US20130212790A1 - Flame resistant blends - Google Patents

Flame resistant blends Download PDF

Info

Publication number
US20130212790A1
US20130212790A1 US13/842,988 US201313842988A US2013212790A1 US 20130212790 A1 US20130212790 A1 US 20130212790A1 US 201313842988 A US201313842988 A US 201313842988A US 2013212790 A1 US2013212790 A1 US 2013212790A1
Authority
US
United States
Prior art keywords
weight
yarn
fibre
fabric
modacrylic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/842,988
Inventor
Richard Waxman
Peter Seward
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PROTAL Ltd
Original Assignee
Richard Waxman
Peter Seward
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB0813401A external-priority patent/GB0813401D0/en
Application filed by Richard Waxman, Peter Seward filed Critical Richard Waxman
Priority to US13/842,988 priority Critical patent/US20130212790A1/en
Publication of US20130212790A1 publication Critical patent/US20130212790A1/en
Assigned to PROTAL LIMITED reassignment PROTAL LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SEWARD, PETER, WAXMAN, RICHARD
Abandoned legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/443Heat-resistant, fireproof or flame-retardant yarns or threads
    • A41D31/0022
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • A41D31/08Heat resistant; Fire retardant
    • D03D15/12
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/513Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads heat-resistant or fireproof
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/14Other fabrics or articles characterised primarily by the use of particular thread materials
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43835Mixed fibres, e.g. at least two chemically different fibres or fibre blends
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H13/00Other non-woven fabrics
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43825Composite fibres
    • D04H1/43828Composite fibres sheath-core
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • D10B2201/01Natural vegetable fibres
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • D10B2201/20Cellulose-derived artificial fibres
    • D10B2201/22Cellulose-derived artificial fibres made from cellulose solutions
    • D10B2201/24Viscose
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/10Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • D10B2321/101Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide modacrylic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3976Including strand which is stated to have specific attributes [e.g., heat or fire resistance, chemical or solvent resistance, high absorption for aqueous composition, water solubility, heat shrinkability, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3976Including strand which is stated to have specific attributes [e.g., heat or fire resistance, chemical or solvent resistance, high absorption for aqueous composition, water solubility, heat shrinkability, etc.]
    • Y10T442/3984Strand is other than glass and is heat or fire resistant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/40Knit fabric [i.e., knit strand or strip material]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/696Including strand or fiber material which is stated to have specific attributes [e.g., heat or fire resistance, chemical or solvent resistance, high absorption for aqueous compositions, water solubility, heat shrinkability, etc.]

Definitions

  • the present invention relates to a flame resistant fibre blend and in particular, although not exclusively, to yarns, fabrics, garments, woven, knitted, and non-woven products prepared from a flame resistant fibre blend.
  • FR materials are employed in many textile applications.
  • FR materials are used as barrier layers to protect more flammable internal components such as inner stuffing within furniture including mattresses, sofas and the like.
  • FR materials are also used to make FR clothing used in specific industrial applications and the military.
  • First generation fire resistant materials particularly for the construction of garments to be worn, were based on natural fibres, including in particular wool and cotton.
  • the flame retardant functionality was provided by chemically treating the natural yarns with phosphorous based flame retardant chemicals.
  • the resultant garments whilst being resistant to flames were however disadvantageous for a number of reasons.
  • these early FR garments were uncomfortable to wear for reasonable periods as they were typically heavy with the wearer becoming increasingly hot.
  • synthetic FR blends have been developed with a view to providing lighter more breathable garments so as to increase comfort.
  • US 2008/0145543 discloses a high performance FR textile fabric for use in producing close fitting garments, such as undergarments, in direct contact with the skin.
  • the fabric is formed from yarns of rayon filaments, and a cured phosphorous-based flame retardant compound is affixed to the filaments and imparts further flame retardant properties to the fabric.
  • US 2005/0204718 discloses a blended yarn designed to provide arc and flame protective properties.
  • the yarn is manufactured from 40% to 70% by weigh of a modacrylic, 5% to 20% by weight of p-aramid and 10% to 40% by weight of m-aramid.
  • the entirely synthetic material is designed to achieve a tensile strength sufficient to be resistant to ‘break-open’ when exposed to an electric arc.
  • WO 2008/027454 discloses flame resistant fabrics comprising a blend of a synthetic cellulosic and a FR modacrylic. Garments produced from the fibres are designed to be resistant to electric arc flash and flames.
  • the inventors provide a fibre blend that is designed to be breathable, soft and provide moisture management characteristics.
  • the present fibre blend is also configured to be multipurpose being suitable for use as a safety garment that offers a protective function within a variety of very different hazardous environments.
  • utilising natural materials further provides for a cost effective solution to the problem of increasing the FR of a textile.
  • fabrics manufactured from the present fibre blend are configured to satisfy a variety of different safety standards including in particular, flame retardance protection against radiant and convective heat; electric arc; contact heat and protection against the effects of a hydrocarbon flash fire.
  • the present fibre blend comprises both synthetic and natural fibres.
  • a natural cellulosic material is employed to provide a garment that is comfortable for the wearer due, in part, to the breathability and softness.
  • the moisture management characteristics of the resulting textiles are also enhanced due primarily to the ‘wicking’ characteristics resultant from the synergistic combination of the natural and synthetic materials.
  • the present blend is specifically configured to be blended and spun to form a yarn having a composite structure formed from the fibre blend.
  • a flame retardant yarn having a composite structure formed from a collection of fibres twisted together, the fibres comprising a blend of:
  • modacrylic fibre refers to a modified version of acrylonitrile which is resultant from the copolymerisation of acrylonitrile with another compound.
  • the copolymer may comprise 30% to 70% by weight of acrylonitrile and 70% to 30% by weight of a halogen-containing vinyl monomer.
  • the halogen-containing vinyl monomer is preferably at least one monomer selected from vinyl chloride or vinylidene chloride.
  • the modacrylic fibres are copolymers of acrylonitrile combined with vinylidene chloride, the copolymer further comprising at least one type of antimony oxide for improved fire retardancy.
  • antimony trioxide and/or pentoxide may be used to dope the resultant copolymer.
  • the flame retardant, physical and mechanical properties of the fibre blend may be tailored by, in particular, variation of the type and quantity of the antimony oxide added.
  • the modacrylic fibre of the present invention comprises the fibres disclosed in U.S. Pat. No. 3,193,602; U.S. Pat. No. 3,748,302; U.S. Pat. No. 5,208,105 and U.S. Pat. No. 5,506,042, the contents of which are incorporated by reference herein.
  • the preferred modacrylic fibres of the present invention are fibres based on KanecaronTM (available from Kaneka Corporation, Kanecaron Division, 3-2-4, Nakanoshima, Kita-ku, Osaka 530-8288, Japan).
  • KanecaronTM includes KanekaronTM and KanekalonTM.
  • the present fibre blend may comprise any one or a combination of different grades of ProtexTM selected from: ProtexTM W; ProtexTM M; ProtexTM T; Protex and/or other modacrylic FR materials falling within the ProtexTM family and available from Kaneka.
  • the modacrylic comprises Protex QTM.
  • the modacrylic may comprise SevelTM (available from Fushun Huifu Fire Resistant Fibre Co Limited, No 54, West Section Anshan Road, Fushun City, Conn.-113001 Lianong, China).
  • the modacrylic may comprise TairylonTM (available from Formosa Chemical & Fibre Corporation, 201 Tung Hwan Road, Teipei, Taiwan, R.O.C).
  • the FR viscose may be sourced from a plurality of different manufacturers to suit the FR, physical and mechanical performance as required.
  • the FR viscose comprises Lenzing FRTM (available from Lenzing Fibres Inc, Aktiengesellschaft, 4860 Lenzing, Austria).
  • the FR viscose may be sourced from Shandong Helon Co. Ltd, No 555, Hai Long Road, Hanging District, Wei Fang, SDG 261100, China (herein referred to as Helon FR).
  • the natural cellulosic material comprises any one or a combination of the following set of: Natural Cotton; Bamboo; Linen; and/or Jute.
  • Natural cellulosic refers to a cellulosic material that has not been pre-treated so as to change the chemical, physical or mechanical properties including in particular enhancement of FR. This term also refers to a material available from a biological source such as a plant or shrub. The term includes such natural materials that have undergone minimal processing such that the resultant materials cannot be categorised as synthetic or ‘man-made’.
  • the blend may further comprise nylon in the amount trace to 7% by weight or more preferably trace to 5% by weight.
  • the blend may further comprise a para-aramid material in the amount trace to 7% by weight or more preferably trace to 5% by weight.
  • the blend may further comprise an antistatic material and in particular a carbon based antistatic material in the amount trace to 5% by weight.
  • the carbon or non-carbon based antistatic material may be sourced from a plurality of different manufacturers to satisfy the desired physical and mechanical properties as required.
  • the antistatic material comprises any one or a combination of the following set of: BeltronTM (available from KB Seiren Limited, 14-15F, Umeda Daibiru Building, 3-3-10, Umeda, Kita-ku, Osaka, 530-0001 Japan); NegastatTM (available from William Barnet & Son, LLC, 1300 Hayn Street, P.O. Box 131 Arcadia, S.C., 29320, United States of America); antistatic material and fibres available from Jarden, US; and/or BekinoxTM (available from Bekaert, President Kennedypark 18, B-8500 Kortrijk, Belgium).
  • the fibre blend comprises 40% to 55% by weight of the modacrylic; 10% to 20% by weight of the natural cellulosic material; and 25% to 35% by weight of the FR viscose based material.
  • the fibre blend comprises: 45% to 55% by weight of ProtexTM; 10% to 20% by weight of natural cotton; 25% to 35% by weight of FR viscose; trace to 7% by weight nylon; and trace to 5% by weight of a carbon based antistatic material.
  • the fibre blend comprises: 45% to 55% by weight of ProtexTM T; 10% to 20% by weight of natural cotton; 25% to 35% by weight of FR viscose; trace to 7% by weight para-aramid; and trace to 5% by weight of a carbon based antistatic material.
  • a fabric comprising a fibre blend as disclosed herein.
  • a garment comprising a fabric made from the fibre blend as disclosed herein.
  • the present blend of textile fibres is suitable to form yarns to construct fabrics and/or garments that are considered fire and flame retardant such that garments formed from the present yarns may be worn in conditions where there is any threat of heat or flame trauma.
  • the present blend is further advantageous by including natural fibre components to facilitate a degree of comfort to the wearer which cannot be achieved with blends of wholly synthetic component.
  • the present fabrics and garments comprise thermostable elements or components to ensure compliance with relevant health and safety requirements whilst being comfortable and lightweight but achieving a high degree of protection against heat and flame.
  • the present blend may be presented in blend form, as yarns formed from staple fibres, filamentous yarns, filaments including monofilaments and multifilaments. Fabrics according to the present invention are constructed via the use of the present blend or a union of the present blended fibres in woven, non-woven, or knitted form.
  • the present invention comprises a knitted fabric comprising a fibre blend as described herein further comprising an antistatic fibre or fibres as a fibre yarn or filament wherein the antistatic fibre is included in the range trace to 10% by weight.
  • the present invention may comprise a woven fabric formed from the present fibres in a blend or union optionally further including addition of an antistatic fibre or fibres included in the range trace to 10% by weight.
  • the present fabrics comprise thermostable yarns or filaments or a combination of yarns and filaments in which yarns or filaments of a first type are interlaid, interlinked, interwoven or looped with yarns or filaments of a second type to create a blended composite fabric structure.
  • thermostable component may comprise anyone or a combination of the following set of:
  • thermostable fibres may comprise any one or a combination of the following set of: melamines, polyimides, polyamideimides, partially oxidized polyacrylonitriles, novoloids, poly (p-phenylen benzothiazoles), polyphenylene sulphides, polyethyl- or polydiethyl-ketones, polyketones, polyetherimides, and combinations thereof.
  • thermostable component of the fabric as identified herein is used to form a ‘construct’ reinforcement component of the fabric that provides structural integrity to the fabric during and following exposure to heat and flame
  • the thermostable component is included as a minority component within the fabric with the majority component being formed from the yarns or filaments of the present fibre blend comprising a modacrylic, cellulosic and FR viscose.
  • Reference within the specification to minority and majority component encompass volume and weight percentage relative amounts of the first yarn, the second yarn or filament type and the combined volume or weight percentage of the first and second yarn or filament types.
  • a flame retardant fibre blend comprising:
  • the blend comprises 5 to 20% of a polyamide.
  • thermostable element is a blend and comprises any one or a combination of:
  • the majority component fibre blend and/or the minority thermostable fibre blend includes an antistatic fibre (as described herein) included in the range trace to 10% by weight.
  • a flame retardant fabric having a composite structure comprising;
  • the fabric comprises a woven structure wherein the majority of the warps and wefts of the weave comprise the first yarn type; and wherein the second yarn and/or filament type is interwoven as warps and wefts at spaced apart intervals amongst the warps and wefts formed from the first yarn type.
  • the second yarn and/or filament type is interwoven with the first yarn type at a regular spacing in the range 5 to 15 ends and 5 to 15 picks. More preferably, the second yarn and/or filament type is interwoven with the first yarn type at a regular spacing in 10 ends and 10 picks.
  • the second yarn or filament type may comprise a single or two-ply structure.
  • a first strand may comprise a yarn or filament formed from 100% by weight of the thermostable component and the second strand may comprise a yarn formed from the present blend.
  • the first strand may comprise 50:50 of the thermostable component and a modacrylic and the second strand may comprise 50:50 of the thermostable component and a modacrylic.
  • the first strand of the two-ply construct comprises 100% by weight para-aramid with the second strand comprising 100% by weight of the present blend.
  • the second yarn or filament type may comprise a core spun construction wherein the central core strand comprises 100% para-aramid and the surrounding coil spun strand (sheath) comprises a yarn or filament formed from the present blend.
  • the second yarn or filament type is preferably interwoven with the first yarn type at regular spaced apart intervals.
  • the second yarn or filament type may be included at a space in between every 5 to 15 warp and wefts formed from a yarn or filament of the first type.
  • the second yarn or filament type is included within the fabric as a grid or mesh having warps and wefts included at every 10 ends and 10 picks of the fabrics in which the first yarn is the majority component.
  • This second yarn or filament type therefore provides a ‘construct’ or reinforcement component to the fabric that maintains its physical integrity and warp and weft structure during and following exposure to flame and heat in excess of 500° C.
  • thermostable fibre that exhibits no appreciable decrease in mechanical strength encompasses a yarn or filament that retains the majority of its structure during and post exposure to heat in excess of 500° C. That is, where the thermostable yarn or filament is included as a component within a fabric in the form of a weft and warp, during and after exposure to heat in excess of 500° C., the thermostable warp and weft components of the fabric persist and have not perished to form a residual part of the fabric in the form of a grid or mesh that provides structural support for the majority component of the fabric that may have been charred, burnt, scorched, damaged and in some way degraded by the exposure to heat in excess of 500° C.
  • the present fibre blend is designed specifically for the manufacture of safety textiles being resistant to heat including extreme heat associated with molten metals, electric discharge and flames.
  • the inventors provide a fibre blend and in particular a woven, non-woven, including a knitted fabric, that satisfies a number of different national performance test standards including in particular:
  • Clause 6.1 tensile strength
  • Clause 6.2 stalk strength
  • Clause 6.5 dimensional change
  • Clause 6.7 flame spread procedure A (surface ignition) and B (edge ignition)
  • Clause 6.10 electric resistance.
  • Clause 7.4 molten aluminium splash
  • Clause 7.5 molten iron splash
  • Clause 7.6 contact heat.
  • HTP Heat Transfer Performance
  • a protective fabric particularly formed as a garment, capable of satisfying the above performance test requirements and based on a natural cellulosic material would provide significant advantages over existing FR fabrics.
  • the present safety fabric satisfies all of the above requirements and is capable of being characterised as a ‘universal’ safety fabric suitable for use in a variety of different hazardous environments as may be required by personnel working in for example, the military, rescue/emergency services and the metal manufacturing, utilities (oil, gas and electric), petrochemical and heavy industries.
  • the inventors identified the following criteria as being particularly important in the development of a universal heat resistant fibre
  • Modacrylic fibres based on ProtexTM W, ProtexTM M, ProtexTM Q and ProtexTM T were identified as suitable components for the present fibre blend due to their FR grading.
  • ProtexTM T is generally acknowledged to be less ‘protective’ when employed in the manufacture of a garment due to its expected performance with respect to ‘charring’protection (associated with barrier formation within the textile to prevent flame penetration).
  • the present blend may be used to form a yarn via a process of mixing, carding, drawing, roving, spinning, twisting and winding as will be appreciated by those skilled in the art.
  • the present fibre blend is specifically non-slickened or siliconised such that the staple fibres may be spun and/or twisted together to form the composite yarn structure wherein the fibres are held together via frictional contact being facilitated by the spinning and twisting construction as described above.
  • test results for the above criteria are also presented and confirm the advantages of the subject invention and its suitability for use as a component fibre of a protective textile and garment exhibiting degradation resistance to a variety of different hazardous environmental conditions involving significant elevated temperatures.
  • a fibre blend was ring spun on a cotton system to 40/2 NM.
  • the fabric was woven to a twill construction at approximately 360 gsm.
  • the fibre blend comprised 50% ProtexTM M; 30% Helon FR viscose; 15% cotton and 5% nylon.
  • a fibre blend was ring spun on a cotton system to 40/2 NM.
  • the fabric was woven to a twill construction at approximately 360 gsm.
  • the fibre blend comprised 50% ProtexTM W; 30% Helon FR viscose; 15% cotton and 5% nylon.
  • a fibre blend was ring spun on a cotton system to 40/2 NM.
  • the fabric was woven to a twill construction at approximately 360 gsm.
  • the fibre blend comprised 50% ProtexTM T; 30% Helon FR viscose; 15% cotton and 5% nylon.
  • a fibre blend was ring spun on a cotton system to 40/2 NM.
  • the fabric was woven to a twill construction at approximately 360 gsm.
  • the fibre blend comprised 50% ProtexTM M; 30% LenzingTM FR viscose; 15% cotton and 5% nylon.
  • a fibre blend was ring spun on a cotton system to 40/2 NM.
  • the fabric was woven to a twill construction at approximately 360 gsm.
  • the fibre blend comprised 50% ProtexTM W; 30% LenzingTM FR viscose; 15% cotton and 5% nylon.
  • a fibre blend was ring spun on a cotton system to 40/2 NM.
  • the fabric was woven to a twill construction at approximately 360 gsm.
  • the fibre blend comprised 50% ProtexTM T; 30% LenzingTM FR viscose; 15% cotton and 5% nylon.
  • Tables 1 to 3 detail the experimental performance test results for the blend formulation of example 3 according to the identified performance criteria of each of the two standards EN ISO 11611: 2007; EN ISO 11612: 2008
  • Clause 6.1 tensile strength
  • Clause 6.2 stalk strength
  • Clause 6.5 dimensional change
  • Clause 6.7 flame spread procedure A (surface ignition) and B (edge ignition)
  • Clause 6.10 electric resistance.
  • Pre-treatment for 6.1, 6.2, 6.5 and 6.10 tests were made after 5 washing cycles in accordance with ISO 6330: 2000.
  • Pre-treatment tests were made after 5 washing cycles in accordance with ISO 6330: 2000. Procedure 6A at 40° C. drying procedure E: tumble try. The tumble drying was carried out after the completion of each wash.
  • Tables 4 to 6 detail the experimental performance test results for the blend formulation of example 6 according to the identified performance criteria of each of the two standards EN ISO 11611: 2007; EN ISO 11612: 2008
  • Clause 6.1 tensile strength
  • Clause 6.2 stalk strength
  • Clause 6.5 dimensional change
  • Clause 6.7 flame spread procedure A (surface ignition) and B (edge ignition)
  • Clause 6.10 electric resistance.
  • Pre-treatment for 6.1, 6.2, 6.5 and 6.10 tests were made after 5 washing cycles in accordance with ISO 6330: 2000.
  • Pre-treatment tests were made after 5 washing cycles in accordance with ISO 6330: 2000. Procedure 6A at 40° C. drying procedure E: tumble try. The tumble drying was carried out after the completion of each wash.
  • a fibre blend was ring spun on the cotton system to 60/2 Nm.
  • the fabric was woven to a twill structure at approximately 190 gsm (or 5.5 oz per sq yd).
  • the fibre blend comprised of 50% ProtexTM C; 30% Helon FR viscose, 15% cotton and 15% para-aramid, with addition to 2% of antistatic fibres, all in intimate blend. Additional a reinforcement structure in the form of a grid at intervals of 10 ends and 10 picks was interwoven into the structure of the main fabric.
  • Test Procedures Test Results: Fabric Weight (ASTM D3776): As received: 5.44 oz/sq yd 184.55 grams/sq meter After 100% laundering: 5.60 oz/sq yd 189.98 grams/sq meter Thermal Protective Performance Testing (NFPA 2112): Sections 7.1.1; 8.2 With Spacer: As received: Heat Transfer Rate: 10.5 cal/cm 2 /sec After 3X MW per table 8.1.3: Heat Transfer Rate: 11.2 cal/cm 2 /sec Without Spacer: As received: Heat Transfer Rate: 7.6 cal/cm 2 /sec After 3X MW per table 8.1.3: Heat Transfer Rate: 7.9 cal/cm 2 /sec
  • the specimens Immediately after specified exposure, the specimens shall be removed and examined for evidence of ignition, melting and dripping or separation.
  • Specimens shall be measured for shrinkage. Not to exceed 10% in either direction.
  • Test temperature 500° F.
  • Test Exposure Time 5 Minutes
  • the specimens Immediately after specified exposure, the specimens shall be removed and examined for evidence of ignition, melting and dripping or separation.
  • Specimens shall be measured for shrinkage. Not to exceed 10% in either direction.
  • test specimen was placed onto an adult sized manikin and exposed to a laboratory flash fire simulation with controlled heat flux, duration and flame distribution. Heat which was transferred through the test specimen during and after exposure was measured with the heat flux sensors. A software programme calculates the various degrees of burns and the total burn area.
  • the complete procedure (manikin, burners and test room) is regulated with a special computer programme which also records the sensors' activities and calculates the various areas of burn and degrees of burn.
  • the measurements are taken on the fully dressed manikin. Length of fabric at specific points on the garment is measured with a metal ruler. Shrinkage is assessed as percentage of the measure after flame exposure to the one measured before.
  • Table of burn prediction and graphical display of distribution of burns on the manikin Total area of predicted pain, 1 st , 2 nd and 3 rd degree burn injury (based on the area of manikin containing valid heat flux sensors) 60 s after beginning of flame exposure. Detailed information about the results of each sensor can be found in the attached tables.
  • the width of gap between the conductive threads was measured in five areas with a steel rule.
  • the sample was conditioned and tested at 23+/ ⁇ 1° C. and 25+/ ⁇ 5% r.h.
  • Blue dyes woven fabric sample was submitted for testing the extractable antimony content.
  • the sample was extracted in artificial sweat solution and analysed on the inductively coupled plasma (ICP)
  • Detection limit of this test is—0.8 mg/kg
  • Example 7 show compliance with both the sections of US Standard NFPA 2112 which relate to a fabric (namely Sections 7.1.1, 7.1.2, 7.1.3, 7.1.4 and 7.1.5) as well as the EU standards EN11612, and EN14116 for FR performance of garments, with EN1149-5 for anti-static performance and thus shows a “Universal Compliance”: the test results for Oekotex100 limit for extractable antimony illustrates that the fabric would conform to the whole Oekotex 100 requirement as there is known compliance for all other elements.
  • the presented results confirm that the present fibre blend based on the combination of a modacrylic with a natural cellulosic material and a FR viscose, at the appropriate weight % is capable of satisfying different performance standards with regard to fabric safety. This is perhaps contrary to expectation as, for example, cotton fibres are not considered to be inherently flame resistant and are susceptible to burn.
  • the inventors have realised a synergistic affect between the blend of a modacrylic with a natural cellulosic (natural cotton) and FR viscose. The effect is manifested in an observed increase in the combined limited oxygen index (LOI) of the fabric wherein the LOI of the blend is greater than the sum of the LOI of the individual components.
  • LOI limited oxygen index
  • the LOT refers to the minimum concentration of oxygen that will just support flaming combustion of a material.
  • the affect of incorporating a natural cellulosic may be considered to increase the charring affect of fabric when exposed to extreme heat which increases the LOI by expelling oxygen within the matrix as the charred carbon barrier forms during initial heat contact.
  • the present invention is therefore advantageous for use as a ‘universal’ protective fabric that has exhibited proven performance as a protective layer to flame, electric discharge and molten metal hazards.
  • a fibre blend comprising 50% ProtexTM; 30% Helon FR viscose; 15% cotton 5% para-aramid was mixed, carded, drawn, roved, spun and wound to create a yarn according to a first yarn type.
  • a second yarn type having a two-ply construction was formed by the same spun yarn process of as the first yarn using a fibre blend comprising a 50% by weight para-aramid (for example KEVLAR by E.I. Du Pont de Nemours and Co) and 50% by weight of the fibre blend of the first fibre type.
  • a woven fabric was constructed using the first yarn type as a majority component via interweave of warps and wefts.
  • the second yarn type was interwoven with the first yarn type (as a single weave assembly) at every 10 ends and 10 picks (with respect to warps and wefts). Accordingly, the resulting fabric structure comprised predominantly warps and wefts of the first yarn type and interwoven warps and wefts of the second yarn type spaced at regular intervals to create a grid network repeated every 10 ends and 10 picks.

Abstract

A flame retardant fibre blend comprising: a flame retardant fibre blend comprising: 40% to 60% by weight of a modacrylic; 5% to 25% by weight of a natural cellulosic material; and 20% to 40% by weight of a FR viscose based material; wherein any remaining weight % is made up of any one or a combination of the modacrylic, cellulosic or FR viscose or of nylon in range trace to 7% or para-aramid fibre in the range trace to 7%. The fibre blend is particularly suitable for the manufacture of a ‘universal’ fabric configured to be resistant to flame, flash fire hazard, electric discharge and molten metal hazards.

Description

  • This application is a continuation-in-part of U.S. patent application Ser. No. 13/055,239, filed on Apr. 4, 2011, which claims priority to and all the benefits of International Patent Application Ser. No. PCT/GB2009/050676, filed on Jun. 15, 2009, which claims priority to and all the benefits of Great Britain Patent Application Ser. No. GB0813401.7, filed on Jul. 22, 2008, each of the specifications of which is incorporated herein by reference in its entirety.
  • The present invention relates to a flame resistant fibre blend and in particular, although not exclusively, to yarns, fabrics, garments, woven, knitted, and non-woven products prepared from a flame resistant fibre blend.
  • Flame Resistant (FR) materials are employed in many textile applications. In particular, FR materials are used as barrier layers to protect more flammable internal components such as inner stuffing within furniture including mattresses, sofas and the like. FR materials are also used to make FR clothing used in specific industrial applications and the military.
  • First generation fire resistant materials, particularly for the construction of garments to be worn, were based on natural fibres, including in particular wool and cotton. The flame retardant functionality was provided by chemically treating the natural yarns with phosphorous based flame retardant chemicals. The resultant garments, whilst being resistant to flames were however disadvantageous for a number of reasons. In particular, these early FR garments were uncomfortable to wear for reasonable periods as they were typically heavy with the wearer becoming increasingly hot. More recently, synthetic FR blends have been developed with a view to providing lighter more breathable garments so as to increase comfort.
  • US 2008/0145543 discloses a high performance FR textile fabric for use in producing close fitting garments, such as undergarments, in direct contact with the skin. The fabric is formed from yarns of rayon filaments, and a cured phosphorous-based flame retardant compound is affixed to the filaments and imparts further flame retardant properties to the fabric.
  • US 2005/0204718 discloses a blended yarn designed to provide arc and flame protective properties. The yarn is manufactured from 40% to 70% by weigh of a modacrylic, 5% to 20% by weight of p-aramid and 10% to 40% by weight of m-aramid. The entirely synthetic material is designed to achieve a tensile strength sufficient to be resistant to ‘break-open’ when exposed to an electric arc.
  • WO 2008/027454 discloses flame resistant fabrics comprising a blend of a synthetic cellulosic and a FR modacrylic. Garments produced from the fibres are designed to be resistant to electric arc flash and flames.
  • However, whilst these more recent synthetic FR textiles perform better than the earlier natural fibre based garments there are a number of disadvantages. Firstly, entirely synthetic FR garments are expensive for a number of reasons. The component fibres are typically only available from specialist manufacturers resulting in limited availability. Secondly, the manufacture of these component fibres is complex, requiring a variety of chemical processing steps. Thirdly, FR textiles made entirely from synthetic fibres are typically uncomfortable for the wearer due, in part, to their poor softness and breathability characteristics.
  • There is therefore a need for a flame retardant fibre blend that may be conveniently and efficiently mass produced for the manufacture of FR garments that satisfy the required national and/or international safety standards whilst being comfortable for the wearer.
  • Accordingly, the inventors provide a fibre blend that is designed to be breathable, soft and provide moisture management characteristics. The present fibre blend is also configured to be multipurpose being suitable for use as a safety garment that offers a protective function within a variety of very different hazardous environments. Utilising natural materials further provides for a cost effective solution to the problem of increasing the FR of a textile.
  • For example, fabrics manufactured from the present fibre blend are configured to satisfy a variety of different safety standards including in particular, flame retardance protection against radiant and convective heat; electric arc; contact heat and protection against the effects of a hydrocarbon flash fire.
  • The present fibre blend comprises both synthetic and natural fibres. In particular, a natural cellulosic material is employed to provide a garment that is comfortable for the wearer due, in part, to the breathability and softness. The moisture management characteristics of the resulting textiles are also enhanced due primarily to the ‘wicking’ characteristics resultant from the synergistic combination of the natural and synthetic materials.
  • The present blend is specifically configured to be blended and spun to form a yarn having a composite structure formed from the fibre blend.
  • According to a first aspect of the present invention there is provided a flame retardant yarn having a composite structure formed from a collection of fibres twisted together, the fibres comprising a blend of:
      • 40% to 60% by weight of a modacrylic;
      • 5% to 25% by weight of a natural cellulosic material; and
      • 20% to 40% by weight of a FR viscose based material.
      • Optionally, any remaining weight % is made up of any one or a combination of the modacrylic, cellulosic or FR viscose, a polyamide in the range trace to 7% by weight or para-aramid fibre in the range trace to 7% by weight.
  • The term modacrylic fibre refers to a modified version of acrylonitrile which is resultant from the copolymerisation of acrylonitrile with another compound. The copolymer may comprise 30% to 70% by weight of acrylonitrile and 70% to 30% by weight of a halogen-containing vinyl monomer. The halogen-containing vinyl monomer is preferably at least one monomer selected from vinyl chloride or vinylidene chloride.
  • Preferably, the modacrylic fibres are copolymers of acrylonitrile combined with vinylidene chloride, the copolymer further comprising at least one type of antimony oxide for improved fire retardancy. In particular, antimony trioxide and/or pentoxide may be used to dope the resultant copolymer. Accordingly, the flame retardant, physical and mechanical properties of the fibre blend may be tailored by, in particular, variation of the type and quantity of the antimony oxide added.
  • According to specific implementations, the modacrylic fibre of the present invention comprises the fibres disclosed in U.S. Pat. No. 3,193,602; U.S. Pat. No. 3,748,302; U.S. Pat. No. 5,208,105 and U.S. Pat. No. 5,506,042, the contents of which are incorporated by reference herein.
  • The preferred modacrylic fibres of the present invention are fibres based on Kanecaron™ (available from Kaneka Corporation, Kanecaron Division, 3-2-4, Nakanoshima, Kita-ku, Osaka 530-8288, Japan). Reference to Kanecaron™ includes Kanekaron™ and Kanekalon™.
  • More preferably, the present fibre blend may comprise any one or a combination of different grades of Protex™ selected from: Protex™ W; Protex™ M; Protex™ T; Protex and/or other modacrylic FR materials falling within the Protex™ family and available from Kaneka.
  • Preferably, the modacrylic comprises Protex Q™. Optionally, the modacrylic may comprise Sevel™ (available from Fushun Huifu Fire Resistant Fibre Co Limited, No 54, West Section Anshan Road, Fushun City, Conn.-113001 Lianong, China). Optionally, the modacrylic may comprise Tairylon™ (available from Formosa Chemical & Fibre Corporation, 201 Tung Hwan Road, Teipei, Taiwan, R.O.C).
  • The FR viscose may be sourced from a plurality of different manufacturers to suit the FR, physical and mechanical performance as required. In particular, and optionally, the FR viscose comprises Lenzing FR™ (available from Lenzing Fibres Inc, Aktiengesellschaft, 4860 Lenzing, Austria). Optionally, the FR viscose may be sourced from Shandong Helon Co. Ltd, No 555, Hai Long Road, Hanging District, Wei Fang, SDG 261100, China (herein referred to as Helon FR).
  • Preferably, the natural cellulosic material comprises any one or a combination of the following set of: Natural Cotton; Bamboo; Linen; and/or Jute. Reference to ‘natural cellulosic’ refers to a cellulosic material that has not been pre-treated so as to change the chemical, physical or mechanical properties including in particular enhancement of FR. This term also refers to a material available from a biological source such as a plant or shrub. The term includes such natural materials that have undergone minimal processing such that the resultant materials cannot be categorised as synthetic or ‘man-made’.
  • Optionally, the blend may further comprise nylon in the amount trace to 7% by weight or more preferably trace to 5% by weight.
  • Optionally, the blend may further comprise a para-aramid material in the amount trace to 7% by weight or more preferably trace to 5% by weight.
  • Optionally, the blend may further comprise an antistatic material and in particular a carbon based antistatic material in the amount trace to 5% by weight. The carbon or non-carbon based antistatic material may be sourced from a plurality of different manufacturers to satisfy the desired physical and mechanical properties as required. However and preferably, the antistatic material comprises any one or a combination of the following set of: Beltron™ (available from KB Seiren Limited, 14-15F, Umeda Daibiru Building, 3-3-10, Umeda, Kita-ku, Osaka, 530-0001 Japan); Negastat™ (available from William Barnet & Son, LLC, 1300 Hayn Street, P.O. Box 131 Arcadia, S.C., 29320, United States of America); antistatic material and fibres available from Jarden, US; and/or Bekinox™ (available from Bekaert, President Kennedypark 18, B-8500 Kortrijk, Belgium).
  • Preferably, the fibre blend comprises 40% to 55% by weight of the modacrylic; 10% to 20% by weight of the natural cellulosic material; and 25% to 35% by weight of the FR viscose based material.
  • More preferably, the fibre blend comprises: 45% to 55% by weight of Protex™; 10% to 20% by weight of natural cotton; 25% to 35% by weight of FR viscose; trace to 7% by weight nylon; and trace to 5% by weight of a carbon based antistatic material.
  • More preferably, the fibre blend comprises: 45% to 55% by weight of Protex™ T; 10% to 20% by weight of natural cotton; 25% to 35% by weight of FR viscose; trace to 7% by weight para-aramid; and trace to 5% by weight of a carbon based antistatic material. According to a further aspect of a present invention there is provided a fabric comprising a fibre blend as disclosed herein. According to a further aspect of the present invention there is provided a garment comprising a fabric made from the fibre blend as disclosed herein.
  • The present blend of textile fibres is suitable to form yarns to construct fabrics and/or garments that are considered fire and flame retardant such that garments formed from the present yarns may be worn in conditions where there is any threat of heat or flame trauma. The present blend is further advantageous by including natural fibre components to facilitate a degree of comfort to the wearer which cannot be achieved with blends of wholly synthetic component. The present fabrics and garments comprise thermostable elements or components to ensure compliance with relevant health and safety requirements whilst being comfortable and lightweight but achieving a high degree of protection against heat and flame.
  • The present blend may be presented in blend form, as yarns formed from staple fibres, filamentous yarns, filaments including monofilaments and multifilaments. Fabrics according to the present invention are constructed via the use of the present blend or a union of the present blended fibres in woven, non-woven, or knitted form.
  • In one aspect, the present invention comprises a knitted fabric comprising a fibre blend as described herein further comprising an antistatic fibre or fibres as a fibre yarn or filament wherein the antistatic fibre is included in the range trace to 10% by weight. According to further aspect, the present invention may comprise a woven fabric formed from the present fibres in a blend or union optionally further including addition of an antistatic fibre or fibres included in the range trace to 10% by weight.
  • Advantageously, the present fabrics comprise thermostable yarns or filaments or a combination of yarns and filaments in which yarns or filaments of a first type are interlaid, interlinked, interwoven or looped with yarns or filaments of a second type to create a blended composite fabric structure.
  • The thermostable component may comprise anyone or a combination of the following set of:
      • meta-aramid (e.g., NOMEX by E.I. Du Pont de Nemours and Co.)
      • para-aramid (e.g., KEVLAR by E.I. Du Pont de Nemours and Co. and TWARON by Teijin and FENYLENE ST Russian State Complex))
      • polybenzimidazole (e.g., PBI™ Hoechst Celanese Acetate LLC)
      • p-phenylene benzobisoxazole (PBO) (e.g., ZYLON by Toyobo Co.)
      • polysulphonamide (PSA) (e.g., TANLON by Shanghai Tanlon Company)
      • a polyamide-imide (PAI) (e.g., KERMEL by Rhone-Poulenc)
  • The thermostable fibres may comprise any one or a combination of the following set of: melamines, polyimides, polyamideimides, partially oxidized polyacrylonitriles, novoloids, poly (p-phenylen benzothiazoles), polyphenylene sulphides, polyethyl- or polydiethyl-ketones, polyketones, polyetherimides, and combinations thereof.
  • Advantageously, the thermostable component of the fabric as identified herein, is used to form a ‘construct’ reinforcement component of the fabric that provides structural integrity to the fabric during and following exposure to heat and flame Preferably, the thermostable component is included as a minority component within the fabric with the majority component being formed from the yarns or filaments of the present fibre blend comprising a modacrylic, cellulosic and FR viscose. Reference within the specification to minority and majority component encompass volume and weight percentage relative amounts of the first yarn, the second yarn or filament type and the combined volume or weight percentage of the first and second yarn or filament types.
  • According to a further aspect of the present invention there is provided a flame retardant fibre blend comprising:
      • 40% to 60% by weight of a modacrylic;
      • 5% to 25% by weight of a naturally occurring cellulosic material; and
      • 20% to 40% by weight of a FR viscose based material; and
      • 5 to 20% by weight of a thermostable fibre that exhibits no appreciable decrease in mechanical strength after exposure to heat or flame in excess of 500° C.
  • Optionally, the blend comprises 5 to 20% of a polyamide.
  • Optionally, the thermostable element is a blend and comprises any one or a combination of:
      • 5 to 95% by weight of a thermostable fibre being anyone or a combination of the following set of: meta-aramid, para-aramid, polybenzimidazole, p-phenylene benzobisoxazole (PBO), polysulphonamide (PSA), a polyamide-imide (PAI), melamine, carbon fibre, glass fibre;
      • 30 to 70% by weight of a modacrylic;
      • 30 to 70% by weight of a FR viscose based material; and
      • 5 to 20% by weight of a naturally occurring cellulose material;
      • trace to 5% of nylon.
  • Optionally, the majority component fibre blend and/or the minority thermostable fibre blend includes an antistatic fibre (as described herein) included in the range trace to 10% by weight.
  • According to a further aspect of the present invention there is provided a flame retardant fabric having a composite structure comprising;
      • a first yarn forming a majority component of the fabric, the first type having a composition comprising:
        • 40% to 60% by weight of a modacrylic;
        • 5% to 25% by weight of a naturally occurring cellulosic material; and
        • 20% to 40% by weight of a FR viscose based material; trace to 5% of nylon or para-aramid; and
      • a second yarn and/or filament type forming a minority component of the fabric, the second yarn and/or filament type comprising a thermostable fibre that exhibits no appreciable decrease in mechanical strength after exposure to heat or flame in excess of 500° C.
  • Preferably, the fabric comprises a woven structure wherein the majority of the warps and wefts of the weave comprise the first yarn type; and wherein the second yarn and/or filament type is interwoven as warps and wefts at spaced apart intervals amongst the warps and wefts formed from the first yarn type.
  • Preferably, the second yarn and/or filament type is interwoven with the first yarn type at a regular spacing in the range 5 to 15 ends and 5 to 15 picks. More preferably, the second yarn and/or filament type is interwoven with the first yarn type at a regular spacing in 10 ends and 10 picks.
  • The second yarn or filament type may comprise a single or two-ply structure. Where the second yarn and/or filament type comprises a two-ply structure, a first strand may comprise a yarn or filament formed from 100% by weight of the thermostable component and the second strand may comprise a yarn formed from the present blend. Optionally, the first strand may comprise 50:50 of the thermostable component and a modacrylic and the second strand may comprise 50:50 of the thermostable component and a modacrylic. Preferably, the first strand of the two-ply construct comprises 100% by weight para-aramid with the second strand comprising 100% by weight of the present blend.
  • Optionally, the second yarn or filament type may comprise a core spun construction wherein the central core strand comprises 100% para-aramid and the surrounding coil spun strand (sheath) comprises a yarn or filament formed from the present blend.
  • The second yarn or filament type is preferably interwoven with the first yarn type at regular spaced apart intervals. In particular, the second yarn or filament type may be included at a space in between every 5 to 15 warp and wefts formed from a yarn or filament of the first type. Accordingly, the second yarn or filament type is included within the fabric as a grid or mesh having warps and wefts included at every 10 ends and 10 picks of the fabrics in which the first yarn is the majority component. This second yarn or filament type therefore provides a ‘construct’ or reinforcement component to the fabric that maintains its physical integrity and warp and weft structure during and following exposure to flame and heat in excess of 500° C.
  • Reference within the specification to ‘a thermostable fibre that exhibits no appreciable decrease in mechanical strength’ encompasses a yarn or filament that retains the majority of its structure during and post exposure to heat in excess of 500° C. That is, where the thermostable yarn or filament is included as a component within a fabric in the form of a weft and warp, during and after exposure to heat in excess of 500° C., the thermostable warp and weft components of the fabric persist and have not perished to form a residual part of the fabric in the form of a grid or mesh that provides structural support for the majority component of the fabric that may have been charred, burnt, scorched, damaged and in some way degraded by the exposure to heat in excess of 500° C.
  • The present fibre blend is designed specifically for the manufacture of safety textiles being resistant to heat including extreme heat associated with molten metals, electric discharge and flames. The inventors provide a fibre blend and in particular a woven, non-woven, including a knitted fabric, that satisfies a number of different national performance test standards including in particular:
  • EN ISO 11611: 2007: Clause 6.1—tensile strength; Clause 6.2—tear strength; Clause 6.5—dimensional change; Clause 6.7—flame spread procedure A (surface ignition) and B (edge ignition); Clause 6.10—electrical resistance.
  • EN ISO 11612: 2008: Clause 7.4—molten aluminium splash; Clause 7.5—molten iron splash; Clause 7.6—contact heat.
  • NFPA 2112:2012: Section 7.1.1 Heat Transfer Performance (HTP; 7.1.2 flame resistance; 7.1.3 thermal shrinkage; 7.1.4 heat resistance; 7.1.5 predicted body-burn.
  • A protective fabric, particularly formed as a garment, capable of satisfying the above performance test requirements and based on a natural cellulosic material would provide significant advantages over existing FR fabrics. For example, the present safety fabric satisfies all of the above requirements and is capable of being characterised as a ‘universal’ safety fabric suitable for use in a variety of different hazardous environments as may be required by personnel working in for example, the military, rescue/emergency services and the metal manufacturing, utilities (oil, gas and electric), petrochemical and heavy industries.
  • The inventors identified the following criteria as being particularly important in the development of a universal heat resistant fibre
  • (a) required to pass the FR requirements of ISO11612 and associated Standards namely to withstand both face ignition source (as the previous Standard EN531) AND bottom-edge ignition source (as specifically required in the new replacement Standard ISO11612 and associated standards);
    (b) required to have minimum tensile and tear strength properties of at least the minima specified in ISO11612 and EN11611
    (c) required to achieve the requirements of Oekotex (Okotex) 100 “Standard”. Oekotex is a voluntary, non-Statutory, requirement for measurement of hazardous substances as defined only by the Oekotex organisation but may be used as a bench-mark by some end users. One of the qualifying criteria concerns the measurement of extractable antimony, which is used in the flame-retardant technology inherent to the modacrylic family of fibres.
  • Modacrylic fibres based on Protex™ W, Protex™ M, Protex™ Q and Protex™ T were identified as suitable components for the present fibre blend due to their FR grading. However, Protex™ T is generally acknowledged to be less ‘protective’ when employed in the manufacture of a garment due to its expected performance with respect to ‘charring’protection (associated with barrier formation within the textile to prevent flame penetration).
  • The present fibre blend is advantageously suited to form a blended spun yarn
  • As will be appreciated, the present blend may be used to form a yarn via a process of mixing, carding, drawing, roving, spinning, twisting and winding as will be appreciated by those skilled in the art. In particular, the present fibre blend is specifically non-slickened or siliconised such that the staple fibres may be spun and/or twisted together to form the composite yarn structure wherein the fibres are held together via frictional contact being facilitated by the spinning and twisting construction as described above.
  • To illustrate the present invention, the following examples are provided. Test results, for the above criteria are also presented and confirm the advantages of the subject invention and its suitability for use as a component fibre of a protective textile and garment exhibiting degradation resistance to a variety of different hazardous environmental conditions involving significant elevated temperatures.
  • EXAMPLE 1
  • A fibre blend was ring spun on a cotton system to 40/2 NM. The fabric was woven to a twill construction at approximately 360 gsm. The fibre blend comprised 50% Protex™ M; 30% Helon FR viscose; 15% cotton and 5% nylon.
  • EXAMPLE 2
  • A fibre blend was ring spun on a cotton system to 40/2 NM. The fabric was woven to a twill construction at approximately 360 gsm. The fibre blend comprised 50% Protex™ W; 30% Helon FR viscose; 15% cotton and 5% nylon.
  • EXAMPLE 3
  • A fibre blend was ring spun on a cotton system to 40/2 NM. The fabric was woven to a twill construction at approximately 360 gsm. The fibre blend comprised 50% Protex™ T; 30% Helon FR viscose; 15% cotton and 5% nylon.
  • EXAMPLE 4
  • A fibre blend was ring spun on a cotton system to 40/2 NM. The fabric was woven to a twill construction at approximately 360 gsm. The fibre blend comprised 50% Protex™ M; 30% Lenzing™ FR viscose; 15% cotton and 5% nylon.
  • EXAMPLE 5
  • A fibre blend was ring spun on a cotton system to 40/2 NM. The fabric was woven to a twill construction at approximately 360 gsm. The fibre blend comprised 50% Protex™ W; 30% Lenzing™ FR viscose; 15% cotton and 5% nylon.
  • EXAMPLE 6
  • A fibre blend was ring spun on a cotton system to 40/2 NM. The fabric was woven to a twill construction at approximately 360 gsm. The fibre blend comprised 50% Protex™ T; 30% Lenzing™ FR viscose; 15% cotton and 5% nylon.
  • Performance testing was undertaken for the fibre blends of examples 3 and 6 and the results are presented in tables 1 to 6 below.
  • Test Results EXAMPLE 3
  • Tables 1 to 3 detail the experimental performance test results for the blend formulation of example 3 according to the identified performance criteria of each of the two standards EN ISO 11611: 2007; EN ISO 11612: 2008
  • Performance Test—EN ISO 11611: 2007
  • Standard: Clause 6.1—tensile strength; Clause 6.2—tear strength; Clause 6.5—dimensional change; Clause 6.7—flame spread procedure A (surface ignition) and B (edge ignition); Clause 6.10—electrical resistance.
  • Pre-treatment: for 6.1, 6.2, 6.5 and 6.10 tests were made after 5 washing cycles in accordance with ISO 6330: 2000. Procedure 6A at 40° C. drying procedure E: tumble dry. The tumble drying was carried out after the completion of each wash. For 6.7 tests were made in the as received condition.
  • TABLE 1
    Standard EN ISO 11611:2007 - Test results for the blend of example 3.
    ISO 11611 Requirement & PASS/Fail
    Clause Test Method Performance Levels Results or Class
    6.1*** ISO Class 1 & 2 Warp  980 N LIKELY TO
    Tensile strength 13934-1:1999 Min. of 400 N in both the warp Weft  930 N MEET
    and weft directions CLASS 1 &
    CLASS 2
    6.2*** ISO Class 1 & 2 Torn across warp 32.1 N LIKELY TO
    Tear strength 13934-1:2000 Min. of 20 N in both the warp and Torn across weft 29.7 N MEET
    weft directions CLASS 1 &
    CLASS 2
    6.5 ISO 5077 Class 1 & 2 Warp Weft FAIL
    Dimensional Max ± 3% −7.0% −4.5%
    change (−indicates shrinkage) (−indicates shrinkage)
    6.7**** ISO 15025:2000 Class 1 & 2 Procedures A & B LIKELY TO
    Limited No flaming to top or side edge No flaming to top or side edge MEET
    flame spread No hole formation (A only) No hole formation CLASS 1 &
    (procedures A & B) No flaming or molten debris No flaming or molten debris CLASS 2
    Mean afterflame ≦2 s No afterflame
    Mean afterglow ≦2 s No afterglow
    6.10 EN 1149-2:1997 Class 1 & 2 Resistance = 5.2 × 106 CLASS 1 &
    Electrical Resistance***** Electrical resistance greater than CLASS 2
    105 Ohms
    *** test made on two warpway and weftway specimens only
    ****test made on one warpway and weftway specimen only and without pre-treatment
    *****sub contracted test made by STFI
  • Performance Test—EN ISO 11612: 2008
  • Standard: Clause 7.4—molten aluminium splash (D); Clause 7.5—molten iron splash (E); Clause 7.6—contact heat (F).
  • Pre-treatment: tests were made after 5 washing cycles in accordance with ISO 6330: 2000. Procedure 6A at 40° C. drying procedure E: tumble try. The tumble drying was carried out after the completion of each wash.
  • TABLE 2
    Standard EN ISO 11612: 2008 - Test results for the blend of example 3.
    ISO 11612 Requirement &
    Performance Levels PASS/Fail
    Clause Test Method Performance levels Min Max Results or Class
    Molten AL splash (g) Spec Poured(g) Skin stimulant
    7.4 ISO 9185 D1 100 <200 1 203 Damaged LEVEL D1
    Molten D2 200 <350 2 102 Undamaged
    Aluminium D3 350 3 105 Undamaged
    splash (D) 4 107 Undamaged
    5 108 Undamaged
    Molten Iron splash (g) Spec Poured(g) Skin stimulant
    7.5 ISO 9185 E1 60 <120 1 200 Undamaged LEVEL E3
    Molten Iron E2 120 <200 2 202 Undamaged
    Splash (E) E3 200 3 203 Undamaged
    4 202 Undamaged
    Threshold time (s)
    7.6 ISO 12127: F1 5.0 <10.0 Specimen 1 5.2 LEVEL F1
    Contact 1996 at 250° C. F2 10.0 <15.0 Specimen 2 5.2
    Heat (F)** F3 15.0 Specimen 3 5.1
    Result based 5.1
    on lowest
    **sub contracted test made by UKAS accredited laboratory
  • Test Results EXAMPLE 6
  • Tables 4 to 6 detail the experimental performance test results for the blend formulation of example 6 according to the identified performance criteria of each of the two standards EN ISO 11611: 2007; EN ISO 11612: 2008
  • Performance Test—EN ISO 11611: 2007
  • Standard: Clause 6.1—tensile strength; Clause 6.2—tear strength; Clause 6.5—dimensional change; Clause 6.7—flame spread procedure A (surface ignition) and B (edge ignition); Clause 6.10—electrical resistance.
  • Pre-treatment: for 6.1, 6.2, 6.5 and 6.10 tests were made after 5 washing cycles in accordance with ISO 6330: 2000. Procedure 6A at 40° C. drying procedure E: tumble dry. The tumble drying was carried out after the completion of each wash. For 6.7 tests were made in the as received condition.
  • TABLE 3
    Standard EN ISO 11611:2007 - Test results for the blend of example 6.
    ISO 11611 Requirement & PASS/Fail
    Clause Test Method Performance Levels Results or Class
    6.1*** ISO Class 1 & 2 Warp  970 N LIKELY TO
    Tensile strength 13934-1:1999 Min. of 400 N in both the warp Weft  890 N MEET
    and weft directions CLASS 1 &
    CLASS 2
    6.2*** ISO Class 1 & 2 Torn across warp 37.2 N LIKELY TO
    Tear strength 13937-2:2000 Min. of 20 N in both the warp and Torn across weft 30.5 N MEET
    (electronic recording) weft directions CLASS 1 &
    CLASS 2
    6.5 ISO 5077 Class 1 & 2 Warp Weft FAIL
    Dimensional Max ± 3% −4.5% −5.0%
    change (−indicates shrinkage) (−indicates shrinkage)
    6.7**** ISO 15025:2000 Class 1 & 2 Procedures A & B LIKELY TO
    Limited No flaming to top or side edge No flaming to top or side edge MEET
    flame spread No hole formation (A only) No hole formation CLASS 1 &
    (procedures A & B) No flaming or molten debris No flaming or molten debris CLASS 2
    Mean afterflame ≦2 s No afterflame
    Mean afterglow ≦2 s No afterglow
    6.10 EN 1149-2:1997 Class 1 & 2 Resistance = 8.0 × 106 CLASS 1 &
    Electrical Resistance***** Electrical resistance greater than CLASS 2
    105 Ohms
    ***test made on two warpway and weftway specimens only
    ****test made on one warpway and weftway specimen only and without pre-treatment
    *****sub contracted test made by STFI
  • Performance Test—EN ISO 11612: 2008
  • Standard: Clause 7.4—molten aluminium splash (D); Clause 7.5—molten iron splash (E); Clause 7.6—contact heat (F).
  • Pre-treatment: tests were made after 5 washing cycles in accordance with ISO 6330: 2000. Procedure 6A at 40° C. drying procedure E: tumble try. The tumble drying was carried out after the completion of each wash.
  • TABLE 4
    Standard ISO 11612: 2008 - Test results for the blend of example 6.
    ISO 11612 Requirement &
    Performance Levels PASS/Fail
    Clause Test Method Performance levels Min Max Results or Class
    Molten AL splash (g) Spec Poured(g) Skin stimulant
    7.4 ISO 9185 D1 100 <200 1 205 Damaged LEVEL D1
    Molten D2 200 <350 2 102 Undamaged
    Aluminium D3 350 3 101 Undamaged
    splash (D) 4 104 Undamaged
    5 101 Undamaged
    Molten Iron splash (g) Spec Poured(g) Skin stimulant
    7.5 ISO 9185 E1 60 <120 1 201 Undamaged LEVEL E3
    Molten Iron E2 120 <200 2 202 Undamaged
    Splash (E) E3 200 3 202 Undamaged
    4 201 Undamaged
    Threshold time(s)
    7.6 ISO 12127: F1 5.0 <10.0 Specimen 1 4.6 NO LEVEL
    Contact 1996 at 250° C. F2 10.0 <15.0 Specimen 2 4.8
    Heat (F)** F3 15.0 Specimen 3 4.9
    Result based 4.6
    on lowest
    **sub contracted test made by UKAS accredited laboratory
  • EXAMPLE 7
  • A fibre blend was ring spun on the cotton system to 60/2 Nm. The fabric was woven to a twill structure at approximately 190 gsm (or 5.5 oz per sq yd). The fibre blend comprised of 50% Protex™ C; 30% Helon FR viscose, 15% cotton and 15% para-aramid, with addition to 2% of antistatic fibres, all in intimate blend. Additional a reinforcement structure in the form of a grid at intervals of 10 ends and 10 picks was interwoven into the structure of the main fabric.
  • Performance Test Results for Example 7:—
  • Independent testing body: Vartest Laboratories, New York, USA Accredited to ISO/IEC 17025: 2005
      • Fabric submitted
      • PER NFPA 2112-2007 Specification
      • Fabric Code #: WAX 116-Protal-5
      • Finishing Details: Scour & Stenter only
      • Weight: 195 gsm, Ref Code #: WAX116
      • 49% Protex, 29% FR Viscose, 15% Cotton, 5% Aramid, 2% Anti-Static Color Royal Blue
  • Test Procedures: Test Results:
    Fabric Weight (ASTM D3776):
    As received: 5.44 oz/sq yd
    184.55 grams/sq meter
    After 100% laundering: 5.60 oz/sq yd
    189.98 grams/sq meter
    Thermal Protective Performance
    Testing (NFPA 2112): Sections 7.1.1; 8.2
    With Spacer:
    As received: Heat Transfer Rate:
    10.5 cal/cm2/sec
    After 3X MW per table 8.1.3: Heat Transfer Rate:
    11.2 cal/cm2/sec
    Without Spacer:
    As received: Heat Transfer Rate:
    7.6 cal/cm2/sec
    After 3X MW per table 8.1.3: Heat Transfer Rate:
    7.9 cal/cm2/sec
  • Heat and Thermal Shinkage Resistance NFPA 2112 Sections 7.1.2; 8.3
      • As received:
        Test temperature: 500° F., Test Exposure Time: 5 Minutes
    Interpretation:
  • Minimum of Three items to be tested. Tested as received.
  • Immediately after specified exposure, the specimens shall be removed and examined for evidence of ignition, melting and dripping or separation.
  • Specimens shall be measured for shrinkage. Not to exceed 10% in either direction.
  • Dimensional change: Avg. Length Direction=−3.0%, Avg. Width Direction=−3.9%
  • Result: PASS when evaluated after heat at 500° F.
  • Heat and Thermal Shrinkage Resistance NFPA 2112 Sections 7.1.4; 8.4
      • 3× per NFPA 2112 Section 8.1.3:
  • Test temperature: 500° F., Test Exposure Time: 5 Minutes
  • Interpretation:
  • Minimum of Three items to be tested. 3× per NFPA 2112 Section 8.1.3
  • Immediately after specified exposure, the specimens shall be removed and examined for evidence of ignition, melting and dripping or separation.
  • Specimens shall be measured for shrinkage. Not to exceed 10% in either direction.
  • Dimensional change: Avg. Length Direction=−5.4%, Avg. Width Direction=−5.8%
  • Result: PASS when evaluated after heat at 500° F.
  • NFPA 2112 Sections 7.1.2; 8.3 ASTM D6413 Flame Resistance of Textiles (Vertical)
      • as received
    Length Direction
  • After-flame (seconds) After-glow (seconds) Char length
    0.0 1.9 22.0
    0.0 3.0 40.0
    0.0 4.0 26.0
    0.0 3.0 25.0
    0.0 1.6 32.0
    Average 0.0 2.7 29.0
  • Width Direction
  • After-flame (seconds) After-glow (seconds) Char length
    0.0 3.5 25.0
    0.0 4.3 25.0
    0.0 3.6 32.0
    0.0 3.4 24.0
    0.0 4.3 25.0
    Average 0.0 3.8 26.2
    Comment: No melting or dripping occurred.
  • ASTM D6413 Flame Resistance of Textiles (Vertical)
      • after 100× laundering per NFPA 2112 Section 8.1.3:
    Length Direction
  • After-flame (seconds) After-glow (seconds) Char length
    0.0 2.3 29.0
    0.0 2.8 28.0
    0.0 1.6 26.0
    0.0 1.0 23.0
    0.0 0.0 59.0
    Average 0.0 1.6 33.0
  • Width Direction
  • After-flame (seconds) After-glow (seconds) Char length
    0.0 2.6 22.0
    0.0 1.2 49.0
    0.0 1.2 19.0
    0.0 1.6 30.0
    0.0 2.0 27.0
    Average 0.0 1.7 29.4
    Comment: No melting or dripping occurred.

    NFPA 2112 Sections 7.1.5; 8.5 Predicted body Burn by Instrumented Manikin
  • Test according to the ISO13506 “Protective clothing against heat and flame, test method for complete garments, Prediction of burn injury using an instrumented manikin” European Test equivalent to ASTM F 1930
  • Independent testing body: Empa, Swiss Federal Laboratories for Materials Science and Technology St. Gallen, Switzerland
  • TABLE 5
    Specimen identification (decl.)
    Protal 5 with Grid
    Overall No1, size M without (Protal ® solutions (blue)
    pre-treatment by Waxman)
    50% Protex
    30% FRV
    15% cotton
     5% para-aramid 195 g/m2
    Overall No2, without (wenaas antiflame) (red)
    size US 44 pre-treatment
    50% Protex
    30% FRV
    15% cotton
     5% para-aramid 195 g/m2
    Overall No3, without (wenaas antiflame) (red)
    size US 44 pre-treatment
    50% Protex
    30% FRV
    15% cotton
     5% para-aramid 195 g/m2
    without pre-treatment
    Underwear
    T-shirt white, Large 100% cotton
    chest, 107-112 cm
    Slip white, Medium 100% cotton
    waist, 84-89 cm
  • 2. Test Method
  • International Standard ISO 13506: 2008
  • “Protective clothing against heat and flame—Test method for complete garments—Prediction of burn injury using an instrumented manikin”
  • Principle
  • The test specimen was placed onto an adult sized manikin and exposed to a laboratory flash fire simulation with controlled heat flux, duration and flame distribution. Heat which was transferred through the test specimen during and after exposure was measured with the heat flux sensors. A software programme calculates the various degrees of burns and the total burn area.
  • Apparatus
    • Manikin Stationary, upright, adult-sized manikin fitted with 114 (122 incl. head) heat flux sensors excluding hands and feet.
    • Burner system consists of 12 burners (in pairs) located around the manikin, so that a uniform flame engulfment is achieved.
  • The complete procedure (manikin, burners and test room) is regulated with a special computer programme which also records the sensors' activities and calculates the various areas of burn and degrees of burn.
  • Test Conditions
  • Pre-treatment without pre-treatment
    Conditioning ≧24 h at (20 ± 2) ° C. and (65 ± 5) % r.h.
    Heat flux 81.5 kW/m2 (Standard deviation 13.6);
    duration of flame exposure 4 s
    Sensors before testing they must be clean,
    dry and under 32° C.
    Duration of flame exposure 3 s
    Duration of data acquisition 60 s
    Burn prediction model combination of Stoll's and Takata's criteria
    Gas Propane
    Samples see Specimen identification
  • Description of Shrinkage Assessment Procedure
  • The measurements are taken on the fully dressed manikin. Length of fabric at specific points on the garment is measured with a metal ruler. Shrinkage is assessed as percentage of the measure after flame exposure to the one measured before.
  • 3. Results
  • Table of burn prediction and graphical display of distribution of burns on the manikin. Total area of predicted pain, 1st, 2nd and 3rd degree burn injury (based on the area of manikin containing valid heat flux sensors) 60 s after beginning of flame exposure. Detailed information about the results of each sensor can be found in the attached tables.
  • TABLE 6
    Average of samples 1-3
    Ease measurements/shrinkage
    mean value of three measurements
    Avg. shrinkage Standard deviation shrinkage
    Location [%] [%]
    Jacket length −0.3 0.54
    Arm length 1.2 0.41
    Trousers length 6.8 2.46
    Burn risk evaluation
    mean values of three tests
    2nd 3rd 2nd and 3rd Transferred
    Degree burn Degree burn Degree burn energy
    [%] [%] [%] [kJ]
    Body part Mean SD1 Mean SD1 Mean SD1 Mean SD1
    Chest 40.0 17.3 0.0 0.0 40.0 17.3 28.7 1.1
    Stomach 2.8 4.8 0.0 0.0 2.8 4.8 20.7 1.6
    Upper back 30.5 4.8 5.5 4.8 36.1 4.8 41.4 1.1
    Lower back 0.0 0.0 0.0 0.0 0.0 0.0 28.4 0.3
    Left arm 40.0 10.0 3.3 5.8 43.3 5.8 33.1 0.6
    Right arm 43.3 15.3 10.0 10.0 53.3 11.5 34.8 0.6
    Left leg 26.4 2.4 0.0 0.0 26.4 2.4 68.1 1.2
    Right leg 11.6 16.5 2.9 2.5 14.4 14.0 62.5 3.9
    Complete 22.2 1.3 2.3 1.3 24.6 2.3 317.7 6.0
    manikin
  • TABLE 7
    Results of informative test no. 1
    Shrinkage assessment
    Specimen Specimen
    before after
    Manikin data testing testing Shrinkage
    Location [cm] [cm] [cm] [%]
    Jacket length Colar to hem 53.0 53.5 −0.9
    Arm length Shoulder to sleeve 61.3 60.3 1.6
    Trousers length Inside leg 82.0 75.0 8.5
    Burn prediction
    Pain 1st degree 2nd degree 3rd degree Transferred
    Body part [%] burn [%] burn [%] burn [%] energy [kJ]
    Chest 10.0 20.0 20.0 0.0 27.4
    Abdomen 0.0 0.0 8.3 0.0 22.4
    Upper back 66.7 0.0 25.0 8.3 40.9
    Lower back 30.8 0.0 0.0 0.0 28.7
    Left arm 50.0 0.0 30.0 10.0 33.6
    Right arm 30.0 0.0 40.0 20.0 35.4
    Left leg 54.2 0.0 29.2 0.0 69.4
    Right leg 56.5 0.0 30.4 0.0 66.8
    Total 41.2 1.8 23.7 3.5 324.6
  • Observations
      • after flame time approx. 6 s
      • high smoke production
      • change of colour
  • TABLE 8
    Results of informative test no. 2
    Shrinkage assessment
    Specimen Specimen
    before after
    Manikin data testing testing Shrinkage
    Location [cm] [cm] [cm] [%]
    Jacket length Colar to hem 57.0 57.0 0.0
    Arm length Shoulder to sleeve 61.3 60.5 1.2
    Trousers length Inside leg 77.0 71.0 7.8
    Burn prediction
    Pain 1st degree 2nd degree 3rd degree Transferred
    Body part [%] burn [%] burn [%] burn [%] energy [kJ]
    Chest 10.0 0.0 50.0 0.0 29.4
    Abdomen 0.0 0.0 0.0 0.0 19.1
    Upper back 50.0 0.0 33.3 8.3 42.6
    Lower back 15.4 0.0 0.0 0.0 28.1
    Left arm 30.0 10.0 50.0 0.0 33.2
    Right arm 50.0 0.0 30.0 10.0 34.4
    Left leg 45.8 8.3 25.0 0.0 67.8
    Right leg 56.5 4.3 4.3 4.3 59.6
    Total 36.0 3.5 21.1 2.6 314.3
  • Observations
      • after flame time approx. 4 s
      • high smoke production
      • change of colour
  • TABLE 9
    Results of informative test no. 3
    Shrinkage assessment
    Specimen Specimen
    before after
    Manikin data testing testing Shrinkage
    Location [cm] [cm] [cm] [%]
    Jacket length Colar to hem 57.0 57.0 0.0
    Arm length Shoulder to sleeve 61.0 60.5 0.8
    Trousers length Inside leg 76.0 73.0 3.9
    Burn prediction
    Pain 1st degree 2nd degree 3rd degree Transferred
    Body part [%] burn [%] burn [%] burn [%] energy [kJ]
    Chest 10.0 0.0 50.0 0.0 29.3
    Abdomen 0.0 0.0 0.0 0.0 20.8
    Upper back 50.0 0.0 33.3 0.0 40.7
    Lower back 23.1 0.0 0.0 0.0 28.2
    Left arm 20.0 20.0 40.0 0.0 32.5
    Right arm 40.0 0.0 60.0 0.0 34.5
    Left leg 50.0 0.0 25.0 0.0 67.1
    Right leg 69.6 4.3 0.0 4.3 61.0
    Total 38.6 2.6 21.9 0.9 314.1
  • Observations
      • after flame time approx. 4 s
      • high smoke production
      • change of colour
    Test Type—EN ISO 14116: 2008
    • Independent testing body: West Yorkshire Material Testing Service, Leeds, UK
      • Fabric submitted
      • Fabric Code: Protal-5 with Para-aramid Grid
      • Finishing details: Scoured and Stenter only
      • Weight: 195 gsm, Ref Code: WAX118
      • 50% Protex, 30% So FRV, 15% Cotton, 5% Para-aramid with 2% overall anti-static added
    • Performance Standard: Testing to EN ISO 14116: 2008
      • Clause 6.1 Thermal performance—
      • Limited flame spread Procedure A (surface ignition)
      • Clause 6.2.1 Tensile strength
      • Clause 63.2.2 Tear Strength
    • Pre-treatment: Tests were made after 5 washing cycles in accordance with ISO 6330: 2000
      • Procedure 2A at 60° C. Drying Procedure E. The tumble drying was carried out after the completion of each wash.
  • TABLE 10
    Test results for example 7.
    EN ISO 14116 Requirements
    Clause Test Method & Performance Levels Results Comments
    6.1 Limited flame ISO 15025:2000 Index 1 As received Index
    spread Procedure No flaming to top or side edge No flaming to top or side 3/5H/60
    A (surface No flaming debris edge
    ignition No afterglow shall spread No flaming debris
    from the carbonized area to No afterglow
    the undamaged area No hole formation
    Index 2 No afterflame
    No flaming to top or side edge After 5 washing cycles
    No flaming debris No flaming to top or side
    No afterglow shall spread edge
    from the carbonized area to No flaming debris
    the undamaged area No afterglow
    Index 3 No hole formation
    No flaming to top or side edge No afterflame
    No flaming debris
    No afterglow shall spread
    from the carbonized area to
    the undamaged area
    No hole formation
    Afterflame time of each
    individual specimen shall not
    exceed 2 s
    6.2.1 ISO 13934- Min. of 150N in both the warp As received PASS
    Tensile strength 1:1999 and weft directions Warp 580N
    Weft 400N
    After 5 washing cycles
    Warp 520N
    Weft 400N
    6.2.2 ISO 13937- Min of 7.5N As received PASS
    Tear Strength 2:2000 Torn across warp 39N
    (electronic Torn across weft 33N
    recording) After 5 washing cycles
    Torn across warp 37N
    Torn across weft 32N
  • Test Type—BS EN 1149-3 Method 2
    • Independent testing body: West Yorkshire Materials Testing Service, Leeds, UK
      • Fabric submitted
      • Fabric code: Protal-5—with Para-aramid Grid
      • Finishing details: Scoured and Stenter only
      • Weight: 195 gsm, Ref Code: WAX118
      • 50% Protex, 30% So FRV, 15% Cotton, 5% Para-aramid with 2% overall anti-static added
    • Test Required: Induction Decay
    • Pre-treatment: Tests were made after 5 washing cycles in accordance with ISO 6330: 2000
      • Procedure 2A at 60° C. Drying Procedure E. The tumble drying was carried out after the completion of each wash
    Determination of Width Between Conductive Threads
  • The width of gap between the conductive threads was measured in five areas with a steel rule.
  • Width of Gap (mm)
    5.0
    5.0
    5.0
    5.0
    5.0
    Mean 5.0
  • Determination of Induction Decay Time
  • The sample was conditioned and tested at 23+/−1° C. and 25+/−5% r.h.
  • The charge decay time and shielding effect were measured according to BS EN 1149-3: 2004 Method 2 (induction charging)
  • Shielding Factor (S) Half Decay Time, t50 (Secs.)
    0.93 <0.01
    0.93 <0.01
    0.92 <0.01
    Mean: 0.93 <0.01
  • Comments:
  • Based on the tests carried out on the sample supplied:
  • a) for a material containing conductive threads in a stripe or grid pattern the spacing of the conductive threads in one direction shall not exceed 10 mm.
    b) the results of BS EN 1149-3 Method 2: 2004 meet the requirements specified in BS EN 1149-5: 2008 of the shielding factor being greater than 0.2 and/or the half decay time being less than 4 seconds.
  • Test Type—EN ISO 11612: 2008
    • Independent testing body: West Yorkshire Materials Testing Service, Leeds, UK
      • Fabric submitted
      • Fabric code: Protal-5—with Para-aramid Grid
      • Finishing details: Scoured and Stenter only
      • Weight: 195 gsm, Ref Code: WAX118
      • 50% Protex, 30% So FRV, 15% Cotton, 5% Para-aramid with 2% overall anti-static added
    • Performance Standard: Testing to EN ISO 11612: 2008
      • Clause 6.2 Heat resistance
      • Clause 6.3 Limited flame spread (A1 surface ignition and A2 edge ignition)
      • Clause 6.4 Dimensional change
      • Clause 6.5.1 Tensile strength
      • Clause 6.5.2 Tear strength
      • Clause 7.2 Convective heat (B)
      • Clause 7.3 Radiant heat (C)
    • Pre-treatment: Tests were made after 5 washing cycles in accordance with ISO 6330: 2000
      • Procedure 2A at 60° C. Drying Procedure E. The tumble drying was carried out after the completion of each wash.
      • For clause 6.3 tests were made both before and after the 5 washing cycles as described above.
  • In accordance with Annex G of EN ISO 11612: 2008 the uncertainty of measurement associated with the test methods was not taken into account.
  • TABLE 11
    Test results for example 7.
    EN ISO 11612 Requirements Pass/fail or
    Clause Test Method & Performance Levels Results Level
    6.1 Heat ISO 17493:2000 180° C. 180° C. PASS
    resistance at 180° C. and No ignition No ignition
    260° C. No melting No melting
    Maximum shrinkage 5% Shrinkage
    260° C. Warp −3.5%
    No ignition Weft −2.7%
    No melting 260° C. PASS
    Maximum shrinkage 10% No ignition
    (−indicates shrinkage) No melting
    Shrinkage
    Warp −4.5%
    Weft −5.2%
    6.3 Limited flame ISO 15025:2000 No flaming to top or side edge Surface Ignition as PASS
    spread No hole formation (A1 only) received and after 5 A1
    (A1 and A2) No flaming, melting or molten washing cycles
    Debris No flaming to top
    Mean after flame ≦2 s or side edge
    Mean afterglow ≦2 s No hole Formation
    No flaming,
    melting or molten
    debris
    No afterflame
    No afterglow
    Edge PASS
    Ignition as received A2
    and after 5 washing cycles
    No flaming to top
    or side edge
    No flaming,
    melting or molten
    debris
    No after flame
    No afterglow
    6.4 ISO 5077 Maximum ± 3% Warp −3.5% FAIL
    Dimension (−indicates shrinkage) Weft Nil
    change
    6.5.1 ISO 13934- Minimum 300N in both warp Warp 520N PASS
    Tensile strength 1:1999 and weft direction Weft 400N
    6.5.2 ISO 13937- Minimum 15N in both warp Torn across warp 37N PASS
    Tear Strength 2:2000 and weft direction Torn across weft 32N
    (electronic
    recording)
    7.2 ISO 9151:1995 Range of HTI24 Values (s) Specimen 1 6.4 LEVEL
    Convective heat Performance Levels Specimen 2 6.5 B1
    (B) Min. Max Specimen 3 6.5
    B1  4.0 <10.0 Result based 6.4
    B2 10.0 <20.0 on lowest
    B3 20.0 HTI24
    7.3 ISO 6942:2002 Heat Transfer Factor of Specimen 1 13.4 LEVEL
    Radiant heat(C) Method B heat RHTI24 Performance Levels Specimen 2 13.1 C1
    flux 20 kW/m2 Min. Max Specimen 3 13.1
    C1  7.0 <20.0 Result based 13.1
    C2 20.0 <50.0 on lowest
    C3 50.0 <95.0 RHTI24
    C4 95.0
  • Test Type—Analysis for the Extractable Antimony Content Test Method OTS 100
  • Independent testing body: Shirley Technologies Ltd, Manchester, UK
    Article Description: Blue dyed woven fabric Ref: Protal 5 NG/WAX-129
  • Introduction
  • Blue dyes woven fabric sample was submitted for testing the extractable antimony content.
  • Sample Details
  • The samples submitted were as follows:
  • Sample 1: Blue dyed woven fabric
      • Ref: Protal 5 NG
      • 50% Protex, 30% FR Viscose, 15% Cotton, 5% Para-aramid
      • Waxman code: WA-129
    Laboratory Investigation
  • The sample was extracted in artificial sweat solution and analysed on the inductively coupled plasma (ICP)
  • Results
  • Sample Antimony (mg/kg)
    Blue dyed woven fabric Ref: 23.20
    Protal 65 NG/WAX-129
  • Detection limit of this test is—0.8 mg/kg
  • TABLE 12
    Limit values and Fastness for TEST METHOD OTS 100
    II III IV
    I in direct contact with with no direct contact with Decoration
    Product Class Baby skin skin material
    Limit values and fastness, part 1
    pH value1
    4.0-7.5 4.0-7.5 4.0-9.0 4.0-9.0
    Formaldehyde [mg/kg]
    Law 112 n.d.2 75 300 300
    Extractable heavy-metals [mg/kg]
    Sb (Antimony) 30.0 30.0 30.0
    As(Arsenic) 0.2 1.0 1.0 1.0
    Pb (Lead) 0.2 1.03 1.03 1.03
    Cd (Cadmium) 0.1 0.1 0.1 0.1
    Cr (Chromium) 1.0 2.0 2.0 2.04
    Cr (VI) under detection limit5
    Co (Cobalt) 1.0 4.0 4.0 4.0
    Cu (Copper) 25.06 50.06 50.06 50.06
    Ni (Nickel)7 0.5 1.0 1.0 1.0
    Mg (Mercury) 0.02 0.02 0.02 0.02
    Heavy metals in digested sample [mg/kg]8
    Pb (Lead) 90.0 90.03 90.03 90.03
    Cd (Cadmium) 50.0 100.03 100.03 100.03
    Pesticides [mg/kg]9, 10
    Sum10 0.5 1.0 1.0 1.0
    Chlorinated phenols [mg/kg]10
    Pentachlorophenol (PCP) 0.05 0.5 0.5 0.5
    Tetrachlorophenol (TeCP) 0.05 0.5 0.5 0.5
    Sum
    Limit values and fastness, part 2
    Pathalates [w. %]11
    DINP, DNCP, DEHP, DIOP, BBP, DBP, 0.1
    DIBP, DIHP, DHNUP, DHP, DMEP, DPP,
    Sum10
    DEHP, BBP, DBP, DIBP, DIHP, DHNUP, 0.1 0.1 0.1
    DHP, DMEP, DPP, Sum10
    Organic tin compounds [mg/kg]10
    TBT 0.6 1.0 1.0 1.0
  • General Performance Results
  • The performance test results, for examples 3 and 6 confirm the fabrics satisfy all of the desired requirements. In particular, the blend of example 3 was found to perform better than the blend of example 6 with regard to tensile strength, tear strength, electrical and contact heat resistivity. The Oekotex standard requirements were also satisfied for both samples 3 and 6 following respective testing.
  • The performance test results for Example 7 show compliance with both the sections of US Standard NFPA 2112 which relate to a fabric (namely Sections 7.1.1, 7.1.2, 7.1.3, 7.1.4 and 7.1.5) as well as the EU standards EN11612, and EN14116 for FR performance of garments, with EN1149-5 for anti-static performance and thus shows a “Universal Compliance”: the test results for Oekotex100 limit for extractable antimony illustrates that the fabric would conform to the whole Oekotex 100 requirement as there is known compliance for all other elements.
  • The presented results confirm that the present fibre blend based on the combination of a modacrylic with a natural cellulosic material and a FR viscose, at the appropriate weight % is capable of satisfying different performance standards with regard to fabric safety. This is perhaps contrary to expectation as, for example, cotton fibres are not considered to be inherently flame resistant and are susceptible to burn. The inventors have realised a synergistic affect between the blend of a modacrylic with a natural cellulosic (natural cotton) and FR viscose. The effect is manifested in an observed increase in the combined limited oxygen index (LOI) of the fabric wherein the LOI of the blend is greater than the sum of the LOI of the individual components. As will be appreciated, the LOT refers to the minimum concentration of oxygen that will just support flaming combustion of a material. The affect of incorporating a natural cellulosic may be considered to increase the charring affect of fabric when exposed to extreme heat which increases the LOI by expelling oxygen within the matrix as the charred carbon barrier forms during initial heat contact.
  • The present invention is therefore advantageous for use as a ‘universal’ protective fabric that has exhibited proven performance as a protective layer to flame, electric discharge and molten metal hazards.
  • Fabric Construction
  • A fibre blend comprising 50% Protex™; 30% Helon FR viscose; 15% cotton 5% para-aramid was mixed, carded, drawn, roved, spun and wound to create a yarn according to a first yarn type. A second yarn type having a two-ply construction was formed by the same spun yarn process of as the first yarn using a fibre blend comprising a 50% by weight para-aramid (for example KEVLAR by E.I. Du Pont de Nemours and Co) and 50% by weight of the fibre blend of the first fibre type.
  • A woven fabric was constructed using the first yarn type as a majority component via interweave of warps and wefts. The second yarn type was interwoven with the first yarn type (as a single weave assembly) at every 10 ends and 10 picks (with respect to warps and wefts). Accordingly, the resulting fabric structure comprised predominantly warps and wefts of the first yarn type and interwoven warps and wefts of the second yarn type spaced at regular intervals to create a grid network repeated every 10 ends and 10 picks.

Claims (31)

1. A flame retardant yarn having a composite structure formed from a collection of fibres twisted together, the fibres comprising a blend of:
40% to 60% by weight of a modacrylic;
5% to 25% by weight of a naturally occurring cellulosic material; and
20% to 40% by weight of a FR viscose based material.
2. The yarn as claimed in claim 1 wherein the modacrylic comprises a copolymer of:
acrylonitrile; and
vinyl chloride and/or vinylidene chloride.
3. The yarn as claimed in claim 1 wherein the modacrylic comprises:
30% to 70% by weight of acrylonitrile; and
70% to 30% by weight of vinyl chloride and/or vinylidene chloride.
4. The yarn as claimed in claim 1 wherein the modacrylic comprises vinylidene chloride and antimony oxide.
5. The yarn as claimed in claim 4 wherein the antimony oxide comprises antimony trioxide.
6. The yarn as claimed in claim 4 wherein the antimony oxide comprises antimony pentoxide.
7. The yarn as claimed in claim 1 wherein the naturally occurring cellulosic material comprises any one or a combination of:
Cotton;
Bamboo;
Linen; and/or
Jute.
8. The yarn as claimed in claim 1 further comprising nylon.
9. The yarn as claimed in claim 8 comprising trace to 7% by weight nylon.
10. The yarn as claimed in claim 8 comprising trace to 5% by weight nylon or a para-aramid.
11. The yarn as claimed in claim 1 further comprising trace to 5% by weight of an antistatic material.
12. The yarn as claimed in claim 1 comprising:
40% to 55% by weight of the modacrylic;
10% to 20% by weight of the naturally occurring cellulosic material; and
25% to 35% by weight of the FR viscose based material.
13. The yarn as claimed in claim 1 comprising:
45% to 55% by weight of a modacrylic comprising a copolymer of acrylonitrile and a halogen-containing vinyl monomer, the copolymer further comprising antimony pentoxide;
10% to 20% by weight of natural cotton;
25% to 35% by weight of FR viscose;
trace to 7% by weight nylon; and
trace to 5% by weight of a carbon based antistatic material.
14. A fabric comprising fibres according to claim 1.
15. The fabric as claimed in claim 14 wherein the fabric is woven, knitted or non-woven.
16. A garment comprising the fabric according to claim 14.
17. A flame retardant fibre blend comprising:
40% to 60% by weight of a modacrylic;
5% to 25% by weight of a naturally occurring cellulosic material;
20% to 40% by weight of a FR viscose based material; and
5 to 20% by weight of a thermostable fibre that exhibits no appreciable decrease in mechanical strength after exposure to heat or flame in excess of 500° C.
18. The fibre blend as claimed in claim 17 wherein the thermostable fibre comprises any one or a combination of:
meta-aramid;
para-aramid;
polybenzimidazole;
p-phenylene benzobisoxazole (PBO);
polysulphonamide (PSA);
a polyamide-imide (PAI);
melamine;
carbon fibre; and/or
glass fibre.
19. The fibre blend as claimed in claim 17 wherein the thermostable fibre is a blend including any one or a combination of:
5 to 95% by weight of the thermostable fibre being any one or a combination of:
meta-aramid, para-aramid, polybenzimidazole p-phenylene benzobisoxazole (PBO), polysulphonamide (PSA), a polyamide-imide (PAI), melamine, carbon fibre, and/or glass fibre;
30 to 70% by weight of the modacrylic;
30 to 70% by weight of the FR viscose based material; and
5 to 20% by weight of the naturally occurring cellulose material.
20. The fibre blend as claimed in claim 17 further comprising an antistatic fibre included in the range of trace to 10% by weight.
21. A yarn or filament formed from the fibre blend according to claim 17.
22. A fabric formed from at least one yarn or filament as claimed in claim 21.
23. The fabric as claimed in claim 22 comprising a woven, non-woven, knitted or braided construction.
24. A flame retardant fabric having a composite structure comprising:
a first yarn forming a majority component of the fabric, the first yarn having a composition comprising:
40% to 60% by weight of a modacrylic;
5% to 25% by weight of a naturally occurring cellulosic material; and
20% to 40% by weight of a FR viscose based material; and
a second yarn and/or filament type forming a minority component of the fabric, the second yarn and/or filament type comprising a thermostable stable fibre that exhibits no appreciable decrease in mechanical strength after exposure to heat or flame in excess of 500° C.
25. The fabric as claimed in claim 24 wherein the thermostable fibre comprises anyone or a combination of:
meta-aramid;
para-aramid;
polybenzimidazole;
p-phenylene benzobisoxazole (PBO);
polysulphonamide (PSA);
a polyamide-imide (PAI);
melamine;
carbon fibre; and/or
glass fibre.
26. The fabric as claimed in claim 24 wherein the thermostable fibre is a blend including any one or a combination of:
5 to 95% by weight of the thermostable fibre being any one or a combination of: meta-aramid, para-aramid, polybenzimidazole, p-phenylene benzobisoxazole (PBO), polysulphonamide (PSA), a polyamide-imide (PAI), melamine, carbon fibre, and/or glass fibre;
30 to 70% by weight of the modacrylic;
30 to 70% by weight of the FR viscose based material; and
5 to 20% by weight of the naturally occurring cellulose material.
27. The fabric as claimed in claim 24 further comprising an antistatic fibre included in the range of trace to 10% by weight.
28. The fabric as claimed in claim 24 further comprising a woven structure:
wherein a majority of the warps and wefts of the weave comprise the first yarn type; and
wherein the second yarn and/or filament type is interwoven as warps and wefts at spaced apart intervals amongst the warps and wefts formed from the first yarn type.
29. A woven fabric as claimed in claim 28 wherein the second yarn and/or filament type is interwoven with the first yarn type at a regular spacing in the range of 5 to 15 ends and in the range of 5 to 15 picks.
30. A woven fabric as claimed in claim 28 wherein the second yarn and/or filament type is interwoven with the first yarn at a regular spacing in 10 ends and 10 picks.
31. A garment comprising the fabric according to claim 15.
US13/842,988 2008-07-22 2013-03-15 Flame resistant blends Abandoned US20130212790A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/842,988 US20130212790A1 (en) 2008-07-22 2013-03-15 Flame resistant blends

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
GB0813401A GB0813401D0 (en) 2008-07-22 2008-07-22 Flame resistant fibre blends
GBGB0813401.7 2008-07-22
GBPCT/GB2009/050676 2009-06-15
PCT/GB2009/050676 WO2010010369A1 (en) 2008-07-22 2009-06-15 Flame resistant blends
US201113055239A 2011-04-04 2011-04-04
US13/842,988 US20130212790A1 (en) 2008-07-22 2013-03-15 Flame resistant blends

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US201113055239A Continuation-In-Part 2008-07-22 2011-04-04

Publications (1)

Publication Number Publication Date
US20130212790A1 true US20130212790A1 (en) 2013-08-22

Family

ID=48981130

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/842,988 Abandoned US20130212790A1 (en) 2008-07-22 2013-03-15 Flame resistant blends

Country Status (1)

Country Link
US (1) US20130212790A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130174334A1 (en) * 2010-10-20 2013-07-11 Teijin Limited Layered heat-proof protective clothing
US20140261852A1 (en) * 2013-03-13 2014-09-18 Springfield Llc Flame-Resistant Fiber Blend, Yarn, and Fabric, and Method for Making Same
CN108474147A (en) * 2015-10-21 2018-08-31 南磨房公司 The printable flame-retardant textile of lightweight suitable for the protective garment dressed heat and/or wet environment
US10316438B2 (en) * 2014-03-05 2019-06-11 Southern Mills, Inc. Fabric containing an intimate blend of antistatic fibers arranged in a pattern
EP3480349A4 (en) * 2016-09-26 2019-09-04 Shanghai Three H Safety Science and Technology Co., Ltd. Modacrylic, lyocell, and nylon blended flame-retardant fabric
US20220053860A1 (en) * 2020-08-19 2022-02-24 Burlington Industries Llc Fabric Material That is Resistant to Molten Metals
US20220290342A1 (en) * 2019-07-12 2022-09-15 Aw Hainsworth And Sons Limited Fire resistant textile material
US11598027B2 (en) 2019-12-18 2023-03-07 Patrick Yarn Mills, Inc. Methods and systems for forming a composite yarn
US11761124B1 (en) 2021-09-09 2023-09-19 Milliken & Company Elastic flame-resistant fabric
AU2020343215B2 (en) * 2019-09-04 2023-10-05 Milliken & Company Flame-resistant fabric
US11873587B2 (en) 2019-03-28 2024-01-16 Southern Mills, Inc. Flame resistant fabrics
US11891731B2 (en) 2021-08-10 2024-02-06 Southern Mills, Inc. Flame resistant fabrics

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080214076A1 (en) * 2007-03-01 2008-09-04 Longworth Industries, Inc. Base layer apparel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080214076A1 (en) * 2007-03-01 2008-09-04 Longworth Industries, Inc. Base layer apparel

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130174334A1 (en) * 2010-10-20 2013-07-11 Teijin Limited Layered heat-proof protective clothing
US9415246B2 (en) * 2010-10-20 2016-08-16 Teijin Limited Layered heat-proof protective clothing
US20140261852A1 (en) * 2013-03-13 2014-09-18 Springfield Llc Flame-Resistant Fiber Blend, Yarn, and Fabric, and Method for Making Same
US9920474B2 (en) * 2013-03-13 2018-03-20 Milliken & Company Flame-resistant fiber blend, yarn, and fabric, and method for making same
US10316438B2 (en) * 2014-03-05 2019-06-11 Southern Mills, Inc. Fabric containing an intimate blend of antistatic fibers arranged in a pattern
AU2015227086B2 (en) * 2014-03-05 2019-07-11 Southern Mills, Inc. Fabric containing an intimate blend of antistatic fibers arranged in a pattern
CN108474147A (en) * 2015-10-21 2018-08-31 南磨房公司 The printable flame-retardant textile of lightweight suitable for the protective garment dressed heat and/or wet environment
EP3365482A4 (en) * 2015-10-21 2019-05-08 Southern Mills, Inc. Lightweight, printable flame resistant fabrics suitable for protective clothing worn in hot and/or humid environments
EP3480349A4 (en) * 2016-09-26 2019-09-04 Shanghai Three H Safety Science and Technology Co., Ltd. Modacrylic, lyocell, and nylon blended flame-retardant fabric
US11873587B2 (en) 2019-03-28 2024-01-16 Southern Mills, Inc. Flame resistant fabrics
US20220290342A1 (en) * 2019-07-12 2022-09-15 Aw Hainsworth And Sons Limited Fire resistant textile material
AU2020343215B2 (en) * 2019-09-04 2023-10-05 Milliken & Company Flame-resistant fabric
US11598027B2 (en) 2019-12-18 2023-03-07 Patrick Yarn Mills, Inc. Methods and systems for forming a composite yarn
US20220053860A1 (en) * 2020-08-19 2022-02-24 Burlington Industries Llc Fabric Material That is Resistant to Molten Metals
US11819076B2 (en) * 2020-08-19 2023-11-21 Elevate Textiles, Inc. Fabric material that is resistant to molten metals
US11891731B2 (en) 2021-08-10 2024-02-06 Southern Mills, Inc. Flame resistant fabrics
US11761124B1 (en) 2021-09-09 2023-09-19 Milliken & Company Elastic flame-resistant fabric

Similar Documents

Publication Publication Date Title
US20130212790A1 (en) Flame resistant blends
JP5523556B2 (en) Modacrylic / aramid blends with limited antimony content and antimony-free modacrylic / aramid blends for improved flash fire and arc protection
JP6037405B2 (en) Clothing items for thermal protection
EP1725704B1 (en) Modacrylic/cotton/aramid fiber blends for arc and flame protection
US10030326B2 (en) Lightweight, dual hazard fabrics
AU2011245379B2 (en) Fiber blends for garments with high thermal, abrasion resistance, and moisture management properties
CN102656303B (en) Blended fiber yarns and fabrics including oxidized polymeric fibers
CN102124152B (en) Crystallized meta-aramid blends for improved flash fire and arc protection
JP5744178B2 (en) Crystallized meta-aramid blends for improved fire and arc protection with improved comfort
JP5979796B2 (en) High moisture content yarn, fabric and clothes with excellent arc protection
JP5539504B2 (en) Crystallized meta-aramid blends for improved flash fire protection and superior arc protection
US20140187113A1 (en) Fiber blends for dual hazard and comfort properties
US20150159304A1 (en) Flame and heat resistant yarns and fabrics
CN104736750A (en) Fiber blends for wash durable thermal and comfort properties
EP2326756B1 (en) Flame resistant blends
EP3507398B1 (en) Carbon-containing fiber blends including aramid and modacrylic fiber
AU2015227086A1 (en) Fabric containing an intimate blend of antistatic fibers arranged in a pattern
US11473224B1 (en) Fire resistant fabric and process to produce same
KR20200012579A (en) Flame retardant Meta-aramid Fiber Excellent In Anti-static And Method Of Manufacturing The Same
WO2023018771A1 (en) Flame resistant fabrics

Legal Events

Date Code Title Description
AS Assignment

Owner name: PROTAL LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WAXMAN, RICHARD;SEWARD, PETER;REEL/FRAME:032937/0312

Effective date: 20140520

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION