (en) 2015-10-16 2020-04-14 Nuvasive Specialized Orthopedics, Inc. Adjustable devices for treating arthritis of the knee
US10599672B2 (en) * 2015-11-24 2020-03-24 Cisco Technology, Inc. Cursor-based state-collapse scheme for shared databases
US20170147669A1 (en) * 2015-11-24 2017-05-25 Cisco Technology, Inc. Cursor-based state-collapse scheme for shared databases
US10835290B2 (en) 2015-12-10 2020-11-17 Nuvasive Specialized Orthopedics, Inc. External adjustment device for distraction device
US10918425B2 (en) 2016-01-28 2021-02-16 Nuvasive Specialized Orthopedics, Inc. System and methods for bone transport

Also Published As

Publication number Publication date
US20100234894A1 (en) 2010-09-16
EP2405839A4 (en) 2013-12-11
EP2405839A1 (en) 2012-01-18
JP2012520131A (en) 2012-09-06
WO2010104935A1 (en) 2010-09-16
US8529606B2 (en) 2013-09-10

Similar Documents

Publication Publication Date Title
US8529606B2 (en) Surgical tether apparatus and methods of use
US20220323120A1 (en) Surgical tether apparatus and methods of use
US8562653B2 (en) Surgical tether apparatus and methods of use
US8668719B2 (en) Methods and apparatus for improving shear loading capacity of a spinal segment
US20080021466A1 (en) Spine treatment devices and methods
US8114158B2 (en) Facet device and method
US8241329B2 (en) Device and method for the prevention of multi-level vertebral extension
EP1865891B1 (en) Minimally invasive spine restoration devices
US20070299445A1 (en) Spine treatment devices and methods
US8021394B2 (en) Stenotic device
JP5416217B2 (en) Viscoelastic facet joint implant
US20070288014A1 (en) Spine treatment devices and methods
US20090118833A1 (en) In-situ curable interspinous process spacer
US20140303671A1 (en) Angled Washer Polyaxial Connection for Dynamic Spine Prosthesis
US20120109200A1 (en) Methods and devices for restricting flexion and extension of a spinal segment
US11457960B2 (en) Lateral spine stabilization devices and methods
Sengupta et al. Percutaneous Posterior “Dynamic” Stabilization of the Lumbar Spine

Legal Events

Date Code Title Description
AS Assignment

Owner name: SIMPIRICA SPINE, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ALAMIN, TODD;CAHILL, COLIN;FIELDING, LOUIS;AND OTHERS;SIGNING DATES FROM 20100407 TO 20100408;REEL/FRAME:032712/0713

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: SIMPIRICA (ASSIGNMENT FOR THE BENEFIT OF CREDITORS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SIMPIRICA SPINE, INC.;REEL/FRAME:035974/0429

Effective date: 20141119

Owner name: EMPIRICAL SPINE, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SIMPIRICA (ASSIGNMENT FOR THE BENEFIT OF CREDITORS), LLC;REEL/FRAME:035974/0812

Effective date: 20150408