US20130212642A1 - Resilient Device Authentication System - Google Patents

Resilient Device Authentication System Download PDF

Info

Publication number
US20130212642A1
US20130212642A1 US13/552,592 US201213552592A US2013212642A1 US 20130212642 A1 US20130212642 A1 US 20130212642A1 US 201213552592 A US201213552592 A US 201213552592A US 2013212642 A1 US2013212642 A1 US 2013212642A1
Authority
US
United States
Prior art keywords
system
lvs
loaded
configured
alvs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/552,592
Inventor
John J. Walsh
Michael J. Duren
Hal A. Aldridge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Analog Devices Inc
WALSH JOHN J
Original Assignee
Sypris Electronics LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US201261597819P priority Critical
Application filed by Sypris Electronics LLC filed Critical Sypris Electronics LLC
Priority to US13/552,592 priority patent/US20130212642A1/en
Assigned to SYPRIS ELECTRONICS, LLC reassignment SYPRIS ELECTRONICS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALDRIDGE, HAL A., DUREN, MICHAEL J., WALSH, JOHN J.
Priority claimed from US13/829,826 external-priority patent/US9258129B2/en
Publication of US20130212642A1 publication Critical patent/US20130212642A1/en
Assigned to SYPRIS ELECTRONICS, LLC reassignment SYPRIS ELECTRONICS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALDRIDGE, HAL A., DUREN, MICHAEL J., WALSH, JOHN J.
Priority claimed from US15/018,451 external-priority patent/US9996480B2/en
Assigned to ANALOG DEVICES, INC. reassignment ANALOG DEVICES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SYPRIS ELECTRONICS, LLC
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communication
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communication including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3271Cryptographic mechanisms or cryptographic arrangements for secret or secure communication including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using challenge-response
    • H04L9/3278Cryptographic mechanisms or cryptographic arrangements for secret or secure communication including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using challenge-response using physically unclonable functions [PUF]
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/44Program or device authentication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communication
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communication
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communication including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3271Cryptographic mechanisms or cryptographic arrangements for secret or secure communication including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using challenge-response

Abstract

A resilient device authentication system comprising: one or more verification authorities (VAs) including a memory loaded with a complete verification set that includes hardware part-specific data, and configured to create a limited verification set (LVS) therefrom; one or more provisioning entities (PEs) each connectable to at least one of the VAs, including a memory loaded with a LVS, and configured to select a subset of data therefrom so as to create an application limited verification set (ALVS); and one or more device management systems connectable to at least one of the PEs, including a memory loaded with an ALVS, and configured to manage device security-related applications through the performance of security-related functions on devices associated with the hardware part-specific data.

Description

    RELATED APPLICATIONS
  • This application claims the benefit of U.S. provisional patent application Ser. No. 61/597,819 filed Feb. 12, 2012 and entitled “Key Management Utilizing Physically-Unclonable Functions, and Cyber-Physical Security Measures,” which is incorporated herein by reference.
  • BACKGROUND
  • Managing authentication and identity across systems, users, and enterprises is complex and threat-prone, and increasingly so as endpoints and cloud-based systems continue proliferating. Current solutions for identity management, authentication, and key management are typically disparate in nature and confined in design and purpose to specific applications (e.g., network authentication protocols, PKIs, code-signing, biometrics, etc.). Various methods for deploying identity authentication technologies in contexts such as “smart grids,” cloud computing, and enterprise networks and network extensions typically include a variety of applications that would require a number of dissimilar prior art technology solutions, so as to complicate and multiply overall design, planning, and cryptographic-related overhead.
  • The manufacturing and provisioning costs and burdens associated with establishing “hardware biometrics” (i.e., observable intrinsic features of hardware device material, design, or manufacturing process that can uniquely differentiate a specific device from other devices of the same or similar type) to enable secure device identification, registration, and management are not insignificant. Hitherto, the presumably attendant limitations and ongoing added operating complexity, risk, and overhead would have discouraged attempts to employ hardware biometrics in any types of architectures known to Applicant for managing and authenticating identities across systems, users, and enterprises, as would be required for a manufacturing through end-use approach.
  • SUMMARY OF THE INVENTION
  • Applicant has devised a novel system architecture employing hardware biometrics that can avoid the aforementioned ongoing disadvantages, and can outweigh the upfront costs and burdens by virtue of system operating efficiency and reduced costs of trust management and compromise. The present Resilient Device Authentication (“RDA”) system enables a holistic development and management of systemic trust mechanisms grounded in physical hardware and extending into the manufacturing process, operating systems, applications, and whole systems, and can be deployed efficiently in a system having a range of diverse applications, throughout the system's lifecycle. Thus hardware-anchored security-related functions that could be performed by applications in various embodiments of an RDA system may include, among many other things, authentication, supply chain security functions, encryption, policy management, data or document certification, key management, etc.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 depicts an embodiment of an RDA system according to the present invention, showing its hierarchical control, flow, and use of device verification information among and by three levels of entities.
  • FIG. 2 depicts an embodiment of a system like that shown in FIG. 1, except that each entity in the lowest level (Distributed Management Systems) universally handles functions that are split between the corresponding entities in the embodiment of FIG. 1, also showing the system's basic divisions according to function or loci.
  • FIG. 3 depicts part of the system of an embodiment like those of FIGS. 1 and 2, showing further details of the Verification Authority.
  • FIG. 4A is a representation of a set of 1-N parts (P) having corresponding verification information (V) of different types.
  • FIG. 4B is a representation of a set of data elements comprising verification information collected for Part N.
  • FIG. 5 is a diagram like that of FIG. 3, but with a siloing of Verification Authorities and data by class.
  • FIG. 6 depicts the top-down data provisioning model of an embodiment of an RDA system.
  • FIG. 7 depicts a specific example of a provisioning in the embodiment of FIG. 6.
  • FIG. 8 depicts the change or updating of a Limited Verification Set in an embodiment of an RDA system.
  • FIG. 9 depicts the change or updating of an Application Limited Verification Set in an embodiment of an RDA system.
  • FIG. 10 depicts a segmentation of Complete Verification Set data in an embodiment of an RDA system.
  • FIG. 11 depicts a segmentation of data and algorithms in an embodiment of an RDA system.
  • FIG. 12 is a partial circuit diagram of a device that can be used in an embodiment of an RDA system that manages devices with hardware parts having PUFs.
  • FIG. 13 is a partial circuit diagram of another version of a device like that of FIG. 12.
  • DETAILED DESCRIPTION OF EMBODIMENTS
  • The following acronyms are used for basic aspects of the present system:
      • “CVS” refers to the Complete Verification Set, which is a super-set of hardware-based part-authentication data.
      • “LVS” refers to a Limited Verification Set, which is a set of data that is derived from part of the CVS.
      • “ALVS” refers to an Application Limited Verification Set, which is a subset of elements chosen from part of an LVS.
      • “VA” refers to a Verification Authority, which stores the CVS and creates and distributes LVSs therefrom.
      • “PE” refers to a Provisioning Entity, which stores an LVS and constructs and distributes ALVSs therefrom.
      • “DMS” refers to a Device Management System, which stores an ALVS and uses it to authenticate devices (i.e., specific hardware parts) in the system.
  • Referring to FIGS. 1 and 2, an embodiment of an RDA system 100 according to the present invention can manage authentication-related functions for diverse applications such as supply chain risk management (“SCRM”) 131, authentication 132, and other applications 133 (e.g., device management, access management, connectivity management, etc.), using the foundation of a CVS 110 for all hardware verification and authentication functions. The CVS is provided to a VA 120, which distributes an LVS 111 based on the CVS to a PE 121 (or, not shown, the system preferably includes multiple PEs to each of which the VA distributes a different LVS), which in turn provides ALVSs 112 1-N, to DMSs 122 1-N, which then directly interface with the applications.
  • The CVS is an essentially static database comprising part-specific data elements 160 for all hardware parts 140 (see FIG. 4B) in the system. Preferably each of the elements of the CVS is bound to the unique identity of one specific part, and preferably each part has a plurality of elements bound to it. The database preferably includes significantly disparate types of elements and multiple elements of usefully-unrelated information for each part, so as to permit strong, feature-rich authentication. Such data elements can include (but are not limited to) various parameters, information, validation material, processes, and secrets, etc. such as challenge/response pairs, physical elements that can be remotely interrogated, shared secret information embedded during manufacture, and physical properties that can be used to model a device. CVS elements may be used directly for authentication, may be used as characteristic values for deriving authentication methods tied to a device, and may be sub-divided and allocated such as for a particular use or verification process. Specific elements may contribute different features to the authentication process, for example one being used to identify the physical device while another is a revocable component (e.g., relational information such as a device's registered location). Confidentiality, integrity, assurance, and performance can be managed through the selection of revocable and non-revocable elements to be included in the CVS.
  • The CVS includes device-level—and preferably chip-level—security data elements based on one or more types of hardware features such as physically-unclonable functions (“PUFs”) 150, PUF-derived data, physical features of a design, etc. Such data elements can be formed, derived, revealed, and recorded, and/or tested for presence, robustness, and applicability at the time of manufacture. For example, in the case of a PUF, the loading and characterization of device may occur upon fabrication of an application specific integrated circuit (“ASIC”) or initial programming of a field-programmable gate array (“FPGA”).
  • Referring to FIG. 3, once the CVS database is created and collected, it is supplied to a VA 120, which stores it in memory 135. The VA is responsible for: (1) securely storing and managing the CVS; (2) managing requests for LVSs 111; (3) processing CVS data to create LVSs; and (4) distributing LVSs. The VA owner must be able to protect and handle the CVS data at an assurance level at least commensurate with the requirements of the system's most sensitive parts and applications, and typically would be a manufacturer, high-level program entity, or service provider. If a system is intended to manage parts having different security classes (e.g., commercial, government, and classified as shown in FIG. 4A), CVS data preferably may be grouped by reliability, detection, and variability properties, and allocated through the system according to the applicable information assurance requirements and uses of different applications. In such cases, CVS data also can be siloed between multiple VAs having corresponding different levels of security and LVS algorithms 130 as shown by the unmarked, single-asterisked, and double-asterisked siloes in FIG. 5, or a single-VA system could have an architecture that is similarly internally-siloed. Thus, as depicted by the asterisks in FIG. 11, a different security level of algorithm can be used to create LVS 111 2 than the one used to create LVS 111 1 (whereas in the non-siloed system shown in FIG. 10 the same security level of algorithms is used to create both LVSs, albeit using different CVS elements). Depending on security requirements, higher-security VAs or internal siloes optionally also (not shown) could receive and process lower-security CVS data; for example, a classified-level VA could handle not just the classified parts of the CVS but also commercial and government parts.
  • Whether siloed or not, a federation of multiple VAs each limited to a separate subset of CVS data optionally could be employed, possibly communicating CVS-related data among each other with measures to prevent any VA owner from deriving another's CVS data subset. In a federated VA embodiment, for example one VA could store parts' CRPs while another VA stores parts' secret keys. This federated structure could support, for example, a federated identity brokering system such as that disclosed in U.S. Pat. No. 7,581,248 to Atkins et al., the disclosure of which is incorporated herein by reference. Such a combination, with the present RDA system providing the data used to implement authentication, would provide a federated identity structure useable with cloud and other distributed applications that has the added benefit of hardware-based authentication.
  • Referring to FIG. 2, the VA does not frequently distribute an LVS during the operation phase, but only as a result of need for initial provisioning by a PE 121, request 114 to recover a compromised or lost LVS, or policy-dictated update. The VA derives an LVS's elements from CVS elements that comprise, or more preferably are chosen from, a subset of elements applicable to the recipient PE. The VA should be configured to ensure that each LVS it creates includes representation of CVS elements adequate to: a) redundantly verify all of the parts managed by the recipient PE; and b) satisfy all of the applicable applications, accounting for the degree of usefulness that each type of element has in each application (e.g., SCRM, device management, access management, connectivity management, etc.). The VA retains a record of all LVS data it has distributed (and the CVS elements, algorithms, and parameters used in their creation) and to which PEs, enabling tracing of part-specific CVS elements down to a PE.
  • Referring to FIGS. 6 & 7, each LVS 111 1-N is derived from the CVS in a way that produces new (though related) data, utilizing subset CVS data as input parameters in algorithms that include cryptography (e.g., hashing such as with SHA-1 or SHA-2 families), randomness, and/or physical models. One-way algorithms are preferably chosen that preclude reverse construction of CVS elements from any or all distributed LVSs even if the algorithms and parameters that were used to create them are known. Depending on the level of assurance desired for a system, algorithmic complexity (and quality and orthogonality of CVS data) also should be sufficient to make available virtually infinite LVS algorithms (and thus derivable LVSs) or at least preclude the future repeat of any LVS elements and/or parts thereof given the applicable exposure factors such as the system's anticipated service life, the frequency of updates and recoveries, etc. (If less assurance is required and where none of the data at issue is compromised, the VA could be configured to redistribute an LVS lost by a PE).
  • The LVS is distributed to a PE—typically owned by an application owner or program operator—which securely stores its LVS in a memory 136, and when needed (e.g., upon initial DMS provisioning, DMS-requested recovery, regular update, VA-initiated reprovisioning, etc.), chooses a subset of elements from its LVS adequate to uniquely identify each part managed by a specific DMS 122 in its domain, and preferably without one-way algorithmic transformation, provides the chosen elements to that DMS in the form of an ALVS 112, which the DMS stores in memory 137. The system preferably is configured to preclude (or at least intelligently limit) reuse of LVS elements by a PE, so each PE maintains a record of all ALVSs it has provided (and to which DMSs, enabling tracing down to them).
  • DMSs may be provided with mutually-exclusive (non-overlapping) ALVS data elements, or the RDA system may be configured so that ALVS data is shared or synchronized (for example the system may be configured so that one DMS would need to re-confirm an attribute that another DMS has already confirmed for its application) among multiple DMSs in a domain, in which case coordination thereof may be managed by the responsible PE. A system may be configured so that all DMSs communicate directly with their PE to obtain all new or updated ALVSs, or configured so that certain ALVS data is obtained via peer-to-peer sharing among DMSs. In the latter case, DMSs could establish trust among each other (and optionally, re-keying could be effected) using the methods taught in Applicant's co-pending application Ser. No. 13/163,086 (the disclosure of which is incorporated herein by reference), with the DMSs being the nodes and the PE being the central authority. (Such peer-to-peer sharing could also greatly enhance the scalability of a given PE's domain). Each DMS communicates directly with fielded devices, using its ALVS data to perform application-specific security-related functions for various applications such as SCRM, authentication, encryption, etc. A DMS may be confined to an exclusive or an overlapping “enclave” that is limited geographically (e.g., a cellular communications tower and the devices authorized to communicate with it), by application, by program, etc. Each DMS records a log of all of its device interactions, for operational accounting and traceability purposes.
  • Global, straightforward traceability to trusted hardware-specific security information is enabled through the VA's static CVS data/part bindings in conjunction with the DMSs' and the PEs' records tracking down to specific transactions with individual devices. (Such records also may be required to enable various applications' security-related functions). Since operational data (ALVS/LVS) can be protected with one-way algorithmic obfuscation (and/or encryption), however, such data cannot be tied directly to any useable CVS element without information that only the VA possesses and controls for secure use as needed.
  • An RDA system may be configured so that DMSs can use the results of authentication checks to authorize, promote, inhibit, or block interactions between specified machines, software modules, hardware modules, systems, and/or users. As one example, a DMS could check the parts in a supply chain each day (e.g., to confirm that they are the same as the day before), and could temporarily shut down or permanently disable part or all of a system if certain types of compromises (e.g., suspected counterfeiting) are detected.
  • An RDA system also may be configured in which devices communicate with each other using real or virtual routers using a communications protocol (e.g., packetized) that utilizes identification based on each device's hardware part-specific data instead of an IP address or the like. For example, devices could be networked through real routers that communicate with, are operationally configured by, and receive real-time authorized device identifications (and preferably also corresponding permitted communications for each device) from DMSs. Or one or more devices could be programmed (individually, or using distributed computing and/or data) to perform such routing functions virtually. In either case, a graphic user interface may be incorporated into DMSs (and/or at another level) to provide for network management including router configuration, policy administration, etc. The DMS preferably would be configured to disable network communication by any devices that may be affected by compromise, automatically in response to specified device interactions or other indications of compromise.
  • Top-Level Firewall, Tailored Middle- and Lower-Level Recovery Processes
  • As discussed above, different types of data sets—CVS, LVS, and ALVS—are used at each vertical level of the system. Whereas the VA is on-demand only, the DMSs (and PEs to the extent a system has synchronized ALVS) control normal operational use of verification data for multiple applications controlled/owned by the system and thus may face greater exposure; it also may be impractical to implement all of the same security measures used by the VA at the levels below. Cementing the distinction between CVS versus LVS/ALVS with the one-way algorithms that are used to derive LVSs from CVS data, however, effectively firewalls the latter from potentially lower assurance levels underneath the VA. (The same distinction also enables security against top-down risk vectors—if the CVS itself were somehow compromised, still the VA would be able to create and distribute new LVSs that are secure in that new algorithms and parameters not known to the VA at the time of compromise would be employed).
  • The distinction between CVS, LVS, and ALVS likewise enables the tailoring of correspondingly distinct ALVS and LVS recovery processes so as to permit the enforcement of vigilant security policies at the level of use without incurring much (or in some cases, any) system-wide overhead. Since DMSs are at the level of use, they and the elements in their data sets are exposed to the most likely and frequent source of direct compromise in the system (namely, the variety of fielded devices with which the DMSs constantly interact). Correspondingly, the ALVS recovery process preferably is straightforward and has little or no collateral impact on PEs (and their respective DMSs) other than the PE in whose domain the recovering DMS exists, and depending on the embodiment preferably may also have little or no collateral impact on the other DMSs in the same domain. Thus, a DMS that needs a new or updated ALVS 112 new (due to loss or compromise of the existing ALVS 112 old, and/or DMS-enforced policy) makes a recover request 115 to the PE (or in the case of peer-to-peer DMSs, possibly to one or more peer DMSs) including information regarding any compromise, and the PA just selects a group of previously-unused elements from its LVS and provides it to the DMS (as shown in FIG. 9 versus FIG. 7) and possibly conveys compromise-related information up to the VA. (The VA preferably processes such information and includes it as appropriate in a blacklist 137 of any compromised underlying CVS elements and/or hardware, and depending on the VA's policies and the specific compromise(s) at issue, pushes a new LVS (or LVSs) down, in response to which the affected PE(s) distribute new ALVSs). Only at the middle level (i.e., PE), where recovery should be needed less frequently, is a somewhat more burdensome recovery process used. If a PE no longer has enough useable elements to construct new ALVSs, it makes a recover request to the VA, which creates and provides the PE a new LVS 111 new to replace the old LVS 111 old (see FIG. 8), and the PE selects and pushes new ALVSs therefrom to the DMSs in its domain.
  • Additional Security Measures
  • Security compromises should not require device-level replacement, because ALVS compromises only affect specific subsets of LVS elements and in any case the CVS is effectively firewalled against LVS data compromises; further, the newly-created information employed in LVS algorithms would ameliorate even the case of direct compromise of a CVS itself. Nevertheless, it may be preferable to layer additional security measures, such as keyed and encrypted communications between all or specified entities, onto the RDA system's inherent security. In the case of communications between DMSs and devices, such additional measures could be enhanced further by sharing with a part a secret value or key that identifies the specific hardware security feature or sub-feature (e.g., the location of PUF sub-circuits) to be used in authenticating that part.
  • Embodiment Utilizing CRP Data
  • Referring to FIGS. 12 and 13, an embodiment of an RDA system can manage devices 170 with hardware parts 140 having PUFs 150. PUFs may be characterized through the cataloguing of numerous challenge response pairs (“CRPs”) upon manufacture or initial programming of an FPGA. (The validation of such PUFs through the use of CRPs is described in U.S. Pat. No. 7,839,278 to Devedas et al. and U.S. Patent Application Publication Nos. 2011/0066670 to Yu, 2011/0033041 to Yu et al., 2010/0272255 to Devedas et al., and 2010/0127822 to Devedas et al., the disclosures in that regard of which are incorporated herein by reference). This cataloguing produces a table of CRPs for each part, which can then be divided into a plurality of smaller tables each of which is stored (along with a binding to the unique identity of the corresponding part) as an element in the CVS database. The VA can be configured to produce an LVS element from such a CRP-based CVS element by obfuscating the response value of each of the element's pairs one-by-one using a suitable one-way algorithm as discussed above (e.g., hashed with parameters and a key), and re-pairing the resulting obfuscated response value with each corresponding non-obfuscated challenge value. The resulting challenge/obfuscated-response pairs for the element then also could be encrypted using suitable known encryption means, either pair-by-pair (and then reassembled along with the element's binding information) or all together (but preferably before joining the binding information). Alternately the initial complete table of CRPs for a part could be stored (along with a binding to the unique identity of the corresponding part) undivided as a single element in the CVS database, and the VA create an LVS element from it by choosing a number of (preferably not all) CRPs from the element's CRP table, one-way obfuscating the response value of each of the chosen pairs one-by-one, re-pairing each resulting obfuscated response value with the corresponding non-obfuscated challenge value, and if desired encrypting pair-by-pair or element-by-element and then joining the binding information. Prior to the foregoing encryption, challenge values additionally might be individually encrypted with an encryption key that is derived (such as with a hashing algorithm) from a base key known only to the VA and the system's devices (preferably by securely embedding or otherwise providing it in them at the time of their fabrication); such a system then also could be partitioned using different base keys that are specific, e.g., to a particular PE's domain's (or even DMS's enclave's) devices.
  • The VA joins the LVS elements it creates for the parts in a particular PE's domain to produce an LVS, and provides it (preferably encrypted) to that PE. The recipient PE then can search the LVS's part-identity binding information (which is preferably stored in the elements unencrypted and/or external to the elements themselves, so as to avoid unnecessarily unencrypting all LVS elements), identify the subset of elements that is relevant to a particular DMS, choose some of those elements with which to construct an ALVS, and provide that to the DMS (preferably via a communication that is encrypted). The recipient DMS then (unencrypting the elements if necessary) can utilize the ALVS's relevant elements to manage various applications' security-related functions that comprise or involve interaction with one or more devices 170 (e.g., via an input/output 175 the device is provided with). While the ALVS elements contain useable PUF challenge data, however, the valid response data for the corresponding responses is obfuscated in a manner (i.e., one-way) such that it is unknowable to the DMS. Consequently, the DMS can only verify a device in the field responding to its challenge if the response matches the obfuscated one known to the DMS. This can be accomplished by including in each device 170 (or alternately as shown in FIG. 13, in every part 140) a memory 180 in which is loaded the specific algorithm and parameter information (e.g., specific hash function, and other inputs) that was used by the VA to create the elements pertaining to that device (or part, in the embodiment of FIG. 13) in the responsible PE's current LVS, and a controller 190 capable of performing the same algorithmic transformation (using the information in the memory) on responses generated by the PUF 150.
  • The algorithm and parameter information stored in each memory 180 preferably may be conveyed there from the VA in a special element, which, upon the issuance or updating of an LVS, the recipient PE distributes to each DMS in its domain, which in turn convey the special elements on to each device they manage. In such case, each LVS is associated with as many special elements as there are devices in the recipient PE's domain, and the special elements preferably are sent alongside the corresponding LVS but not stored in the PE's or DMSs's memories. To minimize the risk associated with the compromise of any given device, the VA preferably employs a different algorithm and/or parameters for each CRP pair, or at least for each CRP-based LVS element, and the corresponding collection of algorithm and parameter information for each LVS element bound to parts in a given device (or in the embodiment of FIG. 13, bound to a given part) is contained in each special element. Each special element preferably may be encrypted with a specific key derived from (e.g., with a hash) a specific individual key known only to the VA and the particular respective device (or part) in which it is embedded or otherwise provided at the time of manufacture. The system in that case also could be configured to allow re-keying of specific keys via communication from the VA to pertinent devices through the PE/DMS without exposing specific key-related information to the PE's and DMS's that can be used by them—for example by the VA transmitting a challenge value (preferably one not included in any LVS) and causing each device (or part) receiving it to transform (e.g., hash) its ensuing response using its individual key, and thenceforth employ the resulting value as its new specific key.
  • Embodiment Utilizing Hardware Security Modules
  • Rather than using a one-way algorithmic transformation to protect CVS data from exposure at the PE and DMS levels, an embodiment of an RDA system otherwise as described above could be configured to provide CVS subset data to PEs (and PEs subsets thereof to DMSs) without one-way transformation, but governed by hardware security modules (“HSMs”) incorporated into each PE and DMS (and possibly VAs, depending on the architecture). In a PUF-based embodiment utilizing device characterization models for example, the HSMs (e.g., Thales e-Security Inc.'s model nC3023E-500 (nShield F2 PCI Express)) could permit only a selected portion or portions of a given device's characterization model to be useable by PEs and DMSs in which the model is stored. HSMs also could be used as an additional measure to protect one-way transformed LVS and ALVS data.
  • One skilled in the art will appreciate that other variations, modifications, and applications are also within the scope of the present invention. Thus, the foregoing detailed description is not intended to limit the invention in any way, which is limited only by the following claims and their legal equivalents.

Claims (45)

What is claimed is:
1. A resilient device authentication system, comprising:
a. one or more verification authorities (“VAs”) including a VA memory loaded with a complete verification set (“loaded CVS”) that includes hardware part-specific data, and configured to create a limited verification set (“LVS”) from said loaded CVS;
b. one or more provisioning entities (“PEs”) each connectable to at least one of said one or more VAs, including a PE memory loaded with a LVS (“loaded LVS”), and configured to select a subset of data from said loaded LVS so as to create an application limited verification set (“ALVS”); and
c. one or more device management systems (“DMSs”) connectable to at least one of said one or more PEs, each DMS including a DMS memory loaded with an ALVS (“loaded ALVS”), and configured to manage one or more device security-related applications through the performance of security-related functions on devices associated with hardware part-specific data in said loaded CVS.
2. The system of claim 1, wherein all device security-related applications managed by the system utilize said hardware part-specific data in said loaded CVS.
3. The system of claim 1, wherein each of said one or more VAs is configured to perform a one-way algorithmic transformation of hardware specific data in said loaded CVS.
4. The system of claim 1, wherein each of said one or more PEs includes a hardware security module configured to limit PE access to LVS data.
5. The system of claim 4, wherein each of said one or more DMSs includes a hardware security module configured to limit DMS access to ALVS data.
6. The system of claim 1, wherein said one or more device security-related applications include supply chain risk management.
7. The system of claim 1, wherein said one or more device security-related applications include device authentication.
8. The system of claim 1, wherein said one or more device security-related applications include governing networked communications among devices associated with hardware part-specific data in said loaded CVS.
9. The system of claim 8, wherein said networked communications employ a communications protocol in which addresses are based on devices' hardware part-specific data.
10. The system of claim 9, wherein said networked communications utilize real or virtual routers.
11. The system of claim 1, wherein said one or more VAs consists of a single VA.
12. The system of claim 1, wherein said one or more VAs consists of a federated group of VAs.
13. The system of claim 1, wherein said one or more VAs consists of a siloed group of VAs.
14. The system of claim 1, wherein each of said one or more PEs is configured to receive an LVS from a single VA.
15. The system of claim 1, wherein said one or more PEs includes a peer network configured to share information contained in an LVS.
16. The system of claim 15, wherein said peer network is configured so that PEs therein are permitted to share information contained in an LVS with a peer seeking to join the network based on a peer-to-peer establishment of trust.
17. The system of claim 1, wherein each of said one or more DMSs is configured to store in its DMS memory a record of device interactions.
18. The system of claim 17, wherein said record of device interactions is structured in a format useable by each of said one or more device security-related applications.
19. The system of claim 18, wherein said one or more device security-related applications include supply chain risk management.
20. The system of claim 17, wherein each of said one or more PEs is configured to store in its PE memory an ALVS record containing the content of each ALVS provided by the PE to DMSs and including identification of the recipient DMSs.
21. The system of claim 20, wherein each of said one or more VAs is configured to store in its VA memory an LVS record containing the content of each LVS provided by the VA to PEs and identification of the recipient PEs.
22. The system of claim 21, wherein each of said one or more VAs is configured to perform a one-way algorithmic transformation of hardware specific data in said loaded CVS, and wherein each LVS record further includes or is associated with an algorithm record stored in said VA memory identifying the algorithm and parameters used in the creation of LVSs it has created.
23. The system of claim 22, wherein said one or more VAs are configured to, in response to an authorized entity's request for tracing, provide part of its CVS record, LVS record, and algorithm record to the authorized entity.
24. The system of claim 23, wherein said DMS is further configured to, in response to an authorized entity's request for tracing, provide part of its ALVS record to the authorized entity.
25. The system of claim 1, wherein said one or more VAs are configured to create a replacement LVS.
26. The system of claim 25, wherein said one or more PEs are configured to convey information regarding any device-level security compromise to a VA, and said VA is configured to utilize said information in a blacklist of CVS elements.
27. The system of claim 1, wherein said one or more PEs are configured to construct a replacement ALVS.
28. The system of claim 27, said one or more VAs are configured to create a replacement LVS.
29. The system of claim 27, wherein said one or more PEs are configured to exclude, from said replacement ALVS, data that was included in a loaded ALVS.
30. The system of claim 29, wherein said one or more PEs are configured to construct said replacement ALVS without employing a one-way algorithmic transformation.
31. The system of claim 3, wherein said one or more VAs are configured to create a replacement LVS by performing a different one-way algorithmic transformation of hardware specific data in said loaded CVS than the one-way algorithmic transformation that was used to create the loaded LVS.
32. The system of claim 1, wherein said loaded CVS includes challenge-response pairs.
33. The system of claim 3, wherein said loaded CVS includes challenge-response pairs.
34. The system of claim 33, wherein said loaded LVS includes elements that each comprise a collection of unobfuscated challenge value/obfuscated response value pairings, and wherein each said element is bound to a unique identity of a hardware part having a physically-unclonable function (“PUF”).
35. The system of claim 34, wherein each of said elements is encrypted.
36. The system of claim 34, wherein each hardware part further includes a memory loaded with a record of algorithms and parameters used in the creation of data contained in said loaded LVS.
37. The system of claim 36, wherein each hardware part further includes a controller configured to process data received from the hardware part's PUF using information contained in said record of algorithms and parameters.
38. The system of claim 37, wherein each hardware part further includes a memory loaded with a key that is shared with a VA but is not shared with any DMS.
39. A method of providing resilient device authentication, comprising:
a. establishing one or more verification authorities (“VAs”) each having a VA memory;
b. loading one or more VA memories with a complete verification set (“loaded CVS”) that includes hardware part-specific data;
c. creating one or more limited verification sets (“LVSs”) from said loaded CVS;
d. establishing one or more provisioning entities (“PEs”) each connectable to at least one of said one or more VAs, and each having a PE memory;
e. loading each PE memory with a LVS (“loaded LVS”);
f. selecting a subset of data from said loaded LVS so as to create an application limited verification set (“ALVS”);
g. establishing one or more device management systems (“DMSs”) connectable to at least one of said one or more PEs, each DMS including a DMS memory;
h. loading each DMS memory with an ALVS (“loaded ALVS”); and
i. causing one or more DMSs to manage one or more device security-related applications through the performance of security-related functions on devices associated with hardware part-specific data in said loaded CVS.
40. The method of claim 39, wherein step c. is performed by one or more VAs utilizing a one-way algorithmic transformation of hardware specific data in said loaded CVS.
41. The method of claim 39, further comprising the steps of connecting a PE to a VA, and conveying an LVS from the VA to the PE.
42. The method of claim 41, further comprising the step of a VA storing a LVS record containing the content of each LVS provided by it to PEs and an identification of the recipient PEs.
43. The method of claim 39, further comprising the steps of connecting a DMS to a PE, and conveying an ALVS from the PE to the DMS.
44. The method of claim 43, further comprising the step of a PE storing an ALVS record containing the content of each ALVS provided by it to DMSs and an identification of the recipient DMSs.
45. The method of claim 39, wherein step i. further includes said one or more DMSs storing a record of device interactions.
US13/552,592 2012-02-12 2012-07-18 Resilient Device Authentication System Abandoned US20130212642A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US201261597819P true 2012-02-12 2012-02-12
US13/552,592 US20130212642A1 (en) 2012-02-12 2012-07-18 Resilient Device Authentication System

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US13/552,592 US20130212642A1 (en) 2012-02-12 2012-07-18 Resilient Device Authentication System
US13/829,826 US9258129B2 (en) 2012-07-18 2013-03-14 Resilient device authentication system
US13/947,071 US9154310B1 (en) 2012-02-12 2013-07-21 Resilient device authentication system
US14/214,846 US8844009B2 (en) 2012-07-18 2014-03-15 Resilient device authentication system
US15/018,451 US9996480B2 (en) 2012-07-18 2016-02-08 Resilient device authentication system with metadata binding

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2015/045467 Continuation-In-Part WO2016025940A1 (en) 2014-08-15 2015-08-17 Resilient device authentication system with metadata binding

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/829,826 Continuation-In-Part US9258129B2 (en) 2012-02-12 2013-03-14 Resilient device authentication system
US13/947,071 Continuation US9154310B1 (en) 2012-02-12 2013-07-21 Resilient device authentication system

Publications (1)

Publication Number Publication Date
US20130212642A1 true US20130212642A1 (en) 2013-08-15

Family

ID=48946771

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/552,592 Abandoned US20130212642A1 (en) 2012-02-12 2012-07-18 Resilient Device Authentication System
US13/947,071 Active 2032-09-08 US9154310B1 (en) 2012-02-12 2013-07-21 Resilient device authentication system

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/947,071 Active 2032-09-08 US9154310B1 (en) 2012-02-12 2013-07-21 Resilient device authentication system

Country Status (1)

Country Link
US (2) US20130212642A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140143552A1 (en) * 2012-11-18 2014-05-22 Cisco Technology Inc. Glitch Resistant Device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9996480B2 (en) 2012-07-18 2018-06-12 Analog Devices, Inc. Resilient device authentication system with metadata binding
US9537663B2 (en) * 2012-06-20 2017-01-03 Alcatel Lucent Manipulation and restoration of authentication challenge parameters in network authentication procedures
US20180102908A1 (en) * 2016-10-11 2018-04-12 Tyfone, Inc. Fine grain reconfigurable building block for ic protection and obfuscation

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6070243A (en) * 1997-06-13 2000-05-30 Xylan Corporation Deterministic user authentication service for communication network
US7840803B2 (en) * 2002-04-16 2010-11-23 Massachusetts Institute Of Technology Authentication of integrated circuits
WO2005029275A2 (en) 2003-09-19 2005-03-31 Thomson Global Resources Ag Leveraging informational assets across multiple business units
US20050149496A1 (en) 2003-12-22 2005-07-07 Verity, Inc. System and method for dynamic context-sensitive federated search of multiple information repositories
US7581248B2 (en) 2004-06-28 2009-08-25 International Business Machines Corporation Federated identity brokering
EP1842203A4 (en) 2004-11-12 2011-03-23 Verayo Inc Volatile device keys and applications thereof
US8856533B2 (en) * 2005-09-14 2014-10-07 Koninklijke Philips N.V. Device, system and method for determining authenticity of an item
US7926089B2 (en) 2006-07-14 2011-04-12 Hewlett-Packard Development Company, L.P. Router for managing trust relationships
US20080256549A1 (en) 2007-04-10 2008-10-16 International Business Machines Corporation System and Method of Planning for Cooperative Information Processing
US8463813B2 (en) 2007-04-12 2013-06-11 Younite, Inc. Individualized data sharing
US20110002461A1 (en) * 2007-05-11 2011-01-06 Validity Sensors, Inc. Method and System for Electronically Securing an Electronic Biometric Device Using Physically Unclonable Functions
EP2191410B1 (en) * 2007-08-22 2014-10-08 Intrinsic ID B.V. Identification of devices using physically unclonable functions
WO2009079050A2 (en) * 2007-09-19 2009-06-25 Verayo, Inc. Authentication with physical unclonable functions
US7962516B2 (en) 2008-02-05 2011-06-14 International Business Machines Corporation System and method for adding multi-level security to federated asset repositories
US8683210B2 (en) * 2008-11-21 2014-03-25 Verayo, Inc. Non-networked RFID-PUF authentication
WO2010100015A1 (en) * 2009-03-06 2010-09-10 Intrinsic Id B.V. System for establishing a cryptographic key depending on a physical system
JP5423088B2 (en) * 2009-03-25 2014-02-19 ソニー株式会社 Integrated circuits, encrypted communication device, encrypted communication system, an information processing method, and the encryption communication method
US8379856B2 (en) 2009-06-17 2013-02-19 Empire Technology Development Llc Hardware based cryptography
US8468186B2 (en) * 2009-08-05 2013-06-18 Verayo, Inc. Combination of values from a pseudo-random source
US8811615B2 (en) 2009-08-05 2014-08-19 Verayo, Inc. Index-based coding with a pseudo-random source
US8458489B2 (en) 2010-03-25 2013-06-04 Empire Technology Development Llc Differential uncloneable variability-based cryptography
US20110299678A1 (en) 2010-06-07 2011-12-08 Alexander Roger Deas Secure means for generating a specific key from unrelated parameters
US8516269B1 (en) * 2010-07-28 2013-08-20 Sandia Corporation Hardware device to physical structure binding and authentication
US8667265B1 (en) * 2010-07-28 2014-03-04 Sandia Corporation Hardware device binding and mutual authentication
US8694778B2 (en) * 2010-11-19 2014-04-08 Nxp B.V. Enrollment of physically unclonable functions
US20120183135A1 (en) * 2011-01-19 2012-07-19 Verayo, Inc. Reliable puf value generation by pattern matching
US8850608B2 (en) * 2011-03-07 2014-09-30 University Of Connecticut Embedded ring oscillator network for integrated circuit security and threat detection
WO2012122994A1 (en) * 2011-03-11 2012-09-20 Kreft Heinz Off-line transfer of electronic tokens between peer-devices
CA2830110C (en) * 2011-03-15 2018-06-26 Irdeto B.V. Change-tolerant method for generating identifier for collection of assets in computing environment using error-correction code scheme
EP2680485B1 (en) * 2011-06-02 2016-04-06 Mitsubishi Electric Corporation Key information generation device and key information generation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140143552A1 (en) * 2012-11-18 2014-05-22 Cisco Technology Inc. Glitch Resistant Device
US9158901B2 (en) * 2012-11-18 2015-10-13 Cisco Technology Inc. Glitch resistant device

Also Published As

Publication number Publication date
US9154310B1 (en) 2015-10-06

Similar Documents

Publication Publication Date Title
KR101260188B1 (en) Assigned security node identifiers in a distributed hash table of the peer-to-peer network,
CN102685148B (en) Implementation of the safety net system tray under a cloud storage environment
US8281135B2 (en) Enforcing use of chipset key management services for encrypted storage devices
US20080263363A1 (en) Portable Data Encryption Device with Configurable Security Functionality and Method for File Encryption
US10097536B2 (en) Space-time separated and jointly evolving relationship-based network access and data protection system
US7886355B2 (en) Subsidy lock enabled handset device with asymmetric verification unlocking control and method thereof
US20060083228A1 (en) One time passcode system
US9774452B2 (en) System and method for enabling unconfigured devices to join an autonomic network in a secure manner
US9867043B2 (en) Secure device service enrollment
Todorov Mechanics of user identification and authentication: Fundamentals of identity management
JP5314016B2 (en) The information processing apparatus, management method of the encryption key, the computer program and an integrated circuit
US7992193B2 (en) Method and apparatus to secure AAA protocol messages
US20080010452A1 (en) Content Control System Using Certificate Revocation Lists
US8196186B2 (en) Security architecture for peer-to-peer storage system
RU2501081C2 (en) Multi-factor content protection
US20080010450A1 (en) Content Control Method Using Certificate Chains
US20190089527A1 (en) System and method of enforcing a computer policy
US20080034440A1 (en) Content Control System Using Versatile Control Structure
US20060282681A1 (en) Cryptographic configuration control
US8856530B2 (en) Data storage incorporating cryptographically enhanced data protection
US20080010685A1 (en) Content Control Method Using Versatile Control Structure
CN1939028B (en) Protection from the plurality of data storage devices to access the network
US20140109179A1 (en) Multiple server access management
US9547771B2 (en) Policy enforcement with associated data
KR20160010600A (en) Validating the identity of a mobile application for mobile application management

Legal Events

Date Code Title Description
AS Assignment

Owner name: SYPRIS ELECTRONICS, LLC, FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WALSH, JOHN J.;DUREN, MICHAEL J.;ALDRIDGE, HAL A.;REEL/FRAME:028624/0252

Effective date: 20120723

AS Assignment

Owner name: SYPRIS ELECTRONICS, LLC, FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WALSH, JOHN J.;DUREN, MICHAEL J.;ALDRIDGE, HAL A.;REEL/FRAME:032462/0545

Effective date: 20120723

AS Assignment

Owner name: ANALOG DEVICES, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SYPRIS ELECTRONICS, LLC;REEL/FRAME:041079/0878

Effective date: 20160816