US20130343932A1 - Subsea motor-turbomachine - Google Patents

Subsea motor-turbomachine Download PDF

Info

Publication number
US20130343932A1
US20130343932A1 US14/003,436 US201214003436A US2013343932A1 US 20130343932 A1 US20130343932 A1 US 20130343932A1 US 201214003436 A US201214003436 A US 201214003436A US 2013343932 A1 US2013343932 A1 US 2013343932A1
Authority
US
United States
Prior art keywords
pressure
compressor
motor
subsea
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/003,436
Other languages
English (en)
Inventor
Kjell Olav Stinessen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aker Solutions AS
Original Assignee
Aker Subsea AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aker Subsea AS filed Critical Aker Subsea AS
Assigned to AKER SUBSEA AS reassignment AKER SUBSEA AS ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: STINESSEN, KJELL OLAV
Publication of US20130343932A1 publication Critical patent/US20130343932A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0686Units comprising pumps and their driving means the pump being electrically driven specially adapted for submerged use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/058Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D31/00Pumping liquids and elastic fluids at the same time
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/12Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas
    • H02K5/132Submersible electric motors

Definitions

  • the present invention relates to subsea rotating equipment, i.e. compressors, multiphase pumps and liquid pumps driven by electric motors, and its purpose is particularly to improve the motor internals of a gas filled motor, optionally a liquid filled motor, from contamination of the compressed or pumped fluids that could harm or damage the motor. This is obtained by separating the motor and compressor, multiphase pump or pump into two compartments by oil lubricated mechanical seals.
  • the invention protects the lube oil for the mechanical seal and bearings by prevention against gas contamination or other contamination by mechanical seals and over pressure of the lube oil compared to the internal pressure of the motor and pump. Control of pressure of the lube oil, motor atmosphere and compressor and suction pressure of the compressor, multiphase pump or liquid pump relative to each other is a key feature of the invention
  • compressor also include multiphase pump and liquid pump when relevant for all of them. If there are elements of the description and claims that are relevant for only compressor, multiphase pumps or liquid pump, this will be specifically described.
  • liquid e.g. oil, or water or MEG or mixtures thereof.
  • oil will also include all other suitable liquids for bearings, mechanical seals and gear
  • motors have been used for subsea multiphase and liquid pumps. This gives a practical limitation of the power of the motor at say 4 MW and a speed of say 4000 rpm due to the frictional losses when the rotor is rotating in liquid. More power could be provided by making such motors longer, but a practical limit of length seems to be reached at around 4 MW due to rortodynamics, required number of bearings and need for space.
  • KBS Kvaerner Booster Station
  • the control system for subsea magnetic bearings that has to be located subsea and close to the bearings, is also a concern because at the current stage of technology it is being developed and qualified. Even a successful qualification will leave some risk concerns with respect to subsea operation because the electronics of the control system has a certain failure rate and the control system has quite large dimension and are heavy and therefore not easy to replace if it fails. There are also several wires with connectors and penetrators that also have their failure rate. All the concerns of this control system will be eliminated by using oil lubricated bearings according to the present invention because the lubrication system does not have any control system. A lube oil system, lubricated bearings and mechanical seals also have a risk of failing.
  • FIGS. 1-6 The invention is illustrated with FIGS. 1-6 , illustrating embodiments and details of embodiments of the invention.
  • the invention provides a subsea pressure booster comprising an electric motor and a compressor, multiphase pump or pump driven by the electric motor, for boosting the pressure of a subsea flow comprising petroleum gas or liquid, distinctive in that the pressure booster comprises a common pressure housing for the electric motor and compressor, multiphase pump or pump; a diaphragm separating the common pressure housing into two compartments, one compartment for the electric motor and one compartment for the compressor; multiphase pump or pump; a shaft connecting the electric motor to the compressor, multiphase pump or pump; and at least one oil lubricated mechanical shaft seal arranged between the shaft and diaphragm; and bearings on the shaft, preferably at least two radial and one axial oil lubricated bearings for an oil filled or gas filled motor compartment or magnetic bearings or oil lubricated bearings for a gas filled motor compartment.
  • the invention provides a simple and reliable solution for a subsea pressure booster for boosting the pressure of oil and gas from subsea wells and systems, allowing a gas filled motor compartment also for a pump and a multiphase pump, allowing higher effects than previously achievable without decreasing the reliability, with simple solutions for control of pressure, fluid integrity and operation.
  • gas filled motor compartments can be used, the definition of the invention as given above do not specify gas filled motor compartment as obligatory, which is because also subsea pressure boosters with oil filled motor compartment will benefit from the solutions provided with the present invention with respect to reliability and simplicity, particularly at high effects.
  • inert gas that is nitrogen, noble gas or in any case gas less aggressive than the raw gas according to prior art, is prefereably used in the motor compartment, using the solutions as described and illustrated in this document.
  • floating piston 52, 52′ Shafts h Static height from bearings to low level of lube oil tank h′ Static height at low level of lube oil tank, variable from low to high level pd Discharge pressure pl Lube oil pressure in bearings pl′ Lube oil pressure at low level of lube oil tank pm Pressure of motor atmosphere pn Pressure of compressed nitrogen (or other actual inert gas) in tank.
  • ps Suction pressure pt Pressure in drainage tank; approximately pt pm p1 Pressure of first impeller or any other impeller p2 Pressure of second impeller or any impeller or discharge pressure, and impeller # is higher than the impeller that gives p1
  • the basic principle of the invention is to prevent communication of flow between compressor and motor. This is obtained by separation of the motor and compressor in two compartments, a motor and a compressor compartment, by a diaphragm with oil lubricated mechanical shaft seals, and by controlling the pressure of the lube oil such that the pressure of this in the seal is higher than both the pressure of the gas atmosphere of the motor and of the gas pressure of the suction side of the compressor.
  • the gas pressure in the balance drum of the compressor is suction pressure, which is obtained by a gas leakage from the discharge side of the compressor through a labyrinth seal and a balance pipe to the suction side of the compressor.
  • balance drum can be used for multiphase and liquid pumps. If other principles are used, e.g. opposed impellers for a pump or by having the pressure side of a multiphase pump or a pump at the motor, the pressure of the lube oil must be set such that it is higher than the highest fluid pressure at any of the seals.
  • the gas that forms the motor atmosphere if not the gas being compressed, preferably is selected such that it is inert with respect to the motor materials including both metallic and non metallic materials.
  • the gas can for example be dry nitrogen or dry hydrocarbon gas.
  • the motor 2 is filled by raw gas from the compressor, preferably dry, by a pressure transmitting tube 16 from one of the compressor stages or from its suction side.
  • motor pressure pm is supplied from the stage 8 1 with pressure p 1 .
  • the pressure pm in the motor room will be equal to the first compressor stage pressure p 1 and higher than the suction pressure ps.
  • Drying of the gas is obtained by cooling the gas to seawater temperature or close to sea water temperature by heat exchanging to seawater by a heat exchanger 18 common for tubes 16 and 17 ′ in tube 17 .
  • the arrangement shown in FIG. 1 with a common cooler for tube 17 and 17 is of practical reasons. It could also be two separate tubes from stage 8 1 each with their cooler. In cases where cooling is found unnecessary, the cooler is omitted. Some amount of MEG (or other suitable hydrate preventing chemical) can if necessary be injected into the cooler 18 to prevent hydrate formation.
  • the injected MEG will also have the favourable affect of drying the gas with respect to water, and also contribute to some MEG vapour pressure in the gas atmosphere.
  • the combined result of these two mechanisms will be lowering of the water dew point of the gas, say by 5° C.
  • the gas will be cooled to seawater temperature.
  • transient operations e.g. ramping speed of the compressor up and down or starts and stops
  • temperature and pressure of compressor and motor will change and there will be some flow in the tube 16 and thereby some exchange of gas between motor and compressor.
  • Worst case is when starting or stopping the compressor and the motor and compressor is warmed up from sea water temperature to operation temperatures or in the opposite direction from operation temperatures down to sea water temperature.
  • the direction of the equalising flow during transients will be a result of the relative temperatures and volumes of the motor and compressor and other factors. These transient flows will however be small, and it is easy to dimension and design heat exchangers to obtain a gas temperature equal to or at the level of the sea temperature, say not more than 5° C. above sea water temperature, and hence the gas will be dry during operation when the motor is warm and probably also at standstill when cooled down to sea water temperature because the small amount of water vapour that might flow from the compressor through the tube 16 to the motor will be diluted by the dry gas in the motor. If condensation should occur it will be insignificantly small with respect to cause harm to the motor materials if the raw gas has insignificant amounts of acid forming components like H 2 S and CO 2 .
  • the lube oil tank 32 can be placed besides or under the pressure housing 1 when the pressure p′′ is high enough to lift the oil into the bearings and seals and give them an overpressure relative to the motor pressure and the compressor suction pressure.
  • a membrane 51 can be inserted in the pressure transmitting tubes 16 , 17 , 17 ′ to further prevent flow communication between compressor and motor rooms at transient conditions and also by diffusion at steady-state.
  • the membrane can e.g. be of the floating piston type, bellow type or a flexible polymeric material.
  • the volume capacity of the membrane 51 for gas expansion designed to accommodate the worst case of volume difference change between compressor and motor rooms and between compressor and lube oil tank.
  • the pressure above the liquid level in the lube oil tank will be the same as the motor pressure pm and equal to the first stage compressor pressure p 1 .
  • the gas will be kept dry by the same heat exchanger as for the motor gas.
  • the pressure difference between pl and pm can be arranged to be higher than by standstill by supplying the oil from the pressure side of the lube oil pump 15 .
  • the bearing can be on the suction side of the pump.
  • the pump is connected to and run by the compressor shaft either directly or by some mechanical gear or transmission or by magnetic coupling or magnetic gear, but the pump can also be a separate pump arranged some place along the lube oil circuit 20 including inside the lube oil tank 32 .
  • the pump When the pump is located outside the compressor in the lube oil circuit, it can be arranged to be separately retrievable and there can be several pumps to have redundancy.
  • valve arrangement including check valves, such that it is possible to automatically continue operation with only one pump in operation, or the setting of valves can be arranged manually from surface (platform or onshore) or even by ROV.
  • Consumption of oil by leakage through a seal is small, in the range of 1 litre per day, and for the five seals indicated in FIG. 1 there will be a total leakage per day in the range of 5 litres, i.e. around 2 m 3 per year.
  • dimensioning volume of the lube oil tank to 5 m 3 , it will only be necessary to top up the every second year by ROV or supply of oil by umbilical or even by exchange of the empty tank by a full tank.
  • Another method could be to exchange the almost empty tank with a full tank at required intervals. Practical considerations including reliability and cost will be basis for selection of solution from case to case.
  • lube oil pressure pl If lube oil is supplied from surface directly to the lube oil circuit without a buffer tank, there will be necessary to control the lube oil pressure pl by some remedy, e.g. a Pressure Volume Regulator (PVR) that is well known form applications for multiphase and liquid pumps. More traditional control of pl relative to pm and ps can also be applied, because there will normally not be need for very quick control to keep pl>pm and ps.
  • PVR Pressure Volume Regulator
  • the drainage can be arranged to be automatically by having some kind of level sensor 35 (pressure difference, nucleonic, other) that gives a signal to open the drainage valve 26 when a set high level 36 is reached as will as closing when a low level 37 is reached. Drainage at pre set intervals is also an option, however more risky and so is manual operation of valve 26 based on readings from level indicator. Control of the opening of the valve 26 is such that no gas blows out from the motor during drainage.
  • level sensor 35 pressure difference, nucleonic, other
  • the valve 26 can also act to reduce the pressure of the motor if it during some mode of operation should be higher than desired. A signal from a pressure transmitter 44 that senses the motor pressure is then the basis for operation of valve 26 .
  • the pressure transmitting tubes 16 , 17 with MEG injection can be arranged in the pressure transmitting tubes 16 , 17 with MEG injection if necessary similar to 18 in FIG. 1 .
  • drainage to a point with pressure of ps will require some static over height which can be obtained by sufficient elevation of the drainage tank, which is below the motor 2 , compared to the selected drainage point.
  • FIG. 4 illustrates an embodiment that completely assures an inert motor atmosphere of nitrogen with small risk of contamination from the compressor atmosphere, which is a suitable solution if the raw gas contains significant contamination of aggressive components (e.g. H 2 S and CO 2 ), and that also better assures a dry motor atmosphere and no condensation (hydrocarbons and water) if there is doubt about effect of the condensers 18 , 18 ′.
  • the atmosphere above the lube oil is protected by nitrogen in a similar way.
  • Compressed nitrogen in the term nitrogen is also included any other suitable inert gas
  • high pressure i.e. at higher pressure than required to keep pl higher than both ps and pm, e.g. 300 bar or higher in the tank 40 .
  • the tank can be quite small, e.g. 2 m 3 and still allow for long intervals between refilling.
  • Refilling can be done either by exchanging the nitrogen tank, connect a pipe from a ship by ROV and supply from the ship or by tube in umbilical. Pressure of the motor pm is adjusted by supplying an amount of nitrogen that results in the desired pressure.
  • valve 41 the supply of nitrogen by valve 41 is controlled by the pressure, either by an automatic control or manually from surface. Control of the pressure pl′′ in the atmosphere above the lube oil level in the lube oil tank is achieved in a similar way.
  • a mixed solution where the motor is supplied with nitrogen and the lube oil tank atmosphere with gas pressure from the compressor could also be applied in some cases, i.e. a combination of the embodiments in FIGS. 1 and 3 and FIG. 4 .
  • FIG. 5 Yet a solution, shown in FIG. 5 , is to prime the motor by initially filling it with nitrogen, and then close the nitrogen supply valve and have pressure supply to the motor by some of the solutions of FIGS. 1 to 3 .
  • Some contamination of the motor atmosphere by intermingling of raw compressor gas caused by diffusion or by relative volume changes of motor and compressor room during transients, especially starts and stops, will not cause harm because condensation of water and hydrocarbons will be prevented by dilution of the contaminants and so will be possible content of H 2 S, CO 2 and other harmful contaminants in the raw gas.
  • purging can be performed of the motor room by nitrogen to almost re-establish a pure nitrogen atmosphere.
  • a membrane 51 in the pressure transmitting tube 16 contamination of the motor atmosphere by raw gas will be almost completely prevented.
  • Compressed nitrogen in the term nitrogen is also included any other suitable inert gas
  • high pressure i.e. at higher pressure than required to keep pl higher than both ps and pm, e.g. 300 bar or higher
  • the tank can be quite small, e.g. 3 m 3 and still allow for long intervals between refilling. Refilling can be done either by exchanging the nitrogen tank, connect a pipe from a ship by ROV and supply from the ship or by tube in umbilical. Pressure of the motor pm is adjusted by supplying an amount of nitrogen that results in the desired pressure.
  • the motor must have a pressure transmitter, and the supply of nitrogen by valve 41 is controlled by the pressure, either by an automatic control or manually from surface. Control of the pressure pl′′ in the atmosphere above the lube oil level in the lube oil tank is obtain in a similar way.
  • FIG. 6 Finally an embodiment is shown FIG. 6 where a mechanical step-up gear (either parallel or planet gear or any suitable type) with for instance a step-up of 3:1 is introduced between the motor and the compressor.
  • VSD Variable Speed Drive
  • the compressor a speed can then be varied from 5400 to 12600 rpm in the case of a step-up of 3:1.
  • Both transmission frequency and step-up ratio can be selected different from the example according to what is best suitable from case to case.
  • Pressure control of lube oil and motor atmosphere can be according to any of the embodiments given presented in FIGS. 1 to 4 .
  • a conceivable embodiment of the lube oil circuit could be an “open circuit” which implies that oil that leaks into the motor compartment and collected in the drainage tank 25 and pumped back into the lube oil circuit by some means.
  • a pump can for instance be installed to pump from the discharge of the tank 25 and into the lube oil circuit 20 or to the lube oil tank 32 or any other suitable point in the lube oil circuit.
  • the pressure pm in the motor can temporarily for a short period, say seconds, be set high enough to lift the oil in tank 25 into the lube oil circuit. The negative feature of this is possible contamination of the lube oil.
  • a particle filter can be installed at some suitable point in the lube oil circuit.
  • a bypass can be arranged with automatic change over to a shunt pipe around the filter in cases where the filter is clogged and the pressure loss over the filter becomes unacceptable high.
  • the change over to the shunt pipe is controlled by the pressure differential over the filter.
  • the subsea pressure booster, turbomachine, compressor, multiphase pump or pump of the invention can include any feature as described or illustrated in this document, in any functional combination, each such combination is an embodiment of the present invention.
  • the invention also provides use of the subsea pressure booster of the invention, for boosting the pressure of flow from subsea oil and/or gas wells or systems.
US14/003,436 2011-03-07 2012-03-07 Subsea motor-turbomachine Abandoned US20130343932A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NO20110348A NO333684B1 (no) 2011-03-07 2011-03-07 Undervanns trykkøkningsmaskin
NO20110348 2011-03-07
PCT/NO2012/000023 WO2012121605A1 (en) 2011-03-07 2012-03-07 Subsea motor-turbomachine

Publications (1)

Publication Number Publication Date
US20130343932A1 true US20130343932A1 (en) 2013-12-26

Family

ID=46798414

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/003,436 Abandoned US20130343932A1 (en) 2011-03-07 2012-03-07 Subsea motor-turbomachine

Country Status (4)

Country Link
US (1) US20130343932A1 (no)
EP (1) EP2683944B1 (no)
NO (1) NO333684B1 (no)
WO (1) WO2012121605A1 (no)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160341281A1 (en) * 2015-05-18 2016-11-24 Onesubsea Ip Uk Limited Subsea gear train system
CN107250548A (zh) * 2014-12-05 2017-10-13 诺沃皮尼奥内股份有限公司 具有磁性轴承的马达压缩机单元
US20180223854A1 (en) * 2015-08-06 2018-08-09 Onesubsea Ip Uk Limited Fluid processing machines and fluid production systems
US10119616B2 (en) 2016-04-08 2018-11-06 Chevron U.S.A. Inc. Mechanical seal assistance device and systems and methods for use thereof
US20190128246A1 (en) * 2016-04-28 2019-05-02 Linde Aktiengesellschaft Fluid energy machine
CN111577613A (zh) * 2019-02-18 2020-08-25 苏尔寿管理有限公司 工艺流体润滑泵和海水喷射系统
EP2901016B1 (en) * 2012-09-12 2020-10-21 FMC Technologies, Inc. Coupling an electric machine and fluid-end
EP3660324A4 (en) * 2017-07-26 2021-04-14 Ebara Corporation PUMP AND SEALING SYSTEM
WO2022088813A1 (zh) * 2020-10-26 2022-05-05 珠海格力节能环保制冷技术研究中心有限公司 压缩机、双压缩机串联热泵机组及其控制方法
US11415169B2 (en) * 2019-10-25 2022-08-16 Sulzer Management Ag Multiphase pump
JP7228073B1 (ja) 2022-09-07 2023-02-22 日機装株式会社 ポンプ装置、ポンプシステム、およびポンプシステムの運転方法
ES2957894A1 (es) * 2022-06-24 2024-01-29 Metronics Tech S L Sistema intensificador de presion de bombeo

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014042626A1 (en) 2012-09-12 2014-03-20 Cunningham Christopher E Subsea multiphase pump or compressor with magnetic coupling and cooling or lubrication by liquid or gas extracted from process fluid
EP2901017B1 (en) 2012-09-12 2020-06-03 FMC Technologies, Inc. Up-thrusting fluid system
US9366238B2 (en) 2013-03-13 2016-06-14 Lockheed Martin Corporation System and process of cooling an OTEC working fluid pump motor
CA2906544C (en) * 2013-03-15 2023-10-17 Fmc Technologies, Inc. Submersible well fluid system
WO2014153345A1 (en) 2013-03-18 2014-09-25 Onesubsea Ip Uk Limited Balance piston for multiphase fluid processing
NO335529B1 (no) * 2013-04-12 2014-12-22 Aker Subsea As Turbomaskinsammenstilling med magnetkobling og magnetløft
NO345311B1 (en) * 2018-04-26 2020-12-07 Fsubsea As Pressure booster with integrated speed drive
BR112023014220A2 (pt) * 2021-01-15 2023-10-03 Onesubsea Ip Uk Ltd Sistema de injeção de fluido submarina

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5207291A (en) * 1991-04-11 1993-05-04 Nuovopignone-Industrie Meccaniche E Fonderia S.P.A. Barrier system for the lubricating oil for the bearings of a centrifugal compressor with labyrinth seals installed in a confined environment
US5382141A (en) * 1991-02-08 1995-01-17 Kvaener Rosenberg A.S. Kvaerner Subsea Contracting Compressor system and method of operation
US5398762A (en) * 1991-02-08 1995-03-21 Kvaerner Rosenberg A.S. Kvaerner Kvaerner Subsea Contracting Compressor system in a subsea station for transporting a well stream
US7144226B2 (en) * 2003-03-10 2006-12-05 Thermodyn Centrifugal compressor having a flexible coupling
US20090317265A1 (en) * 2006-06-30 2009-12-24 Aker Kvaerner Subsea As Method and apparatus for protection of compressor modules against influx of contaminated gas
US7654328B2 (en) * 2003-07-02 2010-02-02 Aker Subsea As Subsea compressor module and a method for controlling the pressure in such a subsea compressor module
US8267676B2 (en) * 2006-06-30 2012-09-18 Aker Subsea As Apparatus and method for preventing the penetration of seawater into a compressor module during lowering to or retrieval from the seabed
US8579608B2 (en) * 2008-04-29 2013-11-12 Siemens Aktiengesellschaft Fluid energy machine
US9200643B2 (en) * 2010-10-27 2015-12-01 Dresser-Rand Company Method and system for cooling a motor-compressor with a closed-loop cooling circuit

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH400438A (de) * 1963-05-31 1965-10-15 Sulzer Ag Wellendichtung eines Gebläses
CH480543A (de) * 1967-08-18 1969-10-31 Sulzer Ag Anlage zum Fördern, Verdichten bzw. Umwälzen von Gasen mit einem durch einen Elektromotor angetriebenen Fördergebläse
US3785753A (en) 1971-10-13 1974-01-15 A Bogdanov Electric drives for centrifugal pumps
NO162782C (no) 1987-10-05 1990-02-14 Kvaerner Subsea Contracting Sentrifugalenhet og fremgangsmaate ved igangkjoering av en sentrifugalenhet.
NL185225C (nl) 1988-01-13 1992-03-16 Comprimo Bv Werkwijze voor het omzetten en verwijderen van zwavelverbindingen uit een co-bevattend gas.
NO172555C (no) 1989-01-06 1993-08-04 Kvaerner Subsea Contracting As Undervannsstasjon for behandling og transport av en broennstroem
NO173197C (no) 1991-07-10 1993-11-10 Kvaerner Rosenberg As Kvaerner Fremgangsmaate ved drift av et kompressoranlegg og kompressoranlegg
US6616421B2 (en) * 2000-12-15 2003-09-09 Cooper Cameron Corporation Direct drive compressor assembly
GB0204139D0 (en) * 2002-02-21 2002-04-10 Alpha Thames Ltd Electric motor protection system
NO323240B1 (no) 2003-07-02 2007-02-12 Kvaerner Oilfield Prod As Anordning for regulering av trykket i undervanns kompressormodul
NO325900B1 (no) 2005-10-07 2008-08-11 Aker Subsea As Anordning og fremgangsmåte for regulering av tilførsel av barrieregass til en kompressormodul
NO324577B1 (no) * 2005-11-11 2007-11-26 Norsk Hydro Produksjon As Trykk- og lekkasjekontroll i roterende utstyr for undervannskompresjon
NO327542B1 (no) * 2005-11-11 2009-08-10 Norsk Hydro Produksjon As Enhet for kondisjonering av en bronnstrom samt en undervannskompresjonsmodul.
US7508101B2 (en) * 2006-02-24 2009-03-24 General Electric Company Methods and apparatus for using an electrical machine to transport fluids through a pipeline
US20090196764A1 (en) * 2008-02-04 2009-08-06 Fogarty James M High frequency electric-drive with multi-pole motor for gas pipeline and storage compression applications
ITBO20080219A1 (it) 2008-04-09 2009-10-10 Pedrollo Spa Elettropompa centrifuga
BRPI0912243B1 (pt) * 2008-05-06 2020-04-14 Fmc Tech Inc sistema de condicionamento de fluxo

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5382141A (en) * 1991-02-08 1995-01-17 Kvaener Rosenberg A.S. Kvaerner Subsea Contracting Compressor system and method of operation
US5398762A (en) * 1991-02-08 1995-03-21 Kvaerner Rosenberg A.S. Kvaerner Kvaerner Subsea Contracting Compressor system in a subsea station for transporting a well stream
US5207291A (en) * 1991-04-11 1993-05-04 Nuovopignone-Industrie Meccaniche E Fonderia S.P.A. Barrier system for the lubricating oil for the bearings of a centrifugal compressor with labyrinth seals installed in a confined environment
US7144226B2 (en) * 2003-03-10 2006-12-05 Thermodyn Centrifugal compressor having a flexible coupling
US7654328B2 (en) * 2003-07-02 2010-02-02 Aker Subsea As Subsea compressor module and a method for controlling the pressure in such a subsea compressor module
US20090317265A1 (en) * 2006-06-30 2009-12-24 Aker Kvaerner Subsea As Method and apparatus for protection of compressor modules against influx of contaminated gas
US8221095B2 (en) * 2006-06-30 2012-07-17 Aker Subsea As Method and apparatus for protection of compressor modules against influx of contaminated gas
US8267676B2 (en) * 2006-06-30 2012-09-18 Aker Subsea As Apparatus and method for preventing the penetration of seawater into a compressor module during lowering to or retrieval from the seabed
US8579608B2 (en) * 2008-04-29 2013-11-12 Siemens Aktiengesellschaft Fluid energy machine
US9200643B2 (en) * 2010-10-27 2015-12-01 Dresser-Rand Company Method and system for cooling a motor-compressor with a closed-loop cooling circuit

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2901016B1 (en) * 2012-09-12 2020-10-21 FMC Technologies, Inc. Coupling an electric machine and fluid-end
US10151316B2 (en) * 2014-12-05 2018-12-11 Nuovo Pignone Srl Motor compressor unit with magnetic bearings
CN107250548A (zh) * 2014-12-05 2017-10-13 诺沃皮尼奥内股份有限公司 具有磁性轴承的马达压缩机单元
US20160341281A1 (en) * 2015-05-18 2016-11-24 Onesubsea Ip Uk Limited Subsea gear train system
US10801502B2 (en) * 2015-08-06 2020-10-13 Onesubsea Ip Uk Limited Fluid processing machines and fluid production systems
US20180223854A1 (en) * 2015-08-06 2018-08-09 Onesubsea Ip Uk Limited Fluid processing machines and fluid production systems
US10119616B2 (en) 2016-04-08 2018-11-06 Chevron U.S.A. Inc. Mechanical seal assistance device and systems and methods for use thereof
US20190128246A1 (en) * 2016-04-28 2019-05-02 Linde Aktiengesellschaft Fluid energy machine
EP3660324A4 (en) * 2017-07-26 2021-04-14 Ebara Corporation PUMP AND SEALING SYSTEM
CN111577613A (zh) * 2019-02-18 2020-08-25 苏尔寿管理有限公司 工艺流体润滑泵和海水喷射系统
US11415169B2 (en) * 2019-10-25 2022-08-16 Sulzer Management Ag Multiphase pump
WO2022088813A1 (zh) * 2020-10-26 2022-05-05 珠海格力节能环保制冷技术研究中心有限公司 压缩机、双压缩机串联热泵机组及其控制方法
ES2957894A1 (es) * 2022-06-24 2024-01-29 Metronics Tech S L Sistema intensificador de presion de bombeo
JP7228073B1 (ja) 2022-09-07 2023-02-22 日機装株式会社 ポンプ装置、ポンプシステム、およびポンプシステムの運転方法
WO2024053249A1 (ja) * 2022-09-07 2024-03-14 日機装株式会社 ポンプ装置、ポンプシステム、およびポンプシステムの運転方法
JP2024037495A (ja) * 2022-09-07 2024-03-19 日機装株式会社 ポンプ装置、ポンプシステム、およびポンプシステムの運転方法

Also Published As

Publication number Publication date
NO20110348A1 (no) 2012-09-10
EP2683944B1 (en) 2017-01-11
EP2683944A1 (en) 2014-01-15
WO2012121605A1 (en) 2012-09-13
NO333684B1 (no) 2013-08-12
EP2683944A4 (en) 2014-10-22

Similar Documents

Publication Publication Date Title
EP2683944B1 (en) Subsea motor-turbomachine
US8523540B2 (en) Fluid pump system
CA2721015C (en) Underwater delivery unit
US8714910B2 (en) Compressor unit and assembly method
AU2007265793B2 (en) Method and apparatus for protection of compressor modules against influx of contaminated gas
CN102753258B (zh) 具有绝热壳体的可竖直旋转的轴杆组件
EP0425805B1 (en) Apparatus for cooling shaft seals
BRPI0709131A2 (pt) unidade de compressor
NO343629B1 (no) Undersjøisk trykkforsterker
US9488180B2 (en) Efficient and reliable subsea compression system
AU2007265792B2 (en) Apparatus and method for preventing the penetration of seawater into a compressor module during lowering to or retrieval from the seabed
NO324577B1 (no) Trykk- og lekkasjekontroll i roterende utstyr for undervannskompresjon
EP2847468B1 (en) Pressure equalizer
Rush et al. Tutorial on cryogenic submerged electric motor pumps
NO324811B1 (no) Undervannspumpe
Mollenhauer et al. Safety demands for liquefied gas

Legal Events

Date Code Title Description
AS Assignment

Owner name: AKER SUBSEA AS, NORWAY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:STINESSEN, KJELL OLAV;REEL/FRAME:031435/0204

Effective date: 20131016

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION