US20140019352A1 - Multi-purpose virtual card transaction apparatuses, methods and systems - Google Patents

Multi-purpose virtual card transaction apparatuses, methods and systems Download PDF

Info

Publication number
US20140019352A1
US20140019352A1 US13/938,176 US201313938176A US2014019352A1 US 20140019352 A1 US20140019352 A1 US 20140019352A1 US 201313938176 A US201313938176 A US 201313938176A US 2014019352 A1 US2014019352 A1 US 2014019352A1
Authority
US
United States
Prior art keywords
lt
gt
user
wip
transaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US13/938,176
Inventor
Abhinav Shrivastava
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Visa International Service Association
Original Assignee
Visa International Service Association
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US201161445482P priority Critical
Priority to US201161466409P priority
Priority to US201161469965P priority
Priority to US201161473728P priority
Priority to US201161538761P priority
Priority to US201161539969P priority
Priority to US201161545971P priority
Priority to US13/348,634 priority patent/US20120233073A1/en
Priority to US13/398,817 priority patent/US20120209749A1/en
Priority to PCT/US2012/026205 priority patent/WO2012116125A1/en
Priority to US201261669525P priority
Priority to US13/624,859 priority patent/US20130024364A1/en
Application filed by Visa International Service Association filed Critical Visa International Service Association
Priority to US13/938,176 priority patent/US20140019352A1/en
Assigned to VISA INTERNATIONAL SERVICE ASSOCIATION reassignment VISA INTERNATIONAL SERVICE ASSOCIATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SHRIVASTAVA, Abhinav
Publication of US20140019352A1 publication Critical patent/US20140019352A1/en
Priority claimed from US15/335,086 external-priority patent/US20170046679A1/en
Application status is Pending legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/30Payment architectures, schemes or protocols characterised by the use of specific devices
    • G06Q20/36Payment architectures, schemes or protocols characterised by the use of specific devices using electronic wallets or electronic money safes
    • G06Q20/367Payment architectures, schemes or protocols characterised by the use of specific devices using electronic wallets or electronic money safes involving intelligent token, e.g. electronic purse
    • G06Q20/3674Payment architectures, schemes or protocols characterised by the use of specific devices using electronic wallets or electronic money safes involving intelligent token, e.g. electronic purse involving authentication
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/02Payment architectures, schemes or protocols involving a neutral party, e.g. certification authority, notary or trusted third party [TTP]
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/08Payment architectures
    • G06Q20/12Payment architectures specially adapted for electronic shopping systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/30Payment architectures, schemes or protocols characterised by the use of specific devices
    • G06Q20/34Payment architectures, schemes or protocols characterised by the use of specific devices using cards, e.g. integrated circuit [IC] cards or magnetic cards
    • G06Q20/351Virtual cards
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/30Payment architectures, schemes or protocols characterised by the use of specific devices
    • G06Q20/36Payment architectures, schemes or protocols characterised by the use of specific devices using electronic wallets or electronic money safes
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/38Payment protocols; Details thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/38Payment protocols; Details thereof
    • G06Q20/40Authorisation, e.g. identification of payer or payee, verification of customer or shop credentials; Review and approval of payers, e.g. check credit lines or negative lists
    • G06Q20/407Cancellation of a transaction
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/38Payment protocols; Details thereof
    • G06Q20/42Confirmation, e.g. check or permission by the legal debtor of payment

Abstract

The MULTI-PURPOSE VIRTUAL CARD TRANSACTION APPARATUSES, METHODS AND SYSTEMS (“WIP”) transform wallet in proxy card generation requests and purchase inputs via WIP components into wallet in proxy card generation notifications and wallet in proxy card-based transaction purchase notifications. In one implementation, the WIP server may receive a transaction authentication request associated with a proxy payment identifier, and then determine that the proxy payment identifier is associated with an electronic wallet. The WIP sever may further obtain a payment identifier associated with the electronic wallet, and authenticate the transaction using the obtained payment identifier associated with the electronic wallet.

Description

  • This patent for letters patent document discloses and describes various novel innovations and inventive aspects of MULTI-PURPOSE VIRTUAL CARD TRANSACTION technology (hereinafter “disclosure”) and contains material that is subject to copyright, mask work, and/or other intellectual property protection. The respective owners of such intellectual property have no objection to the facsimile reproduction of the disclosure by anyone as it appears in published Patent Office file/records, but otherwise reserve all rights.
  • PRIORITY CLAIM
  • Applicant hereby claims priority under 35 USC §119 to provisional U.S. patent application Ser. No. 61/669,525, filed Jul. 9, 2012, entitled “Wallet In Proxy Apparatuses, Methods And Systems,” attorney docket no. 136US01|VISA-192/00US.
  • This application is also a continuation-in-part of, and claims priority under 35 U.S.C. §120 to U.S. nonprovisional patent application Ser. No. 13/624,859, filed Sep. 21, 2012, entitled “CONSUMER TRANSACTION LEASH CONTROL APPARATUSES, METHODS AND SYSTEMS”, attorney docket no. 93US02|VISA-154/01US, which claims priority under 35 USC §119 to U.S. provisional patent application Ser. No. 61/538,761 filed Sep. 23, 2011, entitled “Electronic Wallet Transaction Consumer Leash Apparatuses, Methods And Systems,” attorney docket no. 93US01|20270-194PV.
  • Application Ser. No. 13/624, 859 is also a continuation-in-part of, and claims priority under 35 U.S.C. §120 to U.S. nonprovisional patent application Ser. No. 13/520,481, filed Jul. 3, 2012, entitled “Universal Electronic Payment Apparatuses, Methods and Systems,” attorney docket no. P-42051US02|20270-136US, which is a National Stage Entry entitled to, and claims priority under 35 U.S.C. §§365, 371 corresponding to, PCT application no. PCT/US12/26205, filed Feb. 22, 2012, entitled “Universal Electronic Payment Apparatuses, Methods And Systems,” attorney docket no. P-42051WO01|20270-136PC, which in turn claims priority under 35 USC §119 to: U.S. provisional patent application Ser. No. 61/445,482 filed Feb. 22, 2011, entitled “Universal Electronic Payment Apparatuses, Methods And Systems,” attorney docket no. P-42051PRV|20270-136PV, U.S. provisional patent application Ser. No. 61/545,971 filed Oct. 11, 2011, entitled “Universal Electronic Payment Apparatuses, Methods And Systems,” attorney docket no. P-42051US015|20270-136PV1, U.S. provisional patent application Ser. No. 61/473,728 filed Apr. 8, 2011, entitled “Apparatuses, Methods And Systems For An Application Integration Payment Platform,” attorney docket no. P-42189PRV|20270-147PV; U.S. provisional patent application Ser. No. 61/466,409 filed Mar. 22, 2011, entitled “Electronic Wallet,” attorney docket no. P-41963PRV|20270-148PV, U.S. provisional patent application Ser. No. 61/469,965 filed Mar. 31, 2011, entitled “Apparatuses, Methods And Systems For A Targeted Acceptance Platform,” attorney docket no. P-41838PRV|20270-062PV, and U.S. provisional patent application Ser. No. 61/538,761 filed Sep. 23, 2011, entitled “Electronic Wallet Transaction Consumer Leash Apparatuses, Methods And Systems,” attorney docket no. 93US01|20270-194PV; and U.S. provisional patent application Ser. No. 61/539,969, filed on Sep. 27, 2011, entitled “Apparatuses, Methods, and Systems for Finding, Storing, and Applying Discounts for Use in An Electronic Transaction,” attorney docket no. 110US01|VISA-157/00US.
  • PCT application no. PCT/US12/26205 is also a continuation-in-part of, and claims priority under 35 U.S.C. §§120, 365 to: U.S. nonprovisional patent application Ser. No. 13/398,817 filed Feb. 16, 2012, entitled “Snap Mobile Payment Apparatuses, Methods And Systems,” attorney docket no. P-42032US01|20270-127US; and U.S. nonprovisional patent application serial no. 13/348,634 filed Jan. 11, 2012, entitled “Universal Value Exchange Apparatuses, Methods And Systems,” attorney docket no. P-41948US01|20270-089US.
  • This application is related to PCT international patent application Ser. No. ______, filed Jul. 9, 2013, entitled “MULTI-PURPOSE VIRTUAL CARD TRANSACTION APPARATUSES, METHODS AND SYSTEMS,” attorney docket no. 136WO01|VISA-XXX/XX.
  • This application is related to US provisional application Ser. No. 61/778,258, filed Mar. 12, 2013, entitled “Multi-Purse One Card Transaction Apparatuses, Methods And Systems,” attorney docket no. 225US01|VISA-190/00US.
  • This application is related to U.S. non-provisional application serial no. 13/487,148, filed on Jun. 1, 2012, entitled “VIRTUAL WALLET CARD SELECTION APPARATUSES, METHODS AND SYSTEMS”, attorney docket no. P-42069US01|VISA-111/01US.
  • Application Ser. No. 13/624,859 is related to PCT international patent application serial no. PCT/US2012/056759, filed Sep. 21, 2012, entitled “Consumer Transaction Leash Control Apparatuses, Methods And Systems,” attorney docket no. 93WO01|20270-194PC.
  • The entire contents of the aforementioned applications are expressly incorporated by reference herein.
  • FIELD
  • The present innovations generally address apparatuses, methods, and systems for electronic purchase transactions, and more particularly, include MULTI-PURPOSE VIRTUAL CARD TRANSACTION APPARATUSES, METHODS AND SYSTEMS (“WIP”).
  • BACKGROUND
  • Consumers may be presented with a number of payment options, including payment by cash, check, credit card, or debit card, at a checkout counter when a purchase is desired. When a purchase is made on a website, consumers may enter in a credit card number.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying appendices, drawings, figures, images, etc. illustrate various example, non-limiting, inventive aspects, embodiments, and features (“e.g.,” or “example(s)”) in accordance with the present disclosure:
  • FIGS. 1A-1C provide block diagrams illustrating example aspects of processing transactions based on consumer configured leash parameters within embodiments of the WIP;
  • FIGS. 2A-2B provide data block diagrams illustrating data flow interactions between WIP server and its affiliated entities within embodiments of the WIP;
  • FIGS. 3A-3C provide logic flow diagrams illustrating payment processing within embodiments of the WIP;
  • FIGS. 4A-4I provide exemplary mobile wallet user interface (UI) diagrams illustrating aspects of consumer configuration within embodiments of the WIP;
  • FIGS. 4J-4Q provide exemplary web based UI diagrams illustrating consumers signing up for WIP alerts within embodiments of the WIP;
  • FIGS. 5A-5E provide transaction flow diagrams illustrating aspects of checkout with a WIP lightbox within embodiments of the WIP;
  • FIG. 6 shows a block diagram illustrating example aspects of virtual mobile wallet purchasing in some embodiments of the WIP;
  • FIGS. 7A-B show user interface diagrams illustrating example aspects of a shopping mode of a virtual wallet application in some embodiments of the WIP;
  • FIGS. 8A-C show user interface diagrams illustrating example aspects of a discovery shopping mode of a virtual wallet application in some embodiments of the WIP;
  • FIGS. 9A-B show user interface diagrams illustrating example aspects of a shopping cart mode of a virtual wallet application in some embodiments of the WIP;
  • FIG. 10 shows a user interface diagram illustrating example aspects of a bill payment mode of a virtual wallet application in some embodiments of the WIP;
  • FIGS. 11A-B show user interface diagrams illustrating example aspects of a (local proximity) merchant shopping mode of a virtual wallet application in some embodiments of the WIP;
  • FIG. 12 shows user interface diagrams illustrating example aspects of allocating funds for a purchase payment within a virtual wallet application in some embodiments of the WIP;
  • FIG. 13 shows user interface diagrams illustrating example aspects of selecting payees for funds transfers within a virtual wallet application in some embodiments of the WIP;
  • FIGS. 14A-B show user interface diagrams illustrating example additional aspects of the virtual wallet application in some embodiments of the WIP;
  • FIGS. 15A-B show user interface diagrams illustrating example aspects of a history mode of a virtual wallet application in some embodiments of the WIP;
  • FIGS. 66A-C show user interface and logic flow diagrams illustrating example aspects of creating a user shopping trail within a virtual wallet application and associated revenue sharing scheme in some embodiments of the WIP;
  • FIGS. 17A-I show user interface and logic flow diagrams illustrating example aspects of a snap mode of a virtual wallet application in some embodiments of the WIP;
  • FIGS. 18A-B show user interface and logic flow diagrams illustrating example aspects of an offers mode of a virtual wallet application in some embodiments of the WIP;
  • FIG. 19 shows user interface diagrams illustrating example aspects of a general settings mode of a virtual wallet application in some embodiments of the WIP;
  • FIG. 20 shows a user interface diagram illustrating example aspects of a wallet bonds settings mode of a virtual wallet application in some embodiments of the WIP;
  • FIGS. 21A-C show user interface diagrams illustrating example aspects of a purchase controls settings mode of a virtual wallet application in some embodiments of the WIP;
  • FIGS. 22A-C show logic flow diagrams illustrating example aspects of configuring virtual wallet application settings and implementing purchase controls settings in some embodiments of the WIP;
  • FIG. 23 shows a block diagram illustrating example aspects of a centralized personal information platform in some embodiments of the WIP;
  • FIGS. 24A-F show block diagrams illustrating example aspects of data models within a centralized personal information platform in some embodiments of the WIP;
  • shows a block diagram illustrating example WIP component configurations in some embodiments of the WIP;
  • FIG. 26 shows a data flow diagram illustrating an example search result aggregation procedure in some embodiments of the WIP;
  • FIG. 27 shows a logic flow diagram illustrating example aspects of aggregating search results in some embodiments of the WIP, e.g., a Search Results Aggregation (“SRA”) component 2200;
  • FIGS. 28A-D show data flow diagrams illustrating an example card-based transaction execution procedure in some embodiments of the WIP;
  • FIGS. 29A-E show logic flow diagrams illustrating example aspects of card-based transaction execution, resulting in generation of card-based transaction data and service usage data, in some embodiments of the WIP, e.g., a Card-Based Transaction Execution (“CTE”) component 2400;
  • FIG. 30 shows a data flow diagram illustrating an example procedure to aggregate card-based transaction data in some embodiments of the WIP;
  • FIG. 31 shows a logic flow diagram illustrating example aspects of aggregating card-based transaction data in some embodiments of the WIP, e.g., a Transaction Data Aggregation (“TDA”) component 2600;
  • FIG. 32 shows a data flow diagram illustrating an example social data aggregation procedure in some embodiments of the WIP;
  • FIG. 33 shows a logic flow diagram illustrating example aspects of aggregating social data in some embodiments of the WIP, e.g., a Social Data Aggregation (“SDA”) component 3300;
  • FIG. 34 shows a data flow diagram illustrating an example procedure for enrollment in value-add services in some embodiments of the WIP;
  • FIG. 35 shows a logic flow diagram illustrating example aspects of social network payment authentication enrollment in some embodiments of the WIP, e.g., a Value-Add Service Enrollment (“VASE”) component 3500;
  • FIGS. 36A-B show flow diagrams illustrating example aspects of normalizing aggregated search, enrolled, service usage, transaction and/or other aggregated data into a standardized data format in some embodiments of the WIP, e.g., a Aggregated Data Record Normalization (“ADRN”) component 3600;
  • FIG. 37 shows a logic flow diagram illustrating example aspects of recognizing data fields in normalized aggregated data records in some embodiments of the WIP, e.g., a Data Field Recognition (“DFR”) component 3700;
  • FIG. 38 shows a logic flow diagram illustrating example aspects of classifying entity types in some embodiments of the WIP, e.g., an Entity Type Classification (“ETC”) component 3800;
  • FIG. 39 shows a logic flow diagram illustrating example aspects of identifying cross-entity correlation in some embodiments of the WIP, e.g., a Cross-Entity Correlation (“CEC”) component 3900;
  • FIG. 40 shows a logic flow diagram illustrating example aspects of associating attributes to entities in some embodiments of the WIP, e.g., an Entity Attribute Association (“EAA”) component 4000;
  • FIG. 41 shows a logic flow diagram illustrating example aspects of updating entity profile-graphs in some embodiments of the WIP, e.g., an Entity Profile-Graph Updating (“EPGU”) component 4100;
  • FIG. 42 shows a logic flow diagram illustrating example aspects of generating search terms for profile-graph updating in some embodiments of the WIP, e.g., a Search Term Generation (“STG”) component 4200;
  • FIG. 43 shows a logic flow diagram illustrating example aspects of analyzing a user's behavior based on aggregated purchase transaction data in some embodiments of the WIP, e.g., a User Behavior Analysis (“UBA”) component 4300;
  • FIG. 44 shows a logic flow diagram illustrating example aspects of generating recommendations for a user based on the user's prior aggregate purchase transaction behavior in some embodiments of the WIP, e.g., a User Behavior-Based Offer Recommendations (“UBOR”) component 4400;
  • FIG. 45 shows a block diagram illustrating example aspects of payment transactions via social networks in some embodiments of the WIP;
  • FIG. 46 shows a data flow diagram illustrating an example social pay enrollment procedure in some embodiments of the WIP;
  • FIG. 47 shows a logic flow diagram illustrating example aspects of social pay enrollment in some embodiments of the WIP, e.g., a Social Pay Enrollment 27 (“SPE”) component 4200;
  • FIGS. 48A-C show data flow diagrams illustrating an example social payment triggering procedure in some embodiments of the WIP;
  • FIGS. 49A-C show logic flow diagrams illustrating example aspects of social payment triggering in some embodiments of the WIP, e.g., a Social Payment Triggering (“SPT”) component 4900;
  • FIGS. 50A-B show logic flow diagrams illustrating example aspects of implementing wallet security and settings in some embodiments of the WIP, e.g., a Something (“WSS”) component 5000,
  • FIG. 51 shows a data flow diagram illustrating an example social merchant consumer bridging procedure in some embodiments of the WIP;
  • FIG. 52 shows a logic flow diagram illustrating example aspects of social merchant consumer bridging in some embodiments of the WIP, e.g., a Social Merchant Consumer Bridging (“SMCB”) component 5200;
  • FIG. 53 shows a user interface diagram illustrating an overview of example features of virtual wallet applications in some embodiments of the WIP;
  • FIGS. 54A-G show user interface diagrams illustrating example features of virtual wallet applications in a shopping mode, in some embodiments of the WIP;
  • FIGS. 55A-F show user interface diagrams illustrating example features of virtual wallet applications in a payment mode, in some embodiments of the WIP;
  • FIG. 56 shows a user interface diagram illustrating example features of virtual wallet applications, in a history mode, in some embodiments of the WIP;
  • FIGS. 57A-E show user interface diagrams illustrating example features of virtual wallet applications in a snap mode, in some embodiments of the WIP;
  • FIG. 58 shows a user interface diagram illustrating example features of virtual wallet applications, in an offers mode, in some embodiments of the WIP;
  • FIGS. 59A-B show user interface diagrams illustrating example features of virtual wallet applications, in a security and privacy mode, in some embodiments of the WIP;
  • FIG. 60 shows a data flow diagram illustrating an example user purchase checkout procedure in some embodiments of the WIP;
  • FIG. 61 shows a logic flow diagram illustrating example aspects of a user purchase checkout in some embodiments of the WIP, e.g., a User Purchase Checkout (“UPC”) component 6100;
  • FIGS. 62A-B show data flow diagrams illustrating an example purchase transaction authorization procedure in some embodiments of the WIP;
  • FIGS. 63A-B show logic flow diagrams illustrating example aspects of purchase transaction authorization in some embodiments of the WIP, e.g., a Purchase Transaction Authorization (“PTA”) component 6300;
  • FIGS. 64A-B show data flow diagrams illustrating an example purchase transaction clearance procedure in some embodiments of the WIP;
  • FIGS. 65A-B show logic flow diagrams illustrating example aspects of purchase transaction clearance in some embodiments of the WIP, e.g., a Purchase Transaction Clearance (“PTC”) component 6500;
  • FIGS. 66A-66C show block diagrams illustrating examples of a wallet in proxy purchase transaction in some embodiments of the WIP;
  • FIG. 67 shows a datagraph diagram illustrating examples of transforming wallet in proxy card generation requests via a WIP wallet card generation component into wallet in proxy card generation notifications;
  • FIG. 68 shows a logic flow diagram illustrating examples of transforming wallet in proxy card generation requests via a WIP wallet card generation component into wallet in proxy card generation notifications;
  • FIG. 69 shows a datagraph diagram illustrating examples of transforming purchase inputs using a wallet in proxy card via a WIP wallet card selection component and a WIP purchase transaction component into wallet in proxy card-based transaction purchase notifications;
  • FIG. 70 shows a logic flow diagram illustrating examples of transforming purchase inputs using a wallet in proxy card via a WIP wallet card selection component and a WIP purchase transaction component into wallet in proxy card-based transaction purchase notifications;
  • FIGS. 71A-71G show screen shot diagrams illustrating example user interface(s) of WIP applications in some embodiments of the WIP; and
  • FIG. 72 shows a block diagram illustrating examples of a WIP controller.
  • The leading number of each reference number within the drawings indicates the figure in which that reference number is introduced and/or detailed. As such, a detailed discussion of reference number 101 would be found and/or introduced in FIG. 1. Reference number 201 is introduced in FIG. 2, etc.
  • DETAILED DESCRIPTION Introduction
  • The MULTI-PURPOSE VIRTUAL CARD TRANSACTION APPARATUSES, METHODS AND SYSTEMS (hereinafter “WIP”) transform wallet in proxy card generation requests and purchase inputs, via WIP components, into wallet in proxy card generation notifications and wallet in proxy card-based transaction purchase notifications.
  • In some embodiments, the WIP may be broken down into three parts:
  • Mobile Application—It may include the mobile App or the Web UI portal. The customer may interact with this component to enable and configure the Proxy Credit card to be used as a valid Payment instrument inside and outside of a user's Wallet account.
  • Wallet Common Services—The wallet common services may provide the backbone functionality to configure and control the Proxy credit card properties for the customer, for example, which Physical payment instrument do they want to connect this Virtual Wallet Credit card, etc. The Pay Network may make calls to the common services to validate these properties before successfully processing transactions.
  • Pay Network—The Pay Network may perform its role of receiving authorization requests from the acquirer and forward them to the issuers. Before it forwards the requests, it may be performing the WIP CHECKs in the Wallet common services network and replace the virtual/proxy card with actual card details from wallet store.
  • In some embodiments, a wallet customer may go to the Mobile App and enable the WIP service to start using their wallet to pay for goods and services even when merchants do not support Wallet as valid FOP. Once the service is enabled, the customer may be presented with a Virtual Credit card number, which may get refreshed automatically after every transaction. Alternatively, a physical Credit card may also be sent to the customer for making in-person purchases. This physical card is the Proxy
      • 3 Card which may be used by the customer to make in-person or online purchases. The Pay Network may use the virtual credit card generated in the wallet or this Physical Proxy card to access the actual payment instrument in the customer's wallet, and complete the transactional flow.
  • In some embodiments, the common services in the Wallet backend is a one stop shop which maintains the customer account/transaction details. These common services may be extended to support the WIP service properties for each customer holding a wallet account. The common services may persist these properties setup by the customer in the common service DB, which may be already a part of the current architecture. Any updates by the customer to change these properties may be updated in the common services DB, and will be readily available to the Pay Network for successful transaction processing.
  • In some embodiments, a new service may also be implemented as part of the Wallet common services suite, which may be called the “WlnterChangeEngine—Wallet Interchange Engine”. This service may act as a back channel gateway for the Pay Network to determine if the card is actually a Proxy/Virtual Card and is enrolled for WIP service. In case the reply for the above Req is TRUE, the Pay Network may make a subsequest call with the transaction details to the Wlnterchange Engine to validate the transaction as per the customer set WIP properties, and replace the Virtual/Proxy card with the actual Credit card details.
  • The Consumer Transaction Leash Control Apparatuses, Methods And Systems (hereinafter “WIP”) provides a platform to facilitate a consumer enroll with an electronic payment wallet with consumer specified restriction parameters. In one implementation, a consumer may configure consumer-controlled fraud prevention parameters to restrict a purchase transaction via his electronic wallet, e.g., transaction time, maximum amount, type, number of transactions per day, and/or the like.
  • For example, a consumer may enroll with an electronic wallet service (e.g., Visa V-Wallet) by creating an e-wallet account and adding a payment account to the e-wallet (e.g., a credit card, a debit card, a PayPal account, etc.). The consumer may configure parameters to restrict the wallet transactions. For example, the consumer may configure a maximum one time transaction amount (e.g., $500.00, etc.). For another example, the consumer may specify a time range of transactions to be questionable (e.g., all transactions occurring between 2 am-6 am, etc.). For another example, the consumer may specify the maximum number of transactions per day (e.g., 20 per day, etc.). For further examples, the consumer may specify names and/or IDs of merchants with whom the transactions may be questionable (e.g., Internet spam sites, etc.).
  • In one implementation, the consumer may configure the WIP to detect and block all susceptible transactions. For example, when an attempted transaction of an amount that exceeds the maximum specified transaction amount occurs, the electronic wallet may be configured to reject the transaction and send an alert to the consumer. The transaction may be resumed once the consumer approves the transaction. In another implementation, if the WIP does not receive confirmation from the consumer to resume a susceptible transaction, the WIP may send a notification to the merchant to cancel the transaction. In one implementation, the consumer may configure the time period of clearance (e.g., 12 hours, etc.). In another implementation, WIP may determine a default maximum clearance period in compliance with regulatory requirements (e.g., 24 hours after soft posting, etc.).
  • In another implementation, the WIP consumer transaction control may be integrated with a universal payment platform, wherein a user may associated one or more payment accounts with a universal payment platform and pay with the universal payment platform. Within embodiments, the consumer may create an electronic wallet service account and enroll with the electronic wallet (e.g., Visa V.me wallet, etc.) via WIP. In alternative embodiments, a consumer may associate a consumer bank account with an existing electronic wallet. For example, a consumer may provide payment information, such as bank account number, bank routing number, user profile information, to an electronic wallet management consumer onboarding user interface (e.g., FIGS. 4A-4P, etc.), to associate an account with the electronic wallet. In another implementation, a consumer may enroll with the electronic wallet during online checkout. For example, a merchant site may provide an electronic wallet button at the checkout page (e.g., a Visa V-Wallet logo, etc.), and upon consumer selection of the electronic wallet button, the consumer may be prompted to enter bank account information (e.g., card number, etc.) to register a payment card (e.g., a credit card, a debit card, etc.) with the electronic wallet via a pop-up window.
  • Integration of the previously discussed electronic wallet, a desktop application, a plug-in to existing applications, a standalone mobile application, a web based application, a smart prepaid card, and/or the like in capturing consumer account control usage rules (e.g., WIP parameters, etc.), payment transaction related objects such as purchase labels, payment cards, barcodes, receipts, and/or the like reduces the number of network transactions and messages that fulfill a transaction payment initiation and procurement of payment information (e.g., the consumer does not need to walk to a bank branch, call a bank customer service to set up fraud preventing usage restriction rules, hand in a physical payment card to a cashier, etc., to initiate a payment transaction, fund transfer, and/or the like). In this way, with the reduction of network communications, the number of transactions that may be processed per day is increased, i.e., processing efficiency is improved.
  • It should be noted that although a mobile platform is depicted (e.g., see FIGS. 4A-4I), a digital/electronic wallet, a smart/prepaid card linked to a user's various payment accounts, and/or other payment platforms are contemplated embodiments as well; as such, subset and superset features and data sets of each or a combination of the aforementioned payment platforms may be accessed, modified, provided, stored, etc. via cloud/server services and a number of varying client devices throughout the instant specification. Similarly, although mobile wallet user interface elements are depicted, alternative and/or complementary user interfaces are also contemplated including: desktop applications, plug-ins to existing applications, stand alone mobile applications, web based applications (e.g., applications with web objects/frames, HTML 5 applications/wrappers, web pages, etc.), a voice interface (e.g., Apple Siri, Samsung S Voice, Google Voice, etc.) and other interfaces are contemplated. It should be further noted that the WIP payment processing component may be integrated with an digital/electronic wallet (e.g., a Visa V-Wallet, etc.), comprise a separate stand alone component instantiated on a user device, comprise a server/cloud accessed component, be loaded on a smart/prepaid card that can be substantiated at a PoS terminal, an ATM, a kiosk, etc., which may be accessed through a physical card proxy, and/or the like. In further implementations, the WIP may provide a consumer enrollment UI for a consumer to configure various types of consumer wallet leash parameters, such as but not limited to restricted time of the day a card can be used, usage frequency, etc. that the card may be activated or deactivated. Additionally, the WIP may provide triggers to auto-activate wallet/card account, e.g., tied to calendar events, geo-locations, etc. In another implementation, a consumer's Corporate cards sub-accounts, bonded accounts may use access control list (ACL)-like pre-configured leash settings (e.g., corporate card accounts, parent/child debit accounts may use ACL-like templates to control usage, etc.) In this way, the WIP reduces redundant information exchange and communication messages between consumers and an issuing bank, and thus improves network transmission and processing efficiency.
  • Multi-Purpose Virtual Card Transaction (WIP)
  • FIGS. 1A-1B provide block diagrams illustrating consumer transaction flow within implementations of the WIP. In one implementation, a consumer 102 may configure transaction restriction parameters via a consumer enrollment user interface. For example, in one implementation, an electronic wallet user may receive an invitation from WIP to sign up with WIP service, and following a link provided in the invitation (e.g., an email, etc.), the user may provide registration information in a registration form.
  • In one implementation, a user may configure payment methods and alerts with WIP. For example, the user may add a payment account to the wallet, and register for timely alerts with transactions associated with the payment account. In one implementation, the user may establish customized rules for triggers of a transaction alert. For example, an alert message may be triggered when a susceptible transaction occurs as the transaction amount exceeds a maximum one time transaction amount (e.g., $500.00, etc.). For another example, an alert may be triggered when a transaction occurs within a susceptible time range (e.g., all transactions occurring between 2 am-6 am, etc.). For another example, an alert may be triggered when the frequency of transactions exceeds a maximum number of transactions per day (e.g., 20 per day, etc.). For further examples, an alert may be triggered when the transacting merchant is one of a consumer specified susceptible merchants (e.g., Internet spam sites, etc.). For another example, an alert may be triggered when the type of the transaction is a blocked transaction type (e.g., a user may forbid wallet transactions at a gas station for gas fill, etc.).
  • In one implementation, the WIP may provide an enrollment user interface for a consumer to fill in leash parameters 103 (e.g., see FIGS. 4A-4I). In another implementation, the WIP may automatically capture leash parameters from the consumer's wallet calendar events. For example, when the consumer's calendar indicates the consumer will be on a business trip for a period of time, the WIP may automatically capture the event and trigger/release leash parameters for a corporate card usage enrolled in the wallet. For example, the consumer may specify to limit use of the corporate card for daily consumption other than for business purpose, as further illustrated in FIG. 1.
  • In one implementation, the user may subscribe to WIP alerts by selecting alert channels. For example, the user may providing his mobile number, email address, mailing address and/or the like to WIP, and subscribe to alerts via email, text messages, consumer service calls, mail, and/or the like. In one implementation, the user may configure rules and subscription channels for different payment account associated with the electronic wallet. In one implementation, upon receiving user configured parameters 103 via a user interface, the wallet network 120 b may store the leash parameters 103 associated with a consumer wallet profile.
  • Within implementations, the consumer may proceed to engage an electronic wallet to purchase goods from a merchant no (e.g., a physical merchant store, a shopping site, etc.). Such payment requests may be sent to a payment gateway/processor network 120 a (e.g., an acquirer, etc.), which may in turn forward the message to a financial processing network 120C (e.g., VisaNet, etc.). In one implementation, the financial processing network 120C may check the consumer's leash enrollment configurations 123 with the wallet network 120 b, and determine whether the submitted payment request complies with the leash settings, e.g., whether the requested payment amount exceeds a maximum amount, a maximum frequency, within a valid time period, etc. If no leash rule is violated, the processing network 120C may send a payment authorization request to the consumer's issuing bank 13 o to complete the payment transaction (see FIG. 62A).
  • In an alternative implementation, as shown in FIG. 1B, when an unauthorized user attempts to initiate a payment transaction using a consumer's wallet, e.g., a fraudster 101 tries to use a stolen credit card, etc., the WIP settings 123 may help detect the fraudulent usage. For example, the WIP parameters configured by the consumer may limit purchases to be within a geographical area, and if the authorization request is originated from a store outside of the specified geographical area, the processing network 120C may deny the payment request. Other examples of violations of the WIP parameters may include the requested amount exceeding a specified maximum amount, the requested payment exceeding the maximum usage frequency, etc.
  • FIG. 1C provides a block diagram illustrating aspects of automatic leash configuration by calendar events within embodiments of the WIP. In one implementation, a consumer 102 may configure WIP parameters to limit the use of a corporate credit card account 123. For example, a consumer 102 may possess a corporate group account card for business purpose payment and reimbursement, and may not want to use it for personal consumption. The consumer's mobile wallet may receive such leash parameters for credit card payment accordingly 127. It should be noted that in one embodiment, the user may establish leash access payment control through through a number of interfaces. For example, the user may establish controls through the mobile interfaces (e.g., FIGS. 4A-4I). As another example, such settings may be configured through a web based interface (e.g., FIGS. 4J-4Q). In another embodiment, input controls may be provided via voice, through services such as Apple Siri, Samsung S Voice, or Google Voice, etc., where a speech-to-textconversion may take place and the resulting text may be parsed for key words, which may act as command and command parameters for establishing accessing payment control in WIP.
  • In one implementation, when the consumer 102 goes on a business trip 135, the consumer may configure such events on an electronic calendar 138 (e.g., Google calendar, Microsoft outlook calendar, Apple iCal, etc.). In one implementation, the calendar event may specify a period of time as a business trip 139. In one implementation, such calendar 138 may be instantiated on the consumer's mobile device, wherein the consumer's mobile wallet may automatically associate the credit card leash settings with the calendar events. For example, as shown at 145, the mobile wallet may identify the duration of a business trip, and relax the constraint on the leash rule for corporate account usage, e.g., during the business trip, the WIP will no longer apply usage limitations of the consumer's corporate account.
  • FIG. 2A provides a data block diagram illustrating data flow interactions between WIP server and its affiliated entities within embodiments of the WIP. Within various embodiments, one or more user(s)/consumer(s) 202 operating one or more mobile wallet(s) 203, a WIP server 220, WIP merchants 250, an issuer 230, and/or WIP database(s) 219 are shown to interact via various communication network 213.
  • Within various embodiments, the consumer 202 may include a wide variety of different communications devices and technologies within embodiments of WIP operation. For example, in one embodiment, the consumers 102 may include, but are not limited to, terminal computers, work stations, servers, cellular telephony handsets, smart phones, PDAs, and/or the like. In one embodiment, the WIP server 220 may be equipped at a terminal computer of the consumer 202. In another embodiment, the WIP server 220 may be a remote server which is accessed by the consumer 102 via a communication network 213, such as, but not limited to local area network (LAN), in-house intranet, the Internet, and/or the like. In a further implementation, the WIP merchant 116 may be integrated with a consumer 202 at a computer terminal.
  • In one implementation, a consumer may request 204 a to access leash settings via a user interface, e.g., a mobile wallet interface, a web browser based interface, a voice interface, and/or the like. In one implementation, the mobile wallet 203 may be configured to provide a pre-stored leash setting UI 204 b to the user (e.g., see 401 in FIG. 4A). In another implementation, the mobile wallet may generate a WIP access request to the WIP server and receive a leash setting list 204 c from the server 220. For example, in one implementation, the mobile wallet may provide a (Secure) Hypertext Transfer Protocol (“HTTP(S)”) PUT message including the consumer leash access request 204 a in the form of data formatted according to the eXtensible Markup Language (“XML”). Below is an example HTTP(S) PUT consumer leash access request message 204 a substantially in the form of an XML-formatted message:
  • PUT /access_request.php HTTP/1.1
    Host: 65.202.245.00
    Content-Type: Application/XML
    Content-Length: 718
    <?XML version = “1.0” encoding = “UTF-8”?>
    <leash_access>
    <UserID> JDoe <\UserID>
    <WalletID> JD0001 </WalletID>
    <time> 19:23:23 <time>
    <date> 10-23-2014 </date>
    <request> leash setting </request>
    ...
    </leash_access>
  • In one implementation, the WIP may generate a HTTPS PUT message including the leash setting UI 204 b in the form of XML. Below is an example HTTP(S) PUT leash setting UI 204 b message substantially in the form of an XML-formatted message:
  • PUT /leash_setting.php HTTP/1.1
    Host: www.leash.com
    Content-Type: Application/XML
    Content-Length: 718
    <?XML version = “1.0” encoding = “UTF-8”?>
    <leash_setting>
    <UserID> JDoe <\UserID>
    <WalletID> JD0001 </WalletID>
    <time> 19:23:26 <time>
    <date> 10-23-2014 </date>
    <current_leash>
    <account_1>
    <account_name> amazon visa </account_name>
    <account_no> 0000 0000 0000 0000 </account_no>
    ...
    <time>
    <allowed_time_of_day> ...
    </allowed_time_of_day>
    <day_of_week> ... </day_of_week>
    ...
    </time>
    <amount>
    <max_day> ... </max_day>
    <max_week> ... </max_week>
    ...
    </amount>
    <count>
    <count_day> ... </count_day>
    <count_week> ... </count_week>
    ...
    </count>
    <type>
    <blacklist> ... </blacklist>
    ...
    </type>
    <merchant>
    <only_allow_online> ... </only_allow_oline>
    ...
    </merchant>
    ...
    </account_1>
    ...
    </leash_access>
  • In one implementation, the consumer may configure leash parameters 205 with the WIP server 220. For example, a consumer may enter a “settings” mode of his/her electronic wallet, and edit the control parameters of an enrolled account, as shown in FIG. 4A. Such leash parameters may include, but not limited to transaction amount, transaction type, transaction frequency, activated period of time, transaction location, and/or the like.
  • In one implementation, as shown at 411-415 in FIG. 4B, the WIP may allow the customer to specify when the payment instrument may be used. If transactions are generated outside of the specified time windows, then WIP may deny the transactions. For example, a consumer may specify to enable their credit card for about a period of time (e.g., 10 minutes, etc.) at a time. When the consumer is about to use the card, the consumer goes to the wallet and requests for card to be activated for the specified time. Upon completing their purchase, and once the timer expires, the credit card goes back to dormant state. As another example, the consumer may specify to enable the card during certain time intervals in the day only, e.g., 8:00 AM to 8:00 PM. A ny transactions outside of this time window may be denied. As another example, the consumer may specify certain days of the week when the card may be enabled, e.g., enable the card for Mondays and Thursdays ONLY. Hence any transactions conducted on the card other than these days may be denied. As another example, the consumer may keep his or her credit cards in the disabled state, and when about to make a transaction, they set the credit card state to “ENABLED”/or “ON.” Once the transaction goes through, the switch may automatically go back to OFF STATE and the card may not be used. If the user needs to conduct another transaction they may have to enable the card again.
  • In a further implementation, as shown in FIG. 4C, the WIP may allow the customer to specify the maximum amount for which the payment instrument may be used. If transactions are generated outside of the specified amount window, the WIP may deny them. For example, a consumer may specify the maximum and minimum amount for which they may use the credit card for. Any transaction outside of this window may be denied. As another example, a consumer may specify the valid currency in which the transaction may be performed using this credit card. If the consumer needs to modify the currency, they may have to change the WIP settings
  • As another example, consumers may set properties on the type of transactions which a credit card may support, e.g., to block transaction with high risks such as interpersonal transfers, web sale, etc. As another example, consumers may set throttles such that the credit card may not get used more than a maximum counts in a day, etc. In further implementations, the WIP may recommend leash parameters as default values, e.g., based on the consumer's transaction pattern (e.g., most frequent purchasing time frames, merchants, item categories, etc.).
  • In one implementation, WIP (e.g., the Visa Wallet network 120 b) may provide a (Secure) Hypertext Transfer Protocol (“HTTP(S)”) PUT message including the user leash parameters 205 in the form of data formatted according to the eXtensible Markup Language (“XML”). Below is an example HTTP(S) PUT leash parameter setting 205 message substantially in the form of an XML-formatted message:
  • PUT /leash.php HTTP/1.1
    Host: www.leash.com
    Content-Type: Application/XML
    Content-Length: 718
    <?XML version = “1.0” encoding = “UTF-8”?>
    <UserLeashRule>
    <UserID> JDoe <\UserID>
    <WalletID> JD0001 </WalletID>
    <Rule1>
    <status> ON </status>
    <RuleID> 00001 </RuleID>
    <CardNo> 0000 0000 0000 </CardNo>
    <MaxAmount> 500.00 </MaxAmount>
    <MaxPerDay> 20 </MaxPerDay>
    <Subscription> Mobile 000-000-0000 </Subscription>
    <Channel> SMS </Channel>
    ...
    </Rule1>
    <Rule2>
    <status> OFF </status>
    <RuleID> 00002 </RuleID>
    <CardNo> 0000 0000 0002 </CardNo>
    <MaxAmount> 100.00 </MaxAmount>
    <MaxPerDay> 10 </MaxPerDay>
    <BlackListMerchants>
    <Merchant1> abc.com </Merchant1>
    <Merchant2> xyz </Merchant2>
    ...
    </BlacklistMerchants>
    ...
    <Subscription> Email </Subscription>
    <Channel> jdoe@email.com </Channel>
    ...
    </Rule2>
    ..
    <\UserLeashRule>
  • As another example, the HTTPS PUT leash parameter setting 205 message may be substantially in the form of the following XML-formatted message:
  • PUT /leash.php HTTP/1.1
    Host: www.leash.com
    Content-Type: Application/XML
    Content-Length: 718
    <?XML version = “1.0” encoding = “UTF-8”?>
    <UserLeashRule>
    <UserID> JDoe <\UserID>
    <WalletID> JD0001 </WalletID>
    <account>
    <account_no> 0000 0000 0000 0000 </account_no>
    <account_name> Amazon Chase </account_name>
    ...
    </account>
    <leash_setting>
    <status> ON </status>
    <time>
    <allowed_time_of_day> 8 - 12
    </allowed_time_of_day>
    <day_of_week> thu </day_of_week>
    ...
    </time>
    <amount>
    <max_day> 500.00 </max_day>
    <max_week> 2000.00 </max_week>
    ...
    </amount>
    <count>
    <count_day> 4 </count_day>
    <count_week> 20 </count_week>
    ...
    </count>
    <type>
    <blacklist> alcohol </blacklist>
    ...
    </type>
    <merchant>
    <only_allow_online> amazon.com
    </only_allow_oline>
    ...
    </merchant>
    ...
    </UserLeashRule>
  • In the above example, the consumer has elected to limit the one-time payment for a card to no more than $500.00, and no more than 20 times a day. In another implementation, the consumer has elected to limit usage of another card with a list of merchants, and/or the like. In further implementations, the consumer may specify a maximum amount cap at a specific merchant, e.g., maximum cap of $500.00 at Amazon.com, maximum cap of $5000.00 at Saks 5th Ave., and/or the like.
  • In one implementation, upon receivint the leash parameters, the WIP server 220 may store and associate leash parameters 205 with each consumer enrolled account 207. For example, the WIP server 220 may generate a leash record 209 and save it at a database 219. The leash record 209 may comprise a XML data file, which may take a similar form to that of data message 205.
  • As another example, the WIP server may issue PHP/SQL commands to store the leash parameters to a database table (such as FIG. 66, leash table 6619 q). An example leash parameters store 209 command, substantially in the form of PHP/SQL commands, is provided below:
  • <?PHP
    header(′Content-Type: text/plain′);
    mysql_connect(″254.92.185.103”,$DBserver,$password); // access
    database server
    mysql_select(″WIP_DB.SQL″); // select database to append
    mysql_query(“INSERT INTO Leash_Table (user_id, wallet_id,
    rule_id, rule_type,
    rule_parameters, subscription, ...)
    VALUES ($user_id, $wallet_id, $rule_id, $rule_type,
    $rule_parameters,
    $subscription,...)”); // add data to table in database
    mysql_close(″WIP_DB.SQL″); // close connection to database
  • In one implementation, upon configuring the leash parameters, when a consumer 202 shops with a merchant 250 (e.g., a merchant store, a shopping site, etc.), the consumer may submit a payment request 211 a for processing. In one implementation, the consumer 202 may send the payment request 211 a to a payment processor network (e.g., VisaNet, etc.) which may forward the payment request to the WIP server 220. For example, the consumer 202 may proceed to a checkout page on a shopping site, which may activate a WIP checkout lightbox (e.g., a V.me checkout box, etc.) and generate a payment request message to the payment processing network upon the consumer's actuation (e.g., the consumer clicking on the lightbox to checkout, etc.). In another implementation, the consumer 202 may submit a payment request 211 b to a merchant 250, which may in turn forward the payment request message 211C to the payment processing network and WIP server 220. For example, the consumer may operate a payment device (e.g., an mobile wallet, a payment card, etc.) and proceed to pay at a point of sale (POS) terminal at a merchant store.
  • In one implementation, the payment request message 211 a-c may take a form similar to a HTTP(S) PUT message including payment request data in the form of XML. Below is an example HTTP(S) PUT payment request 211 a-c substantially in the form of an XML-formatted message:
  • PUT /PaymentRequest.php HTTP/1.1
    Host: www.shopping.com
    Content-Type: Application/XML
    Content-Length: 718
    <?XML version = “1.0” encoding = “UTF-8”?>
    <PeymentRequest>
    <UserID> JDoe <\UserID>
    <WalletID> JD0001 </WalletID>
    <Time> 23:23:34 00-00-1900 <Time>
    <TransactionID> 000000 <TransactionID>
    <User>
    <user_name> John Doe </user_name>
    <user_email> jdoe@email.com </user_email>
    <user_number> 111-111-1111 </user_number>
    <user_address> ... </user_address>
    ...
    </User>
    <Item>
    <MCC> MC0101 </MCC>
    <item_name> Samsung galaxy II </item_name>
    <item_quant> 1 </item_quant>
    <unit_price> 399.99 </unit_price>
    <tax> 39.99 </tax>
    ...
    </Item>
    <Payment>
    <amount> 439.98 </amount>
    <payment_type> credit </payment_type>
    <card> 0000 0000 0000 0000 </card>
    <CCV> 000 </CCV>
    ...
    </Payment>
    ...
    <\PaymentRequest>
  • Further implementations and exemplary data structures of consumer initiated payment request are illustrated in FIG. 62A.
  • Upon receiving the payment request, e.g., the processing network may forward such payment request message to the WIP server 220 (which may be an independent or affiliated with the payment processing network, etc.), the WIP server may query on a leash parameter list to determine whether the payment request is subject to any account usage limitation. In one implementation, the WIP server 220 may issue PHP commands 213 to request for search results. The WIP server 220 may execute a hypertext preprocessor (“PHP”) script including SQL commands to query the database for details of the issuer server. An example substantively in the form of PHP/SQL command listing including the inquiry 213, illustrating substantive aspects of querying the database 219 for leash parameters associated with a consumer account, is provided below:
  • <?PHP
    header(′Content-Type: text/plain′);
    mysql_connect(“254.93.179.112”,$DBserver,$password); // access
    database server
    mysql_select_db(“leash.SQL”); // select database table to search
    //create query for issuer server data
    $query = “SELECT consumer_id, wallet_id, account_no, card_ccv,
    rule_id,
    rule_name, rule_type, FROM LeashTable WHERE account_num
    LIKE ′%′
    $accountnum”;
    $result = mysql_query($query); // perform the search query
    mysql_close(“leash.SQL”); // close database access
    ?>
  • In another implementation, the WIP may act as a back channel gateway for the payment processing network (e.g., VisaNet, etc.) to determine if the card has enrolled with WIP service and if the customer has setup his/or her credit card to be protected by WIP. In such scenarios, the leash inquiry 213 may comprise two enrollment API calls generated from the WIP server 220. For example, upon receiving the payment request 211 a, the WIP may check leash enrollment for the card and leash configuration for transaction originated on this card via an enrollment API call, which may comprise a blocking call the payment processing network makes into the WIP. An example of check leash enrollment request API call 213 may be substantially in the form of an XML-formatted message:
  • <?xml version=″1.0″ encoding=″UTF-8″?>
    <Transaction>
    <PersonalInfo>
    <payment_method_type>CreditCard</payment_method_type>
    <payment_method>
    <exp_month>12</exp_month>
    <exp_year>2011</exp_year>
    <holder>Abhinav Shri</holder>
    <number>4222222222222</number>
    <verification_value>029</verification_value>
    <hashValue>098fdf98df0h98f09hs87df87fh67r234jl223m42df4f5fh45jd3s8a1fg
    </hashValue> “THIS IS THE HASH OF CUSTOMER NAME AND CC NUMBER. THIS VALUE
    WHEN PASSED BY THE VISA NET TO COMMON SERVICE ALLOWS FOR LTE SERVICE TO
    QUICKY LOCATE THE USER ACCOUNT IN THE COMMON SERVICE DB, AND DETERMINE IF
    THE USER IS A VALID VISA WALLET CUSTOMER, AND IF THEY HAVE SIGNED UP FOR
    LEASH SECURITY SERVICE”
    </payment_method>
    </ PersonalInfo >
    </Transaction>
  • An example response check leash enrollment request API call 216 may be substantially in the form of an XML-formatted message similar to the following:
  • <Transaction>
    <enrollmentStatus>Y</type>
    <SessionToken>CXYZ1234ASD</SessionToken>
    </Transaction>
  • In another implementation, if the reply to this request is “ENROLLED”, the WIP may make the second API call 213 to check the configuration for the transaction. An example check leash configuration request API call 213 may take a form similar to the following:
  • <?xml version=“1.0” encoding=“UTF-8”?>
    <Transaction>
    <SessionToken>CXYZ1234ASD</SessionToken>
    <type>Sale</type>
    <StatusInfo>
    <TimeZone>Pacific Time Zone</TimeZone>
    <DateTime>12/31/2011 10:20AM</DateTime>
    <StatusInfo>
    <PersonalInfo>
     <details>
    <amount type=“decimal”>100.01</amount>
    <currency>USD</currency>
    <description>Product description</description>
    <email>shriabhi@example.com</email>
    <ip>10.12.27.11</ip>
    </details>
    <BillingInfo>
    <address>111 1st Street</address>
    <city>Denver</city>
    <country>US</country>
    <first_name>Abhinav</first_name>
    <last_name>Shri</last_name>
    <phone>1555555777</phone>
    <state>AL</state>
    <zip>92006</zip>
    </BillingInfo>
    </ PersonalInfo >
    </Transaction>
  • An example response check leash enrollment request API call 216 may be substantially in the form of an XML-formatted message similar to the following:
  • <Transaction>
    <Status>AMOUNT_CHECK_FAIL</Status> “A FRAUDSTER
    IS TRYING TO USE A CREDIT CARD
    FOR 100.01$, WHILE THE CUSTOMER ABHINAV HAS
    SET THE MAX AMOUNT ON HIS CARD
    TO NOT EXCEED 20$ per Transaction”
    <SessionToken>CXYZ1234ASD</SessionToken>
    </Transaction>
  • An alternative inquiry result 216 may comprise retrieved leash parameters associated with the queried account, which may take a similar form to that in 205.
  • Within implementation, the query results 216 may be returned to the WIP server 220, which may in turn determine whether to approve or deny the payment transaction request base on the leash inquiry results 218. For example, in one implementation, the WIP may retrieve the user leash parameters, and inspect the transaction amount, transaction type, transaction frequency, and/or the like of the received transaction request based on the leash parameters.
  • For example, if the payment request 211 a-c comprises a payment amount of $5000.00, but the queried results 216 shows the account has a maximum one-time payment cap of $2000.00, the WIP may not proceed with processing the payment request. In one implementation, the WIP server 220 may send an alert message 223 (e.g., see also FIG. 4G) to the consumer if the transaction request is denied.
  • In one implementation, if the proposed transaction triggers an alert, WIP may generate an alert message, e.g., by providing a HTTP(S) PUT message including the alert content in the form of data formatted according to the XML. Below is an example HTTP(S) PUT alert 223 message substantially in the form of an XML-formatted message:
  • PUT /alert.php HTTP/1.1
    Host: www.leash.com
    Content-Type: Application/XML
    Content-Length: 718
    <?XML version = “1.0” encoding = “UTF-8”?>
    <Alert>
    <UserID> JDoe <\UserID>
    <WalletID> JD0001 </WalletID>
    <Time> 23:23:34 00-00-2015 <Time>
    <TransactionID> 000000 <TransactionID>
    <Trigger>
    MaxAmount>
    </Trigger>
    <AlertTemplateID> Tem00001 </AlertTemplateID>
    <Subscription> Email </Subscription>
    <Channel> jdoe@email.com </Channel>
    <Content>
    <Title> ″Transaction Alert: $5000.00 from Amazon.com
    </Title>
    <Greeting> ″Dear Joe″ </Greeting>
    <Body> ″We recently note that you have a transaction attempt
    to spend $5000.00 for a one-time checkout. According to the account
    setting, we are going to temporarily suspend the transaction. If you
    have any questions, please contact us. ...″ </Body>
    ...
    </Content>
    ...
    <\Alert>
  • In one implementation, the WIP may also generate a message and send it to the issuing bank 226, e.g., the user's bank that issues the payment account, etc., to alert the issuing bank not to credit funds to the merchant unless a clearance message is received subsequently. In another implementation, the WIP may generate a payment request message. Further example work flows of WIP are discussed FIGS. 3A-3C.
  • FIG. 2B shows a block diagram illustrating data flows between WIP server and affiliated entities for consumer account enrollment and purchase payment within alternative embodiments of the WIP.
  • In one embodiment, a consumer may register a “wallet” 203 with the WIP server 220. For example, the consumer may provide user profile information, payment information, bank account information, and/or the like to the WIP server 220, to establish a record comprising the bank account information at the WIP server. In another embodiment, a merchant 250, such as a merchant store 250 a, a social media platform 250 b, a merchant shopping website 250 c, a gaming site 250 d, and/or the like, may register with the WIP server 220, such that the WIP server 220 may authorize the merchant 116 to engage a WIP component to facilitate consumers to pay via the WIP. For example, a social media platform 250 b, a merchant site 250 c, and/or the like, may comprise an icon of WIP on the shopping page, whereas the consumer 202 may click on the icon to pay for a transaction via the consumer's WIP.
  • In one embodiment, the consumer 202 may operate a personal device, such as a desktop, a laptop, a PDA, a smart phone and/or the like to access a WIP 220, such as, but not limited to merchant store 250 a, a social media platform 250 b, a merchant shopping website 250 c, a gaming site 250 d, and/or the like. For example, the consumer 202 may open a webpage of Amazon.com, ebay.com, etc., to browse listed items for online shopping. When the user is interested in buying an item, he may click an “Add to Cart” button on the shopping page to indicate an intention of purchasing. As another example, the consumer 202 may access a social media platform 111, a gaming site 115, to purchase gaming points via WIP. The consumer 202 may submit his WIP ID, password, an item to purchase, user credentials 247, and/or the like to the WIP merchant 250.
  • In one embodiment, upon receiving an indication to engage WIP payment and consumer credentials with regard to his WIP account, the WIP merchant 250 may forward the WIP ID, a transaction amount, an item description 117, and/or the like to the WIP server 220, which may verify the received WIP ID and consumer credentials and proceed with payment processing. For example, the WIP server may retrieve a registered user record based on the received WIP ID, and obtain previously registered user financial information, such as, but not limited to a checking account, a credit card account, a PayPal account, and/or the like, and submit a fund transfer request, comprising an account number and an amount 256 to the user's financial account 180 via a financial network. The consumer's payment account 280 may process the fund transfer and return with a payment confirmation to the WIP server 220 to indicate successful payment processing. Upon confirmation of payment, the WIP may generate and store the transaction record 253 at a database 219.
  • In one implementation, the WIP server 220 may send the payment confirmation to the merchant 116, which may provide a confirmation page to the consumer 202 to complete the transaction.
  • In one implementation, the WIP server 220 may also communicate with a WIP database 219. In some embodiments, a WIP server 220 may be integrated with a local WIP database 219. I other embodiments, a WIP server 120 may access a remote WIP database 219 via the communication network 113. The WIP server 220 may send the information to the database 219 for storage, such as, but not limited to user account information, order record information, payment record information, and/or the like, as further illustrated at 6619 in FIG. 66.
  • Within implementations, the WIP may be used in a variety of transactions, such as but not limited to eCommerce, social networks, money transfer/personal payments, mobile commerce, proximity payments, gaming, and/or the like.
  • FIGS. 3A-3B provide logic flow diagrams illustrating payment processing within embodiments of the WIP. Within implementations, a consumer may submit leash parameters to configure wallet account 305 via an electronic user interface (e.g., see FIG. 4A). The consumer configured leash parameters may be received at the WIP server, which may in turn parse the received data message (e.g., 205 in FIG. 2A) to extract account number and leash type (e.g., time, amount, type, bond, etc.) 310. In one implementation, the WIP server may store leash parameters with the corresponding account 312 (e.g., 209 in FIG. 2A).
  • Within implementations, the consumer may submit a payment request (e.g., with the account selection, item information, etc.) 315 to a merchant, e.g., at a POS checkout terminal, at an online shopping checkout page (e.g., via a lightbox, etc.) 317.
  • The merchant may form a payment request message (e.g., see 211 c in FIG. 2A) that include consumer's payment information, merchant information and item information 317 to the WIP server. The WIP server may parse the payment request message for a payment account number 320, and query (e.g., 213 in FIG. 2A) on the account number to determine whether there is any payment control leash parameters associated with the account 323. For example, the WIP may retrieve the stored payment control rules, and compare against the merchant information, item information in the payment request message to determine whether the requested payment violate any of the leash parameters, e.g., exceeding a maximum payment amount, a maximum payment counts per day, payment originated from a disabled geo-location, an unapproved merchant, etc.
  • In one implementation, if the payment request does not violate any of the leash restrictions 325, the WIP may proceed with payment processing 334. For example, the WIP server may forward the payment request message to a payment processing unit (e.g., VisaNet, etc.), e.g., at 6216 in FIG. 62A.
  • In another implementation, if the payment request violates the leash parameters 325, the WIP may determine whether the violation suffices a graduated risk challenge 326, and if yes, the WIP may proceed to graduated risk seasoning 327 to process the transaction request, as noted in greater detail in U.S. application Ser. No. 13/434,818, filed Mar. 29, 2012, entitled “Graduated Security Seasoning Apparatuses, Methods And Systems,” attorney docket no. 233US01|20270-230US. The entirety of the application is hereby expressly incorporated by reference. In such scenarios, WIP may allow a user to relax leash constraints by assessing the risk and providing appropriate challenge to the user (e.g., asking for user password, sending a text requesting a PIN as a response, having an agent to call the consumer to overwrite, etc.)
  • In another implementation, if the transaction request fails the graduated risk challenge at 326,
  • the consumer may receive an alert message 328 (e.g., 442 a-g in FIG. 4G). The consumer may review the alert message and elect to submit a selection to proceed 330. For example, continuing with FIG. 3B, the consumer may elect to approve the alerted transaction even if it violates one or more payment control rules 335. In such scenarios, the WIP server may remove alerts and proceed with payment processing 334, and may optionally generate suggested leash setting updates 340. For example, if the payment rules have been configured to disable any payment transaction during the time 12:00 AM to 8:00 AM, but the consumer has manually approve a transaction request at 12:23 AM, the WIP server may inquire whether the consumer would like to update the leash settings, e.g., by relaxing the time constraint to 12:30 AM to 8:00 AM, and/or the like.
  • In one implementation, the WIP may provide suggested leash setting at 340 based on consumer recently transaction records. For example, if the consumer has manually approved a transaction occurred at 12:23 AM, but disapproved transactions occurred at 12:47 AM, the WIP server may suggest the consumer to relax the original time constraints from 12:00 AM to 8:00 AM to restrict transactions after 12:30 AM. As another example, when the original payment control has a maximum one-time payment amount of $500.00, if the consumer has manually approved a transaction with an amount of $550.00 but disapproved transactions greater than $800.00 or more, the WIP may suggest the consumer to reset the maximum one-time amount to be $600.00, etc.
  • In one implementation, the consumer may submit leash setting updates 342, e.g., to accept suggested leash parameters or to enter new leash settings, in a similar format as that at 312.
  • FIG. 3C provides a logic flow diagram illustrating payment processing within embodiments of the WIP. In one embodiment, the consumer may submit an indication to purchase or transfer funds 345. For example, the consumer may visit a merchant website, e.g., Facebook.com, Amazon.com, etc., and request purchasing an item from the website, transfer funds to a friend, and/or the like. The merchant website may determine whether WIP is authorized on its website, and may provide a list of payment options 348.
  • If the merchant is registered with WIP 350, the WIP server may authorize the merchant to collect user credentials for login to the WIP 311, and the merchant website may prompt the consumer to login to WIP 362. Otherwise, the merchant website may request the consumer to provide payment details for alternative payment options 351, e.g., credit card, debit card, PayPal account, and/or the like.
  • In one implementation, the consumer may authorize submission of his WIP user credentials 361, such as, but not limited to a WIP ID, a password, and/or the like. For example, the consumer may enter the WIP ID and password into a pop-up window provided from the merchant website. For another example, the consumer may authorize the merchant website to provide the WIP user credentials, e.g., previously stored in HTML5, cookies, etc., to the WIP server. For another example, the consumer may authorize the WIP server, via a remote component running on the merchant website (e.g., a Java applet, etc.) to provide user credentials to the WIP for verification.
  • In one implementation, when the user submits user credentials to log into WIP 362, the merchant website may forward the user credentials and transaction details 368 to the WIP server, which may determine the validity of the user credentials 370. If the WIP credentials are not valid, the WIP server may deny the payment request and send a notification of denial to the merchant website. In another implementation, if the consumer provided credentials are valid 371, the WIP server may process payment from the WIP 373. For example, the WIP server may communicate with a consumer's bank account associated with the WIP and request a fund transfer of an indicated amount. The WIP server may then store a transaction record 385.
  • In one implementation, after processing the payment, the WIP server 120 may send a payment confirmation notice to the merchant website, which may in turn complete the order 376 and store transaction record 377 in the database. In one implementation, the merchant website may provide a confirmation page comprising transaction confirmation to the consumer 378.
  • FIGS. 4A-4I provide exemplary mobile wallet user interface (UI) diagrams illustrating aspects of consumer configuration within embodiments of the WIP. With reference to FIG. 4A, a consumer may enter a panel for leash settings within the mobile wallet, and select an account 401 to set up payment control parameters. For example, the consumer may select from a list of enrolled accounts 402 a-f. In one implementation, the consumer may activate or deactivate the leash settings associated with each account by sliding the buttons to be ON or OFF. Toddling the switch may cause an updated leash parameters message (e.g., 205 in FIG. 2A) to be sent to activate or deactivate the account; if the account is activated, existing leash parameters stored and associated with the account may be put in effect. Alternatively, when the leash settings of the account is turned off, the account may be used without the existing restrictions. In another implementation, the consumer may configure the WIP to automatically activate leash settings by synchronizing with calendar events, e.g., see 416 in FIG. 4B. In one implementation, the consumer may tap on a listed account and view a brief summary of the payment control rules associated with the account 405, such as but not limited to the one time maximum payment amount, maximum usages per week, bond cards, and/or the like. In one implementation, the WIP may notify the consumer of new alerts 406.
  • In one implementation, when a consumer selects an account to configure “leash setting,” e.g., an “Amazon Chase” account 408, the consumer may be provided a list of options to configure the payment control parameters such as transaction time 409 a, transaction amount 409 b, transaction count 409 c, purchase type 409 d, transaction geo-location 409 e, merchant 409 f, bond cards 409 g, and/or the like.
  • With reference to FIG. 4B, when a consumer chooses to configure time constraint 411, in one implementation, the consumer may disable card usages in selected days of a week 412, e.g., disabling corporate card usage during weekend, etc. In another implementation, the consumer may specify a period of time 413, e.g., 12:00 AM to 8:00 AM to block usage of the card. In another implementation, the consumer may allow transactions within a period of time 414. Additionally, the consumer may configure whether to automatically configure card usage control by downloading calendar events 415.
  • For example, when the consumer activates the calendar auto-setup 416, the consumer may choose to enable the card for various calendar events, e.g., business trips, vacation, conferences, etc. 417. For example, when the calendar events indicate “business trip” for a period of time, the WIP may automatically enable use of a corporate card. In such scenarios, the WIP may send a notification of the calendar event 418 for the consumer to confirm enabling usage of an otherwise restricted corporate card.
  • With reference to FIG. 4C, when the consumer elects to configure amount limits 420, the consumer may configure general amount limits 421 a, amount per item 421 b, amount per bond card 421 c, amount per geo-location 421 d, amount per merchant 421 e, and/or the like. For example, the consumer may generally configure a one-time maximum amount 422 a, a daily maximum amount 422 c, a weekly maximum amount 422 b via a sliding button.
  • As another example, the consumer may configure maximum amount limit defined by purchase item category, e.g., a maximum amount for beauty products 423 a, another maximum amount for electronics 423 b, etc. As another example, the consumer may configure maximum amount limits for different bond card accounts, e.g., spouse account, child account, parent account, corporate group account, and/or the like 424 a via a sliding button 424 b.
  • With reference to FIG. 4D, when the consumer elects to configure amount limits per geo-location, the consumer may configure a maximum amount limit per state 425 a, or per zip code 425 b. As another example, the consumer may elect to configure an amount limit 426 b per different merchant 426 a.
  • In another implementation, consumer may configure to disable restricted item category/type 427, e.g., to disable purchases of tobacco 429 a, alcohol 429 b, drugs 429 c, sports tickets 429 d, etc. with the “Amazon Chase” card.
  • In another implementation, the WIP may allow a user to configure usage restrictions based on the geo-location 430 so as to prevent fraudulent use, e.g., the mobile wallet may be stolen and been used by unauthorized users, but the WIP setting will block such unauthorized usage if it occurred in suspicious geo-locations. For example, the WIP may attempt to obtain the GPS location of the consumer 431, and with reference to FIG. 4E, the WIP may determine the location of the consumer 431 a, and allow the consumer to allow transactions within a distance 431 b of his/her own geo-location. In one implementation, the consumer's location may be updated periodically so that the mobile wallet captures the latest location of the consumer's.
  • In another implementation, the consumer may enter a zipcode 431 c and allow transactions within a radius of the zipcode 431 d. In another implementation, the consumer may select allowable states 432.
  • In another implementation, the consumer may configure a blacklist and/or whitelist of merchants for usage limits based on merchant types. For example, the consumer may have a blacklist of merchants to disable usage in restaurant, hotel, department stores, and/or the like, e.g., 433. As another example, the consumer may maintain a blacklist of disabled merchants to disable transactions that take place in certain online shopping sites. For another example, the consumer may maintain a whitelist of allowable merchants, e.g., only authorizing transactions from reputable shopping sites such as ebay.com, Amazon.com, Apple iTunes store, Sephora.com, etc., but disable usage from other unverified sites 434. In another implementation, the consumer may add verified shopping sites by entering a URL 435.
  • With reference to FIG. 4F, the consumer may configure leash control parameters of the bond cards 436 a-c. In one implementation, a consumer may set up bond cards for his/her own cards enrolled in a wallet, e.g., the consumer's “Amazon Chase Visa” card 402 d in FIG. 4A, etc. In one implementation, a consumer may allow charges on the bond cards to be automatically placed onto his/her own card. For example, when the cardholder of the bond card “Anne's BOA card” 436 a purchases grocery, the shopping expenses may be automatically placed onto the consumer's “Amazon Chase Visa” card, instead of the “Anne's BOA card.” Example aspects of the bond cards may be applied for cost sharing between family and/or friends, corporate purchase reimbursement, cash back incentives, and/or the like. One of the advantages to bond numerous cardholders onto a single card is that any reward, benefits, points, etc., offered on that single card may accrue at a faster rate.
  • In one implementation, the consumer may configure restrictions on charges from the bond cards to be placed on his/her own card. For example, the consumer may have configured that charges only from certain product category/type may be placed onto his/her own Amazon Visa account, e.g., only allowing grocery expenses from Anne's BOA card 436 a, travel expenses including flights, trains and hotels from Bob's premium card 436 b, gas filling from Charlie's PNC card 436 c, office supply purchases from David's TD Bank card 436 d, and/or the like. In one implementation, the consumer may add a new bond card by choosing an “ADD” icon 436 e.
  • Upon choosing the “ADD” icon 436 e, the consumer may be directed to fill in information for the bond subsidiary card, such as, but not limited to the bond subsidiary cardholder's name 437 b, bond subsidiary card number 437 c, the bond subsidiary cardholder's phone number and email address, and/or the like. The consumer may be optionally asked to provide bank routing number, CCV code, and/or the like. In one implementation, the consumer may designate a card name for the new bond card, or the WIP may suggest a name 437 d for the new card based on the cardholder's name, bank name, and/or the like. In one implementation, the consumer may select and/or confirm his/her own bond master account from a drop down menu 437 c, e.g., to select the bond master account as “Amazon Chase *689.”
  • In one implementation, the consumer may proceed to submit 437 d the bond request, and the cardholder, e.g., “Emily,” may receive a notice within her wallet 438 a that a bond request is originated from the consumer's Amazon Chase Visa card 438 b. It should be noted that such notices may be received within an electronic wallet, email, telephone, instant messages, SMS, and/or the like. Although the previous scenarios describe a push bond request, WIP may also allow the subsidiary account holder to make a pull bond request to the bond master account holder, requiring the bond master account holder to authorize charges being placed onto the master account. Although 438 a-b in FIG. 4F show a bond request requiring only a selection of the “Confirmation” button, depending upon risk factors, increased challenges (e.g., PIN code, user name and password, biometrics, voice identification, and/or the like) may be employed as a prerequisite to establish the bond, as noted in greater detail in U.S. application Ser. No. 13/434,818, filed Mar. 29, 2012, entitled “Graduated Security Seasoning Apparatuses, Methods And Systems,” attorney docket no. 233US01|20270-230US. The entirety of the application is hereby expressly incorporated by reference.
  • The above embodiments show a bond push request message being sent from a bond master account (e.g., John Smith's Amazon Chase Visa *689) holder to a subsidiary bond user (e.g., Emily's *001 card). Once confirmed, this bond between the bond master account and the subsidiary bond account may allow the subsidiary account user to make charges with their card, and such charges and/or benefits (e.g., cash back, rewards, points, etc.) accrued on the bond master account. In such scenarios, the subsidiary account may act as a proxy of the bond master account. More details of use of a proxy account is provided in U.S. application Ser. No. 61/669,525, filed Jul. 9, 2012, entitled “Wallet In Proxy Apparatuses, Methods And Systems,” attorney docket no. 136US01|20270-234PV, which is expressly incorporated by reference.
  • In one implementation, upon the bonded cardholder, e.g., “Emily” confirming the bond request, the consumer may receive a notice 439 b that “Emily's card” has been successfully bonded, and the entry of “Emily's card” may be added to the bond card list 439 a.
  • With reference to FIG. 4G, upon establishing the bond with “Emily's card,” the consumer may configure leash settings 442. For example, the consumer may limit charges from usage of “Emily's card” to a restricted time frame 443 a, amount restrictions 443 b, count restrictions 443 c, item category/type restrictions 443 d, geo-location restrictions 443 e, merchant restrictions 443 f, and/or the like. In one implementation, the consumer, as the bond master account holder, may request to review and authorize the bond subsidiary account's transaction details prior to placing a charge on the master account. For example, the consumer may turn on the authorization request 443 g restriction button. In one implementation, the consumer may submit 450 the configured leash parameters to the WIP, which may in turn store the leash parameters. For example, the consumer may configure that only usage of “Emily's Card” near their home zipcode (e.g., 443 e) and only for beauty products (e.g., 443 d) can be transferred to the consumer's card. As such, if the cardholder “Emily” uses the bonded “Emily's card” outside of the geographical range specified in the leash setting 443 e, or to purchase items that have a Merchant Category Code (MCC) not in the category of beauty products, the WIP may deny such a charge to be placed onto the consumer's Amazon Chase Visa card.
  • In one implementation, upon leash configuration, the cardholder of the bond card, e.g., “Emily,” 446 a, may receive a notice indicating that new leash settings have been configured by the cardholder of the bond card 446 b.
  • In one implementation, upon configuring leash settings, the consumer may view from the bond card list that the bonded “Emily's card” is for “beauty products” 448. In one implementation, as the bond master account holder has requested authorization for every transaction from the bond subsidiary account holder, when the subsidiary account holder uses the subsidiary account to purchase items, e.g., Emily shops at Sephora.com, the bond master account holder may receive a notification 449 of the purchasing activity. The bond master account holder may elect to review transaction details to approve and/or disapprove that a charge is to be placed onto the master account, e.g., the Amazon Chase *689 account.
  • With reference to FIG. 4H, when a consumer taps on the notification icon 406 in FIG. 4A, the consumer may view a list of questionable transaction attempts 442 a-442 g, which may have violated one or more leash usage rules. For example, the consumer may view details of a questionable transaction including the time 443 a, amount 443 b, merchant 443 c, purchase item 443 d, as well as an alert 443 e providing reasons to suspend the transaction attempt. In one implementation, the consumer may disapprove the transaction 444 a so that the transaction request will be denied. Consequently, as shown in FIG. 4I, the consumer may receive a confirmation 445 message that the questionable transaction has been denied in order to protect the account.
  • In another implementation, the consumer may have the option to manually approve the transaction 444 b, and subsequently as shown in FIG. 4H, the consumer may view a summary of the approved transaction 446, and an option to update the current leash settings 447.
  • FIGS. 4J-4Q provide exemplary web based UI diagrams illustrating consumers signing up for WIP alerts within embodiments of the WIP. With reference to FIG. 4J, consumers who receive an invitation email may be able to enroll with WIP. Invitation may be sent to pre-selected partner employees and may not be offered to external consumers. With reference to FIG. 4K, in one implementation, after consumer enter their invite code, the invitation box “dissolves” and renders the enrollment form, and consumers may verify their email address before they continue, e.g., by clicking on a confirmation link sent to their email address. With reference to FIGS. 4L-4M, consumer may enter security questions after email verification. With reference to FIGS. 4N-4O, consumer may have a step by step guide for setting up payment methods and alerts, and enter an enrolled account profile page to click on set up alerts. With reference to FIGS. 4P-4Q, in one implementation, before subscribing to alerts, consumer may start by adding a mobile number to their profile. In one implementation, consumer may be asked to verify their mobile number before it can be added to their profile, and consumer may enter pin sent to their mobile number in this screen to verify the mobile phone number. In one implementation, the consumer may add alerts for multiple Visa cards and see their alert subscriptions, and may manage their account information such as adding a secondary email address or mobile number, or changing password.
  • FIGS. 5A-5D provide transaction flow diagrams illustrating aspects of checkout with a WIP lightbox within embodiments of the WIP. With reference to FIG. 5A, from the product listing page 501, the consumer may click a checkout button 502, and a specific item is immediately added to the consumers cart 503 and the checkout process is initiated, using WIP as the Method of Payment (MOP). The WIP light-box is instantiated with authentication 505, where the consumer is given the opportunity to log into 504 their WIP account and select their shipping address and payment method 506. Once selected, the consumer is returned back to the Merchant Name Order Review page 507, where the consumer may make any final changes to their order or purchase up-sell/cross-sell items 508. After the consumer clicks a Complete Button, the merchant will create an authorization for the transaction 510-511 for the consumer, display the Order Receipt page 512 to the consumer, and continue processing the transaction.
  • With reference to FIG. 5B, from a Shopping Cart page 515, the consumer may click a WIP checkout button 516. The checkout process is initiated 517, using WIP as the Method of Payment (MOP). The WIP light-box is instantiated with authentication 519, where the consumer is given the opportunity to log into 518 their WIP account and select their shipping address and payment method 520. Once selected, the consumer is returned back to the Merchant Name Order Review page 521-522, where the Consumer can make any final changes to their order or purchase up-sell/cross-sell items. After the consumer clicks a Complete Button, the merchant may create an authorization 524-525 for the transaction, display the Order Receipt page to the consumer 526, and continue processing the transaction.
  • With reference to FIG. 5C, from a Shopping Cart page 531, the consumer may click the WIP checkout button 532. The checkout process is initiated 533, using WIP as the Method of Payment (MOP). The WIP light-box is instantiated with authentication 535, where the consumer is given the opportunity to log into 534 their WIP account and select their shipping address and payment method 520 to log into their WIP account and select their shipping address and payment method 536. Once selected, the consumer may click the Pay Button where a payment authorization is created 537, and the consumer is returned to the merchant where the authorization is recorded 538. The Order Receipt page is shown 539, and WIP may continue processing the transaction.
  • With reference to FIG. 5D, from the Payment Method Selection page b 4 541, the consumer may select the WIP option 542. In one implementation, upon clicking continue, the WIP light-box is instantiated 544, where the consumer is given the opportunity to log into 543 their WIP account and select their payment method (shipping information has already been collected by the merchant) 545. Once selected, the consumer is returned back to the Merchant Name Order Review page 546, where the Consumer can make any final changes to their order or purchase up-sell/cross-sell items 547. After the consumer clicks the Complete Button 548, the merchant may create an authorization 549-550 for the transaction, display the Order Receipt page 551 to the consumer, and continue processing the transaction.
  • FIG. 5E provides a transaction flow diagram illustrating API call and responses between entities within embodiments of the WIP. Within implementations, transaction-related API calls 565 a-c may be made directly with the WIP system, including authorization, settlement, refund, and/or the like between merchant 560, WIP lightbox 56 a, and payment processing network 562. For example, a transaction authentication message may include a Website Root Tag, e.g., below the <body> tag to use any WIP widget. As another example, an initialization tag may set up the keys and tokens to be used to authenticate the merchant within the WIP system. The initialization tag may take fields as input such as but not limited to API Key (e.g., the API Key that identifies a consumer as the specific caller and loads your specific configuration and developer settings), token (e.g., the encrypted token for your merchant account such as an MD5 hash of the API Key and currency with no spaces, quotes, or delimiters API secret shared key), user ID (e.g., application name registered to an account)
  • As another example, a script tag may be included in the WIP JavaScript library which may be inserted immediately above the closing </body> tag in
  • a page HTML. As another example, a buy widget is a button which initiates the purchase, causing a unique identifier that can be used to retrieve an authorization against the consumers wallet. In other implementations, a callback function may be invoked, e.g., a globally accessible static JavaScript function that will be triggered once the WIP payment process is completed, which may be used to update the Merchant Name with the specific token that will be used during the transaction authorization process.
  • In one implementation, the buy widget tag may return the following fields to the Callback JavaScript Function so they can be consumed by the system: debit event type (e.g., one of the valid debit event types supported by the callback javascript reference), merchant transaction id (e.g., the merchant name unique identifier for the particular transaction, call id (e.g., the token which will be used to get an authorization). In one implementation, the buy widget tag may take the following required fields as input: api key (e.g., the api key that identifies the specific caller and loads specific configuration and developer settings), token (e.g., the encrypted token for merchant account including a md5 hash of the api key and currency with no spaces, quotes, or delimiters api secret shared key), amount (e.g., the total amount of the transaction to be charged (as a decimal)), currency (e.g., the currency of the transaction, etc.), product information (e.g., an id and name of the product being purchased, etc.), merchant transaction id (e.g., the merchant name unique identifier for the particular transaction), and/or the like.
  • As another example, The Callback JavaScript Function is called when the WIP authentication process is complete which may take parameters as input including, but not limited to: debit event type, transaction data (e.g., a data structure that contains information that can be used to further process the transaction, etc.), and/or the like. In one implementation, the debit event types may be returned and processed appropriately by the merchant with a status indication, such as success (e.g., the transaction was successfully approved and can be further authorized; in this case, WIP may take the token and perform an authorization call), cancel (e.g., The consumer clicked the “Cancel” button in the WIP flow; In this case, WIP may prompt the consumer to select another form of payment), fail (e.g., the attempt to approve the transaction failed; In this case, WIP may message that the transaction was declined and prompt the consumer to select another form of payment), and/or the like.
  • FIG. 6 shows a block diagram illustrating example aspects of virtual mobile wallet purchasing in some embodiments of the WIP. In further implementations, a universal electronic payment platform may transform touchscreen inputs into a virtual wallet mobile application interface, via WIP components, into purchase transaction triggers and receipt notices. In some implementations, the WIP may facilitate use of a virtual wallet, e.g., 600, for conducting purchase transactions. For example, a user 601 may utilize a mobile device 602 (e.g., smartphone, tablet computer, etc.) to conduct a purchase transaction for contents of a cart 603 (e.g., physical cart at a brick-and-mortar store, virtual cart at an online shopping site), optionally at a point-of-sale (PoS) client 604 (e.g., legacy terminal at a brick-and-mortar store, computing device at an online shopping site, another user with a virtual wallet application, for person-to-person funds transfers, etc.). The user may be able to choose from one or more cards to utilize for a transactions, the cards chosen from a virtual wallet of cards stored within a virtual mobile wallet application executing on the mobile device. Upon selecting one or more of the card options, the mobile device may communicate (e.g., via one/two-way near-field communication [NFC], Bluetooth, Wi-Fi, cellular connection, creating and capturing images of QR codes, etc.) the card selection information to the PoS terminal for conducting the purchase transaction. In some embodiments, the mobile device may obtain a purchase receipt upon completion of authorization of the transaction. Various additional features may be provided to the user via the virtual mobile wallet application executing on the mobile device, as described further below in the discussion with reference to at least FIGS. 7-59.
  • FIGS. 7A-B shows user interface diagrams illustrating example aspects of a shopping mode of a virtual wallet application in some embodiments of the WIP. With reference to FIG. 7A, in some embodiments, a user may utilize a virtual wallet application 701 to engage in purchase transactions. In various embodiments described herein, the virtual wallet application may provide numerous features to facilitate the user's shopping experience 702. For example, the virtual wallet application may allow a user to perform broad searches for products 703, as discussed further below in the discussion with reference to FIG. 7B.
  • In some implementations, the virtual wallet application may provide a ‘discover shopping’ mode 711. For example, the virtual wallet application executing on a user device may communicate with a server. The server may provide information to the virtual wallet on the consumer trends across a broad range of consumers in the aggregate. For example, the server may indicate what types of transactions consumers in the aggregate are engaging in, what they are buying, which reviews they pay attention to, and/or the like. In some implementations, the virtual wallet application may utilize such information to provide a graphical user interface to facilitate the user's navigation through such aggregate information, such as described in the discussion below with reference to FIGS. 8A-C. For example, such generation of aggregate information may be facilitate by the WIP's use of centralized personal information platform components described below in the discussion with reference to FIGS. 23-42.
  • In some implementations, the virtual wallet application may allow the user to simultaneously maintain a plurality of shopping carts, e.g., 712-213. Such carts may, in some implementation, be purely virtual carts for an online website, but in alternate implementations, may reflect the contents of a physical cart in a merchant store. In some implementations, the virtual wallet application may allow the user to specify a current cart to which items the user desires will be placed in by default, unless the user specifies otherwise. In some implementations, the virtual wallet application may allow the user to change the current cart (e.g., 713). In some implementations, the virtual wallet application may allow the user to create wishlists that may be published online or at social networks to spread to the user's friends. In some implementations, the virtual wallet application may allow the user to view, manage, and pay bills for the user, 714. For example, the virtual wallet application may allow the user to import bills into the virtual wallet application interface by taking a snapshot of the bill, by entering information about the bill sufficient for the virtual wallet application to establish a communication with the merchant associated with the bill, etc.
  • In some implementations, the virtual wallet application may allow the user to shop within the inventories of merchants participating in the virtual wallet. For example, the inventories of the merchants may be provided within the virtual wallet application for the user to make purchases. In some implementations, the virtual wallet application may provide a virtual storefront for the user within the graphical user interface of the virtual wallet application. Thus, the user may be virtually injected into a store of the merchant participating in the WIP's virtual wallet application.
  • In some implementations, the virtual wallet application may utilize the location coordinates of the user device (e.g., via GPS, IP address, cellular tower triangulation, etc.) to identify merchants that are in the vicinity of the user's current location. In some implementations, the virtual wallet application may utilize such information to provide information to the user on the inventories of the merchants in the locality, and or may inject the merchant store virtually into the user's virtual wallet application.
  • In some implementations, the virtual wallet application may provide a shopping assistant 704. For example, a user may walk into a physical store of a merchant. The user may require assistance in the shopping experience. In some implementations, the virtual wallet application may allow the user to turn on the shop assistant (see 717), and a store executive in the merchant store may be able to assist the user via another device. In some embodiments, a user may enter into a store (e.g., a physical brick-and-mortar store, virtual online store [via a computing device], etc.) to engage in a shopping experience. The user may have a user device. The user device 102 may have executing thereon a virtual wallet mobile app, including features such as those as described herein. Upon entering the store, the user device may communicate with a store management server. For example, the user device may communicate geographical location coordinates, user login information and/or like check-in information to check in automatically into the store. In some embodiments, the WIP may inject the user into a virtual wallet store upon check in. For example, the virtual wallet app executing on the user device may provide features as described below to augment the user's in-store shopping experience. In some embodiments, the store management server may inform a customer service representative (“CSR”) of the user's arrival into the store. For example, the CSR may have a CSR device, and an app (“CSR app”) may be executing thereon. For example, the app may include features such as described below in the discussion herein. The CSR app may inform the CSR of the user's entry, including providing information about the user's profile, such as the user's identity, user's prior and recent purchases, the user's spending patterns at the current and/or other merchants, and/or the like. In some embodiments, the store management server may have access to the user's prior purchasing behavior, the user's real-time in-store behavior (e.g., which items' barcode did the user scan using the user device, how many times did the user scan the barcodes, did the user engage in comparison shopping by scanning barcodes of similar types of items, and/or the like), the user's spending patterns (e.g., resolved across time, merchants, stores, geographical locations, etc.), and/or like user profile information. The store management system may utilize this information to provide offers/coupons, recommendations and/or the like to the CSR and/or the user, via the CSR device and/or user device, respectively. In some embodiments, the CSR may assist the user in the shopping experience. For example, the CSR may convey offers, coupons, recommendations, price comparisons, and/or the like, and may perform actions on behalf of the user, such as adding/removing items to the user's physical/virtual cart, applying/removing coupons to the user's purchases, searching for offers, recommendations, providing store maps, or store 3D immersion views, and/or the like. In some embodiments, when the user is ready to checkout, the WIP may provide a checkout notification to the user's device and/or CSR device. The user may checkout using the user's virtual wallet app executing on the user device, or may utilize a communication mechanism (e.g., near field communication, card swipe, QR code scan, etc.) to provide payment information to the CSR device. Using the payment information, the WIP may initiate the purchase transaction(s) for the user, and provide an electronic receipt to the user device and/or CSR device. Using the electronic receipt, the user may exit the store with proof of purchase payment.
  • With reference to FIG. 7B, in some implementations, the virtual wallet application 721 may provide a broad range of search results 722 in response to a user providing search keywords and/or filters for a search query. For example, the in the illustration of FIG. 7B, a user searched for all items including “Acme” that were obtained by taking a snapshot of an item (as discussed further below in greater detail), and were dated in the year “2052” (see 723). In some implementations the search results may include historical transactions of the user 731, offers (235, for a new account, which the user can import into the virtual wallet application) and/or recommendations for the user based on the user's behavioral patterns, coupons 732, bills 734, discounts, person-2-person transfer requests 736, etc., or offers based on merchant inventory availability, and/or the like. For example, the search results may be organized according to a type, date, description, or offers. In some implementations, the descriptions may include listings of previous prior (e.g., at the time of prior purchase), a current price at the same location where it was previously bought, and/or other offers related to the item (see, e.g., 731). Some of the offerings may be stacked on top of each other, e.g., they may be applied to the same transaction. In some instances, such as, e.g., the payment of bills (see 734), the items may be paid for by an auto-pay system. In further implementations, the user may be have the ability to pay manually, or schedule payments, snooze a payment (e.g., have the payment alerts show up after a predetermined amount of time, with an additional interest charge provided to account for the delayed payment), and/or modify other settings (see 734). In some implementations, the user may add one or more of the items listed to a cart, 724, 737. For example, the user may add the items to the default current cart, or may enter the name of an alternate (or new cart/wishlist) to add the items, and submit the command by activating a graphical user interface (“GUI”) element 737.
  • FIGS. 8A-C show user interface diagrams illustrating example aspects of a discovery shopping mode of a virtual wallet application in some embodiments of the WIP. In some embodiments, the virtual wallet application may provide a ‘discovery shopping’ mode for the user. For example, the virtual wallet application may obtain information on aggregate purchasing behavior of a sample of a population relevant to the user, and may provide statistical/aggregate information on the purchasing behavior for the user as a guide to facilitate the user's shopping. For example, with reference to FIG. 8A, the discovery shopping mode 801 may provide a view of aggregate consumer behavior, divided based on product category (see 802). For example, the centralized personal information platform components described below in the discussion with reference to FIGS. 23-42 may facilitate providing such data for the virtual wallet application. Thus, the virtual wallet application may provide visualization of the magnitude of consumer expenditure in particular market segment, and generate visual depictions representative of those magnitudes of consumer expenditure (see 803-306). In some embodiments, the virtual wallet application may also provide an indicator (see 809) of the relative expenditure of the user of the virtual wallet application (see blue bars); thus the user may be able to visualize the differences between the user's purchasing behavior and consumer behavior in the aggregate. The user may be able to turn off the user's purchasing behavior indicator (see 810). In some embodiments, the virtual wallet application may allow the user to zoom in to and out of the visualization, so that the user may obtain a view with the appropriate amount of granularity as per the user's desire (see 807-308). At any time, the user may be able to reset the visualization to a default perspective (see 811).
  • Similarly, the discovery shopping mode 821 may provide a view of aggregate consumer response to opinions of experts, divided based on opinions of experts aggregated form across the web (see 802). For example, the centralized personal information platform components described below in the discussion with reference to FIGS. 23-42 may facilitate providing such data for the virtual wallet application. Thus, the virtual wallet application may provide visualizations of how well consumers tend to agree with various expert opinion on various product categories, and whose opinions matter to consumers in the aggregate (see 823-326). In some embodiments, the virtual wallet application may also provide an indicator (see 829) of the relative expenditure of the user of the virtual wallet application (see blue bars); thus the user may be able to visualize the differences between the user's purchasing behavior and consumer behavior in the aggregate. The user may be able to turn off the user's purchasing behavior indicator (see 830). In some embodiments, the virtual wallet application may allow the user to zoom in to and out of the visualization, so that the user may obtain a view with the appropriate amount of granularity as per the user's desire (see 827-328). At any time, the user may be able to reset the visualization to a default perspective (see 831).
  • With reference to FIG. 8B, in some implementations, the virtual wallet application may allow users to create targeted shopping rules for purchasing (see FIG. 8A, 812, 822). For example, the user may utilize the consumer aggregate behavior and the expert opinion data to craft rules on when to initiate purchases automatically. As an example, rule 841 specifies that the virtual wallet should sell the users iPad2 if its consumer reports rating falls below 8.75/50.0, before March 1, provided a sale price of $399 can be obtained. As another example, rule 842 specifies that the virtual wallet should buy an iPad3 if rule 841 succeeds before February 15. As another example, rule 843 specifies that the wallet should buy a Moto Droid Razr from the Android Market for less than $349.99 if its Slashdot rating is greater than 8.75 before February 1. Similarly, numerous rules with a wide variety of variations and dependencies may be generated for targeted shopping in the discovery mode. In some implementations, the virtual wallet user may allow the user to modify a rule. For example, the wallet may provide the user with an interface similar to 846 or 847. The user may utilize tools available in the rule editor toolbox to design the rule according to the user's desires. In some implementations, the wallet may also provide a market status for the items that are subject to the targeted shopping rules.
  • With reference to FIG. 8C, in some implementations, the virtual wallet application may provide a market watch feature, wherein the trends associated with items subject to targeted shopping rules may be tracked and visually represented for the user. For example, the visualization may take, in some implementations, the form of a ticker table, wherein against each item 851(A)-(E) are listed a product category or cluster of expert opinions to which the product is related 852, pricing indicators, including, but not limited to: price at the time of rule creation 852, price at the time of viewing the market watch screen 853, and a target price for the items (A)-(E). Based on the prices, the market watch screen may provide a trending symbol (e.g., up, down, no change, etc.) for each item that is subject to a targeted shopping rule. Where an item satisfied the targeted rule (see item (E)), the virtual wallet may automatically initiate a purchase transaction for that item once the target price is satisfied.
  • FIGS. 9A-B show user interface diagrams illustrating example aspects of a shopping cart mode of a virtual wallet application in some embodiments of the WIP. With reference to FIG. 9A, in some implementations, the virtual wallet application may be able to store, maintain and manage a plurality of shopping carts and/or wishlists (401-406) for a user. The carts may be purely virtual, or they may represent the contents of a physical cart in a merchant store. The user may activate any of the carts listed to view the items currently stored in a cart (e.g., 910-416). In some implementations, the virtual wallet application may also provide wishlists, e.g., tech wishlist 917, with items that the user desires to be gifted (see 918-419). In some implementations, the virtual wallet may allow the user to quickly change carts or wishlists from another cart or wishlist, using a pop-up menu, e.g., 920.
  • With reference to FIG. 9B, in one implementation, the user may select a particular item to obtain a detailed view of the item, 921. For example, the user may view the details of the items associated with the transaction and the amount(s) of each item, the merchant, etc., 922. In various implementations, the user may be able to perform additional operations in this view. For example, the user may (re)buy the item 923, obtain third-party reviews of the item, and write reviews of the item 924, add a photo to the item so as to organize information related to the item along with the item 925, add the item to a group of related items (e.g., a household), 926, provide ratings 927, or view quick ratings from the user's friends or from the web at large. For example, such systems may be implemented using the example centralized personal information platform components described below in the discussion with reference to FIGS. 18-37. The user may add a photo to the transaction. In a further implementation, if the user previously shared the purchase via social channels, a post including the photo may be generated and sent to the social channels for publishing. In one implementation, any sharing may be optional, and the user, who did not share the purchase via social channels, may still share the photo through one or more social channels of his or her choice directly from the history mode of the wallet application. In another implementation, the user may add the transaction to a group such as company expense, home expense, travel expense or other categories set up by the user. Such grouping may facilitate year-end accounting of expenses, submission of work expense reports, submission for value added tax (VAT) refunds, personal expenses, and/or the like. In yet another implementation, the user may buy one or more items purchased in the transaction. The user may then execute a transaction without going to the merchant catalog or site to find the items. In a further implementation, the user may also cart one or more items in the transaction for later purchase.
  • The virtual wallet, in another embodiment, may offer facilities for obtaining and displaying ratings 927 of the items in the transaction. The source of the ratings may be the user, the user's friends (e.g., from social channels, contacts, etc.), reviews aggregated from the web, and/or the like. The user interface in some implementations may also allow the user to post messages to other users of social channels (e.g., TWITTER or FACEBOOK). For example, the display area 928 shows FACEBOOK message exchanges between two users. In one implementation, a user may share a link via a message 929. Selection of such a message having embedded link to a product may allow the user to view a description of the product and/or purchase the product directly from the history mode.
  • In some implementations, the wallet application may display a shop trail for the user, e.g., 930. For example, a user may have reviewed a product at a number of websites (e.g., ElecReports, APPL FanBoys, Gizmo, Bing, Amazon, Visa Smartbuy feature (e.g., that checks various sources automatically for the best price available according to the user preferences, and provides the offer to the user), etc.), which may have led the user to a final merchant website where the user finally bought the product. In some implementations, the WIP may identify the websites that the user visited, that contributed to the user deciding to buy the product, and may reward them with a share of the revenues obtained by the “point-of-sale” website for having contributed to the user going to the point-of-sale website and purchasing the product there. For example, the websites may have agreements with product manufacturers, wholesalers, retail outlets, payment service providers, payment networks, amongst themselves, and/or the like with regard to product placement, advertising, user redirection and/or the like. Accordingly, the WIP may calculate a revenue share for each of the websites in the user's shopping trail using a revenue sharing model, and provide revenue sharing for the websites.
  • In some implementations, the virtual wallet may provide a SmartBuy targeted shopping feature. For example, the user may set a target price 931 for the product 922 that the user wishes to buy. The virtual wallet may provide a real-time market watch status update 932 for the product. When the market price available for the user falls below the user's target price 931, the virtual wallet may automatically buy the product for the user, and provide a shipment/notification to the user.
  • FIG. 10 shows a user interface diagram illustrating example aspects of a bill payment mode of a virtual wallet application in some embodiments of the WIP. In some implementations, the virtual wallet application may provide a list of search results for bills 1001-503 in response to a user activating element 214 in FIG. 2A. In some implementations the search results may include historical billing transactions of the user, as well as upcoming bills (e.g., 1011-515). For example, the search results may be organized according to a type, date, description. In some implementations, the descriptions may include listings of previous prior (e.g., at the time of prior purchase), a current price at the same location where it was previously bought, and/or other offers related to the item (see, e.g., ion). In some instances, such as, e.g., the payment of bills (see 1014), the items may be paid for by an auto-pay system. In further implementations, the user may be have the ability to pay manually, or schedule payments, snooze a payment (e.g., have the payment alerts show up after a predetermined amount of time, with an additional interest charge provided to account for the delayed payment), and/or modify other settings (see 1014).
  • FIGS. 11A-B show user interface diagrams illustrating example aspects of a (local proximity) merchant shopping mode of a virtual wallet application in some embodiments of the WIP. In some implementations, upon activating elements 215 of 216 in FIG. 2A, the virtual wallet application may presents screens 1100 and 1110, respectively, as depicted in FIG. 11A. In FIG. 11, 1100, the virtual wallet application displays a list of merchants participating in the virtual wallet of the WIP, e.g., 1101-605. Similarly, in FIG. 11A, 1110, the virtual wallet application displays a list of merchants participating in the virtual wallet of the WIP and at or nearby the approximate location of the user the user. The user may click on any of the merchants listed in the two screens 1100 and 1110, to be injected into the store inventory of the merchant. Upon injection, the user may be presented with a screen such as 1120, which is similar to the screen discussed above in the description with reference to FIG. 9A (center). Also, in some implementation, if a user clicks on any of the items listed on screen 1120, the user may be taken to a screen 1130, similar to the screen discussed above in the description with reference to FIG. 9B. With reference to FIG. 11B, in some embodiments, the user may be injected into a virtual reality 2D/3D storefront of the merchant. For example, the user may be presented with a plan map view of the store 1141. In some map views, the user may provided with the user's location (e.g., using GPS, or if not available, then using a coarse approximation using a cellular signal). In some implementations, the locations of the user's prior and current purchases may be provided for the user, if the user wishes (see 1142, the user can turn the indications off, in some implementations). In some implementations, the user may be provided with a 3D aisle view of an aisle within the virtual storefront. The user may point the view direction at any of the objects to obtain virtual tools to obtain items from off the “virtual shelf,” and place them in the user's virtual cart. The screen at 1150 shows an augmented reality view of an aisle, where user may see pins of items suggested by a concierge, or that were bookmarked in their cart/wishlist highlighted through a live video view 115 x.
  • In another view, a virtual store aisle view (e.g., akin to a Google map Street View) may be navigated 1151 when the consumer is not at the store, but would like to look for product; the directional control 1151 allows for navigation up and down the aisle, and rotation and views of items at the merchant location. Additionally, consumers may tap items in the shelves and create a new product pin, which may then be added 1152 to a cart or wishlist for further transacting.
  • FIG. 12 shows user interface diagrams illustrating example aspects of allocating funds for a purchase payment within a virtual wallet application in some embodiments of the WIP. In one embodiment, the wallet mobile application may provide a user with a number of options for paying for a transaction via the wallet mode 1201. The wallet mode may facilitate a user to set preferences for a payment transaction, including settings funds sources 1202, payee 1203, transaction modes 1204, applying real-time offers to the transaction 1205, and publishing the transaction details socially 1206, as described in further detail below.
  • In one implementation, an example user interface 1211 for making a payment is shown. The user interface may clearly identify the amount 1212 and the currency 1213 for the transaction. The amount may be the amount payable and the currency may include real currencies such as dollars and euros, as well as virtual currencies such as reward points. The user may select the funds tab 1202 to select one or more forms of payment 1217, which may include various credit, debit, gift, rewards and/or prepaid cards. The user may also have the option of paying, wholly or in part, with reward points. For example, the graphical indicator 1218 on the user interface shows the number of points available, the graphical indicator 1219 shows the number of points to be used towards the amount due 234.56 and the equivalent 1220 of the number of points in a selected currency (USD, for example).
  • In one implementation, the user may combine funds from multiple sources to pay for the transaction. The amount 1215 displayed on the user interface may provide an indication of the amount of total funds covered so far by the selected forms of payment (e.g., Discover card and rewards points). The user may choose another form of payment or adjust the amount to be debited from one or more forms of payment until the amount 1215 matches the amount payable 1214. Once the amounts to be debited from one or more forms of payment are finalized by the user, payment authorization may begin.
  • In one implementation, the user may select a secure authorization of the transaction by selecting the cloak button 1222 to effectively cloak or anonymize some (e.g., pre-configured) or all identifying information such that when the user selects pay button 1221, the transaction authorization is conducted in a secure and anonymous manner. In another implementation, the user may select the pay button 1221 which may use standard authorization techniques for transaction processing. In yet another implementation, when the user selects the social button 1223, a message regarding the transaction may be communicated to one of more social networks (set up by the user), which may post or announce the purchase transaction in a social forum such as a wall post or a tweet. In one implementation, the user may select a social payment processing option 1223. The indicator 1224 may show the authorizing and sending social share data in progress.
  • In another implementation, a restricted payment mode 1225 may be activated for certain purchase activities such as prescription purchases. The mode may be activated in accordance with rules defined by issuers, insurers, merchants, payment processor and/or other entities to facilitate processing of specialized goods and services. In this mode, the user may scroll down the list of forms of payments 1226 under the funds tab to select specialized accounts such as a flexible spending account (FSA), health savings account (HAS) 1227, and/or the like and amounts to be debited to the selected accounts. In one implementation, such restricted payment mode 1225 processing may disable social sharing of purchase information.
  • In one embodiment, the wallet mobile application may facilitate importing of funds via the import funds user interface 1228. For example, a user who is unemployed may obtain unemployment benefit fund 1229 via the wallet mobile application. In one implementation, the entity providing the funds may also configure rules for using the fund as shown by the processing indicator message 1230. The wallet may read and apply the rules prior, and may reject any purchases with the unemployment funds that fail to meet the criteria set by the rules. Example criteria may include, for example, merchant category code (MCC), time of transaction, location of transaction, and/or the like. As an example, a transaction with a grocery merchant having MCC 5411 may be approved, while a transaction with a bar merchant having an MCC 5813 may be refused.
  • FIG. 13 shows user interface diagrams illustrating example aspects of selecting payees for funds transfers within a virtual wallet application in some embodiments of the WIP. In one embodiment, the payee screen 1301 in the wallet mobile application user interface may facilitate user selection of one or more payees receiving the funds selected in the funds tab. In one implementation, the user interface may show a list of all payees 1302 with whom the user has previously transacted or available to transact. The user may then select one or more payees, 1303. For example, a selection may include a multiple-merchant entry—this may be the case when a user is paying for products in a cart, wherein the products themselves are from multiple merchants. In another example, the user may be paying for the products placed in a plurality of cart, each cart including products from one or more merchants. The payees 1303 may include larger merchants such as Amazon.com Inc., and individuals such as Jane P. Doe. Next to each payee name, a list of accepted payment modes for the payee may be displayed. In some implementations, the user may import 1304 additional names into the address book included within the user interface 1302.
  • In one implementation, the user may select the payee Jane P. Doe 1305 for receiving payment. Upon selection, the user interface may display additional identifying information 1306 relating to the payee. The user interface may allow the user to contact the payee (e.g., call, text, email), modify the entry of the payee in the address book (e.g., edit, delete, merge with another contact), or make a payment to the payee 1307. For example, the user can enter an amount 1308 to be paid to the payee. The user can include a note for the payee (or for the user herelf) related to the payment, 1309. The user can also include strings attached to the payment. For example, the user can provide that the payment processing should occur only if the payee re-posts the user's note on a social networking site, 1310. The user can, at any time, modify the funding sources to utilize in the payment, 1311. Also, the user can utilize a number of different payment modes for each user, 1312. For example, additional modes such as those described in the discussion with reference to FIG. 14B may be used for the person-to-person payment. For example, a social payment mechanism may be employed for the person-to-person payment. Additional description on the social payment mechanism may be found in the discussion with reference to FIGS. 45-52 and 54D. As another example, person-to-person payment may be made via a snap mobile mechanism, as described further below in the discussion with reference to FIG. 17A.
  • FIGS. 14A-B show user interface diagrams illustrating example additional aspects of the virtual wallet application in some embodiments of the WIP. With reference to FIG. 14A, in some implementations, an offers screen 1401 may provide real-time offers that are relevant to items in a user's cart for selection by the user. The user may select one or more offers (see 1402) from the list of applicable offers 1403 for redemption. In one implementation, some offers may be combined (see, e.g., 1404), while others may not (optionally). When the user selects an offer that may not be combined with another offer, the unselected offers may be disabled. In a further implementation, offers that are recommended by the wallet application's recommendation engine may be identified by an indicator, such as the one shown by 1405. An example offer recommendation engine is described further below in the discussion with reference to FIG. 44. In a further implementation, the user may read the details of the offer by expanding the offer row as shown by 1405 in the user interface. The user may refresh offers displayed in the real-time offers screen at any time (see 1406).
  • With reference to FIG. 14B, in some implementations, the mode tab 1411 may facilitate selection of a payment mode accepted by the payee. A number of payment modes may be available for selection. Example modes include, Bluetooth 1412, wireless 1413, snap mobile by user-obtained QR code 1414, secure chip 1415, TWITTER 1416, near-field communication (NFC) 1421, cellular 1420, snap mobile by user-provided QR code 1419, USB 1418 and FACEBOOK 1417, among others. In one implementation, only the payment modes that are accepted by the payee may be selectable by the user. Other non-accepted payment modes may be disabled.
  • In one embodiment, the social tab 1431 may facilitate integration of the wallet application with social channels 1432. In one implementation, a user may select one or more social channels 1432 and may sign in to the selected social channel from the wallet application by providing to the wallet application the social channel user name and password 1433 and signing in 1434. The user may then use the social button 1435 to send or receive money through the integrated social channels. In a further implementation, the user may send social share data such as purchase information or links through integrated social channels. In another embodiment, the user supplied login credentials may allow WIP to engage in interception parsing.
  • FIGS. 15A-B show user interface diagrams illustrating example aspects of a history mode of a virtual wallet application in some embodiments of the WIP. With reference to FIG. 15A, in one embodiment, a user may select the history mode 1501 to view a history of prior purchases and perform various actions on those prior purchases. The wallet application may query the storage areas in the mobile device or elsewhere (e.g., one or more databases and/or tables remote from the mobile device) for prior transactions. The user interface may then display the results of the query such as transactions 1503. The user interface may identify 1504: a type of the transaction (e.g., previously shopped for items, bills that have been captured by camera in a snap mode, a person-to-person transfer [e.g., via social payment mechanism as described below in the discussion with reference to FIGS. 40-47], etc.); the date of the transaction; a description of the transaction, including but not limited to: a cart name, cart contents indicator, total cost, merchant(s) involved in the transaction; a link to obtain a shoptrail 29 (explained further below in greater detail), offers relating to the transaction, and any other relevant information. In some implementation, any displayed transaction, coupon, bill, etc. may be added to a cart for (re)purchase, 1505.
  • In one embodiment, a user may select the history mode 1511 to view a history of filtered prior purchases and perform various actions on those prior purchases. For example, a user may enter a merchant identifying information such as name, product, MCC, and/or the like in the search bar 1512. In another implementation, the user may use voice activated search feature to search the history. In another implementations, the wallet application may display a pop up screen 1516, in which the user may enter advanced search filters, keywords, and/or the like. The wallet application may query the storage areas in the mobile device or elsewhere (e.g., one or more databases and/or tables remote from the mobile device) for transactions matching the search keywords. The user interface may then display the results of the query such as transactions 1503. The user interface may identify 1514: a type of the transaction (e.g., previously shopped for items, bills that have been captured by camera in a snap mode, a person-to-person transfer [e.g., via social payment mechanism as described below in the discussion with reference to FIGS. 40-47], etc.); the date of the transaction; a description of the transaction, including but not limited to: a cart name, cart contents indicator, total cost, merchant(s) involved in the transaction; a link to obtain a shoptrail (explained further below in greater detail), offers relating to the transaction, and any other relevant information. In some implementation, any displayed transaction, coupon, bill, etc. may be added to a cart for (re)purchase, 1515.
  • With reference to FIG. 15B, in one embodiment, the history mode may also include facilities for exporting receipts. The export receipts pop up 1521 may provide a number of options for exporting the receipts of transactions in the history. For example, a user may use one or more of the options 1522, which include save (to local mobile memory, to server, to a cloud account, and/or the like), print to a printer, fax, email, and/or the like. The user may utilize his or her address book to look up email or fax number for exporting. The user may also specify format options for exporting receipts. Example format options may include, without limitation, text files (.doc, .txt, .rtf, iif, etc.), spreadsheet (.csv, .xls, etc.), image files (.jpg, .tff, .png, etc.), portable document format (.pdf), postscript (.ps), and/or the like. The user may then click or tap the export button to initiate export of receipts.
  • FIGS. 16A-C show user interface and logic flow diagrams illustrating example aspects of creating a user shopping trail within a virtual wallet application and associated revenue sharing scheme in some embodiments of the WIP. With reference to FIG. 16A, in some implementations, a user may select the history mode 1601 to view a history of prior purchases and perform various actions on those prior purchases. The wallet application may query the storage areas in the mobile device or elsewhere (e.g., one or more databases and/or tables remote from the mobile device) for prior transactions. The user interface may then display the results of the query such as transactions 1603. The user interface may identify 1604: a type of the transaction (e.g., previously shopped for items, bills that have been captured by camera in a snap mode, a person-to-person transfer [e.g., via social payment mechanism as described below in the discussion with reference to FIGS. 40-47], etc.); the date of the transaction; a description of the transaction, including but not limited to: a cart name, cart contents indicator, total cost, merchant(s) involved in the transaction; a link to obtain a shoptrail (explained further below in greater detail), offers relating to the transaction, and any other relevant information. In some implementation, any displayed transaction, coupon, bill, etc. may be added to a cart for (re)purchase, 1605.
  • In one implementation, the user may select a transaction, for example transaction 1606, to view the details of the transaction. For example, the user may view the details of the items associated with the transaction and the amount(s) of each item, the merchant, etc., 1612. In various implementations, the user may be able to perform additional operations in this view. For example, the user may (re)buy the item 1613, obtain third-party reviews of the item, and write reviews of the item 1614, add a photo to the item so as to organize information related to the item along with the item 1615, add the item to a group of related items (e.g., a household), provide ratings 1617, or view quick ratings from the user's friends or from the web at large. For example, such systems may be implemented using the example centralized personal information platform components described below in the discussion with reference to FIGS. 18-37. The user may add a photo to the transaction. In a further implementation, if the user previously shared the purchase via social channels, a post including the photo may be generated and sent to the social channels for publishing. In one implementation, any sharing may be optional, and the user, who did not share the purchase via social channels, may still share the photo through one or more social channels of his or her choice directly from the history mode of the wallet application. In another implementation, the user may add the transaction to a group such as company expense, home expense, travel expense or other categories set up by the user. Such grouping may facilitate year-end accounting of expenses, submission of work expense reports, submission for value added tax (VAT) refunds, personal expenses, and/or the like. In yet another implementation, the user may buy one or more items purchased in the transaction. The user may then execute a transaction without going to the merchant catalog or site to find the items. In a further implementation, the user may also cart one or more items in the transaction for later purchase.
  • The history mode, in another embodiment, may offer facilities for obtaining and displaying ratings 1617 of the items in the transaction. The source of the ratings may be the user, the user's friends (e.g., from social channels, contacts, etc.), reviews aggregated from the web, and/or the like. The user interface in some implementations may also allow the user to post messages to other users of social channels (e.g., TWITTER or FACEBOOK). For example, the display area 1618 shows FACEBOOK message exchanges between two users. In one implementation, a user may share a link via a message 1619. Selection of such a message having embedded link to a product may allow the user to view a description of the product and/or purchase the product directly from the history mode.
  • In some implementations, the wallet application may display a shop trail for the user, e.g., 1620. For example, a user may have reviewed a product at a number of websites (e.g., ElecReports, APPL FanBoys, Gizmo, Bing, Amazon, Visa Smartbuy feature (e.g., that checks various sources automatically for the best price available according to the user preferences, and provides the offer to the user), etc.), which may have led the user to a final merchant website where the user finally bought the product. In some implementations, the WIP may identify the websites that the user visited, that contributed to the user deciding to buy the product, and may reward them with a share of the revenues obtained by the “point-of-sale” website for having contributed to the user going to the point-of-sale website and purchasing the product there. For example, the websites may have agreements with product manufacturers, wholesalers, retail outlets, payment service providers, payment networks, amongst themselves, and/or the like with regard to product placement, advertising, user redirection and/or the like. Accordingly, the WIP may calculate a revenue share for each of the websites in the user's shopping trail using a revenue sharing model, and provide revenue sharing for the websites.
  • In some implementations, the virtual wallet may provide a SmartBuy targeted shopping feature. For example, the user may set a target price 1621 for the product 1612 that the user wishes to buy. The virtual wallet may provide a real-time market watch status update 1622 for the product. When the market price available for the user falls below the user's target price 1621, the virtual wallet may automatically buy the product for the user, and provide a shipment/notification to the user.
  • FIG. 16B shows a logic flow diagram illustrating example aspects of generating a virtual wallet user shopping trail in some embodiments of the WIP, e.g., a User Shopping Trail Generation (“USTG”) component 1600. In some implementations, a user device of a user, executing a virtual wallet application for the user, may track the shopping activities of a user for later retrieval and/or analysis. The device may obtain a user's input, 1601, and determine a type of user input, 1602. If the user engages in either browsing activity at a website of a merchant, or is navigating between websites (e.g., sometime when 1603, option “No”), the device may track such activities. For example, the device may determine that the user's input is a navigational input (1104, option “Yes”). The device may stop a timer associated with the current URL (e.g., of a merchant such as amazon.com, ebay.com, newegg.com, etc., or a review website such as shlashdot.org, cnet.com, etc.) that the user is located at, and determine a time count that the user spent at the URL, 1608. The device may update a shop trail database (e.g., a local database, a cloud database, etc.) with the time count for the current URL, 1609. The device may also identify a redirect URL to which the user will be navigating as a result of the user's navigation input, 1610. The device may set the redict URL as the current URL, and reset activity and time counters for the current URL. The device may generate a new entry in the shop trail database for the URL that has been made current by the user's navigational input, 1611.
  • If the user engaged in browsing activity at a current URL (1105, option “Yes”), the device may identify the URL associated with the browsing activity (e.g., if the browsing can be performed on the device across multiple windows or tabs, etc.). The device may increment an activity counter to determine a level of user activity of the user at the URL where the browsing activity is occurring, 1606. The device may update the shop trail database with the activity count for the URL, 1607.
  • If the user desires to engage in a purchase transaction, e.g., after visiting a number of URLs about the product (e.g., after reading reviews about a product at a number of consumer report websites, the user navigates to amazon.com to buy the product), see 1603, option “Yes,” the device may set the current URL as the “point-of-sale” URL (e.g., the merchant at which the user finally bought the product—e.g., amazon.com), 1612. The device may stop the time for the current URL, and update the shop trail database for the current URL, 1613. The device may generate a card authorization request to initiate the purchase transaction, 1614, and provide the card authorization request for transaction processing (see, e.g., PTA 5700 component described below in the discussion with reference to FIG. 57A-B).
  • In some implementations, the device may also invoke a revenue sharing component, such as the example STRS 1620 component described below in the discussion with reference to FIG. 16C.
  • FIG. 16C shows a logic flow diagram illustrating example aspects of implementing a user shopping trail-based revenue sharing model in some embodiments of the WIP, e.g., a Shopping Trail Revenue Sharing (“STRS”) component 1620. In some implementations, a user may have reviewed a product at a number of websites, which may have led the user to a final merchant website where the user finally bought the product. In some implementations, the WIP may identify the websites that the user visited, that contributed to the user deciding to buy the product, and may reward them with a share of the revenues obtained by the “point-of-sale” website for having contributed to the user going to the point-of-sale website and purchasing the product there. For example, the websites may have agreements with product manufacturers, wholesalers, retail outlets, payment service providers, payment networks, amongst themselves, and/or the like with regard to product placement, advertising, user redirection and/or the like. For example, a server may have stored a table of revenue sharing ratios, that provides a predetermined revenue sharing scheme according to which contributing websites will receive revenue for the user's purchase.
  • Accordingly, in some implementations, a server may obtain a list of URLs included in a suer's shopping trail, and their associated activity and time counts, 1621. The server may identify a point-of-sale URL where the user made the purchase for which revenue is being shared among the URLs in the shopping trail, 1622. The server may calculate a total activity count, and a total time count, by summing up activity and time counts, respectively, of all the URLs in the user's shopping trail, 1623. The server may calculate activity and time ratios of each of the URLs, 1624. The server may obtain a rvenue sharing model (e.g., a database table/matrix of weighting values) for converting activity and time ratios for each URL into a revenue ratio for that URL, 1625. The server may calculate a revenue share, 1626, for each of the URLs in the user's shopping trail using the revenue sharing model and the revenue ratios calculated for each URL. The server may provide a notification of the revenue for each URL (e.g., to each of the URLs and/or the point-of-sale URL from whom revenue will be obtained to pay the revenue shares of the other URLs in the user's shopping trail), 1627. In some implementations, the server may generate card authorization requests and/or batch clearance requests for each of the revenue payments due to the URLs in the user's shopping trail, to process those transactions for revenue sharing.
  • FIGS. 17A-H show user interface and logic flow diagrams illustrating example aspects of a snap mode of a virtual wallet application in some embodiments of the WIP. With reference to FIG. 17A, in some implementations, a user may select the snap mode 1701 to access its snap features. The snap mode may handle any machine-readable representation of data. Examples of such data may include linear and 2D bar codes such as UPC code and QR codes. These codes may be found on receipts 1706, product packaging 1702, coupons 1703, payment notes 1704, invoices 1705, credit cards and/or other payment account plastic cards or equivalent 1707, and/or the like. The snap mode may process and handle pictures of receipts, products, offers, credit cards or other payment devices, and/or the like. An example user interface 1711 in snap mode is shown in FIG. 17A. A user may use his or her mobile phone to take a picture of a QR code 1715 and/or a barcode 1714. In one implementation, the bar 1716 and snap frame 1713 may assist the user in snapping codes properly. For example, the snap frame 1713, as shown, does not capture the entirety of the code 1714. As such, the code captured in this view may not be resolvable as information in the code may be incomplete. When the code 1715 is completely framed by the snap frame 5215, the device may automatically snap a picture of the code, 1719. Upon finding the code, in one implementation, the user may initiate code capture using the mobile device camera, 1712. In some implementations, the user may adjust the zoom level of the camera to assist in captureing the code, 1717. In some implementations, the user may add a GPS tag to the captured code, 1718.
  • With reference to FIG. 17B, in some implementations, where the user has not yet interacted with an item, the user may view details of the item designed to facilitate the user to purchase the item at the best possible terms for the user. For example, the virtual wallet application may provide a detailed view of the item at the point where it was snapped by the user using the user device, 1721, including an item description, price, merchant name, etc. The view may also provide a QR code 1722, which the user may tap to save to the wallet for later use, or to show to other users who may snap the QR code to purchase the item. In some implementations, the view may provide additional services for the user, including but not limited to: concierge service; shipment services, helpline, and/or the like, 1723. In some implementations, the view may provide prices from competing merchants locally or on the web, 1724. Such pricing data may be facilitated by the centralized personal information platform components described further below in the discussion with reference to FIGS. 23-42. In some implementations, the view may provide the user with the option to (see 1725): store the snapped code for later, start over and generate a new code, turn on or off a GPS tagging feature, use a previously snapped QR code, enter keywords associated with the QR code, associated the items related to the QR code to an object, and/or the like. In some implementations, the virtual wallet may provide a SmartBuy targeted shopping feature. For example, the user may set a target price 1726 for the product 1721 that the user wishes to buy. The virtual wallet may provide a real-time market watch status update 1727 for the product. When the market price available for the user falls below the user's target price 1726, the virtual wallet may automatically buy the product for the user, and provide a shipment/notification to the user. The user may at any time add the item to one of the user's carts or wishlists (see 1728).
  • In one implementation, in particular when the user has previously interacted with the item that is snapped, the user may view the details of the items 1732 and the amount(s) of each item, the merchant, etc., 1732. In various implementations, the user may be able to perform additional operations in this view. For example, the user may (re)buy the item 1733, obtain third-party reviews of the item, and write reviews of the item 1734, add a photo to the item so as to organize information related to the item along with the item 1735, add the item to a group of related items (e.g., a household), provide ratings 1737, or view quick ratings from the user's friends or from the web at large. For example, such systems may be implemented using the example centralized personal information platform components described below in the discussion with reference to FIGS. 23-42. The user may add a photo to the transaction. In a further implementation, if the user previously shared the purchase via social channels, a post including the photo may be generated and sent to the social channels for publishing. In one implementation, any sharing may be optional, and the user, who did not share the purchase via social channels, may still share the photo through one or more social channels of his or her choice directly from the history mode of the wallet application. In another implementation, the user may add the transaction to a group such as company expense, home expense, travel expense or other categories set up by the user. Such grouping may facilitate year-end accounting of expenses, submission of work expense reports, submission for value added tax (VAT) refunds, personal expenses, and/or the like. In yet another implementation, the user may buy one or more items purchased in the transaction. The user may then execute a transaction without going to the merchant catalog or site to find the items. In a further implementation, the user may also cart one or more items in the transaction for later purchase.
  • The history mode, in another embodiment, may offer facilities for obtaining and displaying ratings 1737 of the items in the transaction. The source of the ratings may be the user, the user's friends (e.g., from social channels, contacts, etc.), reviews aggregated from the web, and/or the like. The user interface in some implementations may also allow the user to post messages to other users of social channels (e.g., TWITTER or FACEBOOK). For example, the display area 1738 shows FACEBOOK message exchanges between two users. In one implementation, a user may share a link via a message 1739. Selection of such a message having embedded link to a product may allow the user to view a description of the product and/or purchase the product directly from the history mode.
  • In some implementations, the wallet application may display a shop trail for the user, e.g., 1740. For example, a user may have reviewed a product at a number of websites (e.g., ElecReports, APPL FanBoys, Gizmo, Bing, Amazon, Visa Smartbuy feature (e.g., that checks various sources automatically for the best price available according to the user preferences, and provides the offer to the user), etc.), which may have led the user to a final merchant website where the user finally bought the product. In some implementations, the WIP may identify the websites that the user visited, that contributed to the user deciding to buy the product, and may reward them with a share of the revenues obtained by the “point-of-sale” website for having contributed to the user going to the point-of-sale website and purchasing the product there. For example, the websites may have agreements with product manufacturers, wholesalers, retail outlets, payment service providers, payment networks, amongst themselves, and/or the like with regard to product placement, advertising, user redirection and/or the like. Accordingly, the WIP may calculate a revenue share for each of the websites in the user's shopping trail using a revenue sharing model, and provide revenue sharing for the websites.
  • In some implementations, the virtual wallet may provide a SmartBuy targeted shopping feature. For example, the user may set a target price 1741 for the product 1732 that the user wishes to buy. The virtual wallet may provide a real-time market watch status update 1742 for the product. When the market price available for the user falls below the user's target price 1741, the virtual wallet may automatically buy the product for the user, and provide a shipment/notification to the user.
  • With reference to FIGS. 17C-D, in one embodiment, the snap mode may facilitate payment reallocation for a previously completed transaction (FIG. 3117C), or a transaction to performed at present (FIG. 17D). For example, a user may buy grocery and prescription items from a retailer Acme Supermarket. The user may, inadvertently or for ease of checkout for example, have already used his or her traditional payment card to pay for both grocery and prescription items, and obtained a receipt. However, the user may have an FSA account that could have been used to pay for prescription items, and which would have provided the user a better price or other economic benefits. In such a situation, the user may use the snap mode to initiate transaction reallocation.
  • As shown, the user may snap 1751, 1761 a picture of a barcode on an receipt 1753, 1763, upon which the virtual wallet application may present the receipt data 1752, 1762 using information from the pay code. The user may now reallocate expenses to their optimum accounts 1754, 1764. In some implementations, the user may also dispute the transaction 1755, 1765 or archive the receipt 1756, 1766.
  • In one implementation, when the reallocate button is selected, the wallet application may perform optical character recognition (OCR) of the receipt. Each of the items in the receipt may then be examined to identify one or more items which could be charged to which payment device or account for tax or other benefits such as cash back, reward points, etc. In this example, there is a tax benefit if the prescription medication charged to the user's Visa card is charged to the user's FSA. The wallet application may then perform the reallocation as the back end. The reallocation process may include the wallet contacting the payment processor to credit the amount of the prescription medication to the Visa card and debit the same amount to the user's FSA account. In an alternate implementation, the payment processor (e.g., Visa or MasterCard) may obtain and OCR the receipt, identify items and payment accounts for reallocation and perform the reallocation. In one implementation, the wallet application may request the user to confirm reallocation of charges for the selected items to another payment account. The receipt may be generated after the completion of the reallocation process. As discussed, the receipt shows that some charges have been moved from the Visa account to the FSA.
  • With reference to FIG. 17E, in one embodiment, the snap mode may also facilitate offer identification, application and storage for future use. For example, in one implementation, a user may snap an account code, an offer code 1771 (e.g., a bar code, a QR code, and/or the like). The wallet application may then generate an account card text, coupon text, offer text 1772 from the information encoded in the offer code. The user may perform a number of actions on the offer code. For example, the user may use the reallocate button 1773 to reallocate prior purchases that would have been better made using the imported card, coupon, offer, etc., and the virtual wallet application may provide a notification of reallocation upon modifying the accounts charged for the previous transactions of the user.
  • In one embodiment, the snap mode may also offer facilities for adding a funding source to the wallet application. In one implementation, a pay card such as a credit card, debit card, pre-paid card, smart card and other pay accounts may have an associated code such as a bar code or QR code. Such a code may have encoded therein pay card information including, but not limited to, name, address, pay card type, pay card account details, balance amount, spending limit, rewards balance, and/or the like. In one implementation, the code may be found on a face of the physical pay card. In another implementation, the code may be obtained by accessing an associated online account or another secure location. In yet another implementation, the code may be printed on a letter accompanying the pay card. A user, in one implementation, may snap a picture of the code. The wallet application may identify the pay card and may display the textual information encoded in the pay card. The user may then perform verification of the information by selecting a verify button. In one implementation, the verification may include contacting the issuer of the pay card for confirmation of the decoded information and any other relevant information. In one implementation, the user may add the pay card to the wallet by selecting a ‘add to wallet’ button. The instruction to add the pay card to the wallet may cause the pay card to appear as one of the forms of payment under the funds tab discussed above.
  • With reference to FIG. 17F, in some implementations, a user may be advantageously able to provide user settings into a device producing a QR code for a purchase transaction, and then capture the QR code using the user's mobile device. For example, a display device of a point-of-sale terminal may be displaying a checkout screen, such as a web browser executing on a client, e.g., 1781, displaying a checkout webpage of an online shopping website, e.g., 1782. In some implementations, the checkout screen may provide a user interface element, e.g., 1783 a-b, whereby the user can indicate the desire to utilize snap mobile payment. For example, if the user activates element 1781 a, the website may generate a QR code using default settings of the user, and display the QR code, e.g., 1785, on the screen of the client for the user to capture using the user's mobile device. In some implementations, the user may be able to activate a user interface element, e.g., 1783 b, whereby the client may display a pop-up menu, e.g., 1784, with additional options that the user may select from. In some implementations, the website may modify the QR code 1785 in real-time as the user modifies settings provided by activating the user interface element 1783 b. Once the user has modified the settings using the pop-up menu, the user may capture a snapshot of the QR code to initiate purchase transaction processing.
  • FIG. 17G shows a logic flow diagram illustrating example aspects of executing a snap mobile payment in some embodiments of the WIP, e.g., a Snap Mobile Payment Execution (“SMPE”) component 1700. In some implementations, a user may desire to purchase a product, service, offering, and/or the like (“product”), from a merchant via a merchant online site or in the merchant's store. The user may communicate with a merchant server via a client. For example, the user may provide user input, e.g., 1701, into the client indicating the user's desire to checkout shopping items in a (virtual) shopping cart. The client may generate a checkout request, e.g., 1702, and provide the checkout request to the merchant server. The merchant server may obtain the checkout request from the client, and extract the checkout detail (e.g., XML data) from the checkout request, e.g., 1703. For example, the merchant server may utilize a parser such as the example parsers described below in the discussion with reference to FIG. 66. The merchant server may extract the product data, as well as the client data from the checkout request. In some implementations, the merchant server may query, e.g., 1704, a merchant database to obtain product data, e.g., 1705, such as product pricing, sales tax, offers, discounts, rewards, and/or other information to process the purchase transaction.
  • In response to obtaining the product data, the merchant server may generate, e.g., 1706, a QR pay code, and/or secure display element according to the security settings of the user. For example, the merchant server may generate a QR code embodying the product information, as well as merchant information required by a payment network to process the purchase transaction. For example, the merchant server may first generate in real-time, a custom, user-specific merchant-product XML data structure having a time-limited validity period, such as the example ‘QR data’ XML data structure provided below:
  • <QR_data>
    <session_ID>4NFU4RG94</session_ID>
    <timestamp>2011-02-22 15:22:43</timestamp>
    <expiry_lapse>00:00:30</expiry_lapse>
    <transaction_cost>$34.78</transaction_cost>
    <user_ID>john.q.public@gmail.com</user_ID>
    <client_details>
    <client_IP>192.168.23.126</client_IP>
    <client_type>smartphone</client_type>
    <client_model>HTC Hero</client_model>
    <OS>Android 2.2</OS>
    <app_installed_flag>true</app_installed_flag>
    </client_details>
    <secure_element>www.merchant.com/securedyn/0394733/123.png</secure_element>
    <purchase_details>
    <num_products>1</num_products>
    <product>
    <product_type>book</product_type>
    <product_params>
    <product_title>XML for dummies</product_title>
    <ISBN>938-2-14-168710-0</ISBN>
    <edition>2nd ed.</edition>
    <cover>hardbound</cover>
    <seller>bestbuybooks</seller>
    </product_params>
    <quantity>1</quantity>
    </product>
    </purchase_details>
    <merchant_params>
    <merchant_id>3FBCR4INC</merchant_id>
    <merchant_name>Books & Things, Inc.</merchant_name>
    <merchant_auth_key>1NNF484MCP59CHB27365</merchant_auth_key>
    </merchant_params>
    <QR_data>
  • In some implementations, the merchant may generate QR code using the XML data. For example, the merchant server may utilize the PHP QR Code open-source (LGPL) library for generating QR Code, 2-dimensional barcode, available at http://phpqrcode.sourceforge.net/. For example, the merchant server may issue PHP commands similar to the example commands provided below:
  • <?PHP
    header(′Content-Type: text/plain′);
    // Create QR code image using data stored in $data variable
    QRcode::png($data, ‘qrcodeimg.png’);
    ?>
  • The merchant server may provide the QR pay code to the client, e.g., 1706. The client may obtain the QR pay code, and display the QR code, e.g., 1707 on a display screen associated with the client device. In some implementations, the user may utilize a user device, e.g., 1709, to capture the QR code presented by the client device for payment processing. The client device may decode the QR code to extract the information embedded in the QR code. For example, the client device may utilize an application such as the ZXing multi-format 1D/2D barcode image processing library, available at http://code.google.com/p/zxing/ to extract the information from the QR code. In some implementations, the user may provide payment input into the user device, e.g., 1708. Upon obtaining the user purchase input, the user device may generate a card authorization request, e.g., 1709, and provide the card authorization request to a pay network server (see, e.g., FIG. 57A).
  • FIGS. 17H-I show logic flow diagrams illustrating example aspects of processing a Quick Response code in some embodiments of the WIP, e.g., a Quick Response Code Processing (“QRCP”) component 1710. With reference to FIG. 17H, in some implementations, a virtual wallet application executing on a user device may determine whether a QR code has been captured in an image frame obtained by a camera operatively connected to the user device, and may also determine the type, contents of the QR code. Using such information, the virtual wallet application may redirect the user experience of the user and/or initiating purchases, update aspects of the virtual wallet application, etc. For example, the virtual wallet application may trigger the capture of an image frame by a camera operatively connected to the user device, 1711. The virtual wallet application may utilize an image segmentation algorithm to identify a foreground in the image, 1712, and may crop the rest of the image to reduce background noise in the image, 1713. The virtual wallet application may determine whether the foreground image includes a QR code from which data can be reliably read (e.g., this may not be so if the image does not include a QR code, or the QR code is partially cropped, blurred, etc.), 1714. For example, the virtual wallet application may utilize a code library such as the ZXing multi-format 1D/2D barcode image processing library, available at http://code.google.com/p/zxing/ to try and extract the information from the QR code. If the virtual wallet application is able to detect a QR code (1215, option “Yes”), the virtual wallet application may decode the QR code, and extract data from the QR code, 1717. If the virtual wallet application is unable to detect a QR code (1215, option “No”), the virtual wallet application may attempt to perform Optical Character Recognition on the image. For example, the virtual wallet application may utilize the Tesseract C++ open source OCR engine, available at www.pixel-technology.com/freewarw/tessnet2, to perform the optical character recognition, 1716. Thus, the virtual wallet application may obtain the data encoded into the image, and may continue if the data can be processed by the virtual wallet application. The virtual wallet application may query a database using fields identified in the extracted data, for a type of the QR code, 1718. For example, the QR code could include an invoice/bill, a coupon, a money order (e.g., in a P2P transfer), a new account information packet, product information, purchase commands, URL navigation instructions, browser automation scripts, combinations thereof, and/or the like.
  • In some embodiments, the QR code may include data on a new account to be added to the virtual wallet application (see 1719). The virtual wallet application may query an issuer of the new account (as obtained from the extracted data), for the data associated with the new account, 1720. The virtual wallet application may compare the issuer-provided data to the data extracted from the QR code, 611. If the new account is validated (1221, option “Yes”), the virtual wallet application may update the wallet credentials with the details of the new account, 1723, and update the snap history of the virtual wallet application using the data from the QR code, 1724.
  • With reference to FIG. 17I, in some embodiments, the QR code may include data on a bill, invoice, or coupon for a purchase using the virtual wallet application (see 1725). The virtual wallet application may query merchant(s) associated with the purchase (as obtained from the extracted data), for the data associated with the bill, invoice, or coupon for a purchase (e.g., offer details, offer ID, expiry time, etc.), 1726. The virtual wallet application may compare the merchant-provided data to the data extracted from the QR code, 1727. If the bill, invoice, or coupon for a purchase is validated (1228, option “Yes”), the virtual wallet application may generate a data structure (see e.g., XML QR data structure in description above with reference to FIG. 17F) including the QR-encoded data for generating and providing a card authorization request, 1729, and update the snap history of the virtual wallet application using the data from the QR code, 1730.
  • In some embodiments, the QR code may include product information, commands, user navigation instructions, etc. for the virtual wallet application (see 1731). The virtual wallet application may query a product database using the information encodd in the QR. The virtual wallet application may provide various features including, without limitation, displaying product information, redirecting the user to: a product page, a merchant website, a product page on a merchant website, add item(s) to a user shopping cart at a merchant website, etc. In some implementations, the virtual wallet application may perform a procedure such as described above for any image frame pending to be processed, and/or selected for processing by the user (e.g., from the snap history).
  • FIGS. 18A-B show user interface and logic flow diagrams illustrating example aspects of an offers mode of a virtual wallet application in some embodiments of the WIP. With reference to FIG. 18A, in some implementations, a user may desire to obtain new offers in the user's virtual wallet application, or may desire to exchange an existing offer for a new one (or a plurality of offers) (e.g., offers 1801 may be replaced at the user's command). For example, the user may provide an input indicating a desire to replace offer 1802. In response, the virtual wallet application may provide a set of replacement offers 1803, from which the user may choose one or more offers to replace the offer 1802.
  • FIG. 18B shows a logic flow diagram illustrating example aspects of generating and exchanging offer recommendations in some embodiments of the WIP, e.g., an Offer Recommendation and Exchange (“ORE”) component 1810. In some implementations, a user may desire to obtain new offers in the user's virtual wallet application, or may desire to exchange an existing offer for a new one (or a plurality of offers). The user may provide an input for display of such offers, 1801. The user's device may obtain the user's input, and determine whether the user desires to obtain a new offer, or obtain offers in exchange for an offer currently stored within the user's virtual wallet application executing on the device, 1802. If the device determines that the user desires to exchange a pre-existing offer, e.g., 1803, option “Yes,” the device may extract details of the offer that the user desires to exchange. For example, the device may correlate the position of the user's touchscreen input (e.g., where the device has a touchscreen interface) to an offer displayed on the screen. The device may also determine that the user utilized a gesture associated with the offer displayed on the screen that indicates the user's desire to exchange the offer with which the user gesture is associated. The device may query its database for an offer corresponding to the displayed offer, and may extract the details of the offer, 1804, by parsing the database-returned offer using a parser, such as the example parsers described below in the discussion with reference to FIG. 66. In some implementations, the device may extract any user-input offer generation restrictions (e.g., such as types of filters the user may have applied to offers the user desires, keywords related to the kinds of offers the user may desire, etc.) provided by the user as input, 1805. The device may generate an offer generation/exchange request for a pay network server using the extracted data on the offer to be exchanged (if any), and the user preferences for types of offers desired (if any), e.g., as a HTTP(S) POST request similar to the examples provided in the discussions below.
  • In some implementations, the pay network server may parse the offer generation/exchange request, 1807, using parsers such as the example parser described below in the discussion with reference to FIG. 66. The pay network server may generate a user behavior data query, 1808. For example, the server may utilize PHP/SQL commands to query a relational pay network database for user prior behavior data. For example, the pay network server may obtain such data generated using centralized personal information platform components, such as those described in the discussion below with reference to FIGS. 23-42, as well as a user behavior analysis component, such as the example UBA component described below in the discussion with reference to FIG. 38. The database may provide such user behavior data and analysis thereof to the pay network server, 1809. Using the prior user behavior data and/or analysis thereof, and using the details of the exchanged offer and/or user offer generation restrictions, the pay network server may generate offers to provide for the user. For example, the pay network server may utilize a user behavior-based offer recommendation component such as the example UBOR component described in the discussion below with reference to FIG. 44. The server may provide the generated offers to the device, which may display the received offers to the user, 1811. In some implementations, the user may provide an input indicating a desire to redeem one of the offers provided by the pay network server, 1812. In response, the device may generate a card authorization request incorporating the details of the offer chosen for redemption by the user, 1813, and provide the generated card authorization request for purchase transaction processing (e.g., as an input to the example PTA component described below in the discussion with reference to FIGS. 62A-B).
  • FIG. 19 shows user interface diagrams illustrating example aspects of a general settings mode of a virtual wallet application in some embodiments of the WIP. In some implementations, the virtual wallet application may provide a user interface where the user can modify the settings of the wallet, 1901. For example, the user may modify settings such as, but not limited to: general settings 1911 (e.g., user information, wallet information, account information within the wallet, devices linked to the wallet, etc.); privacy controls 1912 (e.g., controlling information that is provided to merchants, payment networks, third-parties, etc.); purchase controls 1913 (e.g., placing specific spending restrictions, or proscribing particular type of transaction); notifications 1914; wallet bonds 1915 (e.g., relationship made with other virtual wallets, such that information, settings, (parental) controls, and/or funds may flow between the wallets seamlessly); 1916 social payment settings (see, e.g., FIGS. 40-47), psychic wishlists 1917 (e.g., controlling the type of user behaviors to consider in generating offers, recommendations—see, e.g., FIG. 39); targeted shopping 1918 (e.g., setting target prices at which buying of products is automatically triggered—see, e.g., FIGS. 11A, 12B-C); or post purchase settings 1919 (e.g., settings regarding refunds, returns, receipts, reallocation of expenses (e.g., to FSA or HSA accounts), price matching (e.g., if the price of the purchased item falls after the user buys it), etc.
  • In a category of general settings (1411), a user may be able to modify settings such as, but not limited to: user information 1921, user device 1922, user accounts 1923, shopping sessions 1924, merchants that are preferred 1925, preferred products and brand names, preferred modes (e.g., settings regarding use of NFC, Bluetooth, and/or the like), etc.
  • FIG. 20 shows a user interface diagram illustrating example aspects of a wallet bonds settings mode of a virtual wallet application in some embodiments of the WIP. In a category of wallet bonds settings (see FIG. 14, 1415), a user may be able to modify settings such as, but not limited to, settings regarding: parent wallets 2001 (e.g., those that have authorization to place restriction on the user's wallet); child wallets 2002 (e.g., those wallets over which the user has authorization to place restrictions); peer wallets 2003 (e.g., those wallets that have a similar level of control and transparency); ad hoc wallets 2004 (e.g., those wallets that are connected temporarily in real-time, for example, for a one-time funds transfer); partial bond wallets (e.g., such as bonds between corporate employer virtual wallet and an employee's personal wallet, such that an employer wallet may provide limited funds with strings attached for the employee wallet to utilize for business purposes only), and/or the like.
  • FIGS. 21A-C show user interface diagrams illustrating example aspects of a purchase controls settings mode of a virtual wallet application in some embodiments of the WIP. With reference to FIG. 21A, in some implementations, a user may be able to view and/or modify purchase controls that allow only transaction that satisfy the purchase controls to be initiated from the wallet. In one implementation, a consumer may configure consumer-controlled fraud prevention parameters to restrict a purchase transaction via his electronic wallet, e.g., transaction time, maximum amount, type, number of transactions per day, and/or the like. For example, a consumer may enroll with an electronic wallet service (e.g., Visa V-Wallet) by creating an e-wallet account and adding a payment account to the e-wallet (e.g., a credit card, a debit card, a PayPal account, etc.). The consumer may configure parameters to restrict the wallet transactions. For example, the consumer may configure a maximum one-time transaction amount (e.g., $500.00, etc.). For another example, the consumer may specify a time range of transactions to be questionable (e.g., all transactions occurring between 2 am-6 am, etc.). For another example, the consumer may specify the maximum number of transactions per day (e.g., 20 per day, etc.). For further examples, the consumer may specify names and/or IDs of merchants with whom the transactions may be questionable (e.g., Internet spam sites, etc.).
  • In one implementation, the consumer may configure the purchase control settings to detect and block all susceptible transactions. For example, when an attempted transaction of an amount that exceeds the maximum specified transaction amount occurs, the electronic wallet may be configured to reject the transaction and send an alert to the consumer. The transaction may be resumed once the consumer approves the transaction. In another implementation, if the WIP does not receive confirmation from the consumer to resume a susceptible transaction, the WIP may send a notification to the merchant to cancel the transaction. In one implementation, the consumer may configure the time period of clearance (e.g., 12 hours, etc.). In another implementation, WIP may determine a default maximum clearance period in compliance with regulatory requirements (e.g., 24 hours after soft posting, etc.).
  • In one implementation, the WIP may provide the consumer with a universal payment platform, wherein a user may associated one or more payment accounts with a universal payment platform and pay with the universal payment platform. Within embodiments, the consumer may create an electronic wallet service account and enroll with the electronic wallet (e.g., Visa V-Wallet, etc.) via WIP. In alternative embodiments, a consumer may associate a consumer bank account with an existing electronic wallet. For example, a consumer may provide payment information, such as bank account number, bank routing number, user profile information, to an electronic wallet management consumer onboarding user interface, to associate an account with the electronic wallet. In another implementation, a consumer may enroll with the electronic wallet during online checkout. For example, a merchant site may provide an electronic wallet button at the checkout page (e.g., a Visa V-Wallet logo, etc.), and upon consumer selection of the electronic wallet button, the consumer may be prompted to enter bank account information (e.g., card number, etc.) to register a payment card (e.g., a credit card, a debit card, etc.) with the electronic wallet via a pop-up window.
  • In one implementation, upon receiving consumer enrollment bank account data, the WIP may generate an enrollment request to the electronic wallet platform (e.g., Visa V-Wallet payment network, etc.). In one implementation, an exemplary consumer enrollment data request in eXtensible Markup Language (XML). In further implementations, the consumer may be issued a WIP electronic wallet device upon enrollment, e.g., a mobile application, a magnetic card, etc.
  • In one implementation, a user may configure transaction restriction parameters via a consumer enrollment user interface. For example, in one implementation, an electronic wallet user may receive an invitation from WIP to sign up with WIP service, and following a link provided in the invitation (e.g., an email, etc.), the user may provide registration information in a registration form.
  • In one implementation, a user may configure payment methods and alerts with WIP. For example, the user may add a payment account to the wallet, and register for timely alerts with transactions associated with the payment account. In one implementation, the user may establish customized rules for triggers of a transaction alert. For example, an alert message may be triggered when a susceptible transaction occurs as the transaction amount exceeds a maximum one time transaction amount (e.g., $500.00, etc.). For another example, an alert may be triggered when a transaction occurs within a susceptible time range (e.g., all transactions occurring between 2 am-6 am, etc.). For another example, an alert may be triggered when the frequency of transactions exceeds a maximum number of transactions per day (e.g., 20 per day, etc.). For further examples, an alert may be triggered when the transacting merchant is one of a consumer specified susceptible merchants (e.g., Internet spam sites, etc.). For another example, an alert may be triggered when the type of the transaction is a blocked transaction type (e.g., a user may forbid wallet transactions at a gas station for gas fill, etc.).
  • In one implementation, the user may subscribe to WIP alerts by selecting alert channels. For example, the user may providing his mobile number, email address, mailing address and/or the like to WIP, and subscribe to alerts via email, text messages, consumer service calls, mail, and/or the like. In one implementation, the user may configure rules and subscription channels for different payment account associated with the electronic wallet.
  • In one implementation, upon receiving user configured parameters via a user interface, WIP (e.g., a Visa Wallet network) may provide a (Secure) Hypertext Transfer Protocol (“HTTP(S)”) PUT message including the user leash parameters in the form of data formatted according to the eXtensible Markup Language (“XML”). Below is an example HTTP(S) PUT message including an XML-formatted user leash parameters for storage in a database:
  • PUT /leash.php HTTP/1.1
    Host: www.leash.com
    Content-Type: Application/XML
    Content-Length: 718
    <?XML version = “1.0” encoding = “UTF-8”?>
    <UserLeashRule>
    <UserID> JDoe <\UserID>
    <WalletID> JD0001 </WalletID>
    <Rule1>
    <RuleID> 00001 </RuleID>
    <CardNo> 0000 0000 0000 </CardNo>
    <MaxAmount> 500.00 </MaxAmount>
    <MaxPerDay> 20 </MaxPerDay>
    <Subscription> Mobile 000-000-0000 </Subscription>
    <Channel> SMS </Channel>
    ...
    </Rule1>
    <Rule2>
    <RuleID> 00002 </RuleID>
    <CardNo> 0000 0000 0002 </CardNo>
    <MaxAmount> 100.00 </MaxAmount>
    <MaxPerDay> 10 </MaxPerDay>
    <BlackListMerchants>
    <Merchant1> abc.com </Merchant1>
    <Merchant2> xyz </Merchant2>
    ...
    </BlacklistMerchants>
    ...
    <Subscription> Email </Subscription>
    <Channel> jdoe@email.com </Channel>
    ...
    </Rule2>
    ..
    <\UserLeashRule>
  • In one implementation, upon configuring the leash parameters, when a consumer shops with a merchant (e.g., a shopping site, etc.), the payment processor network may forward the purchasing request to Visa network, which may apply the consumer's WIP enrollment with the electronic wallet (e.g., Visa wallet network, etc.). For example, in one implementation, the WIP may retrieve the user leash parameters, and inspect the transaction amount, transaction type, transaction frequency, and/or the like of the received transaction request based on the leash parameters.
  • In one implementation, if the proposed transaction triggers an alert, WIP may generate an alert message, e.g., by providing a (Secure) Hypertext Transfer Protocol (“HTTP(S)”) PUT message including the alert content in the form of data formatted according to the XML. Below is an example HTTP(S) PUT message including an XML-formatted alert:
  • PUT /alert.php HTTP/1.1
    Host: www.leash.com
    Content-Type: Application/XML
    Content-Length: 718
    <?XML version = “1.0” encoding = “UTF-8”?>
    <Alert>
    <UserID> JDoe <\UserID>
    <WalletID> JD0001 </WalletID>
    <Time> 23:23:34 00-00-1900 <Time>
    <TransactionID> 000000 <TransactionID>
    <Trigger>
    MaxAmount>
    </Trigger>
    <AlertTemplateID> Tem00001 </AlertTemplateID>
    <Subscription> Email </Subscription>
    <Channel> jdoe@email.com </Channel>
    <Content>
    <Title> ″Transaction Alert: $1000.00 from Amazon.com
    </Title>
    <Greeting> ″Dear Joe″ </Greeting>
    <Body> ″We recently note that ...″ </Body>
    ...
    </Content>
    ...
    <\Alert>
  • In one implementation, the WIP may also generate a message and send it to the issuing bank, e.g., the user's bank that issues the payment account, etc., to alert the issuing bank not to credit funds to the merchant unless a clearance message is received subsequently.
  • With reference to FIG. 21B, in some implementations, the virtual wallet application may provide an interface via which user may efficiently set purchase controls for transactions. For example, the user may enter a purchase controls settings screen (“JDOE1”) 2111, wherein the user may add restriction parameters to the purchase control setting. For example, the user interface on the left of FIG. 21B shows a purchase control that only allows in-person (see 2112) transactions below $50 (see 2113) to be made from US or Taiwan (see 2114), when made for clothes or shoes (see 2115), and not more than once a month (see 2116), and given that the user's overall spend for the time frame (1 mo) is less than $1500 (see 2117). Such parametric restrictions may be imposed using the user interface elements 2118 (e.g., to select a parameter) and 2119 (e.g., to enter a value corresponding to the parameter). In some situations, the virtual wallet may provide a graphical user interface component (e.g., 2122) to facilitate user input entry. For example, the virtual wallet may display a map of the world when the user wishes to place a geographic restriction on a purchase control, and the user may touch the map at the appropriate sport (e.g., 2123, 2124) to set the locations from which transaction may be allowed (or alternatively, blocked). In some implementations the virtual wallet may also allow the user to manually enter the value (see 2126), instead of utilizing the visual touch-based GUI component provided by the virtual wallet application.
  • With reference to FIG. 21C, in some implementations, the virtual wallet application may allow a user to manage privacy settings 2131 associated with the users' use of the wallet. For example, the user may be able to specify the information (e.g., 2132-1637) about the user that may be shared during the course of a purchase transaction. For example, in the illustration, the user has allowed the virtual wallet application to share the user's name, and social circle (1632). The user has not yet set a preference for sharing the user's address; thus it may take a default value of medium 8 (e.g., if the risk in the transaction is assessed by the WIP as being above medium, then the WIP may cloak the user's address during the transaction) depending on the type of transaction, in some implementations. The user has explicitly opted against sharing the user's account numbers (e.g., the user wishes for the payment network to cloak the user's account number during the transaction), and the user's live GPS location (see 2138).
  • FIG. 22A shows a logic flow diagram illustrating example aspects of configuring virtual wallet application settings in some embodiments of the WIP, e.g., a Virtual Wallet Settings Configuration (“VWSC”) component 2200. In some implementations, a user may desire to modify a setting within the user's virtual wallet application and/or within a virtual wallet application that has a relationship to the user's wallet (e.g., bonded wallet is a child wallet of the user's wallet). The user may provide input to a user device, 2201, indicating the desire to modify a wallet setting. Upon determining that the user desires to modify a wallet setting (see 2202-1703), the device may determine whether the user request is for modification of the user's wallet, or for modification of a wallet bonded to the user's wallet. In some implementations, the wallet application may require the user to enter a password or answer a challenge question successfully before allowing the user to modify a user setting. Further, in some implementations, the device may, if the user desires to modify the wallet settings of a bonded wallet (see 2205), the device may determine whether the user is authorized to do so, 2206. For example, the device may determine the type of relationship between the user's wallet and the bonded wallet; whether the bonded wallet (or its user) is required to provide permission before the wallet settings can be modified; and/or the like. In implementations requiring authorization from the bonded wallet user, the device may provide a request to a device of the bonded wallet user (e.g., via a server system storing network addresses for the devices of each user utilizing a virtual wallet). Upon determining that the user's wallet has authorization to modify the settings of the bonded wallet (see 2207), the device may identify a type of modification that the user desires to perform, 2208. In some implementations, whether the user is authorized to modify a wallet setting may depend on the wallet setting the user desires to modify, in which case the identification of the type of modification may be performed before determining whether the user is authorized to modify the wallet setting. Based on the type of modification requested by the user, the device may provide a graphical user interface (GUI) component (see, e.g., geographical map for marking countries from which transactions may be initiated for a particular purchase control setting, FIG. 16B [center]) to facilitate user entry of the modification to a wallet setting, 2209. The device may obtain the user setting value input via the GUI component, 2210. Where the modification involves a bonded wallet, the device may optionally provide a notification of modification of a setting involving the bonded wallet, 2211. The device may optionally store the modification of the wallet setting in a database, e.g., in a local database or a cloud storage database, 2212.
  • FIGS. 22B-C show logic flow diagrams illustrating example aspects of implementing purchase controls settings in some embodiments of the WIP, e.g., a Purchase Controls Settings (“PCS”) component 2220. With reference to FIG. 22B, in some implementations, a user may desire to generate a purchase control setting to monitor and/or restrict transactions of a specific character from being processed by the WIP. The user may provide such an indication into a user device executing a virtual wallet application for the user, 2221. In response, the device may provide a GUI component for the user to select a parameter according to which to restrict transactions initiated from the virtual wallet of the user, 2222 (see, e.g., scroll wheels of FIG. 2716B). The user may utilize the GUI component to select a restriction parameter, 2223. Based on the restriction parameter selected (e.g., geographical location, transaction value, transaction card, product category, time, date, currency, account balance(s), etc.), the device may identify, e.g., by querying a database, a GUI component to provide the user for facilitate the user providing a value associated with the restriction parameter (see, e.g., world map of FIG. 16B [center]), 2224. The device may provide the identified GUI component to the user, 2225. Using the GUI component, the user may provide a value for the restriction parameter, 2226. In response, the device may generate a data snippet including an identification of a restriction parameter, and an associated value for the restriction parameter, 2227. For example, the data snippet may be formatted as an XML data structure. In some implementations, the data structure may also include an indication of whether the restriction parameter value represents an upper bound or lower bound of the range of allowed values for that parameter. The device may append the data structure for the restriction parameter to a data structure for the overall purchase control setting, 2227. In some implementations, the device may determine whether the user desires to enter more such restriction parameters, and may facilitate the user entering such restriction parameters on top of any previously provided restriction parameters (see 2228-1729). Upon obtaining all restriction parameters for a given purchase control setting, the device may store the finalized purchase control setting to a database (e.g., a local database, a cloud storage database, etc.), 2230.
  • With reference to FIG. 22C, in some implementations, a user may desire to enter into a purchase transaction. The user may provide an input into user device executing a virtual wallet application indicative of the user's desire to enter into the purchase transaction, 2231. In response, the device may identify the parameters of the transaction (e.g., geographical location, transaction value, transaction card, product category, time, date, cart, wallet type [bonded, unbonded], currency, account balance(s) around the time of initiation of the transaction, etc.), 2232. The device may query a database for purchase control settings that may apply to the purchase transaction request, 2233. For example, these could include rules set by a bonded wallet user who has authorization to set purchase controls on the user's wallet. The device may process each purchase control setting to ensure that no setting is violated. In alternative schemes, the device may process purchase control settings until at least one purchase control setting permits the purchase transaction to be performed (or the purchase transaction may be denied if no setting permits it), see 2234. The device may select a purchase control setting, and extract the restriction parameters and their associated value from the purchase control setting data structure. For example, the device may use a parser similar to the example parsers described below in the discussion with reference to FIG. 66. The device may select a restriction parameter-value pair, 2236, and determine whether the transaction parameters violate the restriction parameter value, 2237. If the restriction is violated (1738, option “Yes”), the device may deny the purchase transaction request. Otherwise, the device may check each restriction parameter in the purchase control setting (see 2239) in a similar procedure to that described above. If the purchase control setting does not restrict the transaction, the device may execute similar procedure for all the other purchase control settings, unless one of the settings is violated (or, in the alternative scheme, if at least one purchase control setting permits the purchase transaction) (see 2240). If the device determines that the purchase transaction is permitted by the purchase control settings of the user and/or bonded wallet users (1740, option “No”), the device may generate a card authorization request, 2241, and provide the card authorization request for purchase transaction authorization (see FIG. 62A).
  • FIG. 23 shows a block diagram illustrating example aspects of a centralized personal information platform in some embodiments of the WIP. In various scenarios, originators 2311 such as merchants 2311 b, consumers 2311 c, account issuers, acquirers 2311 a, and/or the like, desire to utilize information from payment network systems for enabling various features for consumers. Such features may include application services 2312 such as alerts 2312 a, offers 2312 c, money transfers 2312 n, fraud detection 2312 b, and/or the like. In some embodiments of the WIP, such originators may request data to enable application services from a common, secure, centralized information platform including a consolidated, cross-entity profile-graph database 2301. For example, the originators may submit complex queries to the WIP in a structure format, such as the example below. In this example, the query includes a query to determine a location (e.g., of a user), determine the weather associated with the location, perform analyses on the weather data, and provide an exploded graphical view of the results of the analysis:
  • <int
    Model_id =“1”
    environment_type=“RT”
    meta_data=“./fModels/robotExample.meta”
    tumblar_location=“./fModels/robotExample.tumblar.location”
    input_format=“JSON”
    pmmls=“AUTONOMOUS_AGENTS.PMML”
    Model_type =“AUTONOMOUS_AGENTS”
    >
    <vault >
    <door:LOCATION>
    <lock name=“DETERMINE LOCATION”
    inkey=“INPUT” inkeyname=“lat”
    inkey2=“INPUT” inkeyname2=“long”
    function=“ROUND”
    fnct1-prec=“−2”
    function-1=“JOIN”
    fnct2-delim=“:”
    tumblar=‘LAT_LONG.Key’
    outkey=“TEMP” out keyname=“location”
    type=“STRING”
    />
    <lock name=“DETERMINE WEATHER”
    inkey=“TEMP” inkeyname=“location”
    mesh=‘MESHRT.RECENTWEATHER’
    mesh-query=‘HASH’
    outkey=“TEMP” outkeyname=“WEATHERDATA”
    type=“ARRAY”
    />
    <lock name=“EXPLODE DATA”
    inkey=“TEMP” inkeyname=“WEATHERDATA”
    function=“EXPLODE”
    fnct-delim=“:”
    outkey=“MODELDATA” outkeystartindex=1
    />
    <lock name=“USER SETTINGS”
    inkey=“INPUT” inkeyname=“USERID”
    mesh=‘MESHRT.AUTONOMOUSAGENT.SETTINGS’
    mesh-query=‘HASH’
    outkey=“TEMP” outkeyname=“USERSETTINGS”
    type=“ARRAY”
    />
    <lock name=“EXPLODE USER”
    inkey=“TEMP” inkeyname=“USERSETTINGS”
    function=“EXPLODE”
    fnct-delim=“:”
    outkey=“USERDATA” outkeystartindex=1
    />
    <lock name=“RUN MODELE”
    inkey=“MODELDATA”
    inkey1=“USERDATA”
    function=“TREE”
    fnc-pmml=“AUTONOMOUS_AGENTS.PMML”
    outkey=“OUTPUT” outkeyname=“WEATHER”
    type=“NUMERIC”
    />
    </door>
    </vault>
  • A non-limiting, example listing of data that the WIP may return based on a query is provided below. In this example, a user may log into a website via a computing device. The computing device may provide a IP address, and a timestamp to the WIP. In response, the WIP may identify a profile of the user from its database, and based on the profile, return potential merchants for offers or coupons:
  • --------------------------------------------------
    ------------------ Use Case 3 -------------------
    -- User log into a website
    -- Only IP address, GMT and day of week is passed to Mesh
    -- Mesh matches profile based on Affinity Group
    -- Mesh returns potential Merchants for offers or coupons based on tempory
    model using suppression rules
    --------------------------------------------------
    -- Test case 1 IP:24:227:206 Hour:9 Day:3
    -- Test case 2 IP:148:181:75 Hour:4 Day:5
    --------------------------------------------------
    ------- AffinityGroup Lookup -------------------
    --------------------------------------------------
    Look up test case 1
    [OrderedDict([(‘ISACTIVE’, ‘True’), (‘ENTITYKEY’, ‘24:227:206:3:1’), (‘XML’,
    None), (‘AFFINITYGROUPNAME’, ‘24:227:206:3:1’), (‘DESCRIPTION’, None),
    (‘TYPEOF’, None), (‘UUID’, ‘5f8df970b9ff11e09ab9270cf67eca90’)]),
    OrderedDict([(‘ISACTIVE’, ‘True’), (‘BASEUUID’,
    ‘4fbea327b9ff11e094f433b5d7c45677’), (‘TOKENENTITYKEY’,
    ‘4fbea327b9ff11e094f433b5d7c45677:TOKEN:349:F’), (‘BASETYPE’,
    ‘MODEL_002_001_00’), (‘STATUS’, ‘ACTIVE’), (‘ISSUEDDATE’, None), (‘WEIGHT’,
    ‘349’), (‘CATEGORY’, ‘F’), (‘DOUBLELINKED’, None), (‘UUID’,
    ‘6b6aab39b9ff11e08d850dc270e3ea06’)]), OrderedDict([(‘ISACTIVE’, ‘True’),
    (‘BASEUUID’, ‘4fbea328b9ff11e0a5f833b5d7c45677’), (‘TOKENENTITYKEY’,
    ‘4fbea328b9ff11e0a5f833b5d7c45677:TOKEN:761:1’), (‘BASETYPE’,
    ‘MODEL_003_001_00’), (‘STATUS’, ‘ACTIVE’), (‘ISSUEDDATE’, None), (‘WEIGHT’,
    ‘761’), (‘CATEGORY’, ‘1’), (‘DOUBLELINKED’, None), (‘UUID’,
    ‘68aaca40b9ff11e0ac799fd4e415d9de’)]), OrderedDict([(‘ISACTIVE’, ‘True’),
    (‘BASEUUID’, ‘4fbea328b9ff11e0a5f833b5d7c45677’), (‘TOKENENTITYKEY’,
    ‘4fbea328b9ff11e0a5f833b5d7c45677:TOKEN:637:2’), (‘BASETYPE’,
    ‘MODEL_003_001_00’), (‘STATUS’, ‘ACTIVE’), (‘ISSUEDDATE’, None), (‘WEIGHT’,
    ‘637’), (‘CATEGORY’, ‘2’), (‘DOUBLELINKED’, None), (‘UUID’,
    ‘6b6d1c38b9ff11e08ce10dc270e3ea06’)]), OrderedDict([(‘ISACTIVE’, ‘True’),
    (‘BASEUUID’, ‘4fbea328b9ff11e0a5f833b5d7c45677’), (‘TOKENENTITYKEY’,
    ‘4fbea328b9ff11e0a5f833b5d7c45677:TOKEN:444:3’), (‘BASETYPE’,
    ‘MODEL_003_001_00’), (‘STATUS’, ‘ACTIVE’), (‘ISSUEDDATE’, None), (‘WEIGHT’,
    ‘444’), (‘CATEGORY’, ‘3’), (‘DOUBLELINKED’, None), (‘UUID’,
    ‘6342aa53b9ff11e0bcdb9fd4e415d9de’)]), OrderedDict([(‘ISACTIVE’, ‘True’),
    (‘BASEUUID’, ‘4fbea328b9ff11e0a5f833b5d7c45677’), (‘TOKENENTITYKEY’,
    ‘4fbea328b9ff11e0a5f833b5d7c45677:TOKEN:333:4’), (‘BASETYPE’,
    ‘MODEL_003_001_00’), (‘STATUS’, ‘ACTIVE’), (‘ISSUEDDATE’, None), (‘WEIGHT’,
    ‘333’), (‘CATEGORY’, ‘4’), (‘DOUBLELINKED’, None), (‘UUID’,
    ‘62bd26a2b9ff11e0bc239fd4e415d9de’)]), OrderedDict([(‘ISACTIVE’, ‘True’),
    (‘BASEUUID’, ‘4fbea328b9ff11e0a5f833b5d7c45677’), (‘TOKENENTITYKEY’,
    ‘4fbea328b9ff11e0a5f833b5d7c45677:TOKEN:307:5’), (‘BASETYPE’,
    ‘MODEL_003_001_00’), (‘STATUS’, ‘ACTIVE’), (‘ISSUEDDATE’, None), (‘WEIGHT’,
    ‘307’), (‘CATEGORY’, ‘5’), (‘DOUBLELINKED’, None), (‘UUID’,
    ‘6b6d1c39b9ff11e0986c0dc270e3ea06’)]), OrderedDict([(‘ISACTIVE’, ‘True’),
    (‘BASEUUID’, ‘4fbea32db9ff11e09f3e33b5d7c45677’), (‘TOKENENTITYKEY’,
    ‘4fbea32db9ff11e09f3e33b5d7c45677:TOKEN:801:Spend’), (‘BASETYPE’,
    ‘MODEL_008_001_00’), (‘STATUS’, ‘ACTIVE’), (‘ISSUEDDATE’, None), (‘WEIGHT’,
    ‘801’), (‘CATEGORY’, ‘Spend), (‘DOUBLELINKED’, None), (‘UUID’,
    ‘6b6d1c3ab9ff11e0a4ec0dc270e3ea06’)]), OrderedDict([(‘ISACTIVE’, ‘True’),
    (‘BASEUUID’, ‘4fbea32eb9ff11e0b55133b5d7c45677’), (‘TOKENENTITYKEY’,
    ‘4fbea32eb9ff11e0b55133b5d7c45677:TOKEN:1:Volume’), (‘BASETYPE’,
    ‘MODEL_009_001_00’), (‘STATUS’, ‘ACTIVE’), (‘ISSUEDDATE’, None), (‘WEIGHT’,
    ‘1’), (‘CATEGORY’, ‘Volume’), (‘DOUBLELINKED’, None), (‘UUID’,
    ‘62a09df3b9ff11e090d79fd4e415d9de’)])]
    Found a direct match
    148:181:75:1:2
    -- Failed to find a direct match
    -- Try again with only IP address and hour
    [OrderedDict([(‘ISACTIVE’, ‘True’), (‘ENTITYKEY’, ‘148:181:75:1:1’), (‘XML’,
    None), (‘AFFINITYGROUPNAME’, ‘148:181:75:1:1’), (‘DESCRIPTION’, None),
    (‘TYPEOF’, None)])]
    -- Found match for case 2
    -----------------------------------------------------------
    ------------------ Temporary model rules -------------------
    -----------------------------------------------------------
    {1: {‘LOWER’: 10, ‘BASETYPE’: [‘MODEL_002_001_00 ’, ‘MODEL_003_001_00’],
    ‘attribute’: ‘WEIGHT’, ‘rule’: ‘NEAR’, ‘OP’: ‘PROX’, ‘type’: ‘TOKENENTITY’,
    ‘HIGHER’: 10}, 2: {‘type’: [‘MERCHANT’], ‘rule’: ‘FOLLOW’}, 3: {‘rule’:
    ‘RESTRICTSUBTYPE’, ‘BASETYPE’: [‘MODEL_002_001_00’, ‘MODEL_003_001_00’]}}
    -----------------------------------------------------------
    ------------------ Temporary Model Output ------------------
    ------------------- For Use Case 1 ---------------------
    -----------------------------------------------------------
    -- Number of Nodes:102
         LIVRARIASICILIAN
             GDPCOLTD
       GOODWILLINDUSTRIES
            DISCOUNTDE
           BARELANCHOE
          BLOOMINGDALES
         PARCWORLDTENNIS
         STRIDERITEOUTLET
            PARCCEANOR
             PONTOFRIO
           FNACPAULISTA
             FINISHLINE
         WALMARTCENTRAL
         BESNIINTERLARGOS
        PARCLOJASCOLOMBO
          SHOPTIMEINTER
         BEDBATHBEYOND
            MACYSWEST
       PARCRIACHUELOFILIAL
         JCPENNEYCORPINC
        PARCLOJASRENNERFL
      PARCPAQUETAESPORTES
             MARISALJ
       PARCLEADERMAGAZINE
            INTERFLORA
            DECATHLON
         PERNAMBUCANASFL
            KARSTADTDE
           PARCCEAMCO
              CHAMPS
           ACCESSORIZE
       BLOOMINGDALESDVRS
      PARCLIVRARIACULTURA
           PARCCEALOJA
          ARQUIBANCADA
               KITBAG
        FREDERICKSOFHLWD
             WALMART
       PARCLOJASINSINUANTE
        WALMARTCONTAGEM
            FOOTLOCKER
         PARCSANTALOLLA
          RICARDOELETRO
          PARCPONTOFRIO
         DOTPAYPLPOLSKA
             CAMICADO
             KARSTADT
           PARCRAMSONS
           PARCGREGORY
            GREMIOFBPA
            WALMARTSJC
       PRODIRECTSOCCERLTD
            LAVIEENROSE
           PARCMARISALJ
              ORDERS
       PARCNSNNATALNORTE
         LOJASINSINUANTE
                  B
            CITYCOUNTY
        WALMARTPACAEMBU
                SOHO
         WALMARTOSASCO
         FOSSILSTORESIINC
           MENARDSCLIO
           PARCPEQUENTE
               BEALLS
          THEHOMEDEPOT
               VIAMIA
       PARCLOJASRIACHUELO
         PARCLOJASMILANO
            NORDSTROM
       WAILANACOFFEEHOUSE
          LANCHOEBELLA
               PUKET
        WALMARTSTORESINC
      PARCPERNAMBUCANASFL
          SMARTSHOPPER
      PARCMAGAZINELUIZASP
    COLUMBIASPORTSWEARCO
         BARELANCESTADA
            DONATEEBAY
       PARCRICARDOELETRO
          PARCDISANTINNI
            SCHUHCOUK
              CEANOR
          PARCCAMICADO
         PARCCENTAUROCE
         PARCMARLUIJOIAS
             ALBADAH
             MARTINEZ
        MONEYBOOKERSLTD
               MACYS
          PARCRIOCENTER
         PARCCASASBAHIA
        PARCSUBMARINOLOJA
                 INC
          SUBMARINOLOJA
          LOJASRENNERFL
         RIACHUELOFILIAL
         PARCSONHODOSPES
              PINKBIJU
           PARCCEAMRB
    -----------------------------------------------------------
    ------------------ Temporary model Output -----------------
    ------------------- For Use Case 2 ---------------------
    -----------------------------------------------------------
    -- Number of Nodes:3
               KITBAG
    COLUMBIASPORTSWEARCO
            GREMIOFBPA
    --------------------------------------------------------------
    -------- End of Example Use Case ---
    --------------------------------------------------------------
  • In some embodiments, the WIP may provide access to information on a need-to-know basis to ensure the security of data of entities on which the WIP stores information. Thus, in some embodiments, access to information from the centralized platform may be restricted based on the originator as well as application services for which the data is requested. In some embodiments, the WIP may thus allow a variety of flexible application services to be built on a common database infrastructure, while preserving the integrity, security, and accuracy of entity data. In some implementations, the WIP may generate, update, maintain, store and/or provide profile information on entities, as well as a social graph that maintains and updates interrelationships between each of the entities stored within the WIP. For example, the WIP may store profile information on an issuer bank 2302 a (see profile 2303 a), a acquirer bank 2302 b (see profile 2303 b), a consumer 2302 c (see profile 2303 c), a user 2302 d (see profile 2303 d), a merchant 2302 e (see profile 2303 e), a second merchant 2302 f (see profile 23030. The WIP may also store relationships between such entities. For example, the WIP may store information on a relationship of the issuer bank 2302 a to the consumer 2302 c shopping at merchant 2302 e, who in turn may be related to user 2302 d, who might bank at the back 2302 b that serves as acquirer for merchant 2302 f.
  • FIGS. 24A-F show block diagrams illustrating example aspects of data models within a centralized personal information platform in some embodiments of the WIP. In various embodiments, the WIP may store a variety of attributes of entities according to various data models. A few non-limiting example data models are provided below. In some embodiments, the WIP may store user profile attributes. For example, a user profile model may store user identifying information 2401, user aliases 2402, email addresses 2403, phone numbers 2404, addresses 2405, email address types 2406, address types 2407, user alias types 2408, notification statuses 2409, ISO country 2410, phone number types 2411, contract information with the WIP 2412, user authorization status 2413, user profile status 2414, security answer 2415, security questions 2416, language 2417, time zone 2418, and/or the like, each of the above field types including one or more fields and field values. As another example, a user financial attributes model may store user identifying information 2420, user financial account information 2421, account contract information 2422, user financial account role 2423, financial account type 2424, financial account identifying information 2425, contract information 2426, financial account validation 2427, financial account validation type 2428, and/or the like. As another example, a user payment card attributes data model may include field types such s, but not limited to: user identifying information 243 o, user financial account information 2431, user financial account role 2432, account consumer applications 2433, user consumer application 2434, financial account type 2435, financial account validation type 2436, financial account information 2437, consumer application information 2438, consumer application provider information 2439, and/or the like. As another example, a user services attributes data model may include field types such as, but not limited to: user identifying information 2440, user alias 2441, consumer application user alias status 2442, user alias status 2443, status change reason code 2444, user contract 2445, contract information 2446, user service attribute value 2447, consumer application attributes 2448, account service attribute value, account contract 2450, user profile status 2451, contract business role 2452, contract business 2453, client information 2454, contract role 2455, consumer application 2456, user activity audit 2457, login results 2458, and/or the like. As another example, a user services usage attributes data model may include field types such as, but not limited to: user identifying information 2460, user alias 2461, consumer application user alias status 2462, status change reason code 2463, user alias status 2464, user consumer application 2465, user login audit 2466, login result 2467, account service attribute value 2468, account consumer application 2469, consumer application 247 o, consumer application provider 2471, login result 2472, and/or the like. As another example, a user graph attributes data model may include field types such as, but not limited to: user identifying information 2480, user contact 2481, consumer application user alias status 2482, relationship 2483, and/or the like. In some embodiments, the WIP may store each object (e.g., user, merchant, issuer, acquirer, IP address, household, etc.) as a node in graph database, and store data with respect to each node in a format such as the example format provided below: