US20130204613A1 - Large-scale sentiment analysis - Google Patents

Large-scale sentiment analysis Download PDF

Info

Publication number
US20130204613A1
US20130204613A1 US13/832,584 US201313832584A US2013204613A1 US 20130204613 A1 US20130204613 A1 US 20130204613A1 US 201313832584 A US201313832584 A US 201313832584A US 2013204613 A1 US2013204613 A1 US 2013204613A1
Authority
US
United States
Prior art keywords
sentiment
entity
texts
statistical
lexicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/832,584
Inventor
Namrata Godbole
Steven Skiena
Manjunath Srinivasaiah
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Foundation of State University of New York
Original Assignee
Research Foundation of State University of New York
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Foundation of State University of New York filed Critical Research Foundation of State University of New York
Priority to US13/832,584 priority Critical patent/US20130204613A1/en
Publication of US20130204613A1 publication Critical patent/US20130204613A1/en
Assigned to NATIONAL SCIENCE FOUNDATION reassignment NATIONAL SCIENCE FOUNDATION CONFIRMATORY LICENSE (SEE DOCUMENT FOR DETAILS). Assignors: STATE UNIVERSITY OF NEW YORK, STONY BROOK
Abandoned legal-status Critical Current

Links

Images

Classifications

    • G06F17/21
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/10Text processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/30Semantic analysis
    • G06F40/35Discourse or dialogue representation

Definitions

  • the present invention relates generally to data mining and, more particularly, to a system and method for sentiment analysis.
  • Sentiment analysis of natural language texts is a large and growing field.
  • the analysis includes both methods for automatically generate sentiment lexicons and analyzing sentiment for entire documents.
  • Some methods for generating sentiment lexicons assume positive and negative sentiment using synonyms and antonyms. Such methods may not accurately capture the sentiment of a word. Other methods for generating sentiment lexicons using semantics, such as “and” and “but”, or tone/orientation to determine a sentiment of a word. Such methods may have low accuracy.
  • Methods for analyzing sentiment treat only single complete documents, for example, to determine if a movie review is good or bad or quantify opinion from a product review.
  • a method for determining a sentiment associated with an entity includes inputting a plurality of texts associated with the entity, labeling seed words in the plurality of texts as positive or negative, determining a score estimate for the plurality of words based on the labeling, re-enumerating paths of the plurality of words and determining a number of sentiment alternations, determining a final score for the plurality of words using only paths whose number of alternations is within a threshold, converting the final scores to corresponding z-scores for each of the plurality of words, and outputting the sentiment associated with the entity.
  • a method for determining a statistical sentiment associated with an entity includes inputting a plurality of texts associated with the entity, formatting the plurality of texts, processing the plurality of texts using a sentiment lexicon, determining a statistical sentiment for the plurality of texts processed using the sentiment lexicon, and outputting the statistical sentiment associated with the entity.
  • FIG. 1 is a flow chart of a method for forming a sentiment analysis system according to an embodiment of the present disclosure
  • FIG. 2 is a flow chart of a method for constructing a sentiment dictionary according to an embodiment of the present disclosure
  • FIG. 3 is a flow chart of a method for applying a sentiment dictionary for determining a sentiment index according to an embodiment of the present disclosure
  • FIG. 4 is a flow chart of a method for processing input text according to an embodiment of the present disclosure
  • FIG. 5 is a graph for President George W. Bush: poll ratings vs. news sentiment scores according to an embodiment of the present disclosure
  • FIG. 6 is a graph of the collapse of Enron, captured by a news sentiment index according to an embodiment of the present disclosure
  • FIG. 7 is a graph of sentiment ratings for American Idol champion Taylor Hicks according to an embodiment of the present disclosure.
  • FIG. 8 illustrates four ways to get from bad to good in three hops
  • FIGS. 9A-B show sentiment scores correlations for frequency-based segregation of baseball teams
  • FIGS. 10A-B show correlations between Dow Jones Index and world sentiment on a daily (l) and monthly (r) basis according to an embodiment of the present disclosure
  • FIG. 11 shows calendar effects on our world sentiment index according to an embodiment of the present disclosure.
  • FIG. 12 depicts a computer system for implementing a sentiment analysis system according to an embodiment of the present disclosure.
  • a system and method assign scores indicating positive or negative opinion to each distinct entity in an input text corpus.
  • the system and method comprise sentiment identification, which associates expressed opinions with each relevant entity, and sentiment aggregation and scoring, which scores each entity relative to others in the same class.
  • an exemplary large-scale sentiment analysis system for news and blog entities has been built on top of the Lydia text analysis system.
  • public sentiment on each of a plurality of tracked entities is determined over time.
  • the sentiment may be monitored and aggregated over partial references in many documents.
  • other text analysis systems may be implemented, and that embodiments of the present disclosure are not limited to Lydia text analysis.
  • the text analysis system retrieves daily newspapers and analyzes a resulting stream of text.
  • the text analysis system is implemented to perform spidering and article classification, named entity recognition, juxtaposition analysis, synonym set identification, and temporal and spatial analysis.
  • named entity recognition includes Identifying where entities (people, places, companies, etc.) are mentioned in newspaper articles.
  • juxtaposition analysis identifies, for each entity, what other entities occur near it in an overrepresented way.
  • synonym set identification is implemented for using multiple variations of an entity's name.
  • temporal and spatial analysis establishes local biases in the news by analyzing the relative frequency given entities are mentioned in different news sources.
  • text is acquired from online newspaper sources by spidering the websites.
  • a spider program attempts to crawl an entire web domain, and download all the web-pages.
  • a universal spider is implemented that downloads all the pages from a newspaper website, extracts all new articles, and normalizes them to remove source-specific formatting and artifacts.
  • the method seeks to eliminate duplicate articles before subsequent processing.
  • Duplicate articles appear both as the result of syndication and the fact that old articles are often left on a website and get repeatedly spidered.
  • the index size can be substantially reduced by a factor of p with little loss of detection accuracy by only keeping the codes which are congruent to 0 mod p. This will result in a different number of codes for different documents, however. Little loss of detection will happen the c smallest codes congruent to 0 mod p are selected for each article.
  • the Karp-Rabin string matching algorithm proposes an incremental hash code such that all codes can be computed in linear time.
  • Exemplary results of the sentiment analysis correlate with historical events. For example, consider FIG. 5 and the popularity of U.S. President George W. Bush—Gallup/USA Today conducts a weekly opinion poll of about 1,000 Americans to determine public approval of their President.
  • FIG. 5 illustrates a positive correlation (coefficient 0.372) between a sentiment index and the approval ratings for President Bush. Deviations coincide with the U.S. invasion of Iraq and the run-up to the 2004 Presidential elections.
  • the television show American Idol was tracked—the singing champion of the popular American television show American Idol is decided by a poll of the viewing public. It has been reasoned that bloggers' sentiments about contestants should reflect the views of the public at large.
  • FIG. 7 presents a sentiment analysis for the eventual winner (Taylor Hicks (during the May 24, 2006 climax of the tournament. According to the index, bloggers admire him better with every passing week. Come the final round, Hicks generates more positive sentiment than runner-up Katharine McPhee, indicating that it may have been possible to predict the winner.
  • a sentiment analysis system implements an algorithmic construction of sentiment dictionaries 101 and a sentiment index formulation 102 (see FIG. 1 ).
  • the sentiment index relies on tracking reference frequencies to adjectives with positive and negative connotations 201 .
  • the method expands small candidate seed lists of positive and negative words into full sentiment lexicons using path-based analysis of synonym and antonym sets 205 / 206 , for example, in WordNet.
  • Sentiment-alternation hop counts are used to determine the polarity strength of the candidate terms and eliminate the ambiguous terms.
  • a method according to an embodiment of the present disclosure uses juxtaposition of sentiment terms and entities and a frequency-weighted interpolation with world happiness levels to score entity sentiment.
  • an entity may be a person, place, or thing.
  • an entity may be a document, a group of entities, a relationship between entities, etc.
  • the entity being described by the statistical sentiment is a group of entities, a relationship between entities, etc., for clarity, the group or relationship may be described as being of or between component entities.
  • sentiment analysis depends on the ability to identify the sentimental adjectives in a corpus and their orientation.
  • Separate lexicons may be defined for each of a plurality of sentiment dimensions (e.g., general, health, crime, sports, business, politics, media, facts, opinions). Enlarging the number of sentiment lexicons permits greater focus in analyzing particular phenomena, but potentially at a substantial cost in human curation. To avoid this, the method expands small dimension sets of seed sentiment words into full lexicons.
  • exemplary embodiments of the present disclosure do not distinguish between opinion and fact as both contribute to public sentiment. However, given the module design of the lexicons, sentiment related to opinion and fact may be separated.
  • lexicon expansion uses path analysis. Expanding seed lists into lexicons by recursively querying for synonyms using a computer dictionary, e.g., WordNet, is limited by the synonym set coherence weakening with distance. For example, FIG. 8 shows four separate ways to get from good to bad using chains of WordNet synonyms.
  • the sentiment word generation method 101 expands a set of seed words using synonym and antonym queries.
  • the method associates a polarity (positive or negative) to each word 201 and queries both the synonyms and antonyms 202 .
  • Synonyms inherit the polarity from the parent, whereas antonyms get the opposite polarity.
  • the significance of a path decreases as a function of its length or depth from a seed word.
  • the final score of each word is the summation of the scores received over all paths 205. Paths which alternate between positive and negative terms are likely spurious and may be limited 206 .
  • a method for determining a sentiment lexicon 101 runs in more than one iteration.
  • a first iteration calculates a preliminary score estimate for each word as described above 203 .
  • a second iteration re-enumerates the paths while calculating the number of apparent sentiment alternations, or flips 204 . The fewer flips, the more trustworthy the path is.
  • a final score is determined taking into account only those paths whose flip value is within a threshold 205 (e.g., a user defined threshold).
  • WordNet orders the synonyms/antonyms by sense, with the more common senses listed first. Accuracy is improved by limiting the notion of synonym/antonym to only the top senses returned for a given word 206 .
  • the method for determining a sentiment lexicon 101 more than 18,000 words were generated as being within five hops from an exemplary set of seed words. Since the assigned scores followed a normal distribution, they may be converted to z-scores 207 . Words lying in the middle of this distribution are considered ambiguous, meaning they cannot be consistently classified as positive or negative. Ambiguous words may be discarded by, for example, taking only a percentage of words from either extremes of the curve 208 . The result is a sentiment lexicon for a given person, place or thing.
  • Table 1 presents the composition of algorithmically-generated and curated sentiment dictionaries for each class of adjectives.
  • the sentiment lexicon generation has been evaluated in two different ways. The first in an un-test. The prefixes un- and im- generally negate the sentiment of a term. Thus the terms of form X and unX should appear on different ends of the sentiment spectrum, such as competent and incompetent. Results show that precision increases at the expense of recall as (1) the number of path sentiment alternations are restricted and (2) by pruning increasing fractions of less polar terms.
  • the sentiment lexicons has been compared against those obtained by Wiebe, as reported in Table 2. There is a high degree of agreement between the algorithmically-generated lexicon according to an embodiment of the present disclosure and the manually curated lexicons.
  • the negative lexicon PolMauto contained such clearly positive words like bullish, agile, and compassionate, while the positive lexicon PolPman contained words like strenuous, uneventful, and adamant.
  • input texts such as news articles, blogs, etc.
  • input texts are prepared into canonical format for sentiment analysis 301 .
  • the input texts are processed 302 and for each entity in a database, a statistical sentiment is determined 303 . Further, given the statistical sentiment, a sentiment index is determined based on a rank of the statistical sentiment 304 .
  • a sentiment lexicon (e.g., as determined according to FIG. 2 ) is used to mark up the sentiment words and associated entities in the corpus 302 . This includes identifying a position of an entity in the input texts 401 and identifying a position of the sentiment lexicon terms in the input texts 402 .
  • a sentiment analyzer e.g., implemented in hardware or software (see for example, FIG. 12 ), reverses the polarity of a sentiment lexicon term is whenever it is preceded by a negation.
  • the sentiment analyzer ignores articles that are detected as being a duplicate of another. This substantially prevents articles from news syndicates from having a larger impact on the sentiment than other articles. Since the system processes vast quantities of text on a daily basis, speed considerations limit careful parsing. Instead, the co-occurrence of an entity and a sentiment word in the same sentence to mean that the sentiment is associated with that entity may be used. This is not always accurate, particularly in complex sentences. Still the volume of text processed enables the generation of accurate sentiment scores.
  • Entity references under different names are aggregated, either manually or automatically. Because techniques are employed for pronoun resolution, more entity/sentiment co-occurrences can be identified than occur in raw news text. Further, Lydia's system for identifying co-reference sets associates alternate references such as George W. Bush and George Bush under the single synonym set header George W. Bush. This consolidates sentiment pertaining to a single entity.
  • the raw sentiment scores are used to track trends over time, for example, polarity 403 and subjectivity 404 .
  • Polarity 403 determines if the sentiment associated with the entity is positive or negative.
  • Subjectivity 404 determines how much sentiment (of any polarity) the entity garners.
  • Subjectivity 404 indicates proportion of sentiment to frequency of occurrence, while polarity 403 indicates percentage of positive sentiment references among total sentiment references.
  • polarity 403 world polarity is evaluated using sentiment data for all entities for the entire time period:
  • Entity polarity i is evaluated using sentiment data for that day (day i) only:
  • entity_polarity i positive_sentiment ⁇ _references i total_sentiment ⁇ _references i
  • Index stability requires that excessive swings in the event of limited sentiment data be avoided.
  • the polarity score of an entity without sentiment references is defined as 50th percentile. Entities with positive sentiment scores (e.g., the majority) are assigned percentiles in the range ( 50 , 1001 , with negative entities assigned scores in the range [0, 50). Hence the most positive entity for the day will have a score of 100 and the most negative one a score of 0.
  • Table 3 shows the correlation coefficient between the various sentiment indices. Typically, pairs of indices are positively correlated but not very strongly. This is good, as it shows each subindex measures different things.
  • the general index is the union of all the indices and hence is positively correlated with each individual index.
  • the subjectivity time series reflects the amount of sentiment an entity is associated with, regardless of whether the sentiment is positive or negative. Reading all news text over a period of time and counting sentiment in it gives a measure of the average subjectivity levels of the world. World subjectivity is evaluated using sentiment data for all entities for the entire time period:
  • Entity subjectivity i is evaluated using sentiment data for that day (day i) only:
  • entity_subjectivity i total_sentiment ⁇ _references i total_references i
  • these normalized subjectivity scores are interpolated and mapped to percentiles.
  • Fluctuations in daily reference frequency for a particular entity can result in over-aggressive spikes/dips in reputation.
  • smoothing techniques may be implemented. For example, time-weighted averaging or frequency-weighted averaging may be used.
  • the decay parameter determines how quickly a change in entity sentiment is reflected in the time series. This method sometimes results in inaccurate polarity scores, because it accords excessive importance to days of low news volume.
  • Weighting by frequency substantially ensures that the resultant score is most influenced by scores on important days, and worked better for us than time-weighted sentiment averaging.
  • Clarence Ray Allen was prominent and negative in the news prior to his January 2006 execution, but has (understandably) contributed little since then. Still, his current reputation has drifted towards our median score on the basis of his relatively few sentiment-free references since then.
  • a score is determined for every entity in substantially the same manner as polarity scores, except by aggregating all entity sentiment data over the entire period of time (versus day-to-day totals).
  • Table 4 lists the people that are the most positive in news-papers and blogs, respectively. American investor Warren
  • Table 5 lists the most negative people appearing in news-papers and blogs.
  • International criminals like Slobodan Milosevic and Zacarias Moussaoui are regarded losers in both blogs and newspapers.
  • Certain controversial American political figures like Harriet Miers and Al Sharpton are regarded negatively in news-papers, but not in blogs while others like Charles Schumer and Edward Kennedy are thought of negatively only by bloggers.
  • the state of a sports team is expected to be higher after a win than a loss.
  • the outcomes of every Major League Baseball game played between July 2005 to May 2006 were collected.
  • a performance time-series was generated for each of the thirty teams by representing each win by 1 and each loss by 0.
  • performance time-series can be correlated with the polarity and subjectivity scores with different lead/lag time intervals to study the impact of performance on sentiment.
  • Results are reported in FIGS. 9A-B , showing a significant spike in sentiment correlation with a lag of +1 day, which reflects when newspapers report the match results. Sentimental impact of each game has a substantial half-life, hanging on for more than a week before disappearing. No corresponding spike in correlation was determined with subjectivity scores. This is as it should be, since newspapers comment on team performance irrespective of whether the team wins or loses the match.
  • stock indexes and world sentiment index are tracked.
  • Daily time series of the relative occurrences of positive and negative words in news text yielded a measure of the “happiness” of the world. It can be reasoned that world sentiment is closely related to the state of the economy, which is reflected generally by the stock market.
  • the global index is correlated to the Dow Jones Index stock index.
  • FIG. 10A shows the similarity these indices on a daily bases from March 2005 to May 2006. The indices show a correlation coefficient of +0.41 with a time lag of 1 day, as expected given reportage delays.
  • FIG. 108 shows correlation of the stock and happiness indices on a monthly basis, over the five-year period before this window, scoring a correlation of +0.33.
  • seasons and world sentiment index are tracked.
  • a plot of the world sentiment index against the seasons of the year, shown in FIG. 11 shows that the volatility in world sentiment is substantially reduced during the summer months, as most of the industrial world takes its summer vacations. There also seem to be other periodic seasonal flows in sentiment. Interestingly, the lowest time point on the graph is not the period of the World Trade Center attack (September 2001) but rather April 2004, reflecting the Madrid train bombings, the start of insurgency in Iraq, and the breaking of the Abu Ghraib prison story.
  • the present invention may be implemented in various forms of hardware, software, firmware, special purpose processors, or a combination thereof.
  • the present invention may be implemented in software as an application program tangibly embodied on a program storage device.
  • the application program may be uploaded to, and executed by, a machine comprising any suitable architecture.
  • a computer system 1201 for sentiment analysis can comprise, inter alia, a central processing unit (CPU) 1202 , a memory 1203 and an input/output (I/O) interface 1204 .
  • the computer system 1201 is generally coupled through the I/O interface 1204 to a display 1205 and various input devices 1206 such as a mouse and keyboard.
  • the support circuits can include circuits such as cache, power supplies, clock circuits, and a communications bus.
  • the memory 1203 can include random access memory (RAM), read only memory (ROM), disk drive, tape drive, or a combination thereof.
  • the present invention can be implemented as a routine 1207 that is stored in memory 1203 and executed by the CPU 1202 to process the signal from the signal source 1208 .
  • the computer system 1201 is a general-purpose computer system that becomes a specific-purpose computer system when executing the routine 1207 of the present invention.
  • the computer platform 1201 also includes an operating system and micro instruction code.
  • the various processes and functions described herein may either be part of the micro instruction code, or part of the application program (or a combination thereof) which is executed via the operating system.
  • various other peripheral devices may be connected to the computer platform such as an additional data storage device and a printing device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Computational Linguistics (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

A method for determining a sentiment associated with an entity includes inputting a plurality of texts associated with the entity, labeling seed words in the plurality of texts as positive or negative, determining a score estimate for the plurality of words based on the labeling, re-enumerating paths of the plurality of words and determining a number of sentiment alternations, determining a final score for the plurality of words using only paths whose number of alternations is within a threshold, converting the final scores to corresponding z-scores for each of the plurality of words, and outputting the sentiment associated with the entity.

Description

    BACKGROUND OF THE INVENTION
  • 1. Technical Field
  • The present invention relates generally to data mining and, more particularly, to a system and method for sentiment analysis.
  • 2. Discussion of Related Art
  • Sentiment analysis of natural language texts is a large and growing field. The analysis includes both methods for automatically generate sentiment lexicons and analyzing sentiment for entire documents.
  • Some methods for generating sentiment lexicons assume positive and negative sentiment using synonyms and antonyms. Such methods may not accurately capture the sentiment of a word. Other methods for generating sentiment lexicons using semantics, such as “and” and “but”, or tone/orientation to determine a sentiment of a word. Such methods may have low accuracy.
  • Methods for analyzing sentiment treat only single complete documents, for example, to determine if a movie review is good or bad or quantify opinion from a product review.
  • Therefore a need exists for a method of generating an accurate sentiment lexicon and for determining a sentiment over a plurality of texts.
  • SUMMARY OF INVENTION
  • According to an embodiment of the present disclosure, a method for determining a sentiment associated with an entity includes inputting a plurality of texts associated with the entity, labeling seed words in the plurality of texts as positive or negative, determining a score estimate for the plurality of words based on the labeling, re-enumerating paths of the plurality of words and determining a number of sentiment alternations, determining a final score for the plurality of words using only paths whose number of alternations is within a threshold, converting the final scores to corresponding z-scores for each of the plurality of words, and outputting the sentiment associated with the entity.
  • According to an embodiment of the present disclosure, a method for determining a statistical sentiment associated with an entity includes inputting a plurality of texts associated with the entity, formatting the plurality of texts, processing the plurality of texts using a sentiment lexicon, determining a statistical sentiment for the plurality of texts processed using the sentiment lexicon, and outputting the statistical sentiment associated with the entity.
  • BRIEF DESCRIPTION OF THE FIGURES
  • Preferred embodiments of the present invention will be described below in more detail, with reference to the accompanying drawing:
  • FIG. 1 is a flow chart of a method for forming a sentiment analysis system according to an embodiment of the present disclosure;
  • FIG. 2 is a flow chart of a method for constructing a sentiment dictionary according to an embodiment of the present disclosure;
  • FIG. 3 is a flow chart of a method for applying a sentiment dictionary for determining a sentiment index according to an embodiment of the present disclosure;
  • FIG. 4 is a flow chart of a method for processing input text according to an embodiment of the present disclosure;
  • FIG. 5 is a graph for President George W. Bush: poll ratings vs. news sentiment scores according to an embodiment of the present disclosure;
  • FIG. 6 is a graph of the collapse of Enron, captured by a news sentiment index according to an embodiment of the present disclosure;
  • FIG. 7 is a graph of sentiment ratings for American Idol champion Taylor Hicks according to an embodiment of the present disclosure;
  • FIG. 8 illustrates four ways to get from bad to good in three hops;
  • FIGS. 9A-B show sentiment scores correlations for frequency-based segregation of baseball teams;
  • FIGS. 10A-B show correlations between Dow Jones Index and world sentiment on a daily (l) and monthly (r) basis according to an embodiment of the present disclosure;
  • FIG. 11 shows calendar effects on our world sentiment index according to an embodiment of the present disclosure; and
  • FIG. 12 depicts a computer system for implementing a sentiment analysis system according to an embodiment of the present disclosure.
  • DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS
  • Newspapers and blogs express the opinion of news entities (people, places, things) while reporting on recent events. According to an embodiment of the present disclosure, a system and method assign scores indicating positive or negative opinion to each distinct entity in an input text corpus. The system and method comprise sentiment identification, which associates expressed opinions with each relevant entity, and sentiment aggregation and scoring, which scores each entity relative to others in the same class.
  • News can be good or bad, but it is seldom neutral. Although full comprehension of natural language text remains beyond the power of machines, the statistical analysis of sentiment cues can provide a meaningful sense of how the latest news impacts a given entity.
  • According to an embodiment of the present disclosure, an exemplary large-scale sentiment analysis system for news and blog entities has been built on top of the Lydia text analysis system. Using the system, public sentiment on each of a plurality of tracked entities is determined over time. The sentiment may be monitored and aggregated over partial references in many documents. It should be noted that other text analysis systems may be implemented, and that embodiments of the present disclosure are not limited to Lydia text analysis.
  • Turning to the text analysis system; the text analysis system retrieves daily newspapers and analyzes a resulting stream of text. According to an embodiment of the present disclosure, the text analysis system is implemented to perform spidering and article classification, named entity recognition, juxtaposition analysis, synonym set identification, and temporal and spatial analysis. According to an embodiment of the present disclosure, named entity recognition includes Identifying where entities (people, places, companies, etc.) are mentioned in newspaper articles. According to an embodiment of the present disclosure, juxtaposition analysis identifies, for each entity, what other entities occur near it in an overrepresented way. According to an embodiment of the present disclosure, synonym set identification is implemented for using multiple variations of an entity's name. According to an embodiment of the present disclosure, temporal and spatial analysis establishes local biases in the news by analyzing the relative frequency given entities are mentioned in different news sources.
  • According to an embodiment of the present disclosure, text is acquired from online newspaper sources by spidering the websites. A spider program attempts to crawl an entire web domain, and download all the web-pages. According to an embodiment of the present disclosure, a universal spider is implemented that downloads all the pages from a newspaper website, extracts all new articles, and normalizes them to remove source-specific formatting and artifacts.
  • Referring to identifying duplicate and near-duplicate news articles; Repeated instances of given news articles can skew the significance spatial trends analysis. Thus, the method seeks to eliminate duplicate articles before subsequent processing. Duplicate articles appear both as the result of syndication and the fact that old articles are often left on a website and get repeatedly spidered. By comparing hash codes on all overlapping windows of length w appearing in the documents, two documents that share a common sequence of length w can be identified at the cost of an index at least the size of the documents themselves. The index size can be substantially reduced by a factor of p with little loss of detection accuracy by only keeping the codes which are congruent to 0 mod p. This will result in a different number of codes for different documents, however. Little loss of detection will happen the c smallest codes congruent to 0 mod p are selected for each article. The Karp-Rabin string matching algorithm proposes an incremental hash code such that all codes can be computed in linear time.
  • Through experimentation, it has been determined that taking the 10 smallest hashes of windows of size 150 characters that are congruent to 0 mod 100 gives a good sub-sampling of the possible hashes in a document, a reasonable probability that if two articles are near duplicates, then they will collide on at least two of these hashes and a reasonable probability that if two articles are unique, then they will not collide on more than one of these hashes. One of ordinary skill in the art would recognize that different values may be used, and that the disclosure is not to be limited to these exemplary values. An experimental set of 3,583 newspaper days resulted in a total of 253,523 unique articles with 185,398 exact duplicates and 8,874 near duplicates.
  • Exemplary results of the sentiment analysis correlate with historical events. For example, consider FIG. 5 and the popularity of U.S. President George W. Bush—Gallup/USA Today conducts a weekly opinion poll of about 1,000 Americans to determine public approval of their President. FIG. 5 illustrates a positive correlation (coefficient 0.372) between a sentiment index and the approval ratings for President Bush. Deviations coincide with the U.S. invasion of Iraq and the run-up to the 2004 Presidential elections.
  • In another example depicted in FIG. 6, the revelation of irregular accounting practices at Enron Corporation is tracked—Enron collapsed dramatically from one of the most respected U.S. corporations into bankruptcy over the last quarter of the year 2001. This decline is captured in Enron's sentiment time series, shown in FIG. 6.
  • In yet another example, the television show American Idol was tracked—the singing champion of the popular American television show American Idol is decided by a poll of the viewing public. It has been reasoned that bloggers' sentiments about contestants should reflect the views of the public at large. FIG. 7 presents a sentiment analysis for the eventual winner (Taylor Hicks (during the May 24, 2006 climax of the tournament. According to the index, bloggers admire him better with every passing week. Come the final round, Hicks generates more positive sentiment than runner-up Katharine McPhee, indicating that it may have been possible to predict the winner.
  • According to an embodiment of the present disclosure, a sentiment analysis system implements an algorithmic construction of sentiment dictionaries 101 and a sentiment index formulation 102 (see FIG. 1).
  • Referring to FIG. 2 and the algorithmic construction of sentiment dictionaries 101, the sentiment index relies on tracking reference frequencies to adjectives with positive and negative connotations 201. The method expands small candidate seed lists of positive and negative words into full sentiment lexicons using path-based analysis of synonym and antonym sets 205/206, for example, in WordNet. Sentiment-alternation hop counts are used to determine the polarity strength of the candidate terms and eliminate the ambiguous terms.
  • Referring to the sentiment index formulation 102—there is considerable subtlety in constructing a statistical index that meaningfully reflects the significance of sentiment term juxtaposition. A method according to an embodiment of the present disclosure uses juxtaposition of sentiment terms and entities and a frequency-weighted interpolation with world happiness levels to score entity sentiment.
  • According to an embodiment of the present disclosure, an entity may be a person, place, or thing. For example, an entity may be a document, a group of entities, a relationship between entities, etc. Where the entity being described by the statistical sentiment is a group of entities, a relationship between entities, etc., for clarity, the group or relationship may be described as being of or between component entities.
  • Referring more particularly to the generation of a sentiment lexicon 101; sentiment analysis depends on the ability to identify the sentimental adjectives in a corpus and their orientation. Separate lexicons may be defined for each of a plurality of sentiment dimensions (e.g., general, health, crime, sports, business, politics, media, facts, opinions). Enlarging the number of sentiment lexicons permits greater focus in analyzing particular phenomena, but potentially at a substantial cost in human curation. To avoid this, the method expands small dimension sets of seed sentiment words into full lexicons.
  • Note that exemplary embodiments of the present disclosure do not distinguish between opinion and fact as both contribute to public sentiment. However, given the module design of the lexicons, sentiment related to opinion and fact may be separated.
  • An exemplary embodiment of lexicon expansion uses path analysis. Expanding seed lists into lexicons by recursively querying for synonyms using a computer dictionary, e.g., WordNet, is limited by the synonym set coherence weakening with distance. For example, FIG. 8 shows four separate ways to get from good to bad using chains of WordNet synonyms.
  • To counteract such problems, the sentiment word generation method 101 expands a set of seed words using synonym and antonym queries. The method associates a polarity (positive or negative) to each word 201 and queries both the synonyms and antonyms 202.
  • Synonyms inherit the polarity from the parent, whereas antonyms get the opposite polarity. The significance of a path decreases as a function of its length or depth from a seed word. The significance of a word W at depth d decreases exponentially as score (V)=1/cd for some constant c>1. The final score of each word is the summation of the scores received over all paths 205. Paths which alternate between positive and negative terms are likely spurious and may be limited 206.
  • A method for determining a sentiment lexicon 101 runs in more than one iteration. A first iteration calculates a preliminary score estimate for each word as described above 203. A second iteration re-enumerates the paths while calculating the number of apparent sentiment alternations, or flips 204. The fewer flips, the more trustworthy the path is. A final score is determined taking into account only those paths whose flip value is within a threshold 205 (e.g., a user defined threshold).
  • WordNet orders the synonyms/antonyms by sense, with the more common senses listed first. Accuracy is improved by limiting the notion of synonym/antonym to only the top senses returned for a given word 206.
  • TABLE 1
    Sentiment dictionary composition for adjectives.
    Seeds Algorithmic Hand-curated
    Dimension Pos. Neg. Pos. Neg. Pos. Neg.
    Business 11 12 167 167 223 180
    Crime 12 18 337 337 51 224
    Health 12 16 532 532 108 349
    Media 16 10 310 310 295 133
    Politics 14 11 327 327 216 236
    Sports 13 7 180 180 106 53
  • TABLE 2
    Comparison of algorithmically-generated
    and human-curated lexicons.
    Reference file Polarity of Intersection
    Name Words Diff. Same Recall Precision
    PolPMan 657 21 468 0.712 0.957
    PolMMan 679 5 549 0.809 0.991
    PolPauto 344 42 221 0.642 0.840
    PolMauto 386 56 268 0.694 0.827
  • In an experiment, the method for determining a sentiment lexicon 101, more than 18,000 words were generated as being within five hops from an exemplary set of seed words. Since the assigned scores followed a normal distribution, they may be converted to z-scores 207. Words lying in the middle of this distribution are considered ambiguous, meaning they cannot be consistently classified as positive or negative. Ambiguous words may be discarded by, for example, taking only a percentage of words from either extremes of the curve 208. The result is a sentiment lexicon for a given person, place or thing.
  • Table 1 presents the composition of algorithmically-generated and curated sentiment dictionaries for each class of adjectives.
  • The sentiment lexicon generation has been evaluated in two different ways. The first in an un-test. The prefixes un- and im- generally negate the sentiment of a term. Thus the terms of form X and unX should appear on different ends of the sentiment spectrum, such as competent and incompetent. Results show that precision increases at the expense of recall as (1) the number of path sentiment alternations are restricted and (2) by pruning increasing fractions of less polar terms.
  • The sentiment lexicons has been compared against those obtained by Wiebe, as reported in Table 2. There is a high degree of agreement between the algorithmically-generated lexicon according to an embodiment of the present disclosure and the manually curated lexicons. For example, the negative lexicon PolMauto contained such clearly positive words like bullish, agile, and compassionate, while the positive lexicon PolPman contained words like strenuous, uneventful, and adamant.
  • Referring to FIGS. 3 and 4 and the interpretation and scoring of sentiment data 102; input texts, such as news articles, blogs, etc., are prepared into canonical format for sentiment analysis 301. The input texts are processed 302 and for each entity in a database, a statistical sentiment is determined 303. Further, given the statistical sentiment, a sentiment index is determined based on a rank of the statistical sentiment 304.
  • A sentiment lexicon (e.g., as determined according to FIG. 2) is used to mark up the sentiment words and associated entities in the corpus 302. This includes identifying a position of an entity in the input texts 401 and identifying a position of the sentiment lexicon terms in the input texts 402.
  • A sentiment analyzer, e.g., implemented in hardware or software (see for example, FIG. 12), reverses the polarity of a sentiment lexicon term is whenever it is preceded by a negation. The polarity strength is increased/decreased when a word is preceded by a modifier. Thus not good=−1; good=very good=+2.
  • The sentiment analyzer ignores articles that are detected as being a duplicate of another. This substantially prevents articles from news syndicates from having a larger impact on the sentiment than other articles. Since the system processes vast quantities of text on a daily basis, speed considerations limit careful parsing. Instead, the co-occurrence of an entity and a sentiment word in the same sentence to mean that the sentiment is associated with that entity may be used. This is not always accurate, particularly in complex sentences. Still the volume of text processed enables the generation of accurate sentiment scores.
  • Entity references under different names are aggregated, either manually or automatically. Because techniques are employed for pronoun resolution, more entity/sentiment co-occurrences can be identified than occur in raw news text. Further, Lydia's system for identifying co-reference sets associates alternate references such as George W. Bush and George Bush under the single synonym set header George W. Bush. This consolidates sentiment pertaining to a single entity.
  • The raw sentiment scores are used to track trends over time, for example, polarity 403 and subjectivity 404. Polarity 403 determines if the sentiment associated with the entity is positive or negative. Subjectivity 404 determines how much sentiment (of any polarity) the entity garners.
  • Subjectivity 404 indicates proportion of sentiment to frequency of occurrence, while polarity 403 indicates percentage of positive sentiment references among total sentiment references. Turning to polarity 403, world polarity is evaluated using sentiment data for all entities for the entire time period:
  • world_polarity = positive_sentiment _references total_sentiment _references
  • TABLE 3
    Dimension correlation using monthly data
    DIMENSION BUS CRIME GEN HEALTH MEDIA POL SPORT
    BUSINESS −0.004 0.278 0.187 0.189 0.416 0.414
    CRIME −0.004  0.317 0.182 −0.117  −0.033  −0.125 
    GENERAL 0.278  0.317 0.327 0.253 0.428 0.245
    HEALTH 0.187  0.182 0.327 0.003 0.128 0.051
    MEDIA 0.189 −0.117 0.253 0.003 0.243 0.241
    POLITICS 0.416 −0.033 0.428 0.128 0.243 0.542
    SPORTS 0.414 −0.125 0.245 0.051 0.241 0.542
  • Entity polarity i is evaluated using sentiment data for that day (day i) only:
  • entity_polarity i = positive_sentiment _references i total_sentiment _references i
  • Index stability requires that excessive swings in the event of limited sentiment data be avoided. Thus, one can interpolate between the individual entity polarity and global world polarity components based on the frequency of sentiment references. These normalized polarity scores are mapped to percentile scores. The polarity score of an entity without sentiment references is defined as 50th percentile. Entities with positive sentiment scores (e.g., the majority) are assigned percentiles in the range (50, 1001, with negative entities assigned scores in the range [0, 50). Hence the most positive entity for the day will have a score of 100 and the most negative one a score of 0.
  • Table 3 shows the correlation coefficient between the various sentiment indices. Typically, pairs of indices are positively correlated but not very strongly. This is good, as it shows each subindex measures different things. The general index is the union of all the indices and hence is positively correlated with each individual index.
  • Referring to the subjectivity scores 404; The subjectivity time series reflects the amount of sentiment an entity is associated with, regardless of whether the sentiment is positive or negative. Reading all news text over a period of time and counting sentiment in it gives a measure of the average subjectivity levels of the world. World subjectivity is evaluated using sentiment data for all entities for the entire time period:
  • world_subjectivity = total_sentiment _references total_references
  • Entity subjectivity i is evaluated using sentiment data for that day (day i) only:
  • entity_subjectivity i = total_sentiment _references i total_references i
  • As in case of the polarity scores, these normalized subjectivity scores are interpolated and mapped to percentiles.
  • Fluctuations in daily reference frequency for a particular entity can result in over-aggressive spikes/dips in reputation. To overcome these problems, smoothing techniques may be implemented. For example, time-weighted averaging or frequency-weighted averaging may be used.
  • For time-weighted averaging, an exponential-decay model with decay constant c, 0≦c≦1 over a k-day window of history is assumed. Let pol_perc denote the polarity score of an entity on day i. Then the decay-smoothed score for day n is
  • decay_sm n = i = 0 k - 1 pol_perc n - i * c i i = 0 k - 1 c i
  • The decay parameter determines how quickly a change in entity sentiment is reflected in the time series. This method sometimes results in inaccurate polarity scores, because it accords excessive importance to days of low news volume.
  • For frequency-weighted averaging: Let freqi denote the frequency of occurrence of the given entity on day i. The analogous frequency-smoothed score is
  • freq_sm n = i = 0 k - 1 pol_perc n - i * freq i i = 0 k - 1 freq i
  • Weighting by frequency substantially ensures that the resultant score is most influenced by scores on important days, and worked better for us than time-weighted sentiment averaging.
  • Referring to historical polarity scores, it is common for an entity to feature prominently in the news and then fade from view. For example, Clarence Ray Allen was prominent and negative in the news prior to his January 2006 execution, but has (understandably) contributed little since then. Still, his current reputation has drifted towards our median score on the basis of his relatively few sentiment-free references since then.
  • This implies the need for a historical polarity score which better retains state. A score is determined for every entity in substantially the same manner as polarity scores, except by aggregating all entity sentiment data over the entire period of time (versus day-to-day totals).
  • For news and blog analysis, the issues and the people discussed in blogs varies considerably from newspapers. In a study of entities reported on in both blogs and news, positive sentiments are reported more often in newspapers than in blogs, while negative sentiments are reported fairly equally (143 negative entities in newspapers vs. 155 in blogs).
  • TABLE 4
    Top positive entities in new (left) and blogs (right).
    Net sentintent Net sentiment
    Actor News Blog Actor Blog News
    Felicity Huffman 1.337 0.774 Joe Paterno 1.527 0.881
    Fernando Alonso 0.977 0.702 Phil Mickelson 1.104 0.652
    Dan Rather 0.906 −0.040 Tom Brokaw 1.042 0.359
    Warren Buffett 0.882 0.704 Sasha Cohen 1.000 0.107
    Joe Paterno 0.881 1.527 Ted Stevens 0.820 0.118
    Ray Charles 0.843 0.138 Rafael Nadal 0.787 0.642
    Bill Frist 0.819 0.307 Felicity Huffman 0.774 1.337
    Ben Wallace 0.778 0.570 Warren Buffett 0.704 0.882
    John Negroponte 0.775 0.059 Fernando Alonso 0.702 0.977
    George Clooney 0.724 0.288 Chauncey Billups 0.685 0.580
    Alicia Keys 0.724 0.147 Maria Sharapova 0.680 0.133
    Roy Moore 0.720 0.349 Earl Woods 0.672 0.410
    Jay Leno 0.710 0.107 Kasey Kahne 0.609 0.556
    Roger Federer 0.702 0.512 Tom Brady 0.603 0.657
    John Roberts 0.698 −0.372 Ben Wallace 0.570 0.778
  • Table 4 lists the people that are the most positive in news-papers and blogs, respectively. American investor Warren
  • Buffet and Formula 1 driver Fernando Alonso are regarded positively both in blogs and newspapers. Other sportsmen, Rafael Nadal and Maria Sharapova are also among the top positive people in blogs. Because the percentile ratings of news and blogs are not directly comparable, results are reported in terms of net positive and negative sentiment.
  • TABLE 5
    Top negative entities in news (left) and blogs (right).
    Net sentiment Net sentiment
    Actor News Blog Actor Blog News
    Slobodan −1.674 −0.964 John A. −3.076 −0.979
    Milosevic Muhammad
    John Ashcroft −1.294 −0.266 Sammy Sosa −1.702 0.074
    Zacarias −1.239 −0.908 George Ryan −1.511 −0.789
    Moussaoui
    John A. −0.979 −3.076 Lionel Tate −1.112 −0.962
    Muhammad
    Lionel Tate −0.962 −1.112 Esteban Loaiza −1.108 0.019
    Charles Taylor −0.818 −0.302 Slobodan −0.964 −1.674
    Milosevic
    George Ryan −0.789 −1.511 Charles −0.949 0.351
    Schumer
    Al Sharpton −0.782 0.043 Scott Peterson −0.937 −0.340
    Peter Jennings −0.781 −0.372 Zacarias −0.908 −1.239
    Moussaoui
    Saddam −0.652 −0.240 William −0.720 −0.101
    Hussein Jefferson
    Jose Padilla −0.576 −0.534 King −0.626 −0.502
    Gyanendra
    Abdul Rahman −0.570 −0.500 Ricky Williams −0.603 −0.470
    Adolf Hitler −0.549 −0.159 Ernie Fletcher −0.580 −0.245
    Harriet Miers −0.511 0.113 Edward −0.575 0.330
    Kennedy
    King −0.502 −0.626 John Gotti −0.554 −0.253
    Gyaneudra
  • Table 5 lists the most negative people appearing in news-papers and blogs. International criminals like Slobodan Milosevic and Zacarias Moussaoui are regarded losers in both blogs and newspapers. Certain controversial American political figures like Harriet Miers and Al Sharpton are regarded negatively in news-papers, but not in blogs while others like Charles Schumer and Edward Kennedy are thought of negatively only by bloggers.
  • By correlating the polarity and subjectivity scores to various independent measures of entity performance, such as sport's team performance and stock market indices, these experiments yield confirmation of the validity of our sentiment measures.
  • Referring to another exemplary application, the state of a sports team is expected to be higher after a win than a loss. To test this prediction, the outcomes of every Major League Baseball game played between July 2005 to May 2006 were collected. A performance time-series was generated for each of the thirty teams by representing each win by 1 and each loss by 0.
  • These performance time-series can be correlated with the polarity and subjectivity scores with different lead/lag time intervals to study the impact of performance on sentiment.
  • Results are reported in FIGS. 9A-B, showing a significant spike in sentiment correlation with a lag of +1 day, which reflects when newspapers report the match results. Sentimental impact of each game has a substantial half-life, hanging on for more than a week before disappearing. No corresponding spike in correlation was determined with subjectivity scores. This is as it should be, since newspapers comment on team performance irrespective of whether the team wins or loses the match.
  • Experiments with National Basketball Association (NBA) games over this period show substantially similar results.
  • In another exemplary experiment, stock indexes and world sentiment index are tracked. Daily time series of the relative occurrences of positive and negative words in news text yielded a measure of the “happiness” of the world. It can be reasoned that world sentiment is closely related to the state of the economy, which is reflected generally by the stock market. To test this hypothesis, the global index is correlated to the Dow Jones Index stock index. FIG. 10A shows the similarity these indices on a daily bases from March 2005 to May 2006. The indices show a correlation coefficient of +0.41 with a time lag of 1 day, as expected given reportage delays. FIG. 108 shows correlation of the stock and happiness indices on a monthly basis, over the five-year period before this window, scoring a correlation of +0.33.
  • In yet another exemplary experiment, seasons and world sentiment index are tracked. A plot of the world sentiment index against the seasons of the year, shown in FIG. 11, shows that the volatility in world sentiment is substantially reduced during the summer months, as most of the industrial world takes its summer vacations. There also seem to be other periodic seasonal flows in sentiment. Interestingly, the lowest time point on the graph is not the period of the World Trade Center attack (September 2001) but rather April 2004, reflecting the Madrid train bombings, the start of insurgency in Iraq, and the breaking of the Abu Ghraib prison story.
  • It is to be understood that the present invention may be implemented in various forms of hardware, software, firmware, special purpose processors, or a combination thereof. In one embodiment, the present invention may be implemented in software as an application program tangibly embodied on a program storage device. The application program may be uploaded to, and executed by, a machine comprising any suitable architecture.
  • Referring to FIG. 12, according to an embodiment of the present invention, a computer system 1201 for sentiment analysis can comprise, inter alia, a central processing unit (CPU) 1202, a memory 1203 and an input/output (I/O) interface 1204. The computer system 1201 is generally coupled through the I/O interface 1204 to a display 1205 and various input devices 1206 such as a mouse and keyboard. The support circuits can include circuits such as cache, power supplies, clock circuits, and a communications bus. The memory 1203 can include random access memory (RAM), read only memory (ROM), disk drive, tape drive, or a combination thereof. The present invention can be implemented as a routine 1207 that is stored in memory 1203 and executed by the CPU 1202 to process the signal from the signal source 1208. As such, the computer system 1201 is a general-purpose computer system that becomes a specific-purpose computer system when executing the routine 1207 of the present invention.
  • The computer platform 1201 also includes an operating system and micro instruction code. The various processes and functions described herein may either be part of the micro instruction code, or part of the application program (or a combination thereof) which is executed via the operating system. In addition, various other peripheral devices may be connected to the computer platform such as an additional data storage device and a printing device.
  • It is to be further understood that, because some of the constituent system components and methods depicted in the accompanying figures may be implemented in software, the actual connections between the system components (or the processes) may differ depending upon the manner in which, the present invention is programmed. Given the teachings of the present invention provided herein, one of ordinary skill in the related art will be able to contemplate these and similar implementations or configurations of the present invention.
  • Having described embodiments for a sentiment analysis, it is noted that modifications and variations can be made by persons skilled in the art in light of the above teachings. It is therefore to be understood that changes may be made in the particular embodiments of the invention disclosed which are within the scope and spirit of the invention as defined by the appended claims. Having thus described the invention with the details and particularity required by the patent laws, what is claimed and desired protected by Letters Patent is set forth in the appended claims.

Claims (12)

1-7. (canceled)
8. A method performed by a specifically programmed computer system for determining a statistical sentiment associated with an entity, the method comprising:
inputting a plurality of texts associated with the entity;
formatting the plurality of texts;
processing the plurality of texts using a sentiment lexicon;
determining, using the specifically programmed computer system, an entity statistical sentiment for the plurality of texts processed based on terms in the sentiment lexicon which are associated with text corresponding to the entity in the plurality of texts processed;
determining a world statistical sentiment based on terms in the sentiment lexicon in the plurality of texts processed;
normalizing the entity statistical sentiment based on the world statistical sentiment to obtain a normalized entity statistical sentiment; and
outputting the normalized entity statistical sentiment.
9. The method of claim 8, further comprising determining a sentiment index based on a rank of the normalized entity statistic sentiment compared to normalized statistic sentiments of other entities.
10. The method of claim 8, wherein processing the plurality of texts using the sentiment lexicon further comprises:
identifying a position of text corresponding to the entity in the text;
identifying a position of terms in the sentiment lexicon in the text;
determining a polarity measure of the entity; and
determining a subjectivity measure of the entity.
11. The method of claim 10, wherein determining the polarity measure of the entity further comprises associating positive and negative sentiment references using the terms in the sentiment lexicon with the entity.
12. The method of claim 10, wherein determining the subjectivity measure of the entity further comprises accumulating counts of positive and negative sentiment references of the entity.
13. The method of claim 8, further comprising translating at least one text of the plurality of texts into a target language.
14. The method of claim 8, wherein the normalized entity statistical sentiment is output in terms of a comparison to another entity.
15. The method of claim 14, wherein the comparison is a percentile rank.
16. The method of claim 8, further comprising identifying and eliminating duplicate texts.
17. The method of claim 8, further comprising:
processing the plurality of texts using at least a first sentiment lexicon and a second sentiment lexicon, different from the first sentiment lexicon;
determining a first entity statistical sentiment for the plurality of texts processed based on terms in the first sentiment lexicon which are associated with text corresponding to the entity in the plurality of texts processed; and
determining a second entity statistical sentiment for the plurality of texts processed based on terms in the second sentiment lexicon which are associated with text corresponding to the entity in the plurality of texts processed.
18. A computer system configured to determine a statistical sentiment associated with an entity, the computer system comprising a memory and a processor and being configured to:
input a plurality of texts associated with the entity;
format the plurality of texts;
process the plurality of texts using a sentiment lexicon;
determine an entity statistical sentiment for the plurality of texts processed based on terms in the sentiment lexicon which are associated with text corresponding to the entity in the plurality of texts processed;
determine a world statistical sentiment based on terms in the sentiment lexicon in the plurality of texts processed;
normalize the entity statistical sentiment based on the world statistical sentiment to obtain a normalized entity statistical sentiment; and
output the normalized entity statistical sentiment.
US13/832,584 2007-04-24 2013-03-15 Large-scale sentiment analysis Abandoned US20130204613A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/832,584 US20130204613A1 (en) 2007-04-24 2013-03-15 Large-scale sentiment analysis

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/739,187 US7996210B2 (en) 2007-04-24 2007-04-24 Large-scale sentiment analysis
US13/163,636 US8515739B2 (en) 2007-04-24 2011-06-17 Large-scale sentiment analysis
US13/832,584 US20130204613A1 (en) 2007-04-24 2013-03-15 Large-scale sentiment analysis

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/163,636 Continuation US8515739B2 (en) 2007-04-24 2011-06-17 Large-scale sentiment analysis

Publications (1)

Publication Number Publication Date
US20130204613A1 true US20130204613A1 (en) 2013-08-08

Family

ID=39888047

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/739,187 Expired - Fee Related US7996210B2 (en) 2007-04-24 2007-04-24 Large-scale sentiment analysis
US13/163,636 Active US8515739B2 (en) 2007-04-24 2011-06-17 Large-scale sentiment analysis
US13/832,584 Abandoned US20130204613A1 (en) 2007-04-24 2013-03-15 Large-scale sentiment analysis

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US11/739,187 Expired - Fee Related US7996210B2 (en) 2007-04-24 2007-04-24 Large-scale sentiment analysis
US13/163,636 Active US8515739B2 (en) 2007-04-24 2011-06-17 Large-scale sentiment analysis

Country Status (2)

Country Link
US (3) US7996210B2 (en)
WO (1) WO2008134365A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130158981A1 (en) * 2011-12-20 2013-06-20 Yahoo! Inc. Linking newsworthy events to published content
US20140303981A1 (en) * 2013-04-08 2014-10-09 Avaya Inc. Cross-lingual seeding of sentiment
CN104346425A (en) * 2014-07-28 2015-02-11 中国科学院计算技术研究所 Method and system of hierarchical internet public sentiment indication system
US9171547B2 (en) 2006-09-29 2015-10-27 Verint Americas Inc. Multi-pass speech analytics
US9401145B1 (en) 2009-04-07 2016-07-26 Verint Systems Ltd. Speech analytics system and system and method for determining structured speech
WO2017096019A1 (en) * 2015-12-02 2017-06-08 Be Forever Me, Llc Methods and apparatuses for enhancing user interaction with audio and visual data using emotional and conceptual content
US9715492B2 (en) 2013-09-11 2017-07-25 Avaya Inc. Unspoken sentiment
US11205103B2 (en) 2016-12-09 2021-12-21 The Research Foundation for the State University Semisupervised autoencoder for sentiment analysis
US11308419B2 (en) 2018-08-22 2022-04-19 International Business Machines Corporation Learning sentiment composition from sentiment lexicons

Families Citing this family (117)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7987188B2 (en) 2007-08-23 2011-07-26 Google Inc. Domain-specific sentiment classification
US8417713B1 (en) 2007-12-05 2013-04-09 Google Inc. Sentiment detection as a ranking signal for reviewable entities
US8799773B2 (en) * 2008-01-25 2014-08-05 Google Inc. Aspect-based sentiment summarization
US8010539B2 (en) 2008-01-25 2011-08-30 Google Inc. Phrase based snippet generation
US9122749B2 (en) * 2009-02-04 2015-09-01 Popular Metrics, Inc. Internet based system and method for wagering on an artist
JP2011516938A (en) * 2008-02-22 2011-05-26 ソーシャルレップ・エルエルシー Systems and methods for measuring and managing distributed online conversations
US8239189B2 (en) * 2008-02-26 2012-08-07 Siemens Enterprise Communications Gmbh & Co. Kg Method and system for estimating a sentiment for an entity
US9646078B2 (en) * 2008-05-12 2017-05-09 Groupon, Inc. Sentiment extraction from consumer reviews for providing product recommendations
US8731995B2 (en) * 2008-05-12 2014-05-20 Microsoft Corporation Ranking products by mining comparison sentiment
US9129008B1 (en) 2008-11-10 2015-09-08 Google Inc. Sentiment-based classification of media content
JP2010181993A (en) * 2009-02-04 2010-08-19 Kddi Corp Evaluation analysis server, method, and program for evaluating text file containing pictorial symbol
US9213687B2 (en) * 2009-03-23 2015-12-15 Lawrence Au Compassion, variety and cohesion for methods of text analytics, writing, search, user interfaces
EP2441042A4 (en) * 2009-06-08 2014-08-06 Res Now Ltd Systems for applying quantitative marketing research principles to qualitative internet data
US8458154B2 (en) 2009-08-14 2013-06-04 Buzzmetrics, Ltd. Methods and apparatus to classify text communications
US20110099052A1 (en) * 2009-10-28 2011-04-28 Xerox Corporation Automatic checking of expectation-fulfillment schemes
US11113299B2 (en) 2009-12-01 2021-09-07 Apple Inc. System and method for metadata transfer among search entities
US20130297581A1 (en) * 2009-12-01 2013-11-07 Topsy Labs, Inc. Systems and methods for customized filtering and analysis of social media content collected over social networks
US11122009B2 (en) 2009-12-01 2021-09-14 Apple Inc. Systems and methods for identifying geographic locations of social media content collected over social networks
US8356025B2 (en) * 2009-12-09 2013-01-15 International Business Machines Corporation Systems and methods for detecting sentiment-based topics
US9201863B2 (en) * 2009-12-24 2015-12-01 Woodwire, Inc. Sentiment analysis from social media content
WO2011079311A1 (en) * 2009-12-24 2011-06-30 Minh Duong-Van System and method for determining sentiment expressed in documents
US8725494B2 (en) * 2010-03-31 2014-05-13 Attivio, Inc. Signal processing approach to sentiment analysis for entities in documents
JP5390463B2 (en) 2010-04-27 2014-01-15 インターナショナル・ビジネス・マシーンズ・コーポレーション Defect predicate expression extraction device, defect predicate expression extraction method, and defect predicate expression extraction program for extracting predicate expressions indicating defects
US20130325992A1 (en) * 2010-08-05 2013-12-05 Solariat, Inc. Methods and apparatus for determining outcomes of on-line conversations and similar discourses through analysis of expressions of sentiment during the conversations
US7921156B1 (en) 2010-08-05 2011-04-05 Solariat, Inc. Methods and apparatus for inserting content into conversations in on-line and digital environments
US20120143683A1 (en) * 2010-12-06 2012-06-07 Fantab Corporation Real-Time Sentiment Index
US9330085B2 (en) 2010-12-15 2016-05-03 International Business Machines Corporation Assisting users to generate desired meme in document
US8949211B2 (en) * 2011-01-31 2015-02-03 Hewlett-Packard Development Company, L.P. Objective-function based sentiment
US20130073480A1 (en) * 2011-03-22 2013-03-21 Lionel Alberti Real time cross correlation of intensity and sentiment from social media messages
US20120254060A1 (en) * 2011-04-04 2012-10-04 Northwestern University System, Method, And Computer Readable Medium for Ranking Products And Services Based On User Reviews
US10474752B2 (en) * 2011-04-07 2019-11-12 Infosys Technologies, Ltd. System and method for slang sentiment classification for opinion mining
US8725495B2 (en) * 2011-04-08 2014-05-13 Xerox Corporation Systems, methods and devices for generating an adjective sentiment dictionary for social media sentiment analysis
US9208552B2 (en) * 2011-04-26 2015-12-08 Kla-Tencor Corporation Method and system for hybrid reticle inspection
US8838438B2 (en) * 2011-04-29 2014-09-16 Cbs Interactive Inc. System and method for determining sentiment from text content
US8954317B1 (en) 2011-07-01 2015-02-10 West Corporation Method and apparatus of processing user text input information
US11410072B2 (en) * 2011-10-21 2022-08-09 Educational Testing Service Computer-implemented systems and methods for detection of sentiment in writing
US9009024B2 (en) 2011-10-24 2015-04-14 Hewlett-Packard Development Company, L.P. Performing sentiment analysis
US9275041B2 (en) 2011-10-24 2016-03-01 Hewlett Packard Enterprise Development Lp Performing sentiment analysis on microblogging data, including identifying a new opinion term therein
US9152625B2 (en) * 2011-11-14 2015-10-06 Microsoft Technology Licensing, Llc Microblog summarization
US11587172B1 (en) 2011-11-14 2023-02-21 Economic Alchemy Inc. Methods and systems to quantify and index sentiment risk in financial markets and risk management contracts thereon
US8818788B1 (en) * 2012-02-01 2014-08-26 Bazaarvoice, Inc. System, method and computer program product for identifying words within collection of text applicable to specific sentiment
WO2013119819A1 (en) * 2012-02-07 2013-08-15 Social Market Analytics, Inc. Systems and methods of detecting, measuring, and extracting signatures of signals embedded in social media data streams
US8676596B1 (en) 2012-03-05 2014-03-18 Reputation.Com, Inc. Stimulating reviews at a point of sale
US10636041B1 (en) 2012-03-05 2020-04-28 Reputation.Com, Inc. Enterprise reputation evaluation
JP5878399B2 (en) * 2012-03-12 2016-03-08 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation A method, computer program, computer for detecting bad news in social media.
US9336205B2 (en) * 2012-04-10 2016-05-10 Theysay Limited System and method for analysing natural language
WO2013161510A1 (en) * 2012-04-25 2013-10-31 インターナショナル・ビジネス・マシーンズ・コーポレーション Evaluation polarity-based text classification method, computer program, and computer
US20130290232A1 (en) * 2012-04-30 2013-10-31 Mikalai Tsytsarau Identifying news events that cause a shift in sentiment
CA2865187C (en) * 2012-05-15 2015-09-22 Whyz Technologies Limited Method and system relating to salient content extraction for electronic content
US8515828B1 (en) * 2012-05-29 2013-08-20 Google Inc. Providing product recommendations through keyword extraction from negative reviews
JP2014002446A (en) * 2012-06-15 2014-01-09 Sony Corp Information processing apparatus and program
US9594831B2 (en) 2012-06-22 2017-03-14 Microsoft Technology Licensing, Llc Targeted disambiguation of named entities
US9678948B2 (en) * 2012-06-26 2017-06-13 International Business Machines Corporation Real-time message sentiment awareness
US11093984B1 (en) 2012-06-29 2021-08-17 Reputation.Com, Inc. Determining themes
WO2014000263A1 (en) * 2012-06-29 2014-01-03 Microsoft Corporation Semantic lexicon-based input method editor
US9141600B2 (en) * 2012-07-12 2015-09-22 Insite Innovations And Properties B.V. Computer arrangement for and computer implemented method of detecting polarity in a message
US20140045165A1 (en) * 2012-08-13 2014-02-13 Aaron Showers Methods and apparatus for training people on the use of sentiment and predictive capabilities resulting therefrom
US20140058721A1 (en) * 2012-08-24 2014-02-27 Avaya Inc. Real time statistics for contact center mood analysis method and apparatus
US20140095149A1 (en) * 2012-10-03 2014-04-03 Kanjoya, Inc. Emotion identification system and method
US20150286628A1 (en) * 2012-10-26 2015-10-08 Nec Corporation Information extraction system, information extraction method, and information extraction program
EP2912569A4 (en) * 2012-10-26 2016-06-15 Hewlett Packard Development Co Method for summarizing document
TWI477987B (en) * 2012-10-30 2015-03-21 Univ Ming Chuan Methods for sentimental analysis of news text
US20140136185A1 (en) * 2012-11-13 2014-05-15 International Business Machines Corporation Sentiment analysis based on demographic analysis
US9460083B2 (en) 2012-12-27 2016-10-04 International Business Machines Corporation Interactive dashboard based on real-time sentiment analysis for synchronous communication
US9690775B2 (en) 2012-12-27 2017-06-27 International Business Machines Corporation Real-time sentiment analysis for synchronous communication
US9177554B2 (en) * 2013-02-04 2015-11-03 International Business Machines Corporation Time-based sentiment analysis for product and service features
US20140278375A1 (en) * 2013-03-14 2014-09-18 Trinity College Dublin Methods and system for calculating affect scores in one or more documents
US20140358523A1 (en) * 2013-05-30 2014-12-04 Wright State University Topic-specific sentiment extraction
US10706092B1 (en) 2013-07-28 2020-07-07 William S. Morriss Error and manipulation resistant search technology
WO2015023546A1 (en) * 2013-08-10 2015-02-19 Genesys Telecommunications Laboratories, Inc. Methods and apparatus for determining outcomes of on-line conversations and similar discourses through analysis of expressions of sentiment during the conversations
CN103838712B (en) * 2013-11-18 2017-01-04 北京理工大学 A kind of for word-level other Chinese emotion word polar intensity quantization method
US9241069B2 (en) 2014-01-02 2016-01-19 Avaya Inc. Emergency greeting override by system administrator or routing to contact center
US10073830B2 (en) 2014-01-10 2018-09-11 Cluep Inc. Systems, devices, and methods for automatic detection of feelings in text
US10621505B2 (en) * 2014-04-17 2020-04-14 Hypergrid, Inc. Cloud computing scoring systems and methods
US9317566B1 (en) 2014-06-27 2016-04-19 Groupon, Inc. Method and system for programmatic analysis of consumer reviews
CN104090866A (en) * 2014-07-10 2014-10-08 北京国双科技有限公司 Method and device for processing text data
US9575961B2 (en) 2014-08-28 2017-02-21 Northern Light Group, Llc Systems and methods for analyzing document coverage
US10664661B2 (en) * 2014-09-12 2020-05-26 Nextiva, Inc. System and method for monitoring a sentiment score
US10083167B2 (en) 2014-10-03 2018-09-25 At&T Intellectual Property I, L.P. System and method for unsupervised text normalization using distributed representation of words
US20160110778A1 (en) * 2014-10-17 2016-04-21 International Business Machines Corporation Conditional analysis of business reviews
US10977667B1 (en) 2014-10-22 2021-04-13 Groupon, Inc. Method and system for programmatic analysis of consumer sentiment with regard to attribute descriptors
US20160162582A1 (en) * 2014-12-09 2016-06-09 Moodwire, Inc. Method and system for conducting an opinion search engine and a display thereof
US10042625B2 (en) 2015-03-04 2018-08-07 International Business Machines Corporation Software patch management incorporating sentiment analysis
US10437871B2 (en) * 2015-08-12 2019-10-08 Hithink Royalflush Information Network Co., Ltd. Method and system for sentiment analysis of information
US10140646B2 (en) * 2015-09-04 2018-11-27 Walmart Apollo, Llc System and method for analyzing features in product reviews and displaying the results
US11164223B2 (en) 2015-09-04 2021-11-02 Walmart Apollo, Llc System and method for annotating reviews
US11544306B2 (en) 2015-09-22 2023-01-03 Northern Light Group, Llc System and method for concept-based search summaries
US11886477B2 (en) 2015-09-22 2024-01-30 Northern Light Group, Llc System and method for quote-based search summaries
US20170169008A1 (en) * 2015-12-15 2017-06-15 Le Holdings (Beijing) Co., Ltd. Method and electronic device for sentiment classification
US11226946B2 (en) 2016-04-13 2022-01-18 Northern Light Group, Llc Systems and methods for automatically determining a performance index
US9864743B2 (en) 2016-04-29 2018-01-09 Fujitsu Limited Textual emotion detection
US10558691B2 (en) 2016-08-22 2020-02-11 International Business Machines Corporation Sentiment normalization based on current authors personality insight data points
US10311074B1 (en) 2016-12-15 2019-06-04 Palantir Technologies Inc. Identification and compiling of information relating to an entity
US10628496B2 (en) * 2017-03-27 2020-04-21 Dell Products, L.P. Validating and correlating content
US10235461B2 (en) * 2017-05-02 2019-03-19 Palantir Technologies Inc. Automated assistance for generating relevant and valuable search results for an entity of interest
US20180357239A1 (en) * 2017-06-07 2018-12-13 Microsoft Technology Licensing, Llc Information Retrieval Based on Views Corresponding to a Topic
US10628528B2 (en) 2017-06-29 2020-04-21 Robert Bosch Gmbh System and method for domain-independent aspect level sentiment detection
US11238535B1 (en) 2017-09-14 2022-02-01 Wells Fargo Bank, N.A. Stock trading platform with social network sentiment
CN109697282B (en) 2017-10-20 2023-06-06 阿里巴巴集团控股有限公司 Sentence user intention recognition method and device
CN107832297B (en) * 2017-11-09 2021-02-02 电子科技大学 Feature word granularity-oriented domain emotion dictionary construction method
CN107807920A (en) * 2017-11-17 2018-03-16 新华网股份有限公司 Construction method, device and the server of mood dictionary based on big data
US10387576B2 (en) * 2017-11-30 2019-08-20 International Business Machines Corporation Document preparation with argumentation support from a deep question answering system
CN108268451A (en) * 2018-03-13 2018-07-10 中国科学院大学 One B shareB affection index construction method and system
US11062094B2 (en) 2018-06-28 2021-07-13 Language Logic, Llc Systems and methods for automatically detecting sentiments and assigning and analyzing quantitate values to the sentiments expressed in text
US11270082B2 (en) 2018-08-20 2022-03-08 Verint Americas Inc. Hybrid natural language understanding
US11354507B2 (en) * 2018-09-13 2022-06-07 International Business Machines Corporation Compared sentiment queues
US10878196B2 (en) 2018-10-02 2020-12-29 At&T Intellectual Property I, L.P. Sentiment analysis tuning
US11217226B2 (en) 2018-10-30 2022-01-04 Verint Americas Inc. System to detect and reduce understanding bias in intelligent virtual assistants
US11593385B2 (en) 2018-11-21 2023-02-28 International Business Machines Corporation Contextual interestingness ranking of documents for due diligence in the banking industry with entity grouping
US11238102B1 (en) 2018-12-10 2022-02-01 Palantir Technologies, Inc. Providing an object-based response to a natural language query
US10984388B2 (en) 2018-12-14 2021-04-20 International Business Machines Corporation Identifying complaints from messages
US11604927B2 (en) * 2019-03-07 2023-03-14 Verint Americas Inc. System and method for adapting sentiment analysis to user profiles to reduce bias
IL288501B2 (en) 2019-06-06 2024-07-01 Verint Americas Inc Automated conversation review to surface virtual assistant misunderstandings
US20210150594A1 (en) * 2019-11-15 2021-05-20 Midea Group Co., Ltd. System, Method, and User Interface for Facilitating Product Research and Development
US20210390562A1 (en) * 2020-06-10 2021-12-16 Bitvore Corp. System and method for analyzing and scoring businesses and creating corresponding indices
US11615250B2 (en) * 2021-02-11 2023-03-28 Dell Products L.P. Information handling system and method for automatically generating a meeting summary
WO2022234526A1 (en) * 2021-05-07 2022-11-10 Financial & Risk Organisation Limited Natural language processing and machine-learning for event impact analysis

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5907836A (en) * 1995-07-31 1999-05-25 Kabushiki Kaisha Toshiba Information filtering apparatus for selecting predetermined article from plural articles to present selected article to user, and method therefore
US20040205065A1 (en) * 2000-02-10 2004-10-14 Petras Gregory J. System for creating and maintaining a database of information utilizing user opinions
AU2001236899B2 (en) * 2000-02-10 2006-06-29 Involve Technology, Inc. System for creating and maintaining a database of information utilizing user opinions
US7286977B1 (en) * 2000-09-05 2007-10-23 Novell, Inc. Intentional-stance characterization of a general content stream or repository
TWI221574B (en) * 2000-09-13 2004-10-01 Agi Inc Sentiment sensing method, perception generation method and device thereof and software
US8200477B2 (en) * 2003-10-22 2012-06-12 International Business Machines Corporation Method and system for extracting opinions from text documents
US7865354B2 (en) * 2003-12-05 2011-01-04 International Business Machines Corporation Extracting and grouping opinions from text documents
US7523085B2 (en) * 2004-09-30 2009-04-21 Buzzmetrics, Ltd An Israel Corporation Topical sentiments in electronically stored communications
JP4713870B2 (en) * 2004-10-13 2011-06-29 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Document classification apparatus, method, and program
US20070226204A1 (en) * 2004-12-23 2007-09-27 David Feldman Content-based user interface for document management
US7788087B2 (en) * 2005-03-01 2010-08-31 Microsoft Corporation System for processing sentiment-bearing text
US7983910B2 (en) * 2006-03-03 2011-07-19 International Business Machines Corporation Communicating across voice and text channels with emotion preservation
US7792841B2 (en) * 2006-05-30 2010-09-07 Microsoft Corporation Extraction and summarization of sentiment information
US7822701B2 (en) * 2006-06-30 2010-10-26 Battelle Memorial Institute Lexicon generation methods, lexicon generation devices, and lexicon generation articles of manufacture

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9171547B2 (en) 2006-09-29 2015-10-27 Verint Americas Inc. Multi-pass speech analytics
US9401145B1 (en) 2009-04-07 2016-07-26 Verint Systems Ltd. Speech analytics system and system and method for determining structured speech
US20130158981A1 (en) * 2011-12-20 2013-06-20 Yahoo! Inc. Linking newsworthy events to published content
US8880390B2 (en) * 2011-12-20 2014-11-04 Yahoo! Inc. Linking newsworthy events to published content
US20140303981A1 (en) * 2013-04-08 2014-10-09 Avaya Inc. Cross-lingual seeding of sentiment
US9432325B2 (en) 2013-04-08 2016-08-30 Avaya Inc. Automatic negative question handling
US9438732B2 (en) * 2013-04-08 2016-09-06 Avaya Inc. Cross-lingual seeding of sentiment
US9715492B2 (en) 2013-09-11 2017-07-25 Avaya Inc. Unspoken sentiment
CN104346425A (en) * 2014-07-28 2015-02-11 中国科学院计算技术研究所 Method and system of hierarchical internet public sentiment indication system
WO2017096019A1 (en) * 2015-12-02 2017-06-08 Be Forever Me, Llc Methods and apparatuses for enhancing user interaction with audio and visual data using emotional and conceptual content
US11205103B2 (en) 2016-12-09 2021-12-21 The Research Foundation for the State University Semisupervised autoencoder for sentiment analysis
US11308419B2 (en) 2018-08-22 2022-04-19 International Business Machines Corporation Learning sentiment composition from sentiment lexicons

Also Published As

Publication number Publication date
US8515739B2 (en) 2013-08-20
US7996210B2 (en) 2011-08-09
WO2008134365A1 (en) 2008-11-06
US20080270116A1 (en) 2008-10-30
US20120046938A1 (en) 2012-02-23

Similar Documents

Publication Publication Date Title
US8515739B2 (en) Large-scale sentiment analysis
Hasan Dalip et al. Automatic quality assessment of content created collaboratively by web communities: a case study of wikipedia
US9881059B2 (en) Systems and methods for suggesting headlines
Agirre et al. Unsupervised WSD based on automatically retrieved examples: The importance of bias
US20130110839A1 (en) Constructing an analysis of a document
US7822752B2 (en) Efficient retrieval algorithm by query term discrimination
Savoy Authorship attribution: A comparative study of three text corpora and three languages
US20110078162A1 (en) Web-scale entity summarization
Xu et al. Contents and time sensitive document ranking of scientific literature
Abozinadah Detecting abusive arabic language twitter accounts using a multidimensional analysis model
JP5427694B2 (en) Related content presentation apparatus and program
Wolf et al. Paragraph-, word-, and coherence-based approaches to sentence ranking: A comparison of algorithm and human performance
Tofighy et al. Persian text summarization using fractal theory
JP6235386B2 (en) Information presenting apparatus, information presenting method, and program
WO2016181475A1 (en) Information presentation device, information presentation method, and program
Krisnawati Plagiarism detection for Indonesian texts
Siemiński Fast algorithm for assessing semantic similarity of texts
Tratz et al. BEwTE: basic elements with transformations for evaluation
Charran et al. Chronological text similarity with pretrained embedding and edit distance
US11238219B2 (en) Sentence extraction system, sentence extraction method and information storage medium
Ermakova et al. A metric for sentence ordering assessment based on topic-comment structure
Copeck et al. Summarizing with Roget's and with FrameNet.
Costantino et al. Information extraction in finance
Saias et al. Combining overall and target oriented sentiment analysis over portuguese text from social media
McCord Word sense disambiguation in a slot grammar framework

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: NATIONAL SCIENCE FOUNDATION, VIRGINIA

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:STATE UNIVERSITY OF NEW YORK, STONY BROOK;REEL/FRAME:035500/0104

Effective date: 20140514