US20130295813A1 - Method of reducing the formaldehyde emission of a mineral fiber product, and mineral fiber product with reduced formaldehyde emission - Google Patents

Method of reducing the formaldehyde emission of a mineral fiber product, and mineral fiber product with reduced formaldehyde emission Download PDF

Info

Publication number
US20130295813A1
US20130295813A1 US13/884,758 US201113884758A US2013295813A1 US 20130295813 A1 US20130295813 A1 US 20130295813A1 US 201113884758 A US201113884758 A US 201113884758A US 2013295813 A1 US2013295813 A1 US 2013295813A1
Authority
US
United States
Prior art keywords
dextrose
binder composition
formaldehyde
phenol
urea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/884,758
Inventor
Erling Lennart Hansen
Lars Naerum
Povl Nissen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rockwool AS
Original Assignee
Rockwool International AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rockwool International AS filed Critical Rockwool International AS
Priority to US13/884,758 priority Critical patent/US20130295813A1/en
Assigned to ROCKWOOL INTERNATIONAL A/S reassignment ROCKWOOL INTERNATIONAL A/S ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HANSEN, ERLING LENNART, NAERUM, LARS, NISSEN, POVL
Publication of US20130295813A1 publication Critical patent/US20130295813A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/26Macromolecular compounds or prepolymers
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/26Macromolecular compounds or prepolymers
    • C03C25/32Macromolecular compounds or prepolymers obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C03C25/34Condensation polymers of aldehydes, e.g. with phenols, ureas, melamines, amides or amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J161/00Adhesives based on condensation polymers of aldehydes or ketones; Adhesives based on derivatives of such polymers
    • C09J161/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C09J161/30Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic and acyclic or carbocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J161/00Adhesives based on condensation polymers of aldehydes or ketones; Adhesives based on derivatives of such polymers
    • C09J161/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C09J161/32Modified amine-aldehyde condensates
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/12Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with filaments or yarns secured together by chemical or thermo-activatable bonding agents, e.g. adhesives, applied or incorporated in liquid or solid form
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/7654Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising an insulating layer, disposed between two longitudinal supporting elements, e.g. to insulate ceilings
    • E04B1/7658Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising an insulating layer, disposed between two longitudinal supporting elements, e.g. to insulate ceilings comprising fiber insulation, e.g. as panels or loose filled fibres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/04Condensation polymers of aldehydes or ketones with phenols only
    • C08J2361/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08J2361/14Modified phenol-aldehyde condensates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]

Definitions

  • the present invention relates to a method of reducing formaldehyde emission of a mineral fibre product, and to bonded mineral fibre products having low formaldehyde emission.
  • Mineral fibre products generally comprise man-made vitreous fibres (MMVF) such as, e.g., glass fibres, ceramic fibres, basalt fibres, slag wool, mineral wool and stone wool, which are bonded together by a cured thermoset polymeric binder material.
  • MMVF man-made vitreous fibres
  • bonded mineral fibre mats are generally produced by converting a melt made of suitable raw materials to fibres in conventional manner, for instance by a spinning cup process or by a cascade rotor process. The fibres are blown into a forming chamber and, while airborne and while still hot, are sprayed with a binder solution and randomly deposited as a mat or web onto a travelling conveyor. The fibre mat is then transferred to a curing oven where heated air is blown through the mat to cure the binder and rigidly bond the mineral fibres together.
  • MMVF man-made vitreous fibres
  • Phenolic binders in particular phenol-formaldehyde resole resins are frequently used in the manufacture of mineral fibre insulation materials, such as insulative batts for walls, roof boards, ceiling tiles, insulative coverings for pipes, and the like.
  • a significant amount of formaldehyde is released into the environment during cure.
  • Formaldehyde also can be released subsequently from the cured resin.
  • formaldehyde emission is undesirable, particularly in enclosed spaces, because it is hazardous to human health and to the environment.
  • Formaldehyde has been classified as carcinogenic to humans by The International Agency for Research on Cancer (IARC) of the World Health Organization (WHO); see the IARC Monograph on Formaldehyde, Volume 88 (2006). It is therefore desirable to reduce the release of formaldehyde into the environment.
  • IARC International Agency for Research on Cancer
  • WHO World Health Organization
  • urea acts as a formaldehyde scavenger both at, and subsequent to, the manufacture of bonded mineral fibre products.
  • Urea is typically added directly to the phenol-formaldehyde resin to produce a urea-modified phenol-formaldehyde resole resin.
  • a mixture of phenol and formaldehyde is reacted with a suitable basic catalyst in one or more steps.
  • reaction conditions, temperature, amount of catalyst, etc. are adjusted to favour phenol methylolation reactions over condensation reactions.
  • Urea is then added before or after inactivating the resin just prior to use of the resin.
  • Such a resin is typically referred to as a PUF resin, or PUF binder.
  • WO 96/26164 describes a phenol-formaldehyde resin composition for use as a binder in mineral wool products wherein the emission of phenol is reduced by using a stoichiometric excess of formaldehyde over phenol, wherein the emission of the excess formaldehyde is reduced by adding ammonia as a formaldehyde scavenger and wherein the emission of ammonia is reduced by reacting the ammonia with a sugar compound.
  • U.S. Pat. No. 4,339,361 discloses phenol-formaldehyde resole resins which are suitable for use in binder systems for bonding mineral fibre products and which are extended with an amide or amine such as urea and a sugar as inexpensive extenders.
  • the sugar component may be selected from mono- and oligosaccharides and water-soluble polysaccharides.
  • WO 20091136106 discloses mineral wool binders comprising a liquid phenolic resin having a free formaldehyde content of less than or equal to 0.1% and an extender.
  • the extender may be chosen from carbohydrates, including monosaccharides, oligosaccharides and polysaccharides.
  • U.S. Pat. No. 5,795,934 discloses a urea-modified phenol-formaldehyde resole resin composition which comprises an alkanolamine alone or preferably in combination with a monosaccharide or disaccharide in an amount sufficient to improve the storage stability of the urea-modified phenolic resole resin.
  • WO 2008/127936 discloses composite Maillard-resole binder compositions comprising a phenol-formaldehyde resole resin or urea-modified phenol-formaldehyde resole resin and so-called Maillard reactants which comprise a mixture of a monosaccharide and an ammonium salt of a polycarboxylic acid.
  • the present invention is based on the discovery that dextrose acts as a formaldehyde scavenger in the manufacture of mineral fibre products bonded with a urea-modified phenol-formaldehyde resole resin-type binder.
  • the present invention relates to a method of reducing the formaldehyde emission of a mineral fibre product bonded with a urea-modified phenol-formaldehyde resol resin-type binder, said method comprising the step of adding dextrose to the binder composition during and/or after preparation of the binder composition but before curing of the binder composition applied to the mineral fibres.
  • the dextrose is added to the binder composition after the preparation of the binder composition but before curing of the binder composition applied to the mineral fibres.
  • the present invention relates to a mineral fibre product having reduced formaldehyde emission and bonded with a cured urea-modified phenol-formaldehyde resol resin-type binder composition, the non-cured binder composition comprising dextrose in an amount of 15 wt % or more, and up to 70 wt %, based on total dry solids of phenol-formaldehyde resol resin and dextrose.
  • the present invention relates to the use of dextrose as a formaldehyde scavenger in a urea-modified phenol-formaldehyde resol resin-type binder composition for mineral fibre products.
  • the dextrose used may be pure dextrose or in the form of a dextrose preparation having a DE equivalent of about 70 to 100, preferably about 90 to 100.
  • the phenol may be reacted with molar excess formaldehyde in aqueous solution in a molar ratio of from 1:2.5 to 1:6; preferably from 1:3 to 1:5, in the presence of a base catalyst.
  • the urea used may be in an amount of from 20 to 60 wt %, preferably 30 to 50 wt %, based on total dry solids of the phenol-formaldehyde resol resin and urea.
  • the dextrose used may be in an amount of 15 to 70 wt %, preferably 20 to 50 wt %, based on total dry solids of urea-modified phenol-formaldehyde resol resin and dextrose.
  • the use is preferably carried out with a step of adding dextrose to the binder composition during and/or after preparation of the binder composition but before curing of the binder composition applied to the mineral fibres.
  • the present invention relates to an apparatus for making a mineral fibre product having reduced formaldehyde emission and bonded with a cured urea-modified phenol-formaldehyde resol resin-type binder composition with dextrose added to the binder composition, said apparatus comprising
  • the confectioning of the mineral wool cured web is in the conventional meaning of cutting and packaging the web into products.
  • the dextrose used may be pure dextrose or in the form of a dextrose preparation having a DE equivalent of about 70 to 100, preferably about 90 to 100.
  • the phenol may be reacted with molar excess formaldehyde in aqueous solution in a molar ratio of from 1:2.5 to 1:6; preferably from 1:3 to 1:5, in the presence of a base catalyst.
  • the urea used may be in an amount of from 20 to 60 wt %, preferably 30 to 50 wt %, based on total dry solids of the phenol-formaldehyde resol resin and urea.
  • the dextrose used may be in an amount of 15 to 70 wt %, preferably 20 to 50 wt %, based on total dry solids of urea-modified phenol-formaldehyde resol resin and dextrose.
  • the inventors have surprisingly found that by adding dextrose to a urea-modified phenol-formaldehyde resol resin-type binder composition, the formaldehyde emission of the bonded mineral fibre product after curing can be reduced down to values which cannot be explained by a mere dilution effect; i.e. by dextrose merely acting as an diluent or extender.
  • the nature of the urea-modified phenol-formaldehyde resol resin is not critical, and any urea-modified phenol-formaldehyde resol resin known in the art may be used.
  • UF urea-formaldehyde
  • Suitable urea-modified phenol-formaldehyde resol resins are, for instance, those disclosed in EP-A-148050, EP-A-810981, CA-A-1001788 and U.S. Pat. No. 5,371,140; the emulsifiable phenolic resins disclosed in EP-A-1084167; the overcondensed phenolic resins disclosed in WO 99/03906 and WO 20091136106, the disclosures of which are hereby incorporated by reference.
  • the proportion of phenol to aldehyde is selected to yield a resol-type resin (stoichiometric excess of aldehyde), when phenol and formaldehyde are used, the mole ratio of phenol to formaldehyde preferably being from about 1:2.5 to 1:6, and more preferably from about 1:3 to 1:5.
  • the catalyst used in the process of preparing the resol resin can include at least one basic alkali metal or alkaline earth metal compound or amine catalyst, such as triethyl amine (TEA).
  • TAA triethyl amine
  • alkali metal bases which can be used include the hydroxides of sodium, potassium and lithium.
  • alkaline earth metal bases which can be used include the oxides and hydroxides of calcium, barium and strontium, such as calcium oxide and calcium hydroxide.
  • the exothermic condensation reaction of the phenol and the aldehyde is initiated after mixing the phenol and the aldehyde by addition of the catalyst.
  • an aqueous mixture of phenol and formaldehyde is maintained at a first temperature of, for instance, 40 to 50° C., as the basic catalyst is added.
  • the temperature is then permitted to rise to a second reaction temperature of, for instance, 60 to 90° C.
  • the reaction is carried out for a sufficient reaction time and at a suitable temperature to provide a resol resin having an acid tolerance of ⁇ 8, preferably within the range of 0.5 to 7, more preferably 3 to 5.
  • the degree of conversion of phenol is preferably ⁇ 95%, more preferably ⁇ 97%.
  • Acid tolerance is a measure of the reaction degree and is determined as follows: As acid is used a diluted solution of sulphuric acid (2.5 ml of concentrated sulphuric acid is added to 1 litre of ion-exchanged water). 5.0 ml of binder is transferred into an Erlenmeyer flask. Diluted acid is then added from a burette while keeping the binder in motion. The titration is continued until a slight cloud appears in the binder, which does not disappear when the binder is shaken. The acid tolerance is calculated by dividing the amount of acid in ml used for the titration with the amount of ml of the sample.
  • the reaction mixture may be inactivated by addition of a latent acid such as ammonium sulphate or an acid such as sulfuric acid.
  • a latent acid such as ammonium sulphate or an acid such as sulfuric acid.
  • urea is preferably added and/or reacted in an amount of from about 20 to 60 wt %, preferably 20 to 50 wt %, based on total dry solids of phenol-formaldehyde resol resin and urea.
  • the urea may be added to the resol resin during its preparation or in a post-reaction step.
  • dextrose is added to the binder composition during and/or after preparation of the binder composition but before curing of the binder composition applied to the mineral fibres.
  • dextrose may be used as pure dextrose (glucose) or in the form of a dextrose preparation having a DE equivalent of about 70 to 100, preferably about 90 to 100.
  • Dextrose is normally produced by subjecting an aqueous slurry of starch to hydrolysis by means of heat, acid or enzymes. Depending on the reaction conditions employed in the hydrolysis of starch, a variety of mixtures of glucose and intermediates is obtained which may be characterized by their DE number.
  • pure dextrose or high DE glucose syrup are preferably used as formaldehyde scavengers.
  • the non-cured binder composition according to the present invention generally contains dextrose in an amount of from 15 to 70 wt %, preferably 20 to 50 wt %, based on total dry solids of phenol-formaldehyde resol resin and dextrose.
  • Preferred lower concentrations of dextrose are 15 wt %, 20 wt %, 25 wt %, 30 wt %, 35 wt %, 40 wt % and 45 wt %.
  • Preferred higher concentrations of dextrose are 50 wt %, 55 wt %, 60 wt %, 65 wt % and 70 wt %, Depending on the properties desired and on the type and amount of formaldehyde generators present, the skilled person will employ dextrose in appropriate concentration ranges between these values.
  • the aqueous binder compositions according to the present invention may comprise one or more conventional binder additives.
  • binder additives include, for instance, curing accelerators such as the free acid and salt forms of strong acids such as boric acid, sulphuric acid, nitric acid and p-toluenesulphonic acid which may be used either alone or in combination with guanidine carbonate.
  • binder additives are, for example, silane coupling agents such as ⁇ -aminopropyltriethoxysilane; thermal stabilizers; UV stabilizers; emulsifiers; surface active agents, particularly nonionic surfactants; biocides; plasticizers; anti-migration aids; coalescents; fillers and extenders such as starch, clay, silicates and magnesium hydroxide; pigments such as titanium dioxide; hydrophobizing agents such as fluorinated compounds, mineral oils and silicone oils; flame retardants; corrosion inhibitors such as thiourea; antifoaming agents; antioxidants; and others.
  • binder additives and adjuvants may be used in conventional amounts generally not exceeding 20 wt. % of the binder solids.
  • the amount of curing accelerator in the binder composition is generally between 0.05 and 5 wt. %, based on solids.
  • the final aqueous binder composition generally has a solids content of from 1 to 20 wt. % and a pH of 6 or higher.
  • the binder composition according to the present invention preferably does not contain any one of the following components:
  • the mineral fibres employed may be any of man-made vitreous fibres (MMVF), glass fibres, ceramic fibres, basalt fibres, slag fibres, rock fibres, stone fibres and others. These fibres may be present as a wool product, e.g. like a rock wool product.
  • MMVF man-made vitreous fibres
  • glass fibres ceramic fibres
  • basalt fibres basalt fibres
  • slag fibres rock fibres
  • rock fibres e.g. like a rock wool product.
  • Suitable fibre formation methods and subsequent production steps for manufacturing the mineral fibre product are those conventional in the art.
  • the binder is sprayed immediately after fibrillation of the mineral melt on to the airborne mineral fibres.
  • the aqueous binder composition is normally applied in an amount of 0.1 to 10%, preferably 0.2 to 8% by weight, of the bonded mineral fibre product on a dry basis.
  • the spray-coated mineral fibre web is generally cured in a curing oven by means of a hot air stream.
  • the hot air stream may be introduced into the mineral fibre web from below, or above or from alternating directions in distinctive zones in the length direction of the curing oven.
  • the curing oven is operated at a temperature of from about 150 to 350° C.
  • the curing temperature ranges from about 200 to about 300° C.
  • the curing oven residence time is from 30 seconds to 20 minutes, depending on, for instance, the product density.
  • the mineral wool web may be subjected to a shaping process before curing.
  • the bonded mineral fibre products emerging from the curing oven may be cut to a desired format e.g., in the form of a batt.
  • the mineral fibre products produced may, for instance, have the form of mats, batts, slabs, sheets, plates, strips, rolls, pipe sections, granulates, and other shaped articles.
  • a specific type of bonded mineral fibre product is a horticultural growth substrate product.
  • Such horticultural growth substrate products may be in any of the known forms for growth substrate products, such as those usually known as plugs, blocks, slabs and mats.
  • the invention is beneficial in the case where the product is in a form generally known for use as a substrate for the propagation stage.
  • the horticultural growth substrate product has a greater uniformity of environment across the set of seeds being grown, leading to greater uniformity of the end-product plants; this leads to generally improved plant quality.
  • the growth substrate product may further comprise a wetting agent.
  • a wetting agent This can be a conventional non-ionic surfactant but preferably the wetting agent is an ionic surfactant, more preferably an anionic surfactant.
  • Particularly preferred wetting agents are anionic surfactants such as linear alkyl benzene sulphonates wherein the alkyl chain has from 5 to 20 carbon atoms.
  • the amount (by weight) of ionic surfactant based on the weight of binder (dry matter) is in the range 0.01 to 5%, preferably 0.1 to 4%.
  • This type of surfactant provides particularly beneficial water distribution properties for growth substrates of relatively large height and also provides excellent re-saturation properties and does not lead to foaming problems in the irrigation water.
  • composite materials by combining the bonded mineral fibre product with suitable composite layers or laminate layers such as, e.g., metal, glass surfacing mats and other woven or non-woven materials.
  • the mineral fibre products according to the present invention generally have a density within the range of from 5 to 250 kg/m 3 , preferably 20 to 200 kg/m 3 .
  • a particular group of mineral fibre products according to the present invention are ceiling tiles having a density of from 50 to 220 kg/m 3 and manufactured using a non-cured binder composition comprising dextrose in an amount of 20 to 70 wt %, preferably 40 to 70 wt %, based on total dry solids of phenol-formaldehyde resol resin and dextrose.
  • Another group of mineral fibre products according to the present invention are roof boards having a density of from 100 to 250 kg/m 3 and manufactured using a non-cured binder composition comprising dextrose in an amount of 20 to 50 wt %, preferably 20 to 40 wt %, based on total dry solids of phenol-formaldehyde resol resin and dextrose.
  • the mineral fibre products according to the present invention are light-coloured and often brownish to a varying degree, depending on the amount of dextrose.
  • the mineral fibre products according to the present invention satisfy the formaldehyde emission requirements of international building industry standards.
  • tests with mineral fibre products according to the invention showed that the formaldehyde emission requirements of Finnish Standard RTS-M1 (limit 50 ⁇ g/m 2 h) for a roof board can be met by using >20 wt % of dextrose.
  • the Finnish Standard RTS-M1 standard determines the emission of the sample after 4 weeks in a testing chamber according to ISO-16000-9, first edition, corrected version 2006 Jun. 15.
  • Greenguard Children and Schools standard limit corresponds to a specific emission rate of approximately 35 ⁇ g/m 2 h.
  • this standard is met for a building insulation product board or roll having a density of from 5 to 70 kg/m 3 and manufactured using a non-cured binder composition comprising dextrose in an amount of 10 to 50 wt %, preferably 20 to 40 wt %, based on total dry solids of phenol-formaldehyde resol resin and dextrose.
  • a phenol-formaldehyde resin is prepared by reacting formaldehyde and phenol in a molar ratio of 3.7 to 1 in the presence of a catalyst (6 wt % KOH, relative to the amount of phenol) at a reaction temperature of 84° C. The reaction is continued until the acid tolerance of the resin is 4 and most of the phenol is converted. Urea is then added in an amount corresponding to 52 parts by weight of phenol-formaldehyde resin and 48 parts by weight of urea.
  • PUF binder is mixed with a dextrose preparation, Sirodex® 431 from Syral (DE value 95), in the amounts indicated in Table 1 below.
  • the binder is diluted with water to a solids content equal to 22%, and a commercial prehydrolysed aminosilane is added in an amount corresponding to 0.5% of the solids.
  • the binder composition obtained is used for production of monolayer roof boards (“A-Tagplade”). Further details are given in the following table.
  • a commercial resin PF-0415M from Hexion is used for the test.
  • the resin is a phenol-formaldehyde resin modified with urea and ammonia. Free formaldehyde is ⁇ 0.3% based on the liquid resin. The amount of urea is 28% in relation to the solids content.
  • the resin is mixed with a dextrose preparation, Sirodex® 431 (DE value 95) from Syral, in the amounts indicated in Table 2 below.
  • a glucose syrup i.e. C Sweet® 01403 (DE value 30) from Cargill, is used in the amount indicated in Table 2 (Sample H).
  • composition is diluted to 15% with water to provide a binder composition and further added with 0.5% of a commercial silane of the type pre-hydrolysed amino silane.
  • the binder composition obtained is used for production of monolayer roof boards (DP-GF). Further details are given in the following table.
  • the formaldehyde emission is measured for the products A-H of Examples 1 and 2 and stated in Table 3 below as formaldehyde emission in ⁇ g/m 3 .
  • the emissions were measured in the climate chamber at the Danish Technological Institute (TI) according to standard EN 717-1.
  • the actually determined values are compared with the expected values (assuming a pure dilution effect of dextrose).
  • the value of 80 for 100 parts of PUF is used as a reference and the expected values are calculated with reference to the value.
  • Sample H is a comparative sample where the dextrose is substituted with a glucose syrup of low dextrose content having a DE-value of 30. Sample H using this sugar syrup does not show a significant reduction in formaldehyde emission compared to the high dextrose content syrups of Examples A-G. Instead, the measured value for the formaldehyde emission of Sample H is as expected when assuming a pure dilution effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Architecture (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Textile Engineering (AREA)
  • Civil Engineering (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Nonwoven Fabrics (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

A method of reducing the formaldehyde emission of a mineral fibre product bonded with a urea-modified phenol-formaldehyde resol resin-type binder comprises the step of adding dextrose to the binder composition during and/or after preparation of the binder composition but before curing of the binder composition applied to the mineral fibres.

Description

    FIELD OF THE INVENTION
  • The present invention relates to a method of reducing formaldehyde emission of a mineral fibre product, and to bonded mineral fibre products having low formaldehyde emission.
  • BACKGROUND OF THE INVENTION
  • Mineral fibre products generally comprise man-made vitreous fibres (MMVF) such as, e.g., glass fibres, ceramic fibres, basalt fibres, slag wool, mineral wool and stone wool, which are bonded together by a cured thermoset polymeric binder material. For use as thermal and/or acoustical insulation products, bonded mineral fibre mats are generally produced by converting a melt made of suitable raw materials to fibres in conventional manner, for instance by a spinning cup process or by a cascade rotor process. The fibres are blown into a forming chamber and, while airborne and while still hot, are sprayed with a binder solution and randomly deposited as a mat or web onto a travelling conveyor. The fibre mat is then transferred to a curing oven where heated air is blown through the mat to cure the binder and rigidly bond the mineral fibres together.
  • Phenolic binders, in particular phenol-formaldehyde resole resins are frequently used in the manufacture of mineral fibre insulation materials, such as insulative batts for walls, roof boards, ceiling tiles, insulative coverings for pipes, and the like.
  • Typically, when a phenol-formaldehyde resole resin is used as a binder, a significant amount of formaldehyde is released into the environment during cure. Formaldehyde also can be released subsequently from the cured resin. Such formaldehyde emission is undesirable, particularly in enclosed spaces, because it is hazardous to human health and to the environment. Formaldehyde has been classified as carcinogenic to humans by The International Agency for Research on Cancer (IARC) of the World Health Organization (WHO); see the IARC Monograph on Formaldehyde, Volume 88 (2006). It is therefore desirable to reduce the release of formaldehyde into the environment.
  • Various techniques have been used to reduce formaldehyde emission from formaldehyde-based resins. In particular, various formaldehyde scavengers have been used for that purpose. For instance, urea acts as a formaldehyde scavenger both at, and subsequent to, the manufacture of bonded mineral fibre products. Urea is typically added directly to the phenol-formaldehyde resin to produce a urea-modified phenol-formaldehyde resole resin. To obtain a typical urea-modified resole binder resin, a mixture of phenol and formaldehyde is reacted with a suitable basic catalyst in one or more steps. The reaction conditions, temperature, amount of catalyst, etc., are adjusted to favour phenol methylolation reactions over condensation reactions. Urea is then added before or after inactivating the resin just prior to use of the resin. Such a resin is typically referred to as a PUF resin, or PUF binder.
  • Another commonly used formaldehyde scavenger is ammonia which binds formaldehyde with formation of amine compounds such as hexamethylene tetramine.
  • For instance, WO 96/26164 describes a phenol-formaldehyde resin composition for use as a binder in mineral wool products wherein the emission of phenol is reduced by using a stoichiometric excess of formaldehyde over phenol, wherein the emission of the excess formaldehyde is reduced by adding ammonia as a formaldehyde scavenger and wherein the emission of ammonia is reduced by reacting the ammonia with a sugar compound.
  • Other thermosetting phenol-formaldehyde resole resin-type mineral wool binder systems that contain a sugar component are known in the art. For instance, WO 20061136614 discloses a binder system similar to that of WO 96/26164 but substituting hydroxylamine or an amino alcohol for ammonia.
  • U.S. Pat. No. 4,339,361 discloses phenol-formaldehyde resole resins which are suitable for use in binder systems for bonding mineral fibre products and which are extended with an amide or amine such as urea and a sugar as inexpensive extenders. The sugar component may be selected from mono- and oligosaccharides and water-soluble polysaccharides.
  • WO 20091136106 discloses mineral wool binders comprising a liquid phenolic resin having a free formaldehyde content of less than or equal to 0.1% and an extender. The extender may be chosen from carbohydrates, including monosaccharides, oligosaccharides and polysaccharides.
  • U.S. Pat. No. 5,795,934 discloses a urea-modified phenol-formaldehyde resole resin composition which comprises an alkanolamine alone or preferably in combination with a monosaccharide or disaccharide in an amount sufficient to improve the storage stability of the urea-modified phenolic resole resin.
  • WO 2008/127936 discloses composite Maillard-resole binder compositions comprising a phenol-formaldehyde resole resin or urea-modified phenol-formaldehyde resole resin and so-called Maillard reactants which comprise a mixture of a monosaccharide and an ammonium salt of a polycarboxylic acid.
  • SUMMARY OF THE INVENTION
  • The present invention is based on the discovery that dextrose acts as a formaldehyde scavenger in the manufacture of mineral fibre products bonded with a urea-modified phenol-formaldehyde resole resin-type binder.
  • Accordingly, in one aspect, the present invention relates to a method of reducing the formaldehyde emission of a mineral fibre product bonded with a urea-modified phenol-formaldehyde resol resin-type binder, said method comprising the step of adding dextrose to the binder composition during and/or after preparation of the binder composition but before curing of the binder composition applied to the mineral fibres. Preferably, the dextrose is added to the binder composition after the preparation of the binder composition but before curing of the binder composition applied to the mineral fibres.
  • In another aspect, the present invention relates to a mineral fibre product having reduced formaldehyde emission and bonded with a cured urea-modified phenol-formaldehyde resol resin-type binder composition, the non-cured binder composition comprising dextrose in an amount of 15 wt % or more, and up to 70 wt %, based on total dry solids of phenol-formaldehyde resol resin and dextrose.
  • In a further aspect, the present invention relates to the use of dextrose as a formaldehyde scavenger in a urea-modified phenol-formaldehyde resol resin-type binder composition for mineral fibre products. The dextrose used may be pure dextrose or in the form of a dextrose preparation having a DE equivalent of about 70 to 100, preferably about 90 to 100. The phenol may be reacted with molar excess formaldehyde in aqueous solution in a molar ratio of from 1:2.5 to 1:6; preferably from 1:3 to 1:5, in the presence of a base catalyst. The urea used may be in an amount of from 20 to 60 wt %, preferably 30 to 50 wt %, based on total dry solids of the phenol-formaldehyde resol resin and urea. The dextrose used may be in an amount of 15 to 70 wt %, preferably 20 to 50 wt %, based on total dry solids of urea-modified phenol-formaldehyde resol resin and dextrose.
  • The use is preferably carried out with a step of adding dextrose to the binder composition during and/or after preparation of the binder composition but before curing of the binder composition applied to the mineral fibres.
  • In still another aspect, the present invention relates to an apparatus for making a mineral fibre product having reduced formaldehyde emission and bonded with a cured urea-modified phenol-formaldehyde resol resin-type binder composition with dextrose added to the binder composition, said apparatus comprising
      • means for fiberising a mineral melt to mineral fibres,
      • separate tanks for the binder composition and dextrose;
      • means for mixing the binder composition and the dextrose,
      • means for applying the mixture of binder composition and dextrose to the mineral fibres,
      • a collecting chamber for the mineral fibres with the applied mixed binder composition and dextrose,
      • a curing oven for curing the mixed binder composition and dextrose applied to the mineral fibres to form a cured web, and
      • means for confectioning the cured web to a mineral fibre product.
  • The confectioning of the mineral wool cured web is in the conventional meaning of cutting and packaging the web into products.
  • The dextrose used may be pure dextrose or in the form of a dextrose preparation having a DE equivalent of about 70 to 100, preferably about 90 to 100. The phenol may be reacted with molar excess formaldehyde in aqueous solution in a molar ratio of from 1:2.5 to 1:6; preferably from 1:3 to 1:5, in the presence of a base catalyst. The urea used may be in an amount of from 20 to 60 wt %, preferably 30 to 50 wt %, based on total dry solids of the phenol-formaldehyde resol resin and urea. The dextrose used may be in an amount of 15 to 70 wt %, preferably 20 to 50 wt %, based on total dry solids of urea-modified phenol-formaldehyde resol resin and dextrose.
  • The inventors have surprisingly found that by adding dextrose to a urea-modified phenol-formaldehyde resol resin-type binder composition, the formaldehyde emission of the bonded mineral fibre product after curing can be reduced down to values which cannot be explained by a mere dilution effect; i.e. by dextrose merely acting as an diluent or extender. For instance, with a mineral wool product bonded with 4.92% of a binder comprising a 43/57 (wt %) mixture of urea-modified phenol-formaldehyde resol resin and dextrose, a formaldehyde emission of 13 μg/m3 was determined instead of an expected value (assuming a pure dilution effect) of 40 μg/m3. Likewise, with a mineral wool product bonded with 3.59% of a binder comprising a 54/46 (wt %) mixture of urea-modified phenol-formaldehyde resol resin and dextrose, a formaldehyde emission of 7 μg/m3 was measured instead of an expected value of 43 μg/m3.
  • The notion of “reduced formaldehyde” is herein construed as a reduction in the formaldehyde emission, compared with an otherwise identical product in terms of binder content, urea content, ammonia content and product density.
  • DETAILED DESCRIPTION AND PREFERRED EMBODIMENTS
  • Urea-Modified Phenol-Formaldehyde Resol Resin
  • In accordance with the present invention, the nature of the urea-modified phenol-formaldehyde resol resin is not critical, and any urea-modified phenol-formaldehyde resol resin known in the art may be used.
  • However, in accordance with the invention, preferably no substantive urea-formaldehyde (UF) resin formation is taking place, i.e. a dedicated UF formation giving the resin the character of a UF resin is preferably not aimed at.
  • Specific examples of suitable urea-modified phenol-formaldehyde resol resins are, for instance, those disclosed in EP-A-148050, EP-A-810981, CA-A-1001788 and U.S. Pat. No. 5,371,140; the emulsifiable phenolic resins disclosed in EP-A-1084167; the overcondensed phenolic resins disclosed in WO 99/03906 and WO 20091136106, the disclosures of which are hereby incorporated by reference.
  • The proportion of phenol to aldehyde is selected to yield a resol-type resin (stoichiometric excess of aldehyde), when phenol and formaldehyde are used, the mole ratio of phenol to formaldehyde preferably being from about 1:2.5 to 1:6, and more preferably from about 1:3 to 1:5.
  • The catalyst used in the process of preparing the resol resin can include at least one basic alkali metal or alkaline earth metal compound or amine catalyst, such as triethyl amine (TEA). Examples of alkali metal bases which can be used include the hydroxides of sodium, potassium and lithium. Examples of alkaline earth metal bases which can be used include the oxides and hydroxides of calcium, barium and strontium, such as calcium oxide and calcium hydroxide.
  • The exothermic condensation reaction of the phenol and the aldehyde is initiated after mixing the phenol and the aldehyde by addition of the catalyst. In a preferred embodiment, an aqueous mixture of phenol and formaldehyde is maintained at a first temperature of, for instance, 40 to 50° C., as the basic catalyst is added. The temperature is then permitted to rise to a second reaction temperature of, for instance, 60 to 90° C. Preferably, the reaction is carried out for a sufficient reaction time and at a suitable temperature to provide a resol resin having an acid tolerance of ≦8, preferably within the range of 0.5 to 7, more preferably 3 to 5. The degree of conversion of phenol is preferably ≧95%, more preferably ≧97%.
  • Acid tolerance is a measure of the reaction degree and is determined as follows: As acid is used a diluted solution of sulphuric acid (2.5 ml of concentrated sulphuric acid is added to 1 litre of ion-exchanged water). 5.0 ml of binder is transferred into an Erlenmeyer flask. Diluted acid is then added from a burette while keeping the binder in motion. The titration is continued until a slight cloud appears in the binder, which does not disappear when the binder is shaken. The acid tolerance is calculated by dividing the amount of acid in ml used for the titration with the amount of ml of the sample.
  • The reaction mixture may be inactivated by addition of a latent acid such as ammonium sulphate or an acid such as sulfuric acid.
  • For modification of the phenol-formaldehyde resol resin with urea, urea is preferably added and/or reacted in an amount of from about 20 to 60 wt %, preferably 20 to 50 wt %, based on total dry solids of phenol-formaldehyde resol resin and urea. The urea may be added to the resol resin during its preparation or in a post-reaction step.
  • Dextrose
  • In accordance with the present invention, dextrose is added to the binder composition during and/or after preparation of the binder composition but before curing of the binder composition applied to the mineral fibres.
  • For use as a formaldehyde scavenger, dextrose may be used as pure dextrose (glucose) or in the form of a dextrose preparation having a DE equivalent of about 70 to 100, preferably about 90 to 100.
  • Dextrose is normally produced by subjecting an aqueous slurry of starch to hydrolysis by means of heat, acid or enzymes. Depending on the reaction conditions employed in the hydrolysis of starch, a variety of mixtures of glucose and intermediates is obtained which may be characterized by their DE number. DE is an abbreviation for Dextrose Equivalent and is defined as the content of reducing sugars, expressed as the number of grams of anhydrous D-glucose per 100 g of the dry matter in the sample, when determined by the method specified in International Standard ISO 5377-1981 (E). This method measures reducing end groups and attaches a DE of 100 to pure glucose (=dextrose) and a DE of 0 to pure starch.
  • In accordance with the present invention, pure dextrose or high DE glucose syrup are preferably used as formaldehyde scavengers.
  • Binder Composition
  • The non-cured binder composition according to the present invention generally contains dextrose in an amount of from 15 to 70 wt %, preferably 20 to 50 wt %, based on total dry solids of phenol-formaldehyde resol resin and dextrose. Preferred lower concentrations of dextrose are 15 wt %, 20 wt %, 25 wt %, 30 wt %, 35 wt %, 40 wt % and 45 wt %. Preferred higher concentrations of dextrose are 50 wt %, 55 wt %, 60 wt %, 65 wt % and 70 wt %, Depending on the properties desired and on the type and amount of formaldehyde generators present, the skilled person will employ dextrose in appropriate concentration ranges between these values.
  • In addition to the urea-modified phenol-formaldehyde resole resin and dextrose, the aqueous binder compositions according to the present invention may comprise one or more conventional binder additives. These include, for instance, curing accelerators such as the free acid and salt forms of strong acids such as boric acid, sulphuric acid, nitric acid and p-toluenesulphonic acid which may be used either alone or in combination with guanidine carbonate. Other suitable binder additives are, for example, silane coupling agents such as γ-aminopropyltriethoxysilane; thermal stabilizers; UV stabilizers; emulsifiers; surface active agents, particularly nonionic surfactants; biocides; plasticizers; anti-migration aids; coalescents; fillers and extenders such as starch, clay, silicates and magnesium hydroxide; pigments such as titanium dioxide; hydrophobizing agents such as fluorinated compounds, mineral oils and silicone oils; flame retardants; corrosion inhibitors such as thiourea; antifoaming agents; antioxidants; and others.
  • These binder additives and adjuvants may be used in conventional amounts generally not exceeding 20 wt. % of the binder solids. The amount of curing accelerator in the binder composition is generally between 0.05 and 5 wt. %, based on solids.
  • The final aqueous binder composition generally has a solids content of from 1 to 20 wt. % and a pH of 6 or higher.
  • The binder composition according to the present invention preferably does not contain any one of the following components:
  • hydroxylamine; amino alcohols; alkanol amines; polycarboxylic acids and ammonium salts of polycarboxylic acids; sugar alcohols.
  • Mineral Fibre Product
  • The mineral fibres employed may be any of man-made vitreous fibres (MMVF), glass fibres, ceramic fibres, basalt fibres, slag fibres, rock fibres, stone fibres and others. These fibres may be present as a wool product, e.g. like a rock wool product.
  • Suitable fibre formation methods and subsequent production steps for manufacturing the mineral fibre product are those conventional in the art. Generally, the binder is sprayed immediately after fibrillation of the mineral melt on to the airborne mineral fibres. The aqueous binder composition is normally applied in an amount of 0.1 to 10%, preferably 0.2 to 8% by weight, of the bonded mineral fibre product on a dry basis.
  • The spray-coated mineral fibre web is generally cured in a curing oven by means of a hot air stream. The hot air stream may be introduced into the mineral fibre web from below, or above or from alternating directions in distinctive zones in the length direction of the curing oven.
  • Typically, the curing oven is operated at a temperature of from about 150 to 350° C. Preferably, the curing temperature ranges from about 200 to about 300° C. Generally, the curing oven residence time is from 30 seconds to 20 minutes, depending on, for instance, the product density.
  • If desired, the mineral wool web may be subjected to a shaping process before curing. The bonded mineral fibre products emerging from the curing oven may be cut to a desired format e.g., in the form of a batt. Thus, the mineral fibre products produced may, for instance, have the form of mats, batts, slabs, sheets, plates, strips, rolls, pipe sections, granulates, and other shaped articles.
  • A specific type of bonded mineral fibre product is a horticultural growth substrate product. Such horticultural growth substrate products may be in any of the known forms for growth substrate products, such as those usually known as plugs, blocks, slabs and mats. In particular the invention is beneficial in the case where the product is in a form generally known for use as a substrate for the propagation stage.
  • The horticultural growth substrate product has a greater uniformity of environment across the set of seeds being grown, leading to greater uniformity of the end-product plants; this leads to generally improved plant quality.
  • The growth substrate product may further comprise a wetting agent. This can be a conventional non-ionic surfactant but preferably the wetting agent is an ionic surfactant, more preferably an anionic surfactant. Particularly preferred wetting agents are anionic surfactants such as linear alkyl benzene sulphonates wherein the alkyl chain has from 5 to 20 carbon atoms. Preferably the amount (by weight) of ionic surfactant based on the weight of binder (dry matter) is in the range 0.01 to 5%, preferably 0.1 to 4%.
  • This type of surfactant provides particularly beneficial water distribution properties for growth substrates of relatively large height and also provides excellent re-saturation properties and does not lead to foaming problems in the irrigation water.
  • In accordance with the present invention, it is also possible to produce composite materials by combining the bonded mineral fibre product with suitable composite layers or laminate layers such as, e.g., metal, glass surfacing mats and other woven or non-woven materials.
  • The mineral fibre products according to the present invention generally have a density within the range of from 5 to 250 kg/m3, preferably 20 to 200 kg/m3.
  • A particular group of mineral fibre products according to the present invention are ceiling tiles having a density of from 50 to 220 kg/m3 and manufactured using a non-cured binder composition comprising dextrose in an amount of 20 to 70 wt %, preferably 40 to 70 wt %, based on total dry solids of phenol-formaldehyde resol resin and dextrose.
  • Another group of mineral fibre products according to the present invention are roof boards having a density of from 100 to 250 kg/m3 and manufactured using a non-cured binder composition comprising dextrose in an amount of 20 to 50 wt %, preferably 20 to 40 wt %, based on total dry solids of phenol-formaldehyde resol resin and dextrose.
  • There are essentially two types of roof boards: mono density and dual density roof boards such as disclosed, e.g., in EP-A-889981 and EP-A-1456444, the disclosure of which is incorporated herein by reference.
  • In preferred dual density roof boards, the mineral fibre baits include an upper layer having a density of around 100 to 250 kg/m3 and a lower layer with a density which is usually not more than 80% but usually more than 30% of the density of the upper layer, often around 40 to 70% of the density of the upper layer. Usually, the upper and lower layers in the final product have a total thickness of 30 to 300 mm. The lower layer is usually 25 to 275 mm thick and is usually at least 75 mm thick. Generally, it is at least 50%, and often 75 to 95%, of the combined thickness of the upper and lower layers.
  • The mineral fibre products according to the present invention are light-coloured and often brownish to a varying degree, depending on the amount of dextrose.
  • The mineral fibre products according to the present invention satisfy the formaldehyde emission requirements of international building industry standards.
  • For instance, tests with mineral fibre products according to the invention showed that the formaldehyde emission requirements of Finnish Standard RTS-M1 (limit 50 μg/m2 h) for a roof board can be met by using >20 wt % of dextrose. The Finnish Standard RTS-M1 standard determines the emission of the sample after 4 weeks in a testing chamber according to ISO-16000-9, first edition, corrected version 2006 Jun. 15.
  • Similarly, the formaldehyde emission requirements of U.S. Standard CDHS (version 15 Jul. 2004; limit 16.5 μg/m3) for a roof board can be met by using >30 wt % of dextrose, and the formaldehyde emission requirements of Japanese Standard JIS A 1901-2003 (E) (limit 12 μg/m3, the F*** limit) can be met by using about 47 wt % of dextrose.
  • Another standard that is met by the product according to the present invention is the Greenguard Children and Schools standard limit, which corresponds to a specific emission rate of approximately 35 μg/m2 h. Preferably, this standard is met for a building insulation product board or roll having a density of from 5 to 70 kg/m3 and manufactured using a non-cured binder composition comprising dextrose in an amount of 10 to 50 wt %, preferably 20 to 40 wt %, based on total dry solids of phenol-formaldehyde resol resin and dextrose.
  • The following examples are intended to illustrate the invention without limiting its scope. Unless indicated otherwise, the solids content (dry matter) is herein determined at 200° C., 1 hour and expressed as wt. %.
  • EXAMPLE 1
  • A phenol-formaldehyde resin is prepared by reacting formaldehyde and phenol in a molar ratio of 3.7 to 1 in the presence of a catalyst (6 wt % KOH, relative to the amount of phenol) at a reaction temperature of 84° C. The reaction is continued until the acid tolerance of the resin is 4 and most of the phenol is converted. Urea is then added in an amount corresponding to 52 parts by weight of phenol-formaldehyde resin and 48 parts by weight of urea.
  • Using the urea-modified phenol-formaldehyde resin obtained, a binder is made by addition of ammonium sulphate in equimolar amounts to the catalyst so as to inactivate the catalyst. The final PUF resin has a free formaldehyde content of <0.5%, relative to the solids.
  • The thus obtained PUF binder is mixed with a dextrose preparation, Sirodex® 431 from Syral (DE value 95), in the amounts indicated in Table 1 below.
  • Further, the binder is diluted with water to a solids content equal to 22%, and a commercial prehydrolysed aminosilane is added in an amount corresponding to 0.5% of the solids.
  • The binder composition obtained is used for production of monolayer roof boards (“A-Tagplade”). Further details are given in the following table.
  • TABLE 1
    Binder content Product
    of product* density
    PUF Binder % Dextrose % (%) (kg/m3)
    A 100 0 3.62 141
    B 80 20 3.94 139
    C 43 57 4.92 135
    The PUF binder content (%) and the dextrose content (%) are weight percentages based on total dry solids of phenol-formaldehyde resol resin and dextrose.
    *The binder content of product (%) is defined as loss-on ignition (LOI) (%) − impregnation oil (%)
  • EXAMPLE 2
  • A commercial resin PF-0415M from Hexion is used for the test. The resin is a phenol-formaldehyde resin modified with urea and ammonia. Free formaldehyde is <0.3% based on the liquid resin. The amount of urea is 28% in relation to the solids content.
  • The resin is mixed with a dextrose preparation, Sirodex® 431 (DE value 95) from Syral, in the amounts indicated in Table 2 below. For comparison, a glucose syrup, i.e. C Sweet® 01403 (DE value 30) from Cargill, is used in the amount indicated in Table 2 (Sample H).
  • The composition is diluted to 15% with water to provide a binder composition and further added with 0.5% of a commercial silane of the type pre-hydrolysed amino silane.
  • The binder composition obtained is used for production of monolayer roof boards (DP-GF). Further details are given in the following table.
  • TABLE 2
    Binder content Product
    of product* density
    PUF Binder % Dextrose % (%) (kg/m3)
    D 100 0 3.43 155
    3.20 150
    E 72 28 3.63 146
    F 54 46 3.59 151
    G 50 50 3.66 155
    H 80 20 3.12 141
    The PUF binder content (%) and the dextrose content (%) are weight percentages based on total dry solids of phenol-formaldehyde resol resin and dextrose.
    *Binder content of product (%) = LOI (%) − impregnation oil (%)
  • EXAMPLE 3
  • The formaldehyde emission is measured for the products A-H of Examples 1 and 2 and stated in Table 3 below as formaldehyde emission in μg/m3. The emissions were measured in the climate chamber at the Danish Technological Institute (TI) according to standard EN 717-1.
  • The actually determined values are compared with the expected values (assuming a pure dilution effect of dextrose). The value of 80 for 100 parts of PUF is used as a reference and the expected values are calculated with reference to the value. For instance, the 50/50 PUF/dextrose expected value is (50 PUF/100 PUF)×80=40.
  • TABLE 3
    Expected Measured
    A 100/0 PUF/Dextrose 80 83
    B 80/20 PUF/Dextrose 64 36
    C 43/57 PUF/Dextrose 40 13
    D 100/0 PUF/Dextrose 80 83 (77)
    E 72/28 PUF/Dextrose 58 36
    F 54/46 PUF/Dextrose 43  7
    G 50/50 PUF/Dextrose 40 16
    H 80/20 PUF/DE 30 syrup 64 65
  • As can be seen from Table 3, the use of dextrose results in a significant reduction of the formaldehyde emission of the bonded mineral fibre products which cannot be explained by a pure dilution effect.
  • Sample H is a comparative sample where the dextrose is substituted with a glucose syrup of low dextrose content having a DE-value of 30. Sample H using this sugar syrup does not show a significant reduction in formaldehyde emission compared to the high dextrose content syrups of Examples A-G. Instead, the measured value for the formaldehyde emission of Sample H is as expected when assuming a pure dilution effect.

Claims (21)

1.-16. (canceled)
17. A method of reducing the formaldehyde emission of a mineral fiber product bonded with a urea-modified phenol-formaldehyde resol resin-type binder composition, wherein the method comprises adding dextrose to the binder composition at least one of during and after preparation of the binder composition but before curing the binder composition applied to mineral fibers.
18. The method of claim 17, wherein dextrose is used as pure dextrose or in the form of a dextrose preparation having a DE equivalent of from about 70 to about 100.
19. The method of claim 17, wherein dextrose is used as in the form of a dextrose preparation having a DE equivalent of from about 90 to about 100.
20. The method of claim 17, wherein phenol is reacted with a molar excess of formaldehyde in aqueous solution in a molar ratio of from 1:2.5 to 1:6 in a presence of a base catalyst.
21. The method of claim 20, wherein phenol is reacted with a molar excess of formaldehyde in aqueous solution in a molar ratio of from 1:3 to 1:5.
22. The method of claim 17, wherein urea is used in an amount of from 20 to 60 wt %, based on total dry solids of the phenol-formaldehyde resol resin and urea.
23. The method of claim 21, wherein urea is used in an amount of from 30 to 50 wt %, based on total dry solids of the phenol-formaldehyde resol resin and urea.
24. The method of claim 17, wherein dextrose is used in an amount of from 15 to 70 wt %, based on total dry solids of urea-modified phenol-formaldehyde resol resin and dextrose.
25. The method of claim 23, wherein dextrose is used in an amount of from 20 to 50 wt %, based on total dry solids of urea-modified phenol-formaldehyde resol resin and dextrose.
26. A mineral fiber product having reduced formaldehyde emission and bonded with a cured urea-modified phenol-formaldehyde resol resin-type binder composition, wherein the non-cured binder composition comprises dextrose in an amount of from 10 wt % to 70 wt %, based on total dry solids of phenol-formaldehyde resol resin and dextrose.
27. The mineral fiber product of claim 26, wherein the non-cured binder composition comprises at least 15 wt % of dextrose.
28. The mineral fiber product of claim 26, wherein the non-cured binder composition comprises at least 20 wt % of dextrose.
29. The mineral fiber product of claim 26, wherein the non-cured binder composition comprises at least 30 wt % of dextrose
30. The mineral fiber product of claim 26, wherein the product satisfies formaldehyde emission requirements of at least one of Finnish Standard RTS-M1, US Standard CDHS, and Japanese Standard JIS A 19012003 (E).
31. The mineral fiber product of claim 26, wherein the product is a ceiling tile having a density of from 50 to 220 kg/m3 and has been manufactured using a non-cured binder composition comprising dextrose in an amount of from 20 to 70 wt %, based on total dry solids of phenol-formaldehyde resol resin and dextrose.
32. The mineral fiber product of claim 26, wherein the product is a roof board having a density of from 100 to 250 kg/m3 and has been manufactured using a non-cured binder composition comprising dextrose in an amount of from 20 to 50 wt %, based on total dry solids of phenol-formaldehyde resol resin and dextrose.
33. The mineral fiber product of claim 26, wherein the product is a building insulation product board or roll having a density of from 5 to 70 kg/m3 and has been manufactured using a non-cured binder composition comprising dextrose in an amount of from 10 to 50 wt %, based on total dry solids of phenol-formaldehyde resol resin and dextrose.
34. A method of scavenging formaldehyde in a urea-modified phenol-formaldehyde resol resin-type binder composition for a mineral fiber product, wherein the method comprises adding to the binder composition dextrose as a formaldehyde scavenger.
35. The method of claim 34, wherein the mineral fiber product is selected from
a roof board having a density of from 100 to 250 kg/m3 and having been manufactured using a non-cured binder composition and dextrose in an amount of 20 to 50 wt %;
a ceiling tile having a density of from 50 to 220 kg/m3 and having been manufactured using a non-cured binder composition and dextrose in an amount of from 20 to 70 wt %; and
a building insulation product board having a density of from 5 to 70 kg/m3 and having been manufactured using a non-cured binder composition and dextrose in an amount of from 10 to 50 wt %;
the indicated weight percentages being based on total dry solids of phenol-formaldehyde resol resin and dextrose.
36. An apparatus for making a mineral fiber product having reduced formaldehyde emission and bonded with a cured dextrose-containing urea-modified phenol-formaldehyde resol resin-type binder composition, wherein the apparatus comprises
a device for fiberizing a mineral melt into mineral fibers,
separate tanks for the binder composition and dextrose;
a device for mixing the binder composition and the dextrose,
a device for applying a mixture of binder composition and dextrose to the mineral fibers,
a collection chamber for the mineral fibers having the mixed binder composition and dextrose applied thereto,
a curing oven for curing the mixed binder composition and dextrose applied to the mineral fibers to form a cured web, and
a device for confectioning the cured web to a mineral fiber product.
US13/884,758 2010-12-06 2011-12-05 Method of reducing the formaldehyde emission of a mineral fiber product, and mineral fiber product with reduced formaldehyde emission Abandoned US20130295813A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/884,758 US20130295813A1 (en) 2010-12-06 2011-12-05 Method of reducing the formaldehyde emission of a mineral fiber product, and mineral fiber product with reduced formaldehyde emission

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP10193849 2010-12-06
EP10193849.6 2010-12-06
US42090610P 2010-12-08 2010-12-08
PCT/EP2011/071732 WO2012076462A1 (en) 2010-12-06 2011-12-05 Method of reducing the formaldehyde emission of a mineral fibre product, and mineral fibre product with reduced formaldehyde emission
US13/884,758 US20130295813A1 (en) 2010-12-06 2011-12-05 Method of reducing the formaldehyde emission of a mineral fiber product, and mineral fiber product with reduced formaldehyde emission

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/071732 A-371-Of-International WO2012076462A1 (en) 2010-12-06 2011-12-05 Method of reducing the formaldehyde emission of a mineral fibre product, and mineral fibre product with reduced formaldehyde emission

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/643,453 Division US20220098855A1 (en) 2010-12-06 2021-12-09 Method of reducing the formaldehyde emission of a mineral fiber product, and mineral fiber product with reduced formaldehyde emission

Publications (1)

Publication Number Publication Date
US20130295813A1 true US20130295813A1 (en) 2013-11-07

Family

ID=43858484

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/884,758 Abandoned US20130295813A1 (en) 2010-12-06 2011-12-05 Method of reducing the formaldehyde emission of a mineral fiber product, and mineral fiber product with reduced formaldehyde emission
US17/643,453 Pending US20220098855A1 (en) 2010-12-06 2021-12-09 Method of reducing the formaldehyde emission of a mineral fiber product, and mineral fiber product with reduced formaldehyde emission

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/643,453 Pending US20220098855A1 (en) 2010-12-06 2021-12-09 Method of reducing the formaldehyde emission of a mineral fiber product, and mineral fiber product with reduced formaldehyde emission

Country Status (7)

Country Link
US (2) US20130295813A1 (en)
EP (1) EP2649116A1 (en)
CN (1) CN103298859B (en)
BR (1) BR112013013409A2 (en)
CA (1) CA2820559C (en)
RU (1) RU2591951C2 (en)
WO (1) WO2012076462A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140056642A1 (en) * 2011-03-14 2014-02-27 Rockwool International A/S Use of stone fibres
US20140190107A1 (en) * 2011-09-06 2014-07-10 Rockwool International A/S Insulation element for a flat roof or a flat inclined roof, roofing system for a flat roof or a flat inclined roof and method for producing an insulation element
US20140357787A1 (en) * 2011-11-22 2014-12-04 Dynea Chemicals Oy Modified binder compositions
JP2018058359A (en) * 2016-09-30 2018-04-12 群栄化学工業株式会社 Binder composition for woody board, woody board and manufacturing method therefor
US9976958B2 (en) 2013-12-11 2018-05-22 Rockwool International A/S Method for detecting curing of the binder in a mineral fiber product
JP2019171746A (en) * 2018-03-29 2019-10-10 群栄化学工業株式会社 Binder composition for particle board, particle board and its manufacturing method

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9598600B2 (en) * 2013-09-20 2017-03-21 Georgia-Pacific Chemicals Llc Modified phenolic resins for making composite products
CA2926033C (en) 2013-10-16 2021-06-15 Rockwool International A/S Man-made vitreous fibres
FR3015472A1 (en) 2013-12-23 2015-06-26 Rockwool Int METHOD FOR REDUCING EMISSIONS OF FORMALDEHYDE AND VOLATILE ORGANIC COMPOUNDS (VOC) IN A MINERAL FIBER PRODUCT
SI2947117T2 (en) 2014-05-19 2023-01-31 Rockwool International A/S Analytical binder for mineral wool products
CN105597261A (en) * 2015-12-31 2016-05-25 山东新港企业集团有限公司 Biomass formaldehyde eliminating agent and preparing method thereof
FR3091702B1 (en) * 2019-01-11 2021-01-01 Saint Gobain Isover Manufacturing process of an insulation product based on mineral wool
PL4087828T3 (en) * 2020-01-09 2024-05-20 Saint-Gobain Isover Method for manufacturing insulation products based on mineral wool
WO2021197628A1 (en) 2020-04-03 2021-10-07 Rockwool International A/S Insulation products
WO2021197626A1 (en) 2020-04-03 2021-10-07 Rockwool International A/S Acoustic products
IT202000012220A1 (en) 2020-05-25 2021-11-25 Stm Tech S R L NEW BINDER COMPOSITION FOR MULTIPLE APPLICATIONS
CA3201822A1 (en) 2020-12-30 2022-07-07 Rockwool A/S Method of draining water
WO2024023125A1 (en) 2022-07-25 2024-02-01 Rockwool A/S Mineral fibre panel and process of manufacture

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5837621A (en) * 1995-04-25 1998-11-17 Johns Manville International, Inc. Fire resistant glass fiber mats
US20050170734A1 (en) * 2001-09-06 2005-08-04 Certainteed Corporation Insulation containing a mixed layer of textile fibers and of natural fibers and process for producing the same
EP1456444B1 (en) * 2001-12-21 2009-11-11 Rockwool International A/S Mineral fibre batts and their production
US20100075146A1 (en) * 2006-12-22 2010-03-25 Saint-Gobain Isover Sizing composition for mineral fibers comprising a phenolic resin, and resulting products

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1001788A (en) 1972-06-08 1976-12-14 Hendrik J. Deuzeman Resin binder compositions
US4014726A (en) * 1974-03-18 1977-03-29 Owens-Corning Fiberglas Corporation Production of glass fiber products
US4339361A (en) * 1980-07-28 1982-07-13 Fiberglas Canada, Inc. Phenol-formaldehyde resins extended with carbohydrates for use in binder compositions
FR2555591B1 (en) 1983-11-29 1986-09-26 Saint Gobain Isover RESIN FOR A SIZING COMPOSITION, ITS MANUFACTURING METHOD AND THE SIZING COMPOSITION OBTAINED
AU658289B2 (en) 1992-11-25 1995-04-06 Georgia-Pacific Resins, Inc. Emulsifiable phenolic resole resin
DK0810981T4 (en) 1995-02-21 2009-01-19 Rockwool Lapinus Bv Process for making a mineral wool product
CZ291481B6 (en) 1996-03-25 2003-03-12 Rockwool International A/S Continuous process for the production of a bonded mineral fiberboards and apparatus for making the same
US5795934A (en) 1997-05-20 1998-08-18 Georgia-Pacific Resins, Jr. Method for preparing a urea-extended phenolic resole resin stabilized with an alkanolamine
FR2766201A1 (en) 1997-07-15 1999-01-22 Saint Gobain Isover PHENOLIC RESIN FOR SIZING COMPOSITION, PROCESS FOR PREPARATION AND SIZING COMPOSITION CONTAINING THE SAME
DK1084167T4 (en) 1998-05-18 2010-12-20 Rockwool Int Stabilized aqueous phenolic binder for mineral wool and manufacture of mineral wool products
DE102005029479A1 (en) 2005-06-24 2007-01-04 Saint-Gobain Isover G+H Ag Process for producing bonded mineral wool and binder therefor
DE102005063381B4 (en) * 2005-11-28 2009-11-19 Saint-Gobain Isover G+H Ag Process for the production of formaldehyde-free bonded mineral wool and mineral wool product
EP2137223B1 (en) * 2007-04-13 2019-02-27 Knauf Insulation GmbH Composite maillard-resole binders
FR2929953B1 (en) 2008-04-11 2011-02-11 Saint Gobain Isover SIZING COMPOSITION FOR MINERAL FIBERS AND RESULTING PRODUCTS
EP2230222A1 (en) * 2009-03-19 2010-09-22 Rockwool International A/S Aqueous binder composition for mineral fibres
FR2964105B1 (en) * 2010-08-27 2012-09-28 Saint Gobain Isover PHENOLIC RESIN, PROCESS FOR PREPARATION, SIZING COMPOSITION FOR MINERAL FIBERS, AND RESULTING PRODUCT.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5837621A (en) * 1995-04-25 1998-11-17 Johns Manville International, Inc. Fire resistant glass fiber mats
US20050170734A1 (en) * 2001-09-06 2005-08-04 Certainteed Corporation Insulation containing a mixed layer of textile fibers and of natural fibers and process for producing the same
EP1456444B1 (en) * 2001-12-21 2009-11-11 Rockwool International A/S Mineral fibre batts and their production
US20100075146A1 (en) * 2006-12-22 2010-03-25 Saint-Gobain Isover Sizing composition for mineral fibers comprising a phenolic resin, and resulting products

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140056642A1 (en) * 2011-03-14 2014-02-27 Rockwool International A/S Use of stone fibres
US10066344B2 (en) * 2011-03-14 2018-09-04 Rockwool International A/S Method of making an equestrian surface using stone fibers
US20140190107A1 (en) * 2011-09-06 2014-07-10 Rockwool International A/S Insulation element for a flat roof or a flat inclined roof, roofing system for a flat roof or a flat inclined roof and method for producing an insulation element
US9032690B2 (en) * 2011-09-06 2015-05-19 Rockwool International A/S Insulation element for a flat roof or a flat inclined roof, roofing system for a flat roof or a flat inclined roof and method for producing an insulation element
US20140357787A1 (en) * 2011-11-22 2014-12-04 Dynea Chemicals Oy Modified binder compositions
US9976958B2 (en) 2013-12-11 2018-05-22 Rockwool International A/S Method for detecting curing of the binder in a mineral fiber product
JP2018058359A (en) * 2016-09-30 2018-04-12 群栄化学工業株式会社 Binder composition for woody board, woody board and manufacturing method therefor
JP7017896B2 (en) 2016-09-30 2022-02-09 群栄化学工業株式会社 Binder composition for wood board, wood board and its manufacturing method
JP2019171746A (en) * 2018-03-29 2019-10-10 群栄化学工業株式会社 Binder composition for particle board, particle board and its manufacturing method

Also Published As

Publication number Publication date
CA2820559A1 (en) 2012-06-14
WO2012076462A1 (en) 2012-06-14
RU2591951C2 (en) 2016-07-20
CN103298859A (en) 2013-09-11
CA2820559C (en) 2019-11-12
CN103298859B (en) 2016-08-10
EP2649116A1 (en) 2013-10-16
RU2013130735A (en) 2015-01-20
BR112013013409A2 (en) 2016-09-06
US20220098855A1 (en) 2022-03-31

Similar Documents

Publication Publication Date Title
US20220098855A1 (en) Method of reducing the formaldehyde emission of a mineral fiber product, and mineral fiber product with reduced formaldehyde emission
US10233115B2 (en) Formaldehyde-free sizing composition for fibres, in particular mineral fibres, and resulting products
CA2805563C (en) Bonded mineral fibre product having high fire and punking resistance
KR101838974B1 (en) Phenolic resin, method for preparing same, sizing composition for mineral fibers and resulting product
EP2059118B1 (en) Aqueous binder composition for mineral fibres
CA2842237C (en) Urea-modified binder for mineral fibres
US20060111480A1 (en) Formaldehyde-free aqueous binder composition for mineral fibers
EP2785809B1 (en) Aqueous binder composition
KR20160147810A (en) Gluing composition based on non-reducing saccharide and hydrogenated saccharide, and insulating products obtained
KR101456163B1 (en) Glue composition for mineral fibres containing a phenolic resin, and resulting products
WO2012046761A1 (en) Binder for production of inorganic fiber product, and process for production of inorganic fiber product
US20180002225A1 (en) Binder for mineral fibres, comprising lignosulfonate and a carbonyl compound, and resulting mats
US20140127491A1 (en) Binder for mineral and/or organic fiber mat, and products obtained
DK2697327T3 (en) ADHESIVE COMPOSITION FOR MANUFACTURING FIRE-RESISTANT MINERAL WOOL AND INSULATION PRODUCT
EP3341337A1 (en) Mineral wool product
US20140113123A1 (en) Binder for mineral and/or organic fiber mat, and products obtained
JP2024508589A (en) insulation products
JP5328988B6 (en) Binder for manufacturing inorganic fiber products and method for manufacturing inorganic fiber products
NZ619432B2 (en) Formaldehyde-free sizing composition for fibres, in particular mineral fibres, and resulting products.

Legal Events

Date Code Title Description
AS Assignment

Owner name: ROCKWOOL INTERNATIONAL A/S, DENMARK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HANSEN, ERLING LENNART;NAERUM, LARS;NISSEN, POVL;REEL/FRAME:030721/0667

Effective date: 20130618

STCV Information on status: appeal procedure

Free format text: ON APPEAL -- AWAITING DECISION BY THE BOARD OF APPEALS

STCV Information on status: appeal procedure

Free format text: BOARD OF APPEALS DECISION RENDERED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION