US20140008783A1 - Semiconductor Device and Method of Forming Electrical Interconnection Between Semiconductor Die and Substrate with Continuous Body of Solder Tape - Google Patents

Semiconductor Device and Method of Forming Electrical Interconnection Between Semiconductor Die and Substrate with Continuous Body of Solder Tape Download PDF

Info

Publication number
US20140008783A1
US20140008783A1 US14/021,740 US201314021740A US2014008783A1 US 20140008783 A1 US20140008783 A1 US 20140008783A1 US 201314021740 A US201314021740 A US 201314021740A US 2014008783 A1 US2014008783 A1 US 2014008783A1
Authority
US
United States
Prior art keywords
contact pads
semiconductor
substrate
semiconductor die
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/021,740
Inventor
SungWon Cho
Taewoo Lee
Daesik Choi
KyuWon Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stats Chippac Pte Ltd
Original Assignee
Stats Chippac Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stats Chippac Pte Ltd filed Critical Stats Chippac Pte Ltd
Priority to US14/021,740 priority Critical patent/US20140008783A1/en
Publication of US20140008783A1 publication Critical patent/US20140008783A1/en
Assigned to CITICORP INTERNATIONAL LIMITED, AS COMMON SECURITY AGENT reassignment CITICORP INTERNATIONAL LIMITED, AS COMMON SECURITY AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: STATS CHIPPAC LTD., STATS CHIPPAC, INC.
Assigned to STATS CHIPPAC PTE. LTE. reassignment STATS CHIPPAC PTE. LTE. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: STATS CHIPPAC LTD.
Assigned to STATS CHIPPAC PTE. LTD. FORMERLY KNOWN AS STATS CHIPPAC LTD., STATS CHIPPAC, INC. reassignment STATS CHIPPAC PTE. LTD. FORMERLY KNOWN AS STATS CHIPPAC LTD. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: CITICORP INTERNATIONAL LIMITED, AS COMMON SECURITY AGENT
Assigned to STATS ChipPAC Pte. Ltd. reassignment STATS ChipPAC Pte. Ltd. CORRECTIVE ASSIGNMENT TO CORRECT THE CORRECT THE SPELLING OF ASSIGNEE'S NAME FROM "STATS CHIPPAC PTE. LTE. " TO STATS CHIPPAC PTE. LTD." PREVIOUSLY RECORDED AT REEL: 038378 FRAME: 0391. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: STATS CHIPPAC LTD.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05556Shape in side view
    • H01L2224/05557Shape in side view comprising protrusions or indentations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05568Disposition the whole external layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13109Indium [In] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/165Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29109Indium [In] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/811Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector the bump connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/81101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector the bump connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a bump connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81193Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83886Involving a self-assembly process, e.g. self-agglomeration of a material dispersed in a fluid
    • H01L2224/83889Involving a self-assembly process, e.g. self-agglomeration of a material dispersed in a fluid involving the material of the bonding area, e.g. bonding pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9212Sequential connecting processes
    • H01L2224/92122Sequential connecting processes the first connecting process involving a bump connector
    • H01L2224/92125Sequential connecting processes the first connecting process involving a bump connector the second connecting process involving a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01051Antimony [Sb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates in general to semiconductor devices and, more particularly, to a semiconductor device and method of forming an electrical interconnection between a semiconductor die and substrate with a continuous body of solder tape.
  • Semiconductor devices are commonly found in modern electronic products. Semiconductor devices vary in the number and density of electrical components. Discrete semiconductor devices generally contain one type of electrical component, e.g., light emitting diode (LED), small signal transistor, resistor, capacitor, inductor, and power metal oxide semiconductor field effect transistor (MOSFET). Integrated semiconductor devices typically contain hundreds to millions of electrical components. Examples of integrated semiconductor devices include microcontrollers, microprocessors, charged-coupled devices (CCDs), solar cells, and digital micro-mirror devices (DMDs).
  • LED light emitting diode
  • MOSFET power metal oxide semiconductor field effect transistor
  • Semiconductor devices perform a wide range of functions such as high-speed calculations, transmitting and receiving electromagnetic signals, controlling electronic devices, transforming sunlight to electricity, and creating visual projections for television displays.
  • Semiconductor devices are found in the fields of entertainment, communications, power conversion, networks, computers, and consumer products. Semiconductor devices are also found in military applications, aviation, automotive, industrial controllers, and office equipment.
  • Semiconductor devices exploit the electrical properties of semiconductor materials.
  • the atomic structure of semiconductor material allows its electrical conductivity to be manipulated by the application of an electric field or base current or through the process of doping. Doping introduces impurities into the semiconductor material to manipulate and control the conductivity of the semiconductor device.
  • a semiconductor device contains active and passive electrical structures.
  • Active structures including bipolar and field effect transistors, control the flow of electrical current. By varying levels of doping and application of an electric field or base current, the transistor either promotes or restricts the flow of electrical current.
  • Passive structures including resistors, capacitors, and inductors, create a relationship between voltage and current necessary to perform a variety of electrical functions.
  • the passive and active structures are electrically connected to form circuits, which enable the semiconductor device to perform high-speed calculations and other useful functions.
  • Front-end manufacturing involves the formation of a plurality of die on the surface of a semiconductor wafer. Each die is typically identical and contains circuits formed by electrically connecting active and passive components.
  • Back-end manufacturing involves singulating individual die from the finished wafer and packaging the die to provide structural support and environmental isolation.
  • One goal of semiconductor manufacturing is to produce smaller semiconductor devices. Smaller devices typically consume less power, have higher performance, and can be produced more efficiently. In addition, smaller semiconductor devices have a smaller footprint, which is desirable for smaller end products.
  • a smaller die size may be achieved by improvements in the front-end process resulting in die with smaller, higher density active and passive components. Back-end processes may result in semiconductor device packages with a smaller footprint by improvements in electrical interconnection and packaging materials.
  • a semiconductor die is typically metallurgically and electrically bonded to a substrate or PCB.
  • the electrical interconnection involves depositing bump material individually on the contact pads of the semiconductor die or substrate, e.g. using a ball drop or screen printing process.
  • the contact pads of the semiconductor die and substrate with bump material are aligned and mated and the bump material is reflowed to form the electrical interconnect.
  • the bump formation is slow, costly, wasteful of bump material, and does not allow for fine pitch electrical interconnects.
  • the present invention is a semiconductor device comprising a semiconductor die including a plurality of first contact pads.
  • a substrate includes a plurality of second contact pads.
  • a continuous body of conductive material is disposed between the first contact pads of the semiconductor die and the second contact pads of the substrate for separation into a plurality of interconnects between the first contact pads and second contact pads upon bringing the continuous body of conductive material to a liquidus state.
  • the present invention is a semiconductor device comprising a semiconductor die including a plurality of first contact pads.
  • a substrate includes a plurality of second contact pads.
  • a body of conductive material is disposed across the first contact pads of the semiconductor die and the second contact pads of the substrate.
  • the present invention is a semiconductor device comprising a semiconductor die, substrate, and body of conductive material disposed across the semiconductor die and substrate.
  • the present invention is a semiconductor device comprising a first semiconductor component, second semiconductor component, and body of conductive material disposed across the first semiconductor component and second semiconductor component.
  • FIG. 1 illustrates a PCB with different types of packages mounted to its surface
  • FIGS. 2 a - 2 c illustrate further detail of the representative semiconductor packages mounted to the PCB
  • FIGS. 3 a - 3 h illustrate a process of forming a continuous body of solder tape with a plurality of recesses
  • FIGS. 4 a - 4 j illustrate a process of bonding a semiconductor die and substrate with the continuous body of solder tape
  • FIG. 5 illustrates the contact pads on the semiconductor die with recesses and contact pads on the substrate with extensions
  • FIG. 6 illustrates the contact pads on the semiconductor die with extensions and contact pads on the substrate with recesses
  • FIG. 7 illustrates the contact pads on the semiconductor die with recesses and contact pads on the substrate with recesses
  • FIG. 8 illustrates a support structure around the semiconductor die and substrate.
  • Front-end manufacturing involves the formation of a plurality of die on the surface of a semiconductor wafer.
  • Each die on the wafer contains active and passive electrical components, which are electrically connected to form functional electrical circuits.
  • Active electrical components such as transistors and diodes, have the ability to control the flow of electrical current.
  • Passive electrical components such as capacitors, inductors, resistors, and transformers, create a relationship between voltage and current necessary to perform electrical circuit functions.
  • Passive and active components are formed over the surface of the semiconductor wafer by a series of process steps including doping, deposition, photolithography, etching, and planarization.
  • Doping introduces impurities into the semiconductor material by techniques such as ion implantation or thermal diffusion.
  • the doping process modifies the electrical conductivity of semiconductor material in active devices, transforming the semiconductor material into an insulator, conductor, or dynamically changing the semiconductor material conductivity in response to an electric field or base current.
  • Transistors contain regions of varying types and degrees of doping arranged as necessary to enable the transistor to promote or restrict the flow of electrical current upon the application of the electric field or base current.
  • Active and passive components are formed by layers of materials with different electrical properties.
  • the layers can be formed by a variety of deposition techniques determined in part by the type of material being deposited. For example, thin film deposition may involve chemical vapor deposition (CVD), physical vapor deposition (PVD), electrolytic plating, and electroless plating processes.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • electrolytic plating electroless plating processes.
  • Each layer is generally patterned to form portions of active components, passive components, or electrical connections between components.
  • the layers can be patterned using photolithography, which involves the deposition of light sensitive material, e.g., photoresist, over the layer to be patterned.
  • a pattern is transferred from a photomask to the photoresist using light.
  • the portion of the photoresist pattern subjected to light is removed using a solvent, exposing portions of the underlying layer to be patterned.
  • the remainder of the photoresist is removed, leaving behind a patterned layer.
  • some types of materials are patterned by directly depositing the material into the areas or voids formed by a previous deposition/etch process using techniques such as electroless and electrolytic plating.
  • Planarization can be used to remove material from the surface of the wafer and produce a uniformly flat surface. Planarization involves polishing the surface of the wafer with a polishing pad. An abrasive material and corrosive chemical are added to the surface of the wafer during polishing. The combined mechanical action of the abrasive and corrosive action of the chemical removes any irregular topography, resulting in a uniformly flat surface.
  • Back-end manufacturing refers to cutting or singulating the finished wafer into the individual die and then packaging the die for structural support and environmental isolation.
  • the wafer is scored and broken along non-functional regions of the wafer called saw streets or scribes.
  • the wafer is singulated using a laser cutting tool or saw blade.
  • the individual die are mounted to a package substrate that includes pins or contact pads for interconnection with other system components.
  • Contact pads formed over the semiconductor die are then connected to contact pads within the package.
  • the electrical connections can be made with solder bumps, stud bumps, conductive paste, or wirebonds.
  • An encapsulant or other molding material is deposited over the package to provide physical support and electrical isolation.
  • the finished package is then inserted into an electrical system and the functionality of the semiconductor device is made available to the other system components.
  • FIG. 1 illustrates electronic device 50 having a chip carrier substrate or printed circuit board (PCB) 52 with a plurality of semiconductor packages mounted on its surface.
  • Electronic device 50 may have one type of semiconductor package, or multiple types of semiconductor packages, depending on the application. The different types of semiconductor packages are shown in FIG. 1 for purposes of illustration.
  • Electronic device 50 may be a stand-alone system that uses the semiconductor packages to perform one or more electrical functions. Alternatively, electronic device 50 may be a subcomponent of a larger system. For example, electronic device 50 may be a graphics card, network interface card, or other signal processing card that can be inserted into a computer.
  • the semiconductor package can include microprocessors, memories, application specific integrated circuits (ASIC), logic circuits, analog circuits, RF circuits, discrete devices, or other semiconductor die or electrical components.
  • PCB 52 provides a general substrate for structural support and electrical interconnect of the semiconductor packages mounted on the PCB.
  • Conductive signal traces 54 are formed over a surface or within layers of PCB 52 using evaporation, electrolytic plating, electroless plating, screen printing, or other suitable metal deposition process. Signal traces 54 provide for electrical communication between each of the semiconductor packages, mounted components, and other external system components. Traces 54 also provide power and ground connections to each of the semiconductor packages.
  • a semiconductor device has two packaging levels.
  • First level packaging is a technique for mechanically and electrically attaching the semiconductor die to an intermediate carrier.
  • Second level packaging involves mechanically and electrically attaching the intermediate carrier to the PCB.
  • a semiconductor device may only have the first level packaging where the die is mechanically and electrically mounted directly to the PCB.
  • first level packaging including wire bond package 56 and flip chip 58
  • second level packaging including ball grid array (BGA) 60 , bump chip carrier (BCC) 62 , dual in-line package (DIP) 64 , land grid array (LGA) 66 , multi-chip module (MCM) 68 , quad flat non-leaded package (QFN) 70 , and quad flat package 72 .
  • BGA ball grid array
  • BCC bump chip carrier
  • DIP dual in-line package
  • LGA land grid array
  • MCM multi-chip module
  • QFN quad flat non-leaded package
  • quad flat package 72 quad flat package
  • electronic device 50 includes a single attached semiconductor package, while other embodiments call for multiple interconnected packages.
  • manufacturers can incorporate pre-made components into electronic devices and systems. Because the semiconductor packages include sophisticated functionality, electronic devices can be manufactured using cheaper components and a streamlined manufacturing process. The resulting devices are less likely to fail and less expensive to manufacture resulting in a lower cost for consumers.
  • FIGS. 2 a - 2 c show exemplary semiconductor packages.
  • FIG. 2 a illustrates further detail of DIP 64 mounted on PCB 52 .
  • Semiconductor die 74 includes an active region containing analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed within the die and are electrically interconnected according to the electrical design of the die.
  • the circuit may include one or more transistors, diodes, inductors, capacitors, resistors, and other circuit elements formed within the active region of semiconductor die 74 .
  • Contact pads 76 are one or more layers of conductive material, such as aluminum (Al), copper (Cu), tin (Sn), nickel (Ni), gold (Au), or silver (Ag), and are electrically connected to the circuit elements formed within semiconductor die 74 .
  • semiconductor die 74 is mounted to an intermediate carrier 78 using a gold-silicon eutectic layer or adhesive material such as thermal epoxy or epoxy resin.
  • the package body includes an insulative packaging material such as polymer or ceramic.
  • Conductor leads 80 and wire bonds 82 provide electrical interconnect between semiconductor die 74 and PCB 52 .
  • Encapsulant 84 is deposited over the package for environmental protection by preventing moisture and particles from entering the package and contaminating die 74 or wire bonds 82 .
  • FIG. 2 b illustrates further detail of BCC 62 mounted on PCB 52 .
  • Semiconductor die 88 is mounted over carrier 90 using an underfill or epoxy-resin adhesive material 92 .
  • Wire bonds 94 provide first level packaging interconnect between contact pads 96 and 98 .
  • Molding compound or encapsulant 100 is deposited over semiconductor die 88 and wire bonds 94 to provide physical support and electrical isolation for the device.
  • Contact pads 102 are formed over a surface of PCB 52 using a suitable metal deposition process such as electrolytic plating or electroless plating to prevent oxidation.
  • Contact pads 102 are electrically connected to one or more conductive signal traces 54 in PCB 52 .
  • Bumps 104 are formed between contact pads 98 of BCC 62 and contact pads 102 of PCB 52 .
  • semiconductor die 58 is mounted face down to intermediate carrier 106 with a flip chip style first level packaging.
  • Active region 108 of semiconductor die 58 contains analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed according to the electrical design of the die.
  • the circuit may include one or more transistors, diodes, inductors, capacitors, resistors, and other circuit elements within active region 108 .
  • Semiconductor die 58 is electrically and mechanically connected to carrier 106 through bumps 110 .
  • BGA 60 is electrically and mechanically connected to PCB 52 with a BGA style second level packaging using bumps 112 .
  • Semiconductor die 58 is electrically connected to conductive signal traces 54 in PCB 52 through bumps 110 , signal lines 114 , and bumps 112 .
  • a molding compound or encapsulant 116 is deposited over semiconductor die 58 and carrier 106 to provide physical support and electrical isolation for the device.
  • the flip chip semiconductor device provides a short electrical conduction path from the active devices on semiconductor die 58 to conduction tracks on PCB 52 in order to reduce signal propagation distance, lower capacitance, and improve overall circuit performance.
  • the semiconductor die 58 can be mechanically and electrically connected directly to PCB 52 using flip chip style first level packaging without intermediate carrier 106 .
  • FIGS. 3 a - 3 h illustrate, in relation to FIGS. 1 and 2 a - 2 c, a process of forming a continuous body of solder tape for placement between a semiconductor die and substrate to form electrical interconnect bumps.
  • FIG. 3 a shows a sheet of solder tape 120 having top surface 123 and bottom surface 124 of sufficient width and length to cover the interconnect area of a semiconductor die.
  • solder tape 120 has a thickness of 5-20 micrometers ( ⁇ m).
  • Solder tape 120 contains a continuous body of low-lead or lead-free solder material, bump material, or other reflowable electrical interconnect material suitable for semiconductor devices. The continuous body extends across the length, width, and thickness of solder tape 120 .
  • Solder tape 120 can be alloy or mixture of tin, copper, silver, bismuth, indium, zinc, and antimony.
  • solder tape 120 can be a mixture of tin with another metal such as lead, silver, copper, bismuth, zinc, indium, and antimony.
  • a plurality of grooves or recesses 122 is formed in top surface 123 of solder tape 120 and in bottom surface 124 of solder tape 120 to a depth 5-25% of the thickness of solder tape 120 using laser cutting tool 125 .
  • Recesses 122 can also be formed in top surface 123 of solder tape 120 and in bottom surface 124 of solder tape 120 with stamping tool 126 , as shown in FIG. 3 c.
  • FIG. 3 d - 3 f Another method of forming recesses in the top surface and bottom surface of solder tape 120 is shown in FIG. 3 d - 3 f .
  • a passivation or insulating layer 128 is formed over top surface 123 and bottom surface 124 of solder tape 120 by PVD, CVD, printing, spin coating, spray coating, or thermal oxidation.
  • the insulating layer 128 can be one or more layers of SiO2, Si3N4, SiON, Ta2O5, Al2O3, or other material having similar insulating and structural properties.
  • a portion of insulating layer 128 is removed by an etching process leaving the insulating material in areas 129 .
  • solder material 130 is formed between areas 129 of insulating layer 128 over top surface 123 and bottom surface 124 using PVD, CVD, electrolytic plating, electroless plating process, or other suitable metal deposition process.
  • Solder material 130 is a similar material as solder tape 120 , e.g. low-lead or lead-free solder or alloy of tin, copper, silver, bismuth, indium, zinc, and antimony.
  • the insulating layer 128 is removed from areas 129 by an etching process, leaving recesses 136 in the top surface and bottom surface of solder tape 120 , as shown in FIG. 3 f.
  • FIG. 3 g shows recesses 138 formed in complementary areas of solder tape 120 as compared to recesses 122 and 136 .
  • Recesses 138 can be formed as described in FIGS. 3 b - 3 f.
  • FIG. 3 h shows a top view of solder tape 120 as a continuous body with recesses 136 arranged in an array or plurality of rows covering the interconnect area between the semiconductor die and substrate.
  • FIG. 4 a shows a semiconductor die 140 having an active surface 141 containing analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed within the die and electrically interconnected according to the electrical design and function of the die.
  • the circuit may include one or more transistors, diodes, and other circuit elements formed within active surface 141 to implement analog circuits or digital circuits, such as digital signal processor (DSP), ASIC, memory, or other signal processing circuit.
  • DSP digital signal processor
  • Semiconductor die 140 may also contain IPDs, such as inductors, capacitors, and resistors, for RF signal processing.
  • semiconductor die 140 is an unbumped flipchip type semiconductor die having a plurality of contact pads 142 formed over active surface 141 .
  • a thick layer of flux material 144 such as ammonium chloride or rosin, is deposited over contact pads 142 .
  • a substrate or PCB 146 includes electrically conductive layers or traces 148 formed in the substrate to provide electrical interconnect according to the electrical design and function of semiconductor die 140 .
  • the conductive layers and traces 148 extend across substrate 146 and through the substrate between top surface 154 and bottom surface 156 with electrical separation by insulating layer 150 .
  • a plurality of contact pads 152 is formed over top surface 154 of substrate 146 .
  • Contact pads 142 and contact pads 152 have a top surface area defining footprint 157 .
  • UBM 158 can be formed over contact pads 152 and/or contact pads 142 .
  • UBM 158 includes a barrier layer and adhesion layer.
  • the barrier layer contains Ni, titanium tungsten (TiW), chromium copper (CrCu), nickel vanadium (NiV), platinum (Pt), or palladium (Pd).
  • the adhesion layer contains Al, titanium (Ti), chromium (Cr), or titanium nitride (TiN).
  • UBM 158 provides a low resistive interconnect, as well as a barrier to solder diffusion.
  • Semiconductor die 140 is positioned over substrate 146 with contact pads 142 aligned to contact pads 152 .
  • Semiconductor die 140 is brought into proximity of substrate 146 until flux material 144 covers contact pads 152 , as shown in FIG. 4 b .
  • a portion of flux material 144 is thereby transferred from contact pads 142 to contact pads 152 .
  • Semiconductor die 140 is then moved away from substrate 146 , as shown in FIG. 4 c .
  • flux material 144 covers both contact pads 142 and contact pads 152 .
  • the thickness of flux material 144 originally deposited on contact pads 142 is sufficient to cover both contact pads 142 and 152 following the flux transfer.
  • flux material 144 can be separately deposited on contacts pads 142 and contact pads 152 without bringing semiconductor die 140 into proximity of substrate 146 .
  • solder tape 120 is placed between contact pads 142 and contact pads 152 .
  • solder tape 120 is placed over flux material 144 on contact pads 152 .
  • Solder tape 120 could also be placed over flux material 144 on contact pads 142 .
  • Solder tape 120 covers an interconnect area between semiconductor die 140 and substrate 146 defined by the area encompassing contact pads 142 and contact pads 152 .
  • Semiconductor die 140 is brought into proximity of substrate 146 until flux material 144 on contact pads 142 touches top surface 123 of solder tape 120 and flux material 144 on contact pads 152 touches bottom surface 124 of solder tape 120 , as shown in FIG. 4 e.
  • FIG. 4 f shows solder tape 120 with recesses 122 or 136 , as described in FIG. 3 b , 3 c , or 3 f , placed between contact pads 142 and contact pads 152 .
  • Solder tape 120 is positioned with recesses 122 or 136 aligned outside footprint 157 of contact pads 142 and contact pads 152 .
  • Recesses 122 or 136 reduce the thickness of solder tape 120 from 5-20 ⁇ m within footprint 157 to 2.5-18.0 ⁇ m outside footprint 157 .
  • Semiconductor die 140 is brought into proximity of substrate 146 until flux material 144 on contact pads 142 touches the thicker portion of solder tape 120 between recesses 122 and flux material 144 on contact pads 152 touches the thicker portion of solder tape 120 between recesses 122 .
  • solder tape 120 is brought to a reflow or liquidus state.
  • semiconductor die 140 and substrate 146 are placed in a reflow oven for 60 to 120 seconds at 220-260° C.
  • the flux material and reflow solder induces surface tension 160 , which thins the solder material outside footprint 157 of contact pads 142 and contact pads 152 .
  • the flux material diffuses or evaporates, while a portion of solder tape 120 outside footprint 157 of contact pads 142 and contact pads 152 separates under surface tension 160 .
  • the solder material coalesces substantially within footprint 157 of contact pads 142 and contact pads 152 as bumps 162 , as shown in FIG. 4 h .
  • Contact pads 142 of flipchip type semiconductor die 140 are metallurgically and electrically bonded to contact pads 152 of substrate 146 by bumps 162 .
  • the electrical interconnect is achieved without a conventional bumping process, as described in the background.
  • the solder tape bump formation of FIGS. 4 a - 4 g shortens manufacturing time and reduces cost.
  • Bumps 162 provide greater standoff height for semiconductor die 140 .
  • Solder tape 120 formed with recesses 122 or 136 is easily separated by surface tension 160 and offers fine pitch interconnect.
  • an underfill material 166 such as epoxy resin is deposited between semiconductor die 140 and substrate 146 around contact pads 142 , contact pads 152 , and bumps 162 .
  • an electrically conductive bump material is deposited over conductive layer 148 on bottom surface 156 of substrate 146 using an evaporation, electrolytic plating, electroless plating, ball drop, or screen printing process.
  • the bump material can be Al, Sn, Ni, Au, Ag, Pb, Bi, Cu, solder, and combinations thereof, with an optional flux solution.
  • the bump material can be eutectic Sn/Pb, high-lead solder, or lead-free solder.
  • the bump material is bonded to conductive layer 148 using a suitable attachment or bonding process. In one embodiment, the bump material is reflowed by heating the material above its melting point to form spherical balls or bumps 168 .
  • bumps 168 are reflowed a second time to improve electrical contact to conductive layer 148 .
  • the bumps can also be compression bonded to conductive layer 148 .
  • Bumps 168 represent one type of interconnect structure that can be formed over conductive layer 148 .
  • the interconnect structure can also use bond wires, stud bump, micro bump, or other electrical interconnect.
  • FIG. 5 shows a portion of the contact pads formed over semiconductor die 140 and substrate 146 .
  • Contact pads 170 formed over semiconductor die 140 have recess 172 .
  • Contact pads 174 formed over substrate 146 have extension 176 .
  • Recess 172 and extension 176 control solder volume during reflow and increase the surface area of contact pads 170 and contact pads 174 for greater surface tension to separate solder tape 120 between the contact pads.
  • Recess 172 and extension 176 allow for fine pitch interconnect.
  • FIG. 6 shows another embodiment with a portion of the contact pads formed over semiconductor die 140 and substrate 146 .
  • Contact pads 180 formed over semiconductor die 140 have extension 182 .
  • Contact pads 184 formed over substrate 146 have recess 186 .
  • Extension 182 and recess 186 control solder volume during reflow and increase the surface area of contact pads 180 and contact pads 184 for greater surface tension to separate solder tape 120 between the contact pads.
  • Extension 182 and recess 186 allow for fine pitch interconnect.
  • FIG. 7 shows another embodiment with a portion of the contact pads formed over semiconductor die 140 and substrate 146 .
  • Contact pads 190 formed over semiconductor die 140 have recess 192 .
  • Contact pads 194 formed over substrate 146 have recess 196 .
  • Recess 192 and recess 196 control solder volume during reflow and increase the surface area of contact pads 190 and contact pads 194 for greater surface tension to separate solder tape 120 between the contact pads.
  • Recess 192 and recess 196 allow for fine pitch interconnect.
  • FIG. 8 shows a support member 198 placed over semiconductor die 140 and affixed to substrate 146 .
  • Support member 198 maintains alignment and coplanarity between contact pads 142 and contact pads 152 .
  • Support member 198 also maintains proper solder volume during reflow.

Abstract

A semiconductor device has a flipchip type semiconductor die with contact pads and substrate with contact pads. A flux material is deposited over the contact pads of the semiconductor die and contact pads of the substrate. A solder tape formed as a continuous body of solder material with a plurality of recesses is disposed between the contact pads of the semiconductor die and substrate. The solder tape is brought to a liquidus state to separate a portion of the solder tape outside a footprint of the contact pads of the semiconductor die and substrate under surface tension and coalesce the solder material as an electrical interconnect substantially within the footprint of the contact pads of the semiconductor die and substrate. The contact pads on the semiconductor die and substrate can be formed with an extension or recess to increase surface area of the contact pads.

Description

    CLAIM TO PRIORITY
  • The present application is a division of U.S. patent application Ser. No. 12/760,428, filed Apr. 14, 2010, which application is incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention relates in general to semiconductor devices and, more particularly, to a semiconductor device and method of forming an electrical interconnection between a semiconductor die and substrate with a continuous body of solder tape.
  • BACKGROUND OF THE INVENTION
  • Semiconductor devices are commonly found in modern electronic products. Semiconductor devices vary in the number and density of electrical components. Discrete semiconductor devices generally contain one type of electrical component, e.g., light emitting diode (LED), small signal transistor, resistor, capacitor, inductor, and power metal oxide semiconductor field effect transistor (MOSFET). Integrated semiconductor devices typically contain hundreds to millions of electrical components. Examples of integrated semiconductor devices include microcontrollers, microprocessors, charged-coupled devices (CCDs), solar cells, and digital micro-mirror devices (DMDs).
  • Semiconductor devices perform a wide range of functions such as high-speed calculations, transmitting and receiving electromagnetic signals, controlling electronic devices, transforming sunlight to electricity, and creating visual projections for television displays. Semiconductor devices are found in the fields of entertainment, communications, power conversion, networks, computers, and consumer products. Semiconductor devices are also found in military applications, aviation, automotive, industrial controllers, and office equipment.
  • Semiconductor devices exploit the electrical properties of semiconductor materials. The atomic structure of semiconductor material allows its electrical conductivity to be manipulated by the application of an electric field or base current or through the process of doping. Doping introduces impurities into the semiconductor material to manipulate and control the conductivity of the semiconductor device.
  • A semiconductor device contains active and passive electrical structures. Active structures, including bipolar and field effect transistors, control the flow of electrical current. By varying levels of doping and application of an electric field or base current, the transistor either promotes or restricts the flow of electrical current. Passive structures, including resistors, capacitors, and inductors, create a relationship between voltage and current necessary to perform a variety of electrical functions. The passive and active structures are electrically connected to form circuits, which enable the semiconductor device to perform high-speed calculations and other useful functions.
  • Semiconductor devices are generally manufactured using two complex manufacturing processes, i.e., front-end manufacturing, and back-end manufacturing, each involving potentially hundreds of steps. Front-end manufacturing involves the formation of a plurality of die on the surface of a semiconductor wafer. Each die is typically identical and contains circuits formed by electrically connecting active and passive components. Back-end manufacturing involves singulating individual die from the finished wafer and packaging the die to provide structural support and environmental isolation.
  • One goal of semiconductor manufacturing is to produce smaller semiconductor devices. Smaller devices typically consume less power, have higher performance, and can be produced more efficiently. In addition, smaller semiconductor devices have a smaller footprint, which is desirable for smaller end products. A smaller die size may be achieved by improvements in the front-end process resulting in die with smaller, higher density active and passive components. Back-end processes may result in semiconductor device packages with a smaller footprint by improvements in electrical interconnection and packaging materials.
  • A semiconductor die is typically metallurgically and electrically bonded to a substrate or PCB. The electrical interconnection involves depositing bump material individually on the contact pads of the semiconductor die or substrate, e.g. using a ball drop or screen printing process. The contact pads of the semiconductor die and substrate with bump material are aligned and mated and the bump material is reflowed to form the electrical interconnect. The bump formation is slow, costly, wasteful of bump material, and does not allow for fine pitch electrical interconnects.
  • SUMMARY OF THE INVENTION
  • A need exists to provide efficient and low cost electrical interconnect between contact pads of the semiconductor die and contact pads of the substrate. Accordingly, in one embodiment, the present invention is a semiconductor device comprising a semiconductor die including a plurality of first contact pads. A substrate includes a plurality of second contact pads. A continuous body of conductive material is disposed between the first contact pads of the semiconductor die and the second contact pads of the substrate for separation into a plurality of interconnects between the first contact pads and second contact pads upon bringing the continuous body of conductive material to a liquidus state.
  • In another embodiment, the present invention is a semiconductor device comprising a semiconductor die including a plurality of first contact pads. A substrate includes a plurality of second contact pads. A body of conductive material is disposed across the first contact pads of the semiconductor die and the second contact pads of the substrate.
  • In another embodiment, the present invention is a semiconductor device comprising a semiconductor die, substrate, and body of conductive material disposed across the semiconductor die and substrate.
  • In another embodiment, the present invention is a semiconductor device comprising a first semiconductor component, second semiconductor component, and body of conductive material disposed across the first semiconductor component and second semiconductor component.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a PCB with different types of packages mounted to its surface;
  • FIGS. 2 a-2 c illustrate further detail of the representative semiconductor packages mounted to the PCB;
  • FIGS. 3 a-3 h illustrate a process of forming a continuous body of solder tape with a plurality of recesses;
  • FIGS. 4 a-4 j illustrate a process of bonding a semiconductor die and substrate with the continuous body of solder tape;
  • FIG. 5 illustrates the contact pads on the semiconductor die with recesses and contact pads on the substrate with extensions;
  • FIG. 6 illustrates the contact pads on the semiconductor die with extensions and contact pads on the substrate with recesses;
  • FIG. 7 illustrates the contact pads on the semiconductor die with recesses and contact pads on the substrate with recesses; and
  • FIG. 8 illustrates a support structure around the semiconductor die and substrate.
  • DETAILED DESCRIPTION OF THE DRAWINGS
  • The present invention is described in one or more embodiments in the following description with reference to the figures, in which like numerals represent the same or similar elements. While the invention is described in terms of the best mode for achieving the invention's objectives, it will be appreciated by those skilled in the art that it is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims and their equivalents as supported by the following disclosure and drawings.
  • Semiconductor devices are generally manufactured using two complex manufacturing processes: front-end manufacturing and back-end manufacturing. Front-end manufacturing involves the formation of a plurality of die on the surface of a semiconductor wafer. Each die on the wafer contains active and passive electrical components, which are electrically connected to form functional electrical circuits. Active electrical components, such as transistors and diodes, have the ability to control the flow of electrical current. Passive electrical components, such as capacitors, inductors, resistors, and transformers, create a relationship between voltage and current necessary to perform electrical circuit functions.
  • Passive and active components are formed over the surface of the semiconductor wafer by a series of process steps including doping, deposition, photolithography, etching, and planarization. Doping introduces impurities into the semiconductor material by techniques such as ion implantation or thermal diffusion. The doping process modifies the electrical conductivity of semiconductor material in active devices, transforming the semiconductor material into an insulator, conductor, or dynamically changing the semiconductor material conductivity in response to an electric field or base current. Transistors contain regions of varying types and degrees of doping arranged as necessary to enable the transistor to promote or restrict the flow of electrical current upon the application of the electric field or base current.
  • Active and passive components are formed by layers of materials with different electrical properties. The layers can be formed by a variety of deposition techniques determined in part by the type of material being deposited. For example, thin film deposition may involve chemical vapor deposition (CVD), physical vapor deposition (PVD), electrolytic plating, and electroless plating processes. Each layer is generally patterned to form portions of active components, passive components, or electrical connections between components.
  • The layers can be patterned using photolithography, which involves the deposition of light sensitive material, e.g., photoresist, over the layer to be patterned. A pattern is transferred from a photomask to the photoresist using light. The portion of the photoresist pattern subjected to light is removed using a solvent, exposing portions of the underlying layer to be patterned. The remainder of the photoresist is removed, leaving behind a patterned layer. Alternatively, some types of materials are patterned by directly depositing the material into the areas or voids formed by a previous deposition/etch process using techniques such as electroless and electrolytic plating.
  • Depositing a thin film of material over an existing pattern can exaggerate the underlying pattern and create a non-uniformly flat surface. A uniformly flat surface is required to produce smaller and more densely packed active and passive components. Planarization can be used to remove material from the surface of the wafer and produce a uniformly flat surface. Planarization involves polishing the surface of the wafer with a polishing pad. An abrasive material and corrosive chemical are added to the surface of the wafer during polishing. The combined mechanical action of the abrasive and corrosive action of the chemical removes any irregular topography, resulting in a uniformly flat surface.
  • Back-end manufacturing refers to cutting or singulating the finished wafer into the individual die and then packaging the die for structural support and environmental isolation. To singulate the die, the wafer is scored and broken along non-functional regions of the wafer called saw streets or scribes. The wafer is singulated using a laser cutting tool or saw blade. After singulation, the individual die are mounted to a package substrate that includes pins or contact pads for interconnection with other system components. Contact pads formed over the semiconductor die are then connected to contact pads within the package. The electrical connections can be made with solder bumps, stud bumps, conductive paste, or wirebonds. An encapsulant or other molding material is deposited over the package to provide physical support and electrical isolation. The finished package is then inserted into an electrical system and the functionality of the semiconductor device is made available to the other system components.
  • FIG. 1 illustrates electronic device 50 having a chip carrier substrate or printed circuit board (PCB) 52 with a plurality of semiconductor packages mounted on its surface. Electronic device 50 may have one type of semiconductor package, or multiple types of semiconductor packages, depending on the application. The different types of semiconductor packages are shown in FIG. 1 for purposes of illustration.
  • Electronic device 50 may be a stand-alone system that uses the semiconductor packages to perform one or more electrical functions. Alternatively, electronic device 50 may be a subcomponent of a larger system. For example, electronic device 50 may be a graphics card, network interface card, or other signal processing card that can be inserted into a computer. The semiconductor package can include microprocessors, memories, application specific integrated circuits (ASIC), logic circuits, analog circuits, RF circuits, discrete devices, or other semiconductor die or electrical components.
  • In FIG. 1, PCB 52 provides a general substrate for structural support and electrical interconnect of the semiconductor packages mounted on the PCB. Conductive signal traces 54 are formed over a surface or within layers of PCB 52 using evaporation, electrolytic plating, electroless plating, screen printing, or other suitable metal deposition process. Signal traces 54 provide for electrical communication between each of the semiconductor packages, mounted components, and other external system components. Traces 54 also provide power and ground connections to each of the semiconductor packages.
  • In some embodiments, a semiconductor device has two packaging levels. First level packaging is a technique for mechanically and electrically attaching the semiconductor die to an intermediate carrier. Second level packaging involves mechanically and electrically attaching the intermediate carrier to the PCB. In other embodiments, a semiconductor device may only have the first level packaging where the die is mechanically and electrically mounted directly to the PCB.
  • For the purpose of illustration, several types of first level packaging, including wire bond package 56 and flip chip 58, are shown on PCB 52. Additionally, several types of second level packaging, including ball grid array (BGA) 60, bump chip carrier (BCC) 62, dual in-line package (DIP) 64, land grid array (LGA) 66, multi-chip module (MCM) 68, quad flat non-leaded package (QFN) 70, and quad flat package 72, are shown mounted on PCB 52. Depending upon the system requirements, any combination of semiconductor packages, configured with any combination of first and second level packaging styles, as well as other electronic components, can be connected to PCB 52. In some embodiments, electronic device 50 includes a single attached semiconductor package, while other embodiments call for multiple interconnected packages. By combining one or more semiconductor packages over a single substrate, manufacturers can incorporate pre-made components into electronic devices and systems. Because the semiconductor packages include sophisticated functionality, electronic devices can be manufactured using cheaper components and a streamlined manufacturing process. The resulting devices are less likely to fail and less expensive to manufacture resulting in a lower cost for consumers.
  • FIGS. 2 a-2 c show exemplary semiconductor packages. FIG. 2 a illustrates further detail of DIP 64 mounted on PCB 52. Semiconductor die 74 includes an active region containing analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed within the die and are electrically interconnected according to the electrical design of the die. For example, the circuit may include one or more transistors, diodes, inductors, capacitors, resistors, and other circuit elements formed within the active region of semiconductor die 74. Contact pads 76 are one or more layers of conductive material, such as aluminum (Al), copper (Cu), tin (Sn), nickel (Ni), gold (Au), or silver (Ag), and are electrically connected to the circuit elements formed within semiconductor die 74. During assembly of DIP 64, semiconductor die 74 is mounted to an intermediate carrier 78 using a gold-silicon eutectic layer or adhesive material such as thermal epoxy or epoxy resin. The package body includes an insulative packaging material such as polymer or ceramic. Conductor leads 80 and wire bonds 82 provide electrical interconnect between semiconductor die 74 and PCB 52. Encapsulant 84 is deposited over the package for environmental protection by preventing moisture and particles from entering the package and contaminating die 74 or wire bonds 82.
  • FIG. 2 b illustrates further detail of BCC 62 mounted on PCB 52. Semiconductor die 88 is mounted over carrier 90 using an underfill or epoxy-resin adhesive material 92. Wire bonds 94 provide first level packaging interconnect between contact pads 96 and 98. Molding compound or encapsulant 100 is deposited over semiconductor die 88 and wire bonds 94 to provide physical support and electrical isolation for the device. Contact pads 102 are formed over a surface of PCB 52 using a suitable metal deposition process such as electrolytic plating or electroless plating to prevent oxidation. Contact pads 102 are electrically connected to one or more conductive signal traces 54 in PCB 52. Bumps 104 are formed between contact pads 98 of BCC 62 and contact pads 102 of PCB 52.
  • In FIG. 2 c, semiconductor die 58 is mounted face down to intermediate carrier 106 with a flip chip style first level packaging. Active region 108 of semiconductor die 58 contains analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed according to the electrical design of the die. For example, the circuit may include one or more transistors, diodes, inductors, capacitors, resistors, and other circuit elements within active region 108. Semiconductor die 58 is electrically and mechanically connected to carrier 106 through bumps 110.
  • BGA 60 is electrically and mechanically connected to PCB 52 with a BGA style second level packaging using bumps 112. Semiconductor die 58 is electrically connected to conductive signal traces 54 in PCB 52 through bumps 110, signal lines 114, and bumps 112. A molding compound or encapsulant 116 is deposited over semiconductor die 58 and carrier 106 to provide physical support and electrical isolation for the device. The flip chip semiconductor device provides a short electrical conduction path from the active devices on semiconductor die 58 to conduction tracks on PCB 52 in order to reduce signal propagation distance, lower capacitance, and improve overall circuit performance. In another embodiment, the semiconductor die 58 can be mechanically and electrically connected directly to PCB 52 using flip chip style first level packaging without intermediate carrier 106.
  • FIGS. 3 a-3 h illustrate, in relation to FIGS. 1 and 2 a-2 c, a process of forming a continuous body of solder tape for placement between a semiconductor die and substrate to form electrical interconnect bumps. FIG. 3 a shows a sheet of solder tape 120 having top surface 123 and bottom surface 124 of sufficient width and length to cover the interconnect area of a semiconductor die. In one embodiment, solder tape 120 has a thickness of 5-20 micrometers (μm). Solder tape 120 contains a continuous body of low-lead or lead-free solder material, bump material, or other reflowable electrical interconnect material suitable for semiconductor devices. The continuous body extends across the length, width, and thickness of solder tape 120. Solder tape 120 can be alloy or mixture of tin, copper, silver, bismuth, indium, zinc, and antimony. For example, solder tape 120 can be a mixture of tin with another metal such as lead, silver, copper, bismuth, zinc, indium, and antimony.
  • In FIG. 3 b, a plurality of grooves or recesses 122 is formed in top surface 123 of solder tape 120 and in bottom surface 124 of solder tape 120 to a depth 5-25% of the thickness of solder tape 120 using laser cutting tool 125. Recesses 122 can also be formed in top surface 123 of solder tape 120 and in bottom surface 124 of solder tape 120 with stamping tool 126, as shown in FIG. 3 c.
  • Another method of forming recesses in the top surface and bottom surface of solder tape 120 is shown in FIG. 3 d-3 f. In FIG. 3 d, a passivation or insulating layer 128 is formed over top surface 123 and bottom surface 124 of solder tape 120 by PVD, CVD, printing, spin coating, spray coating, or thermal oxidation. The insulating layer 128 can be one or more layers of SiO2, Si3N4, SiON, Ta2O5, Al2O3, or other material having similar insulating and structural properties. A portion of insulating layer 128 is removed by an etching process leaving the insulating material in areas 129.
  • In FIG. 3 e, a layer of solder material or bump material 130 is formed between areas 129 of insulating layer 128 over top surface 123 and bottom surface 124 using PVD, CVD, electrolytic plating, electroless plating process, or other suitable metal deposition process. Solder material 130 is a similar material as solder tape 120, e.g. low-lead or lead-free solder or alloy of tin, copper, silver, bismuth, indium, zinc, and antimony. The insulating layer 128 is removed from areas 129 by an etching process, leaving recesses 136 in the top surface and bottom surface of solder tape 120, as shown in FIG. 3 f.
  • FIG. 3 g shows recesses 138 formed in complementary areas of solder tape 120 as compared to recesses 122 and 136. Recesses 138 can be formed as described in FIGS. 3 b-3 f.
  • FIG. 3 h shows a top view of solder tape 120 as a continuous body with recesses 136 arranged in an array or plurality of rows covering the interconnect area between the semiconductor die and substrate.
  • FIG. 4 a shows a semiconductor die 140 having an active surface 141 containing analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed within the die and electrically interconnected according to the electrical design and function of the die. For example, the circuit may include one or more transistors, diodes, and other circuit elements formed within active surface 141 to implement analog circuits or digital circuits, such as digital signal processor (DSP), ASIC, memory, or other signal processing circuit. Semiconductor die 140 may also contain IPDs, such as inductors, capacitors, and resistors, for RF signal processing.
  • In one embodiment, semiconductor die 140 is an unbumped flipchip type semiconductor die having a plurality of contact pads 142 formed over active surface 141. A thick layer of flux material 144, such as ammonium chloride or rosin, is deposited over contact pads 142.
  • A substrate or PCB 146 includes electrically conductive layers or traces 148 formed in the substrate to provide electrical interconnect according to the electrical design and function of semiconductor die 140. The conductive layers and traces 148 extend across substrate 146 and through the substrate between top surface 154 and bottom surface 156 with electrical separation by insulating layer 150. A plurality of contact pads 152 is formed over top surface 154 of substrate 146. Contact pads 142 and contact pads 152 have a top surface area defining footprint 157.
  • An optional multi-layer under bump metallization (UBM) 158 can be formed over contact pads 152 and/or contact pads 142. UBM 158 includes a barrier layer and adhesion layer. In one embodiment, the barrier layer contains Ni, titanium tungsten (TiW), chromium copper (CrCu), nickel vanadium (NiV), platinum (Pt), or palladium (Pd). The adhesion layer contains Al, titanium (Ti), chromium (Cr), or titanium nitride (TiN). UBM 158 provides a low resistive interconnect, as well as a barrier to solder diffusion.
  • Semiconductor die 140 is positioned over substrate 146 with contact pads 142 aligned to contact pads 152. Semiconductor die 140 is brought into proximity of substrate 146 until flux material 144 covers contact pads 152, as shown in FIG. 4 b. A portion of flux material 144 is thereby transferred from contact pads 142 to contact pads 152. Semiconductor die 140 is then moved away from substrate 146, as shown in FIG. 4 c. After the flux transfer, flux material 144 covers both contact pads 142 and contact pads 152. The thickness of flux material 144 originally deposited on contact pads 142 is sufficient to cover both contact pads 142 and 152 following the flux transfer. Alternatively, flux material 144 can be separately deposited on contacts pads 142 and contact pads 152 without bringing semiconductor die 140 into proximity of substrate 146.
  • In FIG. 4 d, solder tape 120, as described in FIG. 3 a, is placed between contact pads 142 and contact pads 152. In one embodiment, solder tape 120 is placed over flux material 144 on contact pads 152. Solder tape 120 could also be placed over flux material 144 on contact pads 142. Solder tape 120 covers an interconnect area between semiconductor die 140 and substrate 146 defined by the area encompassing contact pads 142 and contact pads 152. Semiconductor die 140 is brought into proximity of substrate 146 until flux material 144 on contact pads 142 touches top surface 123 of solder tape 120 and flux material 144 on contact pads 152 touches bottom surface 124 of solder tape 120, as shown in FIG. 4 e.
  • As another embodiment, FIG. 4 f shows solder tape 120 with recesses 122 or 136, as described in FIG. 3 b, 3 c, or 3 f, placed between contact pads 142 and contact pads 152. Solder tape 120 is positioned with recesses 122 or 136 aligned outside footprint 157 of contact pads 142 and contact pads 152. Recesses 122 or 136 reduce the thickness of solder tape 120 from 5-20 μm within footprint 157 to 2.5-18.0 μm outside footprint 157. Semiconductor die 140 is brought into proximity of substrate 146 until flux material 144 on contact pads 142 touches the thicker portion of solder tape 120 between recesses 122 and flux material 144 on contact pads 152 touches the thicker portion of solder tape 120 between recesses 122.
  • In FIG. 4 g, solder tape 120 is brought to a reflow or liquidus state. For example, semiconductor die 140 and substrate 146 are placed in a reflow oven for 60 to 120 seconds at 220-260° C. The flux material and reflow solder induces surface tension 160, which thins the solder material outside footprint 157 of contact pads 142 and contact pads 152. The flux material diffuses or evaporates, while a portion of solder tape 120 outside footprint 157 of contact pads 142 and contact pads 152 separates under surface tension 160. The solder material coalesces substantially within footprint 157 of contact pads 142 and contact pads 152 as bumps 162, as shown in FIG. 4 h. Contact pads 142 of flipchip type semiconductor die 140 are metallurgically and electrically bonded to contact pads 152 of substrate 146 by bumps 162. The electrical interconnect is achieved without a conventional bumping process, as described in the background. The solder tape bump formation of FIGS. 4 a-4 g shortens manufacturing time and reduces cost. Bumps 162 provide greater standoff height for semiconductor die 140. Solder tape 120 formed with recesses 122 or 136 is easily separated by surface tension 160 and offers fine pitch interconnect.
  • In FIG. 4 i, an underfill material 166 such as epoxy resin is deposited between semiconductor die 140 and substrate 146 around contact pads 142, contact pads 152, and bumps 162.
  • In FIG. 4 j, an electrically conductive bump material is deposited over conductive layer 148 on bottom surface 156 of substrate 146 using an evaporation, electrolytic plating, electroless plating, ball drop, or screen printing process. The bump material can be Al, Sn, Ni, Au, Ag, Pb, Bi, Cu, solder, and combinations thereof, with an optional flux solution. For example, the bump material can be eutectic Sn/Pb, high-lead solder, or lead-free solder. The bump material is bonded to conductive layer 148 using a suitable attachment or bonding process. In one embodiment, the bump material is reflowed by heating the material above its melting point to form spherical balls or bumps 168. In some applications, bumps 168 are reflowed a second time to improve electrical contact to conductive layer 148. The bumps can also be compression bonded to conductive layer 148. Bumps 168 represent one type of interconnect structure that can be formed over conductive layer 148. The interconnect structure can also use bond wires, stud bump, micro bump, or other electrical interconnect.
  • In another embodiment, FIG. 5 shows a portion of the contact pads formed over semiconductor die 140 and substrate 146. Contact pads 170 formed over semiconductor die 140 have recess 172. Contact pads 174 formed over substrate 146 have extension 176. Recess 172 and extension 176 control solder volume during reflow and increase the surface area of contact pads 170 and contact pads 174 for greater surface tension to separate solder tape 120 between the contact pads. Recess 172 and extension 176 allow for fine pitch interconnect.
  • FIG. 6 shows another embodiment with a portion of the contact pads formed over semiconductor die 140 and substrate 146. Contact pads 180 formed over semiconductor die 140 have extension 182. Contact pads 184 formed over substrate 146 have recess 186. Extension 182 and recess 186 control solder volume during reflow and increase the surface area of contact pads 180 and contact pads 184 for greater surface tension to separate solder tape 120 between the contact pads. Extension 182 and recess 186 allow for fine pitch interconnect.
  • FIG. 7 shows another embodiment with a portion of the contact pads formed over semiconductor die 140 and substrate 146. Contact pads 190 formed over semiconductor die 140 have recess 192. Contact pads 194 formed over substrate 146 have recess 196. Recess 192 and recess 196 control solder volume during reflow and increase the surface area of contact pads 190 and contact pads 194 for greater surface tension to separate solder tape 120 between the contact pads. Recess 192 and recess 196 allow for fine pitch interconnect.
  • FIG. 8 shows a support member 198 placed over semiconductor die 140 and affixed to substrate 146. Support member 198 maintains alignment and coplanarity between contact pads 142 and contact pads 152. Support member 198 also maintains proper solder volume during reflow.
  • While one or more embodiments of the present invention have been illustrated in detail, the skilled artisan will appreciate that modifications and adaptations to those embodiments may be made without departing from the scope of the present invention as set forth in the following claims.

Claims (25)

What is claimed:
1. A semiconductor device, comprising:
a semiconductor die including a plurality of first contact pads;
a substrate including a plurality of second contact pads; and
a continuous body of conductive material disposed between the first contact pads of the semiconductor die and the second contact pads of the substrate for separation into a plurality of interconnects between the first contact pads and second contact pads upon bringing the continuous body of conductive material to a liquidus state.
2. The semiconductor device of claim 1, further including a plurality of recesses formed in the continuous body of conductive material.
3. The semiconductor device of claim 1, further including an extension or recess formed in the first contact pads of the semiconductor die or the second contact pads of the substrate.
4. The semiconductor device of claim 1, further including an underfill material disposed between the semiconductor die and substrate.
5. The semiconductor device of claim 1, further including a support member disposed over the semiconductor die and substrate.
6. The semiconductor device of claim 1, wherein the continuous body of conductive material includes a conductive tape.
7. A semiconductor device, comprising:
a semiconductor die including a plurality of first contact pads;
a substrate including a plurality of second contact pads; and
a body of conductive material disposed across the first contact pads of the semiconductor die and the second contact pads of the substrate.
8. The semiconductor device of claim 7, wherein the body of conductive material is adapted to separate into a plurality of interconnects between the first contact pads and second contact pads upon bringing the body of conductive material to a liquidus state.
9. The semiconductor device of claim 7, further including a plurality of recesses formed in the body of conductive material.
10. The semiconductor device of claim 7, further including an extension or recess formed in the first contact pads of the semiconductor die or the second contact pads of the substrate.
11. The semiconductor device of claim 7, further including an underfill material disposed between the semiconductor die and substrate.
12. The semiconductor device of claim 7, further including a support member disposed over the semiconductor die and substrate.
13. The semiconductor device of claim 7, wherein the semiconductor die includes a flipchip type semiconductor die.
14. A semiconductor device, comprising:
a semiconductor die;
a substrate; and
a body of conductive material disposed across the semiconductor die and substrate.
15. The semiconductor device of claim 14, wherein the body of conductive material is adapted to separate into a plurality of interconnects between the semiconductor die and substrate upon bringing the body of conductive material to a liquidus state.
16. The semiconductor device of claim 14, further including a plurality of recesses formed in the body of conductive material.
17. The semiconductor device of claim 14, further including an extension or recess formed in a plurality of first contact pads disposed over the semiconductor die or in a plurality of second contact pads disposed over the substrate.
18. The semiconductor device of claim 14, further including an underfill material disposed between the semiconductor die and substrate.
19. The semiconductor device of claim 14, further including a support member disposed over the semiconductor die and substrate.
20. A semiconductor device, comprising:
a first semiconductor component;
a second semiconductor component; and
a body of conductive material disposed across the first semiconductor component and second semiconductor component.
21. The semiconductor device of claim 20, wherein the body of conductive material is adapted to separate into a plurality of interconnects between the first semiconductor component and second semiconductor component upon bringing the body of conductive material to a liquidus state.
22. The semiconductor device of claim 20, further including a plurality of recesses formed in the body of conductive material.
23. The semiconductor device of claim 20, further including an extension or recess formed in a plurality of contact pads of the first semiconductor component.
24. The semiconductor device of claim 20, further including an underfill material disposed between the first semiconductor component and second semiconductor component.
25. The semiconductor device of claim 20, wherein the body of conductive material includes a conductive tape.
US14/021,740 2010-04-14 2013-09-09 Semiconductor Device and Method of Forming Electrical Interconnection Between Semiconductor Die and Substrate with Continuous Body of Solder Tape Abandoned US20140008783A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/021,740 US20140008783A1 (en) 2010-04-14 2013-09-09 Semiconductor Device and Method of Forming Electrical Interconnection Between Semiconductor Die and Substrate with Continuous Body of Solder Tape

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/760,428 US8574964B2 (en) 2010-04-14 2010-04-14 Semiconductor device and method of forming electrical interconnection between semiconductor die and substrate with continuous body of solder tape
US14/021,740 US20140008783A1 (en) 2010-04-14 2013-09-09 Semiconductor Device and Method of Forming Electrical Interconnection Between Semiconductor Die and Substrate with Continuous Body of Solder Tape

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/760,428 Division US8574964B2 (en) 2010-04-14 2010-04-14 Semiconductor device and method of forming electrical interconnection between semiconductor die and substrate with continuous body of solder tape

Publications (1)

Publication Number Publication Date
US20140008783A1 true US20140008783A1 (en) 2014-01-09

Family

ID=44787635

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/760,428 Active 2030-11-16 US8574964B2 (en) 2010-04-14 2010-04-14 Semiconductor device and method of forming electrical interconnection between semiconductor die and substrate with continuous body of solder tape
US14/021,740 Abandoned US20140008783A1 (en) 2010-04-14 2013-09-09 Semiconductor Device and Method of Forming Electrical Interconnection Between Semiconductor Die and Substrate with Continuous Body of Solder Tape

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/760,428 Active 2030-11-16 US8574964B2 (en) 2010-04-14 2010-04-14 Semiconductor device and method of forming electrical interconnection between semiconductor die and substrate with continuous body of solder tape

Country Status (1)

Country Link
US (2) US8574964B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130234324A1 (en) * 2010-08-17 2013-09-12 Stats Chippac, Ltd. Semiconductor Device and Method of Forming Vertically Offset Conductive Pillars Over First Substrate Aligned to Vertically Offset BOT Interconnect Sites Formed Over Second Substrate
US20170024956A1 (en) * 2015-07-24 2017-01-26 Bally Gaming, Inc. Gaming machine including a multi-matrix modifier symbol
WO2017024278A1 (en) * 2015-08-06 2017-02-09 Thin Film Electronics Asa Wireless tags with printed stud bumps, and methods of making and using the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI420364B (en) * 2010-05-03 2013-12-21 Htc Corp Touch-controlled electronic apparatus and related assembly method
US8409978B2 (en) 2010-06-24 2013-04-02 Stats Chippac, Ltd. Semiconductor device and method of forming vertically offset bond on trace interconnect structure on leadframe
US8501615B2 (en) * 2011-06-15 2013-08-06 Taiwan Semiconductor Manufacturing Company, Ltd. Metal bump formation
TWI484610B (en) * 2012-07-09 2015-05-11 矽品精密工業股份有限公司 Method of forming semiconductor structure and conductive bump
US9691745B2 (en) * 2013-06-26 2017-06-27 Taiwan Semiconductor Manufacturing Co., Ltd. Bonding structure for forming a package on package (PoP) structure and method for forming the same
KR102032271B1 (en) * 2013-08-09 2019-10-16 한국전자통신연구원 Conjunction structure of electronic equipment
US9841179B2 (en) * 2014-03-13 2017-12-12 Telect, Inc. Overhead cable management system with integrated lighting
US9859244B2 (en) * 2016-03-24 2018-01-02 International Business Machines Corporation Chip alignment utilizing superomniphobic surface treatment of silicon die

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6221769B1 (en) * 1999-03-05 2001-04-24 International Business Machines Corporation Method for integrated circuit power and electrical connections via through-wafer interconnects
US20030119300A1 (en) * 2001-12-21 2003-06-26 Taiwan Semiconductor Manufacturing Co., Ltd. Method of making a bump on a substrate using multiple photoresist layers
US6663399B2 (en) * 2001-01-31 2003-12-16 High Connection Density, Inc. Surface mount attachable land grid array connector and method of forming same
US20040016456A1 (en) * 2002-07-25 2004-01-29 Clean Venture 21 Corporation Photovoltaic device and method for producing the same
US20060043603A1 (en) * 2004-08-31 2006-03-02 Lsi Logic Corporation Low temperature PB-free processing for semiconductor devices
US20080011402A1 (en) * 2006-04-19 2008-01-17 Tsukasa Shiraishi Method for connecting electronic components, method for forming bump and conductive connection film and fabrication apparatus for electronic component mounted body, bump and conductive connection film
US20080153201A1 (en) * 2006-12-25 2008-06-26 Nippon Mektron, Ltd. Flip chip mounting method by no-flow underfill having level control function
US20080284037A1 (en) * 2007-05-15 2008-11-20 Andry Paul S Apparatus and Methods for Constructing Semiconductor Chip Packages with Silicon Space Transformer Carriers
US20090117688A1 (en) * 2005-03-29 2009-05-07 Seiji Karashima Flip chip mounting method and bump forming method
US20090230535A1 (en) * 2008-03-12 2009-09-17 Infineon Technologies Ag Semiconductor module

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2500462B2 (en) * 1993-07-22 1996-05-29 日本電気株式会社 Inspection connector and manufacturing method thereof
US6399426B1 (en) * 1998-07-21 2002-06-04 Miguel Albert Capote Semiconductor flip-chip package and method for the fabrication thereof
TWI289921B (en) 2003-05-28 2007-11-11 Via Tech Inc Bump process of flip chip package
ATE419661T1 (en) * 2003-09-09 2009-01-15 Nitto Denko Corp ANISOTROPIC CONDUCTING FILM, PROCESS OF PRODUCTION AND USE
US8076232B2 (en) * 2008-04-03 2011-12-13 Stats Chippac, Ltd. Semiconductor device and method of forming composite bump-on-lead interconnection
US7331796B2 (en) * 2005-09-08 2008-02-19 International Business Machines Corporation Land grid array (LGA) interposer utilizing metal-on-elastomer hemi-torus and other multiple points of contact geometries
US7718523B1 (en) 2007-10-19 2010-05-18 Amkor Technology, Inc. Solder attach film and method of forming solder ball using the same
US20090279275A1 (en) * 2008-05-09 2009-11-12 Stephen Peter Ayotte Method of attaching an integrated circuit chip to a module
US8168458B2 (en) * 2008-12-08 2012-05-01 Stats Chippac, Ltd. Semiconductor device and method of forming bond wires and stud bumps in recessed region of peripheral area around the device for electrical interconnection to other devices

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6221769B1 (en) * 1999-03-05 2001-04-24 International Business Machines Corporation Method for integrated circuit power and electrical connections via through-wafer interconnects
US6663399B2 (en) * 2001-01-31 2003-12-16 High Connection Density, Inc. Surface mount attachable land grid array connector and method of forming same
US20030119300A1 (en) * 2001-12-21 2003-06-26 Taiwan Semiconductor Manufacturing Co., Ltd. Method of making a bump on a substrate using multiple photoresist layers
US20040016456A1 (en) * 2002-07-25 2004-01-29 Clean Venture 21 Corporation Photovoltaic device and method for producing the same
US20060043603A1 (en) * 2004-08-31 2006-03-02 Lsi Logic Corporation Low temperature PB-free processing for semiconductor devices
US20090117688A1 (en) * 2005-03-29 2009-05-07 Seiji Karashima Flip chip mounting method and bump forming method
US20080011402A1 (en) * 2006-04-19 2008-01-17 Tsukasa Shiraishi Method for connecting electronic components, method for forming bump and conductive connection film and fabrication apparatus for electronic component mounted body, bump and conductive connection film
US20080153201A1 (en) * 2006-12-25 2008-06-26 Nippon Mektron, Ltd. Flip chip mounting method by no-flow underfill having level control function
US20080284037A1 (en) * 2007-05-15 2008-11-20 Andry Paul S Apparatus and Methods for Constructing Semiconductor Chip Packages with Silicon Space Transformer Carriers
US20090230535A1 (en) * 2008-03-12 2009-09-17 Infineon Technologies Ag Semiconductor module

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130234324A1 (en) * 2010-08-17 2013-09-12 Stats Chippac, Ltd. Semiconductor Device and Method of Forming Vertically Offset Conductive Pillars Over First Substrate Aligned to Vertically Offset BOT Interconnect Sites Formed Over Second Substrate
US8896133B2 (en) * 2010-08-17 2014-11-25 Stats Chippac, Ltd. Semiconductor device and method of forming vertically offset conductive pillars over first substrate aligned to vertically offset BOT interconnect sites formed over second substrate
US20170024956A1 (en) * 2015-07-24 2017-01-26 Bally Gaming, Inc. Gaming machine including a multi-matrix modifier symbol
WO2017024278A1 (en) * 2015-08-06 2017-02-09 Thin Film Electronics Asa Wireless tags with printed stud bumps, and methods of making and using the same
EP3332361A4 (en) * 2015-08-06 2019-03-13 Thin Film Electronics ASA Wireless tags with printed stud bumps, and methods of making and using the same

Also Published As

Publication number Publication date
US8574964B2 (en) 2013-11-05
US20110254146A1 (en) 2011-10-20

Similar Documents

Publication Publication Date Title
US9865556B2 (en) Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask
US9030030B2 (en) Semiconductor device and method of forming adjacent channel and dam material around die attach area of substrate to control outward flow of underfill material
US9105532B2 (en) Semiconductor device and method of forming interconnect structure over seed layer on contact pad of semiconductor die without undercutting seed layer beneath interconnect structure
US8896133B2 (en) Semiconductor device and method of forming vertically offset conductive pillars over first substrate aligned to vertically offset BOT interconnect sites formed over second substrate
US9679824B2 (en) Semiconductor device and method of forming bond-on-lead interconnection for mounting semiconductor die in Fo-WLCSP
US8241956B2 (en) Semiconductor device and method of forming wafer level multi-row etched lead package
US8574964B2 (en) Semiconductor device and method of forming electrical interconnection between semiconductor die and substrate with continuous body of solder tape
US8563418B2 (en) Semiconductor device and method of forming vertically offset bond on trace interconnects on different height traces
US8884339B2 (en) Semiconductor device with bump formed on substrate to prevent ELK ILD delamination during reflow process
US8835301B2 (en) Semiconductor device and method of forming bump structure with insulating buffer layer to reduce stress on semiconductor wafer
US20120326302A1 (en) Semiconductor Device and Method of Forming PIP with Inner Known Good Die Interconnected with Conductive Bumps
US9252093B2 (en) Semiconductor device and method of forming multi-layered UBM with intermediate insulating buffer layer to reduce stress for semiconductor wafer
US20110215458A1 (en) Semiconductor Device and Method of Forming Package-on-Package Structure Electrically Interconnected Through TSV in WLCSP
US8901734B2 (en) Semiconductor device and method of forming column interconnect structure to reduce wafer stress

Legal Events

Date Code Title Description
AS Assignment

Owner name: CITICORP INTERNATIONAL LIMITED, AS COMMON SECURITY AGENT, HONG KONG

Free format text: SECURITY INTEREST;ASSIGNORS:STATS CHIPPAC, INC.;STATS CHIPPAC LTD.;REEL/FRAME:036288/0748

Effective date: 20150806

Owner name: CITICORP INTERNATIONAL LIMITED, AS COMMON SECURITY

Free format text: SECURITY INTEREST;ASSIGNORS:STATS CHIPPAC, INC.;STATS CHIPPAC LTD.;REEL/FRAME:036288/0748

Effective date: 20150806

AS Assignment

Owner name: STATS CHIPPAC PTE. LTE., SINGAPORE

Free format text: CHANGE OF NAME;ASSIGNOR:STATS CHIPPAC LTD.;REEL/FRAME:038378/0391

Effective date: 20160329

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: STATS CHIPPAC, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITICORP INTERNATIONAL LIMITED, AS COMMON SECURITY AGENT;REEL/FRAME:052963/0546

Effective date: 20190503

Owner name: STATS CHIPPAC PTE. LTD. FORMERLY KNOWN AS STATS CHIPPAC LTD., SINGAPORE

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITICORP INTERNATIONAL LIMITED, AS COMMON SECURITY AGENT;REEL/FRAME:052963/0546

Effective date: 20190503

AS Assignment

Owner name: STATS CHIPPAC PTE. LTD., SINGAPORE

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE CORRECT THE SPELLING OF ASSIGNEE'S NAME FROM "STATS CHIPPAC PTE. LTE. " TO STATS CHIPPAC PTE. LTD." PREVIOUSLY RECORDED AT REEL: 038378 FRAME: 0391. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:STATS CHIPPAC LTD.;REEL/FRAME:064809/0877

Effective date: 20160329