US20130202384A1 - Apparatus for tightening threaded fasteners - Google Patents

Apparatus for tightening threaded fasteners Download PDF

Info

Publication number
US20130202384A1
US20130202384A1 US13/814,226 US201113814226A US2013202384A1 US 20130202384 A1 US20130202384 A1 US 20130202384A1 US 201113814226 A US201113814226 A US 201113814226A US 2013202384 A1 US2013202384 A1 US 2013202384A1
Authority
US
United States
Prior art keywords
coupling member
coupling
threaded fastener
tapered
external surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/814,226
Inventor
Michael F. Dolan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US13/814,226 priority Critical patent/US20130202384A1/en
Publication of US20130202384A1 publication Critical patent/US20130202384A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B37/00Nuts or like thread-engaging members
    • F16B37/08Quickly-detachable or mountable nuts, e.g. consisting of two or more parts; Nuts movable along the bolt after tilting the nut
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B13/00Spanners; Wrenches
    • B25B13/10Spanners; Wrenches with adjustable jaws
    • B25B13/28Spanners; Wrenches with adjustable jaws the jaws being pivotally movable
    • B25B13/30Spanners; Wrenches with adjustable jaws the jaws being pivotally movable by screw or nut
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B15/00Screwdrivers
    • B25B15/001Screwdrivers characterised by material or shape of the tool bit
    • B25B15/004Screwdrivers characterised by material or shape of the tool bit characterised by cross-section
    • B25B15/008Allen-type keys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B23/00Details of, or accessories for, spanners, wrenches, screwdrivers
    • B25B23/0085Counterholding devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B23/00Details of, or accessories for, spanners, wrenches, screwdrivers
    • B25B23/14Arrangement of torque limiters or torque indicators in wrenches or screwdrivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B31/00Screwed connections specially modified in view of tensile load; Break-bolts
    • F16B31/02Screwed connections specially modified in view of tensile load; Break-bolts for indicating the attainment of a particular tensile load or limiting tensile load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B31/00Screwed connections specially modified in view of tensile load; Break-bolts
    • F16B31/02Screwed connections specially modified in view of tensile load; Break-bolts for indicating the attainment of a particular tensile load or limiting tensile load
    • F16B31/027Screwed connections specially modified in view of tensile load; Break-bolts for indicating the attainment of a particular tensile load or limiting tensile load with a bolt head causing the fastening or the unfastening tool to lose the grip when a specified torque is exceeded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B37/00Nuts or like thread-engaging members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B39/00Locking of screws, bolts or nuts
    • F16B39/22Locking of screws, bolts or nuts in which the locking takes place during screwing down or tightening
    • F16B39/28Locking of screws, bolts or nuts in which the locking takes place during screwing down or tightening by special members on, or shape of, the nut or bolt
    • F16B39/36Locking of screws, bolts or nuts in which the locking takes place during screwing down or tightening by special members on, or shape of, the nut or bolt with conical locking parts, which may be split, including use of separate rings co-operating therewith

Definitions

  • Conventional threaded fasteners are known. They include a head connected to an end of a shank (screw) or, a nut which is threadedly engagable with an end of the shank (stud and nut combination). Fasteners are inserted in a hole of an object to be tensioned, for example two adjoining flanges to be connected with one another.
  • Galling also occurs not just between the threads of the bolt and the nut, but also between the face of the nut and the face of the flange in which the fastener is introduced, since the side load changes a perpendicular position of the nut to be turned. This in turn increases the turning friction of the nut and makes the bolt load generated by the torque unpredictable which can result in leaks or joint failures.
  • conventional threaded fasteners tend to be rigid and fail at the bottom of the nut in the first two or three threads due to uneven hoop stresses.
  • the last two or three stud or bolt threads hold 80% of the load of conventional fasteners. If the fastener fails it's typically those threads. This led to biasing the nut inner diameter to load the top threads first during tightening. As the nut tightens, it deforms and evenly distributes load.
  • Creep or deformation of conventional fasteners occurs when the fastener metal flows under stress. The amount of creep sustained tends to increase with temperature. Once the tightening is completed, however, it is important that no further flow occurs since such deformation will lead to a reduction in bolt extension and subsequently the stress acting on the flange/gasket/joint. A high rate of leakage will likely occur if this stress is reduced to below a certain minimum.
  • Heating and quenching in the form of heat treatment achieves surface conditioning of conventional fasteners.
  • Conventional fasteners however, often become very brittle and break easily when surface conditioned.
  • washers Conventional threaded fasteners often incorporate washers.
  • the force under the head of a bolt or nut can exceed, at high preloads, the compressive yield strength of the clamped material. If this occurs excessive embedding and deformation can result in bolt preload loss.
  • washers under the bolt head may be used to distribute the force over a wider area into the clamped material.
  • three-piece threaded fasteners including, bolts, studs, clamps and/or washers, etc., consisting of an outer sleeve, inner sleeve and washer are also known in the art.
  • a spline connection on the washer rotationally couples the inner sleeve with the washer.
  • a torque power tool is deployed to divert a reaction force to the inner sleeve that has greater turning friction and the action force to the outer sleeve that has lower turning friction.
  • the outer sleeve starts turning, pulling up the inner sleeve, to a pre-calibrated tension, and thus the nut or bolt along with it.
  • Tightening three-piece fasteners is torsion- and side load-free. As turning takes place on its precision-machined surfaces, the coefficient of friction is known to a load accuracy of ⁇ 3% with a given lubricant. No reaction point is required because the tool reacts against the replacement fastener so it can be used in very limited access situations and operated hands-free, remotely or upside down.
  • Three-piece threaded fasteners have similar dimensions as the conventional nut or bolt which it replaces.
  • Thread galling and metals creep is nearly eliminated with three-piece threaded fasteners because mating bolts or studs are loaded in pure tension without twisting.
  • Three-piece fasteners increase the elasticity of the bolting system, which significantly help to keep a joint held together. This is particularly advantageous in high-temperature bolting applications where fasteners are subject to creep, because elastic bolting systems will take longer to reach a given relaxation stress than in a rigid system.
  • Elastic bolting systems can also improve the integrity of gasketed joints by compensating for temperature changes, joint movement and changes in internal pressure. And hoop stresses on the outer sleeve cause an increase in inner sleeve diameter at its bottom and decrease at its top. This distributes thread stress more evenly and reduces the likelihood that the stud or bolt will fail.
  • Three-piece threaded fasteners cover a wide range of sizes, thread forms, temperature ratings and applications; are typically specified for applications with minimal radial constraints; have outside diameters approximately the cross corner dimension of a standard heavy hex nut; virtually eliminates galling due to the difference in hardness between the inner and outer sleeves; and, with their through bolt design, are an appropriate choice for applications with high stud extensions.
  • the power tool reacts all around the non-rotating washer without side loads.
  • the relatively thick outer sleeve minimizes stresses and allows them to handle high loads at elevated temperatures.
  • the castellated outer sleeve eliminates need for oversize socket drives.
  • three-piece fasteners do not gall due to material chemistry and difference in hardness of the inner and outer sleeves.
  • One approach includes hardening the outer sleeve and leaving the inner sleeve relatively soft. During tightening, the inner sleeve tends to expand but the outer sleeve compresses it, which keeps the system in equilibrium and avoids failure. The stud/bolt on its inner surface and the outer sleeve on its outer surface hold the inner sleeve captive.
  • Three-piece fasteners exhibit shortcomings on high temperature applications above approximately 535° C. (1000° F.). System thermal expansion and stress requires decreased fastener loads or increased fastener radial dimensions, neither of which may be possible on a given application. Furthermore, creeping strain starts slow then accelerates. The outer sleeve tends to bulge on three-piece fasteners with low outer sleeve thicknesses, often necessary to fit in constrained application geometries.
  • self-reacting three-piece fasteners typically have features such as spline, hex or square to allow a torsion coupling with the reaction member of the torque input device. This is achieved with machined rotational interferences between two parts. The interference is typically created with a male and female engagement between any two mating features that prevent rotation between the two parts.
  • Three-piece mechanical tensioning stud devices also exist in the prior art. They consist of a stud, nut and washer.
  • the stud has external threads on both ends. Under the upper thread the stud will also have a spline or other geometry to create a rotational coupling with the inner diameter of the washer.
  • the topside of the stud will also have a spline or other geometry to allow rotational coupling with the reaction shaft of the torque input device.
  • the nut is internally threaded to mate with the threads on the topside of stud.
  • the nut will have a spline or other geometry to allow the introduction of torque from torque input device.
  • the washer has an internal geometry that will mate rotationally with the spline or other geometry under the top thread of the stud.
  • the present invention has therefore been devised to address these issues.
  • an apparatus for torsionally coupling a threaded fastener and a torque output device including:
  • apparatus with alternative geometries for torsion coupling allow for: more efficiently and evenly distributed load stress distribution; higher torsion strength; and lower fastener mass and volume.
  • FIG. 1 is a perspective view of an embodiment of the present invention
  • FIG. 2 is a side, cross-sectional view of an embodiment of the present invention.
  • FIG. 3 is a top view of an embodiment of the present invention.
  • FIG. 4 is a side, cross-sectional view of an embodiment of the present invention.
  • FIG. 5 is a perspective view of an embodiment of the present invention.
  • FIGS. 1-3 shows an apparatus 1 for torsionally coupling a torque output device (not shown) and a threaded fastener (not shown) in accordance with a first embodiment.
  • Apparatus 1 has a first coupling member 100 : rotatably and threadedly engagable with the threaded fastener; rotatably and taperedly engagable with a second coupling member 150 ; and non-rotatably engagable with an action portion of the torque output device.
  • Second coupling member 150 is non-rotatably engagable with a reaction portion of the torque output device.
  • First coupling member 100 when rotated by the action portion of the torque output device, applies a load to the threaded fastener to close a joint (not shown).
  • First coupling member 100 is an annular body and, as shown in FIGS. 1-3 , formed as a sleeve. It has an inner surface 110 with inner thread means 120 engagable with outer thread means of the threaded fastener of the joint, for example a bolt or stud. It further has an outer surface 111 with a polygonal formation 121 which is rotatably engagable with an inner surface 160 with a polygonal formation 170 of second coupling member 150 .
  • Polygonal formation 121 is shaped as an inverted frustum of a stepped cone. It further has a lower surface 113 which is rotatably engagable with inner surface 160 with polygonal formation 170 of second coupling member 150 .
  • FIGS. 1-3 show four external cylindrical features removed at regular length and width intervals. Note that the quantity, dimensions, geometries and intervals of removed external cylindrical features may vary depending on the application to optimize the formed coupling. Varying the quantity, dimensions, geometries and intervals from one removed external cylindrical feature to the next varies the nominal angle of polygonal formation 121 . The step length may be sized infinitely small to create a smooth taper. Alternatively external portions of first coupling member 100 may be removed in one step to form a smooth conical outer surface.
  • First coupling member 100 further has an upper surface 112 with a locking means 130 which may be formed by a plurality of bores extending in an axial direction and spaced for one another in a circumferential direction.
  • Locking means 130 may be formed by any suitable geometry, for example castellation. Locking means 130 non-rotatably engages with the action portion of the torque output device.
  • Second coupling member 150 is an annular body and, as shown in FIGS. 1-3 , formed as a sleeve. It is shaped as a hollow frustum of a stepped cone. An internal cylindrical feature is removed from second coupling member 150 at a shallow depth. Successive internal cylindrical features are removed at regular length and width intervals. Each successive feature starts where the preceding feature stops. The geometric pattern of removed internal cylindrical features continues until space restricts the addition of another internal cylindrical feature.
  • FIGS. 1-3 show four internal cylindrical features removed at regular length and width intervals. Note that the quantity, dimensions, geometries and intervals of removed internal cylindrical features may vary depending on the application to optimize the formed coupling. Varying the quantity, dimensions, geometries and intervals from one removed internal cylindrical feature to the next varies the nominal angle of the conical shape these features form.
  • the step length may be sized infinitely small to create a smooth taper. Alternatively internal portions of first coupling member 100 may be removed in one step to form a smooth conical inner surface.
  • FIG. 2 shows dimensions of apparatus 1 .
  • first and second coupling members 100 and 150 L 100 and L 150
  • the cross-sectional widths W 100 and W 150 ) will be substantially similar.
  • Second coupling member 150 has inner surface 160 with polygonal formation 170 rotatably engagable with outer surface 111 with polygonal formation 121 of first coupling member 100 .
  • Polygonal formation 170 is shaped as a frustum of a stepped cone. Inner surfaces 110 and 160 are substantially smooth.
  • Second coupling member 150 further has a locking means 180 which is formed by a plurality of outer spines extending in an axial direction and spaced from one another in a circumferential direction. Locking means 180 non-rotatably engages with inner spines of the reaction portion of the torque output device.
  • Second coupling member 150 further has a lower surface 163 which rests on an upper surface of the joint.
  • Lower surface 163 may be substantially rough and may be made in many different ways, for example by a plurality of ridges, ripples or teeth.
  • Apparatus 1 operates in the following manner. Second coupling member 150 is applied over the threaded fastener and rests on the upper surface of the joint. First coupling member 100 is applied on the threaded fastener by screwing the first coupling member 100 until its outer surface 111 is flush with inner surface 160 of second coupling member. Then, the action portion of the torque output device engages locking means 130 of first coupling member 100 . The reaction portion of the torque output device engages locking means 180 of second coupling member 150 . The action portion of the torque output device rotates first coupling member 100 .
  • first coupling member 100 slides on the smooth interface between its outer surface 111 and inner surface 160 of second coupling member; and turns around the threaded fastener, which is stretched to a predetermined load, to tighten the joint.
  • second coupling member 150 embeds itself, via lower surface 163 , on the upper surface of the joint; and, together with the reaction portion of the torque output device does not turn. When the threaded fastener is sufficiently stretched (tightened), the torque output device is disengaged.
  • FIGS. 4-5 show an apparatus for torsionally coupling a threaded fastener and a torque output device in accordance with a second embodiment of the present invention.
  • a conical geometry for torsional coupling of a threaded fastener and a torque output device yields a better load stress distribution.
  • This embodiment introduces a low profile coupling geometry that will allow a torsion-coupling feature on the top of a stud to be formed internally by distributing stresses more evenly and therefore allowing for a more efficient packaging of the coupling features.
  • a stepped 12-point hole in the top surface of the stud is used for torsion coupling with a three-piece mechanical stud-tensioning device.
  • An internal 12-point feature is placed in the top of the stud at a shallow depth.
  • Successive 12-point features are progressively added at smaller 12-point sizes each at shallow depths and each starting where the preceding 12-point stopped.
  • the pattern of decreasing 12-point geometry will decrease until space restricts the addition of another 12 point. Varying the depth and size change from one 12-point feature to the next will increase or decrease the nominal angle of the conical shape these features form.
  • a shaft with external matching features for each of the steps will allow for evenly distributed stress distribution and high torsion strength while decreasing the mass and volume of the studs.
  • the 12-point feature can be substituted with any geometry that will prevent rotation between the two parts.
  • the step depth can be sized infinitely small to create a smooth taper.
  • Mixed step sizes and geometries can be used to optimize production of such a coupling.
  • apparatus 1 includes a nut (first coupling member 100 ) as an inner sleeve and a washer (second coupling member 150 ) as an outer sleeve.
  • the standard bolting flat surface nut and washer interface is changed.
  • the torque reaction point is moved upwards, as compared to conventional three-piece fasteners.
  • Apparatus of the present invention utilize the geometry of conventional three-piece fasteners, which allows for surface conditioning of the outer sleeve to prevent galling, leveraged with a conventional nut and washer arrangement, which retains radial strain such that the inner sleeve may be surface conditioned with minimal risk of fracture.
  • fastener categories for example wood screws, machine screws, thread cutting machine screws, sheet metal screws, self drilling SMS, hex bolts, carriage bolts, lag bolts, socket screws, set screws, j-bolts, shoulder bolts, sex screws, mating screws, hanger bolts, etc.
  • head styles for example flat, oval, pan, truss, round, hex, hex washer, slotted hex washer, socket cap, button, etc.
  • drive types for example phillips and frearson, slotted, combination, socket, hex, allen, square, torx, multiple other geometries, etc.
  • nut types for example hex, jam, cap, acorn, flange, square, torque lock, slotted, castle, etc.
  • washer types for example flat, fender, finishing, square, dock, etc.
  • thread types for example sharp V, American national, unified, metric, square, ACME
  • tapeered When used in this specification and claims, the terms “tapered”, “taperedly” and variations thereof mean that the specified features, steps, quantities, dimensions, geometries and intervals may, from one end to another, either gradually, suddenly, step-wisely, and/or conically: be inconsistent, vary, narrow, diminish, decrease, get smaller, thin out, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Connection Of Plates (AREA)
  • Mutual Connection Of Rods And Tubes (AREA)
  • One-Way And Automatic Clutches, And Combinations Of Different Clutches (AREA)
  • Rolling Contact Bearings (AREA)
  • Details Of Spanners, Wrenches, And Screw Drivers And Accessories (AREA)
  • Pivots And Pivotal Connections (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Automatic Assembly (AREA)
  • Dowels (AREA)
  • Clamps And Clips (AREA)

Abstract

According to a first aspect of the invention we provide an apparatus for torsionally coupling a threaded fastener and a torque output device including:—a first coupling member: rotatably and threadedly engagable with the threaded fastener; rotatably and taperedly engagable with a second coupling member; non-rotatably engagable with an action portion of the torque output device; the second coupling member non-rotatably engagable with a reaction portion of the torque output device; and wherein the first coupling member, when rotated by the action portion of the torque output device, applies a load to the threaded fastener. Advantageously apparatus with alternative geometries for torsion coupling allow for more efficiently and evenly distributed load stress distribution; higher torsion strength; and lower fastener mass and volume.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This Application is a continuation application of co-pending U.S. Application Ser. No. 61/370,015, having Filing Date of Aug. 2, 2010, entitled “Conical Geometry for Torsion Coupling During Bolting”, an entire copy of which is incorporated herein by reference.
  • Innovations disclosed in this Application advance technology disclosed in the following commonly owned issued patents and patent applications, entire copies of which are incorporated herein by reference: U.S. Pat. No. 5,137,408, having Filing Date of Dec. 3, 1991, entitled “Fastening Device”; U.S. Pat. No. 5,318,397, having Filing Date of May 7, 1992, entitled “Mechanical Tensioner”; U.S. Pat. No. 5,622,465, having Filing Date of Apr. 26, 1996, entitled “Lock Nut”; U.S. Pat. No. 5,640,749, having Filing Date of Jun. 13, 1995, entitled “Method Of And Device For Elongating And Relaxing A Stud”; U.S. Pat. No. 5,888,041, having Filing Date of Oct. 17, 1997, entitled “Lock Nut”; U.S. Pat. No. 6,254,322, having Filing Date of Mar. 3, 1998, entitled “Bolt With A Bolt Member, A Washer And A Sleeve For Applying Forces To The Bolt Member And The Sleeve”; et al.
  • DESCRIPTION OF INVENTION
  • Conventional threaded fasteners are known. They include a head connected to an end of a shank (screw) or, a nut which is threadedly engagable with an end of the shank (stud and nut combination). Fasteners are inserted in a hole of an object to be tensioned, for example two adjoining flanges to be connected with one another.
  • During tightening of conventional threaded fasteners galling frequently occurs.
  • Pressure builds between contacting and sliding thread surfaces; protective coatings and manufacturing imperfections on thread surfaces, if any, clump, are broken and/or wipe off; and/or metal interface points shear or lock together. This cumulative clumping-clogging-shearing-locking action causes increasing adhesion. Often galling leads to seizing—the actual freezing together of the threads. If tightening is continued, the fastener can be twisted off or its threads ripped out.
  • Galling also occurs not just between the threads of the bolt and the nut, but also between the face of the nut and the face of the flange in which the fastener is introduced, since the side load changes a perpendicular position of the nut to be turned. This in turn increases the turning friction of the nut and makes the bolt load generated by the torque unpredictable which can result in leaks or joint failures.
  • Furthermore, conventional threaded fasteners tend to be rigid and fail at the bottom of the nut in the first two or three threads due to uneven hoop stresses. The last two or three stud or bolt threads hold 80% of the load of conventional fasteners. If the fastener fails it's typically those threads. This led to biasing the nut inner diameter to load the top threads first during tightening. As the nut tightens, it deforms and evenly distributes load.
  • Creep or deformation of conventional fasteners occurs when the fastener metal flows under stress. The amount of creep sustained tends to increase with temperature. Once the tightening is completed, however, it is important that no further flow occurs since such deformation will lead to a reduction in bolt extension and subsequently the stress acting on the flange/gasket/joint. A high rate of leakage will likely occur if this stress is reduced to below a certain minimum.
  • Heating and quenching in the form of heat treatment achieves surface conditioning of conventional fasteners. Conventional fasteners, however, often become very brittle and break easily when surface conditioned.
  • Conventional threaded fasteners often incorporate washers. The force under the head of a bolt or nut can exceed, at high preloads, the compressive yield strength of the clamped material. If this occurs excessive embedding and deformation can result in bolt preload loss. To overcome this, washers under the bolt head may be used to distribute the force over a wider area into the clamped material.
  • In contrast to conventional threaded fasteners, three-piece threaded fasteners, including, bolts, studs, clamps and/or washers, etc., consisting of an outer sleeve, inner sleeve and washer are also known in the art. A spline connection on the washer rotationally couples the inner sleeve with the washer. During tightening, a torque power tool is deployed to divert a reaction force to the inner sleeve that has greater turning friction and the action force to the outer sleeve that has lower turning friction. The outer sleeve starts turning, pulling up the inner sleeve, to a pre-calibrated tension, and thus the nut or bolt along with it. Tightening three-piece fasteners is torsion- and side load-free. As turning takes place on its precision-machined surfaces, the coefficient of friction is known to a load accuracy of ±3% with a given lubricant. No reaction point is required because the tool reacts against the replacement fastener so it can be used in very limited access situations and operated hands-free, remotely or upside down. Three-piece threaded fasteners have similar dimensions as the conventional nut or bolt which it replaces.
  • Thread galling and metals creep is nearly eliminated with three-piece threaded fasteners because mating bolts or studs are loaded in pure tension without twisting. Three-piece fasteners increase the elasticity of the bolting system, which significantly help to keep a joint held together. This is particularly advantageous in high-temperature bolting applications where fasteners are subject to creep, because elastic bolting systems will take longer to reach a given relaxation stress than in a rigid system. Elastic bolting systems can also improve the integrity of gasketed joints by compensating for temperature changes, joint movement and changes in internal pressure. And hoop stresses on the outer sleeve cause an increase in inner sleeve diameter at its bottom and decrease at its top. This distributes thread stress more evenly and reduces the likelihood that the stud or bolt will fail.
  • Three-piece threaded fasteners: cover a wide range of sizes, thread forms, temperature ratings and applications; are typically specified for applications with minimal radial constraints; have outside diameters approximately the cross corner dimension of a standard heavy hex nut; virtually eliminates galling due to the difference in hardness between the inner and outer sleeves; and, with their through bolt design, are an appropriate choice for applications with high stud extensions. The power tool reacts all around the non-rotating washer without side loads. The relatively thick outer sleeve minimizes stresses and allows them to handle high loads at elevated temperatures. The castellated outer sleeve eliminates need for oversize socket drives.
  • The biggest advantage of three-piece fasteners is that they do not gall due to material chemistry and difference in hardness of the inner and outer sleeves. One approach includes hardening the outer sleeve and leaving the inner sleeve relatively soft. During tightening, the inner sleeve tends to expand but the outer sleeve compresses it, which keeps the system in equilibrium and avoids failure. The stud/bolt on its inner surface and the outer sleeve on its outer surface hold the inner sleeve captive.
  • Three-piece fasteners exhibit shortcomings on high temperature applications above approximately 535° C. (1000° F.). System thermal expansion and stress requires decreased fastener loads or increased fastener radial dimensions, neither of which may be possible on a given application. Furthermore, creeping strain starts slow then accelerates. The outer sleeve tends to bulge on three-piece fasteners with low outer sleeve thicknesses, often necessary to fit in constrained application geometries.
  • Additionally, self-reacting three-piece fasteners typically have features such as spline, hex or square to allow a torsion coupling with the reaction member of the torque input device. This is achieved with machined rotational interferences between two parts. The interference is typically created with a male and female engagement between any two mating features that prevent rotation between the two parts.
  • Three-piece mechanical tensioning stud devices also exist in the prior art. They consist of a stud, nut and washer. The stud has external threads on both ends. Under the upper thread the stud will also have a spline or other geometry to create a rotational coupling with the inner diameter of the washer. The topside of the stud will also have a spline or other geometry to allow rotational coupling with the reaction shaft of the torque input device. The nut is internally threaded to mate with the threads on the topside of stud. The nut will have a spline or other geometry to allow the introduction of torque from torque input device. The washer has an internal geometry that will mate rotationally with the spline or other geometry under the top thread of the stud.
  • In bolting applications stresses are typically near the elastic limits of the materials. The reaction feature that couples the three-piece mechanical tensioning stud to the torque of the torque input device typically has to be oversized to prevent elastic material failures. Therefore it is not possible with prior art to carry the high magnitude of torque with an internal feature such as a square, hexagon or internal spline hole in the top surface of the stud. Consequently prior art applications that are subject to high bolting stress must have an external feature on the topside of the stud that will allow the coupling of a sufficiently sized reaction shaft from the torque device.
  • The present invention has therefore been devised to address these issues.
  • According to a first aspect of the invention we provide an apparatus for torsionally coupling a threaded fastener and a torque output device including:
      • a first coupling member:
        • rotatably and threadedly engagable with the threaded fastener;
        • rotatably and taperedly engagable with a second coupling member;
        • non-rotatably engagable with an action portion of the torque output device;
      • the second coupling member non-rotatably engagable with a reaction portion of the torque output device; and
      • wherein the first coupling member, when rotated by the action portion of the torque output device, applies a load to the threaded fastener.
  • Further features of the invention are set out in claims 2 to 9 appended hereto.
  • Advantageously, apparatus with alternative geometries for torsion coupling allow for: more efficiently and evenly distributed load stress distribution; higher torsion strength; and lower fastener mass and volume.
  • The invention may be described by way of example only with reference to the accompanying drawings, of which:
  • FIG. 1 is a perspective view of an embodiment of the present invention;
  • FIG. 2 is a side, cross-sectional view of an embodiment of the present invention;
  • FIG. 3 is a top view of an embodiment of the present invention;
  • FIG. 4 is a side, cross-sectional view of an embodiment of the present invention; and
  • FIG. 5 is a perspective view of an embodiment of the present invention.
  • Referring to FIGS. 1-3 by way of example, this shows an apparatus 1 for torsionally coupling a torque output device (not shown) and a threaded fastener (not shown) in accordance with a first embodiment. Apparatus 1 has a first coupling member 100: rotatably and threadedly engagable with the threaded fastener; rotatably and taperedly engagable with a second coupling member 150; and non-rotatably engagable with an action portion of the torque output device. Second coupling member 150 is non-rotatably engagable with a reaction portion of the torque output device. First coupling member 100, when rotated by the action portion of the torque output device, applies a load to the threaded fastener to close a joint (not shown).
  • First coupling member 100 is an annular body and, as shown in FIGS. 1-3, formed as a sleeve. It has an inner surface 110 with inner thread means 120 engagable with outer thread means of the threaded fastener of the joint, for example a bolt or stud. It further has an outer surface 111 with a polygonal formation 121 which is rotatably engagable with an inner surface 160 with a polygonal formation 170 of second coupling member 150. Polygonal formation 121 is shaped as an inverted frustum of a stepped cone. It further has a lower surface 113 which is rotatably engagable with inner surface 160 with polygonal formation 170 of second coupling member 150.
  • An external cylindrical feature is removed from first coupling member 100 at a shallow depth. Successive external cylindrical features are removed at regular length and width intervals. Each successive feature starts where the preceding feature stops. The geometric pattern of removed external cylindrical features continues until space restricts the addition of another external cylindrical feature. FIGS. 1-3 show four external cylindrical features removed at regular length and width intervals. Note that the quantity, dimensions, geometries and intervals of removed external cylindrical features may vary depending on the application to optimize the formed coupling. Varying the quantity, dimensions, geometries and intervals from one removed external cylindrical feature to the next varies the nominal angle of polygonal formation 121. The step length may be sized infinitely small to create a smooth taper. Alternatively external portions of first coupling member 100 may be removed in one step to form a smooth conical outer surface.
  • First coupling member 100 further has an upper surface 112 with a locking means 130 which may be formed by a plurality of bores extending in an axial direction and spaced for one another in a circumferential direction. Locking means 130 may be formed by any suitable geometry, for example castellation. Locking means 130 non-rotatably engages with the action portion of the torque output device.
  • Second coupling member 150 is an annular body and, as shown in FIGS. 1-3, formed as a sleeve. It is shaped as a hollow frustum of a stepped cone. An internal cylindrical feature is removed from second coupling member 150 at a shallow depth. Successive internal cylindrical features are removed at regular length and width intervals. Each successive feature starts where the preceding feature stops. The geometric pattern of removed internal cylindrical features continues until space restricts the addition of another internal cylindrical feature.
  • FIGS. 1-3 show four internal cylindrical features removed at regular length and width intervals. Note that the quantity, dimensions, geometries and intervals of removed internal cylindrical features may vary depending on the application to optimize the formed coupling. Varying the quantity, dimensions, geometries and intervals from one removed internal cylindrical feature to the next varies the nominal angle of the conical shape these features form. The step length may be sized infinitely small to create a smooth taper. Alternatively internal portions of first coupling member 100 may be removed in one step to form a smooth conical inner surface.
  • FIG. 2 shows dimensions of apparatus 1. Generally, at any given cross-sectional length of first and second coupling members 100 and 150 (L100 and L150) the cross-sectional widths (W100 and W150) will be substantially similar.
  • Second coupling member 150 has inner surface 160 with polygonal formation 170 rotatably engagable with outer surface 111 with polygonal formation 121 of first coupling member 100. Polygonal formation 170 is shaped as a frustum of a stepped cone. Inner surfaces 110 and 160 are substantially smooth.
  • Second coupling member 150 further has a locking means 180 which is formed by a plurality of outer spines extending in an axial direction and spaced from one another in a circumferential direction. Locking means 180 non-rotatably engages with inner spines of the reaction portion of the torque output device.
  • Second coupling member 150 further has a lower surface 163 which rests on an upper surface of the joint. Lower surface 163 may be substantially rough and may be made in many different ways, for example by a plurality of ridges, ripples or teeth.
  • Apparatus 1 operates in the following manner. Second coupling member 150 is applied over the threaded fastener and rests on the upper surface of the joint. First coupling member 100 is applied on the threaded fastener by screwing the first coupling member 100 until its outer surface 111 is flush with inner surface 160 of second coupling member. Then, the action portion of the torque output device engages locking means 130 of first coupling member 100. The reaction portion of the torque output device engages locking means 180 of second coupling member 150. The action portion of the torque output device rotates first coupling member 100. During rotation of first coupling member 100, it: slides on the smooth interface between its outer surface 111 and inner surface 160 of second coupling member; and turns around the threaded fastener, which is stretched to a predetermined load, to tighten the joint. Simultaneously, second coupling member 150: embeds itself, via lower surface 163, on the upper surface of the joint; and, together with the reaction portion of the torque output device does not turn. When the threaded fastener is sufficiently stretched (tightened), the torque output device is disengaged.
  • FIGS. 4-5 show an apparatus for torsionally coupling a threaded fastener and a torque output device in accordance with a second embodiment of the present invention.
  • A conical geometry for torsional coupling of a threaded fastener and a torque output device yields a better load stress distribution. This embodiment introduces a low profile coupling geometry that will allow a torsion-coupling feature on the top of a stud to be formed internally by distributing stresses more evenly and therefore allowing for a more efficient packaging of the coupling features.
  • A stepped 12-point hole in the top surface of the stud is used for torsion coupling with a three-piece mechanical stud-tensioning device. An internal 12-point feature is placed in the top of the stud at a shallow depth. Successive 12-point features are progressively added at smaller 12-point sizes each at shallow depths and each starting where the preceding 12-point stopped. The pattern of decreasing 12-point geometry will decrease until space restricts the addition of another 12 point. Varying the depth and size change from one 12-point feature to the next will increase or decrease the nominal angle of the conical shape these features form. A shaft with external matching features for each of the steps will allow for evenly distributed stress distribution and high torsion strength while decreasing the mass and volume of the studs. The 12-point feature can be substituted with any geometry that will prevent rotation between the two parts.
  • The step depth can be sized infinitely small to create a smooth taper. Mixed step sizes and geometries can be used to optimize production of such a coupling.
  • In standard bolting industry terms, apparatus 1 includes a nut (first coupling member 100) as an inner sleeve and a washer (second coupling member 150) as an outer sleeve. The standard bolting flat surface nut and washer interface is changed. The torque reaction point is moved upwards, as compared to conventional three-piece fasteners. Apparatus of the present invention utilize the geometry of conventional three-piece fasteners, which allows for surface conditioning of the outer sleeve to prevent galling, leveraged with a conventional nut and washer arrangement, which retains radial strain such that the inner sleeve may be surface conditioned with minimal risk of fracture.
  • Note that various types of components of apparatus of the present invention may be used, including: fastener categories, for example wood screws, machine screws, thread cutting machine screws, sheet metal screws, self drilling SMS, hex bolts, carriage bolts, lag bolts, socket screws, set screws, j-bolts, shoulder bolts, sex screws, mating screws, hanger bolts, etc.; head styles, for example flat, oval, pan, truss, round, hex, hex washer, slotted hex washer, socket cap, button, etc.; drive types, for example phillips and frearson, slotted, combination, socket, hex, allen, square, torx, multiple other geometries, etc.; nut types, for example hex, jam, cap, acorn, flange, square, torque lock, slotted, castle, etc.; washer types, for example flat, fender, finishing, square, dock, etc.; and thread types, for example sharp V, American national, unified, metric, square, ACME, whitworth standard, knuckle, buttress, single, double, triple, double square, triple ACME, etc.
  • When used in this specification and claims, the terms “tapered”, “taperedly” and variations thereof mean that the specified features, steps, quantities, dimensions, geometries and intervals may, from one end to another, either gradually, suddenly, step-wisely, and/or conically: be inconsistent, vary, narrow, diminish, decrease, get smaller, thin out, etc.
  • It will be understood that each of the elements described above, or two or more together, may also find a useful application in other types of constructions differing from the types described above. The features disclosed in the foregoing description, or the following claims, or the accompanying drawings, expressed in their specific forms or in terms of a means for performing the disclosed function, or a method or process for attaining the disclosed result, as appropriate, may, separately, or in any combination of such features, be utilized for realizing the invention in diverse forms thereof.
  • While the invention has been illustrated and described as embodied in a fluid operated tool, it is not intended to be limited to the details shown, since various modifications and structural changes may be made without departing in any way from the spirit of the present invention.
  • Without further analysis, the foregoing will so fully reveal the gist of the present invention that others can, by applying current knowledge, readily adapt it for various applications without omitting features that, from the standpoint of prior art, fairly constitute essential characteristics of the generic or specific aspects of this invention.
  • When used in this specification and claims, the terms “comprising”, “including”, “having” and variations thereof mean that the specified features, steps or integers are included. The terms are not to be interpreted to exclude the presence of other features, steps or components.

Claims (13)

What is claimed is:
1-14. (canceled)
15. An apparatus for coupling a threaded fastener and a torque input device including:
a first coupling member having a tapered external surface; and
a second coupling member having an inversely tapered internal surface non-rotatably engagable with the tapered external surface of the first coupling member.
16. An apparatus according to claim 15 wherein a load bearing surface area between the first and the second coupling members is increased without increasing the diameter of the apparatus.
17. An apparatus according to claim 15 claim wherein a load bearing surface area between the first and the second coupling members is in three dimensional space rather than a two dimensional plane.
18. An apparatus according to claim 15 wherein the tapered external surface of the first coupling member and the inversely tapered internal surface of the second coupling member are angled.
19. An apparatus according to claim 15 wherein the tapered external surface of the first coupling member and the inversely tapered internal surface of the second coupling member are shaped as frustums of an angled stepped cone.
20. An apparatus according to claim 15 wherein the tapered external surface of the first coupling member and the inversely tapered internal surface of the second coupling member are shaped as frustums of an angled stepped cone having variable step quantities, dimensions, geometries, angles and/or intervals.
21. An apparatus according to claim 15 wherein the first coupling member substantially surrounds the second coupling member.
22. An apparatus according to claim 15 wherein the torque input device is either pneumatically, electrically, hydraulically or manually driven.
23. An apparatus according to claim 15 wherein the first coupling member is non-rotatably engagable with an action portion of a torque input device.
24. An apparatus according to claim 15 wherein the second coupling member, when rotated by an action portion of the torque input device, applies a load to the threaded fastener.
25. An apparatus for coupling a torque input device and a threaded fastener of the kind having a shank with a tapered axial bore, the apparatus including a coupling member having an inversely tapered external surface, non-rotatably engagable with the tapered axial bore of the threaded fastener.
26. A geometry for coupling a threaded fastener and a torque input device including:
a first coupling member having a tapered external surface; and
a second coupling member having an inversely tapered internal surface non-rotatably engagable with the tapered external surface of the first coupling member.
US13/814,226 2010-08-02 2011-08-02 Apparatus for tightening threaded fasteners Abandoned US20130202384A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/814,226 US20130202384A1 (en) 2010-08-02 2011-08-02 Apparatus for tightening threaded fasteners

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US37001510P 2010-08-02 2010-08-02
PCT/IB2011/002658 WO2012017331A2 (en) 2010-08-02 2011-08-02 Apparatus for tightening threaded fasteners
US13/814,226 US20130202384A1 (en) 2010-08-02 2011-08-02 Apparatus for tightening threaded fasteners

Publications (1)

Publication Number Publication Date
US20130202384A1 true US20130202384A1 (en) 2013-08-08

Family

ID=45559876

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/814,226 Abandoned US20130202384A1 (en) 2010-08-02 2011-08-02 Apparatus for tightening threaded fasteners
US13/814,229 Active US10030688B2 (en) 2010-08-02 2012-02-02 Apparatus for tightening threaded fasteners
US15/924,986 Abandoned US20180209469A1 (en) 2010-08-02 2018-03-19 Apparatus for tightening threaded fasteners

Family Applications After (2)

Application Number Title Priority Date Filing Date
US13/814,229 Active US10030688B2 (en) 2010-08-02 2012-02-02 Apparatus for tightening threaded fasteners
US15/924,986 Abandoned US20180209469A1 (en) 2010-08-02 2018-03-19 Apparatus for tightening threaded fasteners

Country Status (21)

Country Link
US (3) US20130202384A1 (en)
EP (2) EP2601419B1 (en)
JP (1) JP2013539841A (en)
KR (2) KR102095849B1 (en)
CN (2) CN103168178A (en)
AR (1) AR089892A1 (en)
AU (2) AU2011287295B2 (en)
BR (1) BR112013002666B1 (en)
CA (3) CA2807350A1 (en)
CL (2) CL2013000330A1 (en)
CO (2) CO6680681A2 (en)
DE (2) DE112011102590T5 (en)
EA (3) EA201300099A1 (en)
ES (1) ES2558119T3 (en)
HU (1) HUE027346T2 (en)
MX (2) MX357042B (en)
PE (2) PE20131194A1 (en)
PL (1) PL2598759T3 (en)
PT (1) PT2598759E (en)
WO (1) WO2012017331A2 (en)
ZA (2) ZA201300890B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11396902B2 (en) 2019-06-20 2022-07-26 The Reaction Washer Company, Llc Engaging washers
US11534894B2 (en) 2020-11-17 2022-12-27 The Reaction Washer Company Llc Socket devices and methods of use

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016176518A2 (en) * 2015-04-28 2016-11-03 HYTORC Division Unex Corporation Apparatus for tightening threaded fasteners
AU2014305944B2 (en) * 2013-08-06 2018-07-05 HYTORC Division Unex Corporation Apparatus for tightening threaded fasteners
US20150202748A1 (en) * 2014-01-22 2015-07-23 William Michael Trudeau System for sprinkler housing removal
CN104265747A (en) * 2014-09-15 2015-01-07 贵州航天精工制造有限公司 Rated pretightening force light bolt connection piece and machining method thereof
USD809883S1 (en) 2015-01-20 2018-02-13 William Michael Trudeau Sprinkler housing removal tool
CN107708933A (en) * 2016-03-02 2018-02-16 凯特克分部尤尼克斯公司 Threaded fastener with coefficient of friction increase processing structure
WO2018160230A1 (en) * 2017-03-02 2018-09-07 HYTORC Division Unex Corporation Two-part tapered thread nut assembly
KR101677667B1 (en) * 2016-03-03 2016-11-21 성산코리아 주식회사 Pipe fixture
CN109804168B (en) * 2016-08-16 2021-09-07 凯特克分部尤尼克斯公司 Device for fastening and/or aligning objects
US10513147B1 (en) * 2016-08-22 2019-12-24 AGA Tools & Products, Inc. Wheel lock bolt removal tool and method of use
CN109210060A (en) * 2018-09-12 2019-01-15 福建龙溪轴承(集团)股份有限公司 A kind of elastic collar structure and a kind of inner-outer sleeve disassembly and assembly structure
WO2021013329A1 (en) * 2019-07-22 2021-01-28 Sandvik Srp Ab Retaining assembly for inner crushing shell of gyratory crusher
CN110523860B (en) * 2019-08-22 2023-12-01 迅达(中国)电梯有限公司 Adjusting tool and method for using adjusting tool
CN113883153B (en) * 2021-10-08 2023-06-16 河南航天精工制造有限公司 Method for reducing locking moment of self-locking nut and self-locking nut assembly

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1969223A (en) * 1933-02-16 1934-08-07 Kotvis William Lock nut
US2908309A (en) * 1956-10-30 1959-10-13 Adelaide E Brill Threadless plastic nut having stepped bore sections
US6685412B2 (en) * 2001-10-19 2004-02-03 Cross Medical Products, Inc. Multi-lobe torque driving recess and tool in particular for an orthopedic implant screw
US6988432B2 (en) * 2003-11-06 2006-01-24 Uniscrew Worldwide, Inc. Multi-tiered-recess screws
US7188554B2 (en) * 2005-06-09 2007-03-13 Atlas Spine, Inc. Medical fastener and tool

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1389468A (en) * 1920-07-28 1921-08-30 William R White Safety pneumatic wrench
GB556145A (en) * 1942-02-19 1943-09-22 Frederick William Dixon Improvements in or relating to grub screws adapted to be rotated by some form of key
US2397216A (en) * 1944-06-16 1946-03-26 Domnic V Stellin Socket head screw
US3127798A (en) * 1961-09-29 1964-04-07 Michael J Gol Telescoping inserted wrenches
JPS526967U (en) * 1975-07-01 1977-01-18
US4258596A (en) * 1978-01-18 1981-03-31 Southco, Inc. Tamper-resistant fastener
GB2037390A (en) * 1978-12-22 1980-07-09 B & A Eng Co Fixing device and tool therefor
EP0287381A3 (en) * 1987-04-16 1990-06-13 Supedo Pty. Limited Fastening device
EP0500814A4 (en) * 1990-08-17 1992-11-19 John K. Junkers Fastening device
US5112176A (en) * 1991-05-09 1992-05-12 Mcgard, Inc. Shrouded anti-theft locknut
DE4209265A1 (en) * 1991-12-21 1993-06-24 Dyckerhoff & Widmann Ag DEVICE FOR ANCHORING A ROD-SHAPED TENSION LINK MADE OF FIBER COMPOSITE MATERIAL
US5318397A (en) 1992-05-07 1994-06-07 Junkers John K Mechanical tensioner
DE9411853U1 (en) * 1993-11-20 1994-09-29 Klöber, Johannes, 58256 Ennepetal Overload protection device
GB2285940A (en) * 1994-01-27 1995-08-02 Malcolm Turner Fastening system
US5640749A (en) 1994-10-21 1997-06-24 Junkers; John K. Method of and device for elongating and relaxing a stud
US5622465A (en) 1996-04-26 1997-04-22 Junkers; J. K. Lock nut
US6273659B1 (en) 1997-02-17 2001-08-14 Power Tool Holders Incorporated Locking mechanism for a rotary working member
GB2329947A (en) * 1997-10-06 1999-04-07 Harry Robinson Stepped driving recess and driving tool for a fastener
US5888041A (en) 1997-10-17 1999-03-30 Junkers; John K. Lock nut
US6254322B1 (en) 1998-03-03 2001-07-03 John K. Junkers Bolt with a bolt member, a washer and a sleeve for applying forces to the bolt member and the sleeve
US6092968A (en) * 1998-05-29 2000-07-25 Mcgard, Inc. Fastener structure
US6220801B1 (en) 1999-02-02 2001-04-24 Chung-I Lin Free-running-on, locking-off and tension directly indicated locking nut (frolo & TDI locking nut)
GB2361043A (en) * 2000-04-07 2001-10-10 Uniscrew Ltd Driving head for a fastener having at least two recesses
US6435791B1 (en) * 2000-05-19 2002-08-20 Maclean-Fogg Company Wheel fastener assemblies
US6461093B1 (en) * 2000-09-05 2002-10-08 John K. Junkers Threaded fastener
US6948408B1 (en) * 2001-08-17 2005-09-27 Howard Lee Flat ended double cube shaped tipped, screwdriver system
GB2403441B (en) * 2001-09-17 2005-02-16 Uni Screw Worldwide Inc Method of manufacturing a cold forming punch
US7125213B2 (en) 2001-12-06 2006-10-24 Junkers John K Washer, fastener provided with a washer, method of and power tool for fastening objects
US7066053B2 (en) * 2002-03-29 2006-06-27 Junkers John K Washer, fastener provided with a washer
GB2390127B (en) 2002-05-10 2005-06-15 Uniscrew Ltd Integrated fastening system
US7029216B2 (en) * 2003-09-08 2006-04-18 Fluidmaster, Inc. Torque-limiting locknut
US7793731B2 (en) * 2004-06-22 2010-09-14 Boyd Anthony R Entry swivel apparatus and method
JP2006090456A (en) * 2004-09-24 2006-04-06 Nitto Seiko Co Ltd Screw with driving hole
US20070065253A1 (en) * 2005-08-17 2007-03-22 Uni-Screw Worldwide, Inc. Fasteners with multi-tiered recesses and drivers with multi-tiered driving tips
US20070108402A1 (en) * 2005-11-14 2007-05-17 Jeremiah Davis Sealed hub for motor actuated valve
US20070163396A1 (en) 2006-01-17 2007-07-19 Chih-Ching Hsieh Connection device for connecting socket with pneumatic tools
JP4351710B2 (en) 2007-04-05 2009-10-28 株式会社トープラ Screws with bit engagement holes and a group of bit engagement hole screws and driver bits
CN201129349Y (en) * 2007-07-30 2008-10-08 崔宝林 Combined fastening break clip type anti-unloading anti-theft nut
DE102007053578A1 (en) * 2007-11-07 2009-05-14 ITW Oberflächentechnik GmbH & Co. KG Automatic spray gun for coating liquid and its combination with a robot
FR2930805B1 (en) * 2008-04-30 2014-11-28 Gay Pierre METHOD AND ARRANGEMENT FOR TIGHTENING A HARDWARE ELEMENT, FIXING AND CLAMPING DEVICE
JP2010054049A (en) * 2008-07-31 2010-03-11 Katsuyuki Totsu Bolt, socket wrench adapted to the same and combination thereof
US7755559B2 (en) 2008-12-09 2010-07-13 Mobile Mark, Inc. Dual-band omnidirectional antenna
US8327943B2 (en) * 2009-11-12 2012-12-11 Vetco Gray Inc. Wellhead isolation protection sleeve

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1969223A (en) * 1933-02-16 1934-08-07 Kotvis William Lock nut
US2908309A (en) * 1956-10-30 1959-10-13 Adelaide E Brill Threadless plastic nut having stepped bore sections
US6685412B2 (en) * 2001-10-19 2004-02-03 Cross Medical Products, Inc. Multi-lobe torque driving recess and tool in particular for an orthopedic implant screw
US6988432B2 (en) * 2003-11-06 2006-01-24 Uniscrew Worldwide, Inc. Multi-tiered-recess screws
US7188554B2 (en) * 2005-06-09 2007-03-13 Atlas Spine, Inc. Medical fastener and tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11396902B2 (en) 2019-06-20 2022-07-26 The Reaction Washer Company, Llc Engaging washers
US11534894B2 (en) 2020-11-17 2022-12-27 The Reaction Washer Company Llc Socket devices and methods of use

Also Published As

Publication number Publication date
CN103119309A (en) 2013-05-22
CA2806867A1 (en) 2013-02-07
EA201691593A1 (en) 2017-05-31
PT2598759E (en) 2016-02-29
ES2558119T3 (en) 2016-02-02
EA201300099A1 (en) 2014-02-28
EP2598759B1 (en) 2015-11-04
EP2601419B1 (en) 2017-05-31
WO2012017331A9 (en) 2012-04-05
MX2013001307A (en) 2016-09-21
KR102083876B1 (en) 2020-03-03
MX357042B (en) 2018-06-25
ZA201301078B (en) 2014-07-30
CA2806867C (en) 2021-06-01
EP2598759A1 (en) 2013-06-05
BR112013002666A2 (en) 2016-06-07
KR20140037004A (en) 2014-03-26
AU2011287295A1 (en) 2013-03-21
PL2598759T3 (en) 2016-06-30
DE112011102590T5 (en) 2014-02-13
PE20190667A1 (en) 2019-05-10
AR089892A1 (en) 2014-09-24
WO2012017331A2 (en) 2012-02-09
MX357379B (en) 2018-07-06
DE112012000062T5 (en) 2013-08-01
ZA201300890B (en) 2014-09-25
US20130180369A1 (en) 2013-07-18
BR112013002666B1 (en) 2021-04-27
HUE027346T2 (en) 2016-09-28
AU2013200505A1 (en) 2013-02-28
EA031672B1 (en) 2019-02-28
PE20131194A1 (en) 2013-10-20
MX2013001414A (en) 2013-08-08
US20180209469A1 (en) 2018-07-26
CL2013000330A1 (en) 2014-01-17
CA3113351A1 (en) 2013-02-07
JP2013539841A (en) 2013-10-28
CN103119309B (en) 2016-04-13
EA028900B1 (en) 2018-01-31
EP2601419A2 (en) 2013-06-12
WO2012017331A3 (en) 2012-06-07
CO6680681A2 (en) 2013-05-31
EA201300082A1 (en) 2013-09-30
AU2011287295B2 (en) 2016-03-10
CN103168178A (en) 2013-06-19
US10030688B2 (en) 2018-07-24
CO6890086A2 (en) 2014-03-10
CL2013000343A1 (en) 2013-11-15
KR20140046392A (en) 2014-04-18
CA2807350A1 (en) 2012-02-09
KR102095849B1 (en) 2020-04-01

Similar Documents

Publication Publication Date Title
EP2601419B1 (en) Apparatus for tightening threaded fasteners
US7462007B2 (en) Reactive biasing fasteners
JP5204856B2 (en) Improved nuts and bolts
AU4883600A (en) Fastening device
US20220016750A1 (en) Torque-angle structural fastening system
US20230137555A1 (en) Bolts and bolt and nut fasteners
JP2008208983A (en) Slack preventing structure for screw with nut having inclined screw bottom portion
US9945413B2 (en) Locking fastener
EP2688713B1 (en) Torque-angle structural fastening system
WO2013019278A1 (en) Apparatus for tightening threaded fasteners
AU2017276291B2 (en) Apparatus for tightening threaded fasteners
JPS63502920A (en) Tightening method for multiple workpieces and fasteners used for this

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION