US20130328003A1 - Clip for connecting wire fencing to a fence post - Google Patents

Clip for connecting wire fencing to a fence post Download PDF

Info

Publication number
US20130328003A1
US20130328003A1 US13/608,736 US201213608736A US2013328003A1 US 20130328003 A1 US20130328003 A1 US 20130328003A1 US 201213608736 A US201213608736 A US 201213608736A US 2013328003 A1 US2013328003 A1 US 2013328003A1
Authority
US
United States
Prior art keywords
clip
securing arm
wire
stabilizing bar
fence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/608,736
Inventor
Richard L. Hendricks
Ryan T. Grace
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Box T Brand LLC
Original Assignee
Box T Brand LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/493,043 external-priority patent/US20130328000A1/en
Application filed by Box T Brand LLC filed Critical Box T Brand LLC
Priority to US13/608,736 priority Critical patent/US20130328003A1/en
Assigned to BOX T BRAND, LLC reassignment BOX T BRAND, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GRACE, RYAN T., HENDRICKS, RICHARD L.
Priority to PCT/US2013/041405 priority patent/WO2013188044A1/en
Publication of US20130328003A1 publication Critical patent/US20130328003A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H17/00Fencing, e.g. fences, enclosures, corrals
    • E04H17/02Wire fencing, e.g. made of wire mesh
    • E04H17/10Wire fencing, e.g. made of wire mesh characterised by the way of connecting wire to posts; Droppers
    • E04H17/124Wire fencing, e.g. made of wire mesh characterised by the way of connecting wire to posts; Droppers connecting by one or more clamps, clips, screws, wedges or ties
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H17/00Fencing, e.g. fences, enclosures, corrals
    • E04H17/02Wire fencing, e.g. made of wire mesh
    • E04H17/04Wire fencing, e.g. made of wire mesh characterised by the use of specially adapted wire, e.g. barbed wire, wire mesh, toothed strip or the like; Coupling means therefor
    • E04H17/045Barbed wire or toothed strip

Definitions

  • Wire type fences are utilized in the agricultural industry for separating property lines and for maintaining livestock.
  • Current wire fencing systems can lack in durability and functionality, be difficult to repair, and suffer from several performance issues.
  • aspects of the disclosure pertain to a clip for connecting wire fencing to a line post of a fence.
  • the clip includes an aperture for receiving the wire to facilitate movement of the wire when the clip is coupled to the line post.
  • FIG. 1 is an example perspective view of an example fence clip
  • FIG. 2 is an example side plan view of the example fence clip shown in FIG. 1 ;
  • FIG. 3 is an example bottom plan view of the example fence clip shown in FIG. 1 ;
  • FIG. 4 is an example top plan view of the example fence clip shown in FIG. 1 and an example top plan view of an example fence post;
  • FIG. 5 is an example top plan view of the example fence clip shown in FIG. 4 secured to an example fence post;
  • FIG. 6 is an example perspective view of the example fence clip shown in FIG. 5 ;
  • FIG. 7 is an example perspective view of the example fence clip and the example fence post shown in FIG. 5 , which further depicts a section of example wire;
  • FIG. 8 is an example front plan view of the example fence clip, the example fence post and the section of example wire shown in FIG. 7 ;
  • FIG. 9 is an example top plan view of the example fence clip, the example fence post and the example section of example wire shown in FIG. 7 ;
  • FIG. 10 is an example side plan view of the example fence clip, the example fence post and section of example wire shown in FIG. 7 ;
  • FIG. 11 is an example perspective view illustrating multiple example fence posts
  • FIG. 12 is an example perspective view of the example fence clip shown in FIG. 1 with example wire;
  • FIG. 13 is an example perspective view of an example fence clip
  • FIG. 14 is an example top plan view of the example fence clip shown in FIG. 13 secured to an example fence post;
  • FIG. 15 is an example perspective view of an example fence clip
  • FIG. 16 is an example top plan view of the example fence clip shown in FIG. 15 secured to an example fence post;
  • FIG. 17 is an example perspective view of an example fence clip
  • FIG. 18 is an example top plan view of the example fence clip shown in FIG. 17 secured to an example fence post;
  • FIG. 19 is an example perspective view of an example fence clip.
  • FIG. 20 is an example top plan view of the example fence clip shown in FIG. 19 secured to an example fence post;
  • Wire fences of all types are utilized in the agricultural industry.
  • a few examples of wire fences include barbed wire fences and electric wire fences.
  • wire fencing due to its relatively low expense and its relatively high strength and restraining properties, is often used for constructing fences for containing animals (ex.—cattle) within large areas (ex.—pastures).
  • wire fences are relatively easy to construct, while requiring a minimal amount of equipment (ex.—fence posts, wire, wire fasteners, fence staples).
  • strands of wire can be aligned under tension between heavy braced fence posts (ex.—end posts, corner posts or strainer posts). Further, the strands of wire can be held at or near a desired height along the entire span (ex.—from end post-to-end post) of the fence by being attached to a series of line posts which are located between and generally co-linear with the end posts.
  • the strands can be spaced apart from each other such that the top strand of the wire fence is held at or near a height which is proximal to the upper (ex.—top) ends of the fence posts along the entire span of the fence, while the bottom strand of the wire fence is held at a height which is proximal to the ground level along the entire span of the fence, thereby allowing the multiple strands to cover the vertical area extending from the tops of the posts to the ground level.
  • wire fasteners are used to tightly secure the wire between the wire fastener and the line posts (ex.—metal T-posts) in such a manner so as to: a.) maintain each wire at its correct height along the entire span of the fence; and b.) restrict movement of each strand (ex.—vertical and/or horizontal movement).
  • one or more of the strands of wire can begin to sag in some places (ex.—sections) along the fence, thereby providing an indication that the tension on that particular strand of wire has to be adjusted (ex.—tightened) in order to re-position the strand to its correct height relative to the fence posts.
  • breaks in the wire can occur at points where the wire fastener secures the wire to the line posts. Due to the movement restraint of the wire caused by currently available wire fasteners, the wire fasteners typically need to be removed before the strand of wire can be repaired, moved and/or tightened (ex.—before the tension upon the strand of wire can be increased).
  • currently available wire fasteners do not provide clearance between the line post and the fastener to allow for the strand of wire to freely move along the fence line (ex.—towards one of the end posts) to allow for proper height adjustment and/or tightening of the wire. As such, when a force is applied to the wire, the wire is restricted from movement and held fast to the post by the fastener. Further, currently available wire fasteners, in order to limit the inward/outward movement of the strands, can be connected to the line posts in such a manner so as to pin or trap the wire against the line posts.
  • aspects of the disclosure include a fence clip that includes an aperture for receiving the strand of wire to facilitate movement of the wire when the clip is coupled to the line post.
  • the fence clip and the aperture associated with the fence clip facilitates a separation between the wire and the post which allows some inward and outward movement of the strand of wire relative to the fenced-in area (ex.—movement towards and away from the post) and parallel to the ground, thereby providing some spring-like flexibility to the fence along the entire span of the fence (ex.—from end post-to-end post), while promoting the avoidance of the wire degradation and rusting issues associated with currently available wire fasteners.
  • the fence clip and the aperture of the fence clip also provide sufficient space to allow for omni-directional movement (ex.—up-and-down movement, side-to-side movement, and movement along the fence line/towards the end posts) of the strand of wire, thereby allowing for the wire to be moved, repaired and/or tightened (ex.—stretched or pulled towards one of the end posts of the fence to take slack out of the wire so that the wire can be positioned and/or re-positioned at the desired height without having to loosen or detach the clip from the line post.
  • omni-directional movement ex.—up-and-down movement, side-to-side movement, and movement along the fence line/towards the end posts
  • tightened ex.—stretched or pulled towards one of the end posts of the fence to take slack out of the wire so that the wire can be positioned and/or re-positioned at the desired height without having to loosen or detach the clip from the line post.
  • the fence clip and the aperture of the fence clip also promote the ability to maintain a strand of wire at or near a desired height and/or distance relative to a fence post (ex.—a line post), the ground and/or other strands of wire of the fence.
  • the fence clip and the aperture of the fence clip can be configured for use with several types of wire fences.
  • the size of the aperture can be configured to allow clearance for barbs of a barb wire fence.
  • one or more portions of the fence clip and/or aperture of the fence clip can be coated with an electrical insulating material to reduce the likelihood of shorts with an electrical fence.
  • the aperture can be configured to receive an electrical insulating member such as an insulated insert to reduce shorting with electrical fences.
  • the fence clip is described below using terminology that identifies elements of the fence clip. The identification of the elements is not meant to limit the construction of the fence clip to individual elements being coupled together. Although a fence clip having individual elements coupled together is contemplated, the fence clip can be formed of a solid uniform construction such as a molded metal member, a bent metal wire, a molded plastic member, a bent plastic member, a molded composite member, and/or a bent composite member.
  • the fence clip 100 can include one or more securing arms.
  • the fence clip 100 can include a first securing arm 102 and/or a second securing arm 104 .
  • Each securing arm ( 102 , 104 ) can include a first end 106 and a second end 108 .
  • the second end 108 may not be a true end but may be the end of the securing arm portion of fence clip 100 for purposes of describing elements of a continuous structure.
  • the first ends 106 of the securing arms ( 102 , 104 ) can be spaced apart from each other by a distance D 2 , as shown in FIG. 3 .
  • first securing arm 102 can be generally parallel to second securing arm 104 .
  • first securing arm 102 and second securing arm 104 may not be parallel to one another.
  • the fence clip 100 can further include a plurality of stabilizing bars.
  • the fence clip 100 can include a first stabilizing bar 110 and a second stabilizing bar 112 .
  • Each stabilizing bar ( 110 , 112 ) can include a first end 114 and a second end 116 . Similar to the first and second securing arms ( 102 , 104 ), the first end 114 and the second end 116 may not be true ends but may be the end of the stabilizing bar portion of the fence clip 100 for purposes of the describing elements of a continuous structure.
  • each stabilizing bar ( 110 , 112 ) can include a first side (ex.—an inner side) 118 and a second side (ex.—an outer side) 120 can located generally opposite the first side 118 .
  • first stabilizing bar 110 can be generally parallel to second stabilizing bar 112 .
  • first stabilizing bar 110 can be generally perpendicular to first securing arm 102 and second stabilizing bar 112 can be generally perpendicular to second securing arm 104 .
  • first stabilizing bar 110 and first securing arm 104 can generally reside in the same horizontal plane.
  • second stabilizing bar 112 and second securing arm 104 can generally reside in the same horizontal plane.
  • first stabilizing bar 110 , second stabilizing bar 112 , first securing arm 102 and second securing arm 104 can generally reside in the same horizontal plane.
  • the first stabilizing bar 110 and the second stabilizing bar 112 can have other orientations depending on the tool utilized for securing fence clip 100 to the fence post.
  • one common tool for securing fence clips to a fence post is a 440 T-post gripper manufactured by Dutton-Lainson Company of Hastings, Nebr. Such tools have top and bottom positioning brackets to hold the fence clip during positioning and crimping.
  • first stabilizing bar 110 and second stabilizing bar 112 can be configured in relation to their respective first securing arm 102 and second securing arm 104 so that the first end 130 and second end 132 are vertically offset (e.g. not within the same horizontal plane) with respect to the first joint 122 and second joint 124 .
  • the vertical offset can allow the helical member 126 to clear the one or more of the positioning brackets of the tool (such as the indicated T-post gripper).
  • the first stabilizing bar 110 can be linear and slant between the first joint 122 and the first end 130 .
  • the second stabilizing bar 112 can be linear and slant between the second joint 124 and the second end 132 . Providing a slant is just one way of providing clearance for a crimping tool.
  • First stabilizing bar 110 and second stabilizing bar 112 can also be non-linear to provide the vertical offset.
  • the fence clip 100 can further include one or more joints.
  • the second end 108 of the first securing arm 102 can be coupled to the first end 114 of the first stabilizing bar 110 by a first joint 122
  • the second end 108 of the second securing arm 104 is coupled to the first end 114 of the second stabilizing bar 112 by a second joint 124 .
  • the joints ( 122 , 124 ) can be malleable joints, hinge joints, snapping joints, locking joints, mechanical joints, magnetic joints and combinations thereof. Joints ( 122 , 124 ) can facilitate hinged movement between stabilizing bars ( 110 , 112 ) and a respective securing arm ( 102 , 104 ).
  • the first securing arm 102 can be rotated about joint 122 and relative to stabilizing bar 110 .
  • the rotation can occur from an open angle to a closed angle.
  • FIG. 4 generally depicts fence clip 100 in an open position.
  • the open angle between the securing arm 102 and stabilizing bar 110 is about 90° in FIG. 4 .
  • the open angle can be between about 45° to about 225°
  • the angle can be about 45°, 50°, 55°, 60°, 65°, 70°, 75°, 80°, 85°, 90°, 95°, 100°, 105°, 110°, 115°, 120°, 125°, 130°, 135°, 140°, 145°, 150°, 155°, 160°, 165°, 170°, 175°, 180°, 185°, 190°, 195°, 200°, 205°, 210°, 215°, 220°, 225° to about 45°, 50°, 55°, 60°, 65°, 70°, 75°, 80°, 85°, 90°, 95°, 100°, 105°, 110°, 115°, 120°, 125°, 130°, 135°, 140°, 145°, 150°, 155°, 160°, 165°, 170°, 175°, 180°, 185°, 190°, 195°
  • FIG. 5 generally depicts fence clip 100 in a closed position.
  • the closed angle can be between about 45° to about 0°.
  • the closed angle between the first securing arm 102 and the first stabilizing bar 110 can be about 0°, 5°, 10°, 15°, 20°, 25°, 30°, 35°, 40°, 45° to about 0°, 5°, 10°, 15°, 20°, 25°, 30°, 35°, 40°, 45°.
  • the open angle and the closed angle formed by the second securing arm 104 and the second stabilizing bar 112 can include similar angles as indicated above.
  • the fence clip 100 can further include an aperture 128 defined by a helical member 126 .
  • helical member as used herein can include a generally smooth spiral helix as indicated in the figures.
  • the term “helical member” can also encompass a helical member that includes linear portions.
  • helical member 126 can include a triangular shaped helix, a square shaped helix, a pentagram shaped helix and the like.
  • the term “helical member” can include a helical member that is formed continuous with the other members of the clip as depicted in the figures. Yet, the term “helical member” also includes a separate helical member that is not continuous.
  • the fence clip can include a single stabilizing bar that connects joints 122 and 124 .
  • the helical member 126 can include a separate helical member that has an opening and is connected to the single stabilizing bar between joints 122 and 124 .
  • the term “helical member” can encompass a ring shaped member, a triangular shaped member, a square shaped member, a pentagram shaped member and the like.
  • the aperture 128 can have a distance D 1 (as shown in FIG. 2 ). The distance D 1 of the aperture 128 can also be an inner distance of the helical member 126 .
  • Distance D 1 can be a diameter in the situation where the helix member is a spiral type helix or ring shaped member. In other situations, the distance D 1 can be the greatest opening distance formed by the aperture defined by the helical member. For example, D 1 can be from about 0.1 inches to about 2.00 inches.
  • D 1 can be about 0.1, 0.2, 0.3, 0.4, 0.5, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 1.00, 1.25, 1.50, 1.75, 2.0 inches to about 0.1, 0.2, 0.3, 0.4, 0.5, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 1.00, 1.25, 1.50, 1.75, 2.0 inches.
  • helical member 126 can include a first end 130 and a second end 132 . As indicated in FIG. 1 , the first end 130 and the second end 132 may not be a true end but may be the end of the helical structure portion of fence clip 100 for purposes of the describing elements of a continuous structure.
  • the first end 130 of the helical structure 126 can be coupled to or continuous with the second end 116 of the first stabilizing bar 110 .
  • the second end 132 of the helical member 126 can be connected to or continuous with the second end 116 of the second stabilizing bar 112 .
  • the second end 132 of the helical member 126 can be spaced apart from the first end 130 of the helical member 126 by a distance, D 3 , as shown in FIG.
  • distance D 3 (ex.—the width of the aperture opening 134 ) can be from about 0.05 inches to about 1.00 inches.
  • D 3 can be about 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 1.00 inches to about 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 1.00 inches.
  • the aperture opening 134 can be formed generally opposite an apex (ex.—a highest vertical point) 136 of the helical member 126 .
  • the helical member 126 can reside in a generally vertical plane.
  • the vertical plane where the helical member 126 resides can be generally perpendicular to the horizontal plane where the first locking arm 102 resides.
  • the vertical plane where the helical member 126 resides can be generally perpendicular to the horizontal plane where the second locking arm 104 resides.
  • when in an upright position e.g. FIG. 1
  • the first end 130 and the second end 132 are vertically offset from a horizontal plane where the first joint 122 and the second joint 124 reside.
  • the fence clip 100 can be configured for being connected to (ex.—secured to) a fence post (ex.—a line post or a metal T-post located between two end posts of a span of fence) 150 of a wire (ex.—barbed wire, unbarbed wire, electrical wire) fence and can further be configured for connecting (ex.—securing) wire 175 of the fence to the line post 150 .
  • a fence post ex.—a line post or a metal T-post located between two end posts of a span of fence
  • wire ex.—barbed wire, unbarbed wire, electrical wire
  • wire 175 of the fence can be connected to the line post 150 .
  • one type of line post to which the fence clip 100 can be connected can be a T-post (ex.—metal T-post) 150 .
  • the fence clip 100 can also be configured for being connected to various other types and/or shapes of fence post.
  • the discussion provided herein is directed towards the fence clip 100 being secured to a T-post 150 .
  • the T-post 150 is a formed as a longitudinally-extended T-shaped cross-section including a first wall 152 and a second wall 154 .
  • the second wall 154 can be generally perpendicular to the first wall 152 .
  • the first wall 152 can include a first face (ex.—front face) 156 , a second face (ex.—rear face) 158 , located generally opposite the first face 156 , and side edges ( 160 , 162 ) extending between and connected to the faces ( 156 , 158 ).
  • the front face 156 can further have one or more protrusions 164 formed upon its surface.
  • the fence clip 100 can be secured to the T-post 150 by aligning the clip 100 relative to the post 150 (as shown in FIG. 4 ) so that the first wall 152 of the T-post 150 is received between the securing arms ( 102 , 104 ) of the clip 100 .
  • the clip 100 can be constructed and/or can be configurable so that the distance D 2 (shown in FIG. 3 ) separating the securing arms ( 102 , 104 ) is sufficiently wide for simultaneously receiving the first wall 152 and side edges ( 160 , 162 ) of the T-post 150 as shown in FIG. 4 .
  • the distance D 2 separating the securing arms ( 102 , 104 ) can be from about 0.5 inches to about 5.0 inches.
  • D 2 can be about 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25, 2.50, 2.75, 3.00, 3.25, 3.50, 3.75, 4.00, 4.25, 4.50, 4.75, 5.00 inches to about 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25, 2.50, 2.75, 3.00, 3.25, 3.50, 3.75, 4.00, 4.25, 4.50, 4.75, 5.00 inches.
  • the clip 100 can be directed against the front face 156 of the first wall 152 of the T-post 150 , such that one or more of the helical member 126 , the joints ( 122 , 124 ) and the stabilizing bars ( 110 , 112 ) are engaged against (ex.—at least partially contacting) the front face 156 of the first wall 152 of the T-post 150 .
  • the securing arms ( 102 , 104 ) of the clip 100 are of a sufficient length to extend past the first wall 152 of the post 150 .
  • the arms ( 102 , 104 ) can be from about 0.25 inches to about 2.0 inches.
  • the length can be about 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00 inches to about 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00 inches
  • distance D 4 can be from about 0.25 inches to about 2.00 inches.
  • Distance D 4 can be from about 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00 inches to about 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00 inches.
  • the securing arms ( 102 , 104 ) of the clip 100 can be rotated (ex.—bent, moved, incrementally adjusted, crimped) about the joints ( 122 , 124 ) toward both the stabilizing bars ( 110 , 112 ) and the rear face 158 of the first wall 152 of the post 150 .
  • a hand-held mechanical crimping tool can be used to crimp the arms of the clip 100 into the crimped position (the crimped position of the clip 100 being shown in FIGS. 5 and 6 ).
  • the above-referenced rotating of the arms ( 102 , 104 ) of the clip 100 can cause the clip 100 to conform to (ex.—tighten around) the post 150 , as shown in FIG. 5 , such that the joints ( 122 , 124 ) wrap around the side edges ( 160 , 162 ) of the first wall 152 of the post 150 ; the securing arms ( 102 , 104 ) are directed against (ex.—are at least partially in contact with) the rear face 158 of the first wall 152 of the post 150 and; one of the helical member 126 , the first stabilizing bar 110 , and the second stabilizing bar 112 are at least partially engaged against the front face 156 of the first wall 152 of the post 150 .
  • the clip 100 can be formed of a material which is of a gauge or strength that it is strong (ex.—sturdy) enough to provide the above-described secure, tension fit against the post 150 , while still being malleable.
  • the clip 100 can be formed of metal wire, such as galvanized steel or American Wire Gauge (AWG) number “9” wire. It is contemplated that the clip 100 can be at least partially formed of other materials, such as plastic, rubber, a composite, or the like.
  • the fence clip 100 can be secured to a post 150 at a pre-determined height along the post for connecting a strand of wire 175 to the post and for promoting the ability to maintain the strand of wire 175 at or near the pre-determined height along the post 150 .
  • the clip 100 prior to or after securing the clip 100 to the post 150 (as described above and shown in FIG. 5 ), the clip 100 can be aligned relative to a strand of wire 175 (as shown in FIG. 12 ), such that strand of wire 175 is received within the aperture 128 formed by the helical member 126 .
  • the aperture opening 134 separating the first and second ends ( 130 , 132 ) of the helical member 126 allows for introduction of the wire 175 into the aperture 128 formed by the helical member 126 .
  • the aperture 128 can be sufficiently sized to allow for both the sub-strands 180 of the wire 175 and the barbs 185 (in the situation where the wire is a barbed wire) of the wire 175 to be directed through the aperture 128 (as shown in FIGS. 10 and 11 ), such as when stretching the wire 175 along the fence line (ex.—towards an end post of the fence).
  • the aperture 128 can also be sufficiently sized to allow for at least some inward-outward movement of the strand of wire 175 relative to an area which is fenced in by the wire (and parallel to the ground). This allows for the structural integrity of the fence and the wire 175 to be maintained when livestock bumps up against the strands of wire 175 of the completed fence, such that the clip 100 allows for a spring-like action along the entire span of the fence.
  • the wire fencing 175 can be electric fencing.
  • the wire fencing 175 is electric fencing
  • at least a portion of the clip 100 can be formed with, connected to and/or coated with a non-conductive (ex.—insulating) material, such as plastic, for preventing the wire fencing 175 from contacting other metal components of the fence (ex.—metal portions of the clip 100 ) and thereby preventing the electric fencing from shorting out (ex.—grounding out).
  • a non-conductive (ex.—insulating) material such as plastic
  • the clip 100 can then be secured to the post 150 (as discussed above), thereby allowing the clip 100 to promote the ability to maintain the strand of wire 175 at a desired height relative to the line post 150 , relative to the ground within which the line post 150 is secured and relative to other strands of wire of the fence.
  • the clip 100 indirectly (ex.—loosely) connects/secures the strand of wire 175 to the post 150 , such that the wire 175 is spaced apart from (ex.—not pinned against) the post 150 .
  • the clip 100 achieves this via the helical member 126 , a portion of which separates the wire 175 from the post 150 , such that the portion of the helical member 126 forms a physical barrier (is located) between the wire 175 positioned within the aperture 128 and the post 150 .
  • Such a configuration allows for some inward and outward movement of the strand of wire 175 relative to the fenced-in area (ex.—movement towards and away from the post 150 and the fenced-in area) and parallel to the ground.
  • the clip 100 allows the constructed fence to have some spring-like flexibility along the entire span (ex.—from end post-to-end post) of the fence when livestock bumps up against the wire 175 of the fence.
  • the clip 100 provides sufficient space, via the aperture 128 , to allow for omni-directional movement (ex.—side-to-side movement within the aperture, up-and-down movement within the aperture, and end post-to-end post movement through and beyond the aperture) of the strand of wire, thereby allowing for the wire to be moved, repaired and/or tightened (ex.—stretched or pulled towards one of the end posts of the fence to take slack out of the wire 175 ) so that the wire 175 can be positioned and/or re-positioned at the desired height (as shown in FIG.
  • the clip 100 facilitates stretching of the barbed wire along the fence line from a first line post to a second line post, and further, such that the clearance 128 can allow for a barb 185 located on a strand of wire 175 being stretched generally along the fence line to be moved through the helical members 126 of multiple clips 100 located on multiple corresponding line posts 150 along the span of the fence.
  • fence clip 250 is generally similar in construction and function to the fence clip 100 discussed above.
  • fence clip 250 includes a first securing arm 252 which is a greater length (e.g., longer) than its second securing arm 104 .
  • the second securing arm 104 of the fence clip 250 may be formed in a pre-crimped configuration as shown or can be crimped after the clip 250 is engaged against the first wall 152 of the fence post 150 .
  • the greater length of the first securing arm 252 of fence clip 250 promotes ease of securing of the fence clip 250 to fence post 150 . For example, as shown in FIG.
  • first securing arm 252 can be rotated (ex.—bent, moved, incrementally adjusted, crimped) about joint 122 towards stabilizing bar 110 to cause the clip 250 to conform to (e.g., tighten around, be secured to, form a tension fit with) post 150 , such that joints ( 122 , 124 ) wrap around the side edges ( 160 , 162 ) of the post 150 , while a portion of the first securing arm 252 is bent around the perpendicular second wall 154 of the post 150 .
  • clip 250 can be constructed such that the first securing arm 252 can be bent around the post 150 in a tool-less manner (e.g., by hand) or by using a simple tool (e.g., pliers, hammer, crimp).
  • fence clip 300 is generally similar in construction and function to the fence clip 250 discussed above.
  • fence clip 300 includes a first securing arm 302 which is a greater length (e.g., longer) than its second securing arm 104 .
  • the first securing arm 302 of clip 300 includes a handle 304 which is coupled to the first securing arm 302 by joint 306 .
  • the handle 304 can be oriented parallel to stabilizing bar 110 with end 308 of first securing arm 302 oriented away from helical member 126 as shown in FIG. 15 .
  • the handle 304 promotes ease of gripping of the first securing arm 302 when torqueing the securing arm 302 for securing of fence clip 300 to fence post 150 .
  • first securing arm 302 can be rotated (ex.—bent, moved, incrementally adjusted, crimped) clockwise about joint 122 towards stabilizing bar 110
  • handle 304 can be rotated (ex.—bent, moved, incrementally adjusted, crimped) clockwise about joint 306 towards stabilizing bar 110 to cause the clip 300 to conform to (e.g., tighten around, be secured to, form a tension fit with) post 150 , such that joints ( 122 , 124 ) wrap around side edges ( 160 , 162 ) of post 150 , while a portion of the first securing arm 302 is bent around perpendicular second wall 154 of post 150
  • first securing arm 302 allows clip 300 to be more easily torqued, conformed to and/or bent around the post 150 than clip 100 or clip 250 .
  • clip 300 can be constructed such that the first securing arm 302 can be bent around post 150 in a tool-less manner (e.g., by hand) or by using a simple tool (e.g., pliers, hammer, crimp).
  • fence clip 350 is generally similar in construction and function to the fence clip 300 discussed above.
  • fence clip 350 includes a handle 354 which is coupled to a remaining portion of first securing arm 352 by joint 356 .
  • the length of the first securing arm 352 of fence clip 350 is shorter than the length of the first securing arm 302 of fence clip 300 .
  • first securing arm 352 can be rotated (ex.—bent, moved, incrementally adjusted, crimped) clockwise about joint 122 towards stabilizing bar 110 to cause the clip 350 to conform to (e.g., tighten around, be secured to, form a tension fit with) post 150 , such that joints ( 122 , 124 ) wrap around side edges ( 160 , 162 ) of post 150 . Due to its elongated configuration and its handle 354 , first securing arm 352 allows clip 350 to be more easily torqued, conformed to and/or bent around the post 150 than clip 100 or clip 250 .
  • clip 350 can be constructed such that the first securing arm 352 can be bent around post 150 in a tool-less manner (e.g., by hand) or by using a simple tool (e.g., pliers, hammer, crimp).
  • a tool-less manner e.g., by hand
  • a simple tool e.g., pliers, hammer, crimp
  • fence clip 400 is generally similar in construction and function to fence clip 300 discussed above.
  • fence clip 400 includes a first securing arm 402 and a second securing arm 412 , the first securing arm 402 being a greater length than the second securing arm 412 .
  • the first securing arm 402 of fence clip 400 also includes a handle 408 .
  • fence clip 400 differs from the above-described clips in that the first securing arm 402 of fence clip 400 includes a biasing member 404 which is coupled to a portion of the first securing arm by joint 406 and is further coupled to the handle 408 having end 410 .
  • the biasing member can include a spring, a torsion spring, a mechanical biasing member, an electrical biasing member, a magnetic biasing member, and the like.
  • the biasing member 404 can be configured between joint 406 and handle 408 as shown in FIG. 19 .
  • Handle 408 of the first securing arm 402 promotes ease of gripping of first securing arm 402
  • the elongated structure and biasing member 404 of first securing arm 402 promotes ease of torqueing the securing arm 402 for securing of fence clip 400 to fence post 150 .
  • FIG. 19 For example, as shown in FIG.
  • first securing arm 402 can be rotated (ex.—bent, moved, incrementally adjusted, crimped) clockwise about joint 122 towards stabilizing bar 110
  • handle 408 can be rotated (ex.—bent, moved, incrementally adjusted, crimped) clockwise relative to biasing member 404 towards perpendicular second wall 154 of post 150 to cause the clip 400 to conform to (e.g., tighten around, be secured to, form a tension fit with) post 150 , such that joints ( 122 , 124 ) wrap around side edges ( 160 , 162 ) of post 150 , while a portion of the first securing arm 402 is bent around perpendicular second wall 154 of post 150 .
  • the second securing arm 412 of clip 400 can include a catch 416 (e.g., a protrusion or extension) having end 418 , the catch 416 being coupled to the second securing arm 412 by joint 414 .
  • a catch 416 e.g., a protrusion or extension
  • handle 408 can be engaged with the catch 416 of the second securing arm 412 to maintain the position of handle 408 via the biasing force caused by biasing member 404 .
  • first securing arm 402 allows clip 400 to be more easily torqued, conformed to and/or bent around the post 150 than clip 100 .
  • clip 400 can be constructed such that the first securing arm 402 can be bent around post 150 in a tool-less manner (e.g., by hand) or by using a simple tool (e.g., pliers, hammer, crimp).

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Fencing (AREA)

Abstract

A clip for connecting a strand of wire fencing to a line post of a fence is disclosed. The clip includes an aperture for receiving the wire to facilitate movement of the wire when the clip is coupled to the line post.

Description

    RELATED APPLICATION
  • The present application is a continuation-in-part of U.S. patent application Ser. No. 13/493,043 filed on Jun. 11, 2012.
  • BACKGROUND
  • Wire type fences are utilized in the agricultural industry for separating property lines and for maintaining livestock. Current wire fencing systems can lack in durability and functionality, be difficult to repair, and suffer from several performance issues.
  • SUMMARY
  • This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key and/or essential features of the claimed subject matter. Also, this Summary is not intended to limit the scope of the claimed subject matter in any manner.
  • Aspects of the disclosure pertain to a clip for connecting wire fencing to a line post of a fence. The clip includes an aperture for receiving the wire to facilitate movement of the wire when the clip is coupled to the line post.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an example perspective view of an example fence clip;
  • FIG. 2 is an example side plan view of the example fence clip shown in FIG. 1;
  • FIG. 3 is an example bottom plan view of the example fence clip shown in FIG. 1;
  • FIG. 4 is an example top plan view of the example fence clip shown in FIG. 1 and an example top plan view of an example fence post;
  • FIG. 5 is an example top plan view of the example fence clip shown in FIG. 4 secured to an example fence post;
  • FIG. 6 is an example perspective view of the example fence clip shown in FIG. 5;
  • FIG. 7 is an example perspective view of the example fence clip and the example fence post shown in FIG. 5, which further depicts a section of example wire;
  • FIG. 8 is an example front plan view of the example fence clip, the example fence post and the section of example wire shown in FIG. 7;
  • FIG. 9 is an example top plan view of the example fence clip, the example fence post and the example section of example wire shown in FIG. 7;
  • FIG. 10 is an example side plan view of the example fence clip, the example fence post and section of example wire shown in FIG. 7;
  • FIG. 11 is an example perspective view illustrating multiple example fence posts;
  • FIG. 12 is an example perspective view of the example fence clip shown in FIG. 1 with example wire;
  • FIG. 13 is an example perspective view of an example fence clip;
  • FIG. 14 is an example top plan view of the example fence clip shown in FIG. 13 secured to an example fence post;
  • FIG. 15 is an example perspective view of an example fence clip;
  • FIG. 16 is an example top plan view of the example fence clip shown in FIG. 15 secured to an example fence post;
  • FIG. 17 is an example perspective view of an example fence clip;
  • FIG. 18 is an example top plan view of the example fence clip shown in FIG. 17 secured to an example fence post;
  • FIG. 19 is an example perspective view of an example fence clip; and
  • FIG. 20 is an example top plan view of the example fence clip shown in FIG. 19 secured to an example fence post;
  • DETAILED DESCRIPTION
  • Aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings, which form a part hereof, and which show, by way of illustration, example features. The features can, however, be embodied in many different forms and should not be construed as limited to the combinations set forth herein; rather, these combinations are provided so that this disclosure will be thorough and complete, and will fully convey the scope. Among other things, the features of the disclosure can be facilitated by methods, devices, and/or embodied in articles of commerce. The following detailed description is, therefore, not to be taken in a limiting sense.
  • Wire fences of all types are utilized in the agricultural industry. A few examples of wire fences include barbed wire fences and electric wire fences. In agricultural settings, wire fencing, due to its relatively low expense and its relatively high strength and restraining properties, is often used for constructing fences for containing animals (ex.—cattle) within large areas (ex.—pastures). Further, compared to other fencing options, wire fences are relatively easy to construct, while requiring a minimal amount of equipment (ex.—fence posts, wire, wire fasteners, fence staples).
  • In a typical constructed wire fence, multiple (ex.—4 to 7) strands of wire can be aligned under tension between heavy braced fence posts (ex.—end posts, corner posts or strainer posts). Further, the strands of wire can be held at or near a desired height along the entire span (ex.—from end post-to-end post) of the fence by being attached to a series of line posts which are located between and generally co-linear with the end posts. For example, the strands can be spaced apart from each other such that the top strand of the wire fence is held at or near a height which is proximal to the upper (ex.—top) ends of the fence posts along the entire span of the fence, while the bottom strand of the wire fence is held at a height which is proximal to the ground level along the entire span of the fence, thereby allowing the multiple strands to cover the vertical area extending from the tops of the posts to the ground level. Currently, wire fasteners are used to tightly secure the wire between the wire fastener and the line posts (ex.—metal T-posts) in such a manner so as to: a.) maintain each wire at its correct height along the entire span of the fence; and b.) restrict movement of each strand (ex.—vertical and/or horizontal movement).
  • Over time, one or more of the strands of wire can begin to sag in some places (ex.—sections) along the fence, thereby providing an indication that the tension on that particular strand of wire has to be adjusted (ex.—tightened) in order to re-position the strand to its correct height relative to the fence posts. In other instances, breaks in the wire can occur at points where the wire fastener secures the wire to the line posts. Due to the movement restraint of the wire caused by currently available wire fasteners, the wire fasteners typically need to be removed before the strand of wire can be repaired, moved and/or tightened (ex.—before the tension upon the strand of wire can be increased). For example, currently available wire fasteners do not provide clearance between the line post and the fastener to allow for the strand of wire to freely move along the fence line (ex.—towards one of the end posts) to allow for proper height adjustment and/or tightening of the wire. As such, when a force is applied to the wire, the wire is restricted from movement and held fast to the post by the fastener. Further, currently available wire fasteners, in order to limit the inward/outward movement of the strands, can be connected to the line posts in such a manner so as to pin or trap the wire against the line posts. This can result in accelerated rusting of the wire (since moisture tends to collect at or near these contact points between the wire and the fastener) resulting in a shortened life span for the wire. Further, because the currently available wire fasteners are designed to tightly pinch the wire between the fastener and the line post, the currently available wire fasteners can cause the wire to degrade or weaken at the contact point (ex.—pressure point), thereby shortening the life span of the wire fencing.
  • As more fully set forth below, aspects of the disclosure include a fence clip that includes an aperture for receiving the strand of wire to facilitate movement of the wire when the clip is coupled to the line post. The fence clip and the aperture associated with the fence clip facilitates a separation between the wire and the post which allows some inward and outward movement of the strand of wire relative to the fenced-in area (ex.—movement towards and away from the post) and parallel to the ground, thereby providing some spring-like flexibility to the fence along the entire span of the fence (ex.—from end post-to-end post), while promoting the avoidance of the wire degradation and rusting issues associated with currently available wire fasteners. The fence clip and the aperture of the fence clip also provide sufficient space to allow for omni-directional movement (ex.—up-and-down movement, side-to-side movement, and movement along the fence line/towards the end posts) of the strand of wire, thereby allowing for the wire to be moved, repaired and/or tightened (ex.—stretched or pulled towards one of the end posts of the fence to take slack out of the wire so that the wire can be positioned and/or re-positioned at the desired height without having to loosen or detach the clip from the line post. The fence clip and the aperture of the fence clip also promote the ability to maintain a strand of wire at or near a desired height and/or distance relative to a fence post (ex.—a line post), the ground and/or other strands of wire of the fence. Furthermore, the fence clip and the aperture of the fence clip can be configured for use with several types of wire fences. For example, the size of the aperture can be configured to allow clearance for barbs of a barb wire fence. Also, one or more portions of the fence clip and/or aperture of the fence clip can be coated with an electrical insulating material to reduce the likelihood of shorts with an electrical fence. Moreover, the aperture can be configured to receive an electrical insulating member such as an insulated insert to reduce shorting with electrical fences.
  • The fence clip is described below using terminology that identifies elements of the fence clip. The identification of the elements is not meant to limit the construction of the fence clip to individual elements being coupled together. Although a fence clip having individual elements coupled together is contemplated, the fence clip can be formed of a solid uniform construction such as a molded metal member, a bent metal wire, a molded plastic member, a bent plastic member, a molded composite member, and/or a bent composite member.
  • As indicated in FIGS. 1-3, the fence clip 100 can include one or more securing arms. For example, the fence clip 100 can include a first securing arm 102 and/or a second securing arm 104. Each securing arm (102, 104) can include a first end 106 and a second end 108. As indicated in FIG. 1, the second end 108 may not be a true end but may be the end of the securing arm portion of fence clip 100 for purposes of describing elements of a continuous structure. The first ends 106 of the securing arms (102, 104) can be spaced apart from each other by a distance D2, as shown in FIG. 3. In one aspect, first securing arm 102 can be generally parallel to second securing arm 104. Yet, as more fully set forth below, first securing arm 102 and second securing arm 104 may not be parallel to one another.
  • The fence clip 100 can further include a plurality of stabilizing bars. For example, the fence clip 100 can include a first stabilizing bar 110 and a second stabilizing bar 112. Each stabilizing bar (110, 112) can include a first end 114 and a second end 116. Similar to the first and second securing arms (102, 104), the first end 114 and the second end 116 may not be true ends but may be the end of the stabilizing bar portion of the fence clip 100 for purposes of the describing elements of a continuous structure. Further, each stabilizing bar (110, 112) can include a first side (ex.—an inner side) 118 and a second side (ex.—an outer side) 120 can located generally opposite the first side 118. In the example orientation indicated in FIG. 1, first stabilizing bar 110 can be generally parallel to second stabilizing bar 112. In another example, first stabilizing bar 110 can be generally perpendicular to first securing arm 102 and second stabilizing bar 112 can be generally perpendicular to second securing arm 104. In another example, first stabilizing bar 110 and first securing arm 104 can generally reside in the same horizontal plane. In yet another example, second stabilizing bar 112 and second securing arm 104 can generally reside in the same horizontal plane. In still another example, first stabilizing bar 110, second stabilizing bar 112, first securing arm 102 and second securing arm 104 can generally reside in the same horizontal plane.
  • The first stabilizing bar 110 and the second stabilizing bar 112 can have other orientations depending on the tool utilized for securing fence clip 100 to the fence post. For example, one common tool for securing fence clips to a fence post is a 440 T-post gripper manufactured by Dutton-Lainson Company of Hastings, Nebr. Such tools have top and bottom positioning brackets to hold the fence clip during positioning and crimping. Accordingly, first stabilizing bar 110 and second stabilizing bar 112 can be configured in relation to their respective first securing arm 102 and second securing arm 104 so that the first end 130 and second end 132 are vertically offset (e.g. not within the same horizontal plane) with respect to the first joint 122 and second joint 124. The vertical offset can allow the helical member 126 to clear the one or more of the positioning brackets of the tool (such as the indicated T-post gripper). To provide the vertical offset, the first stabilizing bar 110 can be linear and slant between the first joint 122 and the first end 130. Likewise, the second stabilizing bar 112 can be linear and slant between the second joint 124 and the second end 132. Providing a slant is just one way of providing clearance for a crimping tool. First stabilizing bar 110 and second stabilizing bar 112 can also be non-linear to provide the vertical offset.
  • The fence clip 100 can further include one or more joints. For example, the second end 108 of the first securing arm 102 can be coupled to the first end 114 of the first stabilizing bar 110 by a first joint 122, while the second end 108 of the second securing arm 104 is coupled to the first end 114 of the second stabilizing bar 112 by a second joint 124. The joints (122, 124) can be malleable joints, hinge joints, snapping joints, locking joints, mechanical joints, magnetic joints and combinations thereof. Joints (122, 124) can facilitate hinged movement between stabilizing bars (110, 112) and a respective securing arm (102, 104). As an example, the first securing arm 102 can be rotated about joint 122 and relative to stabilizing bar 110. The rotation can occur from an open angle to a closed angle. For example, FIG. 4 generally depicts fence clip 100 in an open position. The open angle between the securing arm 102 and stabilizing bar 110 is about 90° in FIG. 4. Yet the open angle can be between about 45° to about 225° For example, the angle can be about 45°, 50°, 55°, 60°, 65°, 70°, 75°, 80°, 85°, 90°, 95°, 100°, 105°, 110°, 115°, 120°, 125°, 130°, 135°, 140°, 145°, 150°, 155°, 160°, 165°, 170°, 175°, 180°, 185°, 190°, 195°, 200°, 205°, 210°, 215°, 220°, 225° to about 45°, 50°, 55°, 60°, 65°, 70°, 75°, 80°, 85°, 90°, 95°, 100°, 105°, 110°, 115°, 120°, 125°, 130°, 135°, 140°, 145°, 150°, 155°, 160°, 165°, 170°, 175°, 180°, 185°, 190°, 195°, 200°, 205°, 210°, 215°, 220°, 225°. FIG. 5 generally depicts fence clip 100 in a closed position. The closed angle can be between about 45° to about 0°. For example, the closed angle between the first securing arm 102 and the first stabilizing bar 110 can be about 0°, 5°, 10°, 15°, 20°, 25°, 30°, 35°, 40°, 45° to about 0°, 5°, 10°, 15°, 20°, 25°, 30°, 35°, 40°, 45°. The open angle and the closed angle formed by the second securing arm 104 and the second stabilizing bar 112 can include similar angles as indicated above.
  • The fence clip 100 can further include an aperture 128 defined by a helical member 126. The term “helical member” as used herein can include a generally smooth spiral helix as indicated in the figures. The term “helical member” can also encompass a helical member that includes linear portions. For example, helical member 126 can include a triangular shaped helix, a square shaped helix, a pentagram shaped helix and the like. The term “helical member” can include a helical member that is formed continuous with the other members of the clip as depicted in the figures. Yet, the term “helical member” also includes a separate helical member that is not continuous. For example, the fence clip can include a single stabilizing bar that connects joints 122 and 124. The helical member 126 can include a separate helical member that has an opening and is connected to the single stabilizing bar between joints 122 and 124. In such a situation, the term “helical member” can encompass a ring shaped member, a triangular shaped member, a square shaped member, a pentagram shaped member and the like. The aperture 128 can have a distance D1 (as shown in FIG. 2). The distance D1 of the aperture 128 can also be an inner distance of the helical member 126. Distance D1 can be a diameter in the situation where the helix member is a spiral type helix or ring shaped member. In other situations, the distance D1 can be the greatest opening distance formed by the aperture defined by the helical member. For example, D1 can be from about 0.1 inches to about 2.00 inches. For example, D1 can be about 0.1, 0.2, 0.3, 0.4, 0.5, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 1.00, 1.25, 1.50, 1.75, 2.0 inches to about 0.1, 0.2, 0.3, 0.4, 0.5, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 1.00, 1.25, 1.50, 1.75, 2.0 inches. Further, helical member 126 can include a first end 130 and a second end 132. As indicated in FIG. 1, the first end 130 and the second end 132 may not be a true end but may be the end of the helical structure portion of fence clip 100 for purposes of the describing elements of a continuous structure. The first end 130 of the helical structure 126 can be coupled to or continuous with the second end 116 of the first stabilizing bar 110. The second end 132 of the helical member 126 can be connected to or continuous with the second end 116 of the second stabilizing bar 112. The second end 132 of the helical member 126 can be spaced apart from the first end 130 of the helical member 126 by a distance, D3, as shown in FIG. 3, to form an aperture opening 134. For instance, distance D3 (ex.—the width of the aperture opening 134) can be from about 0.05 inches to about 1.00 inches. For example, D3 can be about 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 1.00 inches to about 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 1.00 inches. Other values for the aperture opening are contemplated depending on the thickness of the wire that is fitted through the aperture opening 134. The aperture opening 134 can be formed generally opposite an apex (ex.—a highest vertical point) 136 of the helical member 126.
  • As an example related to the orientation depicted in FIG. 1, the helical member 126 can reside in a generally vertical plane. The vertical plane where the helical member 126 resides can be generally perpendicular to the horizontal plane where the first locking arm 102 resides. In other aspects, the vertical plane where the helical member 126 resides can be generally perpendicular to the horizontal plane where the second locking arm 104 resides. In other aspects, when in an upright position (e.g. FIG. 1) the first end 130 and the second end 132 are vertically offset from a horizontal plane where the first joint 122 and the second joint 124 reside.
  • Referring generally to FIGS. 4-12, the fence clip 100 can be configured for being connected to (ex.—secured to) a fence post (ex.—a line post or a metal T-post located between two end posts of a span of fence) 150 of a wire (ex.—barbed wire, unbarbed wire, electrical wire) fence and can further be configured for connecting (ex.—securing) wire 175 of the fence to the line post 150. As mentioned above, one type of line post to which the fence clip 100 can be connected can be a T-post (ex.—metal T-post) 150. The fence clip 100 can also be configured for being connected to various other types and/or shapes of fence post. However, the discussion provided herein is directed towards the fence clip 100 being secured to a T-post 150. As shown in FIG. 7, the T-post 150 is a formed as a longitudinally-extended T-shaped cross-section including a first wall 152 and a second wall 154. The second wall 154 can be generally perpendicular to the first wall 152. The first wall 152 can include a first face (ex.—front face) 156, a second face (ex.—rear face) 158, located generally opposite the first face 156, and side edges (160, 162) extending between and connected to the faces (156, 158). The front face 156 can further have one or more protrusions 164 formed upon its surface.
  • The fence clip 100 can be secured to the T-post 150 by aligning the clip 100 relative to the post 150 (as shown in FIG. 4) so that the first wall 152 of the T-post 150 is received between the securing arms (102, 104) of the clip 100. The clip 100 can be constructed and/or can be configurable so that the distance D2 (shown in FIG. 3) separating the securing arms (102, 104) is sufficiently wide for simultaneously receiving the first wall 152 and side edges (160, 162) of the T-post 150 as shown in FIG. 4. For example, the distance D2 separating the securing arms (102, 104) can be from about 0.5 inches to about 5.0 inches. For example, D2 can be about 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25, 2.50, 2.75, 3.00, 3.25, 3.50, 3.75, 4.00, 4.25, 4.50, 4.75, 5.00 inches to about 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25, 2.50, 2.75, 3.00, 3.25, 3.50, 3.75, 4.00, 4.25, 4.50, 4.75, 5.00 inches. The clip 100 can be directed against the front face 156 of the first wall 152 of the T-post 150, such that one or more of the helical member 126, the joints (122, 124) and the stabilizing bars (110, 112) are engaged against (ex.—at least partially contacting) the front face 156 of the first wall 152 of the T-post 150. When the clip 100 is engaged against the front face 156 of the first wall 152 of the post 150 as described above, the securing arms (102, 104) of the clip 100 are of a sufficient length to extend past the first wall 152 of the post 150. For example, the arms (102, 104) can be from about 0.25 inches to about 2.0 inches. For example the length can be about 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00 inches to about 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00 inches Further, when the clip 100 is engaged against the front face 156 of the first wall 152 of the post 150 as described above, a distance (“D4” as shown in FIG. 2) between the ends (106, 108) of the securing arms (102, 104) and a surface (ex.—a surface on the helical member 126) 200 of the clip 100 that engages the front face 156 is also a sufficient distance to allow the arms (102, 104) to extend past the first wall 152 of the post 150. For example, distance D4 can be from about 0.25 inches to about 2.00 inches. Distance D4 can be from about 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00 inches to about 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00 inches.
  • Furthermore, when the clip 100 is engaged against the front face 156 of the first wall 152 of the post 150 as described above, the securing arms (102, 104) of the clip 100 can be rotated (ex.—bent, moved, incrementally adjusted, crimped) about the joints (122, 124) toward both the stabilizing bars (110, 112) and the rear face 158 of the first wall 152 of the post 150. For example, a hand-held mechanical crimping tool can be used to crimp the arms of the clip 100 into the crimped position (the crimped position of the clip 100 being shown in FIGS. 5 and 6). The above-referenced rotating of the arms (102, 104) of the clip 100 can cause the clip 100 to conform to (ex.—tighten around) the post 150, as shown in FIG. 5, such that the joints (122, 124) wrap around the side edges (160, 162) of the first wall 152 of the post 150; the securing arms (102, 104) are directed against (ex.—are at least partially in contact with) the rear face 158 of the first wall 152 of the post 150 and; one of the helical member 126, the first stabilizing bar 110, and the second stabilizing bar 112 are at least partially engaged against the front face 156 of the first wall 152 of the post 150.
  • Configuring the clip 100 around the post 150, as shown in FIG. 5, results in a tension fit between the clip 100 and the post 150 via which the clip 100 is tightly secured to the post 150 at a sufficient tension that the clip 100 resists movement (ex.—sliding) relative to the post 150. The clip 100 can be formed of a material which is of a gauge or strength that it is strong (ex.—sturdy) enough to provide the above-described secure, tension fit against the post 150, while still being malleable. For instance, the clip 100 can be formed of metal wire, such as galvanized steel or American Wire Gauge (AWG) number “9” wire. It is contemplated that the clip 100 can be at least partially formed of other materials, such as plastic, rubber, a composite, or the like.
  • Referring generally to FIGS. 7-12, the fence clip 100 can be secured to a post 150 at a pre-determined height along the post for connecting a strand of wire 175 to the post and for promoting the ability to maintain the strand of wire 175 at or near the pre-determined height along the post 150. As an example, prior to or after securing the clip 100 to the post 150 (as described above and shown in FIG. 5), the clip 100 can be aligned relative to a strand of wire 175 (as shown in FIG. 12), such that strand of wire 175 is received within the aperture 128 formed by the helical member 126. The aperture opening 134 separating the first and second ends (130, 132) of the helical member 126 allows for introduction of the wire 175 into the aperture 128 formed by the helical member 126. The aperture 128 can be sufficiently sized to allow for both the sub-strands 180 of the wire 175 and the barbs 185 (in the situation where the wire is a barbed wire) of the wire 175 to be directed through the aperture 128 (as shown in FIGS. 10 and 11), such as when stretching the wire 175 along the fence line (ex.—towards an end post of the fence). Further, the aperture 128 can also be sufficiently sized to allow for at least some inward-outward movement of the strand of wire 175 relative to an area which is fenced in by the wire (and parallel to the ground). This allows for the structural integrity of the fence and the wire 175 to be maintained when livestock bumps up against the strands of wire 175 of the completed fence, such that the clip 100 allows for a spring-like action along the entire span of the fence.
  • In other examples, the wire fencing 175 can be electric fencing. When the wire fencing 175 is electric fencing, at least a portion of the clip 100 (ex.—the helical member 126) can be formed with, connected to and/or coated with a non-conductive (ex.—insulating) material, such as plastic, for preventing the wire fencing 175 from contacting other metal components of the fence (ex.—metal portions of the clip 100) and thereby preventing the electric fencing from shorting out (ex.—grounding out).
  • After the wire 175 is located within the aperture 128 defined by the helical member 126, the clip 100 can then be secured to the post 150 (as discussed above), thereby allowing the clip 100 to promote the ability to maintain the strand of wire 175 at a desired height relative to the line post 150, relative to the ground within which the line post 150 is secured and relative to other strands of wire of the fence.
  • Further, after the wire 175 is located within the aperture 128 defined by the helical member 126 and after the clip 100 is secured to the post 150 (as discussed above), the clip 100 indirectly (ex.—loosely) connects/secures the strand of wire 175 to the post 150, such that the wire 175 is spaced apart from (ex.—not pinned against) the post 150. The clip 100 achieves this via the helical member 126, a portion of which separates the wire 175 from the post 150, such that the portion of the helical member 126 forms a physical barrier (is located) between the wire 175 positioned within the aperture 128 and the post 150. Such a configuration allows for some inward and outward movement of the strand of wire 175 relative to the fenced-in area (ex.—movement towards and away from the post 150 and the fenced-in area) and parallel to the ground. By providing for such inward-outward movement, the clip 100 allows the constructed fence to have some spring-like flexibility along the entire span (ex.—from end post-to-end post) of the fence when livestock bumps up against the wire 175 of the fence. As mentioned above, currently available wire fasteners pin the wire directly against the fence post, causing problems such as rusting of the wire (due to moisture gathering in the area at or near the contact point) and degradation of the barbed wire (due to the pinching of the wire between the fastener and the post), events which tend to shorten the life span of the barbed wire. By securing (ex.—indirectly securing, loosely securing) the wire 175 to the post 150 in a manner such that the wire 175 is spaced apart (ex.—distanced, separated) from the post 150, the clip 100 promotes avoidance of the above-referenced wire rusting and wire degradation issues associated with the currently available wire fasteners.
  • Still further, after the wire 175 is located (ex.—positioned) within the aperture 128 defined by the helical member 126 and after the clip 100 is secured to the post 150 (as discussed above), the clip 100 provides sufficient space, via the aperture 128, to allow for omni-directional movement (ex.—side-to-side movement within the aperture, up-and-down movement within the aperture, and end post-to-end post movement through and beyond the aperture) of the strand of wire, thereby allowing for the wire to be moved, repaired and/or tightened (ex.—stretched or pulled towards one of the end posts of the fence to take slack out of the wire 175) so that the wire 175 can be positioned and/or re-positioned at the desired height (as shown in FIG. 11) without having to loosen or detach the clip 100 from the line post 150. The ability to move and/or manipulate the wire 175 without having to remove or loosen the clip 100 also promotes ease of repair of the wire fencing 175. Unlike currently available wire fasteners, the clip 100 facilitates stretching of the barbed wire along the fence line from a first line post to a second line post, and further, such that the clearance 128 can allow for a barb 185 located on a strand of wire 175 being stretched generally along the fence line to be moved through the helical members 126 of multiple clips 100 located on multiple corresponding line posts 150 along the span of the fence.
  • Referring to FIG. 13, a further example of a fence clip 250 is shown. Fence clip 250 is generally similar in construction and function to the fence clip 100 discussed above. However, fence clip 250 includes a first securing arm 252 which is a greater length (e.g., longer) than its second securing arm 104. Further, the second securing arm 104 of the fence clip 250 may be formed in a pre-crimped configuration as shown or can be crimped after the clip 250 is engaged against the first wall 152 of the fence post 150. The greater length of the first securing arm 252 of fence clip 250 promotes ease of securing of the fence clip 250 to fence post 150. For example, as shown in FIG. 14, when clip 250 is engaged against the front face 156 of post 150 and the second securing arm 104 is placed or conformed around the post 150, first securing arm 252 can be rotated (ex.—bent, moved, incrementally adjusted, crimped) about joint 122 towards stabilizing bar 110 to cause the clip 250 to conform to (e.g., tighten around, be secured to, form a tension fit with) post 150, such that joints (122, 124) wrap around the side edges (160, 162) of the post 150, while a portion of the first securing arm 252 is bent around the perpendicular second wall 154 of the post 150. Due to its elongated configuration, a greater lever force can be applied to the first securing arm 252 which allows it to be more easily torqued, conformed to, and/or bent around the post 150 than clip 100. For instance, clip 250 can be constructed such that the first securing arm 252 can be bent around the post 150 in a tool-less manner (e.g., by hand) or by using a simple tool (e.g., pliers, hammer, crimp).
  • Referring to FIG. 15, a further example of a fence clip 300 is shown. Fence clip 300 is generally similar in construction and function to the fence clip 250 discussed above. For example, fence clip 300 includes a first securing arm 302 which is a greater length (e.g., longer) than its second securing arm 104. However, the first securing arm 302 of clip 300 includes a handle 304 which is coupled to the first securing arm 302 by joint 306. For instance, the handle 304 can be oriented parallel to stabilizing bar 110 with end 308 of first securing arm 302 oriented away from helical member 126 as shown in FIG. 15. The handle 304 promotes ease of gripping of the first securing arm 302 when torqueing the securing arm 302 for securing of fence clip 300 to fence post 150. For example, as shown in FIG. 16, when clip 300 is engaged against the front face 156 of post 150 and the second securing arm 104 is placed or conformed around post 150, first securing arm 302 can be rotated (ex.—bent, moved, incrementally adjusted, crimped) clockwise about joint 122 towards stabilizing bar 110, while handle 304 can be rotated (ex.—bent, moved, incrementally adjusted, crimped) clockwise about joint 306 towards stabilizing bar 110 to cause the clip 300 to conform to (e.g., tighten around, be secured to, form a tension fit with) post 150, such that joints (122, 124) wrap around side edges (160, 162) of post 150, while a portion of the first securing arm 302 is bent around perpendicular second wall 154 of post 150. Due to its elongated configuration and its handle 304, first securing arm 302 allows clip 300 to be more easily torqued, conformed to and/or bent around the post 150 than clip 100 or clip 250. For instance, clip 300 can be constructed such that the first securing arm 302 can be bent around post 150 in a tool-less manner (e.g., by hand) or by using a simple tool (e.g., pliers, hammer, crimp).
  • Referring to FIG. 17, a further example of a fence clip 350 is shown. Fence clip 350 is generally similar in construction and function to the fence clip 300 discussed above. For example, fence clip 350 includes a handle 354 which is coupled to a remaining portion of first securing arm 352 by joint 356. However, the length of the first securing arm 352 of fence clip 350 is shorter than the length of the first securing arm 302 of fence clip 300. Referring to FIG. 18, when clip 350 is engaged against the front face 156 of post 150 and the second securing arm 104 is placed or conformed around post 150, first securing arm 352 can be rotated (ex.—bent, moved, incrementally adjusted, crimped) clockwise about joint 122 towards stabilizing bar 110 to cause the clip 350 to conform to (e.g., tighten around, be secured to, form a tension fit with) post 150, such that joints (122, 124) wrap around side edges (160, 162) of post 150. Due to its elongated configuration and its handle 354, first securing arm 352 allows clip 350 to be more easily torqued, conformed to and/or bent around the post 150 than clip 100 or clip 250. For instance, clip 350 can be constructed such that the first securing arm 352 can be bent around post 150 in a tool-less manner (e.g., by hand) or by using a simple tool (e.g., pliers, hammer, crimp).
  • Referring to FIG. 19, a further example of a fence clip 400 is shown. Fence clip 400 is generally similar in construction and function to fence clip 300 discussed above. For example, fence clip 400 includes a first securing arm 402 and a second securing arm 412, the first securing arm 402 being a greater length than the second securing arm 412. Further, the first securing arm 402 of fence clip 400 also includes a handle 408. However, fence clip 400 differs from the above-described clips in that the first securing arm 402 of fence clip 400 includes a biasing member 404 which is coupled to a portion of the first securing arm by joint 406 and is further coupled to the handle 408 having end 410. As a few examples, the biasing member can include a spring, a torsion spring, a mechanical biasing member, an electrical biasing member, a magnetic biasing member, and the like. The biasing member 404 can be configured between joint 406 and handle 408 as shown in FIG. 19. Handle 408 of the first securing arm 402 promotes ease of gripping of first securing arm 402, while the elongated structure and biasing member 404 of first securing arm 402 promotes ease of torqueing the securing arm 402 for securing of fence clip 400 to fence post 150. For example, as shown in FIG. 20, when clip 400 is engaged against the front face 156 of post 150 and the second securing arm 412 is placed or conformed around post 150, first securing arm 402 can be rotated (ex.—bent, moved, incrementally adjusted, crimped) clockwise about joint 122 towards stabilizing bar 110, while handle 408 can be rotated (ex.—bent, moved, incrementally adjusted, crimped) clockwise relative to biasing member 404 towards perpendicular second wall 154 of post 150 to cause the clip 400 to conform to (e.g., tighten around, be secured to, form a tension fit with) post 150, such that joints (122, 124) wrap around side edges (160, 162) of post 150, while a portion of the first securing arm 402 is bent around perpendicular second wall 154 of post 150. Further, the second securing arm 412 of clip 400 can include a catch 416 (e.g., a protrusion or extension) having end 418, the catch 416 being coupled to the second securing arm 412 by joint 414. When the first securing arm 402 is torqued around post 150 as discussed above, handle 408 can be engaged with the catch 416 of the second securing arm 412 to maintain the position of handle 408 via the biasing force caused by biasing member 404. In addition, end 410 of handle 408 can include an additional joint projecting the end 410 outwardly along at least one side of catch 416 to help ensure locking Due to its elongated configuration, its handle 408, and its biasing member 404, first securing arm 402 allows clip 400 to be more easily torqued, conformed to and/or bent around the post 150 than clip 100. For instance, clip 400 can be constructed such that the first securing arm 402 can be bent around post 150 in a tool-less manner (e.g., by hand) or by using a simple tool (e.g., pliers, hammer, crimp).
  • Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (20)

What is claimed is:
1. A clip for connecting wire fencing to a fence post, the clip comprising:
a first securing arm having a first length;
a second securing arm having a second length, the first length being longer than the second length;
at least one stabilizing bar, wherein the at least one stabilizing bar is coupled to the first securing arm by a first joint and to the second securing arm by a second joint;
a helical member connected to the at least one stabilizing bar between the first and second joint, wherein the helical member defines an aperture; and
an aperture opening at least partially formed by the helical member for providing access to the aperture.
2. The clip of claim 1, wherein the first securing arm further includes a handle.
3. The clip of claim 2, further comprising a biasing member coupled to the handle and the first securing arm.
4. The clip of claim 3, further comprising a catch coupled to the second securing arm for selectively maintaining a position of the handle.
5. The clip of claim 1, wherein at least a portion of the helical member is associated with an electrical insulation.
6. The clip of claim 1, wherein the first securing arm, the second securing arm, the first joint, the second joint, and the at least one stabilizing bar are of single unitary construction.
7. The clip of claim 1, wherein the helical member is fixedly attached to the stabilizing bar.
8. The clip of claim 1, wherein the helical member is at least one member of a group consisting of: a ring shaped member, a triangular shaped member, a square shaped member, and a pentagon shaped member.
9. The clip of claim 1, wherein the helical member resides in a plane that is generally perpendicular to a plane where the first securing arm and the second securing arm reside.
10. The clip of claim 1, wherein the at least one stabilizing bar includes a first stabilizing bar and a second stabilizing bar, wherein the first stabilizing bar is coupled to the first securing arm by a first joint, wherein the second stabilizing bar is coupled to the second securing arm by a second joint.
11. The clip of claim 10, wherein the first securing arm, the second securing arm, the first joint, the second joint, the first stabilizing bar, the second stabilizing bar, and the helical member are of single unitary construction.
12. The clip of claim 10, wherein the helical member is at least one member of a group consisting of: a spiral helix, a triangular shaped helix, a square shaped helix and a pentagon shaped helix.
13. A clip for connecting wire fencing to a fence post, the clip comprising:
a first securing arm having a first length;
a second securing arm having a second length, the first length being longer than the second length;
a first stabilizing bar coupled to the first securing arm by a first joint;
a second stabilizing bar coupled to the second arm by a second joint;
a helical member having a first end connected to the first stabilizing bar and a second end connected to the second stabilizing bar, wherein the helical member defines an aperture; and
an aperture opening formed by a gap between the first end of the helical member and the second end of the helical member.
14. The clip of claim 13, wherein the first securing arm further includes a handle.
15. The clip of claim 14, further comprising a biasing member coupled to the handle and the first securing arm.
16. The clip of claim 15, further comprising a catch coupled to the second securing arm for selectively maintaining a position of the handle.
17. A wire fencing system, the wire fencing system comprising:
at least one fence post having a wall portion with a front surface and a rear surface;
at least one wire;
at least one clip coupling the at least one wire to the at least one fence post, wherein the at least one clip includes:
a first securing arm juxtaposed with at least a portion of the rear surface of the wall portion, the first securing arm having a first length;
a second securing arm juxtaposed with at least a portion of the rear surface of the wall portion, the second securing arm having a second length, the first length being greater than the second length;
at least one stabilizing bar juxtaposed with the front surface of the wall portion;
a helical member connected to the at least one stabilizing bar, wherein the helical member defines an aperture where the wire extends therethrough; and
an aperture opening at least partially formed by the helical member for removably receiving the wire within the aperture.
18. The clip of claim 17, wherein the first securing arm further includes a handle.
19. The clip of claim 18, further comprising a biasing member coupled to the handle and the first securing arm.
20. The clip of claim 19, further comprising a catch coupled to the second securing arm for selectively maintaining a position of the handle.
US13/608,736 2012-06-11 2012-09-10 Clip for connecting wire fencing to a fence post Abandoned US20130328003A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/608,736 US20130328003A1 (en) 2012-06-11 2012-09-10 Clip for connecting wire fencing to a fence post
PCT/US2013/041405 WO2013188044A1 (en) 2012-06-11 2013-05-16 Clip for connecting wire fencing to a fence post

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/493,043 US20130328000A1 (en) 2012-06-11 2012-06-11 Clip for connecting wire fencing to a fence post
US13/608,736 US20130328003A1 (en) 2012-06-11 2012-09-10 Clip for connecting wire fencing to a fence post

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/493,043 Continuation-In-Part US20130328000A1 (en) 2012-06-11 2012-06-11 Clip for connecting wire fencing to a fence post

Publications (1)

Publication Number Publication Date
US20130328003A1 true US20130328003A1 (en) 2013-12-12

Family

ID=49714537

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/608,736 Abandoned US20130328003A1 (en) 2012-06-11 2012-09-10 Clip for connecting wire fencing to a fence post

Country Status (1)

Country Link
US (1) US20130328003A1 (en)

Similar Documents

Publication Publication Date Title
US20130328000A1 (en) Clip for connecting wire fencing to a fence post
US9695613B2 (en) Wire-mesh security fences, methods and systems and fence panels
AU2016200301B2 (en) Fence post insulator for electrifiable plastic coated wire
US20130328002A1 (en) Clip for connecting wire fencing to a fence post
US20230076016A1 (en) Article and assembly for securing a line to an external surface, such as a fence post
US20170321448A1 (en) Game Saver Fence, Method, and System
US20220372784A1 (en) Fence device
US7500653B1 (en) T-post extension
US20110225919A1 (en) Concrete casting elements
US6050549A (en) Fence clip system
WO2013188044A1 (en) Clip for connecting wire fencing to a fence post
US20130328003A1 (en) Clip for connecting wire fencing to a fence post
US20140312288A1 (en) Fence Post Insulator Apparatus and Methods
US6520487B2 (en) Mounting bracket assembly for tensioning of electrified tape
AU2017245365A1 (en) Insulator, fence post, plug and wire fencing system
AU2006200793A1 (en) Clip for a fence picket
US8266771B2 (en) Twist type fence tie
AU2023202687A1 (en) Fence wire retaining clip
US20230383569A1 (en) Fence wire securing device
WO2010037182A1 (en) Fencing member holder
AU650157B2 (en) Fence dropper
AU2016253584B2 (en) Apparatus for Mounting to a Post
WO2023245225A1 (en) Agricultural fencing
US580553A (en) Fence
NZ717527B2 (en) Fence post insulator for electrifiable plastic coated wire

Legal Events

Date Code Title Description
AS Assignment

Owner name: BOX T BRAND, LLC, NEBRASKA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HENDRICKS, RICHARD L.;GRACE, RYAN T.;REEL/FRAME:028945/0591

Effective date: 20120912

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION