US20130290632A1 - Portable device for secure storage of user provided data - Google Patents

Portable device for secure storage of user provided data Download PDF

Info

Publication number
US20130290632A1
US20130290632A1 US13/814,142 US201113814142A US2013290632A1 US 20130290632 A1 US20130290632 A1 US 20130290632A1 US 201113814142 A US201113814142 A US 201113814142A US 2013290632 A1 US2013290632 A1 US 2013290632A1
Authority
US
United States
Prior art keywords
data
pecd
network
station
portable device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/814,142
Inventor
Arjun Prakash Kumar
Wai-Cheong Daniel Sin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SPQKUMAR Inc
Original Assignee
SPQKUMAR Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SPQKUMAR Inc filed Critical SPQKUMAR Inc
Priority claimed from PCT/CA2011/000075 external-priority patent/WO2011088565A1/en
Assigned to SPQKUMAR INC. reassignment SPQKUMAR INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KUMAR, ARJUN PRAKASH, SIN, WAI-CHEONG DANIEL
Publication of US20130290632A1 publication Critical patent/US20130290632A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/60ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
    • G16H10/65ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records stored on portable record carriers, e.g. on smartcards, RFID tags or CD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/072Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips the record carrier comprising a plurality of integrated circuit chips
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/0772Physical layout of the record carrier
    • G06K19/07732Physical layout of the record carrier the record carrier having a housing or construction similar to well-known portable memory devices, such as SD cards, USB or memory sticks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/10Office automation; Time management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/08Network architectures or network communication protocols for network security for authentication of entities
    • H04L63/0861Network architectures or network communication protocols for network security for authentication of entities using biometrical features, e.g. fingerprint, retina-scan
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks

Definitions

  • the present invention is directed to apparatus and methods for the exchange of data within a network and between networks, including but not limited to (i) medical data (e.g. insurance, drug, diagnostic, etc.); (ii) educational data (e.g. test scores, attendance, etc.); and (iii) financial data.
  • the exchange and use of data may utilize a portable device for the secure storage of user provided or defined data as a database or master thereof that can enable interoperability and/or data exchange within or between multiple networks.
  • Sharing information within a network or across multiple networks for use in many different contexts can present numerous challenges. For example, there may be difficulties associated with non-electronic records being converted to electronic records. Information may not easily be uploaded or downloaded from one computer to another across a network or between networks. Information may also be stored on a transportable media (i.e. a disk, flash drive, USB, etc.) and physically carried from one computer to computer. When information on the transportable media is updated, information stored on a network database or on numerous network databases also should be updated. Ensuring that all appropriate information is up-to-date across a network, particularly when transportable media is utilized, can be a significant challenge. This is particularly importance in the medical context as a patient's medical records may be stored electronically in a number of databases and each database may have one or more separate information input sources.
  • a transportable media i.e. a disk, flash drive, USB, etc.
  • doctors and health care providers need a reliable and secure approach to assembling comprehensive patient records from various sources, which may each maintain their own database.
  • These multiple or varied sources include, but are not limited to, multiple health care provider facilities such as doctors' offices, clinics, hospitals, pharmacies as well as insurance providers and governmental offices.
  • Each of these databases may have data that changes over time (e.g. each time a healthcare provider is visited by a patient).
  • these databases may not be interconnected, there have been attempts in some cases to develop centralized databases to assist in keeping data (e.g. medical records) centralized and up-to-date.
  • Healthcare information systems, including centralized databases may also provide Internet portals for users to add, display and modify information.
  • a limitation of such systems is that a healthcare provider and/or patients may need to belong to or have been granted access to the system or network first in order to use the network.
  • uses of these systems rely on network connections to provide service to individuals and healthcare providers.
  • Such systems may not be able to address situations where network service is interrupted or not available.
  • information is not available to healthcare workers, the efficiency, accuracy, quality and speed of care to an individual or patient is impacted. For example, repeated diagnostic tests or information gathering may have to be performed to provide the necessary care.
  • medical record systems that have developed are mostly multi-part systems, where binary information and data files may be located on separate networks.
  • the prior art describes systems and methods for processing patient data that permits physicians and other medical staff personnel to record historical patient care information.
  • the medical data can be recorded, saved, and transferred from a portable system to a larger stationary information or database system.
  • each database or data station may also transfer their data to the centralized database.
  • it may be difficult for each data station or database to be in direct or indirect contact with the centralized database because of costs, interruption of service, etc.
  • each facility may not be able to transfer data to the centralized database; this results in the possibility that each facility may have information that is not available to the other facilities. Effective sharing of the data may also be difficult due to legal requirements imposed under various state, provincial or federal law.
  • PHR personal health record
  • Such PHRs may also include data that is collected via the individual and from the vital statistics of the human body and may not be available anywhere in the various existing networks.
  • the embodiments of the present invention may address the deficiencies of existing technologies (such as, for example, smartcard technology) by providing increased storage and software methods to address the requirements of PHRs.
  • the combine hardware and methods enable the embodiments of the present invention to be the master information of an individual's PHR. This approach allows the embodiments of the present invention to become the key to the network data exchange and system interoperability
  • An embodiment of the present invention is directed to a portable device for secure storage of user provided data, the portable device comprising: (a) a planar body having a portion defining an aperture; (b) an interface for communicating with an external device; and (c) data storage accessible via the interface, the storage comprising a data section operable for storage of the user provided data, the data section having operating software to effect the receiving, storing and transmitting of the data, wherein the data storage is retained within the aperture in coplanar alignment with the planar body.
  • An embodiment is directed to the portable device noted above wherein the user provided data comprises biometric data of the user.
  • a further embodiment is directed to the portable device noted above wherein the interface communicates with the external device wirelessly.
  • planar body is a smartcard.
  • Yet a further embodiment is directed to the portable device noted above wherein the data storage comprises a memory chip receiving member and a memory chip disposed within the memory chip receiving member.
  • Yet a further embodiment is directed to the portable device noted above wherein the memory chip receiving member is rotatably retained within the aperture.
  • Yet a further embodiment is directed to the portable device noted above where the data storage further comprises an elongate memory chip retaining member extending through the memory chip receiving member and engaging the planar body to rotatably retain the memory chip receiving member within the aperture.
  • retaining member is formed of a metal, a plastics material or carbon fiber.
  • Yet a further embodiment is directed to the portable device noted above wherein the resiliently flexible member is located within planar body and the memory chip receiving member whereby after displacement of the memory chip receiving member out of coplanar alignment with the planar body under the action of a displacing force, the resiliently flexible member effects return of the memory chip receiving member to the coplanar alignment when the displacing force is removed.
  • planar body has a thickness of less than 2.5 mm.
  • An embodiment of the present invention is directed to a network for receiving, storing and transmitting user defined data comprising: (a) a portable device for secure storage of the first set of user defined data, the portable device comprising an interface for communicating with an external device and data storage accessible via the interface, the data storage comprising a data section operable for storage of the first set of user provided data and having operating software to effect the receiving, storing and transmitting of data; (b) a first data station having a first data station interface for communicating with the portable device and a first data storage accessible via the first data station interface, the first data station storage comprising a first data station storage section operable for storage of a second set of user defined data and having operating software to effect the receiving, storing and transmitting of data; (c) a second data station having a second data station interface for communicating with the portable device and a second data storage accessible via the second data station interface, the second data station storage comprising a second station data station storage section operable for storage of a third set of user defined data having operating software to effect the receiving,
  • a further embodiment is directed to the network noted above wherein the portable device communicates with the first data station so as to transmitt the first, second and third sets of user defined data to the first data station and the first data station updates the second set of user defined data to include the first and third sets of user defined data.
  • Yet a further embodiment is directed to the network noted above wherein the portable device communicates with the second data station so as to transmitt the first, second and third sets of user defined data to the second data station and the second data station updates the third set of user defined data to include the first and second sets of user defined data.
  • Yet a further embodiment is directed to the network noted above wherein the first or the second data station is a centralized computer database.
  • Yet a further embodiment is directed to the network noted above wherein the first data station cannot directly communicate with the second data station.
  • first and second data station comprises means for transmitting the second and third user defined data to the portable device.
  • Yet a further embodiment is directed to the network noted above wherein the user defined data is selected from the group consisting of medical, vetininary, educational, personal and identification data.
  • Yet a further embodiment is directed to the network noted above wherein the portable storage device, the first data station and the second data station are interoperable.
  • Yet a further embodiment is directed to the network noted above wherein the first set of user defined data contains a master data record of the user.
  • Yet a further embodiment is directed to the network noted above wherein the first data station cannot communicate with the second data station.
  • Yet a further embodiment is directed to the network noted above wherein the second data station cannot communicate with the first data station.
  • Yet a further embodiment is directed to the network noted above wherein the portable device provides data and network interoperability by providing information exchange in specific format that satisfies system, network, industry standards and regulatory requirements.
  • the portable device further comprises a planar body having a portion defining an aperture and the data storage is retained within the aperture in coplanar alignment with the planar body.
  • FIG. 1 is a data network showing an embodiment of the present invention in communication with a plurality of data stations/locations;
  • FIG. 2 is a further data network showing an embodiment of the present invention in communication with a plurality of data stations/locations and a main database;
  • FIG. 2 a is an internetwork representation showing a networked embodiment of the present invention
  • FIGS. 3 a and 3 b are perspective views of an embodiment of the present invention.
  • FIG. 4 is a perspective view of a memory chip of use in the practice of the invention.
  • FIG. 5 is a perspective view of an embodiment of the present invention showing USB chip technology combined with smart chip technology, according to the invention
  • FIG. 6 is a perspective view of an embodiment of the present invention showing USB chip technology combined with contactless smart chip and/or RFID technology;
  • FIG. 7 is a perspective view of an embodiment of the present invention.
  • FIG. 8 is a perspective view of an embodiment of the present invention having a reinforcing member
  • FIG. 8A is an enlarged part section of the embodiment of FIG. 8 ;
  • FIG. 9 is an end vertical view, in part, of an embodiment of the present invention showing an upright chip and resiliently flexible thread under tension;
  • FIG. 10 a is a network scenario of a centralized healthcare system that is part of the health records ecosystem
  • FIG. 10 b is an illustration on how an embodiment of the present invention acts as an integral part of the information network and provides personal health records interoperability
  • FIG. 11 is an illustration on a how an embodiment of the present invention can maintain the master medical data for an individual in a medical industry setting.
  • reaction shall be understood to refer to sharing and use of information, data, etc. (e.g., database updating) and data exchange.
  • network shall be understood to refer to at least two interlinked or interconnected (via cable and/or wireless) elements selected from terminals, computers, data storage devices, servers, or other components so as to allow for the flow (unidirectional or bidirectional) of data between one or more elements of the network.
  • biometric shall be understood to refer to information that can be derived from an aspect of an individual and, more particularly, from unique biologic aspects thereof (e.g. anatomical, genetic, etc.), including but not limited to fingerprints, DNA, retina, etc.
  • biometric recognition systems are known in the art and can be applied to the embodiments of the present invention.
  • data station shall be understood to refer to a device that is able to display, transmit and receive data. Data stations allow for unidirectional data flow in that the data flow is in one direction only or bidirectional data flow in that the data flow can be in either direction.
  • the term “interoperability” and “interoperable” shall be understood to refer to the ability to provide data exchange in specific format that satisfy system, network, industry standards and regulatory requirements of information exchange. It will be further understood that such terms refer to the ability of separate or distinct systems, networks, data stations, portable devices or components to work together such that two or more systems, networks, data stations, portable devices or components can exchange or transfer information and use the information that has been exchanged or transferred, without any restricted access or implementation. In a preferred embodiment, this may be accomplished by maintaining data in a uniform format so that it can be understood and used across multiple systems, networks, data stations, portable devices or components to satisfy various existing and future requirements of client, physicians, insurance providers, payors and governments.
  • smartcard shall be understood to refer to a physical hand held card, with an embedded microchip and memory that can be loaded with data and then can be updated. When inserted into a reader, it transfers data to and from a data station. Smartcards have been proposed for use in a number of contexts in which data transfer and storage is required. Data can be downloaded to or uploaded from the smartcard.
  • the terms “user” or “client” shall be understood to refer to individuals for whom the data files are created.
  • top down and bottom up shall be understood to refer to the ability to obtain data within a network and between networks bidirectionally. Data may be provided, flow from, be exchanged with or transferred from a centralized database to portable storage devices (i.e. “top down”) or from portable storage devices a centralized database (i.e. “bottom up”).
  • master shall be understood to refer to the ability to capture and store all information requirements of an individual for the purpose of a specific application.
  • This invention describes a device and method to enable the capturing of personal information or data as part of the information system or network and to allow the creation of one “master” record that can be used to perform data exchange and/or interoperability within a network or between networks.
  • the portable devices and networks as herein described have particular utility in the transfer of human and animal medical data, including, but not limited to, insurance information, prescription drug information, veterinary, and medical records.
  • the system can also function as an educational distribution web to provide information from educators to students and vice versa.
  • the system can also function as an identification/data retention system to retain information including biometric information on members of a population. As such, it will be understood by a person skilled in the relevant art that the embodiments described herein can be used in different environments when a master record for file or interoperability is required.
  • This invention in one embodiment, provides a data storage device, such as, for example, a smartcard, having a chip that is able to hold sufficiently large amounts of memory, e.g. 64 GB and that provides enhanced features to the functionality. While any large memory requires electricity to function, the use of USB technology, which is well known to a person skilled in the relevant art, allows this to happen.
  • a data storage device such as, for example, a smartcard
  • a chip that is able to hold sufficiently large amounts of memory, e.g. 64 GB and that provides enhanced features to the functionality.
  • any large memory requires electricity to function
  • USB technology which is well known to a person skilled in the relevant art, allows this to happen.
  • This approach integrates the strength of the smartcard with the storage capability of USB and provides an integrated solution that satisfies the needs of the medical, insurance, drug and educational information storage and interexchange.
  • Embodiments of the present invention provide a client (e.g. a patient) with a portable data storage device that is able to carry, read, write and update electronic data and files thus allowing for a convenient, centralized location having an up-to-date record data file. Such embodiments may also allow for effective dissemination of information within a network and between networks. In doing so, the embodiments of the present invention may combine previously unconnected networks into one unified system.
  • a portable data storage device herein termed a “personal electronic carrier device” or PECD, which may have a built-in memory capacity that contains software that is able to communicate with multiple data stations, each of which may be connected to networks (e.g. networked).
  • An embodiment of the provides a PECD which further comprises a personal health record (“PHR”) for individuals that can be used with existing networks and systems of medical or health records in use by healthcare providers.
  • PHRs may also include data that is collected via the individual and from the vital statistics of the human body and not available anywhere in the various existing networks.
  • the PECD is of a portable credit/debit card size with variable memory capacity but in each case sufficient to retain the PHR.
  • the PECD contains biometric identification that is used to identify a client or user.
  • Each client or user i.e. the patient
  • Empowering the clients with the PECD enables their contribution to ensuring that the PHR is as accurate and up-to-date as possible.
  • the PECD is believed to be a more efficient way to ensure data accuracy and security.
  • This approach can lead to the PECD becoming the master database for an individual's health records. Having a group of PECDs added to a network allows for bottom-up data use, storage and exchange as well as the traditional top-down data use, storage and exchange. The combination of the two storage modes creates a ‘diamond-shaped’ storage network. Use of such a diamond-shaped storage network and the master information nature of each of the PECD, in the practice of the invention, increases the overall function, efficiency and speed of the system. Such a system may provide an improved level of convenience for the parties involved.
  • An aspect of the present invention is the ability of the PECD to act as a master database for the PHR of an individual.
  • the PECD may become part of the network(s) that host complete or incomplete PHRs.
  • Software on the PECD is designed to allow the collection and dissemination of the data specific to the individual patient (e.g. the PHR) to and from disparate networks or systems.
  • Characteristics of the PECD include the ability to communicate to different network or systems without first being a “user” of the system or authenticated at any level. It has the ability to work with different networks and systems. It has full data retrieval capability with and without network connection. This may enable healthcare professionals to use the information at locations where Internet service may not be installed, not be available or not be allowed.
  • the PECD has a memory capability to store multimedia information.
  • the PECD can make the data specific to an individual, such as, for example, the PHR, available to a variety of computers or networks. Master medical, insurance, drug, educational and financial information for an individual, including, but not limited to, multimedia diagnostic files can be stored and manipulated within the PECD device so as to compliment many the networks by providing them with complete, accurate and up-to-date information (e.g. PHR).
  • the PECD may have software that allows for the data to be maintained in such a manner so as to allow for the interoperability with other systems, networks, data stations, portable devices or components.
  • the PECD is capable of collecting and organizing personal master information or data on top of an existing collection of medical, insurance, drug, educational and financial data. It is capable of collecting, manipulating and displaying data that includes personal information or data collected from the vital statistics of the human body and not available anywhere in the networks.
  • the PECD enables the exchange of master data without first authenticating to a network. Thus it is able to create data interoperability between networks without belonging to any specific network.
  • the embodiments of the present invention also enable the internetworking of client electronic files (e.g. the PHR) between networks, which allows the client to choose the best services offered among networks; use services in locations beyond the geographic coverage of his chosen network; and take electronic files from one network to another.
  • client electronic files e.g. the PHR
  • the PECD is complementary to and may accelerate the exchange and use of information between networks and/or database.
  • the PECD again becomes integral to the internetworking and the interoperability of data because it is designed with sufficient storage space (e.g. much higher than existing smartcards) to become the master information or database of an individual.
  • the PECD can enable medical information interoperability.
  • the PECD may also accelerate the conversion of paper records to electronic records as well as connecting the above noted pools or islands of medical data in order to provide a complete set of electronic medical records which can result in top-down or bottom-up data exchange.
  • the bottom-up data exchange is driven by uses or clients providing data to the network via one or more data stations.
  • Embodiments of the present invention allow clients to participate in the medical, insurance, drug and educational information gathering rather than relying mostly on the network or interoperability between the networks.
  • embodiments of the present intention also allow for top down data exchange where, for example, the data can be provided from a centralized database to the individual user via a PECD.
  • Embodiments of the present invention may also help healthcare providers to make decisions based on the accurate, complete and update individual data files (e.g. PHR), which can be stored, in a preferred embodiment, in the PECD.
  • PHR personal information provider
  • the invention provides a PECD comprising means for receiving PECD data; means for storing PECD data; means for transmitting PECD data directly or indirectly; and operating software means to effect the displaying, verifying, receiving, storing and transmitting the PECD data.
  • the invention provides a personal electronic carrier device (PECD) comprising means for receiving PECD data; means for storing PECD data; means for transmitting PECD data directly or indirectly; means of storing biometric information; means of verifying biometric information; means of powering any biometric identification device; operating software means to effect the displaying, verifying, receiving, storing and transmitting the PECD data and; embedded software or hardware to protect the PECD from malicious software.
  • PECD personal electronic carrier device
  • a PECD as hereinabove defined has a storage memory of at least 1 MB, more preferably at least 4 GB, and still more preferably 8 GB.
  • the PECD data is received and transmitted wirelessly.
  • the PECD contain a reinforcing means, particularly pin means to enhance the structural integrity and the usability of the on-board chip.
  • the PECD as hereinabove defined has the ability to recoil the chip to its original position preferably by resiliently flexible, spring and rubber-like means;
  • biometric data is verified with an identification device on board of the PECD.
  • the invention provides, a data network for receiving, storing and transmitting client data comprising (a) a PECD as hereinabove defined; and (b) at least one receiving, storing and transmitting data station comprising a first data station body having means for receiving station data from the group consisting of the PECD, a main database, a client, and a second or more data stations; means for storing the station data ;means for transmitting station data; means for receiving station data; and operating software means to effect the receiving, storing and transmitting the station data in direct or indirect communication with the PECD.
  • the invention provides, a data network for receiving, storing and transmitting client data comprising (a) a PECD as hereinabove defined; and (b) at least one receiving, storing and transmitting data station comprising means for receiving station data; means for storing station data; means for transmitting station data; means for receiving station data; means for storing biometric data; and operating software means to effect the displaying, verifying, receiving, storing and transmitting the station data in direct or indirect communication with the PECD; and embedded software or hardware to protect the PECD from malicious software.
  • a data network as hereinabove defined comprises a plurality of the data stations.
  • the data station comprises means for creating a new data file for the client.
  • the invention provides, data internetwork methods for verifying, receiving, storing and transmitting client data comprising (a) a PECD as hereinabove defined; and (b) at least one receiving, storing and transmitting data station comprising means for receiving station data between two networks; means for storing station data between two networks; means for transmitting station data between two networks; means for storing biometric data between two networks; operating software means to effect the verifying, receiving, storing and transmitting the station data in direct or indirect communication with the PECD; and embedded software or hardware to protect the PECD from malicious software.
  • between two data networks as hereinabove defined comprises a plurality of the data stations.
  • the data station in any network comprises means for creating a new data file for the client.
  • the invention provides a data network as hereinabove defined further comprising a main data database comprising means for receiving main data from the group consisting of the PECD, a main database, a client, and a second or more data stations; means for storing main data; means for transmitting main data; means for receiving station data and operating software means to operably effect directly or indirectly the receiving, storing and transmitting the main data to and from the PECD and the data station; and wherein the data station and the PECD are in direct or indirect communication with the main database.
  • a main data database comprising means for receiving main data from the group consisting of the PECD, a main database, a client, and a second or more data stations; means for storing main data; means for transmitting main data; means for receiving station data and operating software means to operably effect directly or indirectly the receiving, storing and transmitting the main data to and from the PECD and the data station; and wherein the data station and the PECD are in direct or indirect communication with the main database.
  • the invention provides a data network as hereinabove defined further comprising a main data database comprising means for receiving main data; means for storing main data; means for transmitting main data; means for storing biometric data; operating software means to operably effect directly or indirectly the receiving, storing, displaying and transmitting the main data to and from the PECD and the data station; and wherein the data station and the PECD are in direct or indirect communication with the main database.
  • the data station comprises means for transmitting the new data file to the PECD and the main database.
  • the main data herein comprises station data and client data.
  • the invention provides a method for receiving, storing and transmitting client data in at least one data station and a personal electronic carrier device (PECD) of a network, the method comprising feeding client data into the data station; storing the client data in the data station; transmitting the client data to the PECD; receiving the client data from the PECD; and storing the client data in the PECD.
  • PECD personal electronic carrier device
  • the invention provides a method for receiving, storing displaying and transmitting client data in at least one data station and a personal electronic carrier device (PECD) of a network, the method comprising feeding client data into the data station; storing the client data in the data station; transmitting the client data to the PECD; receiving the client data from the PECD; and storing the client data in the PECD.
  • PECD personal electronic carrier device
  • the method further comprises storing the client biometric data in the PECD.
  • the method comprises feeding and storing the client data to a main database of the network.
  • the method comprises retrieving and transmitting stored client data to at least one of the data stations and the PECD.
  • the method comprises feeding client data into a plurality of data stations; and comprises feeding client data into the data station; storing the client data in the data station; transmitting the client data to the PECD; receiving the client data from the PECD; storing the client data in the PECD; and storing the client biometric data in the PECD.
  • the locations or stations can access data files from the main database.
  • this method may be hindered, e.g. when some data files are very large. It may be more convenient to access the data from a PECD available on site.
  • Another advantage of the PECD is that the data can be accessed outside of the main network.
  • the PECD enables the exchange of data files from and between many network main databases. This exchange by PECD becomes the default method of information exchange before other methods are built on top. The ability to transmit and receive from the PECD enables any network databases to become instantaneously interoperable.
  • each station or location can create new data files for clients.
  • the data files are stored at the location of creation, and then a copy of the data files are backed up to the main database.
  • the data files are copied again and then, or subsequently, stored on a PECD if it is, or not, available at the time of transfer.
  • the main database files could be accessed by kiosk terminals.
  • the PECD can be connected to a kiosk terminal to retrieve any data files that were not available at the time it was present at one of the locations.
  • the networks components are variable, in that, the networks can function with missing components, and, which, in some situations, it is preferable to omit.
  • a system with a single location or station may not need the main database, or a kiosk, and none of the other locations.
  • This simplified data flow network thus, creates a top-down storage system from the location to the PECD, and a bottom-up storage method from the PECD to the location. Any combination of the components is possible, as long as there is a PECD to provide the bottom-up storage method and a receiving station or main database.
  • Data file transfers are, preferably, bidirectional, wherein any component has the ability to send, store and receive data files within the system network. However, in some situations it may be beneficial to block one of the directions for the overall benefit of the system.
  • a further data flow arrangement is a system where a PECD acts as a center piece in communication with a plurality of locations, stations or between networks.
  • the type of location may vary depending on the specific network.
  • location type A could be a pharmacy; while location type B a doctor's office or a diagnostic clinic.
  • location A could be a clinic using central database M; while location B is a hospital using central database N.
  • the PECD was able to take the information back from an outside network and bring it back to the main network for the user creating medical record interoperability between the two networks. It confirmed and demonstrated the information internetworking capability of the PECD device.
  • a PECD as hereinabove defined comprising a planar body having a portion defining an aperture and a memory chip comprising means for receiving PECD data; means for storing PECD data; means for transmitting PECD data directly or indirectly; and operating software means to effect the displaying, verifying, receiving, storing and transmitting the PECD data; the memory chip retained within the aperture in coplanar alignment with the planar body.
  • a PECD is as hereinabove defined wherein the memory chip is rotatably retained within the aperture.
  • a PECD as hereinabove defined comprising an elongate memory chip retaining member located within the planar body and the memory chip.
  • a PECD as hereinabove defined is wherein the retaining member is formed of a metal, a plastics material or carbon fiber.
  • a PECD is as hereinabove defined comprising a resiliently flexible member located within the planar body and the memory chip whereby after displacement of the memory chip out of coplanar alignment with the planar body under the action of a displacing force, the resiliently flexible member effects return of the memory chip to the coplanar alignment when the displacing force is removed.
  • a PECD as hereinabove defined is wherein the resiliently flexible member is in the form of an elongate member selected from a thread, line, fiber and the like and formed of rubber, carbon fibre, or a plastics material.
  • retaining member is of sufficient length to retain the member within the body and memory chip.
  • a PECD as hereinabove defined is wherein the planar body has a thickness of less than 2.5 mm.
  • the PECD according to the invention is provided with biometric information reading means containing data, such as, for example, fingerprint, retina and/or DNA data of a user—patient of use in an emergency. Such a user may be unconscious and not able to provide a password.
  • biometric access provides the ability to authenticate the patient and allow access of the stored data.
  • the PECD is provided with automatic protection software to prevent the unwanted access to and corruption of files in an emergency.
  • the invention provides a method when use with the PECD that maintains master information or database of an individual and is integral to internetworking and interoperability of medical, insurance, educational and financial data.
  • the invention provides a method when use with the PECD that allows an individual to add personal information in medical, insurance, educational and financial areas that is not contained in any of the external systems or networks. For example, many patients or users collect data about blood pressure, blood sugar, weight, ECG and other patient physiological variables. This information may be ignored or not considered in many cases because it is difficult to view and analyze without electronic records or, where there are electronic records, having such records inputted into the medical data of the individual.
  • the invention provides a method when use with the PECD that enables the exchange of data within a network and between networks without first authenticate with any of the connecting networks.
  • the invention provides a method that provides an efficient and effective way of data exchange and interoperability by leveraging the master data in the PECDs of individuals.
  • the benefits of the retaining member include preventing the chip portions of the PECD from easily separating from the planar body and enhancing the usability and integrity of the device.
  • FIG. 1 shows generally as 10 , a network having a PECD 12 , such as a smartcard in communication with a plurality of locations or data stations 14 —six in the embodiment shown.
  • Locations A e.g. pharmacies or diagnostic clinics are able to transmit medical information to the PECD.
  • the PECD is then able to bring information, preferably, portably, to a desired location B, e.g. health care facilities, and the like, for the facility to receive updated data.
  • a desired location B e.g. health care facilities, and the like
  • Each of locations A and B are, thus, connected via a network created by the PECD.
  • all observations may be added, preferably downloaded, to the smartcard.
  • the entire medical history of the individual can be retrieved from the smartcard.
  • the smartcard makes it possible for an individual's medical history to be “read” by a computer, displayed on the computer's monitor, printed, or transmitted. This allows individuals to carry on their person a medical history of themselves.
  • FIG. 2 and FIG. 2 a show generally as 20 , a network and networks having a PECD 12 , plurality of data stations/locations 14 and main database 22 .
  • Network 20 defines a top-down, and bottom-up data receiving, transfer and storage system. Although information can travel bidirectionally, it is, however, often preferred in some locations to be unidirectional. Preferably, there is main database 22 that can directly and indirectly reach all the components in the system. In the absence of main database 22 , individual locations 14 perform the role of main database 22 . Locations 14 may have a minimum of one, and an unlimited maximum. PECD 12 can undergo a bidirectional data exchange within networks 10 and 20 . The data may be unique to the individual person(s) in possession of PECD 12 . Data from PECD 12 can be sent and received from an external party 24 that is not a part of the network, if desired. PECD 12 can undergo data transfer directly with main database 22 via a kiosk terminal 26 , if desired.
  • FIGS. 3 a and 3 b show generally as 30 a credit card-sized shaped planar member of less than 2.5 mm thick and having a plastics, carbon fiber or titanium body 32 having a portion defining an aperture 34 retaining an 8 GB member chip 36 .
  • Chip 36 is swivable within aperture 34 and removable therefrom ( FIG. 4 ).
  • Memory chip 36 may be substituted and interchanged predicated on the utility and application required. Chip 36 can be detached from body 32 for the convenience of reaching difficult locations of USB ports.
  • FIG. 5 shows card 40 having memory chip 36 combined with smartcard chip 42 .
  • FIG. 6 shows PECD 50 having USB chip 36 and RFID contactless smart chip 52 within card 54 , antenna 56 within chip.
  • FIG. 7 shows a PECD 60 designed to minimize the dimensions, particularly the thickness of card 62 bearing USB 64 .
  • FIG. 8 shows a PECD 60 having a reinforcing longitudinal steel needle 66 partially or completely across the width of PECD 60 at the lower end 68 and through chip 36 within PECD 60 rotatably retains chip 36 within PECD 60 .
  • Alternative suitable reinforcing materials such as, for example, formed of a plastics material, metal or carbon fibre may be used.
  • An embodiment of the present invention provides for the presence of reinforcing needle 66 in a desirable, relatively thin PECD 60 prevents chip 36 from being dislodged when the PECD is bent or twisted. In the absence of the retaining needle, rod, or the like, a small amount of torque causes thin cards to dislodge chip 36 A.
  • PECD thickness of less than 2 mm e.g. as thin as a typical USB stick is preferred for physical connection to a computer.
  • FIG. 9 shows use of an elongate rubber thread 70 extending through lower end 68 of PECD 60 and chip 36 at terminal portion 72 .
  • thread 70 is in its relaxed state.
  • thread 70 is under torsion. Release of chip 36 allows of relaxation of thread 70 and recoil of chip 36 back into coplanarity with PECD 60 .
  • other resiliently flexible materials such as, for example, suitable plastics material, carbon fiber, metallic coil springs, and the like may be used. These materials are preferably retained within the PECD 60 and chip 36 by a suitable adhesive.
  • FIGS. 10 a and 10 b show two different network configurations 80 and 81 , where both networks 80 and 81 consist of typical centralized healthcare systems that manage health records for individuals.
  • the systems 85 may include information from various sources that are deployed in network 80 or 81 , including, but not limited to admission, discharge & transfer systems, health information systems, laboratory information systems, picture archiving and communication systems, and radiology information systems, as pictorially represented in FIGS. 10 a and 10 b .
  • system 85 of network 80 may include data input from Laboratories, Radiology Labs, Pharmacies, Hospitals, Community Clinics, Insurance Companies and Dental Clinics etc.
  • the information exchange in network 80 may be point-to-point and inefficient.
  • network 81 there can be data input from a number of sauces similar to that of network 80 , such as, fop example, Laboratories, Radiology Labs, Pharmacies, Hospitals, Community Clinics, Insurance Companies and Dental Clinics etc.
  • the systems 85 are deployed within their domain based on automation, specialization, geographic etc. requirements.
  • network 81 with PECD 86 simplifies the exchange, transfer and use of health records (e.g. PHR).
  • PECD 86 in network 81 achieves more rapid health record interoperability, including exchange and use of data over many traditional way of integrating systems, as shown in FIG. 10 a . It can be seen in FIGS.
  • network 80 requires a higher number of interconnections between various data sources that those of network 81 as a result of the use of the PECD in order to achieve the same degree of interoperability. It will be understood that when the PECD contains master information of an individual, it will benefit the entire network and internetwork in information accuracy and efficiency.
  • FIG. 11 shows the method of the personal information interoperability and exchange by PECD 86 in greater detail.
  • FIG. 11 provides PECD 86 which can receive data from healthcare providers and send data back to different systems that are part of the healthcare network.
  • Step 1 which starts at clinic 101 where a copy of a the individual's PHR 105 located within the data storage and management systems of clinic 101 , is loaded onto PECD 86 .
  • the event flow of FIG. 11 follows a circular clockwise path from Step 1 to Step 10 .
  • the individual may return to clinic 101 on a subsequent visit to obtain treatment or diagnosis of a preexisting or new condition, as shown in Step 2 .
  • Medication may be prescribed in Step 2 such that PECD 86 is updated to include the necessary information.
  • Step 3 has the patient arriving at the pharmacy to obtain the prescription written during Step 2 .
  • the prescription is captured in PECD 86 , it can be available for the pharmacy 102 to provide the correct medication.
  • the home clinic may have referred the patient to a specialist clinic 103 to look into the condition further (see Step 4 ).
  • Step 4 shows a specialist in cline 103 referring the patient to a laboratory 104 to perform a diagnostic test, such as an X-ray. It will be understood that the physician at clinic 104 may also have access to the PHR provided on PECD 86 .
  • the X-ray image can be captured by the PECD 88 at the end of the test in Step 5 .
  • the specialist clinic 103 can determine the treatment and may prescribe additional medication for the patient (see Step 6 in FIG. 11 ).
  • PECD 86 may be updated to reflect any additions, deletions or changes made to the PHR. While it is not shown, it will be understood that PECD 86 may connect with a centralized databases (not shown) so as to maintain a centralized record that is accurate, update and correct.
  • Step 6 of FIG. 11 provides for the patient to pick up his/her prescription at a different Pharmacy 102 ′; the Pharmacist is able to verify the individual's existing prescription in the PECD 88 to ensure there is no interaction between all the medications that the individual is taking.
  • Step 7 is in the next visit back to the home clinic 101 for an annual check-up, all the individual's medical information, diagnostic image, assessments and prescription are brought back to clinic 101 via PECD 86 and synchronizes with home clinic 101 so as to provide this clinic with an up-to-date record. New check up information may also be added to PECD 86 .
  • Step 7 there is also provided Step 7 in which the individual can also add to the PHR 105 provided on PECD 86 .
  • This additional information may include dental, optometry, self measured results (blood pressure, weight, blood sugar level etc.) on to PECD 86 as part of maintaining the PECD 86 .
  • the individual may travels to a foreign country for work or pleasure; he/she visits a foreign hospital 106 for chest pain.
  • the individual uses PECD 86 to show the healthcare professionals the medication and diagnostic history for a speedy treatment by the hospital staff at this foreign clinic.
  • Step 9 is when the individual uses the PECD 86 to capture the diagnoses from the hospital 106 .
  • the foreign pharmacy 107 in Step 10 was able to verify medication history in PECD 86 before dispensing the new prescription and updating the records of PECD 86 .
  • Step 10 is when the individual returns and visit the home clinic 101 again; the home clinic 101 may obtain all the medical information from the master database stored in the individual's PECD 86 .
  • the PECD and networks as hereinabove described have particular utility in the maintenance and transfer of medical data, including, but not limited to, insurance information, prescription drug information, and medical records.
  • the system can also be applied to veterinary practice in maintenance and transfer of animal data including, but not limited to, insurance information, drug information, and medical records.
  • the system can also function as an educational distribution web to provide information from educators to students and vice versa.
  • the system can also function as an identification/data retention system to retain information including biometric information on members of a population.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Computer Hardware Design (AREA)
  • Economics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Quality & Reliability (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Operations Research (AREA)
  • Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Educational Administration (AREA)
  • Game Theory and Decision Science (AREA)
  • Medical Informatics (AREA)
  • Development Economics (AREA)
  • Computer Security & Cryptography (AREA)
  • Signal Processing (AREA)
  • Biomedical Technology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Data Mining & Analysis (AREA)
  • Epidemiology (AREA)
  • Computing Systems (AREA)
  • Primary Health Care (AREA)
  • Public Health (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Medical Treatment And Welfare Office Work (AREA)
  • Storage Device Security (AREA)

Abstract

A personal electronic carrier device (PECD) comprising means for receiving PECD data; means for storing PECD data; means for transmitting PECD data directly or indirectly PECD; and operating software means to affect the displaying, verifying, receiving, storing and transmitting the PECD data. The PECD is part of a network having a plurality of data stations and preferably a main data base. A method when use with the PECD that maintains master information or database of an individual and is integral to internetworking and interoperability of data consisting of medical, particularly insurance information, drug information, medical records; educational and identification data. The method of data exchange in association with the PECD within and between networks provide for the efficacious and convenient handling of data. Overall, it presents a method that provides an efficient and effective way of data exchange and interoperability by leveraging the master data in the PECDs of individuals.

Description

    FIELD OF THE INVENTION
  • The present invention is directed to apparatus and methods for the exchange of data within a network and between networks, including but not limited to (i) medical data (e.g. insurance, drug, diagnostic, etc.); (ii) educational data (e.g. test scores, attendance, etc.); and (iii) financial data. The exchange and use of data may utilize a portable device for the secure storage of user provided or defined data as a database or master thereof that can enable interoperability and/or data exchange within or between multiple networks.
  • BACKGROUND OF THE INVENTION
  • In many situations (i.e. going to a doctor's office, applying for a loan, etc.), people are required to provide specific and, in many cases, personal information for recordal in a database. This information may be provided electronically, but in many cases, may be provided via at least one, and often several printed documents. The increasing use of electronic data may help to streamline this process. In healthcare, for example, the use of electronic records may be essential to achieving many of the desired milestones critical to healthcare reform, such as lower costs, reduced numbers of adverse events, improved patient outcomes, and increased privacy, security and identity concerns. Information technology allows for the storage and transfer of computerized data (e.g. health records, financial records, etc.) within a network and, where applicable, across networks.
  • For technical and legal reasons, however, this may not always be possible or practical. Sharing information within a network or across multiple networks for use in many different contexts can present numerous challenges. For example, there may be difficulties associated with non-electronic records being converted to electronic records. Information may not easily be uploaded or downloaded from one computer to another across a network or between networks. Information may also be stored on a transportable media (i.e. a disk, flash drive, USB, etc.) and physically carried from one computer to computer. When information on the transportable media is updated, information stored on a network database or on numerous network databases also should be updated. Ensuring that all appropriate information is up-to-date across a network, particularly when transportable media is utilized, can be a significant challenge. This is particularly importance in the medical context as a patient's medical records may be stored electronically in a number of databases and each database may have one or more separate information input sources.
  • In the medical context, for example, doctors and health care providers need a reliable and secure approach to assembling comprehensive patient records from various sources, which may each maintain their own database. These multiple or varied sources include, but are not limited to, multiple health care provider facilities such as doctors' offices, clinics, hospitals, pharmacies as well as insurance providers and governmental offices. Each of these databases may have data that changes over time (e.g. each time a healthcare provider is visited by a patient). As these databases may not be interconnected, there have been attempts in some cases to develop centralized databases to assist in keeping data (e.g. medical records) centralized and up-to-date. Healthcare information systems, including centralized databases, may also provide Internet portals for users to add, display and modify information. A limitation of such systems is that a healthcare provider and/or patients may need to belong to or have been granted access to the system or network first in order to use the network. In addition, uses of these systems rely on network connections to provide service to individuals and healthcare providers. Such systems may not be able to address situations where network service is interrupted or not available. When information is not available to healthcare workers, the efficiency, accuracy, quality and speed of care to an individual or patient is impacted. For example, repeated diagnostic tests or information gathering may have to be performed to provide the necessary care. As such, medical record systems that have developed are mostly multi-part systems, where binary information and data files may be located on separate networks.
  • The prior art describes systems and methods for processing patient data that permits physicians and other medical staff personnel to record historical patient care information. In these prior art systems, the medical data can be recorded, saved, and transferred from a portable system to a larger stationary information or database system. Where there is a centralized database, each database or data station may also transfer their data to the centralized database. However, it may be difficult for each data station or database to be in direct or indirect contact with the centralized database because of costs, interruption of service, etc. For practical reasons, therefore, each facility may not be able to transfer data to the centralized database; this results in the possibility that each facility may have information that is not available to the other facilities. Effective sharing of the data may also be difficult due to legal requirements imposed under various state, provincial or federal law.
  • Consequently, there is a need for a reliable method of consolidating and processing an individual's data within a network and between networks. One remedy that has been suggested is the use of “smartcard” technology. These cards are similar to credit cards and carry electronic information. In the health care industry, smartcards have been previously used to store a partial medical history of the card holder (i.e. patient). In such cases, the medical records are not complete but rather are merely partial records. For instance, a number of European socialized health care systems provide partial medical histories on smartcards. Using a smartcard reader, a health care provider may have some capability to read and add to the patient's partial medical history as the patient is being examined. The cards can be read by a reader at different sites to access the incomplete information contained on the card. In recent years, banks, telephone companies, and others have started using these smartcards in an attempt to improve data storage and transfer as well as security and accuracy and convenience. However, a drawback of the smartcard is that it may be able to hold only relatively limited amounts of data. As a result, the data stored on the smartcard is incomplete. Smartcards may not be capable, therefore, of addressing the multimedia storage needs of current diagnostic results, for example. Other larger storage devices may have problems of bulk and when the size is reduced, they experienced problems of sturdiness. In addition, many of the devices may be infected by malicious software that spread from computer to computer. Another drawback can be the limited capacity for both intranetwork data transfer and internetwork data transfer.
  • Of greater concern is that individuals, herein defined as “user” or “clients”, for whom the data files are created and stored on a smartcard, may not be able to use the smartcard technology to interact with the networked system noted above. Existing solutions, including existing smartcard technology, do not readily allow for interoperability and instead merely create more isolated pools of incomplete medical, financial insurance, drug, educational or other data. This may result in a more than one network of client or user data. As such, the use of smartcards has yet to be fully realized. There is a need, therefore, to improve the manner in which users are able to receive and store up-to-date information, including medical, financial or other information.
  • SUMMARY OF THE INVENTION
  • As noted above, the effective use of existing healthcare information systems may be limited by a number of factors, including, government jurisdictions, economic factors, nature of the healthcare work, geographical boundaries and technology limits (e.g. data volume, access limits, security, privacy and management preference). For these reasons, few healthcare providers have access to complete medical records for individuals; this creates a number of challenges, including, but not limited to, the costs of repeat diagnostic tests, efficiency and access to care, and the increased potential of misdiagnoses. Current systems (or components thereof) may contain, therefore, only partial information of an individual at any time. In order to consolidate information, a system should provide an electronic interface to enable the efficient and effective exchange and use of information. Considering the number of systems deployed, current methods and systems of information use and exchange are neither efficient nor practical on a local, national or global scale.
  • There is a need for medical health systems to maintain a personal health record (“PHR”) for individuals that can be used with the existing networks and systems of medical or health records in use by healthcare providers. Such PHRs may also include data that is collected via the individual and from the vital statistics of the human body and may not be available anywhere in the various existing networks.
  • The embodiments of the present invention may address the deficiencies of existing technologies (such as, for example, smartcard technology) by providing increased storage and software methods to address the requirements of PHRs. The combine hardware and methods enable the embodiments of the present invention to be the master information of an individual's PHR. This approach allows the embodiments of the present invention to become the key to the network data exchange and system interoperability
  • There is a need for a more efficacious, convenient data input, immediate data pop-up, structurally reinforced, self-recoiling, biometrically secured, self protecting, storage and retrieval system of particular use to the medical, insurance, and educational and financial fields. The system needs to act as the master information source or database for an individual for the above information.
  • An embodiment of the present invention is directed to a portable device for secure storage of user provided data, the portable device comprising: (a) a planar body having a portion defining an aperture; (b) an interface for communicating with an external device; and (c) data storage accessible via the interface, the storage comprising a data section operable for storage of the user provided data, the data section having operating software to effect the receiving, storing and transmitting of the data, wherein the data storage is retained within the aperture in coplanar alignment with the planar body.
  • An embodiment is directed to the portable device noted above wherein the user provided data comprises biometric data of the user.
  • A further embodiment is directed to the portable device noted above wherein the interface communicates with the external device wirelessly.
  • Yet a further embodiment is directed to the portable device noted above wherein the planar body is a smartcard.
  • Yet a further embodiment is directed to the portable device noted above wherein the data storage comprises a memory chip receiving member and a memory chip disposed within the memory chip receiving member.
  • Yet a further embodiment is directed to the portable device noted above wherein the memory chip receiving member is rotatably retained within the aperture.
  • Yet a further embodiment is directed to the portable device noted above where the data storage further comprises an elongate memory chip retaining member extending through the memory chip receiving member and engaging the planar body to rotatably retain the memory chip receiving member within the aperture.
  • Yet a further embodiment is directed to the portable device noted above wherein the retaining member is formed of a metal, a plastics material or carbon fiber.
  • Yet a further embodiment is directed to the portable device noted above wherein the resiliently flexible member is located within planar body and the memory chip receiving member whereby after displacement of the memory chip receiving member out of coplanar alignment with the planar body under the action of a displacing force, the resiliently flexible member effects return of the memory chip receiving member to the coplanar alignment when the displacing force is removed.
  • Yet a further embodiment is directed to the portable device noted above wherein the resiliently flexible member is made of rubber.
  • Yet a further embodiment is directed to the portable device noted above wherein the planar body has a thickness of less than 2.5 mm.
  • An embodiment of the present invention is directed to a network for receiving, storing and transmitting user defined data comprising: (a) a portable device for secure storage of the first set of user defined data, the portable device comprising an interface for communicating with an external device and data storage accessible via the interface, the data storage comprising a data section operable for storage of the first set of user provided data and having operating software to effect the receiving, storing and transmitting of data; (b) a first data station having a first data station interface for communicating with the portable device and a first data storage accessible via the first data station interface, the first data station storage comprising a first data station storage section operable for storage of a second set of user defined data and having operating software to effect the receiving, storing and transmitting of data; (c) a second data station having a second data station interface for communicating with the portable device and a second data storage accessible via the second data station interface, the second data station storage comprising a second station data station storage section operable for storage of a third set of user defined data having operating software to effect the receiving, storing and transmitting data; wherein the portable device communicates with the first and second data station so as to receive the second and third sets of user defined data and updates the first set of user defined data to include the second and third sets of user defined data.
  • A further embodiment is directed to the network noted above wherein the portable device communicates with the first data station so as to transmitt the first, second and third sets of user defined data to the first data station and the first data station updates the second set of user defined data to include the first and third sets of user defined data.
  • Yet a further embodiment is directed to the network noted above wherein the portable device communicates with the second data station so as to transmitt the first, second and third sets of user defined data to the second data station and the second data station updates the third set of user defined data to include the first and second sets of user defined data.
  • Yet a further embodiment is directed to the network noted above wherein the first or the second data station is a centralized computer database.
  • Yet a further embodiment is directed to the network noted above wherein the first data station cannot directly communicate with the second data station.
  • Yet a further embodiment is directed to the network noted above wherein the first and second data station comprises means for transmitting the second and third user defined data to the portable device.
  • Yet a further embodiment is directed to the network noted above wherein the user defined data is selected from the group consisting of medical, vetininary, educational, personal and identification data.
  • Yet a further embodiment is directed to the network noted above wherein the portable storage device, the first data station and the second data station are interoperable.
  • Yet a further embodiment is directed to the network noted above wherein the first set of user defined data contains a master data record of the user.
  • Yet a further embodiment is directed to the network noted above wherein the first data station cannot communicate with the second data station.
  • Yet a further embodiment is directed to the network noted above wherein the second data station cannot communicate with the first data station.
  • Yet a further embodiment is directed to the network noted above wherein the portable device provides data and network interoperability by providing information exchange in specific format that satisfies system, network, industry standards and regulatory requirements.
  • Yet a further embodiment is directed to the network noted above wherein the portable device further comprises a planar body having a portion defining an aperture and the data storage is retained within the aperture in coplanar alignment with the planar body.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The foregoing and other objects, features and advantages of the present invention should become apparent from the following description when taken in conjunction with the accompanying Figures.
  • FIG. 1 is a data network showing an embodiment of the present invention in communication with a plurality of data stations/locations;
  • FIG. 2 is a further data network showing an embodiment of the present invention in communication with a plurality of data stations/locations and a main database;
  • FIG. 2 a is an internetwork representation showing a networked embodiment of the present invention;
  • FIGS. 3 a and 3 b are perspective views of an embodiment of the present invention;
  • FIG. 4 is a perspective view of a memory chip of use in the practice of the invention;
  • FIG. 5 is a perspective view of an embodiment of the present invention showing USB chip technology combined with smart chip technology, according to the invention;
  • FIG. 6 is a perspective view of an embodiment of the present invention showing USB chip technology combined with contactless smart chip and/or RFID technology;
  • FIG. 7 is a perspective view of an embodiment of the present invention;
  • FIG. 8 is a perspective view of an embodiment of the present invention having a reinforcing member;
  • FIG. 8A is an enlarged part section of the embodiment of FIG. 8;
  • FIG. 9 is an end vertical view, in part, of an embodiment of the present invention showing an upright chip and resiliently flexible thread under tension;
  • FIG. 10 a is a network scenario of a centralized healthcare system that is part of the health records ecosystem;
  • FIG. 10 b is an illustration on how an embodiment of the present invention acts as an integral part of the information network and provides personal health records interoperability; and
  • FIG. 11 is an illustration on a how an embodiment of the present invention can maintain the master medical data for an individual in a medical industry setting.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • In this disclosure, a number of terms and abbreviations are used. The following definitions of such terms and abbreviations are provided.
  • As used herein, the term “transaction” shall be understood to refer to sharing and use of information, data, etc. (e.g., database updating) and data exchange.
  • As used herein, the term “network” shall be understood to refer to at least two interlinked or interconnected (via cable and/or wireless) elements selected from terminals, computers, data storage devices, servers, or other components so as to allow for the flow (unidirectional or bidirectional) of data between one or more elements of the network.
  • As used herein, the term “biometric” shall be understood to refer to information that can be derived from an aspect of an individual and, more particularly, from unique biologic aspects thereof (e.g. anatomical, genetic, etc.), including but not limited to fingerprints, DNA, retina, etc. A person skilled in the art will understand that numerous biometric recognition systems are known in the art and can be applied to the embodiments of the present invention.
  • As used herein, the term “data station” shall be understood to refer to a device that is able to display, transmit and receive data. Data stations allow for unidirectional data flow in that the data flow is in one direction only or bidirectional data flow in that the data flow can be in either direction.
  • As used herein, the term “interoperability” and “interoperable” shall be understood to refer to the ability to provide data exchange in specific format that satisfy system, network, industry standards and regulatory requirements of information exchange. It will be further understood that such terms refer to the ability of separate or distinct systems, networks, data stations, portable devices or components to work together such that two or more systems, networks, data stations, portable devices or components can exchange or transfer information and use the information that has been exchanged or transferred, without any restricted access or implementation. In a preferred embodiment, this may be accomplished by maintaining data in a uniform format so that it can be understood and used across multiple systems, networks, data stations, portable devices or components to satisfy various existing and future requirements of client, physicians, insurance providers, payors and governments.
  • As used herein, the term “smartcard” shall be understood to refer to a physical hand held card, with an embedded microchip and memory that can be loaded with data and then can be updated. When inserted into a reader, it transfers data to and from a data station. Smartcards have been proposed for use in a number of contexts in which data transfer and storage is required. Data can be downloaded to or uploaded from the smartcard.
  • As used herein, the terms “user” or “client” shall be understood to refer to individuals for whom the data files are created.
  • As used herein, the terms “top down” and “bottom up” shall be understood to refer to the ability to obtain data within a network and between networks bidirectionally. Data may be provided, flow from, be exchanged with or transferred from a centralized database to portable storage devices (i.e. “top down”) or from portable storage devices a centralized database (i.e. “bottom up”).
  • As used herein, the term “master” shall be understood to refer to the ability to capture and store all information requirements of an individual for the purpose of a specific application.
  • This invention describes a device and method to enable the capturing of personal information or data as part of the information system or network and to allow the creation of one “master” record that can be used to perform data exchange and/or interoperability within a network or between networks. The portable devices and networks as herein described have particular utility in the transfer of human and animal medical data, including, but not limited to, insurance information, prescription drug information, veterinary, and medical records. However, the system can also function as an educational distribution web to provide information from educators to students and vice versa. The system can also function as an identification/data retention system to retain information including biometric information on members of a population. As such, it will be understood by a person skilled in the relevant art that the embodiments described herein can be used in different environments when a master record for file or interoperability is required.
  • This invention, in one embodiment, provides a data storage device, such as, for example, a smartcard, having a chip that is able to hold sufficiently large amounts of memory, e.g. 64 GB and that provides enhanced features to the functionality. While any large memory requires electricity to function, the use of USB technology, which is well known to a person skilled in the relevant art, allows this to happen. This approach integrates the strength of the smartcard with the storage capability of USB and provides an integrated solution that satisfies the needs of the medical, insurance, drug and educational information storage and interexchange.
  • Embodiments of the present invention provide a client (e.g. a patient) with a portable data storage device that is able to carry, read, write and update electronic data and files thus allowing for a convenient, centralized location having an up-to-date record data file. Such embodiments may also allow for effective dissemination of information within a network and between networks. In doing so, the embodiments of the present invention may combine previously unconnected networks into one unified system. As a preferred embodiment, there is provided a portable data storage device, herein termed a “personal electronic carrier device” or PECD, which may have a built-in memory capacity that contains software that is able to communicate with multiple data stations, each of which may be connected to networks (e.g. networked). An embodiment of the provides a PECD which further comprises a personal health record (“PHR”) for individuals that can be used with existing networks and systems of medical or health records in use by healthcare providers. Such PHRs may also include data that is collected via the individual and from the vital statistics of the human body and not available anywhere in the various existing networks.
  • Preferably, the PECD is of a portable credit/debit card size with variable memory capacity but in each case sufficient to retain the PHR. Preferably, the PECD contains biometric identification that is used to identify a client or user. Each client or user (i.e. the patient) carries their own PECD and uses it each time they interact with a third party (i.e. a doctor, insurance provider, etc.) for the use and/or transmission of information between the PECD and a data station which may be within a network or system, according to the invention. Empowering the clients with the PECD enables their contribution to ensuring that the PHR is as accurate and up-to-date as possible. It is more efficient and secure than having a third party ensure that the data is correct as some form of participation from the clients or users is preferable in order to maintain the PHR up-to-date. For this reason, the PECD is believed to be a more efficient way to ensure data accuracy and security. This approach can lead to the PECD becoming the master database for an individual's health records. Having a group of PECDs added to a network allows for bottom-up data use, storage and exchange as well as the traditional top-down data use, storage and exchange. The combination of the two storage modes creates a ‘diamond-shaped’ storage network. Use of such a diamond-shaped storage network and the master information nature of each of the PECD, in the practice of the invention, increases the overall function, efficiency and speed of the system. Such a system may provide an improved level of convenience for the parties involved.
  • An aspect of the present invention is the ability of the PECD to act as a master database for the PHR of an individual. In accordance with the present invention, the PECD may become part of the network(s) that host complete or incomplete PHRs. Software on the PECD is designed to allow the collection and dissemination of the data specific to the individual patient (e.g. the PHR) to and from disparate networks or systems. Characteristics of the PECD include the ability to communicate to different network or systems without first being a “user” of the system or authenticated at any level. It has the ability to work with different networks and systems. It has full data retrieval capability with and without network connection. This may enable healthcare professionals to use the information at locations where Internet service may not be installed, not be available or not be allowed. In a preferred embodiment, the PECD has a memory capability to store multimedia information. In a preferred embodiment, the PECD can make the data specific to an individual, such as, for example, the PHR, available to a variety of computers or networks. Master medical, insurance, drug, educational and financial information for an individual, including, but not limited to, multimedia diagnostic files can be stored and manipulated within the PECD device so as to compliment many the networks by providing them with complete, accurate and up-to-date information (e.g. PHR). In a preferred embodiment, the PECD may have software that allows for the data to be maintained in such a manner so as to allow for the interoperability with other systems, networks, data stations, portable devices or components.
  • In a preferred embodiment, the PECD is capable of collecting and organizing personal master information or data on top of an existing collection of medical, insurance, drug, educational and financial data. It is capable of collecting, manipulating and displaying data that includes personal information or data collected from the vital statistics of the human body and not available anywhere in the networks.
  • The PECD enables the exchange of master data without first authenticating to a network. Thus it is able to create data interoperability between networks without belonging to any specific network.
  • The embodiments of the present invention also enable the internetworking of client electronic files (e.g. the PHR) between networks, which allows the client to choose the best services offered among networks; use services in locations beyond the geographic coverage of his chosen network; and take electronic files from one network to another. It is believed that the PECD is complementary to and may accelerate the exchange and use of information between networks and/or database. In this context the PECD again becomes integral to the internetworking and the interoperability of data because it is designed with sufficient storage space (e.g. much higher than existing smartcards) to become the master information or database of an individual.
  • With medical records, there can be isolated pools or islands of complete or partial user medical information or records maintained in various organizational networks due to limited information flow and exchange. The need for information interoperability, use and exchange is the highest in small and medium sized medical clinics, yet limited solutions are available. In a preferred embodiment, the PECD can enable medical information interoperability. The PECD may also accelerate the conversion of paper records to electronic records as well as connecting the above noted pools or islands of medical data in order to provide a complete set of electronic medical records which can result in top-down or bottom-up data exchange. The bottom-up data exchange is driven by uses or clients providing data to the network via one or more data stations. Embodiments of the present invention allow clients to participate in the medical, insurance, drug and educational information gathering rather than relying mostly on the network or interoperability between the networks. Alternatively, embodiments of the present intention also allow for top down data exchange where, for example, the data can be provided from a centralized database to the individual user via a PECD.
  • Embodiments of the present invention may also help healthcare providers to make decisions based on the accurate, complete and update individual data files (e.g. PHR), which can be stored, in a preferred embodiment, in the PECD.
  • Accordingly, in one aspect, the invention provides a PECD comprising means for receiving PECD data; means for storing PECD data; means for transmitting PECD data directly or indirectly; and operating software means to effect the displaying, verifying, receiving, storing and transmitting the PECD data.
  • In one preferred embodiment the invention provides a personal electronic carrier device (PECD) comprising means for receiving PECD data; means for storing PECD data; means for transmitting PECD data directly or indirectly; means of storing biometric information; means of verifying biometric information; means of powering any biometric identification device; operating software means to effect the displaying, verifying, receiving, storing and transmitting the PECD data and; embedded software or hardware to protect the PECD from malicious software.
  • Preferably, a PECD as hereinabove defined has a storage memory of at least 1 MB, more preferably at least 4 GB, and still more preferably 8 GB.
  • Preferably, the PECD data is received and transmitted wirelessly.
  • Preferably, the PECD contain a reinforcing means, particularly pin means to enhance the structural integrity and the usability of the on-board chip.
  • More preferably, the PECD as hereinabove defined has the ability to recoil the chip to its original position preferably by resiliently flexible, spring and rubber-like means;
  • Further, preferably, biometric data is verified with an identification device on board of the PECD.
  • In a further aspect, the invention provides, a data network for receiving, storing and transmitting client data comprising (a) a PECD as hereinabove defined; and (b) at least one receiving, storing and transmitting data station comprising a first data station body having means for receiving station data from the group consisting of the PECD, a main database, a client, and a second or more data stations; means for storing the station data ;means for transmitting station data; means for receiving station data; and operating software means to effect the receiving, storing and transmitting the station data in direct or indirect communication with the PECD.
  • In yet a further aspect, the invention provides, a data network for receiving, storing and transmitting client data comprising (a) a PECD as hereinabove defined; and (b) at least one receiving, storing and transmitting data station comprising means for receiving station data; means for storing station data; means for transmitting station data; means for receiving station data; means for storing biometric data; and operating software means to effect the displaying, verifying, receiving, storing and transmitting the station data in direct or indirect communication with the PECD; and embedded software or hardware to protect the PECD from malicious software.
  • Preferably, a data network as hereinabove defined comprises a plurality of the data stations.
  • Preferably, the data station comprises means for creating a new data file for the client.
  • In yet a further aspect, the invention provides, data internetwork methods for verifying, receiving, storing and transmitting client data comprising (a) a PECD as hereinabove defined; and (b) at least one receiving, storing and transmitting data station comprising means for receiving station data between two networks; means for storing station data between two networks; means for transmitting station data between two networks; means for storing biometric data between two networks; operating software means to effect the verifying, receiving, storing and transmitting the station data in direct or indirect communication with the PECD; and embedded software or hardware to protect the PECD from malicious software.
  • Preferably, between two data networks as hereinabove defined comprises a plurality of the data stations.
  • Preferably, the data station in any network comprises means for creating a new data file for the client.
  • In a yet further aspect, the invention provides a data network as hereinabove defined further comprising a main data database comprising means for receiving main data from the group consisting of the PECD, a main database, a client, and a second or more data stations; means for storing main data; means for transmitting main data; means for receiving station data and operating software means to operably effect directly or indirectly the receiving, storing and transmitting the main data to and from the PECD and the data station; and wherein the data station and the PECD are in direct or indirect communication with the main database.
  • In a still yet further aspect, the invention provides a data network as hereinabove defined further comprising a main data database comprising means for receiving main data; means for storing main data; means for transmitting main data; means for storing biometric data; operating software means to operably effect directly or indirectly the receiving, storing, displaying and transmitting the main data to and from the PECD and the data station; and wherein the data station and the PECD are in direct or indirect communication with the main database.
  • Preferably, the data station comprises means for transmitting the new data file to the PECD and the main database.
  • The main data herein comprises station data and client data.
  • In a still yet further aspect, the invention provides a method for receiving, storing and transmitting client data in at least one data station and a personal electronic carrier device (PECD) of a network, the method comprising feeding client data into the data station; storing the client data in the data station; transmitting the client data to the PECD; receiving the client data from the PECD; and storing the client data in the PECD.
  • In a still yet further aspect, the invention provides a method for receiving, storing displaying and transmitting client data in at least one data station and a personal electronic carrier device (PECD) of a network, the method comprising feeding client data into the data station; storing the client data in the data station; transmitting the client data to the PECD; receiving the client data from the PECD; and storing the client data in the PECD.
  • Preferably, the method further comprises storing the client biometric data in the PECD.
  • Preferably, the method, as hereinabove defined, comprises feeding and storing the client data to a main database of the network.
  • Preferably, the method, as hereinabove defined, comprises retrieving and transmitting stored client data to at least one of the data stations and the PECD.
  • Preferably, the method, as hereinabove defined, comprises feeding client data into a plurality of data stations; and comprises feeding client data into the data station; storing the client data in the data station; transmitting the client data to the PECD; receiving the client data from the PECD; storing the client data in the PECD; and storing the client biometric data in the PECD.
  • In some cases, the locations or stations can access data files from the main database. However, there are situations when this method may be hindered, e.g. when some data files are very large. It may be more convenient to access the data from a PECD available on site. Another advantage of the PECD is that the data can be accessed outside of the main network.
  • In some cases, the PECD enables the exchange of data files from and between many network main databases. This exchange by PECD becomes the default method of information exchange before other methods are built on top. The ability to transmit and receive from the PECD enables any network databases to become instantaneously interoperable.
  • It can be seen that although the main database is the heart of the entire network, each station or location can create new data files for clients. Preferably, the data files are stored at the location of creation, and then a copy of the data files are backed up to the main database. The data files are copied again and then, or subsequently, stored on a PECD if it is, or not, available at the time of transfer. Once the data file is in the main database, other locations are able to retrieve the data files for download/viewing. Outside of the aforementioned internal network locations, the main database files could be accessed by kiosk terminals. The PECD can be connected to a kiosk terminal to retrieve any data files that were not available at the time it was present at one of the locations.
  • It can be seen that the networks components are variable, in that, the networks can function with missing components, and, which, in some situations, it is preferable to omit. For example, a system with a single location or station may not need the main database, or a kiosk, and none of the other locations. This simplified data flow network, thus, creates a top-down storage system from the location to the PECD, and a bottom-up storage method from the PECD to the location. Any combination of the components is possible, as long as there is a PECD to provide the bottom-up storage method and a receiving station or main database.
  • Data file transfers are, preferably, bidirectional, wherein any component has the ability to send, store and receive data files within the system network. However, in some situations it may be beneficial to block one of the directions for the overall benefit of the system.
  • In a further embodiment, a further data flow arrangement is a system where a PECD acts as a center piece in communication with a plurality of locations, stations or between networks. The type of location may vary depending on the specific network. For example, in the medical field, location type A could be a pharmacy; while location type B a doctor's office or a diagnostic clinic. In a further example, in the medical field, location A could be a clinic using central database M; while location B is a hospital using central database N.
  • In user trial, it has been shown that user benefits from using the device during traveling outside their medical services network. The PECD was able to take the information back from an outside network and bring it back to the main network for the user creating medical record interoperability between the two networks. It confirmed and demonstrated the information internetworking capability of the PECD device.
  • In a further embodiment, a PECD as hereinabove defined comprising a planar body having a portion defining an aperture and a memory chip comprising means for receiving PECD data; means for storing PECD data; means for transmitting PECD data directly or indirectly; and operating software means to effect the displaying, verifying, receiving, storing and transmitting the PECD data; the memory chip retained within the aperture in coplanar alignment with the planar body.
  • In a further embodiment, a PECD as hereinabove defined wherein the memory chip further comprises means of storing biometric information; means of verifying biometric information; means of powering a biometric identification device; operating software means to effect the displaying, verifying, receiving, storing and transmitting the PECD data and; embedded software or hardware to protect the PECD from malicious software.
  • In a further embodiment, a PECD is as hereinabove defined wherein the memory chip is rotatably retained within the aperture.
  • In a further embodiment a PECD as hereinabove defined comprising an elongate memory chip retaining member located within the planar body and the memory chip.
  • In a further embodiment a PECD as hereinabove defined is wherein the retaining member is formed of a metal, a plastics material or carbon fiber.
  • In a further embodiment a PECD is as hereinabove defined comprising a resiliently flexible member located within the planar body and the memory chip whereby after displacement of the memory chip out of coplanar alignment with the planar body under the action of a displacing force, the resiliently flexible member effects return of the memory chip to the coplanar alignment when the displacing force is removed.
  • In a further embodiment a PECD as hereinabove defined is wherein the resiliently flexible member is in the form of an elongate member selected from a thread, line, fiber and the like and formed of rubber, carbon fibre, or a plastics material.
  • By elongate in this specification is meant the retaining member is of sufficient length to retain the member within the body and memory chip.
  • In a further embodiment a PECD as hereinabove defined is wherein the planar body has a thickness of less than 2.5 mm.
  • In preferred embodiments, the PECD according to the invention is provided with biometric information reading means containing data, such as, for example, fingerprint, retina and/or DNA data of a user—patient of use in an emergency. Such a user may be unconscious and not able to provide a password. The biometric access provides the ability to authenticate the patient and allow access of the stored data.
  • In further preferred embodiments, the PECD is provided with automatic protection software to prevent the unwanted access to and corruption of files in an emergency.
  • In a further aspect, the invention provides a method when use with the PECD that maintains master information or database of an individual and is integral to internetworking and interoperability of medical, insurance, educational and financial data.
  • In a further aspect, the invention provides a method when use with the PECD that allows an individual to add personal information in medical, insurance, educational and financial areas that is not contained in any of the external systems or networks. For example, many patients or users collect data about blood pressure, blood sugar, weight, ECG and other patient physiological variables. This information may be ignored or not considered in many cases because it is difficult to view and analyze without electronic records or, where there are electronic records, having such records inputted into the medical data of the individual.
  • In a further aspect, the invention provides a method when use with the PECD that enables the exchange of data within a network and between networks without first authenticate with any of the connecting networks.
  • In a yet further aspect, the invention provides a method that provides an efficient and effective way of data exchange and interoperability by leveraging the master data in the PECDs of individuals.
  • The benefits of the retaining member include preventing the chip portions of the PECD from easily separating from the planar body and enhancing the usability and integrity of the device.
  • FIG. 1 shows generally as 10, a network having a PECD 12, such as a smartcard in communication with a plurality of locations or data stations 14—six in the embodiment shown. Locations A, e.g. pharmacies or diagnostic clinics are able to transmit medical information to the PECD. The PECD is then able to bring information, preferably, portably, to a desired location B, e.g. health care facilities, and the like, for the facility to receive updated data. Each of locations A and B are, thus, connected via a network created by the PECD. When an individual is examined by a physician, all observations may be added, preferably downloaded, to the smartcard. Also, each time the patient visits a healthcare provider, the entire medical history of the individual can be retrieved from the smartcard. The smartcard makes it possible for an individual's medical history to be “read” by a computer, displayed on the computer's monitor, printed, or transmitted. This allows individuals to carry on their person a medical history of themselves.
  • FIG. 2 and FIG. 2 a show generally as 20, a network and networks having a PECD 12, plurality of data stations/locations 14 and main database 22.
  • Network 20 defines a top-down, and bottom-up data receiving, transfer and storage system. Although information can travel bidirectionally, it is, however, often preferred in some locations to be unidirectional. Preferably, there is main database 22 that can directly and indirectly reach all the components in the system. In the absence of main database 22, individual locations 14 perform the role of main database 22. Locations 14 may have a minimum of one, and an unlimited maximum. PECD 12 can undergo a bidirectional data exchange within networks 10 and 20. The data may be unique to the individual person(s) in possession of PECD 12. Data from PECD 12 can be sent and received from an external party 24 that is not a part of the network, if desired. PECD 12 can undergo data transfer directly with main database 22 via a kiosk terminal 26, if desired.
  • FIGS. 3 a and 3 b show generally as 30 a credit card-sized shaped planar member of less than 2.5 mm thick and having a plastics, carbon fiber or titanium body 32 having a portion defining an aperture 34 retaining an 8 GB member chip 36. Chip 36 is swivable within aperture 34 and removable therefrom (FIG. 4). Memory chip 36 may be substituted and interchanged predicated on the utility and application required. Chip 36 can be detached from body 32 for the convenience of reaching difficult locations of USB ports.
  • FIG. 5 shows card 40 having memory chip 36 combined with smartcard chip 42.
  • FIG. 6 shows PECD 50 having USB chip 36 and RFID contactless smart chip 52 within card 54, antenna 56 within chip.
  • FIG. 7 shows a PECD 60 designed to minimize the dimensions, particularly the thickness of card 62 bearing USB 64.
  • FIG. 8 shows a PECD 60 having a reinforcing longitudinal steel needle 66 partially or completely across the width of PECD 60 at the lower end 68 and through chip 36 within PECD 60 rotatably retains chip 36 within PECD 60. Alternative suitable reinforcing materials, such as, for example, formed of a plastics material, metal or carbon fibre may be used.
  • An embodiment of the present invention provides for the presence of reinforcing needle 66 in a desirable, relatively thin PECD 60 prevents chip 36 from being dislodged when the PECD is bent or twisted. In the absence of the retaining needle, rod, or the like, a small amount of torque causes thin cards to dislodge chip 36A. PECD thickness of less than 2mm e.g. as thin as a typical USB stick is preferred for physical connection to a computer.
  • Reference to FIG. 9 shows use of an elongate rubber thread 70 extending through lower end 68 of PECD 60 and chip 36 at terminal portion 72. When chip 36 and PECD are coplanar, thread 70 is in its relaxed state. When chip 36 is pulled out of alignment for insertion, thread 70 is under torsion. Release of chip 36 allows of relaxation of thread 70 and recoil of chip 36 back into coplanarity with PECD 60. Alternatively, other resiliently flexible materials such as, for example, suitable plastics material, carbon fiber, metallic coil springs, and the like may be used. These materials are preferably retained within the PECD 60 and chip 36 by a suitable adhesive.
  • FIGS. 10 a and 10 b show two different network configurations 80 and 81, where both networks 80 and 81 consist of typical centralized healthcare systems that manage health records for individuals. The systems 85 may include information from various sources that are deployed in network 80 or 81, including, but not limited to admission, discharge & transfer systems, health information systems, laboratory information systems, picture archiving and communication systems, and radiology information systems, as pictorially represented in FIGS. 10 a and 10 b. As pictorially represented in FIG. 10 a, system 85 of network 80 may include data input from Laboratories, Radiology Labs, Pharmacies, Hospitals, Community Clinics, Insurance Companies and Dental Clinics etc. The information exchange in network 80 may be point-to-point and inefficient. As provided in network 81 (FIG. 10 b), there can be data input from a number of sauces similar to that of network 80, such as, fop example, Laboratories, Radiology Labs, Pharmacies, Hospitals, Community Clinics, Insurance Companies and Dental Clinics etc. The systems 85 are deployed within their domain based on automation, specialization, geographic etc. requirements. As shown in FIG. 10 b, network 81 with PECD 86 simplifies the exchange, transfer and use of health records (e.g. PHR). PECD 86 in network 81 achieves more rapid health record interoperability, including exchange and use of data over many traditional way of integrating systems, as shown in FIG. 10 a. It can be seen in FIGS. 10 a and 10 b that network 80 requires a higher number of interconnections between various data sources that those of network 81 as a result of the use of the PECD in order to achieve the same degree of interoperability. It will be understood that when the PECD contains master information of an individual, it will benefit the entire network and internetwork in information accuracy and efficiency.
  • FIG. 11 shows the method of the personal information interoperability and exchange by PECD 86 in greater detail. FIG. 11 provides PECD 86 which can receive data from healthcare providers and send data back to different systems that are part of the healthcare network. As shown in FIG. 11, there is provided Step 1 which starts at clinic 101 where a copy of a the individual's PHR 105 located within the data storage and management systems of clinic 101, is loaded onto PECD 86. The event flow of FIG. 11 follows a circular clockwise path from Step 1 to Step 10. Following Step 1, the individual may return to clinic 101 on a subsequent visit to obtain treatment or diagnosis of a preexisting or new condition, as shown in Step 2. Medication may be prescribed in Step 2 such that PECD 86 is updated to include the necessary information. As seen in FIG. 11, Step 3 has the patient arriving at the pharmacy to obtain the prescription written during Step 2. As the prescription is captured in PECD 86, it can be available for the pharmacy 102 to provide the correct medication. In addition, the home clinic may have referred the patient to a specialist clinic 103 to look into the condition further (see Step 4). As seen in FIG. 11, Step 4 shows a specialist in cline 103 referring the patient to a laboratory 104 to perform a diagnostic test, such as an X-ray. It will be understood that the physician at clinic 104 may also have access to the PHR provided on PECD 86. The X-ray image can be captured by the PECD 88 at the end of the test in Step 5. Based on the imaging results, the specialist clinic 103 can determine the treatment and may prescribe additional medication for the patient (see Step 6 in FIG. 11). At each point in this process, PECD 86 may be updated to reflect any additions, deletions or changes made to the PHR. While it is not shown, it will be understood that PECD 86 may connect with a centralized databases (not shown) so as to maintain a centralized record that is accurate, update and correct.
  • Step 6 of FIG. 11 provides for the patient to pick up his/her prescription at a different Pharmacy 102′; the Pharmacist is able to verify the individual's existing prescription in the PECD 88 to ensure there is no interaction between all the medications that the individual is taking. Step 7 is in the next visit back to the home clinic 101 for an annual check-up, all the individual's medical information, diagnostic image, assessments and prescription are brought back to clinic 101 via PECD 86 and synchronizes with home clinic 101 so as to provide this clinic with an up-to-date record. New check up information may also be added to PECD 86. In FIG. 11, there is also provided Step 7 in which the individual can also add to the PHR 105 provided on PECD 86. This additional information may include dental, optometry, self measured results (blood pressure, weight, blood sugar level etc.) on to PECD 86 as part of maintaining the PECD 86. As part of Step 9, the individual may travels to a foreign country for work or pleasure; he/she visits a foreign hospital 106 for chest pain. The individual uses PECD 86 to show the healthcare professionals the medication and diagnostic history for a speedy treatment by the hospital staff at this foreign clinic. Step 9 is when the individual uses the PECD 86 to capture the diagnoses from the hospital 106. When the individual picks up his/her medication, the foreign pharmacy 107 in Step 10 was able to verify medication history in PECD 86 before dispensing the new prescription and updating the records of PECD 86. Step 10 is when the individual returns and visit the home clinic 101 again; the home clinic 101 may obtain all the medical information from the master database stored in the individual's PECD 86.
  • The PECD and networks as hereinabove described have particular utility in the maintenance and transfer of medical data, including, but not limited to, insurance information, prescription drug information, and medical records. However, the system can also be applied to veterinary practice in maintenance and transfer of animal data including, but not limited to, insurance information, drug information, and medical records. Furthermore, the system can also function as an educational distribution web to provide information from educators to students and vice versa. The system can also function as an identification/data retention system to retain information including biometric information on members of a population.
  • Although this disclosure has described and illustrated certain preferred embodiments of the invention, it is to be understood that the invention is not restricted to those particular embodiments. Rather, the invention includes all embodiments which are functional or mechanical equivalence of the specific embodiments and features that have been described and illustrated.

Claims (24)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. A portable device for secure storage of user provided data, the portable device comprising:
(a) a planar body having a portion defining an aperture;
(b) an interface for communicating with an external device; and
(c) data storage accessible via the interface, the storage comprising a data section operable for storage of the user provided data, the data section having operating software to effect the receiving, storing and transmitting of the data,
wherein the data storage is retained within the aperture in coplanar alignment with the planar body.
2. The portable device of claim 1 further wherein the user provided data comprises biometric data of the user.
3. The portable device of claim 2 wherein the interface communicates with the external device wirelessly.
4. The portable device of claim 3 wherein the planar body is a smartcard.
5. The portable device of claim 4 wherein the data storage comprises a memory chip receiving member and a memory chip disposed within the memory chip receiving member.
6. The portable device of claim 5 wherein the memory chip receiving member is rotatably retained within the aperture.
7. The portable device of claim 6 where the data storage further comprises an elongate memory chip retaining member extending through the memory chip receiving member and engaging the planar body to rotatably retain the memory chip receiving member within the aperture.
8. The portable device of claim 7 wherein the retaining member is formed of a metal, a plastics material or carbon fiber.
9. The portable device of claim 8 wherein the resiliently flexible member is located within planar body and the memory chip receiving member whereby after displacement of the memory chip receiving member out of coplanar alignment with the planar body under the action of a displacing force, the resiliently flexible member effects return of the memory chip receiving member to the coplanar alignment when the displacing force is removed.
10. The portable device of claim 9 wherein the resiliently flexible member is made of rubber.
11. The portable device of claim 10 wherein the planar body has a thickness of less than 2.5 mm.
12. A network for receiving, storing and transmitting user defined data comprising
(a) a portable device for secure storage of the first set of user defined data, the portable device comprising an interface for communicating with an external device and data storage accessible via the interface, the data storage comprising a data section operable for storage of the first set of user provided data and having operating software to effect the receiving, storing and transmitting of data;
(b) a first data station having a first data station interface for communicating with the portable device and a first data storage accessible via the first data station interface, the first data station storage comprising a first data station storage section operable for storage of a second set of user defined data and having operating software to effect the receiving, storing and transmitting of data;
(c) a second data station having a second data station interface for communicating with the portable device and a second data storage accessible via the second data station interface, the second data station storage comprising a second station data station storage section operable for storage of a third set of user defined data having operating software to effect the receiving, storing and transmitting data;
wherein the portable device communicates with the first and second data station so as to receive the second and third sets of user defined data and updating the first set of user defined data to include the second and third sets of user defined data.
13. The network of claim 12 wherein the portable device communicates with the first data station so as to transmitt the first, second and third sets of user defined data to the first data station and the first data station updates the second set of user defined data to include the first and third sets of user defined data.
14. The network of claim 13 wherein the portable device communicates with the second data station so as to transmitt the first, second and third sets of user defined data to the second data station and the second data station updates the third set of user defined data to include the first and second sets of user defined data.
15. The network of claim 14 wherein the first or the second data station is a centralized computer database.
16. The network of claim 15 wherein the first data station cannot directly communicate with the second data station.
17. The network of claim 16 wherein the first and second data station comprises means for transmitting the second and third user defined data to the portable device.
18. The network of claim 17 wherein the user defined data is selected from the group consisting of medical, vetininary, educational, personal and identification data.
19. The network of claim 18 wherein the portable storage device, the first data station and the second data station are interoperable.
20. The network of claim 19 wherein the first set of user defined data contains a master data record of the user.
21. The network of claim 16 wherein the first data station cannot communicate with the second data station.
22. The network of claim 21 wherein the second data station cannot communicate with the first data station.
23. The network of claim 20 wherein the portable device provides data and network interoperability by providing information exchange in specific format that satisfies system, network, industry standards and regulatory requirements.
24. The network of claim 23 wherein the portable device further comprises a planar body having a portion defining an aperture and the data storage is retained within the aperture in coplanar alignment with the planar body.
US13/814,142 2010-01-22 2011-01-21 Portable device for secure storage of user provided data Abandoned US20130290632A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CA2690784 2010-01-22
CA 2690784 CA2690784A1 (en) 2010-01-22 2010-01-22 Network and method for data input, storage and retrieval
CA2709472 2010-07-14
CA 2709472 CA2709472A1 (en) 2010-01-22 2010-07-14 Network and method for data input, storage and retrieval
PCT/CA2011/000075 WO2011088565A1 (en) 2010-01-22 2011-01-21 A portable device for secure storage of user provided data

Publications (1)

Publication Number Publication Date
US20130290632A1 true US20130290632A1 (en) 2013-10-31

Family

ID=44303626

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/839,021 Expired - Fee Related US8469279B2 (en) 2010-01-22 2010-07-19 Network and method for data input, storage and retrieval
US13/814,142 Abandoned US20130290632A1 (en) 2010-01-22 2011-01-21 Portable device for secure storage of user provided data
US13/849,081 Abandoned US20130253955A1 (en) 2010-01-22 2013-03-22 Network and method for data input, storage and retrieval

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/839,021 Expired - Fee Related US8469279B2 (en) 2010-01-22 2010-07-19 Network and method for data input, storage and retrieval

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/849,081 Abandoned US20130253955A1 (en) 2010-01-22 2013-03-22 Network and method for data input, storage and retrieval

Country Status (2)

Country Link
US (3) US8469279B2 (en)
CA (3) CA2690784A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10777300B2 (en) * 2018-09-28 2020-09-15 Helix OpCo, LLC Trait prediction coordination for genomic application environment

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103268395A (en) * 2013-04-24 2013-08-28 浙江大学 Remote extra sensory perception medical visiting system and visiting method
EP3190530A1 (en) * 2016-01-07 2017-07-12 Patrick Coudert Dual medical card for administrative management and medical record and associated methods
JP6528820B2 (en) * 2017-09-19 2019-06-12 カシオ計算機株式会社 Computer, information device, program for operating these, information processing system, and control method of information processing system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040153965A1 (en) * 2003-01-31 2004-08-05 O'rourke Kevin System and user interface for managing and processing form information for use by portable processing and other devices
US20060095423A1 (en) * 2004-11-04 2006-05-04 Reicher Murray A Systems and methods for retrieval of medical data
US20060161634A1 (en) * 2005-01-14 2006-07-20 Lite-On Technology Corporation Positioning systems and methods for portable devices
US20070083393A1 (en) * 2005-10-06 2007-04-12 Michael Howell Portable record in electronic form
US20070294104A1 (en) * 2006-06-15 2007-12-20 Carmeli Boaz System, Method, and Means, to Detect and Prevent Fraudulent Medical Insurance Claims
US20080097552A1 (en) * 2006-10-24 2008-04-24 Kent Dicks Systems and methods for medical data interchange using mobile computing devices
US9047648B1 (en) * 2006-03-30 2015-06-02 At&T Mobility Ii Llc Measurement, collection, reporting and processing of health condition data

Family Cites Families (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69227562T2 (en) * 1991-09-11 1999-04-22 Hewlett Packard Co Data processing system and method for the automatic implementation of prioritized nursing diagnoses by evaluating patient data
US5997476A (en) * 1997-03-28 1999-12-07 Health Hero Network, Inc. Networked system for interactive communication and remote monitoring of individuals
US6457647B1 (en) * 1993-11-16 2002-10-01 Canon Kabushiki Kaisha Memory card adaptor to facilitate upgrades and the like
US6206829B1 (en) * 1996-07-12 2001-03-27 First Opinion Corporation Computerized medical diagnostic and treatment advice system including network access
CA2199934C (en) * 1994-09-13 2007-07-10 Irmgard Rost Personal data archive system
US5499293A (en) * 1995-01-24 1996-03-12 University Of Maryland Privacy protected information medium using a data compression method
US5778882A (en) * 1995-02-24 1998-07-14 Brigham And Women's Hospital Health monitoring system
US5659741A (en) * 1995-03-29 1997-08-19 Stuart S. Bowie Computer system and method for storing medical histories using a carrying size card
US5494292A (en) * 1995-06-06 1996-02-27 Mileti; Mark Marble maze game device
US5926526A (en) * 1995-12-29 1999-07-20 Seymour A. Rapaport Method and apparatus for automated patient information retrieval
US5970463A (en) * 1996-05-01 1999-10-19 Practice Patterns Science, Inc. Medical claims integration and data analysis system
US5763862A (en) * 1996-06-24 1998-06-09 Motorola, Inc. Dual card smart card reader
US5924074A (en) * 1996-09-27 1999-07-13 Azron Incorporated Electronic medical records system
US6032119A (en) * 1997-01-16 2000-02-29 Health Hero Network, Inc. Personalized display of health information
US5974124A (en) * 1997-01-21 1999-10-26 Med Graph Method and system aiding medical diagnosis and treatment
US6082776A (en) * 1997-05-07 2000-07-04 Feinberg; Lawrence E. Storing personal medical information
US5890129A (en) * 1997-05-30 1999-03-30 Spurgeon; Loren J. System for exchanging health care insurance information
US6000828A (en) * 1997-08-22 1999-12-14 Power Med Incorporated Method of improving drug treatment
US6044349A (en) * 1998-06-19 2000-03-28 Intel Corporation Secure and convenient information storage and retrieval method and apparatus
EP1116155A2 (en) * 1998-10-02 2001-07-18 Comsense Technologies Ltd. Card for interaction with a computer
US6073106A (en) * 1998-10-30 2000-06-06 Nehdc, Inc. Method of managing and controlling access to personal information
US6602469B1 (en) 1998-11-09 2003-08-05 Lifestream Technologies, Inc. Health monitoring and diagnostic device and network-based health assessment and medical records maintenance system
US8073712B2 (en) * 1999-04-02 2011-12-06 Cybernet Systems Corporation Method for consolidating medical records through the world wide web
US6223559B1 (en) * 1999-07-20 2001-05-01 Shelia J. Coleman Medical identification charm bracelet
US7487908B1 (en) * 1999-10-23 2009-02-10 Ultracard, Inc. Article having an embedded accessible storage member, apparatus and method for using same
US20020103675A1 (en) * 1999-11-29 2002-08-01 John Vanelli Apparatus and method for providing consolidated medical information
US6574484B1 (en) * 1999-12-02 2003-06-03 Worldcom, Inc. Method for emergency service access using a mobile phone
US6826173B1 (en) * 1999-12-30 2004-11-30 At&T Corp. Enhanced subscriber IP alerting
US6845448B1 (en) * 2000-01-07 2005-01-18 Pennar Software Corporation Online repository for personal information
US20010041991A1 (en) * 2000-02-09 2001-11-15 Segal Elliot A. Method and system for managing patient medical records
US20020046061A1 (en) * 2000-02-11 2002-04-18 Wright Kenneth L. Personal information system
US6941271B1 (en) * 2000-02-15 2005-09-06 James W. Soong Method for accessing component fields of a patient record by applying access rules determined by the patient
US6463417B1 (en) * 2000-02-22 2002-10-08 Carekey.Com, Inc. Method and system for distributing health information
US6988075B1 (en) * 2000-03-15 2006-01-17 Hacker L Leonard Patient-controlled medical information system and method
US6738784B1 (en) * 2000-04-06 2004-05-18 Dictaphone Corporation Document and information processing system
US7206847B1 (en) * 2000-05-22 2007-04-17 Motorola Inc. Smart card with back up
AU2001264799A1 (en) * 2000-05-24 2001-12-03 Virtual Clinic, Inc. Method and apparatus for providing personalized services
US7721109B1 (en) 2000-07-28 2010-05-18 Verizon Business Global Llc Secure transaction card using biometrical validation
US7360688B1 (en) * 2000-10-16 2008-04-22 Harris Scott C Intelligent credit card system
US20030059751A1 (en) * 2000-10-30 2003-03-27 Welles Nancy Dickerson Emergency/medical documentation and communication system and method
US6871214B2 (en) * 2000-10-30 2005-03-22 Nortel Networks Limited Generating and providing alert messages in a communications network
US20020077861A1 (en) * 2000-12-20 2002-06-20 Hogan James K. Compact disk based medical information system
US20020097159A1 (en) * 2001-01-19 2002-07-25 Peter Hooglander System and method using medical information-containing electronic devices
US20020116330A1 (en) * 2001-02-21 2002-08-22 Hed Aharon Zeev Wireless communicating credit card
US20020120470A1 (en) * 2001-02-23 2002-08-29 Eugene Trice Portable personal and medical information system and method for making and using system
US20020128865A1 (en) * 2001-03-09 2002-09-12 Alten Thomas W. Von Personal medical database device
US20020178631A1 (en) * 2001-06-01 2002-12-05 Robert Morton Medical information storage and display device
US20020189146A1 (en) * 2001-06-15 2002-12-19 Lyon Lori A. Identification tag for a person
US20030208382A1 (en) * 2001-07-05 2003-11-06 Westfall Mark D Electronic medical record system and method
US7303120B2 (en) * 2001-07-10 2007-12-04 American Express Travel Related Services Company, Inc. System for biometric security using a FOB
US20030014282A1 (en) * 2001-07-16 2003-01-16 Alan Haaksma Method and system for creating a conveniently accessible portable medical history
US20030037065A1 (en) * 2001-07-30 2003-02-20 Alena Svab Method and apparatus for using medical ID smart card
DE10140729A1 (en) * 2001-08-27 2002-07-25 Christian Nehammer Individual health ID card system based on CD-RW data medium on which patient records are stored together with computer programs to connect to a central computer for data exchange and updating
US6766952B2 (en) * 2001-11-06 2004-07-27 Quadnovation, Inc. SIM card carrier
US20030086591A1 (en) * 2001-11-07 2003-05-08 Rudy Simon Identity card and tracking system
AU2002363488A1 (en) * 2001-11-08 2003-05-19 Amos Grushka Portable personal health information package
US20030098356A1 (en) * 2001-11-29 2003-05-29 Gombar George J. Emergency health history kit and method of advertising and distributing the same
US20030229452A1 (en) * 2002-01-14 2003-12-11 Lewis Barrs S. Multi-user system authoring, storing, using, and verifying animal information
US20030132132A1 (en) * 2002-01-16 2003-07-17 Small George H Retractable identification holder and methods of using same
US7647320B2 (en) * 2002-01-18 2010-01-12 Peoplechart Corporation Patient directed system and method for managing medical information
WO2003073353A2 (en) 2002-02-04 2003-09-04 Msc Healthcare Pte. Ltd. Smart card for use with health care institutions and financial institutions
US20040078229A1 (en) * 2002-05-31 2004-04-22 Conceptual Mindworks, Inc. System and method of managing electronic medical records
US20030226889A1 (en) * 2002-06-06 2003-12-11 Morrison James H. ID card internet locating service
US7257967B2 (en) * 2002-06-24 2007-08-21 Linda Rheinstein Convertible identification (ID) tag and jewelry
US20040162895A1 (en) * 2003-02-19 2004-08-19 B2B Booster, Inc. Web site management with electronic storefront and page categorization
US20040186746A1 (en) * 2003-03-21 2004-09-23 Angst Wendy P. System, apparatus and method for storage and transportation of personal health records
US20040232219A1 (en) * 2003-05-20 2004-11-25 Fowler Timothy Charles Medical treatment and prescription administration verification method
US20040267572A1 (en) * 2003-05-27 2004-12-30 Mark Emery Process and method of capturing and delivering emergency contact, medical, scheduling information, and appointment reminders
US20090266882A1 (en) * 2003-06-17 2009-10-29 Sajkowsky James M Smart passport system for monitoring and recording activity and data relating to persons
US20050043827A1 (en) * 2003-07-16 2005-02-24 St. Clair Hospital System and method for storing and accessing medical data
US7213766B2 (en) * 2003-11-17 2007-05-08 Dpd Patent Trust Ltd Multi-interface compact personal token apparatus and methods of use
US7146159B1 (en) * 2003-12-23 2006-12-05 Sprint Communications Company L.P. Over-the-air card provisioning system and method
US6997381B2 (en) * 2003-12-24 2006-02-14 Michael Arnouse Dual-sided smart card reader
US7472833B2 (en) * 2004-03-25 2009-01-06 Hewlett-Packard Development Company, L.P. Information card
US8428968B2 (en) * 2004-05-10 2013-04-23 Epic Systems Corporation Interactive system for patient access to electronic medical records
US20060004588A1 (en) * 2004-06-30 2006-01-05 Mohan Ananda Method and system for obtaining, maintaining and distributing data
US7314165B2 (en) * 2004-07-01 2008-01-01 American Express Travel Related Services Company, Inc. Method and system for smellprint recognition biometrics on a smartcard
US20060074713A1 (en) * 2004-10-04 2006-04-06 Conry Anne M Patient identification card system and method for efficient medical care
US20060080137A1 (en) * 2004-10-04 2006-04-13 Chambers Kevin B USB MED STICK with personal medical history
US7097108B2 (en) * 2004-10-28 2006-08-29 Bellsouth Intellectual Property Corporation Multiple function electronic cards
US20060173712A1 (en) * 2004-11-12 2006-08-03 Dirk Joubert Portable medical information system
US20060106646A1 (en) * 2004-11-18 2006-05-18 Eastman Kodak Company Medical kiosk with multiple input sources
JP4922288B2 (en) * 2005-03-24 2012-04-25 プリバリス,インコーポレイテッド Biometric device with smart card function
TWI328193B (en) * 2005-07-04 2010-08-01 Ind Tech Res Inst Display-card electronic device
KR20080038418A (en) * 2005-08-18 2008-05-06 아이비아이 스마트 테크놀로지스 인코포레이티드 Biometric identity verification system and method
US20070040017A1 (en) * 2005-08-22 2007-02-22 Douglas Kozlay Wireless biometric cardholder apparatus, method, & system
US8725537B2 (en) * 2005-09-12 2014-05-13 Mymedicalrecords, Inc. Method and system for providing online records
US8121855B2 (en) * 2005-09-12 2012-02-21 Mymedicalrecords.Com, Inc. Method and system for providing online medical records
US8117045B2 (en) * 2005-09-12 2012-02-14 Mymedicalrecords.Com, Inc. Method and system for providing online medical records
US20080041940A1 (en) * 2006-06-07 2008-02-21 Weeks Walter L Pocket data, medical record and payment device
US20100174914A1 (en) 2006-06-29 2010-07-08 Michael Shafir System and method for traceless biometric identification with user selection
US8381287B2 (en) * 2006-07-19 2013-02-19 Secure Exchange Solutions, Llc Trusted records using secure exchange
US20080027752A1 (en) * 2006-07-31 2008-01-31 Giang Trieu Phan Physician reviewed portable and network accessed electronic medical record
US20090133111A1 (en) * 2007-05-03 2009-05-21 Evans Security Solutions, Llc System for centralizing personal identification verification and access control
US9311766B2 (en) * 2007-09-12 2016-04-12 Devicefidelity, Inc. Wireless communicating radio frequency signals
US20090076849A1 (en) * 2007-09-13 2009-03-19 Kay Diller Systems and methods for patient-managed medical records and information
US20090143104A1 (en) * 2007-09-21 2009-06-04 Michael Loh Wireless smart card and integrated personal area network, near field communication and contactless payment system
US8180654B2 (en) * 2007-10-31 2012-05-15 Health Record Corporation Method and system for creating, assembling, managing, utilizing, and securely storing portable personal medical records
US9743844B2 (en) * 2008-03-21 2017-08-29 Computerized Screening, Inc. Community based managed health kiosk and prescription dispensement system
US20090289107A1 (en) * 2008-05-26 2009-11-26 Wayne Douglas Prentice Multi-use durable goods card and system
EP2329391A1 (en) * 2008-08-13 2011-06-08 Secure Exchange Solutions, Llc Trusted card system using secure exchange
US9536238B2 (en) 2008-12-31 2017-01-03 Peter Garrett Hand-held electronics device for aggregation of and management of personal electronic data
US8387870B2 (en) 2009-01-16 2013-03-05 Secure Exchange Solutions, Llc Methods and systems for fabricating a transaction card incorporating a memory
US20100241519A1 (en) 2009-02-22 2010-09-23 GreenReceipts, LLC Systems and methods for capturing and managing transactional data related to product and service sales

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040153965A1 (en) * 2003-01-31 2004-08-05 O'rourke Kevin System and user interface for managing and processing form information for use by portable processing and other devices
US20060095423A1 (en) * 2004-11-04 2006-05-04 Reicher Murray A Systems and methods for retrieval of medical data
US20060161634A1 (en) * 2005-01-14 2006-07-20 Lite-On Technology Corporation Positioning systems and methods for portable devices
US20070083393A1 (en) * 2005-10-06 2007-04-12 Michael Howell Portable record in electronic form
US9047648B1 (en) * 2006-03-30 2015-06-02 At&T Mobility Ii Llc Measurement, collection, reporting and processing of health condition data
US20070294104A1 (en) * 2006-06-15 2007-12-20 Carmeli Boaz System, Method, and Means, to Detect and Prevent Fraudulent Medical Insurance Claims
US20080097552A1 (en) * 2006-10-24 2008-04-24 Kent Dicks Systems and methods for medical data interchange using mobile computing devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10777300B2 (en) * 2018-09-28 2020-09-15 Helix OpCo, LLC Trait prediction coordination for genomic application environment

Also Published As

Publication number Publication date
US8469279B2 (en) 2013-06-25
US20130253955A1 (en) 2013-09-26
CA2709472A1 (en) 2011-07-22
US20110184994A1 (en) 2011-07-28
CA2824427A1 (en) 2011-07-28
CA2690784A1 (en) 2011-07-22

Similar Documents

Publication Publication Date Title
USRE46866E1 (en) System for maintaining patient medical records for participating patients
US20040103000A1 (en) Portable system and method for health information storage, retrieval, and management
US7668734B2 (en) Internet medical information system (IMED)
US20050197859A1 (en) Portable electronic data storage and retreival system for group data
US7298872B2 (en) Electronic identification system for form location, organization, and endorsment
US20050125258A1 (en) Web-hosted healthcare medical information management system
BRPI0717818A2 (en) SECURITY SYSTEM FOR MEDICAL RECORDS; METHOD FOR SAFE ACCESS TO MEDICAL RECORDS; AND SYSTEM FOR SECURE ACCESS OF MEDICAL RECORDS.
Latha et al. Electronic health record
US20150039341A1 (en) Invention includes the Process, Method and System for cloud-based critical Emergency and Discharge medical Information through the Capturing, Maintaining, Accessing, Integrating and Communicating said information
US20130290632A1 (en) Portable device for secure storage of user provided data
JP2007188290A (en) Medical information provision system
Engelbrecht et al. DIABCARD—An application of a portable medical record for persons with diabetes
WO2011088565A1 (en) A portable device for secure storage of user provided data
US20210295962A1 (en) Electronic Patient Registration and Billing
US20180190370A1 (en) Universal Medical Access Card System and Process Thereof
Xiao et al. Medical Smart Card System for Patient Record Management
Collen et al. Problems of computerization of large computer medical record systems
Hermanto et al. Smart card mobile data collection system concept for health and medical data collecting activities in rural area
Godhavari Implementation of Electronic Health Record and Health Insurance Management System using Blockchain Technology
CA2577843C (en) Electronic identification system for form location, organization, and endorsement
KR20240055183A (en) System and the method of providing charged personal medical information data
CN110660457A (en) Block chain electronic medical record system
Kim et al. National Identification Card and Health Card Project in Korea
NSABIYUMVA et al. The prospects of Smart Card based e-health networks in Rwanda Integrated Patient Health Record System (IPHRS)
Rosemberg et al. MonDossierMedical. ch: An Efficient Tool for Sharing Medical Data Between Patients and Doctors

Legal Events

Date Code Title Description
AS Assignment

Owner name: SPQKUMAR INC., CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KUMAR, ARJUN PRAKASH;SIN, WAI-CHEONG DANIEL;REEL/FRAME:030930/0902

Effective date: 20110121

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION