US20130217737A1 - Use of Malononitrilamides in Neuropathic Pain - Google Patents
Use of Malononitrilamides in Neuropathic Pain Download PDFInfo
- Publication number
- US20130217737A1 US20130217737A1 US13/880,139 US201113880139A US2013217737A1 US 20130217737 A1 US20130217737 A1 US 20130217737A1 US 201113880139 A US201113880139 A US 201113880139A US 2013217737 A1 US2013217737 A1 US 2013217737A1
- Authority
- US
- United States
- Prior art keywords
- pain
- syndrome
- neuropathic pain
- lesions
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 208000004296 neuralgia Diseases 0.000 title claims abstract description 108
- 208000021722 neuropathic pain Diseases 0.000 title claims abstract description 105
- 150000001875 compounds Chemical class 0.000 claims abstract description 102
- 208000011580 syndromic disease Diseases 0.000 claims abstract description 55
- 238000011282 treatment Methods 0.000 claims abstract description 52
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 38
- 238000000034 method Methods 0.000 claims description 49
- 208000002193 Pain Diseases 0.000 claims description 41
- 239000000203 mixture Substances 0.000 claims description 37
- 230000036407 pain Effects 0.000 claims description 32
- 230000006378 damage Effects 0.000 claims description 28
- 150000003839 salts Chemical class 0.000 claims description 28
- 230000003902 lesion Effects 0.000 claims description 26
- -1 malononitrilamide compound Chemical class 0.000 claims description 22
- 210000000278 spinal cord Anatomy 0.000 claims description 21
- 208000023890 Complex Regional Pain Syndromes Diseases 0.000 claims description 18
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 18
- 239000012453 solvate Substances 0.000 claims description 18
- 210000005036 nerve Anatomy 0.000 claims description 16
- 206010064012 Central pain syndrome Diseases 0.000 claims description 15
- 230000002093 peripheral effect Effects 0.000 claims description 15
- 239000003814 drug Substances 0.000 claims description 14
- 208000019695 Migraine disease Diseases 0.000 claims description 13
- 206010027599 migraine Diseases 0.000 claims description 13
- 208000020431 spinal cord injury Diseases 0.000 claims description 13
- 208000034656 Contusions Diseases 0.000 claims description 12
- 230000009519 contusion Effects 0.000 claims description 12
- 201000010099 disease Diseases 0.000 claims description 11
- 229940079593 drug Drugs 0.000 claims description 11
- 210000000653 nervous system Anatomy 0.000 claims description 11
- 208000001387 Causalgia Diseases 0.000 claims description 9
- 208000004983 Phantom Limb Diseases 0.000 claims description 9
- 206010056238 Phantom pain Diseases 0.000 claims description 9
- 230000001684 chronic effect Effects 0.000 claims description 9
- 208000014439 complex regional pain syndrome type 2 Diseases 0.000 claims description 9
- 230000000472 traumatic effect Effects 0.000 claims description 9
- 206010036105 Polyneuropathy Diseases 0.000 claims description 7
- 206010036376 Postherpetic Neuralgia Diseases 0.000 claims description 7
- 208000035475 disorder Diseases 0.000 claims description 7
- 201000005518 mononeuropathy Diseases 0.000 claims description 7
- 201000001119 neuropathy Diseases 0.000 claims description 7
- 230000007823 neuropathy Effects 0.000 claims description 7
- 230000007824 polyneuropathy Effects 0.000 claims description 7
- 208000013586 Complex regional pain syndrome type 1 Diseases 0.000 claims description 6
- 208000004550 Postoperative Pain Diseases 0.000 claims description 6
- 201000001947 Reflex Sympathetic Dystrophy Diseases 0.000 claims description 6
- 238000002512 chemotherapy Methods 0.000 claims description 6
- 208000007514 Herpes zoster Diseases 0.000 claims description 5
- 210000004556 brain Anatomy 0.000 claims description 5
- 206010012601 diabetes mellitus Diseases 0.000 claims description 5
- 125000000468 ketone group Chemical group 0.000 claims description 5
- 230000002981 neuropathic effect Effects 0.000 claims description 5
- UTNUDOFZCWSZMS-YFHOEESVSA-N teriflunomide Chemical compound C\C(O)=C(/C#N)C(=O)NC1=CC=C(C(F)(F)F)C=C1 UTNUDOFZCWSZMS-YFHOEESVSA-N 0.000 claims description 5
- 208000032131 Diabetic Neuropathies Diseases 0.000 claims description 4
- 206010019233 Headaches Diseases 0.000 claims description 4
- 206010037779 Radiculopathy Diseases 0.000 claims description 4
- 238000007906 compression Methods 0.000 claims description 4
- 230000006835 compression Effects 0.000 claims description 4
- 230000007246 mechanism Effects 0.000 claims description 4
- 201000006417 multiple sclerosis Diseases 0.000 claims description 4
- 210000000578 peripheral nerve Anatomy 0.000 claims description 4
- 206010044652 trigeminal neuralgia Diseases 0.000 claims description 4
- MYMWDZLPEPMSCN-UHFFFAOYSA-N 2-cyano-3-oxo-n-[4-(trifluoromethyl)phenyl]hept-6-ynamide Chemical compound FC(F)(F)C1=CC=C(NC(=O)C(C#N)C(=O)CCC#C)C=C1 MYMWDZLPEPMSCN-UHFFFAOYSA-N 0.000 claims description 3
- 206010002703 Anterior Spinal Artery Syndrome Diseases 0.000 claims description 3
- 208000004020 Brain Abscess Diseases 0.000 claims description 3
- 206010058019 Cancer Pain Diseases 0.000 claims description 3
- 208000019736 Cranial nerve disease Diseases 0.000 claims description 3
- 208000031886 HIV Infections Diseases 0.000 claims description 3
- 206010019973 Herpes virus infection Diseases 0.000 claims description 3
- 206010061216 Infarction Diseases 0.000 claims description 3
- 206010042928 Syringomyelia Diseases 0.000 claims description 3
- 206010064961 Thalamic infarction Diseases 0.000 claims description 3
- 210000000133 brain stem Anatomy 0.000 claims description 3
- 201000007293 brain stem infarction Diseases 0.000 claims description 3
- 230000002490 cerebral effect Effects 0.000 claims description 3
- 208000012790 cranial neuralgia Diseases 0.000 claims description 3
- 210000000609 ganglia Anatomy 0.000 claims description 3
- 230000007574 infarction Effects 0.000 claims description 3
- 230000007654 ischemic lesion Effects 0.000 claims description 3
- 208000004343 lateral medullary syndrome Diseases 0.000 claims description 3
- 230000001095 motoneuron effect Effects 0.000 claims description 3
- 208000018389 neoplasm of cerebral hemisphere Diseases 0.000 claims description 3
- 238000011275 oncology therapy Methods 0.000 claims description 3
- 201000005989 paraneoplastic polyneuropathy Diseases 0.000 claims description 3
- 208000033808 peripheral neuropathy Diseases 0.000 claims description 3
- 230000011514 reflex Effects 0.000 claims description 3
- 238000011477 surgical intervention Methods 0.000 claims description 3
- 230000002889 sympathetic effect Effects 0.000 claims description 3
- 230000009885 systemic effect Effects 0.000 claims description 3
- 230000000542 thalamic effect Effects 0.000 claims description 3
- 210000001103 thalamus Anatomy 0.000 claims description 3
- 241000282414 Homo sapiens Species 0.000 claims description 2
- 229930194542 Keto Natural products 0.000 claims description 2
- 125000002587 enol group Chemical group 0.000 claims 1
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 117
- 239000002552 dosage form Substances 0.000 description 46
- 241001465754 Metazoa Species 0.000 description 39
- 210000002683 foot Anatomy 0.000 description 37
- GDHFOVCRYCPOTK-QBFSEMIESA-N (z)-2-cyano-3-cyclopropyl-3-hydroxy-n-[3-methyl-4-(trifluoromethyl)phenyl]prop-2-enamide Chemical compound C1=C(C(F)(F)F)C(C)=CC(NC(=O)C(\C#N)=C(/O)C2CC2)=C1 GDHFOVCRYCPOTK-QBFSEMIESA-N 0.000 description 35
- 239000003981 vehicle Substances 0.000 description 31
- 239000004480 active ingredient Substances 0.000 description 30
- 208000014674 injury Diseases 0.000 description 26
- 239000000546 pharmaceutical excipient Substances 0.000 description 24
- 230000035945 sensitivity Effects 0.000 description 24
- 238000012360 testing method Methods 0.000 description 23
- 208000027418 Wounds and injury Diseases 0.000 description 22
- 241000700159 Rattus Species 0.000 description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 18
- 208000004454 Hyperalgesia Diseases 0.000 description 17
- 230000009257 reactivity Effects 0.000 description 15
- GDHFOVCRYCPOTK-UHFFFAOYSA-N 2-cyano-3-cyclopropyl-3-hydroxy-n-[3-methyl-4-(trifluoromethyl)phenyl]prop-2-enamide Chemical compound C1=C(C(F)(F)F)C(C)=CC(NC(=O)C(C#N)=C(O)C2CC2)=C1 GDHFOVCRYCPOTK-UHFFFAOYSA-N 0.000 description 14
- 239000013543 active substance Substances 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 13
- 230000003447 ipsilateral effect Effects 0.000 description 12
- 239000000651 prodrug Substances 0.000 description 11
- 229940002612 prodrug Drugs 0.000 description 11
- 238000001356 surgical procedure Methods 0.000 description 11
- 239000003826 tablet Substances 0.000 description 11
- 230000004044 response Effects 0.000 description 10
- 210000003497 sciatic nerve Anatomy 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 238000013270 controlled release Methods 0.000 description 9
- 238000009472 formulation Methods 0.000 description 9
- 238000003304 gavage Methods 0.000 description 9
- 239000007787 solid Substances 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 208000024891 symptom Diseases 0.000 description 9
- 229920002472 Starch Polymers 0.000 description 8
- 239000000969 carrier Substances 0.000 description 8
- 239000007884 disintegrant Substances 0.000 description 8
- 229950009700 laflunimus Drugs 0.000 description 8
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 8
- 239000008108 microcrystalline cellulose Substances 0.000 description 8
- 229940016286 microcrystalline cellulose Drugs 0.000 description 8
- 239000006186 oral dosage form Substances 0.000 description 8
- 230000002441 reversible effect Effects 0.000 description 8
- 235000019698 starch Nutrition 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 206010020751 Hypersensitivity Diseases 0.000 description 7
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 7
- 208000026935 allergic disease Diseases 0.000 description 7
- 150000002148 esters Chemical class 0.000 description 7
- 230000009610 hypersensitivity Effects 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 238000001543 one-way ANOVA Methods 0.000 description 7
- 238000003305 oral gavage Methods 0.000 description 7
- 239000006201 parenteral dosage form Substances 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- GDHFOVCRYCPOTK-ACCUITESSA-N (e)-2-cyano-3-cyclopropyl-3-hydroxy-n-[3-methyl-4-(trifluoromethyl)phenyl]prop-2-enamide Chemical compound C1=C(C(F)(F)F)C(C)=CC(NC(=O)C(\C#N)=C(\O)C2CC2)=C1 GDHFOVCRYCPOTK-ACCUITESSA-N 0.000 description 6
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 6
- 208000035154 Hyperesthesia Diseases 0.000 description 6
- 206010053552 allodynia Diseases 0.000 description 6
- 239000002585 base Substances 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 6
- 239000002775 capsule Substances 0.000 description 6
- 239000003085 diluting agent Substances 0.000 description 6
- 239000000839 emulsion Substances 0.000 description 6
- 210000000548 hind-foot Anatomy 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000000314 lubricant Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 230000002269 spontaneous effect Effects 0.000 description 6
- 208000000094 Chronic Pain Diseases 0.000 description 5
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 5
- DFPAKSUCGFBDDF-UHFFFAOYSA-N Nicotinamide Chemical compound NC(=O)C1=CC=CN=C1 DFPAKSUCGFBDDF-UHFFFAOYSA-N 0.000 description 5
- 239000008156 Ringer's lactate solution Substances 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 150000001408 amides Chemical class 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 229960001375 lactose Drugs 0.000 description 5
- 239000008101 lactose Substances 0.000 description 5
- 210000002414 leg Anatomy 0.000 description 5
- 231100000252 nontoxic Toxicity 0.000 description 5
- 230000003000 nontoxic effect Effects 0.000 description 5
- 238000007920 subcutaneous administration Methods 0.000 description 5
- RDGOXSDIAWGFKE-UHFFFAOYSA-N 2-cyano-2-(4-cyanophenyl)-3-cyclopropyl-3-oxopropanamide Chemical compound C=1C=C(C#N)C=CC=1C(C#N)(C(=O)N)C(=O)C1CC1 RDGOXSDIAWGFKE-UHFFFAOYSA-N 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 229920000881 Modified starch Polymers 0.000 description 4
- 238000000692 Student's t-test Methods 0.000 description 4
- BPCNGVCAHAIZEE-UHFFFAOYSA-N [(5-methyl-2-propan-2-ylcyclohexyl)-phenylphosphoryl]benzene Chemical compound CC(C)C1CCC(C)CC1P(=O)(C=1C=CC=CC=1)C1=CC=CC=C1 BPCNGVCAHAIZEE-UHFFFAOYSA-N 0.000 description 4
- 239000000443 aerosol Substances 0.000 description 4
- 235000010443 alginic acid Nutrition 0.000 description 4
- 229920000615 alginic acid Polymers 0.000 description 4
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 4
- 239000007894 caplet Substances 0.000 description 4
- 210000003169 central nervous system Anatomy 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 235000019441 ethanol Nutrition 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000007911 parenteral administration Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000008107 starch Substances 0.000 description 4
- 229940032147 starch Drugs 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 230000008733 trauma Effects 0.000 description 4
- HIQIXEFWDLTDED-UHFFFAOYSA-N 4-hydroxy-1-piperidin-4-ylpyrrolidin-2-one Chemical compound O=C1CC(O)CN1C1CCNCC1 HIQIXEFWDLTDED-UHFFFAOYSA-N 0.000 description 3
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 3
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 3
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 206010065952 Hyperpathia Diseases 0.000 description 3
- 150000007945 N-acyl ureas Chemical class 0.000 description 3
- 235000019483 Peanut oil Nutrition 0.000 description 3
- 208000010886 Peripheral nerve injury Diseases 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 3
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 235000010980 cellulose Nutrition 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 235000005687 corn oil Nutrition 0.000 description 3
- 239000002285 corn oil Substances 0.000 description 3
- 235000012343 cottonseed oil Nutrition 0.000 description 3
- 239000002385 cottonseed oil Substances 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 230000004064 dysfunction Effects 0.000 description 3
- 150000002085 enols Chemical class 0.000 description 3
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 3
- 229940093471 ethyl oleate Drugs 0.000 description 3
- 230000000763 evoking effect Effects 0.000 description 3
- 239000003889 eye drop Substances 0.000 description 3
- 229940012356 eye drops Drugs 0.000 description 3
- 229920000159 gelatin Polymers 0.000 description 3
- 235000019322 gelatine Nutrition 0.000 description 3
- 230000002519 immonomodulatory effect Effects 0.000 description 3
- 230000028993 immune response Effects 0.000 description 3
- 238000007918 intramuscular administration Methods 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- 239000008297 liquid dosage form Substances 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 230000001537 neural effect Effects 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- 208000035824 paresthesia Diseases 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 239000000312 peanut oil Substances 0.000 description 3
- 210000001428 peripheral nervous system Anatomy 0.000 description 3
- 230000002085 persistent effect Effects 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- 230000035807 sensation Effects 0.000 description 3
- 239000008159 sesame oil Substances 0.000 description 3
- 235000011803 sesame oil Nutrition 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 210000003009 spinothalamic tract Anatomy 0.000 description 3
- 239000008223 sterile water Substances 0.000 description 3
- 230000000638 stimulation Effects 0.000 description 3
- 230000000699 topical effect Effects 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- HLDUKDYFLMHJNC-UHFFFAOYSA-N 5-but-3-ynyl-n-[4-(trifluoromethyl)phenyl]-1,2-oxazole-4-carboxamide Chemical compound C1=CC(C(F)(F)F)=CC=C1NC(=O)C1=C(CCC#C)ON=C1 HLDUKDYFLMHJNC-UHFFFAOYSA-N 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- 206010001497 Agitation Diseases 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- 229920002261 Corn starch Polymers 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- PIWKPBJCKXDKJR-UHFFFAOYSA-N Isoflurane Chemical compound FC(F)OC(Cl)C(F)(F)F PIWKPBJCKXDKJR-UHFFFAOYSA-N 0.000 description 2
- 229930195725 Mannitol Natural products 0.000 description 2
- 208000005890 Neuroma Diseases 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- KJBPCYKWRYXZFV-YPKPFQOOSA-M [H]N(C(=O)/C(C#N)=C(\[O-])C1CC1)C1=CC=C(C)C(C)=C1 Chemical compound [H]N(C(=O)/C(C#N)=C(\[O-])C1CC1)C1=CC=C(C)C(C)=C1 KJBPCYKWRYXZFV-YPKPFQOOSA-M 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 235000010419 agar Nutrition 0.000 description 2
- 239000000783 alginic acid Substances 0.000 description 2
- 229960001126 alginic acid Drugs 0.000 description 2
- 150000004781 alginic acids Chemical class 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000008135 aqueous vehicle Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 229960002903 benzyl benzoate Drugs 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- BPKIGYQJPYCAOW-FFJTTWKXSA-I calcium;potassium;disodium;(2s)-2-hydroxypropanoate;dichloride;dihydroxide;hydrate Chemical compound O.[OH-].[OH-].[Na+].[Na+].[Cl-].[Cl-].[K+].[Ca+2].C[C@H](O)C([O-])=O BPKIGYQJPYCAOW-FFJTTWKXSA-I 0.000 description 2
- BMLSTPRTEKLIPM-UHFFFAOYSA-I calcium;potassium;disodium;hydrogen carbonate;dichloride;dihydroxide;hydrate Chemical compound O.[OH-].[OH-].[Na+].[Na+].[Cl-].[Cl-].[K+].[Ca+2].OC([O-])=O BMLSTPRTEKLIPM-UHFFFAOYSA-I 0.000 description 2
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000008120 corn starch Substances 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000008356 dextrose and sodium chloride injection Substances 0.000 description 2
- 239000008355 dextrose injection Substances 0.000 description 2
- 230000003292 diminished effect Effects 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 150000002334 glycols Chemical class 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- MNWFXJYAOYHMED-UHFFFAOYSA-N heptanoic acid Chemical compound CCCCCCC(O)=O MNWFXJYAOYHMED-UHFFFAOYSA-N 0.000 description 2
- 125000000623 heterocyclic group Chemical group 0.000 description 2
- 150000004677 hydrates Chemical class 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 238000001361 intraarterial administration Methods 0.000 description 2
- 229960002725 isoflurane Drugs 0.000 description 2
- 229940074928 isopropyl myristate Drugs 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 230000002045 lasting effect Effects 0.000 description 2
- 210000003141 lower extremity Anatomy 0.000 description 2
- 210000002540 macrophage Anatomy 0.000 description 2
- 235000019359 magnesium stearate Nutrition 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000000594 mannitol Substances 0.000 description 2
- 235000010355 mannitol Nutrition 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 210000004498 neuroglial cell Anatomy 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- 239000002687 nonaqueous vehicle Substances 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 239000004006 olive oil Substances 0.000 description 2
- 235000008390 olive oil Nutrition 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 229920001592 potato starch Polymers 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 150000003335 secondary amines Chemical class 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 2
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 2
- 239000008354 sodium chloride injection Substances 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- 235000010356 sorbitol Nutrition 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 239000000829 suppository Substances 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 235000012222 talc Nutrition 0.000 description 2
- 238000003419 tautomerization reaction Methods 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 239000008215 water for injection Substances 0.000 description 2
- 239000008136 water-miscible vehicle Substances 0.000 description 2
- 239000001124 (E)-prop-1-ene-1,2,3-tricarboxylic acid Substances 0.000 description 1
- SYTBZMRGLBWNTM-SNVBAGLBSA-N (R)-flurbiprofen Chemical compound FC1=CC([C@H](C(O)=O)C)=CC=C1C1=CC=CC=C1 SYTBZMRGLBWNTM-SNVBAGLBSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- 235000006491 Acacia senegal Nutrition 0.000 description 1
- 229910002016 Aerosil® 200 Inorganic materials 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- KPYSYYIEGFHWSV-UHFFFAOYSA-N Baclofen Chemical compound OC(=O)CC(CN)C1=CC=C(Cl)C=C1 KPYSYYIEGFHWSV-UHFFFAOYSA-N 0.000 description 1
- 238000010152 Bonferroni least significant difference Methods 0.000 description 1
- 239000004358 Butane-1, 3-diol Substances 0.000 description 1
- YIADSKRTRJSBQU-YPKPFQOOSA-N C#CCC/C(O)=C(\C#N)C(=O)CC1=CC=C(C(F)(F)F)C=C1 Chemical compound C#CCC/C(O)=C(\C#N)C(=O)CC1=CC=C(C(F)(F)F)C=C1 YIADSKRTRJSBQU-YPKPFQOOSA-N 0.000 description 1
- LHRFLGDQARPYDN-UNSKDZFWSA-N C#CCC/C(O)=C(\C#N)C(=O)CC1=CC=C(C(F)(F)F)C=C1.C#CCCC1=C(C(=O)CC2=CC=C(C(F)(F)F)C=C2)C=NO1.[C-]#[N+]/C(=C(\O)C1CC1)C(NO)C1=CC=C(C#N)C=C1 Chemical compound C#CCC/C(O)=C(\C#N)C(=O)CC1=CC=C(C(F)(F)F)C=C1.C#CCCC1=C(C(=O)CC2=CC=C(C(F)(F)F)C=C2)C=NO1.[C-]#[N+]/C(=C(\O)C1CC1)C(NO)C1=CC=C(C#N)C=C1 LHRFLGDQARPYDN-UNSKDZFWSA-N 0.000 description 1
- FZGUUHVYRJDUPR-DUSVJMTPSA-M C#CCC/C(O)=C(\C#N)C(=O)CC1=CC=C(C(F)(F)F)C=C1.C#CCCC1=C(C(=O)CC2=CC=C(C(F)(F)F)C=C2)C=NO1.[C-]#[N+]/C(=C(\O)C1CC1)C(NO)C1=CC=C(C#N)C=C1.[H]N(C(=O)/C(C#N)=C(\[O-])C1CC1)C1=CC=C(C)C(C)=C1 Chemical compound C#CCC/C(O)=C(\C#N)C(=O)CC1=CC=C(C(F)(F)F)C=C1.C#CCCC1=C(C(=O)CC2=CC=C(C(F)(F)F)C=C2)C=NO1.[C-]#[N+]/C(=C(\O)C1CC1)C(NO)C1=CC=C(C#N)C=C1.[H]N(C(=O)/C(C#N)=C(\[O-])C1CC1)C1=CC=C(C)C(C)=C1 FZGUUHVYRJDUPR-DUSVJMTPSA-M 0.000 description 1
- JGLMVXWAHNTPRF-CMDGGOBGSA-N CCN1N=C(C)C=C1C(=O)NC1=NC2=CC(=CC(OC)=C2N1C\C=C\CN1C(NC(=O)C2=CC(C)=NN2CC)=NC2=CC(=CC(OCCCN3CCOCC3)=C12)C(N)=O)C(N)=O Chemical compound CCN1N=C(C)C=C1C(=O)NC1=NC2=CC(=CC(OC)=C2N1C\C=C\CN1C(NC(=O)C2=CC(C)=NN2CC)=NC2=CC(=CC(OCCCN3CCOCC3)=C12)C(N)=O)C(N)=O JGLMVXWAHNTPRF-CMDGGOBGSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229920002785 Croscarmellose sodium Polymers 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 206010052804 Drug tolerance Diseases 0.000 description 1
- 241001269524 Dura Species 0.000 description 1
- 239000004150 EU approved colour Substances 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 239000001828 Gelatine Substances 0.000 description 1
- 241000206672 Gelidium Species 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 229920002907 Guar gum Polymers 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 208000003618 Intervertebral Disc Displacement Diseases 0.000 description 1
- 108010076876 Keratins Proteins 0.000 description 1
- 102000011782 Keratins Human genes 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 240000003183 Manihot esculenta Species 0.000 description 1
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- 239000004909 Moisturizer Substances 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- MBBZMMPHUWSWHV-BDVNFPICSA-N N-methylglucamine Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO MBBZMMPHUWSWHV-BDVNFPICSA-N 0.000 description 1
- 206010028813 Nausea Diseases 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 206010029174 Nerve compression Diseases 0.000 description 1
- 208000028389 Nerve injury Diseases 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229910004679 ONO2 Inorganic materials 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 206010060765 Osmophobia Diseases 0.000 description 1
- 206010067633 Peripheral nerve lesion Diseases 0.000 description 1
- 206010054956 Phonophobia Diseases 0.000 description 1
- 206010034960 Photophobia Diseases 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 206010065016 Post-traumatic pain Diseases 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 208000006011 Stroke Diseases 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 206010047700 Vomiting Diseases 0.000 description 1
- 206010073696 Wallerian degeneration Diseases 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229940091181 aconitic acid Drugs 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 125000004945 acylaminoalkyl group Chemical group 0.000 description 1
- 125000005041 acyloxyalkyl group Chemical group 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 230000000202 analgesic effect Effects 0.000 description 1
- 229940035676 analgesics Drugs 0.000 description 1
- 229960004977 anhydrous lactose Drugs 0.000 description 1
- 239000000730 antalgic agent Substances 0.000 description 1
- 229940125681 anticonvulsant agent Drugs 0.000 description 1
- 239000001961 anticonvulsive agent Substances 0.000 description 1
- 239000000935 antidepressant agent Substances 0.000 description 1
- 229940005513 antidepressants Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 210000001130 astrocyte Anatomy 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 230000003376 axonal effect Effects 0.000 description 1
- 210000001142 back Anatomy 0.000 description 1
- 229960000794 baclofen Drugs 0.000 description 1
- 238000009227 behaviour therapy Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000036765 blood level Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229960003563 calcium carbonate Drugs 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000001722 carbon compounds Chemical class 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 229940084030 carboxymethylcellulose calcium Drugs 0.000 description 1
- 208000003295 carpal tunnel syndrome Diseases 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000007910 chewable tablet Substances 0.000 description 1
- VDANGULDQQJODZ-UHFFFAOYSA-N chloroprocaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1Cl VDANGULDQQJODZ-UHFFFAOYSA-N 0.000 description 1
- 229960002023 chloroprocaine Drugs 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- 239000000769 chromic catgut Substances 0.000 description 1
- 208000022371 chronic pain syndrome Diseases 0.000 description 1
- GTZCVFVGUGFEME-IWQZZHSRSA-N cis-aconitic acid Chemical compound OC(=O)C\C(C(O)=O)=C\C(O)=O GTZCVFVGUGFEME-IWQZZHSRSA-N 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000007891 compressed tablet Substances 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 229960001681 croscarmellose sodium Drugs 0.000 description 1
- 229960000913 crospovidone Drugs 0.000 description 1
- 235000010947 crosslinked sodium carboxy methyl cellulose Nutrition 0.000 description 1
- 238000011461 current therapy Methods 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 239000003405 delayed action preparation Substances 0.000 description 1
- 229940096516 dextrates Drugs 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 229940043237 diethanolamine Drugs 0.000 description 1
- FSBVERYRVPGNGG-UHFFFAOYSA-N dimagnesium dioxido-bis[[oxido(oxo)silyl]oxy]silane hydrate Chemical compound O.[Mg+2].[Mg+2].[O-][Si](=O)O[Si]([O-])([O-])O[Si]([O-])=O FSBVERYRVPGNGG-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000002224 dissection Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 229940088679 drug related substance Drugs 0.000 description 1
- 238000002651 drug therapy Methods 0.000 description 1
- 230000003073 embolic effect Effects 0.000 description 1
- 230000002996 emotional effect Effects 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001667 episodic effect Effects 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- HHFAWKCIHAUFRX-UHFFFAOYSA-N ethoxide Chemical compound CC[O-] HHFAWKCIHAUFRX-UHFFFAOYSA-N 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 229940012017 ethylenediamine Drugs 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000020375 flavoured syrup Nutrition 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 239000007897 gelcap Substances 0.000 description 1
- 238000002695 general anesthesia Methods 0.000 description 1
- 230000009688 glial response Effects 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 239000003979 granulating agent Substances 0.000 description 1
- 235000010417 guar gum Nutrition 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 229960002154 guar gum Drugs 0.000 description 1
- 230000026781 habituation Effects 0.000 description 1
- 235000015220 hamburgers Nutrition 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000008172 hydrogenated vegetable oil Substances 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 230000000917 hyperalgesic effect Effects 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 208000028867 ischemia Diseases 0.000 description 1
- XUGNVMKQXJXZCD-UHFFFAOYSA-N isopropyl palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC(C)C XUGNVMKQXJXZCD-UHFFFAOYSA-N 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 238000002684 laminectomy Methods 0.000 description 1
- GOTYRUGSSMKFNF-UHFFFAOYSA-N lenalidomide Chemical compound C1C=2C(N)=CC=CC=2C(=O)N1C1CCC(=O)NC1=O GOTYRUGSSMKFNF-UHFFFAOYSA-N 0.000 description 1
- 238000011694 lewis rat Methods 0.000 description 1
- 229940059904 light mineral oil Drugs 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229940099273 magnesium trisilicate Drugs 0.000 description 1
- 229910000386 magnesium trisilicate Inorganic materials 0.000 description 1
- 235000019793 magnesium trisilicate Nutrition 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 210000004379 membrane Anatomy 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 210000000274 microglia Anatomy 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 230000001333 moisturizer Effects 0.000 description 1
- 239000007932 molded tablet Substances 0.000 description 1
- 210000000214 mouth Anatomy 0.000 description 1
- 239000002324 mouth wash Substances 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 210000003666 myelinated nerve fiber Anatomy 0.000 description 1
- ACTNHJDHMQSOGL-UHFFFAOYSA-N n',n'-dibenzylethane-1,2-diamine Chemical compound C=1C=CC=CC=1CN(CCN)CC1=CC=CC=C1 ACTNHJDHMQSOGL-UHFFFAOYSA-N 0.000 description 1
- 239000007922 nasal spray Substances 0.000 description 1
- 230000037125 natural defense Effects 0.000 description 1
- 230000008693 nausea Effects 0.000 description 1
- 230000008764 nerve damage Effects 0.000 description 1
- 210000004126 nerve fiber Anatomy 0.000 description 1
- 208000020469 nerve plexus disease Diseases 0.000 description 1
- 230000004007 neuromodulation Effects 0.000 description 1
- 230000003040 nociceptive effect Effects 0.000 description 1
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 229940127240 opiate Drugs 0.000 description 1
- 229940006093 opthalmologic coloring agent diagnostic Drugs 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 239000006174 pH buffer Substances 0.000 description 1
- 230000008058 pain sensation Effects 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 229940055076 parasympathomimetics choline ester Drugs 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000003961 penetration enhancing agent Substances 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 229940127557 pharmaceutical product Drugs 0.000 description 1
- 238000001050 pharmacotherapy Methods 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 125000005633 phthalidyl group Chemical group 0.000 description 1
- 230000037074 physically active Effects 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 201000006380 plexopathy Diseases 0.000 description 1
- 229960000540 polacrilin potassium Drugs 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 235000013809 polyvinylpolypyrrolidone Nutrition 0.000 description 1
- 229920000523 polyvinylpolypyrrolidone Polymers 0.000 description 1
- UVSMNLNDYGZFPF-UHFFFAOYSA-N pomalidomide Chemical compound O=C1C=2C(N)=CC=CC=2C(=O)N1C1CCC(=O)NC1=O UVSMNLNDYGZFPF-UHFFFAOYSA-N 0.000 description 1
- 230000002980 postoperative effect Effects 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- WVWZXTJUCNEUAE-UHFFFAOYSA-M potassium;1,2-bis(ethenyl)benzene;2-methylprop-2-enoate Chemical compound [K+].CC(=C)C([O-])=O.C=CC1=CC=CC=C1C=C WVWZXTJUCNEUAE-UHFFFAOYSA-M 0.000 description 1
- 229920003124 powdered cellulose Polymers 0.000 description 1
- 235000019814 powdered cellulose Nutrition 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 230000001698 pyrogenic effect Effects 0.000 description 1
- 150000003248 quinolines Chemical class 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 1
- 210000004116 schwann cell Anatomy 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 210000001057 smooth muscle myoblast Anatomy 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 229920003109 sodium starch glycolate Polymers 0.000 description 1
- 239000008109 sodium starch glycolate Substances 0.000 description 1
- 229940079832 sodium starch glycolate Drugs 0.000 description 1
- 239000007905 soft elastic gelatin capsule Substances 0.000 description 1
- 239000012439 solid excipient Substances 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 210000003594 spinal ganglia Anatomy 0.000 description 1
- 230000008925 spontaneous activity Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000008174 sterile solution Substances 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229940066765 systemic antihistamines substituted ethylene diamines Drugs 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- LMBFAGIMSUYTBN-MPZNNTNKSA-N teixobactin Chemical compound C([C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@H](CCC(N)=O)C(=O)N[C@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@H]1C(N[C@@H](C)C(=O)N[C@@H](C[C@@H]2NC(=N)NC2)C(=O)N[C@H](C(=O)O[C@H]1C)[C@@H](C)CC)=O)NC)C1=CC=CC=C1 LMBFAGIMSUYTBN-MPZNNTNKSA-N 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 231100000041 toxicology testing Toxicity 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- GTZCVFVGUGFEME-UHFFFAOYSA-N trans-aconitic acid Natural products OC(=O)CC(C(O)=O)=CC(O)=O GTZCVFVGUGFEME-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 210000001170 unmyelinated nerve fiber Anatomy 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
- 230000008673 vomiting Effects 0.000 description 1
- 230000008734 wallerian degeneration Effects 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/16—Amides, e.g. hydroxamic acids
- A61K31/165—Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
- A61K31/167—Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide having the nitrogen of a carboxamide group directly attached to the aromatic ring, e.g. lidocaine, paracetamol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/16—Amides, e.g. hydroxamic acids
- A61K31/164—Amides, e.g. hydroxamic acids of a carboxylic acid with an aminoalcohol, e.g. ceramides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/275—Nitriles; Isonitriles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/42—Oxazoles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/04—Centrally acting analgesics, e.g. opioids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/06—Antimigraine agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
Definitions
- the technology provided herein relates to the novel use of malononitrilamides and its derivatives in the treatment of neuropathic pain and neuropathic pain syndromes.
- Pain is defined by the International Association for the Study of Pain (IASP) as “an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage”. Although pain is always subjective, its causes or syndromes can be classified. One of the most relevant pains is neuropathic pain which severely impairs the overall quality of life, and which is one of the most devastating forms of chronic pain.
- IASP International Association for the Study of Pain
- Neuropathic pain is caused by, for example, injury or dysfunction in a peripheral or central nervous system.
- Disorders with neuropathic pain include, for example, disorders that exhibit hyperalgesic or allodynic symptoms, such as postherpetic neuralgia, trigeminal neuralgia, diabetic neuralgia, and persistent postoperative or posttraumatic pain.
- Neuropathic pain may result from disorders of the peripheral nervous system or the central nervous system (brain and spinal cord).
- neuropathic pain may be divided into peripheral neuropathic pain, central neuropathic pain, or mixed (peripheral and central) neuropathic pain.
- Peripheral nerve injury or dysfunction can result in peripheral neuropathic pain.
- Examples are mononeuropathies (eg, carpal tunnel syndrome, radiculopathy), plexopathies (typically caused by nerve compression, as by a neuroma, tumor, or herniated disk), and polyneuropathies (typically caused by various metabolic neuropathies.
- C-fibers and A-delta fibers unmyelinated and thinly myelinated nerve fibers.
- A-delta fibers unmyelinated and thinly myelinated nerve fibers
- a neuroma may develop at the stump. The neurons become unusually sensitive and develop spontaneous pathological activity, abnormal excitability, and elevated sensitivity to chemical, thermal and mechanical stimuli. This phenomenon is called peripheral sensitization.
- Central neuropathic pain is found in spinal cord injury, multiple sclerosis, and in some cases of stroke.
- the spinothalamic tract (STT) constitutes the major ascending nociceptive pathway.
- STT neurons in the dorsal horn develop an increased background activity, enlarged receptive field and increased responses to afferent impulses, including normally innocuous tactile stimuli. This phenomenon is called central sensitization.
- Central sensitization has been proposed as an important mechanism of persistent neuropathic pain. Non-neural glial cells and the immune response play a prominent role in central sensitization.
- Typical symptoms of neuropathic pain are dysesthesias (spontaneous or evoked burning pain, often with a superimposed lancinating component), but pain may also be deep and aching. Other sensations like; hyperesthesia, hyperalgesia, allodynia (pain due to a normoxious stimulus), and hyperpathia (particularly unpleasant, exaggerated pain response) may also occur. Symptoms are long-lasting, typically persisting after resolution of the primary cause (if one was present) because the CNS has been sensitized and remodeled.
- Peripheral nerve injury provokes a reaction in peripheral immune cells and glia at several different anatomical locations: macrophages and Schwann cells facilitate the wallerian degeneration of axotomized nerve fibers distal to a nerve lesion; an immune response in the dorsal root ganglia (DRGs) is driven by macrophages, lymphocytes and satellite cells; activation of spinal microglia dominates the early glial response in the CNS to peripheral nerve injury, which is followed by activation and proliferation of astrocytes.
- DDGs dorsal root ganglia
- Migraine is a common head pain syndrome, often genetically determined, characterized by generally episodic but often chronic, usually throbbing pain, often unilateral in distribution and often associated with photophobia, phonophobia, osmophobia, nausea and/or vomiting.
- throbbing head pain was wrongly interpreted earlier for the pain to arise from blood vessels; but current research points to a neural origin of the migraine pain.
- Several observations made over the past two decades raised the issue that there is likely to be a central pain mechanism in migraine (Afridi and Goadsby, 2003; Goadsby, 2002).
- NSAIDS neurodepressants
- anticonvulsants e.g. piroxicam
- baclofen e.g. piroxicam
- neuromodulation modalities e.g. opiates
- embodiments of this disclosure provide compounds for the use in the treatment of neuropathic pain and/or neuropathic pain syndromes.
- embodiments of this disclosure provide pharmaceutical compositions, single unit dosage forms, and kits suitable for use in the treatment of neuropathic pain which comprise compounds according to the present disclosure.
- embodiments of this disclosure relate to methods of treating and preventing neuropathic pain which comprise administering to a patient in need of such treatment or prevention a therapeutically or prophylactically effective amount of a compound according to this disclosure.
- embodiments of this disclosure relates to malononitrilamides, or its derivatives, pharmaceutically acceptable salts, solvates, hydrates, stereoisomers, tautomers clathrates, or prodrugs thereof for use in the treatment of neuropathic pain.
- FIG. 1 shows the 50% paw withdrawal threshold (g) after contusion and oral gavage of HR325 and vehicle.
- FIG. 2 shows the 50% paw withdrawal threshold (g) after contusion and oral gavage of HR325, FK778 and vehicle.
- FIG. 3 shows the duration (s) of reactivity to acetone applied to the plantar surface of the hindpaw.
- FIG. 4 shows the 50% paw withdrawal threshold (g) after contusion and oral gavage of HR325 and vehicle
- FIG. 5 shows the duration (s) of reactivity to acetone applied to the plantar surface of the hindpaw.
- FIG. 6 shows the 50% paw withdrawal threshold (g) after constriction of the sciatic nerve and oral gavage of HR325
- FIG. 7 shows the duration (s) of reactivity to acetone applied to the plantar surface of the hind paws after constriction of the sciatic nerve and oral gavage of HR325
- FIG. 8 shows the 50% paw withdrawal threshold (g) after partial ligation of the sciatic nerve and oral gavage of HR325
- FIG. 9 shows the duration (s) of reactivity to acetone applied to the plantar surface of the hind paws after partial ligation of the sciatic nerve and oral gavage of HR325
- malononitrilamides for the treatment of neuropathic pain.
- Neuropathic pain is a pain initiated or caused by a primary lesion or dysfunction in the nervous system.
- neuropathic pain syndromes include postherpetic neuralgia (caused by Herpes Zoster), root avulsions, painful traumatic mononeuropathy, painful polyneuropathy (particularly due to diabetes), central pain syndromes (potentially caused by virtually any lesion at any level of the nervous system), postsurgical pain syndromes (eg, postmastectomy syndrome, postthoracotomy syndrome, phantom pain), and complex regional pain syndrome (reflex sympathetic dystrophy and causalgia).
- postherpetic neuralgia caused by Herpes Zoster
- root avulsions painful traumatic mononeuropathy
- painful polyneuropathy particularly due to diabetes
- central pain syndromes potentially caused by virtually any lesion at any level of the nervous system
- postsurgical pain syndromes eg, postmastectomy syndrome, postthoracotomy syndrome, phantom pain
- complex regional pain syndrome reflex sympathetic dystrophy and causalgia
- the neuropathic pain have typical symptoms like dysesthesias (spontaneous or evoked burning pain, often with a superimposed lancinating component), but pain may also be deep and aching. Other sensations like; hyperesthesia, hyperalgesia, allodynia (pain due to a normoxious stimulus), and hyperpathia (particularly unpleasant, exaggerated pain response) may also occur.
- dysesthesias spontaneous or evoked burning pain, often with a superimposed lancinating component
- Other sensations like; hyperesthesia, hyperalgesia, allodynia (pain due to a normoxious stimulus), and hyperpathia (particularly unpleasant, exaggerated pain response) may also occur.
- Neuropathic pain according to the present disclosure could be divided into “peripheral” (originating in the peripheral nervous system) and “central” (originating in the brain or spinal cord).
- the central neuropathic pain is of a type that has a cause that is selected from the following group of causes:
- infarction e.g. thalamic infarction or brain stem infarction
- brain operations e.g. thalamotomy in cases of motoric disorders
- spinal cord operations e.g. anterolateral cordotomy
- the neuropathic pain is a central neuropathic pain syndrome.
- the central neuropathic pain syndrome is caused by spinal cord injury and/or spinal cord contusion (see example 1 to 3).
- the neuropathic pain is a head pain syndrome caused by central pain mechanisms like in migraine or migraine pain.
- the neuropathic pain is a peripheral neuropathic pain.
- the peripheral neuropathic pain is caused by chronic constriction injury or by ligation of the sciatic nerve (see example 4 and 5).
- the predominantly peripheral neuropathic pain includes a type that is selected from the following types of neuropathic pain and/or has a cause that is selected from the group of the following causes:
- systemic diseases e.g. diabetic neuropathy
- drug-induced lesions e.g. neuropathy due to chemotherapy
- cranial neuralgias e.g., trigeminal neuralgia
- cancer e.g. chemotherapy, irradiation, and surgical interventions
- the compounds used for the treatment of neuropathic pain and/or neuropathic pain syndromes are malononitrilamides or pharmaceutically acceptable salts, solvates, tautomers or stereoisomers thereof.
- the compound is selected from the group consisting of 1(3-methyl-4-trifluoro methylphenyl-carbamoyl)-2-cyclopropyl-2oxo-propionitrile, N-(4-trifluoromethyl)-phenyl-2-cyano-3-hydroxy-hept-2-en-6-in-carboxylic acidamide, 5-(3-butynyl)-N-(4-(trifluoromethyl) phenyl-4-isoxazolecarboxamide and 2-cyano-3-cyclopropyl-3-oxo-(4-cyanophenyl)propionamide or a pharmaceutically acceptable salt, solvate, tautomer or stereoisomer thereof.
- the compound is 1(3-methyl-4-trifluoro methylphenyl-carbamoyl)-2-cyclopropyl-2oxo-propionitrile.
- the compound is N-(4-trifluoromethyl)-phenyl-2-cyano-3-hydroxy-hept-2-en-6-in-carboxylic acidamide.
- the compound has the structure with the formula II or a pharmaceutically acceptable salt thereof.
- compositions can either be commercially purchased or prepared according to the methods described in the publications, patents or patent publications disclosed herein.
- optically pure compositions can be asymmetrically synthesized or resolved using known resolving agents or chiral columns as well as other standard synthetic organic chemistry techniques.
- Compounds used in the disclosure may include compounds that are racemic, stereomerically enriched or stereomerically pure, and pharmaceutically acceptable salts, solvates, stereoisomers, and prodrugs thereof.
- FK778 can be manufactured according to methods described in the U.S. Pat. No. 5,308,865 (see example 14).
- the FK778 may include a conformer and a stereoisomer (see Kobayashi et al.).
- FK778 can be in another tautomer form, and such a tautomer form is also included within the scope of this disclosure.
- FK778 can be either in its enol or keto form, i.e.
- FK778 can be in a solvate, which is included within the scope of the present disclosure.
- the solvate preferably includes a hydrate and an ethanolate.
- Preferred compounds used according to the disclosure are small organic molecules having a molecular weight less than about 1,000 g/mol, and are not proteins, peptides, oligonucleotides, oligosaccharides or other macromolecules.
- the compounds used in the treatment of neuropathic pain according to the present disclosure are administered to the patient after a damage of the nervous system.
- HR325 or FK778 is administered to the patient after a damage of the nervous system.
- the inventors have found that early-stage administration of a compound according to the disclosure, in particular of HR 325 or FK778, to mammalians with neuropathic pain, minimalize the pain and the analgesic effect is maintained for several weeks to months, also without further administration of the compound (see FIG. 1 ).
- Neuropathic chronic pain may be a pain that persists for an extended period time, for example at least for more than one month. It can be a result of a long-term illness or a lingering result of an injury.
- An adequate definition for neuropathic chronic pain can be found at Bogduk, N; Merskey, H (1994). Classification of chronic pain: descriptions of chronic pain syndromes and definitions of pain terms (second ed.). Seattle: IASP Press. p. 212, which is hereby incorporated by reference.
- a compound according to the present disclosure is used as the only physically active compound in the treatment of neuropathic pain without a second active agent.
- the disclosure relates to pharmaceutical compositions for preventing and/or treating neuropathic pain, which comprises a therapeutically effective amount of a compound according to the present disclosure in admixture with a pharmaceutical acceptable carrier or excipient.
- the pharmaceutical composition according to the present disclosure comprises a compound according to the present disclosure and no second active ingredient in the composition.
- laflunimus is used as the sole active agent for the treatment of neuropathic pain or neuropathic pain syndromes.
- laflunimus is used for the treatment of neuropathic pain without an immunomodulatory compound as a second active agent.
- the pharmaceutical composition is used for preventing and/or treating neuropathic pain, whereby the composition comprises a therapeutically effective amount of laflunimus or a physiologically functional derivative thereof in admixture with a pharmaceutical acceptable carrier or excipient.
- the pharmaceutical composition comprises a malononitrilamide selected from the group consisting of (1(3-methyl-4-trifluoro methylphenyl-carbamoyl)-2-cyclopropyl-2oxo-propionitrile), N-(4-trifluoromethyl)-phenyl-2-cyano-3-hydroxy-hept-2-en-6-in-carboxylic acidamide, and 2-cyano-3-cyclopropyl-3-oxo-(4-cyanophenyl)propionamide or a pharmaceutically acceptable salt, solvate, tautomer or stereoisomer thereof.
- a malononitrilamide selected from the group consisting of (1(3-methyl-4-trifluoro methylphenyl-carbamoyl)-2-cyclopropyl-2oxo-propionitrile), N-(4-trifluoromethyl)-phenyl-2-cyano-3-hydroxy-hept-2-en-6-in-carboxylic acidamide, and 2-cyano
- the term “pharmaceutically acceptable salt” encompasses non-toxic acid and base addition salts of the compound to which the term refers.
- Acceptable non-toxic acid addition salts include those derived from organic and inorganic acids or bases know in the art, which include, for example, hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid, methanesulphonic acid, acetic acid, tartaric acid, lactic acid, succinic acid, citric acid, malic acid, maleic acid, sorbic acid, aconitic acid, salicylic acid, phthalic acid, embolic acid, enanthic acid, and the like.
- bases that can be used to prepare pharmaceutically acceptable base addition salts of such acidic compounds are those that form non-toxic base addition salts, i.e., salts containing pharmacologically acceptable cations such as, but not limited to, alkali metal or alkaline earth metal salts and the calcium, magnesium, sodium or potassium salts in particular.
- Suitable organic bases include, but are not limited to, N,N-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumaine (N-methylglucamine), lysine, and procaine.
- solvate means a compound of the present disclosure or a salt thereof that further includes a stoichiometric or non-stoichiometric amount of solvent bound by non-covalent intermolecular forces. Where the solvent is water, the solvate is a hydrate.
- prodrug means a derivative of a compound that can hydrolyze, oxidize, or otherwise react under biological conditions (in vitro or in vivo) to provide the compound.
- prodrugs include, but are not limited to, derivatives of compounds according to the present disclosure that comprise biohydrolyzable moieties such as biohydrolyzable amides, biohydrolyzable esters, biohydrolyzable carbamates, biohydrolyzable carbonates, biohydrolyzable ureides, and biohydrolyzable phosphate analogues.
- prodrugs include derivatives of immunomodulatory compounds of the disclosure that comprise —NO, —NO2, —ONO, or —ONO2 moieties.
- Prodrugs can typically be prepared using well-known methods, such as those described in Burger's Medicinal Chemistry and Drug Discovery, 172-178, 949-982 (Manfred E. Wolff ed., 5th ed. 1995), and Design of Prodrugs (H. Bundgaard ed., Elselvier, New York 1985).
- biohydrolyzable amide As used herein and unless otherwise indicated, the terms “biohydrolyzable amide,” “biohydrolyzable ester,” “biohydrolyzable carbamate,” “biohydrolyzable carbonate,” “biohydrolyzable ureide,” “biohydrolyzable phosphate” mean an amide, ester, carbamate, carbonate, ureide, or phosphate, respectively, of a compound that either: 1) does not interfere with the biological activity of the compound but can confer upon that compound advantageous properties in vivo, such as uptake, duration of action, or onset of action; or 2) is biologically inactive but is converted in vivo to the biologically active compound.
- biohydrolyzable esters include, but are not limited to, lower alkyl esters, lower acyloxyalkyl esters (such as acetoxylmethyl, acetoxyethyl, aminocarbonyloxymethyl, pivaloyloxymethyl, and pivaloyloxyethyl esters), lactonyl esters (such as phthalidyl and thiophthalidyl esters), lower alkoxyacyloxyalkyl esters (such as methoxycarbonyl-oxymethyl, ethoxycarbonyloxyethyl and isopropoxycarbonyloxyethyl esters), alkoxyalkyl esters, choline esters, and acylamino alkyl esters (such as acetamidomethyl esters).
- lower alkyl esters such as acetoxylmethyl, acetoxyethyl, aminocarbonyloxymethyl, pivaloyloxymethyl, and pivaloyloxyethyl est
- biohydrolyzable amides include, but are not limited to, lower alkyl amides, [alpha]-amino acid amides, alkoxyacyl amides, and alkylaminoalkylcarbonyl amides.
- biohydrolyzable carbamates include, but are not limited to, lower alkylamines, substituted ethylenediamines, amino acids, hydroxyalkylamines, heterocyclic and heteroaromatic amines, and polyether amines.
- stereoisomer encompasses all enantiomerically/stereomerically pure and enantiomerically/stereomerically enriched compounds of this disclosure.
- stereomerically pure or “enantiomerically pure” means that a compound comprises one stereoisomer and is substantially free of its counter stereoisomer or enantiomer.
- a compound is stereomerically or enantiomerically pure when the compound contains 80%, 90%, or 95% or more of one stereoisomer and 20%, 10%, or 5% or less of the counter stereoisomer, in certain cases, a compound of the disclosure is considered optically active or stereomerically/enantiomerically pure ⁇ i.e., substantially the R-form or substantially the S-form) with respect to a chiral center when the compound is about 80% ee (enantiomeric excess) or greater, preferably, equal to or greater than 90% ee with respect to a particular chiral center, and more preferably 95% ee with respect to a particular chiral center.
- Various inhibitor compounds of the present disclosure contain one or more chiral centers, and can exist as racemic mixtures of enantiomers or mixtures of diastereomers. This disclosure encompasses the use of stereomerically pure forms of such compounds, as well as the use of mixtures of those forms.
- mixtures comprising equal or unequal amounts of the enantiomers of a particular inhibitor compound of the disclosure may be used in methods and compositions of the disclosure.
- These isomers may be asymmetrically synthesized or resolved using standard techniques such as chiral columns or chiral resolving agents. See, e.g., Jacques, J., et ah, Enantiomers, Racemates and Resolutions (Wiley-Interscience, New York, 1981); Wilen, S. H., et al, Tetrahedron 33:2725 (1977); Eliel, E. L., Stereochemistry of Carbon Compounds (McGraw-Hill, NY, 1962); and Wilen, S. H., Tables of Resolving Agents and Optical Resolutions p. 268 (E.L. Eliel, Ed., Univ. of Notre Dame Press, Notre Dame, Ind., 1972).
- tautomers means isomers of a compound according to the present disclosure that readily interconverts by tautomerization. This reaction commonly results in the formal migration of a hydrogen atom or proton, accompanied by a switch of a single bond and adjacent double bond. Common tautomeric pairs are ketone-enol, ketene-ynol, amide-imidic acid, lactam-lactim, an amide-imidic acid tautomerism in heterocyclic rings, enamine-imine, enamine-enamine, and anomers of reducing sugars in solution interconvert through an intermediate open chain form.
- the compound having formula II can be either in its enol (FK778) or keto form, i.e. 2-cyano-3-oxo-N-[4-(trifluoromethyl) phenyl]-6-heptynamide and such a tautomer form is also included within the scope of this disclosure.
- physiologically functional derivative refers to compounds which are not pharmaceutically active themselves but which are transformed into their pharmaceutical active form in vivo, i.e. in the subject to which the compound is administered.
- physiologically functional derivatives are prodrugs such as those described below in the present application.
- derivative refers to a compound that is derived from a similar compound or a compound that can be imagined to arise from another compound, if one atom is replaced with another atom or group of atoms.
- derivative refers also to a compound that at least theoretically can be formed from the precursor compound (see Oxford Dictionary of Biochemistry and Molecular Biology. Oxford University Press. ISBN 0-19-850673-2.) In advantageous embodiments of the present disclosure the term “derivative” is used for derivatives from laflunimus.
- the disclosure is also directed to the use of compounds of the formula I, II, III, IV or of formula V and of their pharmacologically tolerable salts or physiologically functional derivatives for the production of a medicament for the prevention and treatment of neuropathic pain and neuropathic pain syndromes.
- Methods and uses according to the present disclosure encompass methods of preventing, treating and/or managing neuropathic pain and related syndromes, but are not limited to, postherpetic neuralgia (caused by Herpes Zoster), root avulsions, painful traumatic mononeuropathy, painful polyneuropathy (particularly due to diabetes), central pain syndromes (potentially caused by virtually any lesion at any level of the nervous system), postsurgical pain syndromes (eg, postmastectomy syndrome, postthoracotomy syndrome, phantom pain), and complex regional pain syndrome (reflex sympathetic dystrophy and causalgia).
- neuropathic pain include, but are not limited to, dysesthesias (spontaneous or evoked burning pain, often with a superimposed lancinating component), but pain may also be deep and aching. Other sensations like; hyperesthesia, hyperalgesia, allodynia (pain due to a normoxious stimulus), and hyperpathia (particularly unpleasant, exaggerated pain response).
- a particular route of administration of an compound according to the present disclosure employed for a particular active agent will depend on the active agent itself (e.g., whether it can be administered orally without decomposing prior to entering the blood stream) and the disease being treated.
- An advantageous embodiment of the route of administration for a compound according to the present disclosure is orally. Further routes of administration are known to those of ordinary skill in the art.
- the dosage of therapeutically effective amount of at least one compound varies from and also depends upon the age and condition of each individual patient to be treated.
- the recommended daily dose range of a compound according to the present disclosure for the conditions and disorders described herein lies within the range of from about, a daily dose of about 1 mg-10 g/body, preferable 5 mg-5 g/body and more preferable 10 mg-2 g/body of the active ingredient is generally given for treating this disease, and an average single dose of about 0.5-1 mg, 5 mg, 10 mg, 50 mg, 100 mg, 250 mg, 500 mg, 1 g, 2 g and 3 g is generally administered.
- Daily dose for administration in humans for treating this disease could be in the range of about 0.1-50 mg/kg.
- the term for administering of at least one compound to prevent this disease varies depending on species, and the nature and severity of the condition to be prevented, the compound may usually be administered to humans for a short term or a long term, i.e. for 1 week to 1 year.
- compositions can be used in the preparation of individual, single unit dosage forms.
- the compounds of the present disclosure can be used in the form of pharmaceuticals compositions, for example, in solid, semisolid or liquid form, which contains one or more of the compounds according to the present disclosure as active ingredient associated with pharmaceutically acceptable carriers or excipient suitable for oral, parenteral such as intravenous, intramuscular, intrathecal, subcutaneous, enteral, intrarectal or intranasal administration.
- the active ingredient may be compounded, for example, with the usual non-toxic, pharmaceutically acceptable carriers for tablets, pellets, capsules, suppositories, solutions (saline for example), emulsion, suspensions (olive oil, for example), ointment and any other form suitable for use.
- the carriers which can be used are water, glucose, lactose gum acacia, gelatine, manitol, starch paste, magnesium trisilicate, corn starch, keratin, colloidal silica, potato starch, urea and other carriers suitable for use in manufacturing preparations, in solid, semisolid or liquid form, and in addition auxiliary, stabilizing, thickening and colouring agents and perfumes may be used.
- the active object compound is included in the pharmaceutical composition in an effective amount sufficient to prevent and/or treat the disease.
- Single unit dosage forms of the disclosure are suitable for oral, mucosal (e.g., nasal, sublingual, vaginal, buccal, or rectal), parenteral (e.g., subcutaneous, intravenous, bolus injection, intramuscular, or intraarterial), topical (e.g., eye drops or other ophthalmic preparations), transdermal or transcutaneous administration to a patient.
- mucosal e.g., nasal, sublingual, vaginal, buccal, or rectal
- parenteral e.g., subcutaneous, intravenous, bolus injection, intramuscular, or intraarterial
- topical e.g., eye drops or other ophthalmic preparations
- transdermal or transcutaneous administration e.g., transcutaneous administration to a patient.
- dosage forms include, but are not limited to: tablets; caplets; capsules, such as soft elastic gelatin capsules; cachets; troches; lozenges; dispersions; suppositories; powders; aerosols (e.g., nasal sprays or inhalers); gels; liquid dosage forms suitable for oral or mucosal administration to a patient, including suspensions (e.g., aqueous or non-aqueous liquid suspensions, oil-in-water emulsions, or a water-in-oil liquid emulsions), solutions, and elixirs; liquid dosage forms suitable for parenteral administration to a patient; eye drops or other ophthalmic preparations suitable for topical administration; and sterile solids (e.g., crystalline or amorphous solids) that can be reconstituted to provide liquid dosage forms suitable for parenteral administration to a patient.
- suspensions e.g., aqueous or non-aqueous liquid suspensions, oil-in-water e
- composition, shape, and type of dosage forms of the disclosure will typically vary depending on their use.
- a dosage form used in the acute treatment of a disease may contain larger amounts of one or more of the active agents it comprises than a dosage form used in the chronic treatment of the same disease.
- a parenteral dosage form may contain smaller amounts of one or more of the active agents it comprises than an oral dosage form used to treat the same disease.
- Typical pharmaceutical compositions and dosage forms comprise one or more excipients.
- Suitable excipients are well known to those skilled in the art of pharmacy, and non-limiting examples of suitable excipients are provided herein. Whether a particular excipient is suitable for incorporation into a pharmaceutical composition or dosage form depends on a variety of factors well known in the art including, but not limited to, the way in which the dosage form will be administered to a patient.
- oral dosage forms such as tablets may contain excipients not suited for use in parenteral dosage forms.
- the suitability of a particular excipient may also depend on the specific active agents in the dosage form. For example, the decomposition of some active agents may be accelerated by some excipients such as lactose, or when exposed to water.
- lactose-free means that the amount of lactose present, if any, is insufficient to substantially increase the degradation rate of an active ingredient.
- Lactose-free compositions of the disclosure can comprise excipients that are well known in the art and are listed, for example, in the U.S. Pharmacopeia (USP) 25-NF20 (2002).
- lactose-free compositions comprise active ingredients, a binder/filler, and a lubricant in pharmaceutically compatible and pharmaceutically acceptable amounts.
- Preferred lactose-free dosage forms comprise active ingredients, microcrystalline cellulose, pre-gelatinized starch, and magnesium stearate.
- This disclosure further encompasses anhydrous pharmaceutical compositions and dosage forms comprising active ingredients, since water can facilitate the degradation of some compounds.
- water e.g., 5%
- water is widely accepted in the pharmaceutical arts as a means of simulating long-term storage in order to determine characteristics such as shelf-life or the stability of formulations over time. See, e.g., Jens T. Carstensen, Drug Stability: Principles & Practice, 2d. Ed., Marcel Dekker, NY, N.Y., 1995, pp. 379-80.
- water and heat accelerate the decomposition of some compounds.
- the effect of water on a formulation can be of great significance since moisture and/or humidity are commonly encountered during manufacture, handling, packaging, storage, shipment, and use of formulations.
- Anhydrous pharmaceutical compositions and dosage forms of the disclosure can be prepared using anhydrous or low moisture containing ingredients and low moisture or low humidity conditions.
- Pharmaceutical compositions and dosage forms that comprise lactose and at least one active ingredient that comprise a primary or secondary amine are preferably anhydrous if substantial contact with moisture and/or humidity during manufacturing, packaging, and/or storage is expected.
- An anhydrous pharmaceutical composition should be prepared and stored such that its anhydrous nature is maintained.
- anhydrous compositions are preferably packaged using materials known to prevent exposure to water such that they can be included in suitable formulary kits. Examples of suitable packaging include, but are not limited to, hermetically sealed foils, plastics, unit dose containers (e.g. vials), blister packs, and strip packs.
- compositions and dosage forms that comprise one or more compounds that reduce the rate by which an active ingredient will decompose.
- compounds which are referred to herein as “stabilizers,” include, but are not limited to, antioxidants such as ascorbic acid, pH buffers, or salt buffers.
- the amounts and specific types of active agents in a dosage form may differ depending on factors such as, but not limited to, the route by which it is to be administered to patients.
- typical dosage forms of the disclosure comprise a compound according to the present disclosure or a pharmaceutically acceptable salt, solvate, hydrate, stereoisomer, clathrate, or prodrug thereof in an amount of from about 0.10 to about 150 mg.
- Typical dosage forms comprise a compound according to the present disclosure or a pharmaceutically acceptable salt, solvate, hydrate, stereoisomer, clathrate, or prodrug thereof in an amount of about 0.1, 1, 2, 5, 7.5, 10, 12.5, 15, 17.5, 20, 25, 50, 100, 150 or 200 mg.
- a preferred dosage form comprises 4-(amino)-2-(2,6-dioxo(3-piperidyl))-isoindoline-1,3-dione in an amount of about 1, 2, 5, 10, 25 or 50 mg.
- a preferred dosage form comprises 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione in an amount of about 5, 10, 25 or 50 mg.
- compositions of the disclosure that are suitable for oral administration can be presented as discrete dosage forms, such as, but are not limited to, tablets (e.g., chewable tablets), caplets, capsules, and liquids (e.g., flavored syrups).
- dosage forms contain predetermined amounts of active ingredients, and may be prepared by methods of pharmacy well known to those skilled in the art. See generally, Remington's Pharmaceutical Sciences, 18th ed., Mack Publishing, Easton Pa. (1990).
- Typical oral dosage forms of the disclosure are prepared by combining the active ingredients in an intimate admixture with at least one excipient according to conventional pharmaceutical compounding techniques.
- Excipients can take a wide variety of forms depending on the form of preparation desired for administration.
- excipients suitable for use in oral liquid or aerosol dosage forms include, but are not limited to, water, glycols, oils, alcohols, flavoring agents, preservatives, and coloring agents.
- excipients suitable for use in solid oral dosage forms ⁇ e.g., powders, tablets, capsules, and caplets) include, but are not limited to, starches, sugars, micro-crystalline cellulose, diluents, granulating agents, lubricants, binders, and disintegrating agents.
- tablets and capsules represent the most advantageous oral dosage unit forms, in which case solid excipients are employed. If desired, tablets can be coated by standard aqueous or nonaqueous techniques. Such dosage forms can be prepared by any of the methods of pharmacy. In general, pharmaceutical compositions and dosage forms are prepared by uniformly and intimately admixing the active ingredients with liquid carriers, finely divided solid carriers, or both, and then shaping the product into the desired presentation if necessary.
- a tablet can be prepared by compression or molding.
- Compressed tablets can be prepared by compressing in a suitable machine the active ingredients in a free-flowing form such as powder or granules, optionally mixed with an excipient.
- Molded tablets can be made by molding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent.
- excipients that can be used in oral dosage forms of the disclosure include, but are not limited to, binders, fillers, disintegrants, and lubricants.
- Binders suitable for use in pharmaceutical compositions and dosage forms include, but are not limited to, corn starch, potato starch, or other starches, gelatin, natural and synthetic gums such as acacia, sodium alginate, alginic acid, other alginates, powdered tragacanth, guar gum, cellulose and its derivatives ⁇ e.g., ethyl cellulose, cellulose acetate, carboxymethyl cellulose calcium, sodium carboxymethyl cellulose), polyvinyl pyrrolidone, methyl cellulose, pre-gelatinized starch, hydroxypropyl methyl cellulose, ⁇ e.g., Nos. 2208, 2906, 2910), microcrystalline cellulose, and mixtures thereof.
- Suitable forms of microcrystalline cellulose include, but are not limited to, the materials sold as AVICEL-PH-101, AVICEL-PH-103 AVICEL RC-581, AVICEL-PH-105 (available from FMC Corporation, American Viscose Division, Avicel Sales, Marcus Hook, PA), and mixtures thereof.
- a specific binder is a mixture of microcrystalline cellulose and sodium carboxymethyl cellulose sold as AVICEL RC-581.
- Suitable anhydrous or low moisture excipients or additives include AVICEL-PH-103TM and Starch 1500 LM.
- fillers suitable for use in the pharmaceutical compositions and dosage forms disclosed herein include, but are not limited to, talc, calcium carbonate (e.g., granules or powder), microcrystalline cellulose, powdered cellulose, dextrates, kaolin, mannitol, silicic acid, sorbitol, starch, pre-gelatinized starch, and mixtures thereof.
- the binder or filler in pharmaceutical compositions of the disclosure is typically present in from about 50 to about 99 weight percent of the pharmaceutical composition or dosage form.
- Disintegrants are used in the compositions of the disclosure to provide tablets that disintegrate when exposed to an aqueous environment. Tablets that contain too much disintegrant may disintegrate in storage, while those that contain too little may not disintegrate at a desired rate or under the desired conditions. Thus, a sufficient amount of disintegrant that is neither too much nor too little to detrimentally alter the release of the active ingredients should be used to form solid oral dosage forms of the disclosure.
- the amount of disintegrant used varies based upon the type of formulation, and is readily discernible to those of ordinary skill in the art.
- Typical pharmaceutical compositions comprise from about 0.5 to about 15 weight percent of disintegrant, preferably from about 1 to about 5 weight percent of disintegrant.
- Disintegrants that can be used in pharmaceutical compositions and dosage forms of the disclosure include, but are not limited to, agar-agar, alginic acid, calcium carbonate, microcrystalline cellulose, croscarmellose sodium, crospovidone, polacrilin potassium, sodium starch glycolate, potato or tapioca starch, other starches, pre-gelatinized starch, other starches, clays, other algins, other celluloses, gums, and mixtures thereof.
- Lubricants that can be used in pharmaceutical compositions and dosage forms of the disclosure include, but are not limited to, calcium stearate, magnesium stearate, mineral oil, light mineral oil, glycerin, sorbitol, mannitol, polyethylene glycol, other glycols, stearic acid, sodium lauryl sulfate, talc, hydrogenated vegetable oil (e.g., peanut oil, cottonseed oil, sunflower oil, sesame oil, olive oil, corn oil, and soybean oil), zinc stearate, ethyl oleate, ethyl laureate, agar, and mixtures thereof.
- calcium stearate e.g., magnesium stearate, mineral oil, light mineral oil, glycerin, sorbitol, mannitol, polyethylene glycol, other glycols, stearic acid, sodium lauryl sulfate, talc
- hydrogenated vegetable oil e.g., peanut oil, cottonseed oil
- Additional lubricants include, for example, a syloid silica gel (AEROSIL200, manufactured by W.R. Grace Co. of Baltimore, Md.), a coagulated aerosol of synthetic silica (marketed by Degussa Co. of Piano, Tex.), CAB-O-SIL (a pyrogenic silicon dioxide product sold by Cabot Co. of Boston, Mass.), and mixtures thereof. If used at all, lubricants are typically used in an amount of less than about 1 weight percent of the pharmaceutical compositions or dosage forms into which they are incorporated.
- AEROSIL200 a syloid silica gel
- a coagulated aerosol of synthetic silica marketed by Degussa Co. of Piano, Tex.
- CAB-O-SIL a pyrogenic silicon dioxide product sold by Cabot Co. of Boston, Mass.
- a preferred solid oral dosage form of the disclosure comprises a compound of the disclosure, anhydrous lactose, microcrystalline cellulose, polyvinylpyrrolidone, stearic acid, colloidal anhydrous silica, and gelatin.
- Active ingredients of the disclosure can be administered by controlled release means or by delivery devices that are well known to those of ordinary skill in the art. Examples include, but are not limited to, those described in U.S. Pat. Nos. 3,845,770; 3,916,899; 3,536,809; 3,598,123; and 4,008,719, 5,674,533, 5,059,595, 5,591,767, 5,120,548, 5,073,543, 5,639,476, 5,354,556, and 5,733,566, each of which is incorporated herein by reference.
- Such dosage forms can be used to provide slow or controlled-release of one or more active ingredients using, for example, hydropropylmethyl cellulose, other polymer matrices, gels, permeable membranes, osmotic systems, multilayer coatings, microparticles, liposomes, microspheres, or a combination thereof to provide the desired release profile in varying proportions.
- Suitable controlled-release formulations known to those of ordinary skill in the art, including those described herein can be readily selected for use with the active ingredients of the disclosure.
- the disclosure thus encompasses single unit dosage forms suitable for oral administration such as, but not limited to, tablets, capsules, gelcaps, and caplets that are adapted for controlled-release.
- controlled-release pharmaceutical products have a common goal of improving drug therapy over that achieved by their non-controlled counterparts.
- the use of an optimally designed controlled-release preparation in medical treatment is characterized by a minimum of drug substance being employed to cure or control the condition in a minimum amount of time.
- Advantages of controlled-release formulations include extended activity of the drug, reduced dosage frequency, and increased patient compliance.
- controlled-release formulations can be used to affect the time of onset of action or other characteristics, such as blood levels of the drug, and can thus affect the occurrence of side (e.g., adverse) effects.
- Controlled-release formulations are designed to initially release an amount of drug (active ingredient) that promptly produces the desired therapeutic effect, and gradually and continually release of other amounts of drug to maintain this level of therapeutic or prophylactic effect over an extended period of time.
- the drug In order to maintain this constant level of drug in the body, the drug must be released from the dosage form at a rate that will replace the amount of drug being metabolized and excreted from the body.
- Controlled-release of an active ingredient can be stimulated by various conditions including, but not limited to, pH, temperature, enzymes, water, or other physiological conditions or compounds.
- Parenteral dosage forms can be administered to patients by various routes including, but not limited to, subcutaneous, intravenous (including bolus injection), intramuscular, and intraarterial. Because their administration typically bypasses patients' natural defenses against contaminants, parenteral dosage forms are preferably sterile or capable of being sterilized prior to administration to a patient. Examples of parenteral dosage forms include, but are not limited to, solutions ready for injection, dry products ready to be dissolved or suspended in a pharmaceutically acceptable vehicle for injection, suspensions ready for injection, and emulsions. Suitable vehicles that can be used to provide parenteral dosage forms of the disclosure are well known to those skilled in the art.
- Examples include, but are not limited to: Water for Injection USP; aqueous vehicles such as, but not limited to, Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, and Lactated Ringer's Injection; water-miscible vehicles such as, but not limited to, ethyl alcohol, polyethylene glycol, and polypropylene glycol; and non-aqueous vehicles such as, but not limited to, corn oil, cottonseed oil, peanut oil, sesame oil, ethyl oleate, isopropyl myristate, and benzyl benzoate.
- aqueous vehicles such as, but not limited to, Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, and Lactated Ringer's Injection
- water-miscible vehicles such as, but not limited to, ethyl alcohol, polyethylene glycol
- cyclodextrin and its derivatives can be used to increase the solubility of a compound of the disclosure and its derivatives. See, e.g., U.S. Pat. No. 5,134,127, which is incorporated herein by reference.
- Topical and mucosal dosage forms of the disclosure include, but are not limited to, sprays, aerosols, solutions, emulsions, suspensions, eye drops or other ophthalmic preparations, or other forms known to one of skill in the art. See, e.g., Remington's Pharmaceutical Sciences, 16th and 18th eds., Mack Publishing, Easton Pa. (1980 & 1990); and Introduction to Pharmaceutical Dosage Forms, 4th ed., Lea & Febiger, Philadelphia (1985). Dosage forms suitable for treating mucosal tissues within the oral cavity can be formulated as mouthwashes or as oral gels.
- Suitable excipients ⁇ e.g. carriers and diluents
- other materials that can be used to provide topical and mucosal dosage forms encompassed by this disclosure are well known to those skilled in the pharmaceutical arts, and depend on the particular tissue to which a given pharmaceutical composition or dosage form will be applied.
- typical excipients include, but are not limited to, water, acetone, ethanol, ethylene glycol, propylene glycol, butane-1,3-diol, isopropyl myristate, isopropyl palmitate, mineral oil, and mixtures thereof to form solutions, emulsions or gels, which are non-toxic and pharmaceutically acceptable.
- Moisturizers or humectants can also be added to pharmaceutical compositions and dosage forms if desired. Examples of such additional ingredients are well known in the art. See, e.g., Remington's Pharmaceutical Sciences, 16th and 18th eds., Mack Publishing, Easton Pa. (1980 & 1990).
- the pH of a pharmaceutical composition or dosage form may also be adjusted to improve delivery of one or more active ingredients.
- the polarity of a solvent carrier, its ionic strength, or tonicity can be adjusted to improve delivery.
- Compounds such as stearates can also be added to pharmaceutical compositions or dosage forms to advantageously alter the hydrophilicity or lipophilicity of one or more active ingredients so as to improve delivery.
- stearates can serve as a lipid vehicle for the formulation, as an emulsifying agent or surfactant, and as a delivery-enhancing or penetration-enhancing agent.
- Different salts, hydrates or solvates of the active ingredients can be used to further adjust the properties of the resulting composition.
- active ingredients of the disclosure are preferably not administered to a patient at the same time or by the same route of administration.
- This disclosure therefore encompasses kits which, when used by the medical practitioner, can simplify the administration of appropriate amounts of active ingredients to a patient.
- kits encompassed by this disclosure can further comprise additional active agents.
- additional active agents include, but are not limited to, those disclosed herein (see, e.g., section 4.2).
- Kits of the disclosure can further comprise devices that are used to administer the active ingredients. Examples of such devices include, but are not limited to, syringes, drip bags, patches, and inhalers.
- a kit of the disclosure contains laflunimus and no additional immunomodulatory compound.
- Kits of the disclosure can further comprise cells or blood for transplantation as well as pharmaceutically acceptable vehicles that can be used to administer one or more active ingredients.
- the kit can comprise a sealed container of a suitable vehicle in which the active ingredient can be dissolved to form a particulate-free sterile solution that is suitable for parenteral administration.
- Examples of pharmaceutically acceptable vehicles include, but are not limited to: Water for Injection USP; aqueous vehicles such as, but not limited to, Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, and Lactated Ringer's Injection; water-miscible vehicles such as, but not limited to, ethyl alcohol, polyethylene glycol, and polypropylene glycol; and non-aqueous vehicles such as, but not limited to, corn oil, cottonseed oil, peanut oil, sesame oil, ethyl oleate, isopropyl myristate, and benzyl benzoate.
- aqueous vehicles such as, but not limited to, Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, and Lactated Ringer's Injection
- water-miscible vehicles such as, but not limited to, ethyl alcohol
- Group 1 SCI+vehicle (1.5% CMC in sterile water) by gavage for 7 days, from DPO 1 till DPO 7
- Group 2 SCI+HR 325 (10 mg/kg/day) in vehicle by gavage for 7 days, from DPO 1 till DPO 7
- Group 3 SCI+RR 325 (20 mg/kg/day) in vehicle by gavage for 7 days, from DPO 1 till DPO 7
- Group 4 SCI+HR 325 (30 mg/kg/day) in vehicle by gavage for 7 days, from DPO 1 till DPO 7
- the mechanical sensitivity response was measured as the direct pressure stimulus required eliciting foot withdrawal in nonrestrained conditions. All tests were conducted in the morning between 7:30 and 10:30 am and the person performing the behavioral tests was blinded to the experimental groups. Animals were habituated to the testing apparatus for at least 20 min before testing. Each animal was subjected to the stimulation of a series of von Frey filaments ranging from 0.4 to 15 g (log force 3.61, 3.84, 4.08, 4.31, 4.56, 4.74, 4.93 and 5.18) using the Up-Down paradigm according to Chaplan (Chaplan et al., 1994). The selected von Frey filament was pressed against the plantar surface of the hind paw to the point of 30° bending for 3 s. Paw withdrawal response was considered as the positive response. The 50% threshold force needed for paw withdrawal was calculated for both hind paws of each rat and the mean value of both hind paws was used to represent the mechanical sensitivity of this animal.
- HR325 and FK778 treatment can both reverse central neuropathic pain induced by severe spinal cord contusion injury in the rat.
- Group 1 SCI+vehicle (1.5% CMC in sterile water) by gavage for 7 days, from DPO 28 till DPO 35
- Group 2 SCI+HR 325 (10 mg/kg/day) in vehicle by gavage for 7 days, from DPO 28 till DPO 35
- Group 3 SCI+FK 778 (10 mg/kg/day) in vehicle by gavage for 7 day, from DPO 28 till DPO 35
- the mechanical sensitivity (indicated by the 50% threshold force for paw withdrawals) was determined by the Up-Down method using von Frey filaments. All rats were baseline tested before surgery and tested again on day 28 post surgery, because this is the first time point at which all rats can sit with the hind paws in plantar position. At baseline all animals reached the maximal 50% threshold force of 15 g, as consequence there were no differences between the two groups. As expected, all animals showed severe mechanical hypersensitivity at DPO 28, the withdrawal threshold dropped from 15 grams before injury to 2.7, 3.0 and 3.1 grams in vehicle control animals, HR-325 treated animals and FK-778 treated animals, respectively. Then from DPO 28 till DPO 35 we started the oral treatment with HR-325, FK-778 or vehicle which tremendously affected the mechanical hypersensitivity.
- the acetone test was used for the determination of the reactivity to a cold chemical stimulus.
- the obtained results show clearly that before injury the acetone does not evoke any reaction at all when applied to the plantar surface of the hind paws.
- all animals showed a clear reaction to the acetone exposure.
- the following 7 days up to DPO 35 the treatment started with either HR-325, FK-778 or vehicle. As a consequence of the treatment the first significant differences between the treatment groups became obvious at DPO 35.
- HR325 treatment can reverse chronic central neuropathic pain three months after spinal cord contusion injury.
- Group 1 SCI+vehicle (1.5% CMC in sterile water) by gavage for 7 days, from DPO 84 till DPO 91
- Group 2 SCI+HR 325 (10 mg/kg/day) in vehicle by gavage for 7 days, from DPO 84 till DPO 91
- the mechanical sensitivity (indicated by the 50% threshold force for paw withdrawals) was determined by the Up-Down method using von Frey filaments. All rats were baseline tested before surgery and tested again on day 28 post surgery, because this is the first time point at which all rats can sit with the hind paws in plantar position. At baseline all animals reached the maximal 50% threshold force of 15 g, as consequence there were no differences between the two groups. As expected, all animals showed severe mechanical hypersensitivity at DPO 28, the withdrawal threshold dropped from 15 grams before injury to 3.2 and 2.7 grams in vehicle control animals and HR-325 treated animals, respectively. Thereafter the 50% threshold force remained stable for the next two months up to DPO84 at which the oral treatment with either HR-325 or vehicle was started.
- the acetone test was used for the determination of the reactivity to a cold chemical stimulus.
- the obtained results show clearly that before injury the acetone does not evoke any reaction at all when applied to the plantar surface of the hind paws.
- all animals showed a clear reaction to the acetone exposure.
- the following 2 months up to DPO 84 the reaction to the acetone exposure remained unchanged.
- the 7 days oral treatment started with either HR-325 or vehicle.
- HR-325 can reverse a chronic cold allodynia caused by spinal cord trauma even after lasting 3 months.
- HR-325 treatment i.e. 10, 20 and 30 mg/kg/d
- Laflunimus (HR-325) and FK-778 treatment are able to reverse both mechanical- and thermal allodynia after spinal cord injury.
- HR-325 treatment can reverse spinal cord trauma indiced mechanical- and cold allodynia that is ongoing for 3 months.
- HR325 treatment can attenuate peripheral neuropathic pain after chronic constriction injury (CCI) of the sciatic nerve.
- CCI chronic constriction injury
- the mechanical sensitivity response was measured as the direct pressure stimulus required eliciting foot withdrawal in nonrestrained conditions. Animals were habituated to the testing apparatus for at least 20 min before testing. Each animal was subjected to the stimulation of a series of von Frey filaments ranging from 1.0 to 60 g using the Up-Down paradigm according to Chaplan (Chaplan et al., 1994). The selected von Frey filament was pressed against the plantar surface of the hind paw to the point of 30° bending for 3 s. Paw withdrawal response was considered as the positive response. The 50% threshold force needed for paw withdrawal was calculated for both hind paws of each rat.
- the mechanical sensitivity (indicated by the 50% threshold force for paw withdrawals) was determined by the Up-Down method using von Frey filaments. All rats were baseline tested before surgery and tested again on day 7 and 14 post surgery. At baseline all animals reached the maximal 50% threshold force of 60 g in both the contra- and ipsilateral paw. As expected, all animals showed severe mechanical hypersensitivity in the ipsilateral paw at DPO 7 and DPO 14. The withdrawal threshold dropped from 60 grams before injury to 10 grams 14 days after injury, which was significantly lower when compared to the contralateral paw. Then from DPO 14 till DPO 21 the oral treatment with HR-325 (black bar; FIG. 6 ) was given.
- HR325 treatment can attenuate peripheral neuropathic pain after partial ligation of the sciatic nerve.
- DPO 14 Fourteen days (DPO 14) after injury, all individual rats were treated daily with FIR-325 for 7 days up to DPO 21.
- the mechanical sensitivity (indicated by the 50% threshold force for paw withdrawals) was determined by the Up-Down method using von Frey filaments. All rats were baseline tested before surgery and tested again on day 7 and 14 post surgery. At baseline all animals reached the maximal 50% threshold force of 60 g in both the contra- and ipsilateral paw. As expected, all animals showed severe mechanical hypersensitivity in the ipsilateral paw at DPO 7 and DPO 14. The withdrawal threshold dropped from 60 grams before injury to 19 grams 14 days after injury, which was significantly lower when compared to the contralateral paw. Then from DPO 14 till DPO 21 the oral treatment with HR-325 (black bar; FIG. 8 ) was given.
- the acetone test was used for the determination of the reactivity to a cold chemical stimulus.
- the obtained results show clearly that before injury the acetone does not evoke any reaction at all when applied to the plantar surface of the hind paws.
- DPO 7 and DPO 14 most animals showed a clear reaction to the acetone exposure in the ipsilateral paw, an average reaction time of 4 and 8 seconds respectively. Since the contralateral paw did not react at all a statistically significant difference was noted between the two hind paws.
- the following 7 days up to DPO 21 the animals were treated with daily 10 mg/kg HR-325 (black bar; FIG. 9 ). As a consequence of the treatment the reactivity to the acetone completely diminished in the ipsilateral paw.
- One week later at DPO 28 the animals did still not show any reactivity to the acetone exposure Thus, the cold chemical stimulus was not painful anymore (see FIG. 9 ).
- the neuropathic pain syndrome according to the present disclosure may be postherpetic neuralgia (caused by Herpes Zoster), root avulsions, painful traumatic mononeuropathy, painful polyneuropathy (particularly due to diabetes), central pain syndromes (potentially caused by virtually any lesion at any level of the nervous system), postsurgical pain syndromes (eg, postmastectomy syndrome, postthoracotomy syndrome, phantom pain), and complex regional pain syndrome (reflex sympathetic dystrophy and causalgia).
- the neuropathic pain is a central pain syndrome caused by spinal cord injury.
- the neuropathic pain is a central pain syndrome caused by a spinal cord contusion.
- compositions for the use in the treatment of neuropathic pain and neuropathic pain syndromes comprising a malononitrilamide in free form or in the form of pharmaceutically acceptable salt or physiologically functional derivative, together with pharmaceutically acceptable diluents or carriers.
- compositions for the use in the treatment of neuropathic pain and neuropathic pain syndromes comprising a compound of formula II in free form or in the form of pharmaceutically acceptable salt or physiologically functional derivative, together with pharmaceutically acceptable diluents or carriers.
- compositions for the use in the treatment of neuropathic pain and neuropathic pain syndromes comprising a compound of one of the compounds with the formula II to V in free form or in the form of pharmaceutically acceptable salt or physiologically functional derivative, together with pharmaceutically acceptable diluents or carriers.
- compositions for preventing and/or treating neuropathic pain and neuropathic pain syndromes which comprises a therapeutically effective amount of a malononitrilamide or a physiologically functional derivative thereof in admixture with a pharmaceutical acceptable carrier or excipient.
- compositions for preventing and/or treating neuropathic pain and neuropathic pain syndromes which comprises a therapeutically effective amount of a compound with the formula II or a physiologically functional derivative thereof in admixture with a pharmaceutical acceptable carrier or excipient.
- compositions for preventing and/or treating neuropathic pain and neuropathic pain syndromes which comprises a therapeutically effective amount of a compound of one of the compounds with the formula II to V or a physiologically functional derivative thereof in admixture with a pharmaceutical acceptable carrier or excipient.
- the treated neuropathic pain syndrome may be postherpetic neuralgia (caused by Herpes Zoster), root avulsions, painful traumatic mononeuropathy, painful polyneuropathy (particularly due to diabetes), central pain syndromes (potentially caused by virtually any lesion at any level of the nervous system), postsurgical pain syndromes (eg, postmastectomy syndrome, postthoracotomy syndrome, phantom pain), and complex regional pain syndrome (reflex sympathetic dystrophy and causalgia).
- the neuropathic pain is a central pain syndrome caused by spinal cord injury.
- the neuropathic pain is a central pain syndrome caused by spinal cord contusion.
Landscapes
- Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Pain & Pain Management (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Neurology (AREA)
- Biomedical Technology (AREA)
- Neurosurgery (AREA)
- Engineering & Computer Science (AREA)
- Rheumatology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Provided herein are compounds and pharmaceutical compositions for use in the treatment of neuropathic pain and the neuropathic pain syndromes.
Description
- The technology provided herein relates to the novel use of malononitrilamides and its derivatives in the treatment of neuropathic pain and neuropathic pain syndromes.
- The treatment of pain conditions is of great importance in medicine. There is currently a world-wide need for additional pain therapy. The pressing requirement for a specific treatment of pain conditions is documented in the large number of scientific works that have appeared recently in the field of applied analgesics.
- Pain is defined by the International Association for the Study of Pain (IASP) as “an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage”. Although pain is always subjective, its causes or syndromes can be classified. One of the most relevant pains is neuropathic pain which severely impairs the overall quality of life, and which is one of the most devastating forms of chronic pain.
- Neuropathic pain is caused by, for example, injury or dysfunction in a peripheral or central nervous system. Disorders with neuropathic pain include, for example, disorders that exhibit hyperalgesic or allodynic symptoms, such as postherpetic neuralgia, trigeminal neuralgia, diabetic neuralgia, and persistent postoperative or posttraumatic pain.
- Neuropathic pain may result from disorders of the peripheral nervous system or the central nervous system (brain and spinal cord). Thus, neuropathic pain may be divided into peripheral neuropathic pain, central neuropathic pain, or mixed (peripheral and central) neuropathic pain.
- Peripheral nerve injury or dysfunction can result in peripheral neuropathic pain. Examples are mononeuropathies (eg, carpal tunnel syndrome, radiculopathy), plexopathies (typically caused by nerve compression, as by a neuroma, tumor, or herniated disk), and polyneuropathies (typically caused by various metabolic neuropathies. Under normal circumstances, pain sensations are carried by unmyelinated and thinly myelinated nerve fibers, designated C-fibers and A-delta fibers respectively. After a peripheral nervelesion, a neuroma may develop at the stump. The neurons become unusually sensitive and develop spontaneous pathological activity, abnormal excitability, and elevated sensitivity to chemical, thermal and mechanical stimuli. This phenomenon is called peripheral sensitization.
- Central neuropathic pain is found in spinal cord injury, multiple sclerosis, and in some cases of stroke. In the spinal cord the spinothalamic tract (STT) constitutes the major ascending nociceptive pathway. As a consequence of ongoing spontaneous activity arising in the periphery, STT neurons in the dorsal horn develop an increased background activity, enlarged receptive field and increased responses to afferent impulses, including normally innocuous tactile stimuli. This phenomenon is called central sensitization. Central sensitization has been proposed as an important mechanism of persistent neuropathic pain. Non-neural glial cells and the immune response play a prominent role in central sensitization.
- Typical symptoms of neuropathic pain are dysesthesias (spontaneous or evoked burning pain, often with a superimposed lancinating component), but pain may also be deep and aching. Other sensations like; hyperesthesia, hyperalgesia, allodynia (pain due to a normoxious stimulus), and hyperpathia (particularly unpleasant, exaggerated pain response) may also occur. Symptoms are long-lasting, typically persisting after resolution of the primary cause (if one was present) because the CNS has been sensitized and remodeled.
- Peripheral nerve injury provokes a reaction in peripheral immune cells and glia at several different anatomical locations: macrophages and Schwann cells facilitate the wallerian degeneration of axotomized nerve fibers distal to a nerve lesion; an immune response in the dorsal root ganglia (DRGs) is driven by macrophages, lymphocytes and satellite cells; activation of spinal microglia dominates the early glial response in the CNS to peripheral nerve injury, which is followed by activation and proliferation of astrocytes. More recently, a specific role of the immune response and CNS-infiltrating T lymphocytes in nerve injury induced neuropathic pain development and maintenance has been identified (Cao and DeLeo, 2008; Costigan et al., 2009; Zenonos and Kim).
- Migraine is a common head pain syndrome, often genetically determined, characterized by generally episodic but often chronic, usually throbbing pain, often unilateral in distribution and often associated with photophobia, phonophobia, osmophobia, nausea and/or vomiting. The common occurrence of throbbing head pain was wrongly interpreted earlier for the pain to arise from blood vessels; but current research points to a neural origin of the migraine pain. Several observations made over the past two decades raised the issue that there is likely to be a central pain mechanism in migraine (Afridi and Goadsby, 2003; Goadsby, 2002).
- Current therapy for neuropathic pain aims only at reducing symptoms, generally by suppressing neuronal activity. Thus treatment options, e.g. NSAIDS, antidepressants, anticonvulsants, baclofen, neuromodulation modalities or opiates, predominantly alleviate symptoms via nonspecific reduction of neuronal hyperexcitability rather than targeting the specific etiologies.
- Therefore, effective and improved methods and compounds that are able to treat neuropathic pain are needed.
- In a first aspect, embodiments of this disclosure provide compounds for the use in the treatment of neuropathic pain and/or neuropathic pain syndromes.
- In still another aspect, embodiments of this disclosure provide pharmaceutical compositions, single unit dosage forms, and kits suitable for use in the treatment of neuropathic pain which comprise compounds according to the present disclosure.
- In a further aspect, embodiments of this disclosure relate to methods of treating and preventing neuropathic pain which comprise administering to a patient in need of such treatment or prevention a therapeutically or prophylactically effective amount of a compound according to this disclosure.
- Further, embodiments of this disclosure relates to malononitrilamides, or its derivatives, pharmaceutically acceptable salts, solvates, hydrates, stereoisomers, tautomers clathrates, or prodrugs thereof for use in the treatment of neuropathic pain.
-
FIG. 1 shows the 50% paw withdrawal threshold (g) after contusion and oral gavage of HR325 and vehicle. -
FIG. 2 shows the 50% paw withdrawal threshold (g) after contusion and oral gavage of HR325, FK778 and vehicle. -
FIG. 3 shows the duration (s) of reactivity to acetone applied to the plantar surface of the hindpaw. -
FIG. 4 shows the 50% paw withdrawal threshold (g) after contusion and oral gavage of HR325 and vehicle -
FIG. 5 shows the duration (s) of reactivity to acetone applied to the plantar surface of the hindpaw. -
FIG. 6 shows the 50% paw withdrawal threshold (g) after constriction of the sciatic nerve and oral gavage of HR325 -
FIG. 7 shows the duration (s) of reactivity to acetone applied to the plantar surface of the hind paws after constriction of the sciatic nerve and oral gavage of HR325 -
FIG. 8 shows the 50% paw withdrawal threshold (g) after partial ligation of the sciatic nerve and oral gavage of HR325 -
FIG. 9 shows the duration (s) of reactivity to acetone applied to the plantar surface of the hind paws after partial ligation of the sciatic nerve and oral gavage of HR325 - Disclosed herein is the use of malononitrilamides for the treatment of neuropathic pain.
- Neuropathic pain according to the present disclosure is a pain initiated or caused by a primary lesion or dysfunction in the nervous system.
- For example, neuropathic pain syndromes include postherpetic neuralgia (caused by Herpes Zoster), root avulsions, painful traumatic mononeuropathy, painful polyneuropathy (particularly due to diabetes), central pain syndromes (potentially caused by virtually any lesion at any level of the nervous system), postsurgical pain syndromes (eg, postmastectomy syndrome, postthoracotomy syndrome, phantom pain), and complex regional pain syndrome (reflex sympathetic dystrophy and causalgia).
- In advantageous embodiments of the present disclosure, the neuropathic pain have typical symptoms like dysesthesias (spontaneous or evoked burning pain, often with a superimposed lancinating component), but pain may also be deep and aching. Other sensations like; hyperesthesia, hyperalgesia, allodynia (pain due to a normoxious stimulus), and hyperpathia (particularly unpleasant, exaggerated pain response) may also occur.
- Neuropathic pain according to the present disclosure could be divided into “peripheral” (originating in the peripheral nervous system) and “central” (originating in the brain or spinal cord).
- In advantageous embodiments, the central neuropathic pain is of a type that has a cause that is selected from the following group of causes:
- cerebral lesions that are predominantly thalamic;
- infarction, e.g. thalamic infarction or brain stem infarction;
- cerebral tumors or abscesses compressing the thalamus or brain stem;
- multiple sclerosis;
- brain operations, e.g. thalamotomy in cases of motoric disorders;
- spinal cord lesions;
- spinal cord injuries;
- spinal cord operations, e.g. anterolateral cordotomy;
- ischemic lesions;
- anterior spinal artery syndrome;
- Wallenberg's syndrome; and
- syringomyelia.
- In an advantageous embodiment according to the present disclosure the neuropathic pain is a central neuropathic pain syndrome. In some examples the central neuropathic pain syndrome is caused by spinal cord injury and/or spinal cord contusion (see example 1 to 3).
- In a further advantageous embodiment of the present disclosure the neuropathic pain is a head pain syndrome caused by central pain mechanisms like in migraine or migraine pain.
- In further advantageous embodiments the neuropathic pain is a peripheral neuropathic pain. In some examples, the peripheral neuropathic pain is caused by chronic constriction injury or by ligation of the sciatic nerve (see example 4 and 5).
- According to the present disclosure the predominantly peripheral neuropathic pain includes a type that is selected from the following types of neuropathic pain and/or has a cause that is selected from the group of the following causes:
- systemic diseases, e.g. diabetic neuropathy;
- drug-induced lesions, e.g. neuropathy due to chemotherapy;
- traumatic syndrome and entrapment syndrome;
- lesions in nerve roots and posterior ganglia;
- neuropathies after HIV infections;
- neuralgia after Herpes infections;
- nerve root avulsions;
- cranial nerve lesions;
- cranial neuralgias, e.g., trigeminal neuralgia;
- neuropathic cancer pain;
- phantom pain;
- compression of peripheral nerves, neuroplexus and nerve roots;
- paraneoplastic peripheral neuropathy and ganglionopathy;
- complications of cancer therapies, e.g. chemotherapy, irradiation, and surgical interventions;
- complex regional pain syndrome;
- type I lesions (previously known as sympathetic reflex dystrophy); and
- type II lesions (corresponding approximately to causalgia)
- In advantageous embodiments, the compounds used for the treatment of neuropathic pain and/or neuropathic pain syndromes are malononitrilamides or pharmaceutically acceptable salts, solvates, tautomers or stereoisomers thereof.
- Specific examples of compounds used for the treatment of neuropathic pain syndromes include, but not limited to compounds with the following structures (formula I to IV):
- In further advantageous embodiments, the compound is selected from the group consisting of 1(3-methyl-4-trifluoro methylphenyl-carbamoyl)-2-cyclopropyl-2oxo-propionitrile, N-(4-trifluoromethyl)-phenyl-2-cyano-3-hydroxy-hept-2-en-6-in-carboxylic acidamide, 5-(3-butynyl)-N-(4-(trifluoromethyl) phenyl-4-isoxazolecarboxamide and 2-cyano-3-cyclopropyl-3-oxo-(4-cyanophenyl)propionamide or a pharmaceutically acceptable salt, solvate, tautomer or stereoisomer thereof.
- In advantageous embodiments, the compound is 1(3-methyl-4-trifluoro methylphenyl-carbamoyl)-2-cyclopropyl-2oxo-propionitrile.
- In another advantageous embodiment, the compound is N-(4-trifluoromethyl)-phenyl-2-cyano-3-hydroxy-hept-2-en-6-in-carboxylic acidamide.
- In further advantageous embodiments, the compound has the structure with the formula II or a pharmaceutically acceptable salt thereof.
- Specific compounds of the disclosure are such derivatives described in U.S. Pat. No. 5,532,259, in the international patent application WO 91/717748 and in Kuo et al., (Kuo et al., 1996), each of which is incorporated herein by reference.
- In Kuo et al., (Kuo et al., 1996) examples for the preparation of compounds according to the present description is shown, each of which is incorporated herein by reference.
- Furthermore, compounds according to the disclosure can either be commercially purchased or prepared according to the methods described in the publications, patents or patent publications disclosed herein. Further, optically pure compositions can be asymmetrically synthesized or resolved using known resolving agents or chiral columns as well as other standard synthetic organic chemistry techniques. Compounds used in the disclosure may include compounds that are racemic, stereomerically enriched or stereomerically pure, and pharmaceutically acceptable salts, solvates, stereoisomers, and prodrugs thereof.
- For example, FK778 can be manufactured according to methods described in the U.S. Pat. No. 5,308,865 (see example 14). The FK778 may include a conformer and a stereoisomer (see Kobayashi et al.). As used herein, when “FK778” is specified, it is to be understood that such conformers and isomers also included within the scope of this disclosure. Also, FK778 can be in another tautomer form, and such a tautomer form is also included within the scope of this disclosure. For example, FK778 can be either in its enol or keto form, i.e. 2-cyano-3-oxo-N-[4-(trifluoromethyl)phenyl]-6-heptynamide, as shown in Kobayashi et al. For the use according to the present disclosure, FK778 can be in a solvate, which is included within the scope of the present disclosure. The solvate preferably includes a hydrate and an ethanolate.
- Preferred compounds used according to the disclosure are small organic molecules having a molecular weight less than about 1,000 g/mol, and are not proteins, peptides, oligonucleotides, oligosaccharides or other macromolecules.
- In advantageous embodiments, the compounds used in the treatment of neuropathic pain according to the present disclosure are administered to the patient after a damage of the nervous system. Preferably, HR325 or FK778 is administered to the patient after a damage of the nervous system.
- Surprisingly, the inventors have found that early-stage administration of a compound according to the disclosure, in particular of
HR 325 or FK778, to mammalians with neuropathic pain, minimalize the pain and the analgesic effect is maintained for several weeks to months, also without further administration of the compound (seeFIG. 1 ). - Furthermore, the inventors have found that the administration of a compound according to the disclosure, in particular of
HR 325 or FK-778, also minimize the neuropathic pain if the pain is already established (chronic pain). These results are shown inFIG. 2 andFIG. 4 . - Neuropathic chronic pain according to the present disclosure may be a pain that persists for an extended period time, for example at least for more than one month. It can be a result of a long-term illness or a lingering result of an injury. An adequate definition for neuropathic chronic pain can be found at Bogduk, N; Merskey, H (1994). Classification of chronic pain: descriptions of chronic pain syndromes and definitions of pain terms (second ed.). Seattle: IASP Press. p. 212, which is hereby incorporated by reference.
- In further advantageous embodiments, a compound according to the present disclosure is used as the only physically active compound in the treatment of neuropathic pain without a second active agent.
- In yet other advantageous embodiments, the disclosure relates to pharmaceutical compositions for preventing and/or treating neuropathic pain, which comprises a therapeutically effective amount of a compound according to the present disclosure in admixture with a pharmaceutical acceptable carrier or excipient.
- In advantageous embodiments, the pharmaceutical composition according to the present disclosure comprises a compound according to the present disclosure and no second active ingredient in the composition. In an advanced embodiment, laflunimus is used as the sole active agent for the treatment of neuropathic pain or neuropathic pain syndromes. In an advanced embodiment, laflunimus is used for the treatment of neuropathic pain without an immunomodulatory compound as a second active agent.
- In advantageous embodiments, the pharmaceutical composition is used for preventing and/or treating neuropathic pain, whereby the composition comprises a therapeutically effective amount of laflunimus or a physiologically functional derivative thereof in admixture with a pharmaceutical acceptable carrier or excipient. In advantageous embodiments the pharmaceutical composition comprises a malononitrilamide selected from the group consisting of (1(3-methyl-4-trifluoro methylphenyl-carbamoyl)-2-cyclopropyl-2oxo-propionitrile), N-(4-trifluoromethyl)-phenyl-2-cyano-3-hydroxy-hept-2-en-6-in-carboxylic acidamide, and 2-cyano-3-cyclopropyl-3-oxo-(4-cyanophenyl)propionamide or a pharmaceutically acceptable salt, solvate, tautomer or stereoisomer thereof.
- As used herein and unless otherwise indicated, the term “pharmaceutically acceptable salt” encompasses non-toxic acid and base addition salts of the compound to which the term refers. Acceptable non-toxic acid addition salts include those derived from organic and inorganic acids or bases know in the art, which include, for example, hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid, methanesulphonic acid, acetic acid, tartaric acid, lactic acid, succinic acid, citric acid, malic acid, maleic acid, sorbic acid, aconitic acid, salicylic acid, phthalic acid, embolic acid, enanthic acid, and the like. Compounds that are acidic in nature are capable of forming salts with various pharmaceutically acceptable bases. The bases that can be used to prepare pharmaceutically acceptable base addition salts of such acidic compounds are those that form non-toxic base addition salts, i.e., salts containing pharmacologically acceptable cations such as, but not limited to, alkali metal or alkaline earth metal salts and the calcium, magnesium, sodium or potassium salts in particular. Suitable organic bases include, but are not limited to, N,N-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumaine (N-methylglucamine), lysine, and procaine.
- As used herein, and unless otherwise specified, the term “solvate” means a compound of the present disclosure or a salt thereof that further includes a stoichiometric or non-stoichiometric amount of solvent bound by non-covalent intermolecular forces. Where the solvent is water, the solvate is a hydrate.
- As used herein and unless otherwise indicated, the term “prodrug” means a derivative of a compound that can hydrolyze, oxidize, or otherwise react under biological conditions (in vitro or in vivo) to provide the compound. Examples of prodrugs include, but are not limited to, derivatives of compounds according to the present disclosure that comprise biohydrolyzable moieties such as biohydrolyzable amides, biohydrolyzable esters, biohydrolyzable carbamates, biohydrolyzable carbonates, biohydrolyzable ureides, and biohydrolyzable phosphate analogues. Other examples of prodrugs include derivatives of immunomodulatory compounds of the disclosure that comprise —NO, —NO2, —ONO, or —ONO2 moieties. Prodrugs can typically be prepared using well-known methods, such as those described in Burger's Medicinal Chemistry and Drug Discovery, 172-178, 949-982 (Manfred E. Wolff ed., 5th ed. 1995), and Design of Prodrugs (H. Bundgaard ed., Elselvier, New York 1985). As used herein and unless otherwise indicated, the terms “biohydrolyzable amide,” “biohydrolyzable ester,” “biohydrolyzable carbamate,” “biohydrolyzable carbonate,” “biohydrolyzable ureide,” “biohydrolyzable phosphate” mean an amide, ester, carbamate, carbonate, ureide, or phosphate, respectively, of a compound that either: 1) does not interfere with the biological activity of the compound but can confer upon that compound advantageous properties in vivo, such as uptake, duration of action, or onset of action; or 2) is biologically inactive but is converted in vivo to the biologically active compound. Examples of biohydrolyzable esters include, but are not limited to, lower alkyl esters, lower acyloxyalkyl esters (such as acetoxylmethyl, acetoxyethyl, aminocarbonyloxymethyl, pivaloyloxymethyl, and pivaloyloxyethyl esters), lactonyl esters (such as phthalidyl and thiophthalidyl esters), lower alkoxyacyloxyalkyl esters (such as methoxycarbonyl-oxymethyl, ethoxycarbonyloxyethyl and isopropoxycarbonyloxyethyl esters), alkoxyalkyl esters, choline esters, and acylamino alkyl esters (such as acetamidomethyl esters). Examples of biohydrolyzable amides include, but are not limited to, lower alkyl amides, [alpha]-amino acid amides, alkoxyacyl amides, and alkylaminoalkylcarbonyl amides. Examples of biohydrolyzable carbamates include, but are not limited to, lower alkylamines, substituted ethylenediamines, amino acids, hydroxyalkylamines, heterocyclic and heteroaromatic amines, and polyether amines.
- As used herein, and unless otherwise specified, the term “stereoisomer” encompasses all enantiomerically/stereomerically pure and enantiomerically/stereomerically enriched compounds of this disclosure.
- As used herein, and unless otherwise indicated, the term “stereomerically pure” or “enantiomerically pure” means that a compound comprises one stereoisomer and is substantially free of its counter stereoisomer or enantiomer. For example, a compound is stereomerically or enantiomerically pure when the compound contains 80%, 90%, or 95% or more of one stereoisomer and 20%, 10%, or 5% or less of the counter stereoisomer, in certain cases, a compound of the disclosure is considered optically active or stereomerically/enantiomerically pure {i.e., substantially the R-form or substantially the S-form) with respect to a chiral center when the compound is about 80% ee (enantiomeric excess) or greater, preferably, equal to or greater than 90% ee with respect to a particular chiral center, and more preferably 95% ee with respect to a particular chiral center.
- As used herein, and unless otherwise indicated, the term “stereomerically enriched” or “enantiomerically enriched” encompasses racemic mixtures as well as other mixtures of stereoisomers of compounds of this disclosure {e.g., R/S=30/70, 35/65, 40/60, 45/55, 55/45, 60/40, 65/35 and 70/30). Various inhibitor compounds of the present disclosure contain one or more chiral centers, and can exist as racemic mixtures of enantiomers or mixtures of diastereomers. This disclosure encompasses the use of stereomerically pure forms of such compounds, as well as the use of mixtures of those forms. For example, mixtures comprising equal or unequal amounts of the enantiomers of a particular inhibitor compound of the disclosure may be used in methods and compositions of the disclosure. These isomers may be asymmetrically synthesized or resolved using standard techniques such as chiral columns or chiral resolving agents. See, e.g., Jacques, J., et ah, Enantiomers, Racemates and Resolutions (Wiley-Interscience, New York, 1981); Wilen, S. H., et al, Tetrahedron 33:2725 (1977); Eliel, E. L., Stereochemistry of Carbon Compounds (McGraw-Hill, NY, 1962); and Wilen, S. H., Tables of Resolving Agents and Optical Resolutions p. 268 (E.L. Eliel, Ed., Univ. of Notre Dame Press, Notre Dame, Ind., 1972).
- As used herein, and unless otherwise indicated, the term “tautomers” means isomers of a compound according to the present disclosure that readily interconverts by tautomerization. This reaction commonly results in the formal migration of a hydrogen atom or proton, accompanied by a switch of a single bond and adjacent double bond. Common tautomeric pairs are ketone-enol, ketene-ynol, amide-imidic acid, lactam-lactim, an amide-imidic acid tautomerism in heterocyclic rings, enamine-imine, enamine-enamine, and anomers of reducing sugars in solution interconvert through an intermediate open chain form.
- For example, in an advantageous embodiment the compound having formula II (FK778) can be either in its enol (FK778) or keto form, i.e. 2-cyano-3-oxo-N-[4-(trifluoromethyl) phenyl]-6-heptynamide and such a tautomer form is also included within the scope of this disclosure.
- It should be noted that if there is a discrepancy between a depicted structure and a name given that structure, the depicted structure is to be accorded more weight. In addition, if the stereochemistry of a structure or a portion of a structure is not indicated with, for example, bold or dashed lines, the structure or portion of the structure is to be interpreted as encompassing all stereoisomers of it.
- The term “physiologically functional derivative” as used herein refers to compounds which are not pharmaceutically active themselves but which are transformed into their pharmaceutical active form in vivo, i.e. in the subject to which the compound is administered. Examples of physiologically functional derivatives are prodrugs such as those described below in the present application.
- The term “derivative” as used herein refers to a compound that is derived from a similar compound or a compound that can be imagined to arise from another compound, if one atom is replaced with another atom or group of atoms. The term “derivative” as used herein refers also to a compound that at least theoretically can be formed from the precursor compound (see Oxford Dictionary of Biochemistry and Molecular Biology. Oxford University Press. ISBN 0-19-850673-2.) In advantageous embodiments of the present disclosure the term “derivative” is used for derivatives from laflunimus.
- The disclosure is also directed to the use of compounds of the formula I, II, III, IV or of formula V and of their pharmacologically tolerable salts or physiologically functional derivatives for the production of a medicament for the prevention and treatment of neuropathic pain and neuropathic pain syndromes.
- Methods and uses according to the present disclosure encompass methods of preventing, treating and/or managing neuropathic pain and related syndromes, but are not limited to, postherpetic neuralgia (caused by Herpes Zoster), root avulsions, painful traumatic mononeuropathy, painful polyneuropathy (particularly due to diabetes), central pain syndromes (potentially caused by virtually any lesion at any level of the nervous system), postsurgical pain syndromes (eg, postmastectomy syndrome, postthoracotomy syndrome, phantom pain), and complex regional pain syndrome (reflex sympathetic dystrophy and causalgia).
- The symptoms, conditions and/or symptoms associated with neuropathic pain include, but are not limited to, dysesthesias (spontaneous or evoked burning pain, often with a superimposed lancinating component), but pain may also be deep and aching. Other sensations like; hyperesthesia, hyperalgesia, allodynia (pain due to a normoxious stimulus), and hyperpathia (particularly unpleasant, exaggerated pain response).
- The suitability of a particular route of administration of an compound according to the present disclosure employed for a particular active agent will depend on the active agent itself (e.g., whether it can be administered orally without decomposing prior to entering the blood stream) and the disease being treated. An advantageous embodiment of the route of administration for a compound according to the present disclosure is orally. Further routes of administration are known to those of ordinary skill in the art.
- The dosage of therapeutically effective amount of at least one compound varies from and also depends upon the age and condition of each individual patient to be treated. In an embodiment of the present disclosure, the recommended daily dose range of a compound according to the present disclosure for the conditions and disorders described herein lies within the range of from about, a daily dose of about 1 mg-10 g/body, preferable 5 mg-5 g/body and more preferable 10 mg-2 g/body of the active ingredient is generally given for treating this disease, and an average single dose of about 0.5-1 mg, 5 mg, 10 mg, 50 mg, 100 mg, 250 mg, 500 mg, 1 g, 2 g and 3 g is generally administered. Daily dose for administration in humans for treating this disease (neuropathic pain or neuropathic pain syndromes) could be in the range of about 0.1-50 mg/kg.
- While the term for administering of at least one compound to prevent this disease (neuropathic pain or neuropathic pain syndromes) varies depending on species, and the nature and severity of the condition to be prevented, the compound may usually be administered to humans for a short term or a long term, i.e. for 1 week to 1 year.
- Pharmaceutical compositions can be used in the preparation of individual, single unit dosage forms. The compounds of the present disclosure can be used in the form of pharmaceuticals compositions, for example, in solid, semisolid or liquid form, which contains one or more of the compounds according to the present disclosure as active ingredient associated with pharmaceutically acceptable carriers or excipient suitable for oral, parenteral such as intravenous, intramuscular, intrathecal, subcutaneous, enteral, intrarectal or intranasal administration. The active ingredient may be compounded, for example, with the usual non-toxic, pharmaceutically acceptable carriers for tablets, pellets, capsules, suppositories, solutions (saline for example), emulsion, suspensions (olive oil, for example), ointment and any other form suitable for use. The carriers which can be used are water, glucose, lactose gum acacia, gelatine, manitol, starch paste, magnesium trisilicate, corn starch, keratin, colloidal silica, potato starch, urea and other carriers suitable for use in manufacturing preparations, in solid, semisolid or liquid form, and in addition auxiliary, stabilizing, thickening and colouring agents and perfumes may be used. The active object compound is included in the pharmaceutical composition in an effective amount sufficient to prevent and/or treat the disease.
- Single unit dosage forms of the disclosure are suitable for oral, mucosal (e.g., nasal, sublingual, vaginal, buccal, or rectal), parenteral (e.g., subcutaneous, intravenous, bolus injection, intramuscular, or intraarterial), topical (e.g., eye drops or other ophthalmic preparations), transdermal or transcutaneous administration to a patient. Examples of dosage forms include, but are not limited to: tablets; caplets; capsules, such as soft elastic gelatin capsules; cachets; troches; lozenges; dispersions; suppositories; powders; aerosols (e.g., nasal sprays or inhalers); gels; liquid dosage forms suitable for oral or mucosal administration to a patient, including suspensions (e.g., aqueous or non-aqueous liquid suspensions, oil-in-water emulsions, or a water-in-oil liquid emulsions), solutions, and elixirs; liquid dosage forms suitable for parenteral administration to a patient; eye drops or other ophthalmic preparations suitable for topical administration; and sterile solids (e.g., crystalline or amorphous solids) that can be reconstituted to provide liquid dosage forms suitable for parenteral administration to a patient.
- The composition, shape, and type of dosage forms of the disclosure will typically vary depending on their use. For example, a dosage form used in the acute treatment of a disease may contain larger amounts of one or more of the active agents it comprises than a dosage form used in the chronic treatment of the same disease. Similarly, a parenteral dosage form may contain smaller amounts of one or more of the active agents it comprises than an oral dosage form used to treat the same disease. These and other ways in which specific dosage forms encompassed by this disclosure will vary from one another will be readily apparent to those skilled in the art. See, e.g., Remington's Pharmaceutical Sciences, 18th ed., Mack Publishing, Easton Pa. (1990).
- Typical pharmaceutical compositions and dosage forms comprise one or more excipients. Suitable excipients are well known to those skilled in the art of pharmacy, and non-limiting examples of suitable excipients are provided herein. Whether a particular excipient is suitable for incorporation into a pharmaceutical composition or dosage form depends on a variety of factors well known in the art including, but not limited to, the way in which the dosage form will be administered to a patient. For example, oral dosage forms such as tablets may contain excipients not suited for use in parenteral dosage forms. The suitability of a particular excipient may also depend on the specific active agents in the dosage form. For example, the decomposition of some active agents may be accelerated by some excipients such as lactose, or when exposed to water. Active agents that comprise primary or secondary amines are particularly susceptible to such accelerated decomposition. Consequently, this disclosure encompasses pharmaceutical compositions and dosage forms that contain little, if any, lactose or other mono- or di-saccharides. As used herein, the term “lactose-free” means that the amount of lactose present, if any, is insufficient to substantially increase the degradation rate of an active ingredient.
- Lactose-free compositions of the disclosure can comprise excipients that are well known in the art and are listed, for example, in the U.S. Pharmacopeia (USP) 25-NF20 (2002). In general, lactose-free compositions comprise active ingredients, a binder/filler, and a lubricant in pharmaceutically compatible and pharmaceutically acceptable amounts. Preferred lactose-free dosage forms comprise active ingredients, microcrystalline cellulose, pre-gelatinized starch, and magnesium stearate.
- This disclosure further encompasses anhydrous pharmaceutical compositions and dosage forms comprising active ingredients, since water can facilitate the degradation of some compounds. For example, the addition of water (e.g., 5%) is widely accepted in the pharmaceutical arts as a means of simulating long-term storage in order to determine characteristics such as shelf-life or the stability of formulations over time. See, e.g., Jens T. Carstensen, Drug Stability: Principles & Practice, 2d. Ed., Marcel Dekker, NY, N.Y., 1995, pp. 379-80. In effect, water and heat accelerate the decomposition of some compounds. Thus, the effect of water on a formulation can be of great significance since moisture and/or humidity are commonly encountered during manufacture, handling, packaging, storage, shipment, and use of formulations.
- Anhydrous pharmaceutical compositions and dosage forms of the disclosure can be prepared using anhydrous or low moisture containing ingredients and low moisture or low humidity conditions. Pharmaceutical compositions and dosage forms that comprise lactose and at least one active ingredient that comprise a primary or secondary amine are preferably anhydrous if substantial contact with moisture and/or humidity during manufacturing, packaging, and/or storage is expected. An anhydrous pharmaceutical composition should be prepared and stored such that its anhydrous nature is maintained. Accordingly, anhydrous compositions are preferably packaged using materials known to prevent exposure to water such that they can be included in suitable formulary kits. Examples of suitable packaging include, but are not limited to, hermetically sealed foils, plastics, unit dose containers (e.g. vials), blister packs, and strip packs.
- The disclosure further encompasses pharmaceutical compositions and dosage forms that comprise one or more compounds that reduce the rate by which an active ingredient will decompose. Such compounds, which are referred to herein as “stabilizers,” include, but are not limited to, antioxidants such as ascorbic acid, pH buffers, or salt buffers.
- Like the amounts and types of excipients, the amounts and specific types of active agents in a dosage form may differ depending on factors such as, but not limited to, the route by which it is to be administered to patients. However, typical dosage forms of the disclosure comprise a compound according to the present disclosure or a pharmaceutically acceptable salt, solvate, hydrate, stereoisomer, clathrate, or prodrug thereof in an amount of from about 0.10 to about 150 mg. Typical dosage forms comprise a compound according to the present disclosure or a pharmaceutically acceptable salt, solvate, hydrate, stereoisomer, clathrate, or prodrug thereof in an amount of about 0.1, 1, 2, 5, 7.5, 10, 12.5, 15, 17.5, 20, 25, 50, 100, 150 or 200 mg. In a particular embodiment, a preferred dosage form comprises 4-(amino)-2-(2,6-dioxo(3-piperidyl))-isoindoline-1,3-dione in an amount of about 1, 2, 5, 10, 25 or 50 mg. In a specific embodiment, a preferred dosage form comprises 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione in an amount of about 5, 10, 25 or 50 mg.
- Oral Dosage Forms of pharmaceutical compositions of the disclosure that are suitable for oral administration can be presented as discrete dosage forms, such as, but are not limited to, tablets (e.g., chewable tablets), caplets, capsules, and liquids (e.g., flavored syrups). Such dosage forms contain predetermined amounts of active ingredients, and may be prepared by methods of pharmacy well known to those skilled in the art. See generally, Remington's Pharmaceutical Sciences, 18th ed., Mack Publishing, Easton Pa. (1990).
- Typical oral dosage forms of the disclosure are prepared by combining the active ingredients in an intimate admixture with at least one excipient according to conventional pharmaceutical compounding techniques. Excipients can take a wide variety of forms depending on the form of preparation desired for administration. For example, excipients suitable for use in oral liquid or aerosol dosage forms include, but are not limited to, water, glycols, oils, alcohols, flavoring agents, preservatives, and coloring agents. Examples of excipients suitable for use in solid oral dosage forms {e.g., powders, tablets, capsules, and caplets) include, but are not limited to, starches, sugars, micro-crystalline cellulose, diluents, granulating agents, lubricants, binders, and disintegrating agents.
- Because of their ease of administration, tablets and capsules represent the most advantageous oral dosage unit forms, in which case solid excipients are employed. If desired, tablets can be coated by standard aqueous or nonaqueous techniques. Such dosage forms can be prepared by any of the methods of pharmacy. In general, pharmaceutical compositions and dosage forms are prepared by uniformly and intimately admixing the active ingredients with liquid carriers, finely divided solid carriers, or both, and then shaping the product into the desired presentation if necessary.
- For example, a tablet can be prepared by compression or molding. Compressed tablets can be prepared by compressing in a suitable machine the active ingredients in a free-flowing form such as powder or granules, optionally mixed with an excipient. Molded tablets can be made by molding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent.
- Examples of excipients that can be used in oral dosage forms of the disclosure include, but are not limited to, binders, fillers, disintegrants, and lubricants. Binders suitable for use in pharmaceutical compositions and dosage forms include, but are not limited to, corn starch, potato starch, or other starches, gelatin, natural and synthetic gums such as acacia, sodium alginate, alginic acid, other alginates, powdered tragacanth, guar gum, cellulose and its derivatives {e.g., ethyl cellulose, cellulose acetate, carboxymethyl cellulose calcium, sodium carboxymethyl cellulose), polyvinyl pyrrolidone, methyl cellulose, pre-gelatinized starch, hydroxypropyl methyl cellulose, {e.g., Nos. 2208, 2906, 2910), microcrystalline cellulose, and mixtures thereof.
- Suitable forms of microcrystalline cellulose include, but are not limited to, the materials sold as AVICEL-PH-101, AVICEL-PH-103 AVICEL RC-581, AVICEL-PH-105 (available from FMC Corporation, American Viscose Division, Avicel Sales, Marcus Hook, PA), and mixtures thereof. A specific binder is a mixture of microcrystalline cellulose and sodium carboxymethyl cellulose sold as AVICEL RC-581. Suitable anhydrous or low moisture excipients or additives include AVICEL-PH-103™ and Starch 1500 LM. Examples of fillers suitable for use in the pharmaceutical compositions and dosage forms disclosed herein include, but are not limited to, talc, calcium carbonate (e.g., granules or powder), microcrystalline cellulose, powdered cellulose, dextrates, kaolin, mannitol, silicic acid, sorbitol, starch, pre-gelatinized starch, and mixtures thereof. The binder or filler in pharmaceutical compositions of the disclosure is typically present in from about 50 to about 99 weight percent of the pharmaceutical composition or dosage form.
- Disintegrants are used in the compositions of the disclosure to provide tablets that disintegrate when exposed to an aqueous environment. Tablets that contain too much disintegrant may disintegrate in storage, while those that contain too little may not disintegrate at a desired rate or under the desired conditions. Thus, a sufficient amount of disintegrant that is neither too much nor too little to detrimentally alter the release of the active ingredients should be used to form solid oral dosage forms of the disclosure. The amount of disintegrant used varies based upon the type of formulation, and is readily discernible to those of ordinary skill in the art. Typical pharmaceutical compositions comprise from about 0.5 to about 15 weight percent of disintegrant, preferably from about 1 to about 5 weight percent of disintegrant.
- Disintegrants that can be used in pharmaceutical compositions and dosage forms of the disclosure include, but are not limited to, agar-agar, alginic acid, calcium carbonate, microcrystalline cellulose, croscarmellose sodium, crospovidone, polacrilin potassium, sodium starch glycolate, potato or tapioca starch, other starches, pre-gelatinized starch, other starches, clays, other algins, other celluloses, gums, and mixtures thereof.
- Lubricants that can be used in pharmaceutical compositions and dosage forms of the disclosure include, but are not limited to, calcium stearate, magnesium stearate, mineral oil, light mineral oil, glycerin, sorbitol, mannitol, polyethylene glycol, other glycols, stearic acid, sodium lauryl sulfate, talc, hydrogenated vegetable oil (e.g., peanut oil, cottonseed oil, sunflower oil, sesame oil, olive oil, corn oil, and soybean oil), zinc stearate, ethyl oleate, ethyl laureate, agar, and mixtures thereof. Additional lubricants include, for example, a syloid silica gel (AEROSIL200, manufactured by W.R. Grace Co. of Baltimore, Md.), a coagulated aerosol of synthetic silica (marketed by Degussa Co. of Piano, Tex.), CAB-O-SIL (a pyrogenic silicon dioxide product sold by Cabot Co. of Boston, Mass.), and mixtures thereof. If used at all, lubricants are typically used in an amount of less than about 1 weight percent of the pharmaceutical compositions or dosage forms into which they are incorporated.
- A preferred solid oral dosage form of the disclosure comprises a compound of the disclosure, anhydrous lactose, microcrystalline cellulose, polyvinylpyrrolidone, stearic acid, colloidal anhydrous silica, and gelatin.
- Active ingredients of the disclosure can be administered by controlled release means or by delivery devices that are well known to those of ordinary skill in the art. Examples include, but are not limited to, those described in U.S. Pat. Nos. 3,845,770; 3,916,899; 3,536,809; 3,598,123; and 4,008,719, 5,674,533, 5,059,595, 5,591,767, 5,120,548, 5,073,543, 5,639,476, 5,354,556, and 5,733,566, each of which is incorporated herein by reference. Such dosage forms can be used to provide slow or controlled-release of one or more active ingredients using, for example, hydropropylmethyl cellulose, other polymer matrices, gels, permeable membranes, osmotic systems, multilayer coatings, microparticles, liposomes, microspheres, or a combination thereof to provide the desired release profile in varying proportions. Suitable controlled-release formulations known to those of ordinary skill in the art, including those described herein can be readily selected for use with the active ingredients of the disclosure. The disclosure thus encompasses single unit dosage forms suitable for oral administration such as, but not limited to, tablets, capsules, gelcaps, and caplets that are adapted for controlled-release.
- All controlled-release pharmaceutical products have a common goal of improving drug therapy over that achieved by their non-controlled counterparts. Ideally, the use of an optimally designed controlled-release preparation in medical treatment is characterized by a minimum of drug substance being employed to cure or control the condition in a minimum amount of time. Advantages of controlled-release formulations include extended activity of the drug, reduced dosage frequency, and increased patient compliance. In addition, controlled-release formulations can be used to affect the time of onset of action or other characteristics, such as blood levels of the drug, and can thus affect the occurrence of side (e.g., adverse) effects.
- Most controlled-release formulations are designed to initially release an amount of drug (active ingredient) that promptly produces the desired therapeutic effect, and gradually and continually release of other amounts of drug to maintain this level of therapeutic or prophylactic effect over an extended period of time. In order to maintain this constant level of drug in the body, the drug must be released from the dosage form at a rate that will replace the amount of drug being metabolized and excreted from the body. Controlled-release of an active ingredient can be stimulated by various conditions including, but not limited to, pH, temperature, enzymes, water, or other physiological conditions or compounds.
- Parenteral dosage forms can be administered to patients by various routes including, but not limited to, subcutaneous, intravenous (including bolus injection), intramuscular, and intraarterial. Because their administration typically bypasses patients' natural defenses against contaminants, parenteral dosage forms are preferably sterile or capable of being sterilized prior to administration to a patient. Examples of parenteral dosage forms include, but are not limited to, solutions ready for injection, dry products ready to be dissolved or suspended in a pharmaceutically acceptable vehicle for injection, suspensions ready for injection, and emulsions. Suitable vehicles that can be used to provide parenteral dosage forms of the disclosure are well known to those skilled in the art. Examples include, but are not limited to: Water for Injection USP; aqueous vehicles such as, but not limited to, Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, and Lactated Ringer's Injection; water-miscible vehicles such as, but not limited to, ethyl alcohol, polyethylene glycol, and polypropylene glycol; and non-aqueous vehicles such as, but not limited to, corn oil, cottonseed oil, peanut oil, sesame oil, ethyl oleate, isopropyl myristate, and benzyl benzoate.
- Compounds that increase the solubility of one or more of the active ingredients disclosed herein can also be incorporated into the parenteral dosage forms of the disclosure. For example, cyclodextrin and its derivatives can be used to increase the solubility of a compound of the disclosure and its derivatives. See, e.g., U.S. Pat. No. 5,134,127, which is incorporated herein by reference.
- Topical and mucosal dosage forms of the disclosure include, but are not limited to, sprays, aerosols, solutions, emulsions, suspensions, eye drops or other ophthalmic preparations, or other forms known to one of skill in the art. See, e.g., Remington's Pharmaceutical Sciences, 16th and 18th eds., Mack Publishing, Easton Pa. (1980 & 1990); and Introduction to Pharmaceutical Dosage Forms, 4th ed., Lea & Febiger, Philadelphia (1985). Dosage forms suitable for treating mucosal tissues within the oral cavity can be formulated as mouthwashes or as oral gels.
- Suitable excipients {e.g. carriers and diluents) and other materials that can be used to provide topical and mucosal dosage forms encompassed by this disclosure are well known to those skilled in the pharmaceutical arts, and depend on the particular tissue to which a given pharmaceutical composition or dosage form will be applied. With that fact in mind, typical excipients include, but are not limited to, water, acetone, ethanol, ethylene glycol, propylene glycol, butane-1,3-diol, isopropyl myristate, isopropyl palmitate, mineral oil, and mixtures thereof to form solutions, emulsions or gels, which are non-toxic and pharmaceutically acceptable. Moisturizers or humectants can also be added to pharmaceutical compositions and dosage forms if desired. Examples of such additional ingredients are well known in the art. See, e.g., Remington's Pharmaceutical Sciences, 16th and 18th eds., Mack Publishing, Easton Pa. (1980 & 1990).
- The pH of a pharmaceutical composition or dosage form may also be adjusted to improve delivery of one or more active ingredients. Similarly, the polarity of a solvent carrier, its ionic strength, or tonicity can be adjusted to improve delivery. Compounds such as stearates can also be added to pharmaceutical compositions or dosage forms to advantageously alter the hydrophilicity or lipophilicity of one or more active ingredients so as to improve delivery. In this regard, stearates can serve as a lipid vehicle for the formulation, as an emulsifying agent or surfactant, and as a delivery-enhancing or penetration-enhancing agent. Different salts, hydrates or solvates of the active ingredients can be used to further adjust the properties of the resulting composition.
- Typically, active ingredients of the disclosure are preferably not administered to a patient at the same time or by the same route of administration. This disclosure therefore encompasses kits which, when used by the medical practitioner, can simplify the administration of appropriate amounts of active ingredients to a patient.
- A typical kit of the disclosure comprises a dosage form of a compound of the disclosure, or a pharmaceutically acceptable salt, solvate, hydrate, stereoisomer, prodrug, or clathrate thereof. Kits encompassed by this disclosure can further comprise additional active agents. Examples of the additional active agents include, but are not limited to, those disclosed herein (see, e.g., section 4.2). Kits of the disclosure can further comprise devices that are used to administer the active ingredients. Examples of such devices include, but are not limited to, syringes, drip bags, patches, and inhalers. In an advantageous embodiment, a kit of the disclosure contains laflunimus and no additional immunomodulatory compound.
- Kits of the disclosure can further comprise cells or blood for transplantation as well as pharmaceutically acceptable vehicles that can be used to administer one or more active ingredients. For example, if an active ingredient is provided in a solid form that must be reconstituted for parenteral administration, the kit can comprise a sealed container of a suitable vehicle in which the active ingredient can be dissolved to form a particulate-free sterile solution that is suitable for parenteral administration. Examples of pharmaceutically acceptable vehicles include, but are not limited to: Water for Injection USP; aqueous vehicles such as, but not limited to, Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, and Lactated Ringer's Injection; water-miscible vehicles such as, but not limited to, ethyl alcohol, polyethylene glycol, and polypropylene glycol; and non-aqueous vehicles such as, but not limited to, corn oil, cottonseed oil, peanut oil, sesame oil, ethyl oleate, isopropyl myristate, and benzyl benzoate.
- Advantageous examples for compounds according to the present disclosure for the use in the treatment of neuropathic pain:
-
- A) HR325 (Laflunimus) (1(3-methyl-4-trifluoro methylphenyl-carbamoyl)-2-cyclopropyl-2oxo-propionitrile)
- B) FK778 (N-(4-trifluoromethyl)-phenyl-2-cyano-3-hydroxy-hept-2-en-6-in-carboxylic acidamide)
- C) MNA279 (2-cyano-3-cyclopropyl-3-oxo-(4-cyanophenyl)propionamide)
- D) 5-(3-butynyl)-N-[4-(trifluoromethyl)phenyl]-4-isoxazolecarboxamide
- The following examples and methods are offered for illustrative purposes only, and are not intended to limit the scope of the present disclosure in any way.
- A series of non-clinical pharmacology and toxicology studies have been performed to support the clinical evaluation of the compounds according to the present disclosure in human subjects. These studies were performed in accordance with internationally recognized guidelines for study design and in compliance with the requirements of Good Laboratory Practice (GLP) unless otherwise noted.
- Laflunimus (HR325) treatment to suppress the development of mechanical allodynia after severe spinal cord contusion injury in the rat.
- Surgical Methods
- Thirteen week-old female Lewis rats (Charles River, Sulzfeld Germany) were housed under a 12:12 h dark/light regime and allowed free access to water and food. After one week of habituation the animals underwent general anesthesia with a mixture of isoflurane and air (induction: 5% isoflurane, maintenance: 2.2% isofluorane). A Th10 laminectomy was performed without rupturing the dura and a severe contusive SCI (25 gcm NYU/MASCIS II impactor) {Gruner, 1992#3} was induced. After suturing muscle and skin, a subcutaneous (s.c.) injection of 5 ml of Ringers Lactate was given. Bladders were emptied manually 2 times a day until spontaneous voiding returned (usually within 1 week). The lesion severity was verified by the impact velocity and contusion depth of the impactor rod. Animals with an impact velocity error >5% were excluded from further analysis. After injury, individual rats were randomly assigned into a treatment group. The following groups were used:
- Group 1: SCI+vehicle (1.5% CMC in sterile water) by gavage for 7 days, from DPO 1 till
DPO 7
Group 2: SCI+HR 325 (10 mg/kg/day) in vehicle by gavage for 7 days, from DPO 1 tillDPO 7
Group 3: SCI+RR 325 (20 mg/kg/day) in vehicle by gavage for 7 days, from DPO 1 tillDPO 7
Group 4: SCI+HR 325 (30 mg/kg/day) in vehicle by gavage for 7 days, from DPO 1 tillDPO 7 - Assessment of Mechanical Sensitivity:
- The mechanical sensitivity response was measured as the direct pressure stimulus required eliciting foot withdrawal in nonrestrained conditions. All tests were conducted in the morning between 7:30 and 10:30 am and the person performing the behavioral tests was blinded to the experimental groups. Animals were habituated to the testing apparatus for at least 20 min before testing. Each animal was subjected to the stimulation of a series of von Frey filaments ranging from 0.4 to 15 g (log force 3.61, 3.84, 4.08, 4.31, 4.56, 4.74, 4.93 and 5.18) using the Up-Down paradigm according to Chaplan (Chaplan et al., 1994). The selected von Frey filament was pressed against the plantar surface of the hind paw to the point of 30° bending for 3 s. Paw withdrawal response was considered as the positive response. The 50% threshold force needed for paw withdrawal was calculated for both hind paws of each rat and the mean value of both hind paws was used to represent the mechanical sensitivity of this animal.
- Results:
- Mechanical Sensitivity
- The mechanical sensitivity (indicated by the 50% threshold force for paw withdrawals) was determined by the Up-Down method using von Frey filaments. All rats were baseline tested before surgery and tested again on
day 28 post surgery, because this is the first time point at which all rats can sit with the hind paws in plantar position. At baseline all animals reached the maximal 50% threshold force of 15 g, as consequence there were no differences between the two groups. As expected, both the vehicle treated as well as the HR-325 treated animals showed mechanical hypersensitivity atDPO 28. However, as consequence of the HR-325 treatment the mechanical hypersensitivity was significantly reduced in all HR-325 treated dosage groups at DPO 28 (one-way ANOVA; F3.53=19.93 p<0.001, seeFIG. 1 ). This statistically significant difference between the treated animals and the vehicle controls remained till the end of the experiment at DPO 63 (one-way ANOVA; F3.53=35.34 p<0.001, seeFIG. 1 ). Thus, all tested HR-325 dosages (i.e. 10, 20 and 30 mg/kg/d) are able to suppress the development of mechanical allodynia after experimental spinal cord injury (seeFIG. 1 ). - HR325 and FK778 treatment can both reverse central neuropathic pain induced by severe spinal cord contusion injury in the rat.
- Surgical Methods
- For surgical methods see example 1.
- After injury, individual rats were randomly assigned into a treatment group. The following groups were used:
- Group 1: SCI+vehicle (1.5% CMC in sterile water) by gavage for 7 days, from
DPO 28 tillDPO 35
Group 2: SCI+HR 325 (10 mg/kg/day) in vehicle by gavage for 7 days, fromDPO 28 tillDPO 35
Group 3: SCI+FK 778 (10 mg/kg/day) in vehicle by gavage for 7 day, fromDPO 28 tillDPO 35 - Assessment of Mechanical Sensitivity:
- For the assessment of mechanical sensitivity see example 1.
- The Acetone Test:
- A slightly modified method of De la Calle and colleagues (De la Calle et al., 2002) was used for the determination of the reactivity to a cold chemical stimulus. The rat was placed in acrylic cages on top of a wire mesh grid, which allowed access to the paws, and acetone was applied to the plantar surface of the hind paw. To do this, 100 μl of acetone was sprayed onto the plantar surface of the rat's hind leg from below the grid with a syringe holding 2.5 ml. The time spent with the leg withdrawn from floor during the 60 s following exposure to acetone was recorded. Both hind legs were tested in each animal with an interval of 5-10 min between each test. The average reaction time between the two legs was taken for further analysis. A minimal value of 1 s was assigned to convey a fast or brisk reaction, while 0 was assigned if there was no reaction at all. This acetone test has been described as composing of cold, chemical, and possibly mechanical stimulation.
- Results:
- Mechanical Sensitivity
- The mechanical sensitivity (indicated by the 50% threshold force for paw withdrawals) was determined by the Up-Down method using von Frey filaments. All rats were baseline tested before surgery and tested again on
day 28 post surgery, because this is the first time point at which all rats can sit with the hind paws in plantar position. At baseline all animals reached the maximal 50% threshold force of 15 g, as consequence there were no differences between the two groups. As expected, all animals showed severe mechanical hypersensitivity atDPO 28, the withdrawal threshold dropped from 15 grams before injury to 2.7, 3.0 and 3.1 grams in vehicle control animals, HR-325 treated animals and FK-778 treated animals, respectively. Then fromDPO 28 tillDPO 35 we started the oral treatment with HR-325, FK-778 or vehicle which tremendously affected the mechanical hypersensitivity. AtDPO 35 the withdrawal threshold was significantly higher in both HR-325 and FK-778 treated animals when compared to vehicle control animals (one-way ANOVA; F2.35=12.6 p<0.001, seeFIG. 2 ). This statistically significant difference between the treated animals and the vehicle controls remained till the end of the experiment at DPO 77 (one-way ANOVA; F2.35=24.2 p<0.001, seeFIG. 2 ). Thus, HR-325 and FK-778 are both able to reverse mechanical allodynia after experimental spinal cord injury. - The Acetone Test
- The acetone test was used for the determination of the reactivity to a cold chemical stimulus. The obtained results show clearly that before injury the acetone does not evoke any reaction at all when applied to the plantar surface of the hind paws. However, at
DPO 28 all animals showed a clear reaction to the acetone exposure. The following 7 days up toDPO 35 the treatment started with either HR-325, FK-778 or vehicle. As a consequence of the treatment the first significant differences between the treatment groups became obvious atDPO 35. The FK-778 treated animals responded significantly shorter to the acetone exposure than the vehicle controls (one-way ANOVA; F2.34=5.6 p<0.01, seeFIG. 3 ). Three weeks later atDPO 56 there was still a marked difference between the groups (one-way ANOVA; F2.34=21.0 p<0.001, seeFIG. 3 ), a Bonferroni post-hoc test revealed that both FK-778 and HR-325 treated animals responded significantly shorter to the acetone exposure than the vehicle controls. These differences remained unchanged till the end of the experiment at DPO 70 (one-way ANOVA; F2.34=12.3 p<0.01, seeFIG. 3 ). Thus, HR-325 and FK-778 are both able to reverse cold allodynia after experimental spinal cord injury. - HR325 treatment can reverse chronic central neuropathic pain three months after spinal cord contusion injury.
- Surgical Methods
- For surgical methods see example 1.
- After injury, individual rats were randomly assigned into a treatment group. The following groups were used:
- Group 1: SCI+vehicle (1.5% CMC in sterile water) by gavage for 7 days, from
DPO 84 tillDPO 91
Group 2: SCI+HR 325 (10 mg/kg/day) in vehicle by gavage for 7 days, fromDPO 84 tillDPO 91 - Assessment of Mechanical Sensitivity:
- For the assessment of mechanical sensitivity see example 1.
- The Acetone Test:
- For the assessment of mechanical sensitivity see example 2.
- Results:
- Mechanical Sensitivity
- The mechanical sensitivity (indicated by the 50% threshold force for paw withdrawals) was determined by the Up-Down method using von Frey filaments. All rats were baseline tested before surgery and tested again on
day 28 post surgery, because this is the first time point at which all rats can sit with the hind paws in plantar position. At baseline all animals reached the maximal 50% threshold force of 15 g, as consequence there were no differences between the two groups. As expected, all animals showed severe mechanical hypersensitivity atDPO 28, the withdrawal threshold dropped from 15 grams before injury to 3.2 and 2.7 grams in vehicle control animals and HR-325 treated animals, respectively. Thereafter the 50% threshold force remained stable for the next two months up to DPO84 at which the oral treatment with either HR-325 or vehicle was started. As a consequence of this 7 days treatment the 50% threshold force increased, atDPO 91 the withdrawal threshold was significantly higher in HR-325 treated animals when compared to vehicle control animals (Student T-test; t=5.33 p<0.001, seeFIG. 4 ). A comparable difference between the groups was noted at the end of the experiment at DPO 105 (Student T-test; t=7.68 p<0.001, seeFIG. 4 ). Thus, HR-325 can reverse a chronic mechanical allodynia caused by spinal cord trauma even after lasting 3 months. - The Acetone Test
- The acetone test was used for the determination of the reactivity to a cold chemical stimulus. The obtained results show clearly that before injury the acetone does not evoke any reaction at all when applied to the plantar surface of the hind paws. However, at
DPO 35 all animals showed a clear reaction to the acetone exposure. The following 2 months up toDPO 84 the reaction to the acetone exposure remained unchanged. However, atDPO 84 the 7 days oral treatment started with either HR-325 or vehicle. As a consequence of the treatment the first significant differences between the two groups became obvious at DPO 91 (Student T-test; t=4.70 p<0.001, seeFIG. 5 ). A comparable difference between the groups was noted at the end of the experiment at DPO 105 (Student T-test; t=3.54 p<0.01, seeFIG. 5 ). Thus, HR-325 can reverse a chronic cold allodynia caused by spinal cord trauma even after lasting 3 months. - Altogether, the data presented in these examples clearly demonstrate that, HR-325 treatment (i.e. 10, 20 and 30 mg/kg/d) can suppress the development of mechanical allodynia after spinal cord trauma. Moreover, Laflunimus (HR-325) and FK-778 treatment are able to reverse both mechanical- and thermal allodynia after spinal cord injury. Finally, HR-325 treatment can reverse spinal cord trauma indiced mechanical- and cold allodynia that is ongoing for 3 months.
- HR325 treatment can attenuate peripheral neuropathic pain after chronic constriction injury (CCI) of the sciatic nerve.
- Surgical Methods
- Surgery was performed according to the methods of Bennett and Xie (1988). The common sciatic nerve was exposed at the level of the middle of the thigh by blunt dissection through the biceps femoris. Proximal to the sciatic trifurcation, about 7 mm of nerve was freed of adhering tissue, and four ligatures (5.0 chromic catgut) were tied loosely around the nerve with about 1-mm spacing. Great care was taken to tie the ligatures, such that the diameter of the nerve was seen to be just barely constricted. This constriction of the nerve leads to intraneural oedema, focal ischemia, and an axonal degeneration. As a consequence, this model results in cold and mechanical allodynia, and some symptoms of spontaneous pain which lasts for a period of more than 2 months (Attal et al., 1990; Bennett and Xie, 1988)
- Fourteen days (DPO 14) after injury, all individual rats were treated daily with HR-325 for 7 days up to
DPO 21. - Assessment of Mechanical Sensitivity:
- The mechanical sensitivity response was measured as the direct pressure stimulus required eliciting foot withdrawal in nonrestrained conditions. Animals were habituated to the testing apparatus for at least 20 min before testing. Each animal was subjected to the stimulation of a series of von Frey filaments ranging from 1.0 to 60 g using the Up-Down paradigm according to Chaplan (Chaplan et al., 1994). The selected von Frey filament was pressed against the plantar surface of the hind paw to the point of 30° bending for 3 s. Paw withdrawal response was considered as the positive response. The 50% threshold force needed for paw withdrawal was calculated for both hind paws of each rat.
- The Acetone Test
- A slightly modified method of De la Calle and colleagues (De la Calle et al., 2002) was used for the determination of the reactivity to a cold chemical stimulus. The rat was placed in acrylic cages on top of a wire mesh grid, which allowed access to the paws, and acetone was applied to the plantar surface of the hind paw. To do this, 100 μl of acetone was sprayed onto the plantar surface of the rat's hind leg from below the grid with a syringe holding 2.5 ml. The time spent with the leg withdrawn from floor during the 60 s following exposure to acetone was recorded. Both hind legs were tested in each animal with an interval of 5-10 min between each test.
- Results:
- Mechanical Sensitivity
- The mechanical sensitivity (indicated by the 50% threshold force for paw withdrawals) was determined by the Up-Down method using von Frey filaments. All rats were baseline tested before surgery and tested again on
day DPO 7 andDPO 14. The withdrawal threshold dropped from 60 grams before injury to 10grams 14 days after injury, which was significantly lower when compared to the contralateral paw. Then fromDPO 14 tillDPO 21 the oral treatment with HR-325 (black bar;FIG. 6 ) was given. AtDPO 21 the withdrawal threshold in the ipsilateral paw significantly increased up to 47 grams, which was not significantly different from the contralateral paw (T-test; n.s., seeFIG. 6 ). One week later atDPO 28 the treatment affect of HR-325 remained stable since the withdrawal threshold in the ipsilateral paw was still comparable with the contralateral paw. - The Acetone Test
- The acetone test was used for the determination of the reactivity to a cold chemical stimulus. The obtained results show clearly that before injury the acetone does not evoke any reaction at all when applied to the plantar surface of the hind paws. However, at
DPO 7 andDPO 14 most animals showed a clear reaction to the acetone exposure in the ipsilateral paw, an average reaction time of 16 and 23 seconds respectively. Since the contralateral paw did not react at all a statistically significant difference was noted between the two hind paws. The following 7 days up toDPO 21 the animals were treated with daily 10 mg/kg HR-325 (black bar;FIG. 7 ). As a consequence of the treatment the reactivity to the acetone almost diminished in the ipsilateral paw. One week later atDPO 28 the reactivity to the acetone exposure was still very low and comparable to the reactivity in the contralateral paw (T-test; n.s., seeFIG. 7 ). - HR325 treatment can attenuate peripheral neuropathic pain after partial ligation of the sciatic nerve.
- Surgical Methods
- The methods of Seltzer et al. (1990) were followed. The dorsum of the sciatic nerve was carefully freed from surrounding connective tissues at a site near the trochanter just distal to the point at which the posterior biceps semitendinosus nerve branches off the common sciatic nerve. The nerve was fixed in its place by pinching the epineurium on its dorsal aspect, taking care not to press the nerve against underlying structures. An 8-0 (Polyamide 6) suture was inserted into the nerve and tightly ligated so that the dorsal 1/3-1/2 of the nerve thickness was trapped in the ligature (Seltzer et al., 1990).
- Fourteen days (DPO 14) after injury, all individual rats were treated daily with FIR-325 for 7 days up to
DPO 21. - Assessment of Mechanical Sensitivity:
- For the assessment of mechanical sensitivity see example 4.
- The Acetone Test
- For the assessment of mechanical sensitivity see example 4.
- Results:
- Mechanical Sensitivity
- The mechanical sensitivity (indicated by the 50% threshold force for paw withdrawals) was determined by the Up-Down method using von Frey filaments. All rats were baseline tested before surgery and tested again on
day DPO 7 andDPO 14. The withdrawal threshold dropped from 60 grams before injury to 19grams 14 days after injury, which was significantly lower when compared to the contralateral paw. Then fromDPO 14 tillDPO 21 the oral treatment with HR-325 (black bar;FIG. 8 ) was given. AtDPO 21 the withdrawal threshold in the ipsilateral paw significantly increased up to 54 grams, which was not significantly different from the contralateral paw (T-test; n.s., seeFIG. 8 ). One week later atDPO 28 the treatment affect of HR-325 remained stable since the withdrawal threshold in the ipsilateral paw was still comparable with the contralateral paw. - The Acetone Test
- The acetone test was used for the determination of the reactivity to a cold chemical stimulus. The obtained results show clearly that before injury the acetone does not evoke any reaction at all when applied to the plantar surface of the hind paws. However, at
DPO 7 andDPO 14 most animals showed a clear reaction to the acetone exposure in the ipsilateral paw, an average reaction time of 4 and 8 seconds respectively. Since the contralateral paw did not react at all a statistically significant difference was noted between the two hind paws. The following 7 days up toDPO 21 the animals were treated with daily 10 mg/kg HR-325 (black bar;FIG. 9 ). As a consequence of the treatment the reactivity to the acetone completely diminished in the ipsilateral paw. One week later atDPO 28 the animals did still not show any reactivity to the acetone exposure Thus, the cold chemical stimulus was not painful anymore (seeFIG. 9 ). - The results show that a controlled pharmacotherapy by malononitrilamides can be used for treating neuropathic pain and neuropathic pain syndromes.
- The embodiments of the disclosure described above are intended to be merely exemplary, and those skilled in the art will recognize, or will be able to ascertain using no more than routine experimentation, numerous equivalents of specific compounds, materials, and procedures. All such equivalents are considered to be within the scope of the disclosure.
- Additional References
- The following additional publications are incorporated herein by references:
- Afridi, S., Goadsby, P. J., 2003. New onset migraine with a brain stem cavernous angioma. J Neurol Neurosurg Psychiatry. 74, 680-2.
- Attal, N., et al., 1990. The bidirectional dose-dependent effect of systemic naloxone is also related to the intensity and duration of pain-related disorders: a study in a rat model of peripheral mononeuropathy. Brain Res. 525, 170-4.
- Bennett, G. J., Xie, Y. K., 1988. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain. 33, 87-107.
- Cao, L., DeLeo, J. A., 2008. CNS-infiltrating CD4+T lymphocytes contribute to murine spinal nerve transection-induced neuropathic pain. Eur J. Immunol. 38, 448-58.
- Chaplan, S. R., et al., 1994. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods. 53, 55-63.
- Costigan, M., et al., 2009. T-cell infiltration and signaling in the adult dorsal spinal cord is a major contributor to neuropathic pain-like hypersensitivity. J. Neurosci. 29, 14415-22.
- Davis, J. P., et al., 1996. The immunosuppressive metabolite of leflunomide is a potent inhibitor of human dihydroorotate dehydrogenase. Biochemistry. 35, 1270-3.
- De la Calle, J. L., et al., 2002. Intrathecal transplantation of neuroblastoma cells decreases heat hyperalgesia and cold allodynia in a rat model of neuropathic pain. Brain Res Bull. 59, 205-11.
- Goadsby, P. J., 2002. Neurovascular headache and a midbrain vascular malformation: evidence for a role of the brainstem in chronic migraine. Cephalalgia. 22, 107-11.
- Greene, S., et al., 1995. Inhibition of dihydroorotate dehydrogenase by the immunosuppressive agent leflunomide. Biochem Pharmacol. 50, 861-7.
- Kuo, E. A., et al., 1996. Synthesis, structure-activity relationships, and pharmacokinetic properties of dihydroorotate dehydrogenase inhibitors: 2-cyano-3-cyclopropyl-3-hydroxy-N-[3′-methyl-4′-(trifluoromethyl)phenyl]propenamide and related compounds. J Med. Chem. 39, 4608-21.
- Seltzer, Z., et al., 1990. A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain. 43, 205-18.
- Williamson, R. A., et al., 1995. Dihydroorotate dehydrogenase is a high affinity binding protein for A77 1726 and mediator of a range of biological effects of the immunomodulatory compound. J Biol. Chem. 270, 22467-72.
- Zenonos, G., Kim, J. E., A T cell-orchestrated immune response in the adult dorsal spinal cord as a cause of neuropathic pain-like hypersensitivity after peripheral nerve damage: a door to novel therapies? Neurosurgery. 66, N24-5.
- Zielinski, T., et al., 1995. Leflunomide, a reversible inhibitor of pyrimidine biosynthesis? Inflamm Res. 44
Suppl 2, S207-8. - In summary, examples of the present disclosure pertain:
- to compounds for use in treating neuropathic pain and/or neuropathic pain syndrome, wherein the compounds are malononitrilamides.
- to a compound that has the formula (I)
- or derivatives or pharmaceutically acceptable salt, solvate, tautomer or stereoisomer thereof.
- to derivative which are selected from the group consisting of
- i) (1(3-methyl-4-trifluoro methylphenyl-carbamoyl)-2-cyclopropyl-2oxo-propionitrile),
- ii) N-(4-trifluoromethyl)-phenyl-2-cyano-3-hydroxy-hept-2-en-6-in-carboxylic acidamide,
- iii) 2-cyano-3-cyclopropyl-3-oxo-(4-cyanophenyl)propionamide and
- iv) 5-(3-butynyl)-N-[4-(trifluoromethyl)phenyl]-4-isoxazolecarboxamide and
or a pharmaceutically acceptable salt, solvate, tautomer or stereoisomer thereof. - to derivative which are selected from the group consisting of the following compounds with the formula II to IV:
- or a pharmaceutically acceptable salt, solvate, tautomer or stereoisomer thereof.
-
- to stereoisomers of a compound according to the present disclosure which are the R or S enantiomer.
- to tautomers of a compound according to the present disclosure which are the keto or enol form.
- The neuropathic pain syndrome according to the present disclosure may be postherpetic neuralgia (caused by Herpes Zoster), root avulsions, painful traumatic mononeuropathy, painful polyneuropathy (particularly due to diabetes), central pain syndromes (potentially caused by virtually any lesion at any level of the nervous system), postsurgical pain syndromes (eg, postmastectomy syndrome, postthoracotomy syndrome, phantom pain), and complex regional pain syndrome (reflex sympathetic dystrophy and causalgia).
- In some embodiments, the neuropathic pain is a central pain syndrome caused by spinal cord injury.
- In some embodiments, the neuropathic pain is a central pain syndrome caused by a spinal cord contusion.
- The present disclosure pertains also to pharmaceutical compositions for the use in the treatment of neuropathic pain and neuropathic pain syndromes comprising a malononitrilamide in free form or in the form of pharmaceutically acceptable salt or physiologically functional derivative, together with pharmaceutically acceptable diluents or carriers.
- The present disclosure pertains further to pharmaceutical compositions for the use in the treatment of neuropathic pain and neuropathic pain syndromes comprising a compound of formula II in free form or in the form of pharmaceutically acceptable salt or physiologically functional derivative, together with pharmaceutically acceptable diluents or carriers.
- Furthermore, the present disclosure pertains further to pharmaceutical compositions for the use in the treatment of neuropathic pain and neuropathic pain syndromes comprising a compound of one of the compounds with the formula II to V in free form or in the form of pharmaceutically acceptable salt or physiologically functional derivative, together with pharmaceutically acceptable diluents or carriers.
- The present disclosure pertains further to pharmaceutical compositions for preventing and/or treating neuropathic pain and neuropathic pain syndromes, which comprises a therapeutically effective amount of a malononitrilamide or a physiologically functional derivative thereof in admixture with a pharmaceutical acceptable carrier or excipient.
- The present disclosure pertains further to pharmaceutical compositions for preventing and/or treating neuropathic pain and neuropathic pain syndromes, which comprises a therapeutically effective amount of a compound with the formula II or a physiologically functional derivative thereof in admixture with a pharmaceutical acceptable carrier or excipient.
- The present disclosure pertains further to pharmaceutical compositions for preventing and/or treating neuropathic pain and neuropathic pain syndromes, which comprises a therapeutically effective amount of a compound of one of the compounds with the formula II to V or a physiologically functional derivative thereof in admixture with a pharmaceutical acceptable carrier or excipient.
- The treated neuropathic pain syndrome may be postherpetic neuralgia (caused by Herpes Zoster), root avulsions, painful traumatic mononeuropathy, painful polyneuropathy (particularly due to diabetes), central pain syndromes (potentially caused by virtually any lesion at any level of the nervous system), postsurgical pain syndromes (eg, postmastectomy syndrome, postthoracotomy syndrome, phantom pain), and complex regional pain syndrome (reflex sympathetic dystrophy and causalgia).
- In some embodiments the neuropathic pain is a central pain syndrome caused by spinal cord injury.
- In some embodiments the neuropathic pain is a central pain syndrome caused by spinal cord contusion.
Claims (20)
1.-13. (canceled)
14. A method for treating neuropathic pain and/or neuropathic pain syndromes in a patient, which comprises administering a pharmaceutical composition comprising a therapeutically effective amount of a malononitrilamide.
15. The method according to claim 14 , wherein the patient is a human.
16. The method according to claim 14 , wherein the neuropathic pain syndrome is postherpetic neuralgia (caused by Herpes Zoster), root avulsions, painful traumatic mononeuropathy, painful polyneuropathy (particularly due to diabetes), central pain syndromes (potentially caused by virtually any lesion at any level of the nervous system), postsurgical pain syndromes (eg, postmastectomy syndrome, postthoracotomy syndrome, phantom pain), complex regional pain syndrome (reflex sympathetic dystrophy and causalgia), and/or migraine or migraine pain.
17. The method according to claim 14 , wherein the neuropathic pain is a central pain syndrome caused by spinal cord injury and/or spinal cord contusion.
18. The method according to claim 14 , wherein the type of neuropathic pain is selected from those that have a cause that is selected from the group of the following causes: systemic diseases, diabetic neuropathy; drug-induced lesions, neuropathy due to chemotherapy; traumatic syndrome and entrapment syndrome; lesions in nerve roots and posterior ganglia; neuropathies after HIV infections; neuralgia after Herpes infections; nerve root avulsions; cranial nerve lesions; cranial neuralgias, tri-geminal neuralgia; neuropathic cancer pain; phantom pain; compression of peripheral nerves, neuroplexus and nerve roots; paraneoplastic peripheral neuropathy and ganglionopathy; complications of cancer therapies, chemotherapy, irradiation, and surgical interventions; complex regional pain syndrome; type I lesions (previously known as sympathetic reflex dystrophy); and type II lesions (corresponding approximately to causalgia); migraine and migraine pain; cerebral lesions that are predominantly thalamic; infarction, thalamic infarction or brain stem infarction; cerebral tumors or abscesses compressing the thalamus or brain stem; multiple sclerosis; brain operations, thalamotomy in cases of motoric disorders; spinal cord lesions; spinal cord injuries; spinal cord operations, anterolateral cordotomy; ischemic lesions; anterior spinal artery syndrome; Wallenberg's syndrome; and syringomyelia.
19. The method according to 14, wherein the neuropathic pain is a chronic neuropathic pain.
20. The method according to 14, wherein said composition is administered at daily dosages between 1 mg-10 g/body, preferable 5 mg-5 g/body and more preferable 10 mg-2 g/body beginning after a damage of the nervous system.
21. A medical kit suitable for the treatment of a neuropathic pain and/or a neuropathic pain syndrome, comprising:
(a) printed instructions for administering the compound to the patient having a damage of the nervous system
(b) a malononitrilamide compound, or
(c) a pharmaceutical composition according to claim 12 to 13.
24. The method of claim 23 , wherein the tautomer of the compound is the keto or enol form, in particular the keto form 2-cyano-3-oxo-N-[4-(trifluoromethyl) phenyl]-6-heptynamide.
25. The method of claim 14 , wherein the stereoisomer of the compound is the R or S enantiomer.
26. The method of claim 14 , wherein the compound is used in the treatment of peripheral and/or predominantly peripheral neuropathic pain or central and/or predominantly central neuropathic pain.
27. The method of claim 26 , wherein the predominantly peripheral neuropathic pain is of a type that is selected from the following types of neuropathic pain and/or has a cause that is selected from the group of the following causes: systemic diseases, diabetic neuropathy, drug-induced lesions, neuropathy due to chemotherapy; traumatic syndrome and entrapment syndrome; lesions in nerve roots and posterior ganglia; neuropathies after HIV infections; neuralgia after Herpes infections; nerve root avulsions; cranial nerve lesions; cranial neuralgias, trigeminal neuralgia; neuropathic cancer pain; phantom pain; compression of peripheral nerves, neuroplexus and nerve roots; paraneoplastic peripheral neuropathy and ganglionopathy, complications of cancer therapies, chemotherapy, irradiation, and surgical interventions; complex regional pain syndrome; type I lesions (previously known as sympathetic reflex dystrophy); and type II lesions (corresponding approximately to causalgia).
28. The method of claim 26 , wherein the predominantly central neuropathic pain is of a type that has a cause that is selected from the following group of causes: cerebral lesions that are predominantly thalamic; infarction, thalamic infarction or brain stem infarction; cerebral tumors or abscesses compressing the thalamus or brain stem; multiple sclerosis; head pain syndrome caused by central pain mechanisms including migraine or migraine pain; brain operations, thalamotomy in cases of motoric disorders; spinal cord lesions; spinal cord injuries; spinal cord operations, anterolateral cordotomy; ischemic lesions; anterior spinal artery syndrome; Wallenberg's syndrome; and syringomyelia.
29. The method of claim 14 , wherein the neuropathic pain syndrome is postherpetic neuralgia; root avulsions; painful traumatic mononeuropathy; painful polyneuropathy; central pain syndromes; postsurgical pain syndromes; postmastectomy syndrome; postthoracotomy syndrome; phantom pain; complex regional pain syndrome reflex sympathetic dystrophy and causalgia; and migraine or migraine pain.
30. The method of claim 14 , wherein the neuropathic pain is a central pain syndrome caused by spinal cord injury or spinal cord contusion.
31. The method of claim 14 , wherein the neuropathic pain is a chronic neuropathic pain.
32. The method of claim 14 , wherein the compound is administered at daily dosages between 1 mg-10 g/body, 5 mg-5 g/body or 10 mg-2 g/body beginning after a damage of the nervous system.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10014122 | 2010-10-29 | ||
EP10014122.5 | 2010-10-29 | ||
PCT/EP2011/005452 WO2012055567A2 (en) | 2010-10-29 | 2011-10-28 | Use of malononitrilamides in neuropathic pain |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2011/005452 A-371-Of-International WO2012055567A2 (en) | 2010-10-29 | 2011-10-28 | Use of malononitrilamides in neuropathic pain |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/328,035 Division US9468615B2 (en) | 2010-10-29 | 2014-07-10 | Use of malononitrilamides in neuropathic pain |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130217737A1 true US20130217737A1 (en) | 2013-08-22 |
Family
ID=44992853
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/880,139 Abandoned US20130217737A1 (en) | 2010-10-29 | 2011-10-28 | Use of Malononitrilamides in Neuropathic Pain |
US14/328,035 Active US9468615B2 (en) | 2010-10-29 | 2014-07-10 | Use of malononitrilamides in neuropathic pain |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/328,035 Active US9468615B2 (en) | 2010-10-29 | 2014-07-10 | Use of malononitrilamides in neuropathic pain |
Country Status (16)
Country | Link |
---|---|
US (2) | US20130217737A1 (en) |
EP (1) | EP2632451B1 (en) |
JP (1) | JP6257326B2 (en) |
CN (1) | CN103179962B (en) |
CA (1) | CA2814371C (en) |
DK (1) | DK2632451T3 (en) |
ES (1) | ES2655084T3 (en) |
HR (1) | HRP20171848T1 (en) |
HU (1) | HUE034890T2 (en) |
LT (1) | LT2632451T (en) |
NO (1) | NO2632451T3 (en) |
PL (1) | PL2632451T3 (en) |
PT (1) | PT2632451T (en) |
RS (1) | RS56713B1 (en) |
SI (1) | SI2632451T1 (en) |
WO (1) | WO2012055567A2 (en) |
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9096537B1 (en) | 2014-12-31 | 2015-08-04 | Mahesh Kandula | Compositions and methods for the treatment of mucositis |
US9102649B1 (en) | 2014-09-29 | 2015-08-11 | Mahesh Kandula | Compositions and methods for the treatment of multiple sclerosis |
US9108942B1 (en) | 2014-11-05 | 2015-08-18 | Mahesh Kandula | Compositions and methods for the treatment of moderate to severe pain |
US9150557B1 (en) | 2014-11-05 | 2015-10-06 | Cellix Bio Private Limited | Compositions and methods for the treatment of hyperglycemia |
US9173877B1 (en) | 2014-11-05 | 2015-11-03 | Cellix Bio Private Limited | Compositions and methods for the treatment of local pain |
US9175008B1 (en) | 2014-11-05 | 2015-11-03 | Cellix Bio Private Limited | Prodrugs of anti-platelet agents |
US9174931B2 (en) | 2013-06-04 | 2015-11-03 | Cellix Bio Private Limited | Compositions for the treatment of diabetes and pre-diabetes |
US9187427B2 (en) | 2012-08-03 | 2015-11-17 | Cellix Bio Private Limited | N-substituted nicotinamide compounds and compositions for the treatment migraine and neurologic diseases |
US9206111B1 (en) | 2014-12-17 | 2015-12-08 | Cellix Bio Private Limited | Compositions and methods for the treatment of neurological diseases |
US9227974B2 (en) | 2012-05-23 | 2016-01-05 | Cellex Bio Private Limited | Compositions and methods for the treatment of respiratory disorders |
US9233161B2 (en) | 2012-05-10 | 2016-01-12 | Cellix Bio Private Limited | Compositions and methods for the treatment of neurological conditions |
US9242939B2 (en) | 2012-05-10 | 2016-01-26 | Cellix Bio Private Limited | Compositions and methods for the treatment of respiratory disorders |
US9266823B2 (en) | 2012-05-08 | 2016-02-23 | Cellix Bio Private Limited | Compositions and methods for the treatment of parkinson's disease |
US9273061B2 (en) | 2012-05-10 | 2016-03-01 | Cellix Bio Private Limited | Compositions and methods for the treatment of chronic pain |
US9284287B1 (en) | 2014-11-05 | 2016-03-15 | Cellix Bio Private Limited | Compositions and methods for the suppression of carbonic anhydrase activity |
US9290486B1 (en) | 2014-11-05 | 2016-03-22 | Cellix Bio Private Limited | Compositions and methods for the treatment of epilepsy |
US9303038B2 (en) | 2011-09-06 | 2016-04-05 | Cellix Bio Private Limited | Compositions and methods for the treatment of epilepsy and neurological diseases |
US9309233B2 (en) | 2012-05-08 | 2016-04-12 | Cellix Bio Private Limited | Compositions and methods for the treatment of blood clotting disorders |
US9315478B2 (en) | 2012-05-10 | 2016-04-19 | Cellix Bio Private Limited | Compositions and methods for the treatment of metabolic syndrome |
US9315461B2 (en) | 2012-05-10 | 2016-04-19 | Cellix Bio Private Limited | Compositions and methods for the treatment of neurologic diseases |
US9321716B1 (en) | 2014-11-05 | 2016-04-26 | Cellix Bio Private Limited | Compositions and methods for the treatment of metabolic syndrome |
US9321775B2 (en) | 2012-05-10 | 2016-04-26 | Cellix Bio Private Limited | Compositions and methods for the treatment of moderate to severe pain |
US9333187B1 (en) | 2013-05-15 | 2016-05-10 | Cellix Bio Private Limited | Compositions and methods for the treatment of inflammatory bowel disease |
US9339484B2 (en) | 2012-05-10 | 2016-05-17 | Cellix Bio Private Limited | Compositions and methods for the treatment of restless leg syndrome and fibromyalgia |
US9346742B2 (en) | 2012-05-10 | 2016-05-24 | Cellix Bio Private Limited | Compositions and methods for the treatment of fibromyalgia pain |
US9394288B2 (en) | 2012-05-10 | 2016-07-19 | Cellix Bio Private Limited | Compositions and methods for the treatment of asthma and allergy |
US9399634B2 (en) | 2012-05-07 | 2016-07-26 | Cellix Bio Private Limited | Compositions and methods for the treatment of depression |
US9403826B2 (en) | 2012-05-08 | 2016-08-02 | Cellix Bio Private Limited | Compositions and methods for the treatment of inflammatory disorders |
US9403857B2 (en) | 2012-05-10 | 2016-08-02 | Cellix Bio Private Limited | Compositions and methods for the treatment of metabolic syndrome |
US9434729B2 (en) | 2012-05-23 | 2016-09-06 | Cellix Bio Private Limited | Compositions and methods for the treatment of periodontitis and rheumatoid arthritis |
US9434704B2 (en) | 2012-05-08 | 2016-09-06 | Cellix Bio Private Limited | Compositions and methods for the treatment of neurological degenerative disorders |
US9492409B2 (en) | 2012-05-23 | 2016-11-15 | Cellix Bio Private Limited | Compositions and methods for the treatment of local pain |
US9498461B2 (en) | 2012-05-23 | 2016-11-22 | Cellix Bio Private Limited | Compositions and methods for the treatment of inflammatory bowel disease |
US9499526B2 (en) | 2012-05-10 | 2016-11-22 | Cellix Bio Private Limited | Compositions and methods for the treatment of neurologic diseases |
US9499527B2 (en) | 2012-05-10 | 2016-11-22 | Cellix Bio Private Limited | Compositions and methods for the treatment of familial amyloid polyneuropathy |
US9522884B2 (en) | 2012-05-08 | 2016-12-20 | Cellix Bio Private Limited | Compositions and methods for the treatment of metabolic disorders |
US9573927B2 (en) | 2012-05-10 | 2017-02-21 | Cellix Bio Private Limited | Compositions and methods for the treatment of severe pain |
US9580383B2 (en) | 2012-05-23 | 2017-02-28 | Cellix Bio Private Limited | Compositions and methods for the treatment of multiple sclerosis |
US9624168B2 (en) | 2012-09-06 | 2017-04-18 | Cellix Bio Private Limited | Compositions and methods for the treatment inflammation and lipid disorders |
US9642915B2 (en) | 2012-05-07 | 2017-05-09 | Cellix Bio Private Limited | Compositions and methods for the treatment of neuromuscular disorders and neurodegenerative diseases |
US9670153B2 (en) | 2012-09-08 | 2017-06-06 | Cellix Bio Private Limited | Compositions and methods for the treatment of inflammation and lipid disorders |
US9725404B2 (en) | 2014-10-27 | 2017-08-08 | Cellix Bio Private Limited | Compositions and methods for the treatment of multiple sclerosis |
US9738631B2 (en) | 2012-05-07 | 2017-08-22 | Cellix Bio Private Limited | Compositions and methods for the treatment of neurological disorders |
US9765020B2 (en) | 2012-05-23 | 2017-09-19 | Cellix Bio Private Limited | Dichlorophenyl-imino compounds and compositions, and methods for the treatment of mucositis |
US9771355B2 (en) | 2014-09-26 | 2017-09-26 | Cellix Bio Private Limited | Compositions and methods for the treatment of epilepsy and neurological disorders |
US9932294B2 (en) | 2014-12-01 | 2018-04-03 | Cellix Bio Private Limited | Compositions and methods for the treatment of multiple sclerosis |
US10208014B2 (en) | 2014-11-05 | 2019-02-19 | Cellix Bio Private Limited | Compositions and methods for the treatment of neurological disorders |
US10227301B2 (en) | 2015-01-06 | 2019-03-12 | Cellix Bio Private Limited | Compositions and methods for the treatment of inflammation and pain |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7090599B2 (en) * | 2016-09-24 | 2022-06-24 | 山東亨利醫藥科技有限責任公司 | Pharmaceutical Compositions Containing Mineral Corticoid Receptor Antagonists and Their Use |
DK3928772T3 (en) * | 2020-06-26 | 2024-08-19 | Algiax Pharmaceuticals Gmbh | NANOPARTICULAR COMPOSITION |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2727628A1 (en) * | 1994-12-02 | 1996-06-07 | Roussel Uclaf | Use of 3-cycloalkyl-propan-amide derivs. |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3536809A (en) | 1969-02-17 | 1970-10-27 | Alza Corp | Medication method |
US3598123A (en) | 1969-04-01 | 1971-08-10 | Alza Corp | Bandage for administering drugs |
US3845770A (en) | 1972-06-05 | 1974-11-05 | Alza Corp | Osmatic dispensing device for releasing beneficial agent |
US3916899A (en) | 1973-04-25 | 1975-11-04 | Alza Corp | Osmotic dispensing device with maximum and minimum sizes for the passageway |
US4008719A (en) | 1976-02-02 | 1977-02-22 | Alza Corporation | Osmotic system having laminar arrangement for programming delivery of active agent |
IE58110B1 (en) | 1984-10-30 | 1993-07-14 | Elan Corp Plc | Controlled release powder and process for its preparation |
US5073543A (en) | 1988-07-21 | 1991-12-17 | G. D. Searle & Co. | Controlled release formulations of trophic factors in ganglioside-lipsome vehicle |
IT1229203B (en) | 1989-03-22 | 1991-07-25 | Bioresearch Spa | USE OF 5 METHYLTHETRAHYDROPHOLIC ACID, 5 FORMYLTHETRAHYDROPHOLIC ACID AND THEIR PHARMACEUTICALLY ACCEPTABLE SALTS FOR THE PREPARATION OF PHARMACEUTICAL COMPOSITIONS IN THE FORM OF CONTROLLED RELEASE ACTIVE IN THE THERAPY OF MENTAL AND ORGANIC DISORDERS. |
US5120548A (en) | 1989-11-07 | 1992-06-09 | Merck & Co., Inc. | Swelling modulated polymeric drug delivery device |
KR0166088B1 (en) | 1990-01-23 | 1999-01-15 | . | Derivatives of cyclodextrins exhibiting enhanced aqueous solubility and the use thereof |
US5733566A (en) | 1990-05-15 | 1998-03-31 | Alkermes Controlled Therapeutics Inc. Ii | Controlled release of antiparasitic agents in animals |
US5494911A (en) | 1990-05-18 | 1996-02-27 | Hoechst Aktiengesellschaft | Isoxazole-4-carboxamides and hydroxyalkylidenecyanoacetamides, pharmaceuticals containing these compounds and their use |
US5580578A (en) | 1992-01-27 | 1996-12-03 | Euro-Celtique, S.A. | Controlled release formulations coated with aqueous dispersions of acrylic polymers |
GB9200275D0 (en) | 1992-01-08 | 1992-02-26 | Roussel Lab Ltd | Chemical compounds |
US5591767A (en) | 1993-01-25 | 1997-01-07 | Pharmetrix Corporation | Liquid reservoir transdermal patch for the administration of ketorolac |
IT1270594B (en) | 1994-07-07 | 1997-05-07 | Recordati Chem Pharm | CONTROLLED RELEASE PHARMACEUTICAL COMPOSITION OF LIQUID SUSPENSION MOGUISTEIN |
US6566395B1 (en) * | 1999-05-25 | 2003-05-20 | Biomedicines, Inc. | Methods of treating proliferative disorders |
GB0123571D0 (en) * | 2001-04-05 | 2001-11-21 | Aventis Pharm Prod Inc | Use of (Z)-2-cyano-3-hydroxy-but-2-enoic acid-(4'-trifluoromethylphenyl)-amide for treating multiple sclerosis |
DK2608782T3 (en) * | 2010-08-24 | 2016-09-05 | Algiax Pharmaceuticals Gmbh | New use of leflunomide malononitrilamider |
-
2011
- 2011-10-28 PL PL11784418T patent/PL2632451T3/en unknown
- 2011-10-28 NO NO11784418A patent/NO2632451T3/no unknown
- 2011-10-28 PT PT117844183T patent/PT2632451T/en unknown
- 2011-10-28 DK DK11784418.3T patent/DK2632451T3/en active
- 2011-10-28 SI SI201131372T patent/SI2632451T1/en unknown
- 2011-10-28 CN CN201180051334.6A patent/CN103179962B/en active Active
- 2011-10-28 HU HUE11784418A patent/HUE034890T2/en unknown
- 2011-10-28 EP EP11784418.3A patent/EP2632451B1/en active Active
- 2011-10-28 WO PCT/EP2011/005452 patent/WO2012055567A2/en active Application Filing
- 2011-10-28 CA CA2814371A patent/CA2814371C/en active Active
- 2011-10-28 LT LTEP11784418.3T patent/LT2632451T/en unknown
- 2011-10-28 RS RS20171305A patent/RS56713B1/en unknown
- 2011-10-28 US US13/880,139 patent/US20130217737A1/en not_active Abandoned
- 2011-10-28 JP JP2013535311A patent/JP6257326B2/en active Active
- 2011-10-28 ES ES11784418.3T patent/ES2655084T3/en active Active
-
2014
- 2014-07-10 US US14/328,035 patent/US9468615B2/en active Active
-
2017
- 2017-11-28 HR HRP20171848TT patent/HRP20171848T1/en unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2727628A1 (en) * | 1994-12-02 | 1996-06-07 | Roussel Uclaf | Use of 3-cycloalkyl-propan-amide derivs. |
Non-Patent Citations (4)
Title |
---|
Dani et al European Journal of Pharmacology 573 (2007) 214-215. * |
FR2727628 (Machine Translation), 02/12/1994 * |
STN Accession Number 1996:479381 CAPLUS, 1996. * |
Watson et al, Neurology June 1998 vol. 50 no. 6 1837-1841. * |
Cited By (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9303038B2 (en) | 2011-09-06 | 2016-04-05 | Cellix Bio Private Limited | Compositions and methods for the treatment of epilepsy and neurological diseases |
US9738631B2 (en) | 2012-05-07 | 2017-08-22 | Cellix Bio Private Limited | Compositions and methods for the treatment of neurological disorders |
US9642915B2 (en) | 2012-05-07 | 2017-05-09 | Cellix Bio Private Limited | Compositions and methods for the treatment of neuromuscular disorders and neurodegenerative diseases |
US9399634B2 (en) | 2012-05-07 | 2016-07-26 | Cellix Bio Private Limited | Compositions and methods for the treatment of depression |
US9266823B2 (en) | 2012-05-08 | 2016-02-23 | Cellix Bio Private Limited | Compositions and methods for the treatment of parkinson's disease |
US9522884B2 (en) | 2012-05-08 | 2016-12-20 | Cellix Bio Private Limited | Compositions and methods for the treatment of metabolic disorders |
US9434704B2 (en) | 2012-05-08 | 2016-09-06 | Cellix Bio Private Limited | Compositions and methods for the treatment of neurological degenerative disorders |
US9403826B2 (en) | 2012-05-08 | 2016-08-02 | Cellix Bio Private Limited | Compositions and methods for the treatment of inflammatory disorders |
US9309233B2 (en) | 2012-05-08 | 2016-04-12 | Cellix Bio Private Limited | Compositions and methods for the treatment of blood clotting disorders |
US9273061B2 (en) | 2012-05-10 | 2016-03-01 | Cellix Bio Private Limited | Compositions and methods for the treatment of chronic pain |
US9315478B2 (en) | 2012-05-10 | 2016-04-19 | Cellix Bio Private Limited | Compositions and methods for the treatment of metabolic syndrome |
US9242939B2 (en) | 2012-05-10 | 2016-01-26 | Cellix Bio Private Limited | Compositions and methods for the treatment of respiratory disorders |
US9394288B2 (en) | 2012-05-10 | 2016-07-19 | Cellix Bio Private Limited | Compositions and methods for the treatment of asthma and allergy |
US9346742B2 (en) | 2012-05-10 | 2016-05-24 | Cellix Bio Private Limited | Compositions and methods for the treatment of fibromyalgia pain |
US9573927B2 (en) | 2012-05-10 | 2017-02-21 | Cellix Bio Private Limited | Compositions and methods for the treatment of severe pain |
US9499527B2 (en) | 2012-05-10 | 2016-11-22 | Cellix Bio Private Limited | Compositions and methods for the treatment of familial amyloid polyneuropathy |
US9339484B2 (en) | 2012-05-10 | 2016-05-17 | Cellix Bio Private Limited | Compositions and methods for the treatment of restless leg syndrome and fibromyalgia |
US9499526B2 (en) | 2012-05-10 | 2016-11-22 | Cellix Bio Private Limited | Compositions and methods for the treatment of neurologic diseases |
US9403857B2 (en) | 2012-05-10 | 2016-08-02 | Cellix Bio Private Limited | Compositions and methods for the treatment of metabolic syndrome |
US9315461B2 (en) | 2012-05-10 | 2016-04-19 | Cellix Bio Private Limited | Compositions and methods for the treatment of neurologic diseases |
US9233161B2 (en) | 2012-05-10 | 2016-01-12 | Cellix Bio Private Limited | Compositions and methods for the treatment of neurological conditions |
US9321775B2 (en) | 2012-05-10 | 2016-04-26 | Cellix Bio Private Limited | Compositions and methods for the treatment of moderate to severe pain |
US9498461B2 (en) | 2012-05-23 | 2016-11-22 | Cellix Bio Private Limited | Compositions and methods for the treatment of inflammatory bowel disease |
US9765020B2 (en) | 2012-05-23 | 2017-09-19 | Cellix Bio Private Limited | Dichlorophenyl-imino compounds and compositions, and methods for the treatment of mucositis |
US9580383B2 (en) | 2012-05-23 | 2017-02-28 | Cellix Bio Private Limited | Compositions and methods for the treatment of multiple sclerosis |
US9227974B2 (en) | 2012-05-23 | 2016-01-05 | Cellex Bio Private Limited | Compositions and methods for the treatment of respiratory disorders |
US9492409B2 (en) | 2012-05-23 | 2016-11-15 | Cellix Bio Private Limited | Compositions and methods for the treatment of local pain |
US9434729B2 (en) | 2012-05-23 | 2016-09-06 | Cellix Bio Private Limited | Compositions and methods for the treatment of periodontitis and rheumatoid arthritis |
US9403793B2 (en) | 2012-07-03 | 2016-08-02 | Cellix Bio Private Limited | Compositions and methods for the treatment of moderate to severe pain |
US9187427B2 (en) | 2012-08-03 | 2015-11-17 | Cellix Bio Private Limited | N-substituted nicotinamide compounds and compositions for the treatment migraine and neurologic diseases |
US9624168B2 (en) | 2012-09-06 | 2017-04-18 | Cellix Bio Private Limited | Compositions and methods for the treatment inflammation and lipid disorders |
US9670153B2 (en) | 2012-09-08 | 2017-06-06 | Cellix Bio Private Limited | Compositions and methods for the treatment of inflammation and lipid disorders |
US9333187B1 (en) | 2013-05-15 | 2016-05-10 | Cellix Bio Private Limited | Compositions and methods for the treatment of inflammatory bowel disease |
US9174931B2 (en) | 2013-06-04 | 2015-11-03 | Cellix Bio Private Limited | Compositions for the treatment of diabetes and pre-diabetes |
US9840472B2 (en) | 2013-12-07 | 2017-12-12 | Cellix Bio Private Limited | Compositions and methods for the treatment of mucositis |
US9771355B2 (en) | 2014-09-26 | 2017-09-26 | Cellix Bio Private Limited | Compositions and methods for the treatment of epilepsy and neurological disorders |
US9102649B1 (en) | 2014-09-29 | 2015-08-11 | Mahesh Kandula | Compositions and methods for the treatment of multiple sclerosis |
US9988340B2 (en) | 2014-09-29 | 2018-06-05 | Cellix Bio Private Limited | Compositions and methods for the treatment of multiple sclerosis |
US9725404B2 (en) | 2014-10-27 | 2017-08-08 | Cellix Bio Private Limited | Compositions and methods for the treatment of multiple sclerosis |
US9321716B1 (en) | 2014-11-05 | 2016-04-26 | Cellix Bio Private Limited | Compositions and methods for the treatment of metabolic syndrome |
US9108942B1 (en) | 2014-11-05 | 2015-08-18 | Mahesh Kandula | Compositions and methods for the treatment of moderate to severe pain |
US9150557B1 (en) | 2014-11-05 | 2015-10-06 | Cellix Bio Private Limited | Compositions and methods for the treatment of hyperglycemia |
US9173877B1 (en) | 2014-11-05 | 2015-11-03 | Cellix Bio Private Limited | Compositions and methods for the treatment of local pain |
US9175008B1 (en) | 2014-11-05 | 2015-11-03 | Cellix Bio Private Limited | Prodrugs of anti-platelet agents |
US9290486B1 (en) | 2014-11-05 | 2016-03-22 | Cellix Bio Private Limited | Compositions and methods for the treatment of epilepsy |
US9284287B1 (en) | 2014-11-05 | 2016-03-15 | Cellix Bio Private Limited | Compositions and methods for the suppression of carbonic anhydrase activity |
US10208014B2 (en) | 2014-11-05 | 2019-02-19 | Cellix Bio Private Limited | Compositions and methods for the treatment of neurological disorders |
US9932294B2 (en) | 2014-12-01 | 2018-04-03 | Cellix Bio Private Limited | Compositions and methods for the treatment of multiple sclerosis |
US9206111B1 (en) | 2014-12-17 | 2015-12-08 | Cellix Bio Private Limited | Compositions and methods for the treatment of neurological diseases |
US9096537B1 (en) | 2014-12-31 | 2015-08-04 | Mahesh Kandula | Compositions and methods for the treatment of mucositis |
US10227301B2 (en) | 2015-01-06 | 2019-03-12 | Cellix Bio Private Limited | Compositions and methods for the treatment of inflammation and pain |
US10343994B2 (en) | 2015-01-06 | 2019-07-09 | Mahesh Kandula | Compositions and methods for the treatment of inflammation and pain |
Also Published As
Publication number | Publication date |
---|---|
US9468615B2 (en) | 2016-10-18 |
LT2632451T (en) | 2018-02-12 |
DK2632451T3 (en) | 2017-12-18 |
SI2632451T1 (en) | 2018-02-28 |
ES2655084T3 (en) | 2018-02-16 |
NO2632451T3 (en) | 2018-03-17 |
HRP20171848T1 (en) | 2018-02-09 |
WO2012055567A2 (en) | 2012-05-03 |
WO2012055567A3 (en) | 2012-07-05 |
CN103179962A (en) | 2013-06-26 |
EP2632451B1 (en) | 2017-10-18 |
US20140357722A1 (en) | 2014-12-04 |
EP2632451A2 (en) | 2013-09-04 |
CA2814371C (en) | 2019-03-19 |
JP2013545730A (en) | 2013-12-26 |
HUE034890T2 (en) | 2018-03-28 |
CN103179962B (en) | 2017-03-22 |
PL2632451T3 (en) | 2018-04-30 |
RS56713B1 (en) | 2018-03-30 |
PT2632451T (en) | 2017-12-14 |
CA2814371A1 (en) | 2012-05-03 |
JP6257326B2 (en) | 2018-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9468615B2 (en) | Use of malononitrilamides in neuropathic pain | |
ES2340027T3 (en) | COMBINATIONS TO TREAT MULTIPLE MYELOMA. | |
ES2355526T3 (en) | METHODS AND COMPOSITIONS THAT USE IMMUNOMODULATING COMPOUNDS FOR THE TREATMENT OF ASSOCIATED DISORDERS AT LEPTINE LEVELS IN LOW PLASMA. | |
JP2013511536A (en) | How to treat sarcoidosis | |
BRPI0712938A2 (en) | Method for modulating neurite outgrowth by use of a galanin-3 receptor antagonist | |
US20110184025A1 (en) | Methods and Compositions Using Immunomodulatory Compounds for the Treatment and Management of Spirochete and Other Obligate Intracellular Bacterial Diseases | |
RU2751504C2 (en) | Use of carbamate for the prevention or treatment of trigeminal neuralgia | |
JP2013538810A (en) | Combination of HDAC inhibitor and thrombocytopenia | |
US8957098B2 (en) | Use of leflunomide and malononitrilamides | |
WO2013156231A1 (en) | Use of imidazotriazinones in neuropathic pain | |
EP3650024B1 (en) | Pharmaceutical composition for nasal administration comprising rifampicins for treating dementia | |
WO2013156232A1 (en) | Use of benzofuranylsulfonates in neuropathic pain | |
EP2685983A1 (en) | Novel use of imidazotriazinones | |
US20140057978A1 (en) | Novel use of benzofuranylsulfonates | |
ES2726640T3 (en) | 2-Cyano-3-cyclopropyl-3-hydroxy-n-aryl-thioacrylamide derivatives | |
US20170119775A1 (en) | Treatment of cognitive disorders | |
EP2351565A1 (en) | Medicine for preventing or treating pain related to herpes zoster |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ALGIAX PHARMACEUTICALS GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HASSE, BIRGIT;KOOPMANS, GUIDO;REEL/FRAME:032046/0711 Effective date: 20131212 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |