US20130340990A1 - Radiative cooling of optoelectronic devices using hyperbolic metamaterials - Google Patents

Radiative cooling of optoelectronic devices using hyperbolic metamaterials Download PDF

Info

Publication number
US20130340990A1
US20130340990A1 US13/920,790 US201313920790A US2013340990A1 US 20130340990 A1 US20130340990 A1 US 20130340990A1 US 201313920790 A US201313920790 A US 201313920790A US 2013340990 A1 US2013340990 A1 US 2013340990A1
Authority
US
United States
Prior art keywords
hyperbolic
radiative
metamaterial
heat
optoelectronic devices
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/920,790
Inventor
Igor I. Smolyaninov
Evgueni Narimanov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BAE Systems Information and Electronic Systems Integration Inc
Purdue Research Foundation
Original Assignee
BAE Systems Information and Electronic Systems Integration Inc
Purdue Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BAE Systems Information and Electronic Systems Integration Inc, Purdue Research Foundation filed Critical BAE Systems Information and Electronic Systems Integration Inc
Priority to US13/920,790 priority Critical patent/US20130340990A1/en
Assigned to BAE SYSTEMS INFORMATION AND ELECTRONIC SYSTEMS INTEGRATION INC. reassignment BAE SYSTEMS INFORMATION AND ELECTRONIC SYSTEMS INTEGRATION INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SMOLYANINOV, IGOR I.
Assigned to PURDUE RESEARCH FOUNDATION reassignment PURDUE RESEARCH FOUNDATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NARIMANOV, EVGUENI E.
Publication of US20130340990A1 publication Critical patent/US20130340990A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • Embodiments are generally related to thermal management techniques. Embodiments also relate to a thermal interface management (TIM) metamaterial having very high heat conductance dominated by thermal radiation. Embodiments additionally relate to a system and method of dissipating heat generated by electronic and optical signal processing devices.
  • TIM thermal interface management
  • Dissipation of heat generated by electronic and optical signal processing devices is a major problem which limits device performance in harsh military and civilian applications. The problem is severe when large amount of heat has to be dissipated over a small period of time.
  • Significant enhancements in fundamental device materials, technologies, and system integration have led to rapid increase in the total power consumption of CMOS, tele-communication, active sensing and imaging devices.
  • relatively little progress has occurred in thermal management techniques mainly in the high heat conductance materials and TIMs.
  • Metamaterial technologies have matured over the past decade for a variety of applications such as super resolution imaging, cloaking, and perfect absorption.
  • Various classes of metamaterials have emerged that show exotic electromagnetic properties like negative index, optical magnetism, giant chirality, epsilon-near-zero, bianisotropy, and spatial dispersion among many others.
  • the central guiding principle in all the meter materials consists of fabricating a medium composed of unit cells far below the size of the wavelength. The unique resonances of the unit cell based on its structure and material composition as well as coupling between the cells lead to a designed macroscopic electromagnetic response.
  • hyperbolic metamaterials One class of artificial media which received a lot of attention is hyperbolic metamaterials. They derive their name from the unique form of the iso-frequency curve which is hyperbolic instead of circular as in conventional dielectrics. With today's nanofabrication techniques, it is possible to manufacture artificial materials such as photonic band gap materials and metamaterials which exhibit very unusual material properties like negative refraction. Because of such properties they are considered as good candidates for perfect lensing, for repulsive Casmir forces and enhanced or tunable radiative heat flux at the nano scale to mention a few. There exists a class of uni-axial metamaterials for which the permittivity and permeability tensor elements are riot all of the same sign.
  • TIM Thermal Interface Management
  • Microelectronic device using hyperbolic metamaterials solves thermal management issues in optoelectronic device& Hyperbolic metamaterials have divergent photonic density of states; therefore its radiative heat conductance also diverges.
  • the method of radiative cooling of optoelectronic devices uses a hyperbolic metamaterial TIM layer below the heat generating optoelectronics.
  • Optoelectronic device is optimized for high radiative heat conductance due to broad hyperbolic frequency band in the Long-Wavelength Infrared (LWIR) range with an efficient “electromagnetic black hole” thermal interface between the metamaterial TIM layer and a metallic heat sink.
  • LWIR Long-Wavelength Infrared
  • a modified Stefan-Boltzmann law in the hyperbolic metamaterial layer enables domination of the radiative heat transfer in the TIM layer.
  • the present invention allows for radiative heat dissipation into a hyperbolic metamaterial which is many orders of magnitude larger compared to heat dissipation into regular materials.
  • FIG. 1 illustrates a perspective view of phase space volume between two constant frequency surfaces for an elliptical dielectric material, in accordance with the disclosed embodiments
  • FIG. 2 illustrates a perspective view of phase space volume between two constant frequency surfaces for a hyperbolic material with ⁇ ⁇ ⁇ 0, ⁇ ⁇ >0, in accordance with the disclosed embodiments;
  • FIG. 3 illustrates a schematic diagram of different thermal conductivity mechanisms in metals and dielectric, in accordance with the disclosed embodiments.
  • FIG. 4 illustrates a schematic diagram of different thermal conductivity mechanisms in hyperbolic media, in accordance with the disclosed embodiments.
  • a hyperbolic metamaterial thermal interface layer is positioned below the heat generating optoelectronic layer, which is optimized for high radiative heat conductance into a heat sink. Due to a broad hyperbolic frequency band in the LWIR range, radiative heat dissipation into a hyperbolic metamaterial is many orders of magnitude larger compared to heat dissipation into regular materials.
  • Hyperbolic metamaterials exhibit unique electromagnetic properties resulting from the broadband singular behavior of their density of photonic states. This singular behavior is best understood through a visual representation of the density of states in terms of the phase space volume enclosed by two surfaces corresponding to different values of the light frequency.
  • the phase space volume enclosed between two such surfaces is then finite, corresponding to a finite density of photonic states.
  • one of the components of the dielectric permittivity tensor is negative, the following equation,
  • FIG. 1 illustrates a perspective view of phase space volume between two constant frequency surfaces for an elliptical dielectric material 100
  • FIG. 2 illustrates a perspective view of phase space volume between two constant frequency surfaces for a hyperbolic material 200 with ⁇ ⁇ ⁇ 0, ⁇ ⁇ >0.
  • the phase space volume between two such hyperboloids is infinite, leading to an infinite density of photonic states. While there are many mechanisms leading to a singularity in the density of photonic states, this one is unique as (in the effective medium limit) it leads to the infinite value of the density of states for every frequency where different components of the dielectric permittivity have opposite signs.
  • This behavior explains the robust performance of hyperbolic metamaterials: while disorder can change the magnitude of the dielectric permittivity components, leading to a “deformation” of the corresponding hyperboloid in the phase (momentum) space, it will remain a hyperboloid and will therefore still support an infinite density of states.
  • Such effective medium description will eventually fail at the point when the wavelength of the propagating mode becomes comparable to the size of the hyperbolic metamaterial unit cell a, introducing a natural wave number cut-off given by:
  • the unit cell size in optical metamaterials runs from a ⁇ 10 nm (semiconductor and metal-dielectric layered structures) to a ⁇ 100 nm (nano wire composites).
  • the “hyperbolic” enhancement factor in the density of states scales as
  • the “hyper-singularity” leads to the optical density of states enhancement by a factor of 10 3 -10 5 .
  • the enhanced photonic density of states in the hyperbolic metamaterials originates from the waves with high wave numbers that are supported by the system. Such propagating modes do not have an equivalent in “regular” dielectrics where k ⁇ ⁇ /c. As each of these waves can be thermally excited, a hyperbolic metamaterial will therefore show a dramatic enhancement in the radiative transfer rates.
  • hyperbolic dispersion rely on either the metal-dielectric semiconductor layer approach or incorporate aligned metal nanowire composites.
  • the hyperbolic behavior is observed for the wavelengths above ⁇ 10 ⁇ m if the system is fabricated using semiconductors, or for the wavelength above ⁇ 1 ⁇ m if the metamaterial is composed of metal-dielectric layers.
  • the hyperbolic dispersion is present at ⁇ 1 ⁇ m.
  • S T (0) is the blackbody thermal energy flux for emission into the free space
  • is the volume fraction of the conducting component of the metamaterial
  • ⁇ d is the permittivity of the dielectric component of the composite
  • N and m* are respectively the free charge carrier density in the metamaterial and their effective mass
  • FIG. 3 illustrates a schematic diagram 300 of different thermal conductivity mechanisms in regular media 306 comprising metals and dielectrics
  • FIG. 4 illustrates a schematic diagram 400 of different thermal conductivity mechanisms in hyperbolic media 406
  • different thermal conductivity mechanisms includes transfer of photons 310 , phonons 320 and electrons 330 from heat source 302 to heat sink 304
  • different thermal conductivity mechanisms includes transfer of photons 410 , phonons 420 and electrons 430 from heat source 402 to heat sink 404 .
  • the nanowire-based approach shows a higher enhancement, as

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

A method of radiative cooling of optoelectronic devices using a hyperbolic metamaterial TIM layer below the heat generating optoelectronics is disclosed. Optoelectronic devices are optimized for high radiative heat conductance due to broad hyperbolic frequency band in the Long-Wavelength Infrared (LWIR) range with an efficient electromagnetic black hole thermal interface between the metamaterial TIM layer and a metallic heat sink. A modified Stefan-Boltzmann law in the hyperbolic metamaterial layer enables domination of the radiative heat transfer in the TIM layer. The broadband divergence of the photonic density of states in hyperbolic metamaterials leads to an increase in radiative heat transfer, beyond the limit set by the Stefan-Boltzmann law. The resulting radiative thermal hyper-conductivity approach or even exceed heat conductivity via electrons and phonons in regular solids.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This Application claims rights under 35 USC §119(e) from U.S. Application Ser. No. 61/661,588 filed 19 Jun. 2012 the contents of which are incorporated herein by reference.
  • TECHNICAL FIELD
  • Embodiments are generally related to thermal management techniques. Embodiments also relate to a thermal interface management (TIM) metamaterial having very high heat conductance dominated by thermal radiation. Embodiments additionally relate to a system and method of dissipating heat generated by electronic and optical signal processing devices.
  • BACKGROUND OF THE INVENTION
  • Dissipation of heat generated by electronic and optical signal processing devices is a major problem which limits device performance in harsh military and civilian applications. The problem is severe when large amount of heat has to be dissipated over a small period of time. Significant enhancements in fundamental device materials, technologies, and system integration have led to rapid increase in the total power consumption of CMOS, tele-communication, active sensing and imaging devices. However, relatively little progress has occurred in thermal management techniques mainly in the high heat conductance materials and TIMs.
  • Metamaterial technologies have matured over the past decade for a variety of applications such as super resolution imaging, cloaking, and perfect absorption. Various classes of metamaterials have emerged that show exotic electromagnetic properties like negative index, optical magnetism, giant chirality, epsilon-near-zero, bianisotropy, and spatial dispersion among many others. The central guiding principle in all the meter materials consists of fabricating a medium composed of unit cells far below the size of the wavelength. The unique resonances of the unit cell based on its structure and material composition as well as coupling between the cells lead to a designed macroscopic electromagnetic response.
  • One class of artificial media which received a lot of attention is hyperbolic metamaterials. They derive their name from the unique form of the iso-frequency curve which is hyperbolic instead of circular as in conventional dielectrics. With today's nanofabrication techniques, it is possible to manufacture artificial materials such as photonic band gap materials and metamaterials which exhibit very unusual material properties like negative refraction. Because of such properties they are considered as good candidates for perfect lensing, for repulsive Casmir forces and enhanced or tunable radiative heat flux at the nano scale to mention a few. There exists a class of uni-axial metamaterials for which the permittivity and permeability tensor elements are riot all of the same sign.
  • In particular, for such materials the dispersion relation for the solutions of Helmholtz's equation inside the material is not an ellipsoid as for normal uniaxial materials but a hyperboloid. For this reason such materials are also called hyperbolic materials. These materials have already been considered for super-resolution imaging and enhanced thermal conductivity inside the material itself. The heat flux between two bodies consisting of hyperbolic materials showing that these materials can have large thermal conductivity for a broad frequency range resulting in large heat fluxes and that they can be used to realize a blackbody at the nano scale.
  • A need therefore exists for an improved method of dissipating heat generated by electronic and optical signal processing devices.
  • BRIEF SUMMARY
  • The following summary is provided to facilitate an understanding of some of the innovative features unique to the disclosed embodiment and is not intended to be a full description. A full appreciation of the various aspects of the embodiments disclosed herein can be gained by taking the entire specification, claims, drawings, and abstract as a whole.
  • It is, therefore, one aspect of the disclosed embodiments to provide for thermal management techniques.
  • It is another aspect of the disclosed embodiments to provide for a Thermal Interface Management (TIM) metamaterial having very high heat conductance dominated by thermal radiation.
  • It is a further aspect of the present invention to provide for a system and method of dissipating heat generated by electronic and optical signal processing devices.
  • The aforementioned aspects and other objectives and advantages can now be achieved as described herein. Radiative cooling of optoelectronic devices using hyperbolic metamaterials is disclosed. The broadband divergence of the photonic density of states in hyperbolic metamaterials leads to an increase in radiative heat transfer, beyond the limit set by the Stefan-Boltzmann law. The resulting radiative thermal “hyper-conductivity” approach or even exceed heat conductivity via electrons and phonons in regular solids.
  • Microelectronic device using hyperbolic metamaterials solves thermal management issues in optoelectronic device& Hyperbolic metamaterials have divergent photonic density of states; therefore its radiative heat conductance also diverges. The method of radiative cooling of optoelectronic devices uses a hyperbolic metamaterial TIM layer below the heat generating optoelectronics. Optoelectronic device is optimized for high radiative heat conductance due to broad hyperbolic frequency band in the Long-Wavelength Infrared (LWIR) range with an efficient “electromagnetic black hole” thermal interface between the metamaterial TIM layer and a metallic heat sink. A modified Stefan-Boltzmann law in the hyperbolic metamaterial layer enables domination of the radiative heat transfer in the TIM layer.
  • Those skilled in the art will appreciate that the present invention allows for radiative heat dissipation into a hyperbolic metamaterial which is many orders of magnitude larger compared to heat dissipation into regular materials.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying figures, in which like reference numerals refer to identical or functionally-similar elements throughout the separate views and which are incorporated in and form a part of the specification, further illustrate the disclosed embodiments and, together with the detailed description of the invention, serve to explain the principles of the disclosed embodiments.
  • FIG. 1 illustrates a perspective view of phase space volume between two constant frequency surfaces for an elliptical dielectric material, in accordance with the disclosed embodiments;
  • FIG. 2 illustrates a perspective view of phase space volume between two constant frequency surfaces for a hyperbolic material with ε<0, ε>0, in accordance with the disclosed embodiments;
  • FIG. 3 illustrates a schematic diagram of different thermal conductivity mechanisms in metals and dielectric, in accordance with the disclosed embodiments; and
  • FIG. 4 illustrates a schematic diagram of different thermal conductivity mechanisms in hyperbolic media, in accordance with the disclosed embodiments.
  • DETAILED DESCRIPTION
  • The particular values and configurations discussed these non-limiting examples can be varied and are cited merely to illustrate at least one embodiment and are not intended to limit the scope thereof.
  • A hyperbolic metamaterial thermal interface layer is positioned below the heat generating optoelectronic layer, which is optimized for high radiative heat conductance into a heat sink. Due to a broad hyperbolic frequency band in the LWIR range, radiative heat dissipation into a hyperbolic metamaterial is many orders of magnitude larger compared to heat dissipation into regular materials.
  • Hyperbolic metamaterials exhibit unique electromagnetic properties resulting from the broadband singular behavior of their density of photonic states. This singular behavior is best understood through a visual representation of the density of states in terms of the phase space volume enclosed by two surfaces corresponding to different values of the light frequency. For extraordinary waves in a uniaxial dielectric metamaterial, the dispersion law describes an ellipsoid in the wave momentum (k−) space (which reduces to a sphere in isotropic media where ε). The phase space volume enclosed between two such surfaces is then finite, corresponding to a finite density of photonic states. However, when one of the components of the dielectric permittivity tensor is negative, the following equation,
  • k 2 ε + k 2 ε = ω 2 c 2 ( 1 )
  • describes a hyperboloid in the phase space. FIG. 1 illustrates a perspective view of phase space volume between two constant frequency surfaces for an elliptical dielectric material 100 and FIG. 2 illustrates a perspective view of phase space volume between two constant frequency surfaces for a hyperbolic material 200 with ε<0, ε>0.
  • As a result, the phase space volume between two such hyperboloids (corresponding to different values of frequency) is infinite, leading to an infinite density of photonic states. While there are many mechanisms leading to a singularity in the density of photonic states, this one is unique as (in the effective medium limit) it leads to the infinite value of the density of states for every frequency where different components of the dielectric permittivity have opposite signs. This behavior explains the robust performance of hyperbolic metamaterials: while disorder can change the magnitude of the dielectric permittivity components, leading to a “deformation” of the corresponding hyperboloid in the phase (momentum) space, it will remain a hyperboloid and will therefore still support an infinite density of states. Such effective medium description will eventually fail at the point when the wavelength of the propagating mode becomes comparable to the size of the hyperbolic metamaterial unit cell a, introducing a natural wave number cut-off given by:

  • kmax˜1/a   (2)
  • Depending on the metamaterial design and the fabrication method used, the unit cell size in optical metamaterials runs from a ˜10 nm (semiconductor and metal-dielectric layered structures) to a ˜100 nm (nano wire composites). As the “hyperbolic” enhancement factor in the density of states scales as
  • ρ ( ω ) ρ 0 ( ω ) ( k max ω / c ) 3 ( 3 )
  • where ρ0˜ω2 is the free-space result, even with the cut-off taken into account, the “hyper-singularity” leads to the optical density of states enhancement by a factor of 103-105. Physically, the enhanced photonic density of states in the hyperbolic metamaterials originates from the waves with high wave numbers that are supported by the system. Such propagating modes do not have an equivalent in “regular” dielectrics where k≦√ εω/c. As each of these waves can be thermally excited, a hyperbolic metamaterial will therefore show a dramatic enhancement in the radiative transfer rates.
  • Furthermore, it is the density of the photonic states ρ (ω) that limits the blackbody radiation energy density uT and the energy radiated per unit area of a black body ST α uT
  • u T = 0 ω ℏω exp ( ℏω kT ) - 1 ρ ( ω ) , ( 4 )
  • leading to the Stefan-Boltzmann upper bound to the radiative energy flux given by

  • S T (0) =n 2 σT 4   (5)
  • and the corresponding value of the electromagnetic energy density is given by

  • u T (0)=(4n 3 /cT 4   (6)
  • for a dielectric with the refractive index n. As a result, the singular behavior of the photonic density of states in hyperbolic metamaterial takes these media beyond the realm of the Stefan-Boltzmann law, with no ultimate limit on the radiative heat transfer.
  • For the energy flux along the symmetry axis of a uniaxial hyperbolic metamaterial is given by,
  • S T c 2 k max 4 32 π 2 ε · ε < 0 ω 1 exp ( ℏω k B T ) - 1 ε ε ω - ε ε ω det ε ( 7 )
  • where the frequency integration is taken over the frequency bandwidth corresponding to the hyperbolic dispersion. Note that the heat flux is very sensitive to the dispersion in the hyperbolic metamaterial, dε/dω. The derivative of the dielectric permittivity determines the difference in the asymptotic behavior at of the two hyperbolic surfaces that determine the phase space volume between the frequencies ω and ω+dω, and thus defines the actual value of the density of states.
  • The most practical and widely used systems leading to hyperbolic dispersion rely on either the metal-dielectric semiconductor layer approach or incorporate aligned metal nanowire composites. For the planar layers design, the hyperbolic behavior is observed for the wavelengths above ˜10 μm if the system is fabricated using semiconductors, or for the wavelength above ˜1 μm if the metamaterial is composed of metal-dielectric layers. For the nanowire based approach, the hyperbolic dispersion is present at λ≧1 μm. As a result, with either of these conventional metamaterial designs, the desired hyperbolic behavior covers the full range of wavelength relevant for the radiative heat transfer.
  • The following thermal energy flux equations are obtained, for the layered metamaterial design,
  • S T ε ( 0 ) 4 S T ( 0 ) ( k max k p ) 4 ( 8 )
  • For the nanowire-based composite,
  • S T S T ( 0 ) 5 16 π 2 ( k max 2 k T k p ) 2 ( 9 )
  • where ST (0) is the blackbody thermal energy flux for emission into the free space,
  • ε ( 0 ) ε d 1 - p ( 10 )
  • ρ is the volume fraction of the conducting component of the metamaterial
  • εd is the permittivity of the dielectric component of the composite
  • k p = 4 π N m * e c ( 11 )
  • N and m* are respectively the free charge carrier density in the metamaterial and their effective mass
  • the thermal momentum kT=kBc
  • FIG. 3 illustrates a schematic diagram 300 of different thermal conductivity mechanisms in regular media 306 comprising metals and dielectrics and FIG. 4 illustrates a schematic diagram 400 of different thermal conductivity mechanisms in hyperbolic media 406. In FIG. 3, different thermal conductivity mechanisms includes transfer of photons 310, phonons 320 and electrons 330 from heat source 302 to heat sink 304. In FIG. 4, different thermal conductivity mechanisms includes transfer of photons 410, phonons 420 and electrons 430 from heat source 402 to heat sink 404.
  • Parametrically, the nanowire-based approach shows a higher enhancement, as

  • k T <<k pT≃10 μm, λp≃1 μm)   (12)
  • However, with existing technology metamaterial layers can be fabricated with much smaller thickness (down to 10 nm) than the practical values for the nanowire periodicity (≧100 nm). As a result, in both cases,

  • S T≃(104 . . . 105)S T (0)   (13)
  • thus firmly placing hyperbolic metamaterials in the realm of practical applications for radiative heat transfer and thermal management.
  • While the present invention has been described in connection with the preferred embodiments of the various figures, it is to be understood that other similar embodiments may be used or modifications and additions may be made to the described embodiment for performing the same function of the present invention without deviating there from. Therefore, the present invention should not be limited to any single embodiment, but rather construed in breadth and scope in accordance with the recitation of the, appended claims.

Claims (8)

What is claimed is:
1. A method of radiative cooling of optoelectronic devices comprising:
positioning a hyperbolic metamaterial thermal interface layer below a heat generating optoelectronic layer.
2. The method of claim wherein said hyperbolic metamaterial has a metal-dielectric layered design.
3. The method of claim 1, wherein said hyperbolic metamaterial incorporates aligned metal nanowire composites.
4. The method of claim wherein said hyperbolic metamaterial comprises divergent photonic density of states.
5. The method of claim 1 wherein said hyperbolic metamaterial comprises divergent radiative heat conductance.
6. The method of claim 1 wherein said optoelectronic devices are optimized for high radiative heat conductance into a heat sink.
7. The method of claim 1 wherein radiative heat dissipation into said hyperbolic metamaterial is of greater orders of magnitude.
8. The method of claim 1 wherein said hyperbolic metamaterial exhibit electromagnetic properties resulting from broadband singular behavior of their said photonic density of states.
US13/920,790 2012-06-19 2013-06-18 Radiative cooling of optoelectronic devices using hyperbolic metamaterials Abandoned US20130340990A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/920,790 US20130340990A1 (en) 2012-06-19 2013-06-18 Radiative cooling of optoelectronic devices using hyperbolic metamaterials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261661588P 2012-06-19 2012-06-19
US13/920,790 US20130340990A1 (en) 2012-06-19 2013-06-18 Radiative cooling of optoelectronic devices using hyperbolic metamaterials

Publications (1)

Publication Number Publication Date
US20130340990A1 true US20130340990A1 (en) 2013-12-26

Family

ID=49773421

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/920,790 Abandoned US20130340990A1 (en) 2012-06-19 2013-06-18 Radiative cooling of optoelectronic devices using hyperbolic metamaterials

Country Status (1)

Country Link
US (1) US20130340990A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140059830A1 (en) * 2012-09-06 2014-03-06 Bae Systems Information And Electronic Systems Integration Inc. Hyperbolic metamaterials as distributed bragg mirrors for high power vcsel devices
US10386097B2 (en) 2015-06-18 2019-08-20 The Trustees Of Columbia University In The City Of New York Systems and methods for radiative cooling and heating
US11048023B2 (en) 2019-08-15 2021-06-29 International Business Machines Corporation Tunable hyperbolic metamaterials
US11674759B2 (en) 2020-03-11 2023-06-13 Tovota Motor Engineering & Manufacturing North America, Inc. Multi mode heat transfer systems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060125681A1 (en) * 2002-08-29 2006-06-15 The Regents Of The University Of California Indefinite materials
US7332807B2 (en) * 2005-12-30 2008-02-19 Intel Corporation Chip package thermal interface materials with dielectric obstructions for body-biasing, methods of using same, and systems containing same
US8831058B2 (en) * 2012-09-06 2014-09-09 Bae Systems Information And Electronic Systems Integration Inc. Hyperbolic metamaterials as distributed bragg mirrors for high power VCSEL devices
US9322953B2 (en) * 2010-05-18 2016-04-26 Purdue Research Foundation Energy absorbing materials

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060125681A1 (en) * 2002-08-29 2006-06-15 The Regents Of The University Of California Indefinite materials
US7332807B2 (en) * 2005-12-30 2008-02-19 Intel Corporation Chip package thermal interface materials with dielectric obstructions for body-biasing, methods of using same, and systems containing same
US9322953B2 (en) * 2010-05-18 2016-04-26 Purdue Research Foundation Energy absorbing materials
US8831058B2 (en) * 2012-09-06 2014-09-09 Bae Systems Information And Electronic Systems Integration Inc. Hyperbolic metamaterials as distributed bragg mirrors for high power VCSEL devices
US9031106B2 (en) * 2012-09-06 2015-05-12 Bae Systems Information And Electronic Systems Integration Inc. Hyperbolic metamaterials as distributed bragg mirrors for high power VCSEL devices

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140059830A1 (en) * 2012-09-06 2014-03-06 Bae Systems Information And Electronic Systems Integration Inc. Hyperbolic metamaterials as distributed bragg mirrors for high power vcsel devices
US8831058B2 (en) * 2012-09-06 2014-09-09 Bae Systems Information And Electronic Systems Integration Inc. Hyperbolic metamaterials as distributed bragg mirrors for high power VCSEL devices
US9031106B2 (en) 2012-09-06 2015-05-12 Bae Systems Information And Electronic Systems Integration Inc. Hyperbolic metamaterials as distributed bragg mirrors for high power VCSEL devices
US10386097B2 (en) 2015-06-18 2019-08-20 The Trustees Of Columbia University In The City Of New York Systems and methods for radiative cooling and heating
US11306949B2 (en) 2015-06-18 2022-04-19 The Trustees Of Columbia University In The City Of New York Systems and methods for radiative cooling and heating
US11668497B2 (en) 2015-06-18 2023-06-06 The Trustees Of Columbia University In The City Of New York Systems and methods for radiative cooling and heating
US11048023B2 (en) 2019-08-15 2021-06-29 International Business Machines Corporation Tunable hyperbolic metamaterials
US11674759B2 (en) 2020-03-11 2023-06-13 Tovota Motor Engineering & Manufacturing North America, Inc. Multi mode heat transfer systems

Similar Documents

Publication Publication Date Title
Guo et al. Hyperbolic metamaterials: From dispersion manipulation to applications
Zhu et al. Ultra-broadband terahertz metamaterial absorber
Tsurimaki et al. Large nonreciprocal absorption and emission of radiation in type-I Weyl semimetals with time reversal symmetry breaking
Masoudian Saadabad et al. Polarization-independent perfect absorber enabled by quasibound states in the continuum
Jing et al. Chiral metamirrors for broadband spin-selective absorption
Liu et al. Near-field radiative heat transfer with doped-silicon nanostructured metamaterials
Cao et al. Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators
Poddubny et al. Hyperbolic metamaterials
Gomez-Medina et al. Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces
Song et al. Magnetically tunable near-field radiative heat transfer in hyperbolic metamaterials
Qi et al. Ultra-broadband metamaterial absorber based on all-metal nanostructures
US7843026B2 (en) Composite material with conductive structures of random size, shape, orientation, or location
Hoa et al. Numerical study of an ultrabroadband, wide-angle, polarization-insensitivity metamaterial absorber in the visible region
Hu et al. Nonlocality induced Cherenkov threshold
US20130340990A1 (en) Radiative cooling of optoelectronic devices using hyperbolic metamaterials
Charola et al. Broadband graphene‐based metasurface solar absorber
Wu et al. Double-wavelength nanolaser based on strong coupling of localized and propagating surface plasmon
Campbell et al. Simultaneous excitation of electric and magnetic dipole modes in a resonant core-shell particle at infrared frequencies to achieve minimal backscattering
Wu et al. Nonreciprocal thermal radiation based on Fibonacci quasi-periodic structures
Huang et al. Veselago lens by photonic hyper-crystals
Yang et al. Subwavelength imaging with quantum metamaterials
Behera et al. Plasmonic metamaterial based unified broadband absorber/near infrared emitter for thermophotovoltaic system based on hexagonally packed tungsten doughnuts
Gao et al. Thermal equilibrium spin torque: Near-field radiative angular momentum transfer in magneto-optical media
Fang et al. Dual-polarization strong nonreciprocal thermal radiation with silicon-based nanopore arrays
Zhang et al. An enhanced high Q-factor resonance of quasi-bound states in the continuum with all-dielectric metasurface based on multilayer film structures

Legal Events

Date Code Title Description
AS Assignment

Owner name: BAE SYSTEMS INFORMATION AND ELECTRONIC SYSTEMS INT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SMOLYANINOV, IGOR I.;REEL/FRAME:030648/0769

Effective date: 20130506

AS Assignment

Owner name: PURDUE RESEARCH FOUNDATION, INDIANA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NARIMANOV, EVGUENI E.;REEL/FRAME:031064/0609

Effective date: 20130809

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION