US20130247226A1 - Connectivity-based authorization - Google Patents

Connectivity-based authorization Download PDF

Info

Publication number
US20130247226A1
US20130247226A1 US11/437,317 US43731706A US2013247226A1 US 20130247226 A1 US20130247226 A1 US 20130247226A1 US 43731706 A US43731706 A US 43731706A US 2013247226 A1 US2013247226 A1 US 2013247226A1
Authority
US
United States
Prior art keywords
action
execution
network connectivity
connectivity state
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US11/437,317
Other versions
US8555404B1 (en
Inventor
E. John Sebes
Rishi Bhargava
David P. Reese
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JPMorgan Chase Bank NA
Morgan Stanley Senior Funding Inc
Original Assignee
Solidcore Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solidcore Systems Inc filed Critical Solidcore Systems Inc
Priority to US11/437,317 priority Critical patent/US8555404B1/en
Assigned to SOLIDCORE SYSTEMS, INC reassignment SOLIDCORE SYSTEMS, INC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BHARGAVA, RISHI, REESE, DAVID P., SEBES, E. JOHN
Assigned to MCAFEE, INC. reassignment MCAFEE, INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: SOLIDCORE SYSTEMS, INC.
Publication of US20130247226A1 publication Critical patent/US20130247226A1/en
Application granted granted Critical
Publication of US8555404B1 publication Critical patent/US8555404B1/en
Assigned to MCAFEE, LLC reassignment MCAFEE, LLC CHANGE OF NAME AND ENTITY CONVERSION Assignors: MCAFEE, INC.
Assigned to JPMORGAN CHASE BANK, N.A. reassignment JPMORGAN CHASE BANK, N.A. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MCAFEE, LLC
Assigned to MORGAN STANLEY SENIOR FUNDING, INC. reassignment MORGAN STANLEY SENIOR FUNDING, INC. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MCAFEE, LLC
Assigned to JPMORGAN CHASE BANK, N.A. reassignment JPMORGAN CHASE BANK, N.A. CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE PATENT 6336186 PREVIOUSLY RECORDED ON REEL 045055 FRAME 786. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST. Assignors: MCAFEE, LLC
Assigned to MORGAN STANLEY SENIOR FUNDING, INC. reassignment MORGAN STANLEY SENIOR FUNDING, INC. CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE PATENT 6336186 PREVIOUSLY RECORDED ON REEL 045056 FRAME 0676. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST. Assignors: MCAFEE, LLC
Assigned to MCAFEE, LLC reassignment MCAFEE, LLC RELEASE OF INTELLECTUAL PROPERTY COLLATERAL - REEL/FRAME 045055/0786 Assignors: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT
Assigned to MCAFEE, LLC reassignment MCAFEE, LLC RELEASE OF INTELLECTUAL PROPERTY COLLATERAL - REEL/FRAME 045056/0676 Assignors: MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT
Assigned to JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT AND COLLATERAL AGENT reassignment JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT AND COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MCAFEE, LLC
Assigned to JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT reassignment JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT CORRECTIVE ASSIGNMENT TO CORRECT THE THE PATENT TITLES AND REMOVE DUPLICATES IN THE SCHEDULE PREVIOUSLY RECORDED AT REEL: 059354 FRAME: 0335. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: MCAFEE, LLC
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/10Network architectures or network communication protocols for network security for controlling access to devices or network resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/10Network architectures or network communication protocols for network security for controlling access to devices or network resources
    • H04L63/102Entity profiles

Definitions

  • Invention relates generally to authorization of actions on computer systems, and in particular to authorization based on connectivity states.
  • Access control is a useful and practical concept in the field of information technology.
  • the definition, monitoring and enforcement of access control policies contribute to the predictable and manageable operation and maintenance of business assets and processes.
  • An abstraction central to access control is that of subjects performing actions on objects. Actions, including those attempted by human subjects, are ultimately performed by one or more processes running on the computer. While in traditional access control techniques use authorization policies that are generally defined for “human” subjects, and additional techniques that allow program-based authorization are disclosed in above referenced co-pending U.S. patent application Ser. No. 11/400,085, there is also a need for authorizations that take into account the connectivity state of a computer.
  • FIG. 1 is a diagrammatic illustration of an exemplary system for connectivity-based authorization, in accordance with an embodiment of the present invention.
  • FIG. 2 is a flow diagram showing a method for connectivity-based action authorization, according to an embodiment of the present invention.
  • FIG. 3 is a flow diagram showing a method for connectivity-based execution authorization, according to an embodiment of the present invention.
  • a process' attempt to perform an action on an object is intercepted.
  • the state of connectivity, along with other things such as the subject program, the object, and the attempted action, are then determined.
  • the interception and subsequent determinations can be performed by a software agent running on the computer.
  • a decision is made to either allow or block the attempted action. In both cases, it may be desirable to generate a log or alert indicative of the decision.
  • FIG. 1 is a diagrammatic illustration of an exemplary system for connectivity-based authorization, in accordance with an embodiment of the present invention.
  • Computer 101 comprises a memory component 102 and a storage component 103 , managed by an operating system (OS).
  • OS operating system
  • Computer 101 is connectable to one or more networks 110 over wired (such as Ethernet or ATM) or wireless links (such as 802.11).
  • processes are launched to perform various actions in accordance with the operation of computer 101 .
  • a process 104 (hereinafter also referred to as “subject process”) is launched, it executes within memory component 102 .
  • a program file 105 (hereinafter also referred to as “subject program file”) represents the code or sequence of instructions which subject process 104 starts executing upon its launch.
  • the subject program file 105 is typically some type of an executable file, such as a binary executable file, script, batch file, interpreted code, byte code, etc.
  • Program file 105 is stored on storage component 103 or is otherwise accessible to computer 101 .
  • subject process 104 may execute other code or instructions such as dynamic libraries, scripts, accepted input, or any other container of code, but the program file 105 refers to the code that subject process 104 starts out executing upon process launch. Furthermore, as described in more detail below, when subject process 104 is launched to execute a script, the program file 105 refers to the script and not to any interpreter of the script.
  • subject process 104 may attempt to perform an action on an object 106 .
  • object 106 may be a file and the action attempt may comprise an attempt to write to the file.
  • Other examples of objects 106 and actions are described below.
  • the action attempt of subject process 104 is intercepted and an authorization policy is consulted.
  • the authorization policy takes into account the state of the connectivity state of computer 101 , and preferably also considers one or more other parameters such as the subject process 104 , the subject program file 105 , the object 106 , and the action being attempted by subject process 104 .
  • the authorization policy indicates whether the attempted action is authorized or not.
  • a “tracking mode” allows authorized attempts to proceed, but the modes differ in how they handle unauthorized attempts.
  • an enforcement mode unauthorized attempts are blocked.
  • a tracking mode unauthorized attempts are allowed to proceed, but they are logged. Tracking mode is useful for examining what effects an authorization policy would have on a system were the policy to be enforced. Tracking mode allows experimentation with and fine-tuning of authorization policies on a live computer 101 , as well as real-time feedback based thereon, without disturbing the operation or behavior of the computer 101 . Once an authorization policy is deemed acceptable, it can be enforced by switching from tracking mode to enforcement mode.
  • a typical example of an object 106 is a file, managed by a file system of computer 101 .
  • the action attempt is a file system action attempt such as a read, write or delete operation on the file, or it may be an attempt to execute the file.
  • Another example of an object 106 is a registry entry, such as one managed by a WindowsTM operating system. In that case the action attempt may be a retrieve, create or delete a registry entry.
  • Other examples of objects 106 include containers or resources managed by a service-oriented architecture (SOA), data structures or other objects stored in memory 102 , or any other objects that are accessible to subject process 104 . In general, the actions that can be attempted by the subject process 104 depend on the object 106 and how the object is being managed.
  • SOA service-oriented architecture
  • FIG. 2 is a flow diagram showing a method for connectivity-based action authorization, according to an embodiment of the present invention.
  • Step 201 intercepts a file system action attempt. This step preferably occurs in real-time.
  • Step 202 determines the network connectivity of computer 101 .
  • step 203 Before consulting a connectivity-based authorization policy, step 203 preferably also determines one or more other parameters relevant to an authorization of the attempted action, such as the target file (object 106 ) of the file system action attempt, the subject process 104 and the subject program file 105 , and the action that is being attempted by subject process 104 on object 106 . Step 203 optionally also determines one or more other attributes of the above parameters, examples of which are enumerated below.
  • Step 204 consults an authorization policy in order to determine 205 whether the attempted action is authorized or not.
  • the authorization policy takes into account the connectivity determined in step 202 , and preferably also takes into account one or more other parameters or attributes determined in step 203 .
  • the authorization policy may disregard some of the determined information.
  • the authorization policy may disregard some or all of the file object 106 attributes and consider only the connectivity of computer 101 and the attempted action.
  • Authorization policies may be stored using any appropriate data structure, for example in a computer readable medium comprising a table with a plurality of entries, with an entry associating a connectivity state with one or more allowed actions and subject programs and objects on the computer.
  • step 206 allows the action to proceed and optional step 207 generates one or more log entries and/or alerts indicating that the authorized action was allowed to proceed.
  • step 208 blocks the action from proceeding and optional step 209 generates one or more log entries and/or alerts indicating that the unauthorized action was blocked.
  • a log entry or alert may include information about the connectivity, the subject process 104 , the subject program 105 , the action, the object 106 , relevant authorization policy, date and time, and/or any other information relevant to the authorization decision and available at the time of logging.
  • Steps 208 and 209 are for an enforcement mode embodiment of the present invention. In a tracking mode embodiment, as described above, step 208 is skipped, allowing the unauthorized action to proceed and recording logs and/or alerts at step 209 .
  • Example attributes of the subject process 104 , action and object 106 are described in the above-referenced co-pending U.S. patent application Ser. No. 11/400,085.
  • Example attributes of the connectivity include the following:
  • OS provisions can be used to intercept file system action requests and registry action requests, as well as to determine whether a file system action request is a an attempt to read a file, write to a file, delete a file, rename a file, move a file, append to a file, truncate a file, get or set permissions on a file, or get or set any other attribute of a file.
  • a filter driver can be used to intercept file system requests and determine their type.
  • a “shim” module or wrapper mechanism can be used for that purpose.
  • a wrapper mechanism would redirect action attempts (e.g. system calls) to a wrapper library that represents an entry point for the interception code, and which may eventually call into the original library or code that implements the intended action attempt.
  • One way of indicating redirection to the wrapper library comprises setting one or more environment variables indicating library load paths and sequences.
  • a shim module redirects system calls to custom interception code within the kernel, and the interception code decides whether or not to redirect execution to the kernel code that implements the system call.
  • the interception code decides whether or not to redirect execution to the kernel code that implements the system call.
  • VFS virtual file system
  • step 203 further determines the subject process 104 and its subject program file 105 .
  • one technique is to start with a unique identifier for the process context of the currently executing subject process 104 .
  • This identifier need not necessarily comprise the traditional process identification number (PID) assigned to processes by many operating systems, though it may.
  • PID process identification number
  • an EPROCESS block or a process handle can be used to uniquely identify the subject process 104 .
  • the subject program file 105 and optionally one or more other attributes of the subject process 104 can be determined as well. For some operating systems, such as a Microsoft WindowsTM OS, this information may not be available via a published application programming interface (API). In such cases, one technique for inferring the subject program file 105 associated with the subject process 104 is to explicitly keep track of the process-program associations so that they can be referred to when needed. One way to do this is by implementing a “Process Tracking Framework” abstraction which, upon receiving an identifier of a subject process 104 context, indicates the subject program file 105 associated with the subject process 104 .
  • the Process Tracking Framework is described in the above-referenced co-pending U.S. patent application Ser. No. 11/400,085.
  • the authorization rules can be arbitrarily complex and may represent any function or Boolean predicate which effectively takes as input a connectivity state, a subject program file 105 of a subject process 104 (and optionally one or more further attributes of the subject process 104 ), a requested action, and an object 106 (or one or more file object 106 attributes), and outputs an authorization decision.
  • a set of authorization rules can be defined to block file transfer programs resident on computer 101 from accessing a specified set of files R whenever computer 101 has connectivity to any network other than a specific network N.
  • R may represent a set of sensitive files related to a business' operations which should be safeguarded against leaking outside of N. Consequently, as a result of enforcing the connectivity-based authorization with such a read restriction policy, whenever a file transfer program attempts to access a file in R while computer 101 is connected to any network other than N, the attempt will fail.
  • a set of authorization rules can be defined to restrict a specific program file 105 P's ability to write to the computer's 101 storage 103 depending on the computer's 101 connectivity.
  • P may be specified as a specific hypertext markup language (HTML) browser such as Microsoft Internet ExplorerTM, and an authorization policy can be defined which restricts P to writing only a restricted set of files whenever computer 101 is suspected to be connected to a potentially unsafe network.
  • HTML hypertext markup language
  • Microsoft Internet ExplorerTM may be allowed to write any type of file to computer's 101 storage 103 except executable files, scripts, batch files, and dynamic libraries, unless computer 101 is connected to a specific firewalled network N (and to no other potentially unsafe network). Furthermore, Microsoft Internet ExplorerTM may be also restricted from modifying existing content on storage 103 unless a connection to N (and no connection to any other network) can be detected. This means that whenever a connection to the firewalled network cannot be detected, Microsoft Internet ExplorerTM will be blocked from writing such restricted files to the computer's 101 storage 103 or modifying existing content, thereby reducing the risk of browser-written malware and malicious changes to computer 101 .
  • connectivity-based action authorization comprises extending the concepts disclosed in above-referenced co-pending U.S. patent applications with the connectivity-based authorization techniques disclosed herein.
  • U.S. patent application Ser. Nos. 11/346,741 and 11/277,596 describe techniques involving authorization of updates, changes and executions of objects resident on a computer system (such as software, configuration files, registry entries, executables, etc.).
  • the present connectivity-based authorization techniques extend the authorization of updates, changes and executions described in said patents to also take into account the connectivity of the computer 101 .
  • execution authorization is similar to that for action authorization, except that in some operating systems execution requests may follow a different code path than other file system action requests, and therefore the interception of execution requests may differ in implementation from the interception of other file system action requests.
  • FIG. 3 is a flow diagram showing a method for connectivity-based execution authorization, according to an embodiment of the present invention.
  • Step 221 intercepts an execution attempt. This step preferably occurs in real-time.
  • Step 222 determines the network connectivity of computer 101 .
  • step 223 preferably also determines one or more other parameters relevant to an authorization of the attempted execution, such as the target executable file (object 106 ) of the execution attempt, the subject process 104 that is attempting to execute the executable file (object 106 ), and the subject program file 105 that represents the code being executed by the subject process 104 .
  • step 223 also determines one or more other attributes of the above parameters, as was enumerated above. For example attributes of the executable file, refer to the above described object 106 attributes.
  • Step 224 consults an authorization policy to determine 225 whether the attempted execution is authorized or not.
  • the authorization takes into account the connectivity determined in step 222 , and preferably also takes into account any other parameters and attributes as determined in step 223 .
  • the authorization policy may disregard some of the determined information.
  • the authorization policy may disregard some or all of the executable file (object 106 ) attributes and consider only the connectivity and the subject program file 105 . For example, specific programs may be prohibited from executing unless computer 101 is connected only to a trusted network.
  • authorization policies may be stored using any appropriate data structure, for example in a computer readable medium comprising a table with a plurality of entries, with an entry associating a connectivity state with one or more allowed executions and subject programs and objects on the computer.
  • step 226 allows the execution to proceed and optional step 227 generates one or more log entries and/or alerts indicating that the authorized execution was allowed to proceed. If the execution is not authorized, step 228 blocks the action from proceeding and optional step 229 generates one or more log entries and/or alerts indicating that an unauthorized execution was blocked. Analogous to the above description, steps 228 and 229 are for an enforcement mode embodiment of the present invention. In a tracking mode embodiment, step 228 is skipped, allowing the unauthorized execution to proceed and recoding logs and/or alerts at step 229 .
  • step 221 comprises placing hooks within the process creation and process termination code paths of the OS. This is also described in the above-referenced co-pending U.S. patent application Ser. No. 11/400,085.
  • step 222 the determination of connectivity proceeds as described for step 202 above.
  • step 223 since an execution request submitted to the OS generally includes an indication of the executable file (object 106 ) as an argument (e.g. name or handle of a binary file, script file, batch file, interpreted program file, byte code file, etc.), the executable file can be determined by examining the execution request intercepted in step 221 .
  • step 223 can be determined as described above for step 203 .
  • Determination of the subject process can be done as described above, for example by starting with a unique identifier for the process context of the currently executing subject process 104 .
  • Determination of subject process 104 attributes can be done by using the Process Tracking Framework described in the above-referenced co-pending U.S. patent application Ser. No. 11/400,085.
  • the disclosed connectivity-based authorization techniques generalize to any other objects and actions which are accessible to running processes.
  • Examples of such other objects include: synchronization objects such as semaphores and locks; inter-process communication (IPC) objects such as shared memory segments; communication objects such as network sockets; local communication abstractions such as pipes; file access objects such as symbolic links (on a Unix-flavored OS) and shortcuts (on a WindowsTM OS); running processes; etc.
  • Actions applicable to such objects depend on the specific abstractions, implementations and semantics of the systems managing the objects, with examples including: killing, suspending, unsuspending or sending signals to processes; acquiring or releasing locks; reading from or writing to shared memory segments; opening, reading from, writing to, or closing network sockets or pipes; etc.
  • the adaptation of the program-based authorization steps disclosed herein to such objects and actions should be obvious to one of ordinary skill in the art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computer Security & Cryptography (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Storage Device Security (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Techniques which allow definition and enforcement of connectivity-based action and execution authorization policies. On a computer, an action or execution attempt is intercepted in real-time. The connectivity state of the computer, the subject process, the program file of the subject process, the attempted action and the object of the attempted action are determined. An authorization policy considering the connectivity state indicates whether the attempted action is authorized or not. In a tracking mode, the attempted action and its authorization are logged and the attempted action is allowed to proceed. In an enforcement mode, unauthorized attempts are blocked and logged, thereby enforcing the authorization policy.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is related to the following, all of which are incorporated herein by reference in their entirety:
  • co-pending U.S. patent application Ser. No. 10/651,591, entitled “Method And System For Containment of Networked Application Client Software By Explicit Human Input” and filed on Aug. 29, 2003;
  • co-pending U.S. patent application Ser. No. 10/651,588, entitled “Damage Containment By Translation” and filed on Aug. 29, 2003;
  • co-pending U.S. patent application Ser. No. 10/806,578, entitled “Containment Of Network Communication” and filed on Mar. 22, 2003;
  • co-pending U.S. patent application Ser. No. 10/739,230, entitled “Method And System For Containment Of Usage Of Language Interfaces” and filed on Dec. 17, 2003;
  • co-pending U.S. patent application Ser. No. 10/935,772, entitled “Solidifying the Executable Software Set of a Computer” and filed on Sep. 7, 2004;
  • co-pending U.S. patent application Ser. No. 11/060,683, entitled “Distribution and Installation of Solidified Software on a Computer” and filed on Feb. 16, 2005;
  • co-pending U.S. patent application Ser. No. 11/122,872, entitled “Piracy Prevention Using Unique Module Translation” and filed on May 4, 2005;
  • co-pending U.S. patent application Ser. No. 11/182,320, entitled “Classification of Software on Networked Systems” and filed on Jul. 14, 2005;
  • co-pending U.S. patent application Ser. No. 11/346,741, entitled “Enforcing Alignment of Approved Changes and Deployed Changes in the Software Change Life-Cycle”, by Rahul Roy-Chowdhury, E. John Sebes and Jay Vaishnav, filed on Feb. 2, 2006; and
  • co-pending U.S. patent application Ser. No. 11/277,596, entitled “Execution Environment File Inventory”, by Rishi Bhargava and E. John Sebes, filed on Mar. 27, 2006;
  • co-pending U.S. patent application Ser. No. 11/400,085, entitled “Program-Based Authorization”, by Rishi Bhargava and E. John Sebes, filed on Apr. 7, 2006.
  • BACKGROUND
  • 1. Field
  • Invention relates generally to authorization of actions on computer systems, and in particular to authorization based on connectivity states.
  • 2. Related Art
  • Access control is a useful and practical concept in the field of information technology. The definition, monitoring and enforcement of access control policies contribute to the predictable and manageable operation and maintenance of business assets and processes.
  • An abstraction central to access control is that of subjects performing actions on objects. Actions, including those attempted by human subjects, are ultimately performed by one or more processes running on the computer. While in traditional access control techniques use authorization policies that are generally defined for “human” subjects, and additional techniques that allow program-based authorization are disclosed in above referenced co-pending U.S. patent application Ser. No. 11/400,085, there is also a need for authorizations that take into account the connectivity state of a computer.
  • SUMMARY
  • We disclose techniques which allow definition and enforcement of connectivity-based action and execution authorization policies. On a computer, an action or execution attempt is intercepted in real-time. The connectivity state of the computer, the subject process, the program file of the subject process, the attempted action and the object of the attempted action are determined. An authorization policy considering the connectivity state indicates whether the attempted action is authorized or not. In a tracking mode, the attempted action and its authorization are logged and the attempted action is allowed to proceed. In an enforcement mode, unauthorized attempts are blocked and logged, thereby enforcing the authorization policy.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a diagrammatic illustration of an exemplary system for connectivity-based authorization, in accordance with an embodiment of the present invention.
  • FIG. 2 is a flow diagram showing a method for connectivity-based action authorization, according to an embodiment of the present invention.
  • FIG. 3 is a flow diagram showing a method for connectivity-based execution authorization, according to an embodiment of the present invention.
  • DETAILED DESCRIPTION
  • In the connectivity-based authorization techniques described herein, a process' attempt to perform an action on an object is intercepted. The state of connectivity, along with other things such as the subject program, the object, and the attempted action, are then determined. By way of example, the interception and subsequent determinations can be performed by a software agent running on the computer. Referring to an authorization policy which considers the connectivity and other determined attributes, a decision is made to either allow or block the attempted action. In both cases, it may be desirable to generate a log or alert indicative of the decision.
  • FIG. 1 is a diagrammatic illustration of an exemplary system for connectivity-based authorization, in accordance with an embodiment of the present invention. Computer 101 comprises a memory component 102 and a storage component 103, managed by an operating system (OS). Computer 101 is connectable to one or more networks 110 over wired (such as Ethernet or ATM) or wireless links (such as 802.11).
  • During the operation of computer 101, processes are launched to perform various actions in accordance with the operation of computer 101. Specifically, when a process 104 (hereinafter also referred to as “subject process”) is launched, it executes within memory component 102. A program file 105 (hereinafter also referred to as “subject program file”) represents the code or sequence of instructions which subject process 104 starts executing upon its launch. The subject program file 105 is typically some type of an executable file, such as a binary executable file, script, batch file, interpreted code, byte code, etc. Program file 105 is stored on storage component 103 or is otherwise accessible to computer 101. Note that subject process 104, during its life, may execute other code or instructions such as dynamic libraries, scripts, accepted input, or any other container of code, but the program file 105 refers to the code that subject process 104 starts out executing upon process launch. Furthermore, as described in more detail below, when subject process 104 is launched to execute a script, the program file 105 refers to the script and not to any interpreter of the script.
  • At some point during its execution, subject process 104 may attempt to perform an action on an object 106. For example, object 106 may be a file and the action attempt may comprise an attempt to write to the file. Other examples of objects 106 and actions are described below.
  • Using techniques described herein, the action attempt of subject process 104 is intercepted and an authorization policy is consulted. The authorization policy takes into account the state of the connectivity state of computer 101, and preferably also considers one or more other parameters such as the subject process 104, the subject program file 105, the object 106, and the action being attempted by subject process 104. The authorization policy indicates whether the attempted action is authorized or not.
  • There are two broad modes of operation for the connectivity-based authorizations of the present invention: a “tracking mode” and an “enforcement mode”. Both modes allow authorized attempts to proceed, but the modes differ in how they handle unauthorized attempts. In an enforcement mode, unauthorized attempts are blocked. In a tracking mode, unauthorized attempts are allowed to proceed, but they are logged. Tracking mode is useful for examining what effects an authorization policy would have on a system were the policy to be enforced. Tracking mode allows experimentation with and fine-tuning of authorization policies on a live computer 101, as well as real-time feedback based thereon, without disturbing the operation or behavior of the computer 101. Once an authorization policy is deemed acceptable, it can be enforced by switching from tracking mode to enforcement mode.
  • A typical example of an object 106 is a file, managed by a file system of computer 101. In that case the action attempt is a file system action attempt such as a read, write or delete operation on the file, or it may be an attempt to execute the file. Another example of an object 106 is a registry entry, such as one managed by a Windows™ operating system. In that case the action attempt may be a retrieve, create or delete a registry entry. Other examples of objects 106 include containers or resources managed by a service-oriented architecture (SOA), data structures or other objects stored in memory 102, or any other objects that are accessible to subject process 104. In general, the actions that can be attempted by the subject process 104 depend on the object 106 and how the object is being managed. While the following description is illustrated mainly with reference to file system action attempts, this is by way of example and is not intended to limit the scope of the disclosed techniques. It should be obvious to one of ordinary skill in the art that the disclosed techniques can be applied to connectivity-based authorization of any action attempted by a subject process on a computer. Further example actions for files and registry entries are enumerated below.
  • Connectivity-Based Action Authorization
  • FIG. 2 is a flow diagram showing a method for connectivity-based action authorization, according to an embodiment of the present invention. Step 201 intercepts a file system action attempt. This step preferably occurs in real-time. Step 202 determines the network connectivity of computer 101.
  • Before consulting a connectivity-based authorization policy, step 203 preferably also determines one or more other parameters relevant to an authorization of the attempted action, such as the target file (object 106) of the file system action attempt, the subject process 104 and the subject program file 105, and the action that is being attempted by subject process 104 on object 106. Step 203 optionally also determines one or more other attributes of the above parameters, examples of which are enumerated below.
  • Step 204 consults an authorization policy in order to determine 205 whether the attempted action is authorized or not. The authorization policy takes into account the connectivity determined in step 202, and preferably also takes into account one or more other parameters or attributes determined in step 203. Optionally, the authorization policy may disregard some of the determined information. For example, the authorization policy may disregard some or all of the file object 106 attributes and consider only the connectivity of computer 101 and the attempted action. Authorization policies may be stored using any appropriate data structure, for example in a computer readable medium comprising a table with a plurality of entries, with an entry associating a connectivity state with one or more allowed actions and subject programs and objects on the computer.
  • Next, if the action is authorized, step 206 allows the action to proceed and optional step 207 generates one or more log entries and/or alerts indicating that the authorized action was allowed to proceed. If the action is not authorized, step 208 blocks the action from proceeding and optional step 209 generates one or more log entries and/or alerts indicating that the unauthorized action was blocked. A log entry or alert may include information about the connectivity, the subject process 104, the subject program 105, the action, the object 106, relevant authorization policy, date and time, and/or any other information relevant to the authorization decision and available at the time of logging. Steps 208 and 209 are for an enforcement mode embodiment of the present invention. In a tracking mode embodiment, as described above, step 208 is skipped, allowing the unauthorized action to proceed and recording logs and/or alerts at step 209.
  • Example attributes of the subject process 104, action and object 106 are described in the above-referenced co-pending U.S. patent application Ser. No. 11/400,085. Example attributes of the connectivity include the following:
      • Network to which computer 101 is connected. A network is broadly defined as any set of nodes (such as computers, routers, switches, etc.) that can communicate with each other using some protocol. There may be more than one network to which computer 101 is connected at any given time, and such a set of connected networks may dynamically change over time as connected networks are disconnected and new connections are established.
      • For a network to which computer 101 is connected or connectable, attributes such as:
        • whether the network is wired or wireless;
        • a network identifier, such as a Media Access Control (MAC) address of a default gateway, or a Service Set Identifier (SSID) of a wireless network;
        • a connection-specific Domain Name Service (DNS) suffix;
        • an Internet Protocol (IP) address of the computer 101, a subnet mask, a default gateway, a Dynamic Host Configuration Protocol (DHCP) server, a DNS server, a Windows™ Internet Naming Service (WINS) server, etc.;
        • communication protocols supported by the network, such as IPv4, IPv6, IPX, NetBEUI, AppleTalk, etc.;
        • date and time of when a DHCP lease was obtained and/or when it will expire;
        • any associated security settings, such as no encryption, IPSec (when implemented as a “bump in stack”), Wi-Fi Protected Access (WPA), Wired Equivalent Privacy (WEP), etc.;
        • whether computer 101 is currently connected to a Microsoft™ Active Directory domain;
        • whether computer 101 is currently connected to a single sign-on network, such as one configured to use Kerberos;
        • network connection speed;
        • any DHCP options selected for the network (if DHCP enabled);
        • any DHCP options selected for the computer 101, for example the boot image to use for booting up the OS of computer 101;
        • whether a specific service (such as an anti-virus update service, an application update service, an OS update service such as Microsoft Windows™ Update, etc.) is currently available via the network;
        • whether a specific network node (such as an anti-virus update server, an application update server, an OS update server such as a server for Microsoft Windows™ Update, etc.) is currently available via the network;
        • DNS SRV records for the network (such as including those specified in RFC 2782);
  • We now turn to describing the steps of FIG. 2 in more detail. For the interception step 201, OS provisions can be used to intercept file system action requests and registry action requests, as well as to determine whether a file system action request is a an attempt to read a file, write to a file, delete a file, rename a file, move a file, append to a file, truncate a file, get or set permissions on a file, or get or set any other attribute of a file. For example, in a Microsoft Windows™ OS environment, a filter driver can be used to intercept file system requests and determine their type.
  • In other operating systems, such as Linux or other Unix-derived operating systems, a “shim” module or wrapper mechanism can be used for that purpose. A wrapper mechanism would redirect action attempts (e.g. system calls) to a wrapper library that represents an entry point for the interception code, and which may eventually call into the original library or code that implements the intended action attempt. One way of indicating redirection to the wrapper library comprises setting one or more environment variables indicating library load paths and sequences.
  • A shim module redirects system calls to custom interception code within the kernel, and the interception code decides whether or not to redirect execution to the kernel code that implements the system call. For example, in a Unix-derived OS, one or more virtual file system (VFS) methods may be patched to facilitate redirection to interception code. These and other techniques for the interception of file system requests should be obvious to one of ordinary skill in the art, and are also briefly described in the above referenced co-pending U.S. patent application Ser. No. 11/346,741. Similarly, OS provisions can be used to intercept registry action requests and determine whether the request is an attempt to read or retrieve an entry, delete an entry, write to an entry, create an entry, or perform any other actions on the entry. We continue to illustrate the steps with exemplary references to file system requests.
  • Once a file system request is intercepted, the request indicates the file object 106 as well as the action that the subject process 104 is attempting to perform on the file object 106. In an embodiment where step 203 further determines the subject process 104 and its subject program file 105, one technique is to start with a unique identifier for the process context of the currently executing subject process 104. This identifier need not necessarily comprise the traditional process identification number (PID) assigned to processes by many operating systems, though it may. For example, in a Microsoft Windows™ OS, an EPROCESS block or a process handle can be used to uniquely identify the subject process 104.
  • Once an identifier for the subject process 104 is determined, the subject program file 105 and optionally one or more other attributes of the subject process 104 can be determined as well. For some operating systems, such as a Microsoft Windows™ OS, this information may not be available via a published application programming interface (API). In such cases, one technique for inferring the subject program file 105 associated with the subject process 104 is to explicitly keep track of the process-program associations so that they can be referred to when needed. One way to do this is by implementing a “Process Tracking Framework” abstraction which, upon receiving an identifier of a subject process 104 context, indicates the subject program file 105 associated with the subject process 104. The Process Tracking Framework is described in the above-referenced co-pending U.S. patent application Ser. No. 11/400,085.
  • The authorization rules can be arbitrarily complex and may represent any function or Boolean predicate which effectively takes as input a connectivity state, a subject program file 105 of a subject process 104 (and optionally one or more further attributes of the subject process 104), a requested action, and an object 106 (or one or more file object 106 attributes), and outputs an authorization decision. We will now present some specific use cases enabled by the connectivity-based authorization techniques and authorization policies described herein.
  • One particular example of using connectivity-based action authorization is to implement file read restrictions on a computer. As one example of a read restriction policy, a set of authorization rules can be defined to block file transfer programs resident on computer 101 from accessing a specified set of files R whenever computer 101 has connectivity to any network other than a specific network N. For example, R may represent a set of sensitive files related to a business' operations which should be safeguarded against leaking outside of N. Consequently, as a result of enforcing the connectivity-based authorization with such a read restriction policy, whenever a file transfer program attempts to access a file in R while computer 101 is connected to any network other than N, the attempt will fail.
  • Another example of using connectivity-based action authorization is to implement file write restrictions on a computer. As one example of a write restriction policy, a set of authorization rules can be defined to restrict a specific program file 105 P's ability to write to the computer's 101 storage 103 depending on the computer's 101 connectivity. For example, P may be specified as a specific hypertext markup language (HTML) browser such as Microsoft Internet Explorer™, and an authorization policy can be defined which restricts P to writing only a restricted set of files whenever computer 101 is suspected to be connected to a potentially unsafe network. For example, Microsoft Internet Explorer™ may be allowed to write any type of file to computer's 101 storage 103 except executable files, scripts, batch files, and dynamic libraries, unless computer 101 is connected to a specific firewalled network N (and to no other potentially unsafe network). Furthermore, Microsoft Internet Explorer™ may be also restricted from modifying existing content on storage 103 unless a connection to N (and no connection to any other network) can be detected. This means that whenever a connection to the firewalled network cannot be detected, Microsoft Internet Explorer™ will be blocked from writing such restricted files to the computer's 101 storage 103 or modifying existing content, thereby reducing the risk of browser-written malware and malicious changes to computer 101.
  • Other examples of using connectivity-based action authorization comprise extending the concepts disclosed in above-referenced co-pending U.S. patent applications with the connectivity-based authorization techniques disclosed herein. In particular, U.S. patent application Ser. Nos. 11/346,741 and 11/277,596 describe techniques involving authorization of updates, changes and executions of objects resident on a computer system (such as software, configuration files, registry entries, executables, etc.). The present connectivity-based authorization techniques extend the authorization of updates, changes and executions described in said patents to also take into account the connectivity of the computer 101.
  • Connectivity-Based Execution Authorization
  • The process for execution authorization is similar to that for action authorization, except that in some operating systems execution requests may follow a different code path than other file system action requests, and therefore the interception of execution requests may differ in implementation from the interception of other file system action requests.
  • FIG. 3 is a flow diagram showing a method for connectivity-based execution authorization, according to an embodiment of the present invention. Step 221 intercepts an execution attempt. This step preferably occurs in real-time. Step 222 determines the network connectivity of computer 101.
  • Before consulting a connectivity-based authorization policy and analogously to step 203 above, step 223 preferably also determines one or more other parameters relevant to an authorization of the attempted execution, such as the target executable file (object 106) of the execution attempt, the subject process 104 that is attempting to execute the executable file (object 106), and the subject program file 105 that represents the code being executed by the subject process 104. Optionally, step 223 also determines one or more other attributes of the above parameters, as was enumerated above. For example attributes of the executable file, refer to the above described object 106 attributes.
  • Step 224 consults an authorization policy to determine 225 whether the attempted execution is authorized or not. The authorization takes into account the connectivity determined in step 222, and preferably also takes into account any other parameters and attributes as determined in step 223. Optionally, the authorization policy may disregard some of the determined information. For example, the authorization policy may disregard some or all of the executable file (object 106) attributes and consider only the connectivity and the subject program file 105. For example, specific programs may be prohibited from executing unless computer 101 is connected only to a trusted network. As a concrete example for a specific business organization, browsers (such as Microsoft Internet Explorer™) and tools which process proprietary or sensitive data (such as computer-aided design (CAD) tools) may be prohibited from running unless computer 101 is connected to the organization's one or more trusted network. As described above, authorization policies may be stored using any appropriate data structure, for example in a computer readable medium comprising a table with a plurality of entries, with an entry associating a connectivity state with one or more allowed executions and subject programs and objects on the computer.
  • If the execution is authorized, step 226 allows the execution to proceed and optional step 227 generates one or more log entries and/or alerts indicating that the authorized execution was allowed to proceed. If the execution is not authorized, step 228 blocks the action from proceeding and optional step 229 generates one or more log entries and/or alerts indicating that an unauthorized execution was blocked. Analogous to the above description, steps 228 and 229 are for an enforcement mode embodiment of the present invention. In a tracking mode embodiment, step 228 is skipped, allowing the unauthorized execution to proceed and recoding logs and/or alerts at step 229.
  • We now turn to describing the steps of FIG. 3 in more detail. One technique for implementing the interception step 221 comprises placing hooks within the process creation and process termination code paths of the OS. This is also described in the above-referenced co-pending U.S. patent application Ser. No. 11/400,085. For step 222, the determination of connectivity proceeds as described for step 202 above. For step 223, since an execution request submitted to the OS generally includes an indication of the executable file (object 106) as an argument (e.g. name or handle of a binary file, script file, batch file, interpreted program file, byte code file, etc.), the executable file can be determined by examining the execution request intercepted in step 221. Any other parameters and attributes for step 223 can be determined as described above for step 203. Determination of the subject process (step 223 a) can be done as described above, for example by starting with a unique identifier for the process context of the currently executing subject process 104. Determination of subject process 104 attributes (step 223 b), such as the actual program file comprising the code for the subject process, can be done by using the Process Tracking Framework described in the above-referenced co-pending U.S. patent application Ser. No. 11/400,085.
  • The disclosed connectivity-based authorization techniques generalize to any other objects and actions which are accessible to running processes. Examples of such other objects include: synchronization objects such as semaphores and locks; inter-process communication (IPC) objects such as shared memory segments; communication objects such as network sockets; local communication abstractions such as pipes; file access objects such as symbolic links (on a Unix-flavored OS) and shortcuts (on a Windows™ OS); running processes; etc. Actions applicable to such objects depend on the specific abstractions, implementations and semantics of the systems managing the objects, with examples including: killing, suspending, unsuspending or sending signals to processes; acquiring or releasing locks; reading from or writing to shared memory segments; opening, reading from, writing to, or closing network sockets or pipes; etc. The adaptation of the program-based authorization steps disclosed herein to such objects and actions (such as interception of action attempts, determination of object attributes, etc.) should be obvious to one of ordinary skill in the art.
  • Foregoing described embodiments of the invention are provided as illustrations and descriptions. They are not intended to limit the invention to precise form described. In particular, it is contemplated that functional implementation of invention described herein may be implemented equivalently in hardware, software, firmware, and/or other available functional components or building blocks, and that networks may be wired, wireless, or a combination of wired and wireless. Other variations and embodiments are possible in light of above teachings, and it is thus intended that the scope of invention not be limited by this Detailed Description, but rather by Claims following.

Claims (18)

We claim:
1. A method of authorizing a file system action on a computer, the method steps comprising:
intercepting a file system action attempt indicating an action by a process on an object;
determining an identifier for the process;
using the identifier to determine a program file representing instructions being executed by the process;
determining a network connectivity state of the computer, wherein at least one entry in an authorization policy designates an authorization of a particular action for the program file based on the network connectivity state and a type of action associated with the particular action, and wherein a network connectivity state parameter includes an attribute associated with whether the computer is connected to a wired network or a wireless network;
determining whether the action is authorized or not based on the authorization policy, wherein the authorization policy includes the network connectivity state parameter, a program file parameter, an object parameter, and an attempted action parameter;
allowing the action by the process to proceed when the action is authorized, as indicated by the authorization policy; and
responding when a determination is made that the action is not authorized, wherein said responding comprises a first mode and a second mode, when in the first mode the action is blocked and an alert is generated, the alert including the type of action and the network connectivity state at the time the action was attempted, and when in the second mode the action is allowed to proceed and an alert is generated.
2. (canceled)
3. A method as recited in claim 1, wherein the determining further determines one or more attributes of the process or of the program file.
4. A method as recited in claim 1, wherein the action indicates a read operation on the object.
5. A method as recited in claim 1, wherein the action indicates a write, append or truncate operation on the object.
6. A method as recited in claim 1, wherein the action indicates a delete, move or rename operation on the object.
7. A computer-implemented method for authorizing registry actions on a computer that includes a processor and a non-transitory computer readable medium, comprising:
intercepting a registry action attempt indicating an action by a process on a registry entry;
determining an identifier for the process;
using the identifier to determine a program file representing instructions being executed by the process;
determining a network connectivity state of a computer, wherein at least one entry in an authorization policy designates an authorization of a particular action for the program file based on the network connectivity state and a type of action associated with the particular action, and wherein a network connectivity state parameter includes an attribute associated with whether the computer is connected to a wired network or a wireless network;
determining whether the action is authorized or not based on the authorization policy, wherein the authorization policy includes the network connectivity state parameter, a program file parameter, an object parameter, and an attempted action parameter;
allowing the action by the process to proceed when the action is authorized, as indicated by the authorization policy; and
responding when a determination is made that the action is not authorized, wherein said responding comprises a first mode and a second mode, when in the first mode the action is blocked and an alert is generated, the alert including the type of action and the network connectivity state at the time the action was attempted, and when in the second mode the action is allowed to proceed and an alert is generated.
8. (canceled)
9. A method as recited in claim 7, wherein the determining further determines one or more attributes of the processor of the program file.
10. A method as recited in claim 7, wherein the action indicates a read, retrieve, write, create or delete operation on the registry entry.
11. A method for authorizing executions on a computer that includes a processor and a non-transitory computer readable medium, comprising:
intercepting an execution attempt indicating a process attempting to execute an executable file;
determining an identifier for the process;
using the identifier to determine a program file representing instructions being executed by the process;
determining a network connectivity state of the computer, wherein at least one entry in an authorization policy designates an authorization of a particular execution for the program file based on the network connectivity state and a type of execution associated with the particular execution, and wherein a network connectivity state parameter includes an attribute associated with whether the computer is connected to a wired network or a wireless network;
determining whether the execution is authorized or not based on the authorization policy, wherein the authorization policy includes the network connectivity state parameter, a program file parameter, an object parameter, and an attempted execution parameter;
allowing the execution to proceed when the execution is authorized, as indicated by the authorization policy; and
responding when a determination is made that the execution is not authorized, wherein said responding comprises a first mode and a second mode, when in the first mode the execution is blocked and an alert is generated, the alert including the type of action and the network connectivity state at the time the execution was attempted, and when in the second mode the execution is allowed to proceed and an alert is generated.
12. (canceled)
13. A method as recited in claim 11, wherein the determining further determines one or more attributes of the process or of the program file.
14. (canceled)
15. (canceled)
16. At least one non-transitory computer readable medium having instructions stored thereon, the instructions when executed by a processor cause the processor to:
intercept a file system action attempt indicating an action by a process on an object;
determine an identifier for the process;
use the identifier to determine a program file representing instructions being executed by the process;
determine a network connectivity state of the computer, wherein at least one entry in an authorization policy designates an authorization of a particular action for the program file based on the network connectivity state and a type of action associated with the particular action, and wherein a network connectivity state parameter includes an attribute associated with whether the computer is connected to a wired network or a wireless network;
determine whether the action is authorized or not based on the authorization policy, wherein the authorization policy includes the network connectivity state parameter, a program file parameter, an object parameter, and an attempted action parameter;
allow the action by the process to proceed when the action is authorized, as indicated by the authorization policy; and
respond when a determination is made that the action is not authorized, wherein a response comprises one of a first mode and a second mode, when in the first mode the action is blocked and an alert is generated, the alert including the type of action and the network connectivity state at the time the action was attempted, and when in the second mode the action is allowed to proceed and an alert is generated.
17. At least one non-transitory computer readable medium having instructions stored thereon, the instructions when executed by a processor cause the processor to:
intercept a registry action attempt indicating an action by a process on a registry entry;
determine an identifier for the process;
use the identifier to determine a program file representing instructions being executed by the process;
determine a network connectivity state of a computer, wherein at least one entry in an authorization policy designates an authorization of a particular action for the program file based on the network connectivity state and a type of action associated with the particular action, and wherein a network connectivity state parameter includes an attribute associated with whether the computer is connected to a wired network or a wireless network;
determine whether the action is authorized or not based on the authorization policy, wherein the authorization policy includes the network connectivity state parameter, a program file parameter, an object parameter, and an attempted action parameter;
allow the action by the process to proceed when the action is authorized, as indicated by the authorization policy; and
respond when a determination is made that the action is not authorized, wherein a response comprises one of a first mode and a second mode, when in the first mode the action is blocked and an alert is generated, the alert including the type of action and the network connectivity state at the time the action was attempted, and when in the second mode the action is allowed to proceed and an alert is generated.
18. At least one non-transitory computer readable medium having instructions stored thereon, the instructions when executed by a processor cause the processor to:
intercept an execution attempt indicating a process attempting to execute an executable file;
determine an identifier for the process;
use the identifier to determine a program file representing instructions being executed by the process;
determine a network connectivity state of the computer, wherein at least one entry in an authorization policy designates an authorization of a particular execution for the program file based on the network connectivity state and a type of execution associated with the particular execution, and wherein a network connectivity state parameter includes an attribute associated with whether the computer is connected to a wired network or a wireless network;
determine whether the execution is authorized or not based on the authorization policy, wherein the authorization policy includes the network connectivity state parameter, a program file parameter, an object parameter, and an attempted execution parameter;
allow the execution to proceed when the execution is authorized, as indicated by the authorization policy; and
respond when a determination is made that the execution is not authorized, wherein a response comprises one of a first mode and a second mode, when in the first mode the execution is blocked and an alert is generated, the alert including the type of action and the network connectivity state at the time the execution was attempted, and when in the second mode the execution is allowed to proceed and an alert is generated.
US11/437,317 2006-05-18 2006-05-18 Connectivity-based authorization Active 2030-03-13 US8555404B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/437,317 US8555404B1 (en) 2006-05-18 2006-05-18 Connectivity-based authorization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/437,317 US8555404B1 (en) 2006-05-18 2006-05-18 Connectivity-based authorization

Publications (2)

Publication Number Publication Date
US20130247226A1 true US20130247226A1 (en) 2013-09-19
US8555404B1 US8555404B1 (en) 2013-10-08

Family

ID=49158993

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/437,317 Active 2030-03-13 US8555404B1 (en) 2006-05-18 2006-05-18 Connectivity-based authorization

Country Status (1)

Country Link
US (1) US8555404B1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8701182B2 (en) 2007-01-10 2014-04-15 Mcafee, Inc. Method and apparatus for process enforced configuration management
US8707446B2 (en) 2006-02-02 2014-04-22 Mcafee, Inc. Enforcing alignment of approved changes and deployed changes in the software change life-cycle
US8713668B2 (en) 2011-10-17 2014-04-29 Mcafee, Inc. System and method for redirected firewall discovery in a network environment
US8739272B1 (en) 2012-04-02 2014-05-27 Mcafee, Inc. System and method for interlocking a host and a gateway
US8762928B2 (en) 2003-12-17 2014-06-24 Mcafee, Inc. Method and system for containment of usage of language interfaces
US8763118B2 (en) 2005-07-14 2014-06-24 Mcafee, Inc. Classification of software on networked systems
US8800024B2 (en) 2011-10-17 2014-08-05 Mcafee, Inc. System and method for host-initiated firewall discovery in a network environment
US20140282924A1 (en) * 2013-03-14 2014-09-18 Samsung Electronics Co., Ltd Application connection for devices in a network
US8925101B2 (en) 2010-07-28 2014-12-30 Mcafee, Inc. System and method for local protection against malicious software
US8938800B2 (en) 2010-07-28 2015-01-20 Mcafee, Inc. System and method for network level protection against malicious software
US8973146B2 (en) 2012-12-27 2015-03-03 Mcafee, Inc. Herd based scan avoidance system in a network environment
US9112830B2 (en) 2011-02-23 2015-08-18 Mcafee, Inc. System and method for interlocking a host and a gateway
US9424154B2 (en) 2007-01-10 2016-08-23 Mcafee, Inc. Method of and system for computer system state checks
US9578052B2 (en) 2013-10-24 2017-02-21 Mcafee, Inc. Agent assisted malicious application blocking in a network environment
US9576142B2 (en) 2006-03-27 2017-02-21 Mcafee, Inc. Execution environment file inventory
US9594881B2 (en) 2011-09-09 2017-03-14 Mcafee, Inc. System and method for passive threat detection using virtual memory inspection
US9648040B1 (en) * 2013-09-19 2017-05-09 Amazon Technologies, Inc. Authorization check using a web service request
US9866563B2 (en) 2016-04-12 2018-01-09 Gaurdknox Cyber Technologies Ltd. Specially programmed computing systems with associated devices configured to implement secure communication lockdowns and methods of use thereof
US10896047B2 (en) * 2015-12-28 2021-01-19 Hewlett-Packard Development Company, L.P. Booting a computer using a wireless network connection
US20210218621A1 (en) * 2015-06-30 2021-07-15 Apstra, Inc. Selectable declarative requirement levels

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8381284B2 (en) 2009-08-21 2013-02-19 Mcafee, Inc. System and method for enforcing security policies in a virtual environment
US8549003B1 (en) 2010-09-12 2013-10-01 Mcafee, Inc. System and method for clustering host inventories
US9075993B2 (en) 2011-01-24 2015-07-07 Mcafee, Inc. System and method for selectively grouping and managing program files
US8973144B2 (en) 2011-10-13 2015-03-03 Mcafee, Inc. System and method for kernel rootkit protection in a hypervisor environment
US9069586B2 (en) 2011-10-13 2015-06-30 Mcafee, Inc. System and method for kernel rootkit protection in a hypervisor environment
US10284657B2 (en) 2013-03-14 2019-05-07 Samsung Electronics Co., Ltd. Application connection for devices in a network

Family Cites Families (229)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4982430A (en) 1985-04-24 1991-01-01 General Instrument Corporation Bootstrap channel security arrangement for communication network
US4688169A (en) 1985-05-30 1987-08-18 Joshi Bhagirath S Computer software security system
US5155847A (en) 1988-08-03 1992-10-13 Minicom Data Corporation Method and apparatus for updating software at remote locations
US5560008A (en) 1989-05-15 1996-09-24 International Business Machines Corporation Remote authentication and authorization in a distributed data processing system
CA2010591C (en) 1989-10-20 1999-01-26 Phillip M. Adams Kernels, description tables and device drivers
US5222134A (en) 1990-11-07 1993-06-22 Tau Systems Corporation Secure system for activating personal computer software at remote locations
US5390314A (en) 1992-10-09 1995-02-14 American Airlines, Inc. Method and apparatus for developing scripts that access mainframe resources that can be executed on various computer systems having different interface languages without modification
US5339261A (en) 1992-10-22 1994-08-16 Base 10 Systems, Inc. System for operating application software in a safety critical environment
US5584009A (en) 1993-10-18 1996-12-10 Cyrix Corporation System and method of retiring store data from a write buffer
JP3042341B2 (en) 1994-11-30 2000-05-15 日本電気株式会社 Local I / O Control Method for Cluster-Coupled Multiprocessor System
US6282712B1 (en) 1995-03-10 2001-08-28 Microsoft Corporation Automatic software installation on heterogeneous networked computer systems
US5699513A (en) 1995-03-31 1997-12-16 Motorola, Inc. Method for secure network access via message intercept
US5787427A (en) 1996-01-03 1998-07-28 International Business Machines Corporation Information handling system, method, and article of manufacture for efficient object security processing by grouping objects sharing common control access policies
US5842017A (en) 1996-01-29 1998-11-24 Digital Equipment Corporation Method and apparatus for forming a translation unit
US5907709A (en) 1996-02-08 1999-05-25 Inprise Corporation Development system with methods for detecting invalid use and management of resources and memory at runtime
US5907708A (en) 1996-06-03 1999-05-25 Sun Microsystems, Inc. System and method for facilitating avoidance of an exception of a predetermined type in a digital computer system by providing fix-up code for an instruction in response to detection of an exception condition resulting from execution thereof
US5787177A (en) 1996-08-01 1998-07-28 Harris Corporation Integrated network security access control system
US5926832A (en) 1996-09-26 1999-07-20 Transmeta Corporation Method and apparatus for aliasing memory data in an advanced microprocessor
US5991881A (en) 1996-11-08 1999-11-23 Harris Corporation Network surveillance system
US5987611A (en) 1996-12-31 1999-11-16 Zone Labs, Inc. System and methodology for managing internet access on a per application basis for client computers connected to the internet
US6141698A (en) 1997-01-29 2000-10-31 Network Commerce Inc. Method and system for injecting new code into existing application code
US6587877B1 (en) 1997-03-25 2003-07-01 Lucent Technologies Inc. Management of time and expense when communicating between a host and a communication network
US6192475B1 (en) 1997-03-31 2001-02-20 David R. Wallace System and method for cloaking software
US6356957B2 (en) 1997-04-03 2002-03-12 Hewlett-Packard Company Method for emulating native object oriented foundation classes on a target object oriented programming system using a template library
US6073142A (en) 1997-06-23 2000-06-06 Park City Group Automated post office based rule analysis of e-mail messages and other data objects for controlled distribution in network environments
US6275938B1 (en) 1997-08-28 2001-08-14 Microsoft Corporation Security enhancement for untrusted executable code
US6192401B1 (en) 1997-10-21 2001-02-20 Sun Microsystems, Inc. System and method for determining cluster membership in a heterogeneous distributed system
US6393465B2 (en) 1997-11-25 2002-05-21 Nixmail Corporation Junk electronic mail detector and eliminator
US5987610A (en) 1998-02-12 1999-11-16 Ameritech Corporation Computer virus screening methods and systems
WO1999057654A1 (en) 1998-05-06 1999-11-11 Matsushita Electric Industrial Co., Ltd. Method and system for digital data transmission/reception
US6795966B1 (en) 1998-05-15 2004-09-21 Vmware, Inc. Mechanism for restoring, porting, replicating and checkpointing computer systems using state extraction
US6442686B1 (en) 1998-07-02 2002-08-27 Networks Associates Technology, Inc. System and methodology for messaging server-based management and enforcement of crypto policies
US6338149B1 (en) 1998-07-31 2002-01-08 Westinghouse Electric Company Llc Change monitoring system for a computer system
US6546425B1 (en) 1998-10-09 2003-04-08 Netmotion Wireless, Inc. Method and apparatus for providing mobile and other intermittent connectivity in a computing environment
JP3753873B2 (en) 1998-11-11 2006-03-08 株式会社島津製作所 Spectrophotometer
US6969352B2 (en) 1999-06-22 2005-11-29 Teratech Corporation Ultrasound probe with integrated electronics
US6453468B1 (en) 1999-06-30 2002-09-17 B-Hub, Inc. Methods for improving reliability while upgrading software programs in a clustered computer system
US6567857B1 (en) 1999-07-29 2003-05-20 Sun Microsystems, Inc. Method and apparatus for dynamic proxy insertion in network traffic flow
US6256773B1 (en) 1999-08-31 2001-07-03 Accenture Llp System, method and article of manufacture for configuration management in a development architecture framework
US6990591B1 (en) * 1999-11-18 2006-01-24 Secureworks, Inc. Method and system for remotely configuring and monitoring a communication device
US6321267B1 (en) 1999-11-23 2001-11-20 Escom Corporation Method and apparatus for filtering junk email
US6662219B1 (en) 1999-12-15 2003-12-09 Microsoft Corporation System for determining at subgroup of nodes relative weight to represent cluster by obtaining exclusive possession of quorum resource
US6460050B1 (en) 1999-12-22 2002-10-01 Mark Raymond Pace Distributed content identification system
US6769008B1 (en) 2000-01-10 2004-07-27 Sun Microsystems, Inc. Method and apparatus for dynamically altering configurations of clustered computer systems
US7082456B2 (en) 2000-03-17 2006-07-25 Filesx Ltd. Accelerating responses to requests made by users to an internet
US6748534B1 (en) 2000-03-31 2004-06-08 Networks Associates, Inc. System and method for partitioned distributed scanning of a large dataset for viruses and other malware
CA2305078A1 (en) 2000-04-12 2001-10-12 Cloakware Corporation Tamper resistant software - mass data encoding
US7325127B2 (en) 2000-04-25 2008-01-29 Secure Data In Motion, Inc. Security server system
AU2001262958A1 (en) 2000-04-28 2001-11-12 Internet Security Systems, Inc. Method and system for managing computer security information
US6769115B1 (en) 2000-05-01 2004-07-27 Emc Corporation Adaptive interface for a software development environment
US6847993B1 (en) 2000-05-31 2005-01-25 International Business Machines Corporation Method, system and program products for managing cluster configurations
US6934755B1 (en) 2000-06-02 2005-08-23 Sun Microsystems, Inc. System and method for migrating processes on a network
US6611925B1 (en) 2000-06-13 2003-08-26 Networks Associates Technology, Inc. Single point of entry/origination item scanning within an enterprise or workgroup
US6901519B1 (en) 2000-06-22 2005-05-31 Infobahn, Inc. E-mail virus protection system and method
US8204999B2 (en) 2000-07-10 2012-06-19 Oracle International Corporation Query string processing
US7093239B1 (en) 2000-07-14 2006-08-15 Internet Security Systems, Inc. Computer immune system and method for detecting unwanted code in a computer system
US7350204B2 (en) 2000-07-24 2008-03-25 Microsoft Corporation Policies for secure software execution
DE60102934T2 (en) 2000-08-04 2005-03-10 Xtradyne Technologies Ag PROCEDURE AND SYSTEM FOR MEETING-BASED AUTHORIZATION AND ACCESS CONTROL FOR NETWORKED APPLICATION OBJECTS
US7707305B2 (en) 2000-10-17 2010-04-27 Cisco Technology, Inc. Methods and apparatus for protecting against overload conditions on nodes of a distributed network
US7606898B1 (en) 2000-10-24 2009-10-20 Microsoft Corporation System and method for distributed management of shared computers
US7146305B2 (en) 2000-10-24 2006-12-05 Vcis, Inc. Analytical virtual machine
US6930985B1 (en) 2000-10-26 2005-08-16 Extreme Networks, Inc. Method and apparatus for management of configuration in a network
US6834301B1 (en) 2000-11-08 2004-12-21 Networks Associates Technology, Inc. System and method for configuration, management, and monitoring of a computer network using inheritance
US6766334B1 (en) 2000-11-21 2004-07-20 Microsoft Corporation Project-based configuration management method and apparatus
US20020069367A1 (en) 2000-12-06 2002-06-06 Glen Tindal Network operating system data directory
US6907600B2 (en) 2000-12-27 2005-06-14 Intel Corporation Virtual translation lookaside buffer
JP2002244898A (en) 2001-02-19 2002-08-30 Hitachi Ltd Database managing program and database system
US6918110B2 (en) 2001-04-11 2005-07-12 Hewlett-Packard Development Company, L.P. Dynamic instrumentation of an executable program by means of causing a breakpoint at the entry point of a function and providing instrumentation code
US6988101B2 (en) 2001-05-31 2006-01-17 International Business Machines Corporation Method, system, and computer program product for providing an extensible file system for accessing a foreign file system from a local data processing system
US6715050B2 (en) 2001-05-31 2004-03-30 Oracle International Corporation Storage access keys
US6988124B2 (en) 2001-06-06 2006-01-17 Microsoft Corporation Locating potentially identical objects across multiple computers based on stochastic partitioning of workload
US7290266B2 (en) 2001-06-14 2007-10-30 Cisco Technology, Inc. Access control by a real-time stateful reference monitor with a state collection training mode and a lockdown mode for detecting predetermined patterns of events indicative of requests for operating system resources resulting in a decision to allow or block activity identified in a sequence of events based on a rule set defining a processing policy
US7065767B2 (en) 2001-06-29 2006-06-20 Intel Corporation Managed hosting server auditing and change tracking
US7069330B1 (en) 2001-07-05 2006-06-27 Mcafee, Inc. Control of interaction between client computer applications and network resources
US20030023736A1 (en) 2001-07-12 2003-01-30 Kurt Abkemeier Method and system for filtering messages
US20030014667A1 (en) 2001-07-16 2003-01-16 Andrei Kolichtchak Buffer overflow attack detection and suppression
US6877088B2 (en) 2001-08-08 2005-04-05 Sun Microsystems, Inc. Methods and apparatus for controlling speculative execution of instructions based on a multiaccess memory condition
US7007302B1 (en) 2001-08-31 2006-02-28 Mcafee, Inc. Efficient management and blocking of malicious code and hacking attempts in a network environment
US7010796B1 (en) 2001-09-28 2006-03-07 Emc Corporation Methods and apparatus providing remote operation of an application programming interface
US7177267B2 (en) 2001-11-09 2007-02-13 Adc Dsl Systems, Inc. Hardware monitoring and configuration management
US7346781B2 (en) 2001-12-06 2008-03-18 Mcafee, Inc. Initiating execution of a computer program from an encrypted version of a computer program
US7039949B2 (en) 2001-12-10 2006-05-02 Brian Ross Cartmell Method and system for blocking unwanted communications
US7159036B2 (en) 2001-12-10 2007-01-02 Mcafee, Inc. Updating data from a source computer to groups of destination computers
US10033700B2 (en) 2001-12-12 2018-07-24 Intellectual Ventures I Llc Dynamic evaluation of access rights
CA2469633C (en) 2001-12-13 2011-06-14 Japan Science And Technology Agency Software safety execution system
US7398389B2 (en) 2001-12-20 2008-07-08 Coretrace Corporation Kernel-based network security infrastructure
JP3906356B2 (en) 2001-12-27 2007-04-18 独立行政法人情報通信研究機構 Syntax analysis method and apparatus
US7743415B2 (en) 2002-01-31 2010-06-22 Riverbed Technology, Inc. Denial of service attacks characterization
US20030167399A1 (en) 2002-03-01 2003-09-04 Yves Audebert Method and system for performing post issuance configuration and data changes to a personal security device using a communications pipe
US6941449B2 (en) 2002-03-04 2005-09-06 Hewlett-Packard Development Company, L.P. Method and apparatus for performing critical tasks using speculative operations
US7600021B2 (en) 2002-04-03 2009-10-06 Microsoft Corporation Delta replication of source files and packages across networked resources
US20070253430A1 (en) 2002-04-23 2007-11-01 Minami John S Gigabit Ethernet Adapter
US7370360B2 (en) 2002-05-13 2008-05-06 International Business Machines Corporation Computer immune system and method for detecting unwanted code in a P-code or partially compiled native-code program executing within a virtual machine
US20030221190A1 (en) 2002-05-22 2003-11-27 Sun Microsystems, Inc. System and method for performing patch installation on multiple devices
US7823148B2 (en) 2002-05-22 2010-10-26 Oracle America, Inc. System and method for performing patch installation via a graphical user interface
US7024404B1 (en) 2002-05-28 2006-04-04 The State University Rutgers Retrieval and display of data objects using a cross-group ranking metric
US7512977B2 (en) 2003-06-11 2009-03-31 Symantec Corporation Intrustion protection system utilizing layers
US7823203B2 (en) 2002-06-17 2010-10-26 At&T Intellectual Property Ii, L.P. Method and device for detecting computer network intrusions
US7139916B2 (en) 2002-06-28 2006-11-21 Ebay, Inc. Method and system for monitoring user interaction with a computer
US8924484B2 (en) 2002-07-16 2014-12-30 Sonicwall, Inc. Active e-mail filter with challenge-response
US7522906B2 (en) 2002-08-09 2009-04-21 Wavelink Corporation Mobile unit configuration management for WLANs
US7624347B2 (en) 2002-09-17 2009-11-24 At&T Intellectual Property I, L.P. System and method for forwarding full header information in email messages
US7546333B2 (en) 2002-10-23 2009-06-09 Netapp, Inc. Methods and systems for predictive change management for access paths in networks
US7353501B2 (en) 2002-11-18 2008-04-01 Microsoft Corporation Generic wrapper scheme
US7865931B1 (en) 2002-11-25 2011-01-04 Accenture Global Services Limited Universal authorization and access control security measure for applications
US20040143749A1 (en) 2003-01-16 2004-07-22 Platformlogic, Inc. Behavior-based host-based intrusion prevention system
US20040167906A1 (en) 2003-02-25 2004-08-26 Smith Randolph C. System consolidation tool and method for patching multiple servers
US7024548B1 (en) 2003-03-10 2006-04-04 Cisco Technology, Inc. Methods and apparatus for auditing and tracking changes to an existing configuration of a computerized device
US7529754B2 (en) 2003-03-14 2009-05-05 Websense, Inc. System and method of monitoring and controlling application files
WO2004095285A1 (en) 2003-03-28 2004-11-04 Matsushita Electric Industrial Co.,Ltd. Recording medium, recording device using the same, and reproduction device
US7607010B2 (en) 2003-04-12 2009-10-20 Deep Nines, Inc. System and method for network edge data protection
US20050108516A1 (en) 2003-04-17 2005-05-19 Robert Balzer By-pass and tampering protection for application wrappers
US20040230963A1 (en) 2003-05-12 2004-11-18 Rothman Michael A. Method for updating firmware in an operating system agnostic manner
DE10324189A1 (en) 2003-05-28 2004-12-16 Robert Bosch Gmbh Method for controlling access to a resource of an application in a data processing device
US7657599B2 (en) 2003-05-29 2010-02-02 Mindshare Design, Inc. Systems and methods for automatically updating electronic mail access lists
US20050108562A1 (en) 2003-06-18 2005-05-19 Khazan Roger I. Technique for detecting executable malicious code using a combination of static and dynamic analyses
US7283517B2 (en) 2003-07-22 2007-10-16 Innomedia Pte Stand alone multi-media terminal adapter with network address translation and port partitioning
US7886093B1 (en) 2003-07-31 2011-02-08 Hewlett-Packard Development Company, L.P. Electronic device network supporting compression and decompression in electronic devices
US7464408B1 (en) 2003-08-29 2008-12-09 Solidcore Systems, Inc. Damage containment by translation
US7290129B2 (en) 2003-09-16 2007-10-30 At&T Bls Intellectual Property, Inc. Remote administration of computer access settings
US20050114672A1 (en) * 2003-11-20 2005-05-26 Encryptx Corporation Data rights management of digital information in a portable software permission wrapper
US7600219B2 (en) 2003-12-10 2009-10-06 Sap Ag Method and system to monitor software interface updates and assess backward compatibility
US7546594B2 (en) 2003-12-15 2009-06-09 Microsoft Corporation System and method for updating installation components using an installation component delta patch in a networked environment
US7840968B1 (en) 2003-12-17 2010-11-23 Mcafee, Inc. Method and system for containment of usage of language interfaces
US7272654B1 (en) 2004-03-04 2007-09-18 Sandbox Networks, Inc. Virtualizing network-attached-storage (NAS) with a compact table that stores lossy hashes of file names and parent handles rather than full names
US7783735B1 (en) 2004-03-22 2010-08-24 Mcafee, Inc. Containment of network communication
EP1745342A2 (en) 2004-04-19 2007-01-24 Securewave S.A. On-line centralized and local authorization of executable files
US20060004875A1 (en) 2004-05-11 2006-01-05 Microsoft Corporation CMDB schema
US7890946B2 (en) 2004-05-11 2011-02-15 Microsoft Corporation Efficient patching
EP1762114B1 (en) 2004-05-24 2015-11-04 Google, Inc. Location based access control in a wireless network
US7818377B2 (en) 2004-05-24 2010-10-19 Microsoft Corporation Extended message rule architecture
US7506170B2 (en) 2004-05-28 2009-03-17 Microsoft Corporation Method for secure access to multiple secure networks
US20050273858A1 (en) 2004-06-07 2005-12-08 Erez Zadok Stackable file systems and methods thereof
JP4341517B2 (en) 2004-06-21 2009-10-07 日本電気株式会社 Security policy management system, security policy management method and program
US20050289538A1 (en) 2004-06-23 2005-12-29 International Business Machines Corporation Deploying an application software on a virtual deployment target
US7203864B2 (en) 2004-06-25 2007-04-10 Hewlett-Packard Development Company, L.P. Method and system for clustering computers into peer groups and comparing individual computers to their peers
US7908653B2 (en) 2004-06-29 2011-03-15 Intel Corporation Method of improving computer security through sandboxing
US20060015501A1 (en) * 2004-07-19 2006-01-19 International Business Machines Corporation System, method and program product to determine a time interval at which to check conditions to permit access to a file
US7937455B2 (en) 2004-07-28 2011-05-03 Oracle International Corporation Methods and systems for modifying nodes in a cluster environment
US7703090B2 (en) 2004-08-31 2010-04-20 Microsoft Corporation Patch un-installation
US7873955B1 (en) 2004-09-07 2011-01-18 Mcafee, Inc. Solidifying the executable software set of a computer
US7506364B2 (en) 2004-10-01 2009-03-17 Microsoft Corporation Integrated access authorization
US20060080656A1 (en) 2004-10-12 2006-04-13 Microsoft Corporation Methods and instructions for patch management
US9329905B2 (en) 2004-10-15 2016-05-03 Emc Corporation Method and apparatus for configuring, monitoring and/or managing resource groups including a virtual machine
US7765538B2 (en) 2004-10-29 2010-07-27 Hewlett-Packard Development Company, L.P. Method and apparatus for determining which program patches to recommend for installation
US20060101277A1 (en) 2004-11-10 2006-05-11 Meenan Patrick A Detecting and remedying unauthorized computer programs
WO2006101549A2 (en) 2004-12-03 2006-09-28 Whitecell Software, Inc. Secure system for allowing the execution of authorized computer program code
US7765544B2 (en) 2004-12-17 2010-07-27 Intel Corporation Method, apparatus and system for improving security in a virtual machine host
US8479193B2 (en) 2004-12-17 2013-07-02 Intel Corporation Method, apparatus and system for enhancing the usability of virtual machines
US7607170B2 (en) 2004-12-22 2009-10-20 Radware Ltd. Stateful attack protection
US7302558B2 (en) 2005-01-25 2007-11-27 Goldman Sachs & Co. Systems and methods to facilitate the creation and configuration management of computing systems
US8056138B2 (en) 2005-02-26 2011-11-08 International Business Machines Corporation System, method, and service for detecting improper manipulation of an application
US7836504B2 (en) 2005-03-01 2010-11-16 Microsoft Corporation On-access scan of memory for malware
US7685635B2 (en) 2005-03-11 2010-03-23 Microsoft Corporation Systems and methods for multi-level intercept processing in a virtual machine environment
TW200707417A (en) 2005-03-18 2007-02-16 Sony Corp Reproducing apparatus, reproducing method, program, program storage medium, data delivery system, data structure, and manufacturing method of recording medium
US7552479B1 (en) 2005-03-22 2009-06-23 Symantec Corporation Detecting shellcode that modifies IAT entries
US7770151B2 (en) 2005-04-07 2010-08-03 International Business Machines Corporation Automatic generation of solution deployment descriptors
US7349931B2 (en) 2005-04-14 2008-03-25 Webroot Software, Inc. System and method for scanning obfuscated files for pestware
US8590044B2 (en) 2005-04-14 2013-11-19 International Business Machines Corporation Selective virus scanning system and method
US7363463B2 (en) 2005-05-13 2008-04-22 Microsoft Corporation Method and system for caching address translations from multiple address spaces in virtual machines
WO2006137057A2 (en) 2005-06-21 2006-12-28 Onigma Ltd. A method and a system for providing comprehensive protection against leakage of sensitive information assets using host based agents, content- meta-data and rules-based policies
US8839450B2 (en) 2007-08-02 2014-09-16 Intel Corporation Secure vault service for software components within an execution environment
US7739721B2 (en) 2005-07-11 2010-06-15 Microsoft Corporation Per-user and system granular audit policy implementation
US7856661B1 (en) 2005-07-14 2010-12-21 Mcafee, Inc. Classification of software on networked systems
US7895651B2 (en) 2005-07-29 2011-02-22 Bit 9, Inc. Content tracking in a network security system
US7962616B2 (en) 2005-08-11 2011-06-14 Micro Focus (Us), Inc. Real-time activity monitoring and reporting
US8327353B2 (en) 2005-08-30 2012-12-04 Microsoft Corporation Hierarchical virtualization with a multi-level virtualization mechanism
US7340574B2 (en) 2005-08-30 2008-03-04 Rockwell Automation Technologies, Inc. Method and apparatus for synchronizing an industrial controller with a redundant controller
US20070074199A1 (en) 2005-09-27 2007-03-29 Sebastian Schoenberg Method and apparatus for delivering microcode updates through virtual machine operations
US8131825B2 (en) * 2005-10-07 2012-03-06 Citrix Systems, Inc. Method and a system for responding locally to requests for file metadata associated with files stored remotely
US7725737B2 (en) * 2005-10-14 2010-05-25 Check Point Software Technologies, Inc. System and methodology providing secure workspace environment
US20070169079A1 (en) 2005-11-08 2007-07-19 Microsoft Corporation Software update management
US7836303B2 (en) 2005-12-09 2010-11-16 University Of Washington Web browser operating system
US7856538B2 (en) 2005-12-12 2010-12-21 Systex, Inc. Methods, systems and computer readable medium for detecting memory overflow conditions
US20070143851A1 (en) 2005-12-21 2007-06-21 Fiberlink Method and systems for controlling access to computing resources based on known security vulnerabilities
US20070174429A1 (en) 2006-01-24 2007-07-26 Citrix Systems, Inc. Methods and servers for establishing a connection between a client system and a virtual machine hosting a requested computing environment
US7757269B1 (en) 2006-02-02 2010-07-13 Mcafee, Inc. Enforcing alignment of approved changes and deployed changes in the software change life-cycle
US8185724B2 (en) 2006-03-03 2012-05-22 Arm Limited Monitoring values of signals within an integrated circuit
US8621433B2 (en) 2006-03-20 2013-12-31 Microsoft Corporation Managing version information for software components
US7895573B1 (en) 2006-03-27 2011-02-22 Mcafee, Inc. Execution environment file inventory
US7752233B2 (en) 2006-03-29 2010-07-06 Massachusetts Institute Of Technology Techniques for clustering a set of objects
US7870387B1 (en) 2006-04-07 2011-01-11 Mcafee, Inc. Program-based authorization
US8015563B2 (en) 2006-04-14 2011-09-06 Microsoft Corporation Managing virtual machines with system-wide policies
US7966659B1 (en) 2006-04-18 2011-06-21 Rockwell Automation Technologies, Inc. Distributed learn mode for configuring a firewall, security authority, intrusion detection/prevention devices, and the like
US8458673B2 (en) 2006-04-26 2013-06-04 Flexera Software Llc Computer-implemented method and system for binding digital rights management executable code to a software application
US7849507B1 (en) 2006-04-29 2010-12-07 Ironport Systems, Inc. Apparatus for filtering server responses
US8291409B2 (en) 2006-05-22 2012-10-16 Microsoft Corporation Updating virtual machine with patch on host that does not have network access
US7761912B2 (en) 2006-06-06 2010-07-20 Microsoft Corporation Reputation driven firewall
US7809704B2 (en) 2006-06-15 2010-10-05 Microsoft Corporation Combining spectral and probabilistic clustering
US20070300215A1 (en) 2006-06-26 2007-12-27 Bardsley Jeffrey S Methods, systems, and computer program products for obtaining and utilizing a score indicative of an overall performance effect of a software update on a software host
US8365294B2 (en) 2006-06-30 2013-01-29 Intel Corporation Hardware platform authentication and multi-platform validation
US8468526B2 (en) 2006-06-30 2013-06-18 Intel Corporation Concurrent thread execution using user-level asynchronous signaling
US8572721B2 (en) 2006-08-03 2013-10-29 Citrix Systems, Inc. Methods and systems for routing packets in a VPN-client-to-VPN-client connection via an SSL/VPN network appliance
US8015388B1 (en) 2006-08-04 2011-09-06 Vmware, Inc. Bypassing guest page table walk for shadow page table entries not present in guest page table
US8161475B2 (en) 2006-09-29 2012-04-17 Microsoft Corporation Automatic load and balancing for virtual machines to meet resource requirements
US9697019B1 (en) 2006-10-17 2017-07-04 Manageiq, Inc. Adapt a virtual machine to comply with system enforced policies and derive an optimized variant of the adapted virtual machine
US7689817B2 (en) 2006-11-16 2010-03-30 Intel Corporation Methods and apparatus for defeating malware
US8091127B2 (en) 2006-12-11 2012-01-03 International Business Machines Corporation Heuristic malware detection
US8336046B2 (en) 2006-12-29 2012-12-18 Intel Corporation Dynamic VM cloning on request from application based on mapping of virtual hardware configuration to the identified physical hardware resources
US7996836B1 (en) 2006-12-29 2011-08-09 Symantec Corporation Using a hypervisor to provide computer security
US8381209B2 (en) 2007-01-03 2013-02-19 International Business Machines Corporation Moveable access control list (ACL) mechanisms for hypervisors and virtual machines and virtual port firewalls
US8254568B2 (en) 2007-01-07 2012-08-28 Apple Inc. Secure booting a computing device
US8332929B1 (en) 2007-01-10 2012-12-11 Mcafee, Inc. Method and apparatus for process enforced configuration management
US8380987B2 (en) 2007-01-25 2013-02-19 Microsoft Corporation Protection agents and privilege modes
US8276201B2 (en) 2007-03-22 2012-09-25 International Business Machines Corporation Integrity protection in data processing systems
US7930327B2 (en) 2007-05-21 2011-04-19 International Business Machines Corporation Method and apparatus for obtaining the absolute path name of an open file system object from its file descriptor
US20080301770A1 (en) 2007-05-31 2008-12-04 Kinder Nathan G Identity based virtual machine selector
US20090007100A1 (en) 2007-06-28 2009-01-01 Microsoft Corporation Suspending a Running Operating System to Enable Security Scanning
US8763115B2 (en) 2007-08-08 2014-06-24 Vmware, Inc. Impeding progress of malicious guest software
WO2009032711A1 (en) 2007-08-29 2009-03-12 Nirvanix, Inc. Policy-based file management for a storage delivery network
US8250641B2 (en) 2007-09-17 2012-08-21 Intel Corporation Method and apparatus for dynamic switching and real time security control on virtualized systems
US8819676B2 (en) 2007-10-30 2014-08-26 Vmware, Inc. Transparent memory-mapped emulation of I/O calls
US8195931B1 (en) 2007-10-31 2012-06-05 Mcafee, Inc. Application change control
JP5238235B2 (en) 2007-12-07 2013-07-17 株式会社日立製作所 Management apparatus and management method
US8336094B2 (en) 2008-03-27 2012-12-18 Juniper Networks, Inc. Hierarchical firewalls
US8321931B2 (en) 2008-03-31 2012-11-27 Intel Corporation Method and apparatus for sequential hypervisor invocation
WO2010016904A2 (en) 2008-08-07 2010-02-11 Serge Nabutovsky Link exchange system and method
US8065714B2 (en) 2008-09-12 2011-11-22 Hytrust, Inc. Methods and systems for securely managing virtualization platform
US9141381B2 (en) 2008-10-27 2015-09-22 Vmware, Inc. Version control environment for virtual machines
US8060722B2 (en) 2009-03-27 2011-11-15 Vmware, Inc. Hardware assistance for shadow page table coherence with guest page mappings
US8359422B2 (en) 2009-06-26 2013-01-22 Vmware, Inc. System and method to reduce trace faults in software MMU virtualization
US8381284B2 (en) 2009-08-21 2013-02-19 Mcafee, Inc. System and method for enforcing security policies in a virtual environment
US8341627B2 (en) 2009-08-21 2012-12-25 Mcafee, Inc. Method and system for providing user space address protection from writable memory area in a virtual environment
US9552497B2 (en) 2009-11-10 2017-01-24 Mcafee, Inc. System and method for preventing data loss using virtual machine wrapped applications
US8938800B2 (en) 2010-07-28 2015-01-20 Mcafee, Inc. System and method for network level protection against malicious software
US8925101B2 (en) 2010-07-28 2014-12-30 Mcafee, Inc. System and method for local protection against malicious software
US8694738B2 (en) 2011-10-11 2014-04-08 Mcafee, Inc. System and method for critical address space protection in a hypervisor environment
US8973144B2 (en) 2011-10-13 2015-03-03 Mcafee, Inc. System and method for kernel rootkit protection in a hypervisor environment
US9069586B2 (en) 2011-10-13 2015-06-30 Mcafee, Inc. System and method for kernel rootkit protection in a hypervisor environment

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8762928B2 (en) 2003-12-17 2014-06-24 Mcafee, Inc. Method and system for containment of usage of language interfaces
US8763118B2 (en) 2005-07-14 2014-06-24 Mcafee, Inc. Classification of software on networked systems
US9602515B2 (en) 2006-02-02 2017-03-21 Mcafee, Inc. Enforcing alignment of approved changes and deployed changes in the software change life-cycle
US8707446B2 (en) 2006-02-02 2014-04-22 Mcafee, Inc. Enforcing alignment of approved changes and deployed changes in the software change life-cycle
US9134998B2 (en) 2006-02-02 2015-09-15 Mcafee, Inc. Enforcing alignment of approved changes and deployed changes in the software change life-cycle
US9576142B2 (en) 2006-03-27 2017-02-21 Mcafee, Inc. Execution environment file inventory
US10360382B2 (en) 2006-03-27 2019-07-23 Mcafee, Llc Execution environment file inventory
US9864868B2 (en) 2007-01-10 2018-01-09 Mcafee, Llc Method and apparatus for process enforced configuration management
US8701182B2 (en) 2007-01-10 2014-04-15 Mcafee, Inc. Method and apparatus for process enforced configuration management
US8707422B2 (en) 2007-01-10 2014-04-22 Mcafee, Inc. Method and apparatus for process enforced configuration management
US9424154B2 (en) 2007-01-10 2016-08-23 Mcafee, Inc. Method of and system for computer system state checks
US8925101B2 (en) 2010-07-28 2014-12-30 Mcafee, Inc. System and method for local protection against malicious software
US8938800B2 (en) 2010-07-28 2015-01-20 Mcafee, Inc. System and method for network level protection against malicious software
US9832227B2 (en) 2010-07-28 2017-11-28 Mcafee, Llc System and method for network level protection against malicious software
US9467470B2 (en) 2010-07-28 2016-10-11 Mcafee, Inc. System and method for local protection against malicious software
US9866528B2 (en) 2011-02-23 2018-01-09 Mcafee, Llc System and method for interlocking a host and a gateway
US9112830B2 (en) 2011-02-23 2015-08-18 Mcafee, Inc. System and method for interlocking a host and a gateway
US9594881B2 (en) 2011-09-09 2017-03-14 Mcafee, Inc. System and method for passive threat detection using virtual memory inspection
US9882876B2 (en) 2011-10-17 2018-01-30 Mcafee, Llc System and method for redirected firewall discovery in a network environment
US8800024B2 (en) 2011-10-17 2014-08-05 Mcafee, Inc. System and method for host-initiated firewall discovery in a network environment
US9356909B2 (en) 2011-10-17 2016-05-31 Mcafee, Inc. System and method for redirected firewall discovery in a network environment
US10652210B2 (en) 2011-10-17 2020-05-12 Mcafee, Llc System and method for redirected firewall discovery in a network environment
US8713668B2 (en) 2011-10-17 2014-04-29 Mcafee, Inc. System and method for redirected firewall discovery in a network environment
US9413785B2 (en) 2012-04-02 2016-08-09 Mcafee, Inc. System and method for interlocking a host and a gateway
US8739272B1 (en) 2012-04-02 2014-05-27 Mcafee, Inc. System and method for interlocking a host and a gateway
US8973146B2 (en) 2012-12-27 2015-03-03 Mcafee, Inc. Herd based scan avoidance system in a network environment
US10171611B2 (en) 2012-12-27 2019-01-01 Mcafee, Llc Herd based scan avoidance system in a network environment
US20140282924A1 (en) * 2013-03-14 2014-09-18 Samsung Electronics Co., Ltd Application connection for devices in a network
US10735408B2 (en) * 2013-03-14 2020-08-04 Samsung Electronics Co., Ltd. Application connection for devices in a network
US9648040B1 (en) * 2013-09-19 2017-05-09 Amazon Technologies, Inc. Authorization check using a web service request
US10205743B2 (en) 2013-10-24 2019-02-12 Mcafee, Llc Agent assisted malicious application blocking in a network environment
US9578052B2 (en) 2013-10-24 2017-02-21 Mcafee, Inc. Agent assisted malicious application blocking in a network environment
US10645115B2 (en) 2013-10-24 2020-05-05 Mcafee, Llc Agent assisted malicious application blocking in a network environment
US11171984B2 (en) 2013-10-24 2021-11-09 Mcafee, Llc Agent assisted malicious application blocking in a network environment
US20210218621A1 (en) * 2015-06-30 2021-07-15 Apstra, Inc. Selectable declarative requirement levels
US11677619B2 (en) * 2015-06-30 2023-06-13 Apstra, Inc. Selectable declarative requirement levels
US10896047B2 (en) * 2015-12-28 2021-01-19 Hewlett-Packard Development Company, L.P. Booting a computer using a wireless network connection
US9866563B2 (en) 2016-04-12 2018-01-09 Gaurdknox Cyber Technologies Ltd. Specially programmed computing systems with associated devices configured to implement secure communication lockdowns and methods of use thereof

Also Published As

Publication number Publication date
US8555404B1 (en) 2013-10-08

Similar Documents

Publication Publication Date Title
US8555404B1 (en) Connectivity-based authorization
KR102386560B1 (en) Hardware-based virtualized security isolation technique
US8661505B2 (en) Policy evaluation in controlled environment
US7870387B1 (en) Program-based authorization
US8146137B2 (en) Dynamic internet address assignment based on user identity and policy compliance
US8346923B2 (en) Methods for identifying an application and controlling its network utilization
US6883098B1 (en) Method and computer system for controlling access by applications to this and other computer systems
US7966643B2 (en) Method and system for securing a remote file system
JP2004530968A (en) Network adapter management
EP2939390B1 (en) Processing device and method of operation thereof
US20100031308A1 (en) Safe and secure program execution framework
JP2004535611A (en) High reliability gateway system
JP2004529408A (en) Reliable operating system
US20070294699A1 (en) Conditionally reserving resources in an operating system
KR20130040692A (en) Method and apparatus for secure web widget runtime system
EP2939392A1 (en) Processing device and method of operation thereof
CA3219152A1 (en) Automated interpreted application control for workloads
EP3438864B1 (en) Method and system for protecting a computer file against possible malware encryption
Lanson Single-use servers: A generalized design for eliminating the confused deputy problem in networked services
EP2840755A1 (en) Processing device and method of operation thereof
US20240169056A1 (en) Managing and classifying computer processes
Zhou et al. Logic bugs in IoT platforms and systems: A review
Popa Analysis of Zero-Day Vulnerabilities in Java
Ott et al. Approaches to integrated malware detection and avoidance
Nature Type Taxonomy Mappings

Legal Events

Date Code Title Description
AS Assignment

Owner name: SOLIDCORE SYSTEMS, INC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SEBES, E. JOHN;BHARGAVA, RISHI;REESE, DAVID P.;REEL/FRAME:017920/0740

Effective date: 20060518

AS Assignment

Owner name: MCAFEE, INC., CALIFORNIA

Free format text: MERGER;ASSIGNOR:SOLIDCORE SYSTEMS, INC.;REEL/FRAME:022973/0458

Effective date: 20090601

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: MCAFEE, LLC, CALIFORNIA

Free format text: CHANGE OF NAME AND ENTITY CONVERSION;ASSIGNOR:MCAFEE, INC.;REEL/FRAME:043665/0918

Effective date: 20161220

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:MCAFEE, LLC;REEL/FRAME:045055/0786

Effective date: 20170929

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., MARYLAND

Free format text: SECURITY INTEREST;ASSIGNOR:MCAFEE, LLC;REEL/FRAME:045056/0676

Effective date: 20170929

AS Assignment

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., MARYLAND

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE PATENT 6336186 PREVIOUSLY RECORDED ON REEL 045056 FRAME 0676. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST;ASSIGNOR:MCAFEE, LLC;REEL/FRAME:054206/0593

Effective date: 20170929

Owner name: JPMORGAN CHASE BANK, N.A., NEW YORK

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE PATENT 6336186 PREVIOUSLY RECORDED ON REEL 045055 FRAME 786. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST;ASSIGNOR:MCAFEE, LLC;REEL/FRAME:055854/0047

Effective date: 20170929

AS Assignment

Owner name: MCAFEE, LLC, CALIFORNIA

Free format text: RELEASE OF INTELLECTUAL PROPERTY COLLATERAL - REEL/FRAME 045055/0786;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:054238/0001

Effective date: 20201026

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

AS Assignment

Owner name: MCAFEE, LLC, CALIFORNIA

Free format text: RELEASE OF INTELLECTUAL PROPERTY COLLATERAL - REEL/FRAME 045056/0676;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT;REEL/FRAME:059354/0213

Effective date: 20220301

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT AND COLLATERAL AGENT, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:MCAFEE, LLC;REEL/FRAME:059354/0335

Effective date: 20220301

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT, NEW YORK

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE THE PATENT TITLES AND REMOVE DUPLICATES IN THE SCHEDULE PREVIOUSLY RECORDED AT REEL: 059354 FRAME: 0335. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:MCAFEE, LLC;REEL/FRAME:060792/0307

Effective date: 20220301