US20140034420A1 - Lubrication control system - Google Patents

Lubrication control system Download PDF

Info

Publication number
US20140034420A1
US20140034420A1 US13/562,407 US201213562407A US2014034420A1 US 20140034420 A1 US20140034420 A1 US 20140034420A1 US 201213562407 A US201213562407 A US 201213562407A US 2014034420 A1 US2014034420 A1 US 2014034420A1
Authority
US
United States
Prior art keywords
machine
temperature
lubrication
controller
signal indicative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/562,407
Inventor
Toby A. Frelich
Ricky L. Mings
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Caterpillar Paving Products Inc
Original Assignee
Caterpillar Paving Products Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Caterpillar Paving Products Inc filed Critical Caterpillar Paving Products Inc
Priority to US13/562,407 priority Critical patent/US20140034420A1/en
Assigned to CATERPILLAR PAVING PRODUCTS INC. reassignment CATERPILLAR PAVING PRODUCTS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FRELICH, TOBY A, MINGS, RICKY L.
Publication of US20140034420A1 publication Critical patent/US20140034420A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2095Control of electric, electro-mechanical or mechanical equipment not otherwise provided for, e.g. ventilators, electro-driven fans
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • E02F9/265Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N29/00Special means in lubricating arrangements or systems providing for the indication or detection of undesired conditions; Use of devices responsive to conditions in lubricating arrangements or systems
    • F16N29/02Special means in lubricating arrangements or systems providing for the indication or detection of undesired conditions; Use of devices responsive to conditions in lubricating arrangements or systems for influencing the supply of lubricant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N2250/00Measuring
    • F16N2250/08Temperature

Definitions

  • the present disclosure relates to a lubrication system for a machine, and more specifically to a system for controlling the lubrication system.
  • U.S. Pat. No. 5,823,295 relates a control system including a lubricant distribution system, a charging system adapted to drive the lubricant distribution system, a sensor for determining the operating state of the charging system, and a device for calculating a time interval being dependent upon a previous lubricating event.
  • the control system also includes a device for producing a lubrication signal in response to the time interval reaching a predetermined interval constant.
  • a system in one aspect of the present disclosure, includes a lubrication feeder and a controller.
  • the controller is in communication with the lubrication feeder.
  • the controller is configured to activate the lubrication feeder according to a position of an implement and a temperature associated with the machine.
  • a method for lubricating a machine receives a position signal indicative of a position of an implement of the machine. The method also receives a temperature signal indicative of a temperature associated with the machine. Further, the method activates a lubrication feeder of the machine according to the received position signal and the temperature signal.
  • FIG. 1 is a diagrammatic view of an exemplary machine, according to one embodiment of the present disclosure
  • FIG. 2 is a block diagram of a lubrication system
  • FIG. 3 is a flowchart for lubricating the machine shown in FIG. 1 .
  • FIG. 1 is an illustration of an exemplary machine 100 , according to one embodiment of the present disclosure.
  • the machine 100 may embody a paving machine 102 , such as, for example, an asphalt paver.
  • the machine 100 may also include any other paving machine used for any kind of paving material like asphalt, concrete, and loose aggregate materials such as crushed gravel.
  • the machine 100 may further include any other construction machine such as an excavator, off-highway mining truck, front shovel, backhoe loader, and the like.
  • the paving machine 102 may include a tractor 104 having a power source, an operator station 105 , one or more traction devices 106 , and a hopper 108 for containing paving material.
  • the traction devices 106 shown in the accompanied figures are tracks, the traction devices 106 could alternatively be wheels or any other type of traction device known in the art.
  • the traction devices 106 could also be combinations of different types of traction devices.
  • the paving machine 102 could include both tracks and wheels.
  • the paving machine 102 may also include an implement 110 such as a screed.
  • the implement 110 may be attached to the tractor 104 by one or more tow arms 112 .
  • the implement 110 may be towed behind the tractor 104 to spread and compact paving material into a mat 114 on a paving surface 116 .
  • the implement 110 may include one or more augers 118 for spreading the paving material.
  • a person of ordinary skill in the art will appreciate that the implement 110 described herein is merely on an exemplary basis.
  • the implement 110 may vary based on the machine 100 .
  • the machine 100 may include a lubrication feeder 120 .
  • the lubrication feeder 120 may be configured to provide lubrication to various bearings and linkage joints present in the machine 100 .
  • the lubrication feeder 120 may include automatic components and manual components for the distribution of a lubricant to various parts of the machine 100 .
  • the lubricant may be pumped from a centrally located lubrication tank (not shown in the figures) to injector banks and grease reels located within the machine 100 . Additionally, one or more pumps may be provided to pump the lubricant from the lubrication tank.
  • the pumps may be pneumatically powered, hydraulically powered, or electrically powered, and connected to either an air system, a hydraulic system, or an electrical system on the machine 100 via respective supply lines.
  • the lubrication feeder 120 may include additional components not described herein. Also, the connections described above are merely exemplary. The lubrication feeder 120 may be connected to other components in the machine 100 without any limitation.
  • the lubrication feeder 120 may have different operation modes.
  • the lubrication feeder 120 may be in an active state or an inactive state. When in the active state, the lubrication feeder 120 is on, thereby facilitating either automatic or manual disposal of the lubricant, as the case may be.
  • the lubrication feeder 120 may be in the inactive state.
  • the present disclosure relates to a controller 122 communicably coupled to the lubrication feeder 120 such that the controller 122 is configured to optimize lubrication of the various parts of the machine 100 .
  • the controller 122 may activate the lubrication feeder 120 according to the position of the implement 110 and a temperature associated with the machine 100 .
  • the controller 122 may be coupled to an implement position sensor I 1 .
  • the implement position sensor I 1 may be configured to generate a signal indicative of a position of the implement 110 of the machine 100 .
  • the implement 110 for example, may either be in a working position or an idle position, based on usage of the implement 110 . It should be understood that lubricating the bearings and linkage joints may be especially required when the implement 110 is in the working position.
  • the controller 122 may receive signals from any other control module present in the machine 100 , indicating the position of the implement 110 .
  • the controller 122 may receive a signal indicating that the asphalt paver is in the “PAVE” mode. This signal may be indicative that the implement 110 of the asphalt paver is in the working position.
  • a person of ordinary skill in the art will appreciate that various other methods known in the art may be utilized to determine the position of the implement 110 of the machine 100 .
  • the embodiments described herein are merely on an exemplary basis and do not limit the scope of the disclosure.
  • the activation of the lubrication feeder 120 may also be based on the temperature associated with the machine 100 .
  • the temperature associated with the machine 100 may include at least one of a lubrication tank temperature, a coolant temperature, and an exhaust manifold temperature of the machine 100 .
  • the controller 122 may be communicably coupled to a first temperature sensor T 1 .
  • the first temperature sensor T 1 may be configured to generate a signal indicative of the lubrication tank temperature.
  • the controller 122 may be communicably coupled to a second temperature sensor T 2 .
  • the second temperature sensor T 2 may be configured to generate a signal indicative of the coolant temperature.
  • the controller 122 may be communicably coupled to a third temperature sensor T 3 .
  • the third temperature sensor T 3 may be configured to generate a signal indicative of the exhaust manifold temperature. It should be noted that the controller 122 may determine the temperature of the machine 100 based on other signals not described herein.
  • the temperature associated with the machine 100 may be determined based on the type of the machine 100 .
  • the temperature the lubrication tank temperature may be considered in case of the asphalt paver.
  • the controller 122 may activate the lubrication feeder 120 .
  • the controller 122 may activate the lubrication feeder 120 when the lubrication tank temperature exceeds the pre-determined temperature of about 35° C.
  • the controller 122 may additionally be coupled to other sensors or components of the machine 100 not shown herein. Also, it should be noted that the position of the implement 110 and/or the temperature associated with the machine 100 may also be indirectly determined or computed based on one or more measured signals.
  • the controller 122 may additionally receive signals indicative of the operation mode of the lubrication feeder 120 .
  • the controller 122 may activate the lubrication feeder 120 when the lubrication feeder 120 is in the active state, either in the manual or the automatic mode.
  • the controller 122 may activate the lubrication feeder 120 according to an operator command.
  • the operator command may include any suitable visual or auditory input such as pressing of a switch or button in the operator station 105 , providing a speech command, to name a few. It should be noted that based on the operator command the activation of the lubrication feeder 120 according to the position of the implement 110 and the temperature associated with the machine 100 may be overridden.
  • controller 122 may activate the lubrication feeder 120 based on the one or more received signals. In one embodiment, the controller 122 may issue control signals to activate the lubrication feeder 120 when the implement 110 is in the working position and the temperature associated with the machine 100 exceeds the pre-determined threshold.
  • the controller 122 may be configured to de-activate the lubrication feeder 120 .
  • the controller 122 may de-activate the lubrication feeder 120 when the implement 110 is in the idle position and/or the temperature associated with the machine 100 does not exceed the pre-determined threshold. Also, the controller 122 may de-activate the lubrication feeder 120 when the power source of the machine 100 is shutdown.
  • the controller 122 may embody a single microprocessor or multiple microprocessors that include a means for receiving input from the sensors and providing output to the lubrication feeder 120 of the machine 100 . Numerous commercially available microprocessors may be configured to perform the functions of the controller 122 . It should be appreciated that the controller 122 may readily embody a general machine microprocessor capable of controlling numerous machine functions. A person of ordinary skill in the art will appreciate that the controller 122 may additionally include other components and may also perform other functionality not described herein.
  • Critical areas such as the bearings and the linkage joints of the machine 100 need to be lubricated in order to prevent failure. These components of the machine 100 are typically lubricated during operation of the machine 100 to eliminate the need for stopping the machine 100 for lubrication.
  • Currently used autolube systems present within the machine 100 function on a timer basis.
  • the autolube systems provide lubrication to the bearings at pre-determined time intervals.
  • lubrication may take place even when the bearings are not in use. This may result in over lubrication of the bearings and/or wastage of the lubricant.
  • the over lubrication of the bearings may lead to bearing failure in situations where the bearings are not warmed up to a temperature at which the lubricant may be taken by that specific bearing.
  • the controller 122 may activate the lubrication feeder 120 at an optimum time.
  • the controller 122 may activate the lubrication feeder 120 according to the position of the implement 110 and the temperature associated with the machine 100 .
  • One of ordinary skill in the art will appreciate that the disclosure provides lubrication to the various parts of the machine 100 when the bearings are in use, as indicated by the position of the implement 110 .
  • the temperature associated with the machine 100 may be indicative of the temperature of the bearings within the machine 100 .
  • the controller 122 may activate the lubrication feeder 120 when the bearings may be warmed up to the temperature at which the lubrication may be optimal.
  • the position signal indicative of the position of the implement 110 of the machine 100 may be received.
  • the implement 110 may either be in the working position or the idle position.
  • the temperature signal indicative of the temperature associated with the machine 100 may be received.
  • the temperature signal may include the signal indicative of the lubrication tank temperature, the coolant temperature and/or the exhaust manifold temperature.
  • the controller 122 may compare the received temperature with the pre-determined threshold. Based on the comparison, the controller 122 may determine if the temperature associated with the machine 100 exceeds the pre-determined threshold.
  • the controller 122 may activate the lubrication feeder 120 based on the received position and temperature signals.
  • the controller 122 may activate the lubrication feeder 120 when the implement 110 is in the working position and the temperature associated with the machine 100 exceeds the pre-determined threshold.
  • the activation of the lubrication feeder 120 may additionally be based on the operator command and/or the operation mode of the lubrication feeder 120 .
  • controller 122 may de-activate the lubrication feeder 120 when the implement 110 is in the idle position or when the temperature associated with the machine 100 may fall below the pre-determined threshold. In one embodiment, the controller 122 may de-activate the lubrication feeder 120 when the power source of the machine 100 is shutdown.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Road Paving Machines (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

A system is provided. The system includes a lubrication feeder and a controller. The controller is in communication with the lubrication feeder. The controller is configured to activate the lubrication feeder according to a position of an implement and a temperature associated with the machine.

Description

    TECHNICAL FIELD
  • The present disclosure relates to a lubrication system for a machine, and more specifically to a system for controlling the lubrication system.
  • BACKGROUND
  • Conventional lubrication systems associated with a machine work on a timer basis and provide grease to bearings present in the machine at pre-determined intervals of time. For example, U.S. Pat. No. 5,823,295 relates a control system including a lubricant distribution system, a charging system adapted to drive the lubricant distribution system, a sensor for determining the operating state of the charging system, and a device for calculating a time interval being dependent upon a previous lubricating event. The control system also includes a device for producing a lubrication signal in response to the time interval reaching a predetermined interval constant.
  • SUMMARY OF THE DISCLOSURE
  • In one aspect of the present disclosure, a system is provided. The system includes a lubrication feeder and a controller. The controller is in communication with the lubrication feeder. The controller is configured to activate the lubrication feeder according to a position of an implement and a temperature associated with the machine.
  • In another aspect, a method for lubricating a machine is provided. The method receives a position signal indicative of a position of an implement of the machine. The method also receives a temperature signal indicative of a temperature associated with the machine. Further, the method activates a lubrication feeder of the machine according to the received position signal and the temperature signal.
  • Other features and aspects of this disclosure will be apparent from the following description and the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a diagrammatic view of an exemplary machine, according to one embodiment of the present disclosure;
  • FIG. 2 is a block diagram of a lubrication system; and
  • FIG. 3 is a flowchart for lubricating the machine shown in FIG. 1.
  • DETAILED DESCRIPTION
  • FIG. 1 is an illustration of an exemplary machine 100, according to one embodiment of the present disclosure. As shown in the accompanied figures, the machine 100 may embody a paving machine 102, such as, for example, an asphalt paver. Moreover, the machine 100 may also include any other paving machine used for any kind of paving material like asphalt, concrete, and loose aggregate materials such as crushed gravel. The machine 100 may further include any other construction machine such as an excavator, off-highway mining truck, front shovel, backhoe loader, and the like.
  • Referring to FIG. 1, the paving machine 102 may include a tractor 104 having a power source, an operator station 105, one or more traction devices 106, and a hopper 108 for containing paving material. Although the traction devices 106 shown in the accompanied figures are tracks, the traction devices 106 could alternatively be wheels or any other type of traction device known in the art. The traction devices 106 could also be combinations of different types of traction devices. For example, the paving machine 102 could include both tracks and wheels.
  • The paving machine 102 may also include an implement 110 such as a screed. The implement 110 may be attached to the tractor 104 by one or more tow arms 112. The implement 110 may be towed behind the tractor 104 to spread and compact paving material into a mat 114 on a paving surface 116. As shown in FIG. 1, the implement 110 may include one or more augers 118 for spreading the paving material. A person of ordinary skill in the art will appreciate that the implement 110 described herein is merely on an exemplary basis. The implement 110 may vary based on the machine 100.
  • Further, the machine 100 may include a lubrication feeder 120. The lubrication feeder 120 may be configured to provide lubrication to various bearings and linkage joints present in the machine 100. For example, the lubrication feeder 120 may include automatic components and manual components for the distribution of a lubricant to various parts of the machine 100. In one case, the lubricant may be pumped from a centrally located lubrication tank (not shown in the figures) to injector banks and grease reels located within the machine 100. Additionally, one or more pumps may be provided to pump the lubricant from the lubrication tank. The pumps may be pneumatically powered, hydraulically powered, or electrically powered, and connected to either an air system, a hydraulic system, or an electrical system on the machine 100 via respective supply lines. It should be noted that the lubrication feeder 120 may include additional components not described herein. Also, the connections described above are merely exemplary. The lubrication feeder 120 may be connected to other components in the machine 100 without any limitation.
  • Additionally, the lubrication feeder 120 may have different operation modes. For example, the lubrication feeder 120 may be in an active state or an inactive state. When in the active state, the lubrication feeder 120 is on, thereby facilitating either automatic or manual disposal of the lubricant, as the case may be. Alternatively, the lubrication feeder 120 may be in the inactive state. The present disclosure relates to a controller 122 communicably coupled to the lubrication feeder 120 such that the controller 122 is configured to optimize lubrication of the various parts of the machine 100. The controller 122 may activate the lubrication feeder 120 according to the position of the implement 110 and a temperature associated with the machine 100.
  • Referring to FIG. 2, in one embodiment, the controller 122 may be coupled to an implement position sensor I1. The implement position sensor I1 may be configured to generate a signal indicative of a position of the implement 110 of the machine 100. The implement 110, for example, may either be in a working position or an idle position, based on usage of the implement 110. It should be understood that lubricating the bearings and linkage joints may be especially required when the implement 110 is in the working position.
  • In another embodiment, the controller 122 may receive signals from any other control module present in the machine 100, indicating the position of the implement 110. For example, in case of the asphalt paver, the controller 122 may receive a signal indicating that the asphalt paver is in the “PAVE” mode. This signal may be indicative that the implement 110 of the asphalt paver is in the working position. A person of ordinary skill in the art will appreciate that various other methods known in the art may be utilized to determine the position of the implement 110 of the machine 100. The embodiments described herein are merely on an exemplary basis and do not limit the scope of the disclosure.
  • Moreover, the activation of the lubrication feeder 120 may also be based on the temperature associated with the machine 100. The temperature associated with the machine 100 may include at least one of a lubrication tank temperature, a coolant temperature, and an exhaust manifold temperature of the machine 100. As shown in FIG. 2, in one embodiment, the controller 122 may be communicably coupled to a first temperature sensor T1. The first temperature sensor T1 may be configured to generate a signal indicative of the lubrication tank temperature. In another embodiment, the controller 122 may be communicably coupled to a second temperature sensor T2. The second temperature sensor T2 may be configured to generate a signal indicative of the coolant temperature. In yet another embodiment, the controller 122 may be communicably coupled to a third temperature sensor T3. The third temperature sensor T3 may be configured to generate a signal indicative of the exhaust manifold temperature. It should be noted that the controller 122 may determine the temperature of the machine 100 based on other signals not described herein.
  • Moreover, the temperature associated with the machine 100 may be determined based on the type of the machine 100. For example, the temperature the lubrication tank temperature may be considered in case of the asphalt paver. Additionally, when the temperature associated with the machine 100 exceeds a pre-determined threshold, the controller 122 may activate the lubrication feeder 120. For example, when the machine 100 is the asphalt paver, the controller 122 may activate the lubrication feeder 120 when the lubrication tank temperature exceeds the pre-determined temperature of about 35° C.
  • One of ordinary skill in the art will appreciate that the connections shown in accompanied figures are on an exemplary basis. The controller 122 may additionally be coupled to other sensors or components of the machine 100 not shown herein. Also, it should be noted that the position of the implement 110 and/or the temperature associated with the machine 100 may also be indirectly determined or computed based on one or more measured signals.
  • In one embodiment, the controller 122 may additionally receive signals indicative of the operation mode of the lubrication feeder 120. For example, the controller 122 may activate the lubrication feeder 120 when the lubrication feeder 120 is in the active state, either in the manual or the automatic mode. In another embodiment, the controller 122 may activate the lubrication feeder 120 according to an operator command. The operator command may include any suitable visual or auditory input such as pressing of a switch or button in the operator station 105, providing a speech command, to name a few. It should be noted that based on the operator command the activation of the lubrication feeder 120 according to the position of the implement 110 and the temperature associated with the machine 100 may be overridden.
  • Further, the controller 122 may activate the lubrication feeder 120 based on the one or more received signals. In one embodiment, the controller 122 may issue control signals to activate the lubrication feeder 120 when the implement 110 is in the working position and the temperature associated with the machine 100 exceeds the pre-determined threshold.
  • In another embodiment, the controller 122 may be configured to de-activate the lubrication feeder 120. The controller 122 may de-activate the lubrication feeder 120 when the implement 110 is in the idle position and/or the temperature associated with the machine 100 does not exceed the pre-determined threshold. Also, the controller 122 may de-activate the lubrication feeder 120 when the power source of the machine 100 is shutdown.
  • The controller 122 may embody a single microprocessor or multiple microprocessors that include a means for receiving input from the sensors and providing output to the lubrication feeder 120 of the machine 100. Numerous commercially available microprocessors may be configured to perform the functions of the controller 122. It should be appreciated that the controller 122 may readily embody a general machine microprocessor capable of controlling numerous machine functions. A person of ordinary skill in the art will appreciate that the controller 122 may additionally include other components and may also perform other functionality not described herein.
  • The method for lubricating the machine 100 will be described in the detail in connection with FIG. 3.
  • INDUSTRIAL APPLICABILITY
  • Critical areas such as the bearings and the linkage joints of the machine 100 need to be lubricated in order to prevent failure. These components of the machine 100 are typically lubricated during operation of the machine 100 to eliminate the need for stopping the machine 100 for lubrication. Currently used autolube systems present within the machine 100 function on a timer basis. The autolube systems provide lubrication to the bearings at pre-determined time intervals. Hence, in the currently used autolube systems, lubrication may take place even when the bearings are not in use. This may result in over lubrication of the bearings and/or wastage of the lubricant. The over lubrication of the bearings may lead to bearing failure in situations where the bearings are not warmed up to a temperature at which the lubricant may be taken by that specific bearing.
  • In the present disclosure, as described above, the controller 122 may activate the lubrication feeder 120 at an optimum time. The controller 122 may activate the lubrication feeder 120 according to the position of the implement 110 and the temperature associated with the machine 100. One of ordinary skill in the art will appreciate that the disclosure provides lubrication to the various parts of the machine 100 when the bearings are in use, as indicated by the position of the implement 110. Further, the temperature associated with the machine 100 may be indicative of the temperature of the bearings within the machine 100. Hence, the controller 122 may activate the lubrication feeder 120 when the bearings may be warmed up to the temperature at which the lubrication may be optimal.
  • At step 302, the position signal indicative of the position of the implement 110 of the machine 100 may be received. The implement 110 may either be in the working position or the idle position. At step 304, the temperature signal indicative of the temperature associated with the machine 100 may be received. The temperature signal may include the signal indicative of the lubrication tank temperature, the coolant temperature and/or the exhaust manifold temperature. The controller 122 may compare the received temperature with the pre-determined threshold. Based on the comparison, the controller 122 may determine if the temperature associated with the machine 100 exceeds the pre-determined threshold.
  • Thereafter, at step 306, the controller 122 may activate the lubrication feeder 120 based on the received position and temperature signals. The controller 122 may activate the lubrication feeder 120 when the implement 110 is in the working position and the temperature associated with the machine 100 exceeds the pre-determined threshold. In one embodiment, the activation of the lubrication feeder 120 may additionally be based on the operator command and/or the operation mode of the lubrication feeder 120.
  • Further, the controller 122 may de-activate the lubrication feeder 120 when the implement 110 is in the idle position or when the temperature associated with the machine 100 may fall below the pre-determined threshold. In one embodiment, the controller 122 may de-activate the lubrication feeder 120 when the power source of the machine 100 is shutdown.
  • While aspects of the present disclosure have been particularly shown and described with reference to the embodiments above, it will be understood by those skilled in the art that various additional embodiments may be contemplated by the modification of the disclosed machines, systems and methods without departing from the spirit and scope of what is disclosed. Such embodiments should be understood to fall within the scope of the present disclosure as determined based upon the claims and any equivalents thereof.

Claims (20)

What is claimed is:
1. A system for lubricating a machine having an implement, the system comprising:
a lubrication feeder; and
a controller in communication with the lubrication feeder, the controller configured to activate the lubrication feeder according to a position of the implement and a temperature associated with the machine.
2. The system of claim 1 further including an implement position sensor communicably coupled to the controller, the implement position sensor configured to generate a signal indicative of the position of the implement.
3. The system of claim 1, wherein the temperature associated with the machine includes at least one of a lubrication tank temperature, a coolant temperature, and an exhaust manifold temperature.
4. The system of claim 3 further including a temperature sensor communicably coupled to the controller, the temperature sensor configured to generate a signal indicative of the lubrication tank temperature.
5. The system of claim 3 further including a temperature sensor communicably coupled to the controller, the temperature sensor configured to generate a signal indicative of the coolant temperature.
6. The system of claim 3 further including a temperature sensor communicably coupled to the controller, the temperature sensor configured to generate a signal indicative of the exhaust manifold temperature.
7. The system of claim 1, wherein the machine is one of an asphalt paver, excavator, off-highway mining truck, front shovel, and backhoe loader.
8. The system of claim 1, wherein the controller is configured to activate the lubrication feeder according to an operator command.
9. The system of claim 1, wherein the controller is configured to activate the lubrication feeder according to an operation mode of the lubrication feeder.
10. The system of claim 1, wherein the controller is configured to de-activate the lubrication feeder according to an operation mode of a power source of the machine.
11. A method comprising:
receiving a position signal indicative of a position of an implement of a machine;
receiving a temperature signal indicative of a temperature associated with the machine; and
activating a lubrication feeder of the machine according to the received position signal and the temperature signal.
12. The method of claim 11, wherein receiving a temperature signal indicative of a temperature associated with the machine further includes receiving a signal indicative of a lubrication tank temperature.
13. The method of claim 11, wherein receiving a temperature signal indicative of a temperature associated with the machine further includes receiving a signal indicative of a coolant temperature.
14. The method of claim 11, wherein receiving a temperature signal indicative of a temperature associated with the machine further includes receiving a signal indicative of an exhaust manifold temperature.
15. The method of claim 11 further including receiving a signal indicative of an operation mode of the lubrication feeder.
16. The method of claim 11 further including activating the lubrication feeder according to an operator command.
17. The method of claim 11 further including de-activating the lubrication feeder according to an operation mode of a power source of the machine.
18. A computer based system for lubricating a machine comprising:
a communication interface communicating with a memory;
the memory configured to communicate with a processor; and
the processor, in response to executing a computer program, performs operations comprising:
receiving a position signal indicative of a position of an implement of a machine;
receiving a temperature signal indicative of a temperature associated with the machine; and
activating a lubrication feeder of the machine according to the received position signal and the temperature signal.
19. A machine comprising:
a power source;
an implement for performing one or more desired operations; and
a lubrication system including:
a lubrication feeder; and
a controller in communication with the lubrication feeder, the controller configured to activate the lubrication feeder according to a position of the implement and a temperature associated with the machine.
20. The machine of claim 19, wherein the machine is one of an asphalt paver, excavator, off-highway mining truck, front shovel, and backhoe loader.
US13/562,407 2012-07-31 2012-07-31 Lubrication control system Abandoned US20140034420A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/562,407 US20140034420A1 (en) 2012-07-31 2012-07-31 Lubrication control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/562,407 US20140034420A1 (en) 2012-07-31 2012-07-31 Lubrication control system

Publications (1)

Publication Number Publication Date
US20140034420A1 true US20140034420A1 (en) 2014-02-06

Family

ID=50024382

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/562,407 Abandoned US20140034420A1 (en) 2012-07-31 2012-07-31 Lubrication control system

Country Status (1)

Country Link
US (1) US20140034420A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10760736B2 (en) 2017-10-24 2020-09-01 Deere & Company Lubrication system and method for a work vehicle
US20200357221A1 (en) * 2017-08-04 2020-11-12 Skf Canada Limited Interchangeable control module for fixed and portable lubricant dispensing devices

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4864823A (en) * 1986-12-09 1989-09-12 Honda Giken Kogyo Kabushiki Kaisha Hydraulically operated continuously variable transmission
US4930600A (en) * 1988-11-21 1990-06-05 Tranergy Corporation Intelligent on-board rail lubrication system for curved and tangent track
US5318151A (en) * 1993-03-17 1994-06-07 Ingersoll-Rand Company Method and apparatus for regulating a compressor lubrication system
US5353753A (en) * 1993-06-15 1994-10-11 General Motors Corporation Two-stroke engine lubrication
US5381874A (en) * 1993-10-15 1995-01-17 Caterpillar Inc. Automatic lubrication control
US5823295A (en) * 1996-03-29 1998-10-20 Caterpillar Inc. Lubrication control system for a work machine
US5983630A (en) * 1997-07-01 1999-11-16 Toyota Jidosha Kabushiki Kaisha Fuel injecting device for an engine
US20020112529A1 (en) * 2001-02-22 2002-08-22 Frank Bondarowicz Method of monitoring engine lubricant condition
US20040144084A1 (en) * 2002-11-19 2004-07-29 Calsonic Kansei Corporation Exhaust-heat recovery system for engine
US20080109129A1 (en) * 2005-03-11 2008-05-08 Eiji Yanagida Cooling Device, Control Method of Cooling Device, and Abnormality Specification Method
US20080223317A1 (en) * 2007-03-16 2008-09-18 Toyota Jidosha Kabushiki Kaisha Cooling apparatus for internal combustion engine
US20090045014A1 (en) * 2007-07-06 2009-02-19 Honeywell International Inc. Electric motor driven lubrication pump control system and method for turbomachine windmill operation
US20090241645A1 (en) * 2008-03-31 2009-10-01 Rains Mark A System and method for determining transmission oil type
US20090308059A1 (en) * 2008-06-17 2009-12-17 Denso Corporation Catalyst warming-up control device
US7775037B2 (en) * 2006-10-02 2010-08-17 Nissan Motor Co., Ltd. Exhaust gas temperature control method, exhaust gas temperature control apparatus, and internal combustion engine system
US8113317B2 (en) * 2007-07-06 2012-02-14 Honeywell International Inc. Electric motor driven lubrication pump control system and method that accomodates turbomachine windmill operation
US8230679B2 (en) * 2007-10-26 2012-07-31 Cummins Inc. Increasing exhaust temperature for aftertreatment operation
US8413434B2 (en) * 2009-10-21 2013-04-09 GM Global Technology Operations LLC Exhaust heat recovery for transmission warm-up

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4864823A (en) * 1986-12-09 1989-09-12 Honda Giken Kogyo Kabushiki Kaisha Hydraulically operated continuously variable transmission
US5072587A (en) * 1986-12-09 1991-12-17 Honda Giken Kogyo Kabushiki Kaisha Hydraulically operated continuously variable transmission
US4930600A (en) * 1988-11-21 1990-06-05 Tranergy Corporation Intelligent on-board rail lubrication system for curved and tangent track
US5318151A (en) * 1993-03-17 1994-06-07 Ingersoll-Rand Company Method and apparatus for regulating a compressor lubrication system
US5353753A (en) * 1993-06-15 1994-10-11 General Motors Corporation Two-stroke engine lubrication
US5381874A (en) * 1993-10-15 1995-01-17 Caterpillar Inc. Automatic lubrication control
US5823295A (en) * 1996-03-29 1998-10-20 Caterpillar Inc. Lubrication control system for a work machine
US5983630A (en) * 1997-07-01 1999-11-16 Toyota Jidosha Kabushiki Kaisha Fuel injecting device for an engine
US20020112529A1 (en) * 2001-02-22 2002-08-22 Frank Bondarowicz Method of monitoring engine lubricant condition
US20040144084A1 (en) * 2002-11-19 2004-07-29 Calsonic Kansei Corporation Exhaust-heat recovery system for engine
US20080109129A1 (en) * 2005-03-11 2008-05-08 Eiji Yanagida Cooling Device, Control Method of Cooling Device, and Abnormality Specification Method
US7775037B2 (en) * 2006-10-02 2010-08-17 Nissan Motor Co., Ltd. Exhaust gas temperature control method, exhaust gas temperature control apparatus, and internal combustion engine system
US20080223317A1 (en) * 2007-03-16 2008-09-18 Toyota Jidosha Kabushiki Kaisha Cooling apparatus for internal combustion engine
US20090045014A1 (en) * 2007-07-06 2009-02-19 Honeywell International Inc. Electric motor driven lubrication pump control system and method for turbomachine windmill operation
US8113317B2 (en) * 2007-07-06 2012-02-14 Honeywell International Inc. Electric motor driven lubrication pump control system and method that accomodates turbomachine windmill operation
US8201662B2 (en) * 2007-07-06 2012-06-19 Honeywell International Inc. Electric motor driven lubrication pump control system and method for turbomachine windmill operation
US8230679B2 (en) * 2007-10-26 2012-07-31 Cummins Inc. Increasing exhaust temperature for aftertreatment operation
US20090241645A1 (en) * 2008-03-31 2009-10-01 Rains Mark A System and method for determining transmission oil type
US20090308059A1 (en) * 2008-06-17 2009-12-17 Denso Corporation Catalyst warming-up control device
US8413434B2 (en) * 2009-10-21 2013-04-09 GM Global Technology Operations LLC Exhaust heat recovery for transmission warm-up

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200357221A1 (en) * 2017-08-04 2020-11-12 Skf Canada Limited Interchangeable control module for fixed and portable lubricant dispensing devices
US10760736B2 (en) 2017-10-24 2020-09-01 Deere & Company Lubrication system and method for a work vehicle

Similar Documents

Publication Publication Date Title
CN203403346U (en) Road surface finishing machine
AU2014200840B2 (en) System and method for determining a ripping path
CN110824931B (en) System and method for controlling autonomous construction vehicle
US10151199B2 (en) Automatic dust suppression system and method
US7702450B2 (en) Automatic idle adjustment and shutdown of vehicle
KR101747010B1 (en) Work machine and work volume measurement method for work machine
US11821152B2 (en) Systems and methods for activating machine components
AU2014263098B2 (en) System and method for re-directing a ripping path
AU2014287571B2 (en) Control system for machine
AU2011353027A1 (en) Worksite-management system
AU2017202164A1 (en) System and method for controlling operation of machine
US10939355B2 (en) Communication device for working machine, mobile terminal, communication system for working machine, and communication processing method for working machine
US20140034420A1 (en) Lubrication control system
US10904819B2 (en) Communication device for working machine, mobile terminal, communication system for working machine, and communication processing method for working machine
CN105431598A (en) Reducing dig force in hydraulic implements
US20130289834A1 (en) Low idle control system of construction equipment and automatic control method thereof
CN102748149A (en) Engineering machinery and energy-saving control system thereof
US20170103580A1 (en) Method of monitoring load carried by machine
EP2851540B1 (en) Anti-lug and anti-stall control unit
US9759147B2 (en) Idle return system and method for an off highway vehicle
US9163376B2 (en) Power system having attachment-based engine control
US10904930B2 (en) Communication system for working machine, mobile terminal, and communication processing method for working machine
KR20220059963A (en) GNSS drive control device, GNSS controller, working machine, and GNSS drive control method
US20150101690A1 (en) Port relay board for a machine
US20170138287A1 (en) Controlling an engine speed of a work vehicle

Legal Events

Date Code Title Description
AS Assignment

Owner name: CATERPILLAR PAVING PRODUCTS INC., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FRELICH, TOBY A;MINGS, RICKY L.;REEL/FRAME:028682/0077

Effective date: 20120720

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION