US20130199762A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
US20130199762A1
US20130199762A1 US13/840,187 US201313840187A US2013199762A1 US 20130199762 A1 US20130199762 A1 US 20130199762A1 US 201313840187 A US201313840187 A US 201313840187A US 2013199762 A1 US2013199762 A1 US 2013199762A1
Authority
US
United States
Prior art keywords
heat exchanger
heat transfer
air conditioner
transfer tubes
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/840,187
Inventor
Sangmu Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to US13/840,187 priority Critical patent/US20130199762A1/en
Publication of US20130199762A1 publication Critical patent/US20130199762A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0003Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station characterised by a split arrangement, wherein parts of the air-conditioning system, e.g. evaporator and condenser, are in separately located units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • B21D53/08Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of both metal tubes and sheet metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/34Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely
    • F28F1/36Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely the means being helically wound fins or wire spirals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • F28F1/405Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element and being formed of wires
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • F28F1/422Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element with outside means integral with the tubular element and inside means integral with the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • F28F13/187Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites

Definitions

  • the present invention relates to an air conditioner using a heat exchanger having heat transfer tubes with grooves inside the tubes.
  • a heat-pump type air conditioner using a fin tube type heat exchanger constituted by fins arranged at certain intervals, between which a gas (air) flows, and heat transfer tubes which have spiral grooves on their inner faces, perpendicularly pierce each of the fins and a refrigerant flows inside, is known.
  • the air conditioner is generally provided with an evaporator for evaporating the refrigerant and cooling air, water and the like by evaporation heat at that time; a compressor for compressing the refrigerant discharged from the evaporator, raising its temperature and supplying it to a condenser; the condenser for heating the air, and water and the like by heat of the refrigerant; an expansion valve for expanding the refrigerant discharged from the condenser, lowering its temperature and supplying it to the evaporator, and a four-way valve for switching between a heating operation and a cooling operation by switching a direction in which the refrigerant in a refrigerating cycle flows.
  • the heat transfer tube is incorporated in the condenser and the evaporator so that the refrigerant containing refrigerating machine oil flows inside thereof (See Patent Document 1, for example).
  • the number of paths in an outdoor heat exchanger is set to be larger than the number of paths in an indoor heat exchanger so that a pressure loss inside the tubes of the outdoor heat exchanger in a heating operation is reduced.
  • the pressure loss inside the tubes in the outdoor heat exchanger is increased according to increase of a heat transfer rate inside the tubes of the outdoor heat exchanger, and a coefficient of performance (COP) is lowered.
  • APE annual performance factor
  • the present invention was made in view of the above problems and an object thereof is to provide an air conditioner that can increase heat exchange capacity of an indoor heat exchanger without increasing a pressure loss inside tubes of an outdoor-heat exchanger.
  • An air conditioner comprises an indoor machine equipped with an indoor heat exchanger constituted by a plurality of heat transfer tubes which have spiral grooves formed with a predetermined lead angle on the faces inside the tubes and which pierce a plurality of fins, and an outdoor machine equipped with an outdoor heat exchanger constituted by a plurality of heat transfer tubes which have spiral grooves formed with a lead angle smaller than that of the heat transfer tubes used for said indoor heat exchanger and which pierce a plurality of fins.
  • the lead angle of the spiral grooves on the inner faces of the heat transfer tubes of the outdoor heat exchanger is set to be smaller than the lead angle of the spiral grooves on the inner faces of the heat transfer tubes of the indoor heat exchanger, a flow that would surmount the spiral grooves of the heat transfer tubes of the outdoor heat exchanger is hardly generated. Therefore a pressure loss inside the tubes is not increased, and the heat exchange rate can be improved.
  • the lead angle of the spiral grooves on the inner faces of the heat transfer tubes of the indoor heat exchanger is increased so that a liquid film generated between the spiral grooves of the heat transfer tubes of the indoor heat exchanger becomes thin, the heat exchange rate can be improved and an air conditioner with high efficiency can be obtained.
  • FIG. 1 is a partially enlarged view of a section in a vertical direction seen from a front side, of an indoor heat exchanger of an air conditioner according to an embodiment 1 of the present invention.
  • FIG. 2 is a partially enlarged view of the section in the vertical direction seen from the front side, of an outdoor heat exchanger of the air conditioner according to the embodiment 1 of the present invention.
  • FIG. 3 is a partially enlarged view of a section in a vertical direction seen from a side face side, of an indoor heat exchanger of an air conditioner according to an embodiment 2 of the present invention.
  • FIG. 4 is a partially enlarged view of the section in the vertical direction seen from the side face side, of an outdoor heat exchanger of the air conditioner according to the embodiment 2 of the present invention.
  • FIG. 5 is a partially enlarged view of a section in a vertical direction seen from a side face side, of an indoor heat exchanger of an air conditioner according to an embodiment 3 of the present invention.
  • FIG. 6 is a partially enlarged view of the section in the vertical direction seen from the side face side, of an outdoor heat exchanger of the air conditioner according to the embodiment 3 of the present invention.
  • FIG. 7 is partially enlarged views of a section in the vertical direction seen from the front side, illustrating a manufacturing procedure of a heat exchanger of an air conditioner according to an embodiment 4 of the present invention.
  • FIG. 1 is a partially enlarged view of a section in a vertical direction seen from a front side, of an indoor heat exchanger of an air conditioner according to an embodiment 1 of the present invention
  • FIG. 2 is a partially enlarged view of the section in the vertical direction seen from the front side, of an outdoor heat exchanger, both of which illustrate a section of adjacent heat transfer tubes and fins between them.
  • a fin 11 of an indoor heat exchanger 10 and a fin 21 of an outdoor heat exchanger 20 are both made of a metal material such as copper or copper alloy, aluminum or aluminum alloy or the like having favorable heat transfer properties, while heat transfer tubes 12 A, 22 A piercing each of the fins 11 , 21 are also made of a metal material such as copper or copper alloy, aluminum or aluminum alloy or the like having favorable heat transfer properties, and spiral grooves 13 A, 23 A with lead angles Ra, Rb different from each other are formed on an inner face of each of the heat transfer tubes 12 A, 22 A.
  • the air conditioner is constituted by an indoor machine equipped with the indoor heat exchanger 10 using the heat transfer tube 12 A having the spiral grooves 13 A with the lead angle Ra of 35 to 45 degrees on the tube inner face, and an outdoor machine equipped with the outdoor heat exchanger 20 using the heat transfer tube 22 A with the spiral grooves 23 A with the lead angle Rb smaller (25 to 35 degrees) than that of the heat transfer tube 12 A is mounted.
  • the lead angle Rb of the spiral groove 23 A of the heat transfer tube 22 A of the outdoor heat exchanger 20 is set to be in a range of 25 to 35 degrees because if a lower limit of the lead angle Rb of the spiral grooves 23 A is set at 25 degrees or below, a drop of the heat exchange rate becomes marked and if an upper limit of the lead angle Rb of the spiral grooves 23 A is set at 35 degrees or above, the pressure loss inside the tubes is increased. As a result, a flow that would surmount the spiral grooves 23 A is hardly generated, the heat exchange rate can be improved without an increase in the pressure loss inside the tubes, and an air conditioner with high efficiency can be obtained.
  • the lower limit of the lead angle of the spiral groove 13 A of the heat transfer tube 12 A in the indoor heat exchanger 10 is set at 35 degrees in order to further improve the heat transfer performance inside the tubes, while the upper limit of the lead angle Ra of the spiral groove 13 A is set at 45 degrees because if it is set to more than that, the increase in the pressure loss inside the tubes would become marked.
  • the heat transfer performance inside the tubes of the indoor heat exchanger 10 can be further improved, and a heat exchanger with high efficiency can be obtained.
  • the lead angle Ra of the spiral grooves 13 A on the inner face of the heat transfer tube 12 A in the indoor heat exchanger 10 is increased so that the liquid film generated between the spiral grooves 13 A is made thin, the heat exchange rate can be improved, and an air conditioner with high efficiency can be obtained.
  • the heat exchanger of this embodiment is used as the evaporator or the condenser in a refrigerating cycle in which a compressor, a condenser, a throttling device, and an evaporator are connected in series by piping, and a refrigerant is used as a working fluid, so as to contribute to improvement in the coefficient of performance (COP).
  • a refrigerant any of an HC single refrigerant or a mixed refrigerant containing HC, R32, R410A, R407C, and carbon dioxide may be used, and the efficiency of heat exchange between these refrigerants and air is improved.
  • FIG. 3 is a partially enlarged view of a section in the vertical direction seen from the side face side, of an indoor heat exchanger in an air conditioner according to an embodiment 2 of the present invention
  • FIG. 4 is a partially enlarged view of the section in the vertical direction seen from the side face side, of the outdoor heat exchanger, and in each figure, the same reference numerals are given to the same portions as in the above-mentioned embodiment 1.
  • heat transfer tubes 12 B, 22 B are made of a metal material such as copper or copper alloy, aluminum or aluminum alloy or the like with favorable heat transfer property as in the above-mentioned embodiment 1 and used as heat transfer tubes for a condenser or a evaporator of a heat exchanger using a refrigerant containing refrigerating machine oil.
  • spiral grooves 13 B, 23 B are formed, respectively, and a depth Hb of the spiral grooves 23 B of the heat transfer tube 22 B in the outdoor heat exchanger ( FIG. 4 ) is set to be larger than a depth Ha(Hb>Ha) of the spiral grooves 13 B of the heat transfer tube 12 B in the indoor heat exchanger ( FIG. 3 ).
  • the depth Hb of the spiral grooves 23 B of the outdoor heat exchanger is preferably 0.1 to 0.25 mm. Thereby, the pressure loss inside the tubes is not increased and the heat transfer performance can be further improved. However, if the groove depth is set at 0.25 mm or more, the pressure loss inside the tubes is increased.
  • the depth Ha of the spiral grooves 23 B of the heat transfer tube 12 B in the indoor heat exchanger is preferably 0.08 to 0.2 mm. Thereby, the pressure loss inside the tubes can be reduced.
  • the heat transfer property inside the tubes of the outdoor heat exchanger can be further improved, and an air conditioner with high efficiency can be obtained.
  • the constitution of the spiral grooves 13 B, 23 B of this embodiment can be applied to the above-mentioned embodiment 1 as they are.
  • degree of design freedom is expanded.
  • FIG. 5 is a partially enlarged view of a section in the vertical direction seen from the side face side, of an indoor heat exchanger of an air conditioner according to an embodiment 3 of the present invention
  • FIG. 6 is a partially enlarged view of a section in the vertical direction seen from the side face side, of its outdoor heat exchanger, and in each figure, the same reference numerals are given to the same portions as in the above-mentioned embodiment 1.
  • the heat transfer tubes 12 C, 22 C are made of a metal material such as copper or copper alloy, aluminum or aluminum alloy or the like with favorable heat transfer property similarly to the above-mentioned embodiment 1 and is used as a heat transfer tubes for a condenser or an evaporator of a heat exchanger using a refrigerant containing refrigerating machine oil.
  • spiral grooves 13 C, 23 C are formed, respectively, and it is set so that the number of threads of the spiral grooves 23 C in the heat transfer tube 22 C of the outdoor heat exchanger is larger than the number of threads of the spiral grooves 130 in the heat transfer tube 12 C of the indoor heat exchanger.
  • the number of threads of the spiral grooves 23 C in the heat transfer tube 22 C of the outdoor heat exchanger is preferably 60 to 80. Thereby, the pressure loss inside the tubes is not increased and the heat transfer performance can be improved. However, if the number of threads is 80 or more, the pressure loss inside the tubes is increased.
  • the number of threads of the spiral grooves 13 C in the heat transfer tube 12 C of the indoor heat exchanger is preferably 40 to 60. Thereby, the pressure loss inside the tubes can be reduced.
  • the heat transfer performance inside the tubes of the outdoor heat exchanger can be further improved, and an air conditioner with high efficiency can be obtained.
  • the constitution of the spiral grooves 13 C, 23 C of this embodiment can be applied to the above-mentioned embodiments 1 and 2 as they are.
  • degree of design freedom is further expanded.
  • FIG. 7 is partially enlarged views of a section in the vertical direction seen from the front face side, illustrating a manufacturing procedure of a heat exchanger of an air conditioner according to an embodiment 4 of the present invention.
  • the same reference numerals are given to the same portions as in the above-mentioned first embodiment. Since the indoor heat exchanger and the outdoor heat exchanger are both manufactured by the same procedure, the indoor heat exchanger is used as an example for explanation.
  • each heat transfer tube 12 D is machined by bending so as to have a hairpin shape at the respective center part in the longitudinal direction with a predetermined bending pitch, so as to manufacture a plurality of hairpin tubes.
  • these hairpin tubes are made to pierce a plurality of fins 11 arranged in parallel with each other with predetermined intervals and then, using a mechanical tube expansion method in which a tube expansion ball 30 is pushed into each hairpin tube by a rod 31 or a hydraulic pressure tube expansion method in which the tube expansion ball 30 is pushed into the hairpin tube by a hydraulic pressure of a fluid 32 , the hairpin tube is expanded and each fin 11 and the hairpin tube, that is, the heat transfer tube 12 D, are joined together.
  • the fin 11 and the hairpin tube are joined only by tube expansion of the hairpin tube, but if a tube expansion rate is not specified, there will be fluctuation in products. Therefore, in this embodiment 5, the tube expansion rate of the heat transfer tube in the indoor heat exchanger is specified.
  • the tube expansion rate at the time when the hairpin tube is expanded by the mechanical tube expansion method or hydraulic pressure tube expansion method is set at 105.5 to 106.5% for the heat transfer tube of the indoor heat exchanger.
  • the fins 11 and the hairpin tube are joined only by tube expansion of the hairpin tube, but if a tube expansion rate is not specified, there will be fluctuation in products. Therefore, in this embodiment 6, the tube expansion rate of the heat transfer tube in the outdoor heat exchanger is specified.
  • the tube expansion rate at the time when the hairpin tube is expanded by the mechanical tube expansion method or hydraulic pressure tube expansion method is set at 106 to 107.5% for the heat transfer tube of the outdoor heat exchanger.
  • the property of close contact between the heat transfer tube and the fins of the outdoor heat exchanger is improved, and an air conditioner with high efficiency can be obtained.
  • the number of threads of the spiral grooves of the heat transfer tube in the outdoor heat exchanger is larger than the number of threads of the spiral grooves of the heat transfer tube in the indoor heat exchanger as mentioned above and thus, a crush does not occur at the top portions of the spiral grooves.
  • an inner diameter of the heat transfer tube is increased, and the pressure loss inside the tubes is reduced.
  • the fins 11 and the hairpin tube (heat transfer tube 12 D) are joined only by tube expansion of the heat transfer tube, but the heat transfer tube 12 D and the fins 11 may be completely joined further by brazing after the joining of the fins 11 and the hairpin tube (heat transfer tube 12 D) by tube expansion, by which reliability can be further improved.
  • the heat exchangers in comparative examples 1 to 3 respectively having the indoor lead angle of 45 degrees and the outdoor lead angle of 45 degrees, the indoor lead angle of 35 degrees and the outdoor lead angles of 35 degrees, and the indoor lead angle of 25 degrees and the outdoor lead angle of 25 degrees are manufactured.
  • the heat exchangers in the example 1 and the example 2 both have higher coefficients of performance (COP) than those of the comparative examples 1 to 3, and the heat transfer performance inside the tubes is improved.
  • COP coefficients of performance
  • heat exchangers of an example 3 and an example 4 respectively having a depth of the spiral grooves in the heat transfer tube of the indoor heat exchanger (hereinafter referred to as an “indoor groove depth) of 0.08 mm and a depth of the spiral grooves in the heat transfer tube of the outdoor heat exchanger (hereinafter referred to as an “outdoor groove depth”) of 0.1 mm, and the indoor groove depth of 0.2 mm and the outdoor groove depth of 0.25 mm are manufactured.
  • the heat exchangers in comparative examples 4 to 6 respectively having the indoor groove depth of 0.08 mm and the outdoor groove depth of 0.08 mm, the indoor groove depth of 0.2 mm and the outdoor groove depth of 0.2 mm, and the indoor groove depth of 0.25 mm and the outdoor groove depth of 0.25 mm are manufactured.
  • Example 3 0.08 mm 0.1 mm 100.4 100.2 Comparative 0.2 mm 0.2 mm 99.7 99.9
  • Example 5 Example 4 0.2 mm 0.25 mm 100.5 100.3 Comparative 0.25 mm 0.25 mm 100.0 100.0
  • Example 6 Example 6
  • the heat exchangers in the example 3 and the example 4 both have higher coefficients of performance (COP) than those of the comparative examples 4 to 6, and the heat transfer performance inside the tubes is improved.
  • COP coefficients of performance
  • the heat exchangers in comparative examples 7 to 9 respectively having the number of indoor groove threads of 40 and the number of outdoor groove threads of 40, the number of indoor groove threads of 60 and the number of outdoor groove threads of 60, and the number of indoor groove threads of 80 and the number of outdoor groove threads of 80 are manufactured.
  • the heat exchangers in the example 5 and the example 6 both have higher coefficients of performance (COP) than those of the comparative examples 7 to 9, and the heat transfer performance inside the tubes is improved.
  • COP coefficients of performance

Abstract

To increase a heat exchange capacity of an indoor heat exchanger without increasing a pressure loss inside tubes of an outdoor heat exchanger. A heat exchanger is constituted by an indoor machine equipped with an indoor heat exchanger 10 constituted by a plurality of heat transfer tubes 12A, which have a spiral grooves 13A formed with a predetermined lead angle Ra on inner faces of the tubes and are made to pierce a plurality of fins 11, and an outdoor machine equipped with an outdoor heat exchanger 20 constituted by a plurality of heat transfer tubes 22A which have a lead angle Rb of spiral grooves 23A smaller than that of a heat transfer tubes 10A used for the indoor heat exchanger 10 and are made to pierce a plurality of fins 11.

Description

    TECHNICAL FIELD
  • The present invention relates to an air conditioner using a heat exchanger having heat transfer tubes with grooves inside the tubes.
  • BACKGROUND ART
  • A heat-pump type air conditioner using a fin tube type heat exchanger constituted by fins arranged at certain intervals, between which a gas (air) flows, and heat transfer tubes which have spiral grooves on their inner faces, perpendicularly pierce each of the fins and a refrigerant flows inside, is known.
  • The air conditioner is generally provided with an evaporator for evaporating the refrigerant and cooling air, water and the like by evaporation heat at that time; a compressor for compressing the refrigerant discharged from the evaporator, raising its temperature and supplying it to a condenser; the condenser for heating the air, and water and the like by heat of the refrigerant; an expansion valve for expanding the refrigerant discharged from the condenser, lowering its temperature and supplying it to the evaporator, and a four-way valve for switching between a heating operation and a cooling operation by switching a direction in which the refrigerant in a refrigerating cycle flows. In addition, the heat transfer tube is incorporated in the condenser and the evaporator so that the refrigerant containing refrigerating machine oil flows inside thereof (See Patent Document 1, for example).
    • [Patent Document 1] Japanese Patent Laid-Open No. H6-147532 (FIGS. 1 and 13)
    DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
  • In the above-mentioned air conditioner, the number of paths in an outdoor heat exchanger is set to be larger than the number of paths in an indoor heat exchanger so that a pressure loss inside the tubes of the outdoor heat exchanger in a heating operation is reduced. However, in such an air conditioner as above in which heat transfer tubes with a lead angle of spiral grooves larger than that of the heat transfer tubes of the indoor heat exchanger are used for the outdoor heat exchanger, there is a disadvantage that the pressure loss inside the tubes in the outdoor heat exchanger is increased according to increase of a heat transfer rate inside the tubes of the outdoor heat exchanger, and a coefficient of performance (COP) is lowered. And recently, improvement in heating performance largely contributing to an annual performance factor (APE) is in demand.
  • The present invention was made in view of the above problems and an object thereof is to provide an air conditioner that can increase heat exchange capacity of an indoor heat exchanger without increasing a pressure loss inside tubes of an outdoor-heat exchanger.
  • Means for Solving the Problems
  • An air conditioner according to the present invention comprises an indoor machine equipped with an indoor heat exchanger constituted by a plurality of heat transfer tubes which have spiral grooves formed with a predetermined lead angle on the faces inside the tubes and which pierce a plurality of fins, and an outdoor machine equipped with an outdoor heat exchanger constituted by a plurality of heat transfer tubes which have spiral grooves formed with a lead angle smaller than that of the heat transfer tubes used for said indoor heat exchanger and which pierce a plurality of fins.
  • Advantages
  • According to the air conditioner of the present invention, since the lead angle of the spiral grooves on the inner faces of the heat transfer tubes of the outdoor heat exchanger is set to be smaller than the lead angle of the spiral grooves on the inner faces of the heat transfer tubes of the indoor heat exchanger, a flow that would surmount the spiral grooves of the heat transfer tubes of the outdoor heat exchanger is hardly generated. Therefore a pressure loss inside the tubes is not increased, and the heat exchange rate can be improved. As a result, since the lead angle of the spiral grooves on the inner faces of the heat transfer tubes of the indoor heat exchanger is increased so that a liquid film generated between the spiral grooves of the heat transfer tubes of the indoor heat exchanger becomes thin, the heat exchange rate can be improved and an air conditioner with high efficiency can be obtained.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a partially enlarged view of a section in a vertical direction seen from a front side, of an indoor heat exchanger of an air conditioner according to an embodiment 1 of the present invention.
  • FIG. 2 is a partially enlarged view of the section in the vertical direction seen from the front side, of an outdoor heat exchanger of the air conditioner according to the embodiment 1 of the present invention.
  • FIG. 3 is a partially enlarged view of a section in a vertical direction seen from a side face side, of an indoor heat exchanger of an air conditioner according to an embodiment 2 of the present invention.
  • FIG. 4 is a partially enlarged view of the section in the vertical direction seen from the side face side, of an outdoor heat exchanger of the air conditioner according to the embodiment 2 of the present invention.
  • FIG. 5 is a partially enlarged view of a section in a vertical direction seen from a side face side, of an indoor heat exchanger of an air conditioner according to an embodiment 3 of the present invention.
  • FIG. 6 is a partially enlarged view of the section in the vertical direction seen from the side face side, of an outdoor heat exchanger of the air conditioner according to the embodiment 3 of the present invention.
  • FIG. 7 is partially enlarged views of a section in the vertical direction seen from the front side, illustrating a manufacturing procedure of a heat exchanger of an air conditioner according to an embodiment 4 of the present invention.
  • REFERENCE NUMERALS
      • Ra, Tb: lead angle
      • 10: indoor heat exchanger
      • 11, 21: fin
      • 12A to 12C, 22A to 22C: heat transfer tube
      • 13A to 13C, 23A to 23C: spiral groove
      • 20: outdoor heat exchanger
      • Ha, Hb: depth of spiral groove
      • 30: tube expansion ball
      • 31: rod
      • 32: fluid
    BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1
  • The present invention will be described below referring to an illustrated embodiment.
  • FIG. 1 is a partially enlarged view of a section in a vertical direction seen from a front side, of an indoor heat exchanger of an air conditioner according to an embodiment 1 of the present invention, and FIG. 2 is a partially enlarged view of the section in the vertical direction seen from the front side, of an outdoor heat exchanger, both of which illustrate a section of adjacent heat transfer tubes and fins between them.
  • In the air conditioner of this embodiment, as shown in FIGS. 1 and 2, a fin 11 of an indoor heat exchanger 10 and a fin 21 of an outdoor heat exchanger 20 are both made of a metal material such as copper or copper alloy, aluminum or aluminum alloy or the like having favorable heat transfer properties, while heat transfer tubes 12A, 22A piercing each of the fins 11, 21 are also made of a metal material such as copper or copper alloy, aluminum or aluminum alloy or the like having favorable heat transfer properties, and spiral grooves 13A, 23A with lead angles Ra, Rb different from each other are formed on an inner face of each of the heat transfer tubes 12A, 22A.
  • In order to reduce a pressure loss of the heat exchanger, a better effect can be expected from an effect achieved by adjusting the lead angles Ra, Rb of the spiral grooves 13A, 23A of tube inner faces than an effect achieved by increasing the number of paths. Then, the air conditioner is constituted by an indoor machine equipped with the indoor heat exchanger 10 using the heat transfer tube 12A having the spiral grooves 13A with the lead angle Ra of 35 to 45 degrees on the tube inner face, and an outdoor machine equipped with the outdoor heat exchanger 20 using the heat transfer tube 22A with the spiral grooves 23A with the lead angle Rb smaller (25 to 35 degrees) than that of the heat transfer tube 12A is mounted.
  • In the air conditioner of this embodiment, the lead angle Rb of the spiral groove 23A of the heat transfer tube 22A of the outdoor heat exchanger 20 is set to be in a range of 25 to 35 degrees because if a lower limit of the lead angle Rb of the spiral grooves 23A is set at 25 degrees or below, a drop of the heat exchange rate becomes marked and if an upper limit of the lead angle Rb of the spiral grooves 23A is set at 35 degrees or above, the pressure loss inside the tubes is increased. As a result, a flow that would surmount the spiral grooves 23A is hardly generated, the heat exchange rate can be improved without an increase in the pressure loss inside the tubes, and an air conditioner with high efficiency can be obtained.
  • On the other hand, the lower limit of the lead angle of the spiral groove 13A of the heat transfer tube 12A in the indoor heat exchanger 10 is set at 35 degrees in order to further improve the heat transfer performance inside the tubes, while the upper limit of the lead angle Ra of the spiral groove 13A is set at 45 degrees because if it is set to more than that, the increase in the pressure loss inside the tubes would become marked. As a result, the heat transfer performance inside the tubes of the indoor heat exchanger 10 can be further improved, and a heat exchanger with high efficiency can be obtained.
  • As mentioned above, in the air conditioner of this embodiment, since the lead angle Ra of the spiral grooves 13A on the inner face of the heat transfer tube 12A in the indoor heat exchanger 10 is increased so that the liquid film generated between the spiral grooves 13A is made thin, the heat exchange rate can be improved, and an air conditioner with high efficiency can be obtained.
  • And the heat exchanger of this embodiment is used as the evaporator or the condenser in a refrigerating cycle in which a compressor, a condenser, a throttling device, and an evaporator are connected in series by piping, and a refrigerant is used as a working fluid, so as to contribute to improvement in the coefficient of performance (COP). Also, as the refrigerant, any of an HC single refrigerant or a mixed refrigerant containing HC, R32, R410A, R407C, and carbon dioxide may be used, and the efficiency of heat exchange between these refrigerants and air is improved.
  • Embodiment 2
  • FIG. 3 is a partially enlarged view of a section in the vertical direction seen from the side face side, of an indoor heat exchanger in an air conditioner according to an embodiment 2 of the present invention, FIG. 4 is a partially enlarged view of the section in the vertical direction seen from the side face side, of the outdoor heat exchanger, and in each figure, the same reference numerals are given to the same portions as in the above-mentioned embodiment 1.
  • In the air conditioner of this embodiment, too, heat transfer tubes 12B, 22B are made of a metal material such as copper or copper alloy, aluminum or aluminum alloy or the like with favorable heat transfer property as in the above-mentioned embodiment 1 and used as heat transfer tubes for a condenser or a evaporator of a heat exchanger using a refrigerant containing refrigerating machine oil.
  • When this is explained in further detail, on the inner faces of the heat transfer tube 12B of the indoor heat exchanger and the heat transfer tube 22B of the outdoor heat exchanger, spiral grooves 13B, 23B are formed, respectively, and a depth Hb of the spiral grooves 23B of the heat transfer tube 22B in the outdoor heat exchanger (FIG. 4) is set to be larger than a depth Ha(Hb>Ha) of the spiral grooves 13B of the heat transfer tube 12B in the indoor heat exchanger (FIG. 3).
  • In the air conditioner of this embodiment, the depth Hb of the spiral grooves 23B of the outdoor heat exchanger is preferably 0.1 to 0.25 mm. Thereby, the pressure loss inside the tubes is not increased and the heat transfer performance can be further improved. However, if the groove depth is set at 0.25 mm or more, the pressure loss inside the tubes is increased.
  • On the other hand, the depth Ha of the spiral grooves 23B of the heat transfer tube 12B in the indoor heat exchanger is preferably 0.08 to 0.2 mm. Thereby, the pressure loss inside the tubes can be reduced.
  • As mentioned above, by setting the depth Hb of the spiral grooves 23B of the outdoor heat exchanger larger than the depth Ha of the spiral grooves 23B of the heat transfer tube 12B in the indoor heat exchanger, the heat transfer property inside the tubes of the outdoor heat exchanger can be further improved, and an air conditioner with high efficiency can be obtained.
  • Incidentally, the constitution of the spiral grooves 13B, 23B of this embodiment can be applied to the above-mentioned embodiment 1 as they are. In that case, since a synergetic effect of the effect realized by the lead angle adjustment of the spiral grooves in the above-mentioned embodiment 1 and the effect realized by the depth adjustment of the spiral grooves of this embodiment can be obtained, degree of design freedom is expanded.
  • Embodiment 3
  • FIG. 5 is a partially enlarged view of a section in the vertical direction seen from the side face side, of an indoor heat exchanger of an air conditioner according to an embodiment 3 of the present invention, FIG. 6 is a partially enlarged view of a section in the vertical direction seen from the side face side, of its outdoor heat exchanger, and in each figure, the same reference numerals are given to the same portions as in the above-mentioned embodiment 1.
  • In the air conditioner of this embodiment, too, the heat transfer tubes 12C, 22C are made of a metal material such as copper or copper alloy, aluminum or aluminum alloy or the like with favorable heat transfer property similarly to the above-mentioned embodiment 1 and is used as a heat transfer tubes for a condenser or an evaporator of a heat exchanger using a refrigerant containing refrigerating machine oil.
  • When this is explained in further detail, on the inner faces of the heat transfer tube 12C of the indoor heat exchanger and the heat transfer tube 22C of the outdoor heat exchanger, spiral grooves 13C, 23C are formed, respectively, and it is set so that the number of threads of the spiral grooves 23C in the heat transfer tube 22C of the outdoor heat exchanger is larger than the number of threads of the spiral grooves 130 in the heat transfer tube 12C of the indoor heat exchanger.
  • In the air conditioner of this embodiment, the number of threads of the spiral grooves 23C in the heat transfer tube 22C of the outdoor heat exchanger is preferably 60 to 80. Thereby, the pressure loss inside the tubes is not increased and the heat transfer performance can be improved. However, if the number of threads is 80 or more, the pressure loss inside the tubes is increased.
  • On the other hand, the number of threads of the spiral grooves 13C in the heat transfer tube 12C of the indoor heat exchanger is preferably 40 to 60. Thereby, the pressure loss inside the tubes can be reduced.
  • As mentioned above, by setting the number of threads of the spiral grooves 23C in the heat transfer tube 22C of the outdoor heat exchanger larger than the number of threads of the spiral grooves 13C in the heat transfer tube 12C of the indoor heat exchanger, the heat transfer performance inside the tubes of the outdoor heat exchanger can be further improved, and an air conditioner with high efficiency can be obtained.
  • The constitution of the spiral grooves 13C, 23C of this embodiment can be applied to the above-mentioned embodiments 1 and 2 as they are. In that case, since a triple effect of the effect realized by the lead angle adjustment of the spiral grooves in the above-mentioned embodiment 1, the effect realized by the depth adjustment of the spiral grooves of the embodiment 2, and the effect realized by the thread number adjustment of the spiral grooves of this embodiment can be obtained, degree of design freedom is further expanded.
  • Embodiment 4
  • FIG. 7 is partially enlarged views of a section in the vertical direction seen from the front face side, illustrating a manufacturing procedure of a heat exchanger of an air conditioner according to an embodiment 4 of the present invention. In each figure, the same reference numerals are given to the same portions as in the above-mentioned first embodiment. Since the indoor heat exchanger and the outdoor heat exchanger are both manufactured by the same procedure, the indoor heat exchanger is used as an example for explanation.
  • In the air conditioner of this embodiment, the heat exchanger is manufactured by the procedure as shown in FIG. 7. First, each heat transfer tube 12D is machined by bending so as to have a hairpin shape at the respective center part in the longitudinal direction with a predetermined bending pitch, so as to manufacture a plurality of hairpin tubes. Subsequently, these hairpin tubes are made to pierce a plurality of fins 11 arranged in parallel with each other with predetermined intervals and then, using a mechanical tube expansion method in which a tube expansion ball 30 is pushed into each hairpin tube by a rod 31 or a hydraulic pressure tube expansion method in which the tube expansion ball 30 is pushed into the hairpin tube by a hydraulic pressure of a fluid 32, the hairpin tube is expanded and each fin 11 and the hairpin tube, that is, the heat transfer tube 12D, are joined together.
  • As mentioned above, in the air conditioner of this embodiment, only by expanding the hairpin tube as a constituent member of the heat exchanger using the mechanical tube expansion method or hydraulic pressure tube expansion method, a large number of fins 11 and the hairpin tubes (heat transfer tubes 12D) are joined together, which facilitates manufacture of the heat exchanger.
  • Embodiment 5
  • In the above-mentioned embodiment 4, the fin 11 and the hairpin tube (heat transfer tube 12D) are joined only by tube expansion of the hairpin tube, but if a tube expansion rate is not specified, there will be fluctuation in products. Therefore, in this embodiment 5, the tube expansion rate of the heat transfer tube in the indoor heat exchanger is specified.
  • That is, in this embodiment, the tube expansion rate at the time when the hairpin tube is expanded by the mechanical tube expansion method or hydraulic pressure tube expansion method is set at 105.5 to 106.5% for the heat transfer tube of the indoor heat exchanger. Thereby, a property of close contact between the heat transfer tube and the fins of the indoor heat exchanger is improved, and an air conditioner with high efficiency can be obtained. However, if the tube expansion rate of the heat transfer tube in the indoor heat exchanger exceeds 106.5%, since the number of threads of the spiral grooves of the heat transfer tube in the indoor heat exchanger is smaller than the number of threads of the spiral grooves of the heat transfer tube in the outdoor heat exchanger as mentioned above, a crush might be caused at top portions of the spiral grooves, so that the property of close contact between the heat transfer tube and the fins is deteriorated.
  • Embodiment 6
  • In the above-mentioned embodiment 4, the fins 11 and the hairpin tube (heat transfer tube 12D) are joined only by tube expansion of the hairpin tube, but if a tube expansion rate is not specified, there will be fluctuation in products. Therefore, in this embodiment 6, the tube expansion rate of the heat transfer tube in the outdoor heat exchanger is specified.
  • That is, in this embodiment, the tube expansion rate at the time when the hairpin tube is expanded by the mechanical tube expansion method or hydraulic pressure tube expansion method is set at 106 to 107.5% for the heat transfer tube of the outdoor heat exchanger. Thereby, the property of close contact between the heat transfer tube and the fins of the outdoor heat exchanger is improved, and an air conditioner with high efficiency can be obtained. At this time, since the number of threads of the spiral grooves of the heat transfer tube in the outdoor heat exchanger is larger than the number of threads of the spiral grooves of the heat transfer tube in the indoor heat exchanger as mentioned above and thus, a crush does not occur at the top portions of the spiral grooves. Also, with an increase in the tube expansion rate in the heat transfer tube of the outdoor heat exchanger, an inner diameter of the heat transfer tube is increased, and the pressure loss inside the tubes is reduced.
  • In the above-mentioned embodiments 4 to 6, the fins 11 and the hairpin tube (heat transfer tube 12D) are joined only by tube expansion of the heat transfer tube, but the heat transfer tube 12D and the fins 11 may be completely joined further by brazing after the joining of the fins 11 and the hairpin tube (heat transfer tube 12D) by tube expansion, by which reliability can be further improved.
  • EXAMPLES
  • Examples of the present invention will be described below in comparison with comparative examples outside of the scope of the present invention. First, heat exchangers in the examples 1 and 2 respectively having a lead angle of the spiral grooves of the heat transfer tube in the indoor heat exchanger (hereinafter referred to as an “indoor lead angle”) of 45 degrees and a lead angle of the spiral grooves of the heat transfer tube in the outdoor heat exchanger (hereinafter referred to as an “outdoor lead angle”) of 35 degrees, and the indoor lead angle of 35 degrees and the outdoor lead angle of 25 degrees are manufactured. Also, as comparative examples, the heat exchangers in comparative examples 1 to 3 respectively having the indoor lead angle of 45 degrees and the outdoor lead angle of 45 degrees, the indoor lead angle of 35 degrees and the outdoor lead angles of 35 degrees, and the indoor lead angle of 25 degrees and the outdoor lead angle of 25 degrees are manufactured. The coefficients of performance (COP=heat exchanger capacity/compressor input) of heating performance and cooling performance in a refrigerating cycle using the heat exchangers in the examples 1 and 2 and the comparative examples 1 to 3 are shown in Table 1 below:
  • TABLE 1
    Indoor Outdoor Heating Cooling
    lead angle lead angle COP (%) COP (%)
    Comparative 45 degrees 45 degrees 100.0 100.0
    Example 1
    Example 1 45 degrees 35 degrees 100.6 100.4
    Comparative 35 degrees 35 degrees 99.5 99.8
    Example 2
    Example 2 35 degrees 25 degrees 101.0 100.5
    Comparative 25 degrees 25 degrees 99.0 99.5
    Example 3
  • As obvious from Table 1, the heat exchangers in the example 1 and the example 2 both have higher coefficients of performance (COP) than those of the comparative examples 1 to 3, and the heat transfer performance inside the tubes is improved.
  • Subsequently, heat exchangers of an example 3 and an example 4 respectively having a depth of the spiral grooves in the heat transfer tube of the indoor heat exchanger (hereinafter referred to as an “indoor groove depth) of 0.08 mm and a depth of the spiral grooves in the heat transfer tube of the outdoor heat exchanger (hereinafter referred to as an “outdoor groove depth”) of 0.1 mm, and the indoor groove depth of 0.2 mm and the outdoor groove depth of 0.25 mm are manufactured. Also, as comparative examples, the heat exchangers in comparative examples 4 to 6 respectively having the indoor groove depth of 0.08 mm and the outdoor groove depth of 0.08 mm, the indoor groove depth of 0.2 mm and the outdoor groove depth of 0.2 mm, and the indoor groove depth of 0.25 mm and the outdoor groove depth of 0.25 mm are manufactured. The coefficients of performance (COP=heat exchanger capacity/compressor input) of heating performance and cooling performance in a refrigerating cycle using the heat exchangers in the examples 3 and 4 and the comparative examples 4 to 6 are shown in Table 2 below:
  • TABLE 2
    Indoor Outdoor
    groove groove Heating Cooling
    depth depth COP (%) COP (%)
    Comparative 0.08 mm 0.08 mm 99.4 99.6
    Example 4
    Example 3 0.08 mm  0.1 mm 100.4 100.2
    Comparative  0.2 mm  0.2 mm 99.7 99.9
    Example 5
    Example 4  0.2 mm 0.25 mm 100.5 100.3
    Comparative 0.25 mm 0.25 mm 100.0 100.0
    Example 6
  • As obvious from Table 2, the heat exchangers in the example 3 and the example 4 both have higher coefficients of performance (COP) than those of the comparative examples 4 to 6, and the heat transfer performance inside the tubes is improved.
  • Subsequently, the heat exchangers in an example 5 and an example 6 respectively having the number of threads of the spiral grooves in the heat transfer tube in the indoor heat exchanger (hereinafter referred to as the “number of indoor groove threads”) of 40 and the number of threads of the spiral grooves in the heat transfer tube in the outdoor heat exchanger (hereinafter referred to as the “number of outdoor groove threads”) of 60, and the number of indoor groove threads of 60 and the number of outdoor groove threads of 80 are manufactured. Also, as comparative examples, the heat exchangers in comparative examples 7 to 9 respectively having the number of indoor groove threads of 40 and the number of outdoor groove threads of 40, the number of indoor groove threads of 60 and the number of outdoor groove threads of 60, and the number of indoor groove threads of 80 and the number of outdoor groove threads of 80 are manufactured. The coefficients of performance (COP=heat exchanger capacity/compressor input) of heating performance and cooling performance in a refrigerating cycle using the heat exchangers in the examples 5 and 6 and the comparative examples 7 to 9 are shown in Table 3 below:
  • TABLE 3
    Number of Number of
    indoor outdoor
    groove groove Heating Cooling
    threads threads COP (%) COP (%)
    Comparative 40 40 100.0 100.0
    EXample 7
    Example 5 40 60 100.6 100.3
    Comparative 60 60 99.9 99.4
    Example 8
    Example 6 60 80 100.8 100.5
    Comparative 80 80 99.4 99.0
    Example 9
  • As obvious from Table 3, the heat exchangers in the example 5 and the example 6 both have higher coefficients of performance (COP) than those of the comparative examples 7 to 9, and the heat transfer performance inside the tubes is improved.

Claims (16)

1. An air conditioner comprising:
an indoor machine equipped with an indoor heat exchanger constituted by a plurality of heat transfer tubes which pierce a plurality of fins, and
an outdoor machine equipped with an outdoor heat exchanger constituted by a plurality of heat transfer tubes which have spiral grooves formed with a lead angle of 25 to 35 degrees on the faces inside the tubes and which pierce a plurality of fins.
2. The air conditioner of claim 1, wherein the lead angle of the spiral grooves of the heat transfer tubes of the indoor heat exchanger is 35 to 45 degrees.
3. The air conditioner of claim 1, wherein a depth of the spiral grooves of the heat transfer Lubes in the outdoor heat exchanger is set to be deeper than a depth of the spiral grooves of the heat transfer Lubes in the indoor heat exchanger.
4. The air conditioner of claim 3, wherein a number of threads of the spiral grooves of the heat transfer tubes in the outdoor heat exchanger is set to be larger than a number of threads of the spiral grooves of the heat transfer tubes in the indoor heat exchanger.
5. The air conditioner of claim 3, wherein in the indoor heat exchanger or outdoor heat exchanger, the heat transfer tubes and the fins are joined together by expanding the heat transfer tubes by a mechanical tube expansion method or hydraulic pressure tube expansion method.
6. The air conditioner of claim 1, wherein a number of threads of the spiral grooves of the heat transfer tubes in the outdoor heat exchanger is set to be larger than a number of threads of the spiral grooves of the heat transfer tubes in the indoor heat exchanger.
7. The air conditioner of claim 6, wherein in the indoor heat exchanger or outdoor heat exchanger, the heat transfer tubes and the fins are joined together by expanding the heat transfer tubes by a mechanical tube expansion method or hydraulic pressure tube expansion method.
8. The air conditioner of claim 1, wherein in the indoor heat exchanger or outdoor heat exchanger, the heat transfer tubes and the fins are joined together by expanding the heat transfer tubes by a mechanical tube expansion method or hydraulic pressure tube expansion method.
9. The air conditioner of claim 8, wherein a tube expansion rate for expanding the heat transfer tubes by the mechanical tube expansion method or hydraulic pressure tube expansion method is 105.5 to 106.5% in the case of the heat transfer tubes of the indoor heat exchanger.
10. The air conditioner of claim 8, wherein a tube expansion rate for expanding the heat transfer tubes by the mechanical tube expansion method or hydraulic pressure tube expansion method is 106 to 107.5% in the case of the heat transfer tubes of the outdoor heat exchanger.
11. The air conditioner of claim 8, wherein the heat transfer tubes and the fins joined by the tube expansion are further joined together by brazing.
12. The air conditioner of claim 1, wherein the heat transfer tubes are formed of a metal material of copper, copper alloy, aluminum or aluminum alloy.
13. The air conditioner of claim 1, wherein a compressor, a condenser, a throttling device, and an evaporator are connected in series by piping, a refrigerant is used as a working fluid, and the heat exchanger is used as the evaporator or the condenser.
14. The air conditioner of claim 13, wherein R32 is used as the refrigerant.
15. The air conditioner of claim 13, wherein R410A is used as the refrigerant.
16. The air conditioner of claim 13, wherein R407C or carbon dioxide is used as the refrigerant.
US13/840,187 2007-11-28 2013-03-15 Air conditioner Abandoned US20130199762A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/840,187 US20130199762A1 (en) 2007-11-28 2013-03-15 Air conditioner

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2007307483A JP4738401B2 (en) 2007-11-28 2007-11-28 Air conditioner
JP2007-307483 2007-11-28
PCT/JP2008/071492 WO2009069679A1 (en) 2007-11-28 2008-11-27 Air conditioning apparatus
US68060210A 2010-03-29 2010-03-29
US13/840,187 US20130199762A1 (en) 2007-11-28 2013-03-15 Air conditioner

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2008/071492 Division WO2009069679A1 (en) 2007-11-28 2008-11-27 Air conditioning apparatus
US68060210A Division 2007-11-28 2010-03-29

Publications (1)

Publication Number Publication Date
US20130199762A1 true US20130199762A1 (en) 2013-08-08

Family

ID=40678571

Family Applications (6)

Application Number Title Priority Date Filing Date
US12/680,602 Active 2032-09-05 US9664455B2 (en) 2007-11-28 2008-11-27 Air conditioner with internally grooved heat exchanger tubes optimized for an indoor heat exchanger and an outdoor heat exchanger
US13/839,981 Active 2030-01-21 US9651314B2 (en) 2007-11-28 2013-03-15 Air conditioner with grooved inner heat exchanger tubes and grooved outer heat exchanger tubes
US13/840,271 Active 2030-02-10 US9791218B2 (en) 2007-11-28 2013-03-15 Air conditioner with grooved inner heat exchanger tubes and grooved outer heat exchanger tubes
US13/840,083 Active 2030-12-09 US9714795B2 (en) 2007-11-28 2013-03-15 Air conditioner
US13/840,187 Abandoned US20130199762A1 (en) 2007-11-28 2013-03-15 Air conditioner
US13/839,869 Active 2029-09-17 US9664456B2 (en) 2007-11-28 2013-03-15 Air conditioner

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US12/680,602 Active 2032-09-05 US9664455B2 (en) 2007-11-28 2008-11-27 Air conditioner with internally grooved heat exchanger tubes optimized for an indoor heat exchanger and an outdoor heat exchanger
US13/839,981 Active 2030-01-21 US9651314B2 (en) 2007-11-28 2013-03-15 Air conditioner with grooved inner heat exchanger tubes and grooved outer heat exchanger tubes
US13/840,271 Active 2030-02-10 US9791218B2 (en) 2007-11-28 2013-03-15 Air conditioner with grooved inner heat exchanger tubes and grooved outer heat exchanger tubes
US13/840,083 Active 2030-12-09 US9714795B2 (en) 2007-11-28 2013-03-15 Air conditioner

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/839,869 Active 2029-09-17 US9664456B2 (en) 2007-11-28 2013-03-15 Air conditioner

Country Status (6)

Country Link
US (6) US9664455B2 (en)
EP (1) EP2213953B1 (en)
JP (1) JP4738401B2 (en)
CN (2) CN105042689B (en)
ES (1) ES2707820T3 (en)
WO (1) WO2009069679A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11313568B2 (en) 2018-01-20 2022-04-26 Daikin Industries, Ltd. System and method for heating and cooling

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2067403A1 (en) * 2007-12-03 2009-06-10 Bayer CropScience AG Pesticidal compound mixtures comprising ethiprole and specific carbamates
JP2011208824A (en) * 2010-03-29 2011-10-20 Furukawa Electric Co Ltd:The Heat exchanger and heat transfer tube
WO2012102960A1 (en) * 2011-01-24 2012-08-02 Carrier Corporation Expansion bullet for heat exchanger tube
RU2557812C2 (en) * 2011-03-01 2015-07-27 Мицубиси Электрик Корпорейшн Heat exchanger, refrigerator provided with heat exchanger, and air conditioning device provided with heat exchanger
WO2013094084A1 (en) * 2011-12-19 2013-06-27 三菱電機株式会社 Air conditioner
US20150377563A1 (en) * 2013-02-21 2015-12-31 Carrier Corporation Tube structures for heat exchanger
WO2014147788A1 (en) * 2013-03-21 2014-09-25 三菱電機株式会社 Heat exchanger, refrigeration cycle device, and production method for heat exchanger
ITMI20131684A1 (en) * 2013-10-11 2015-04-12 Frimont Spa CONDENSER FOR ICE MAKING MACHINE, METHOD FOR ITS REALIZATION, AND ICE MAKING MACHINE THAT INCORPORATES SUCH CONDENSER
JP6878918B2 (en) * 2017-01-30 2021-06-02 株式会社富士通ゼネラル Refrigeration cycle equipment
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus
US20200339856A1 (en) 2017-12-18 2020-10-29 Daikin Industries, Ltd. Refrigerating oil for refrigerant or refrigerant composition, method for using refrigerating oil, and use of refrigerating oil
US11549041B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
BR112020010634A2 (en) 2017-12-18 2020-11-10 Daikin Industries, Ltd. composition comprising refrigerant, use of the same, refrigeration machine having the same, and method for operating said refrigeration machine
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
WO2019180817A1 (en) * 2018-03-20 2019-09-26 三菱電機株式会社 Heat exchanger, refrigeration cycle device, and air conditioning device
US11774187B2 (en) * 2018-04-19 2023-10-03 Kyungdong Navien Co., Ltd. Heat transfer fin of fin-tube type heat exchanger
JP7134250B2 (en) * 2018-11-22 2022-09-09 三菱電機株式会社 Heat exchanger and refrigeration cycle equipment
US11656010B2 (en) * 2020-06-02 2023-05-23 Hamilton Sundstrand Corporation Evaporator with feed tube flow distributors for random gravitation and acceleration fields

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070199684A1 (en) * 2004-12-02 2007-08-30 Sumitomo Light Metal Industries, Ltd. Internally grooved heat transfer tube for high-pressure refrigerant

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55167091U (en) * 1979-05-16 1980-12-01
JPS60142195A (en) 1983-12-28 1985-07-27 Hitachi Cable Ltd Heat transfer tube equipped with groove on internal surface thereof
JPH06147532A (en) 1992-11-12 1994-05-27 Matsushita Refrig Co Ltd Air conditioner
JPH0712483A (en) * 1993-06-24 1995-01-17 Kobe Steel Ltd Heat transfer tube with inner surface groove
US5597039A (en) * 1994-03-23 1997-01-28 High Performance Tube, Inc. Evaporator tube
JPH0814786A (en) * 1994-06-30 1996-01-19 Kobe Steel Ltd Heat exchanger tube with inner surface groove
JPH08128793A (en) * 1994-10-28 1996-05-21 Toshiba Corp Heat transfer tube with internal fins and manufacture thereof
TW327205B (en) * 1995-06-19 1998-02-21 Hitachi Ltd Heat exchanger
US5791405A (en) * 1995-07-14 1998-08-11 Mitsubishi Shindoh Co., Ltd. Heat transfer tube having grooved inner surface
JP3747974B2 (en) 1997-01-27 2006-02-22 株式会社コベルコ マテリアル銅管 Internal grooved heat transfer tube
KR100252221B1 (en) 1997-06-25 2000-04-15 윤종용 Wet etching apparatus for semiconductor manufacturing and method of etchant circulation therein
JP3309778B2 (en) 1997-10-02 2002-07-29 ダイキン工業株式会社 Air conditioner
JPH11230628A (en) * 1998-02-13 1999-08-27 Matsushita Electric Ind Co Ltd Freezing device
JP3430909B2 (en) 1998-03-19 2003-07-28 株式会社日立製作所 Air conditioner
CN2337446Y (en) * 1998-03-27 1999-09-08 刘耀东 Non-feron and non-compressor economical and practical air conditioner
US6336501B1 (en) * 1998-12-25 2002-01-08 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Tube having grooved inner surface and its production method
JP2001033185A (en) 1999-07-16 2001-02-09 Sumitomo Light Metal Ind Ltd Heat conductive pipe provided with inside groove, and its design method
KR20020065550A (en) * 1999-12-07 2002-08-13 다이킨 고교 가부시키가이샤 Porous part for refrigerators, and method of producing the same and refrigerator
US6298909B1 (en) 2000-03-01 2001-10-09 Mitsubishi Shindoh Co. Ltd. Heat exchange tube having a grooved inner surface
DE10126221A1 (en) * 2001-05-30 2002-12-05 Behr Gmbh & Co Heat exchanger for an air conditioning system of a motor vehicle
JP4822238B2 (en) * 2001-07-24 2011-11-24 株式会社日本製鋼所 Heat transfer tube with internal groove for liquid medium and heat exchanger using the heat transfer tube
FR2837270B1 (en) * 2002-03-12 2004-10-01 Trefimetaux GROOVED TUBES FOR REVERSIBLE USE FOR HEAT EXCHANGERS
WO2004052587A1 (en) * 2002-12-12 2004-06-24 Showa Denko K.K. Aluminum alloy brazing material, brazing member, brazed article and brazinh method therefor using said material, brazing heat exchanginh tube, heat exchanger and manufacturing method thereof using said brazing heat exchanging tube
JP2004279025A (en) * 2003-02-28 2004-10-07 Sumitomo Light Metal Ind Ltd Cross fin tube type heat exchanger
CN2699170Y (en) * 2004-05-19 2005-05-11 无锡市富尔盛机电有限公司 Embedded double block air-conditioner indoor set
JP4665713B2 (en) * 2005-10-25 2011-04-06 日立電線株式会社 Internal grooved heat transfer tube
CN100458344C (en) 2005-12-13 2009-02-04 金龙精密铜管集团股份有限公司 Copper condensing heat-exchanging pipe for flooded electric refrigerator set

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070199684A1 (en) * 2004-12-02 2007-08-30 Sumitomo Light Metal Industries, Ltd. Internally grooved heat transfer tube for high-pressure refrigerant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11313568B2 (en) 2018-01-20 2022-04-26 Daikin Industries, Ltd. System and method for heating and cooling
US11578880B2 (en) 2018-01-20 2023-02-14 Daikin Industries, Ltd. System and method for heating and cooling
US11859861B2 (en) * 2018-01-20 2024-01-02 Daikin Industries, Ltd. System and method for heating and cooling

Also Published As

Publication number Publication date
EP2213953B1 (en) 2018-12-26
CN101842637B (en) 2015-07-22
JP4738401B2 (en) 2011-08-03
US20130233013A1 (en) 2013-09-12
EP2213953A1 (en) 2010-08-04
CN105042689B (en) 2017-11-07
US9714795B2 (en) 2017-07-25
US9664456B2 (en) 2017-05-30
CN101842637A (en) 2010-09-22
US9651314B2 (en) 2017-05-16
ES2707820T3 (en) 2019-04-05
CN105042689A (en) 2015-11-11
US20130199766A1 (en) 2013-08-08
JP2009133500A (en) 2009-06-18
US9791218B2 (en) 2017-10-17
US20130199765A1 (en) 2013-08-08
US9664455B2 (en) 2017-05-30
WO2009069679A1 (en) 2009-06-04
US20130206379A1 (en) 2013-08-15
EP2213953A4 (en) 2014-01-08
US20100218533A1 (en) 2010-09-02

Similar Documents

Publication Publication Date Title
US9651314B2 (en) Air conditioner with grooved inner heat exchanger tubes and grooved outer heat exchanger tubes
US20130292098A1 (en) Heat exchanger and air conditioner
JP6180338B2 (en) Air conditioner
US20110113820A1 (en) Heat transfer tube for heat exchanger, heat exchanger, refrigerating cycle apparatus, and air conditioner
US9874402B2 (en) Heat exchanger, refrigeration cycle apparatus, and method of manufacturing heat exchanger
JP6790077B2 (en) Heat exchanger
WO2011086881A1 (en) Heat transfer tube for heat exchanger, heat exchanger, refrigeration cycle device, and air conditioning device
JP5962033B2 (en) Heat exchanger and air conditioner equipped with the same
US9506700B2 (en) Air-conditioning apparatus
JP5627635B2 (en) Air conditioner
JP6198976B2 (en) Heat exchanger and refrigeration cycle apparatus
JP6533257B2 (en) Air conditioner
JP7130116B2 (en) air conditioner
WO2021014522A1 (en) Heat exchanger, method of producing same, and air conditioning device
US20220316812A1 (en) Heat exchanger, heat exchange unit, refrigeration cycle apparatus, and method for manufacturing heat exchange member
WO2017037772A1 (en) Heat exchanger and method for manufacturing same

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION