US20130115352A1 - Spray dispensing device - Google Patents
Spray dispensing device Download PDFInfo
- Publication number
- US20130115352A1 US20130115352A1 US13/712,719 US201213712719A US2013115352A1 US 20130115352 A1 US20130115352 A1 US 20130115352A1 US 201213712719 A US201213712719 A US 201213712719A US 2013115352 A1 US2013115352 A1 US 2013115352A1
- Authority
- US
- United States
- Prior art keywords
- liquid
- spray
- juice
- extractor
- fruit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L2/00—Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
- A23L2/02—Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation containing fruit or vegetable juices
- A23L2/04—Extraction of juices
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23N—MACHINES OR APPARATUS FOR TREATING HARVESTED FRUIT, VEGETABLES OR FLOWER BULBS IN BULK, NOT OTHERWISE PROVIDED FOR; PEELING VEGETABLES OR FRUIT IN BULK; APPARATUS FOR PREPARING ANIMAL FEEDING- STUFFS
- A23N1/00—Machines or apparatus for extracting juice
- A23N1/02—Machines or apparatus for extracting juice combined with disintegrating or cutting
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47J—KITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
- A47J19/00—Household machines for straining foodstuffs; Household implements for mashing or straining foodstuffs
- A47J19/02—Citrus fruit squeezers; Other fruit juice extracting devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B11/00—Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use
- B05B11/01—Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use characterised by the means producing the flow
- B05B11/10—Pump arrangements for transferring the contents from the container to a pump chamber by a sucking effect and forcing the contents out through the dispensing nozzle
- B05B11/1042—Components or details
- B05B11/1043—Sealing or attachment arrangements between pump and container
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B15/00—Details of spraying plant or spraying apparatus not otherwise provided for; Accessories
- B05B15/30—Dip tubes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49718—Repairing
- Y10T29/49721—Repairing with disassembling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49815—Disassembling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
- Y10T29/49947—Assembling or joining by applying separate fastener
- Y10T29/49963—Threaded fastener
Definitions
- Exemplary embodiments described herein relate generally to a device for spraying a liquid. Certain exemplary embodiments described herein relate to a device for spraying fruit juice directly from a fruit, vegetable, berry, or other liquid source (for brevity, “fruit”).
- Known methods for obtaining juice from a citrus fruit often include cutting the peel of a citrus fruit and/or cutting the citrus fruit in half and squeezing the fruit. With such known methods it can be difficult to avoid getting juice on one's hands. In some cases, only a small amount of fruit juice may be needed as an ingredient in cooking. In such instances, it can be difficult to obtain a small amount of juice and/or obtain juice in small particles (e.g., a spray or atomization) by such known methods. Furthermore, the juice may need to be filtered to remove seeds and/or pulp from the juice.
- One exemplary aspect comprises a device for spraying liquid, the device comprising: a liquid extractor having a top portion and a bottom portion, the bottom portion of the liquid extractor adapted to be inserted into a liquid source, the liquid extractor comprising a portion defining a cavity for collecting liquid from the liquid source; and a spray dispenser comprising a top portion and bottom portion, and comprising a spray pump partially disposed within and extending from the top portion of the spray dispenser, the bottom portion of the spray dispenser configured to be coupled with the top portion of the liquid extractor, the spray pump comprising a tube having a lower end disposed within the cavity for collecting liquid from the liquid source.
- the liquid source is at least one of a fruit, vegetable, and berry
- the spray dispenser is operable to spray juice extracted from the at least one of a fruit, vegetable, and berry
- the bottom portion of the liquid extractor comprises a lower end having a concave surface defining a plurality of openings
- the lower end of the liquid extractor defines a serrated edge
- the bottom portion of the liquid extractor defines a plurality of channels for guiding liquid into the cavity
- the liquid extractor further comprises a filter disposed within the cavity and configured to prevent particles of a fruit from flowing into the cavity
- the filter is removable
- the device comprises a surface extending substantially perpendicular to an axis passing through the cavity and the spray dispenser, thereby defining an insertion stop point for inserting the device into at least one of a fruit, vegetable, and berry
- the top portion of the spray dispenser flares towards the bottom portion, the flared portion having a diameter larger than a diameter of the lower
- Another exemplary aspect comprises a method for spraying a liquid, comprising: (a) inserting an embodiment of the device into a juice source to collect juice; (b) directing a spray outlet of the device in a desired direction; and (c) pressing a pump activator to cause juice collected within the cavity of the device to flow within the tube of the spray pump toward a spray outlet for spraying the juice in the desired direction.
- the step of inserting comprises rotating a lower end of a juice extractor portion having a serrated edge, so that the serrated edge penetrates a peel region of the juice source and the cavity is filled with juice.
- Another exemplary aspect comprises a method comprising decoupling the liquid extractor of an embodiment from the spray dispenser; and cleaning the liquid extractor of an embodiment to remove liquid or debris.
- a source of the liquid or debris is at least one of a fruit, vegetable, and berry; and/or (2) the method comprises cleaning a filter to remove liquid or debris.
- Another exemplary aspect comprises a method comprising coupling the liquid extractor of an embodiment to the spray dispenser of an embodiment.
- coupling the liquid extractor of an embodiment to the spray dispenser of an embodiment is performed via a threaded coupling.
- FIG. 1 is a perspective view of a spray device, according to an exemplary embodiment.
- FIG. 2 is an exploded view of the spray device of FIG. 1 .
- FIG. 3 is a cross-sectional view of the spray device of FIG. 1 .
- FIG. 4 is a perspective view of a portion of the spray device of FIG. 1 .
- FIG. 5 is a perspective view showing two components of an exemplary embodiment.
- FIG. 6 depicts two views of a juice extractor component of the embodiment depicted in FIG. 5 .
- FIG. 7 depicts an exemplary use of the device of FIG. 5 .
- FIGS. 8-11 are perspective views of exemplary embodiments.
- FIGS. 12A and 12B provide an exemplary parts list.
- FIG. 13 provides an alternate view of a bottom portion of a liquid extractor of an exemplary embodiment.
- Certain exemplary embodiments described herein comprise a spray device that is inserted directly into a fruit, vegetable, berry, or other liquid source (again, for brevity, “fruit”).
- the spray device facilitates the spraying of juice directly from the fruit, thus avoiding the limitations of the procedures described above.
- FIGS. 1-4 illustrate a spray device 100 , according to an exemplary embodiment.
- the spray device 100 may include a body 110 , an actuator 140 , a pump 160 , and an engagement member 120 .
- the body 110 may include a flared portion 111 , configured to couple to the actuator 140 , and a neck 112 , configured to couple to the engagement member 120 .
- the body 110 may further include an inner surface 115 that defines a channel 116 and receives the pump 160 therebetween.
- the pump 160 may be at least partially disposed within the channel 116 defined by the inner surface 115 of the body 110 .
- the body 110 may be any appropriate shape, size, or configuration.
- the flared portion 111 of the body 110 may include a first end (e.g., a top end) that defines a first diameter, and a second end (e.g., a bottom end) that defines a second diameter substantially larger than the first diameter.
- the flared portion 111 may define an ergonomic shape such that a user's hand can easily grasp the flared portion 111 .
- the flared portion 111 can define a surface that prevents further insertion of the spray device 100 into a citrus fruit. That is, the flared portion prevents the product from being inserted too far into the fruit.
- the body 110 can define any suitable surface.
- the flared portion 111 may include a grip with ridges and/or protrusions configured to engage a user's hand or fingers.
- the body 110 may be formed of any suitable material, such as, for example, a plastic, thermoplastic, polymer, ceramic, metal, glass, and/or any combination thereof. Additionally, the flared portion 111 may include any suitable surface treatment, such as, for example, a textured surface to increase the friction between a user's hand and the flared portion 111 .
- the neck 112 may be configured to extend from the flared portion 111 . While depicted in FIG. 1 as defining a smaller diameter than the flared portion 111 , the neck 112 may define any suitable size or shape. For example, in some embodiments, the neck 112 may be wider than the flared portion 111 . Alternatively, in other embodiments, the neck 112 may have other cross-sections including, for example, oval, square, rectangular, etc.
- an actuator 140 may be configured to be operative coupled to the body 110 . More specifically, actuator 140 may include an outer surface 141 configured to be inserted into the channel 116 defined by the inner surface 115 of the body 110 . Additionally, an inner surface 145 of the actuator 140 may include an annular protrusion 146 that extends from a top portion of the inner surface 115 (see FIG. 3 ). The annular protrusion 146 may be configured to receive a portion of the pump 160 . In this manner, the actuator 140 may be coupled to the pump 160 and either or both may be disposed within the body 110 .
- the outer surface 141 of the actuator 140 may include an engagement portion 142 .
- the engagement portion 142 may define an ergonomic shape configured to receive a user's finger. In this manner, the user can depress the actuator 140 to actuate the spray device 100 .
- the actuator 140 may include an outlet portion 143 configured to receive a nozzle 150 .
- the nozzle 150 may be any suitable nozzle configured to spray a liquid.
- the nozzle 150 may be integrally formed with the actuator 140 .
- the outlet portion 143 of the actuator 140 may define an orifice configured to deliver a spray of a fluid.
- the pump 160 may be at least partially disposed within the body 110 of the spray device 100 .
- the pump 160 can be coupled to the body 110 in any suitable manner.
- the inner surface 115 of the body 110 may define an upper seat 117 configured to engage a portion of the pump 160 .
- the pump 160 may define a friction fit with the inner surface 115 of the body 110 .
- the pump 160 and the body 110 may define a threaded coupling.
- the pump 160 may be any suitable pump 160 configured to deliver a spray of a liquid.
- the pump 160 may be a positive displacement pump.
- the pump 160 may be configured to deliver a fluid to an outlet and/or outlet portion in response to a negative pressure differential.
- the pump 160 may be actuated such that air and/or fluid within a chamber is expelled. The expulsion of the air and/or fluid may cause a negative pressure to exist such that the pump 160 draws a fluid through a suction tube into the chamber.
- the pump 160 may include a valve assembly configured to open and close in response to the actuator 140 .
- the pump 160 may be configured such that when the actuator 140 is depressed by a user the valve opens to deliver a fluid.
- engagement member 120 may be configured to be coupled to the neck 112 of the body 110 . More specifically, engagement member 120 may include an extension 122 configured to be inserted into the neck 112 of the body 110 .
- the engagement member 120 may include an outer surface 121 that defines an annular slot 123 (see FIG. 4 ) configured to engage an annular protrusion 118 defined by the inner surface 115 of the body 110 . Therefore, when the extension 122 of the engagement member 120 is inserted into the neck 112 of the body 110 , the annular slot 123 may receive the annular protrusion 118 . In this manner, engagement member 120 may be coupled to the body 110 .
- an annular protrusion 118 may be formed of a material defining a high friction coefficient, such as, for example, polypropylene (PP).
- PP polypropylene
- an annular protrusion 118 may be any suitable material and may be formed as an over mold (e.g., the body 110 is formed of a given material and the annular protrusion 118 is formed of a second material, molded on top of the first material).
- engagement member 120 may be coupled to the neck 112 of the body 110 using a threaded coupling. In such embodiments, engagement member 120 may be coupled to and decoupled from the body 110 by twisting the engagement portion 120 relative to the body 110 .
- engagement member 120 may be integrally formed with the body 110 (e.g., engagement member 120 may be formed together with the body 110 ).
- Engagement member 120 may include an engagement portion 124 (see FIG. 4 ).
- the engagement portion 124 may be configured to be inserted into the citrus fruit. More specifically, the engagement portion 124 may includes a serrated end surface 127 configured to cut the peel of a citrus fruit such that the engagement portion 124 may be inserted into the citrus fruit. Additionally, the engagement portion 124 may include a concave surface 125 configured to receive a portion of the peel disposed within the engagement portion 124 . Similarly stated, the concave surface 125 may be configured to allow the serrated end surface 127 to extend beyond the peel.
- the engagement portion 124 may include a set of passages 126 configured to allow the juice within the fruit to enter the engagement portion 124 . More specifically, as juice is transferred through the passages 126 , the juice can enter a channel 129 defined by an inner surface 128 of the engagement member 120 (see FIG. 3 ).
- the channel 129 may include a filter 130 configured to filter the juice of pulp, seeds, and/or debris before entering a suction tube included in the pump 160 .
- the filter 130 may be any suitable filter such as, for example, a mesh filter 130 .
- the mesh filter 130 may define any suitable mesh size configured to allow for a given flow rate of juice through the filter and may be made from metal, plastic, or any other suitable material. While depicted in FIGS. 3 and 4 as substantially thimble shaped, the filter 130 may be any suitable shape.
- the filter may be a flat disc, a conical filter, a frustoconical filter, a convex/concave filter, and/or any other suitable filter.
- the juice contained in the citrus fruit may be transferred to the pump 160 and delivered through the nozzle 150 .
- the mesh filter 130 may be removed to be cleaned.
- a user may remove the engagement member 120 from the body 110 by twisting the engagement portion 120 relative to the body 110 to rinse the filter 130 of pulp, seeds, or other debris. After the filter 130 is cleaned or replaced, it may be inserted back into the engagement portion 120 and re-coupled to the body 110 .
- the filter 130 may be integrally formed with the body 110 and/or the engagement member 120 .
- functionality of a filter may be achieved using a set of perforations in a bottom portion of a juice extractor component (see, for example, FIGS. 10 , 11 , and 13 ).
- inserting of a bottom portion of the spray device such as the engagement portion 124 ( FIGS. 1-4 ), directly into a fruit (or vegetable, berry, etc.), may cause juice to flow from the fruit into a cavity, such as a channel 129 ( FIG. 3 ), defined within the body of the spray device.
- a pump activator e.g., actuator 140 , FIG. 3
- a pump e.g., 160 , FIG. 3
- a suction force may cause the juice collected within the cavity to be transferred, via a pump tube, up towards the pump activator, and released via a nozzle (e.g., 150 , FIG. 2 ) in small particles, such as a mist.
- the lower portion of the spray device may define one or more channels, such as passages 126 ( FIGS. 2-4 ), and/or a concave end with a plurality of openings to facilitate and/or guide the flow of the fruit juice into the cavity upon insertion of the spray device into the fruit.
- FIGS. 1-4 depict the spay device including four channels, fewer or more channels may be formed within the lower portion of the spray device.
- FIG. 5 Another exemplary embodiment comprises a hand-held device for spraying fruit juice directly from a fruit, vegetable, berry, or other liquid source.
- the device comprises two parts: an aerosol spray pump component and a juice extractor component (see FIG. 5 ).
- the aerosol spray pump component includes a pump, a pump activator, an aerosol port, a siphon tube, and a threaded collar.
- the juice extractor component includes a threaded end, a hollow body part, a solid body part with channels, and a serrated end.
- the pump used in this exemplary embodiment may be cylindrical in shape and made of hard plastic.
- the siphon tube may be made from a hollow, flexible plastic tube and extend from one end of the pump.
- the pump activator may be cylindrical in shape and made of hard plastic; and may be integrated with the end of the pump opposite that of the siphon tube.
- the circular aerosol port may be integrated into the annular surface of the pump activator.
- the threaded collar may be a short, hollow cylinder made of hard plastic with a diameter that is greater than that of the pump.
- the interior surface of the threaded collar may be threaded like a screw.
- One end of the threaded collar may be closed and attached to the exterior surface of the pump where the pump meets the pump activator, while the other end may be open and encompass the pump.
- the juice extractor may be a tube shaped cylinder that is hollow on one half and solid on the other half, having a diameter that is slightly less than that of the threaded collar, but more than that of the pump.
- All parts of the juice extractor may be made from hard plastic, may be cylindrical, and may be formed from the same piece of material.
- One end of the hollow body part may be threaded like a screw on the exterior surface, comprising the threaded end.
- the opposing end of the hollow body part integrates with the remaining half of the juice extractor, the solid body part.
- Two channels may be cut perpendicular to each other through the entirety of the solid body part, resulting in four coaxial channels spaced at right angles to each other.
- the end of the solid body part opposite that integrated to the hollow body part may be concave and serrated, forming the serrated end.
- the threaded collar of the aerosol spray pump may be joined to the threaded end of the juice extractor with a twisting motion, with the pump fitting into the hollow body part and the siphon tube fitting and reaching half-way into the solid body part with channels ( FIGS. 5 and 6 ).
- the means for spraying juice may include means for pumping juice, means to operate a pump, means of exit of aerosol, means of juice uptake, and means to connect to the means for extracting juice.
- the means for extracting juice may include means to connect to the means for spraying juice, means to accommodate the pump, means to allow juice flow, and means to pierce the fruit.
- the means for pumping juice may be cylindrical in shape and made of hard plastic.
- the means of juice uptake may be made from a hollow, flexible plastic tube and extend from one end of the means for pumping juice.
- the means to operate a pump may be cylindrical in shape and made of hard plastic; and may be integrated with the end of the means for pumping juice opposite that of the means of juice uptake.
- the means of exit of aerosol may be integrated into the annular surface of the means to operate the pump.
- the means to connect to the means for extracting juice may be a short, hollow cylinder made of hard plastic with a diameter that is greater than that of the means for pumping juice.
- the interior surface of the means to connect to the means for extracting juice may be threaded like a screw.
- One end of the means to connect to the means for extracting juice may be closed and attached to the exterior surface of the means for pumping juice where the means for pumping juice meets the means to operate the pump, while the other end may be open and encompass the means for pumping juice.
- the means for extracting juice may be a tube shaped cylinder that is hollow on one half and solid on the other half, having a diameter that is slightly less than that of the means to connect to the means for extracting juice, but more than that of the means for pumping juice.
- All parts of the means for extracting juice may be made from hard plastic, may be cylindrical, and may be formed from the same piece of material.
- One end of the means to accommodate pump may be threaded like a screw on the exterior surface, comprising the means to connect to the means for spraying juice.
- the opposing end of the means to accommodate pump may be integrated with the remaining half of the means for extracting juice, the means to allow juice flow.
- Two channels may be cut perpendicular to each other through the entirety of the means to allow juice flow, resulting in four coaxial channels spaced at right angle to each other.
- the end of the means to allow juice flow opposite that is integrated to the means to accommodate pump may be concave and serrated, forming the means to pierce the fruit.
- the means to connect to the means for extracting juice may be joined to the means to connect to the means for spraying juice with a twisting motion, with the means for pumping juice fitting into the means to accommodate pump and the means of juice uptake fitting and reaching half-way into the means to allow juice flow.
- a user may, for example, roll a piece of citrus fruit on a hard surface while applying pressure to loosen the interior.
- the serrated end of the invention may then be inserted with a twisting motion through the skin of the fruit and into the interior flesh, preferably through the area of the fruit where the stem was once attached.
- the user may then use a finger to operate the aerosol pump by pressing down on the pump activator. Juice will exit in aerosol form from the aerosol port (see FIG. 7 ).
- FIGS. 8-11 are perspective views of exemplary embodiments.
- FIGS. 12A and 12B comprise a parts list that may be used to purchase certain component parts to construct an exemplary embodiment.
- the parts supplier in this case is ZheJiang YuYao City ZhiBing Spray Factory, in China.
- FIGS. 12A and 12B The parts list in FIGS. 12A and 12B is provided for informational and enablement purposes only, and does not constitute, and is not intended to provide, any sort of implied license to practice the claimed invention.
Landscapes
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Nutrition Science (AREA)
- Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)
- Apparatuses For Bulk Treatment Of Fruits And Vegetables And Apparatuses For Preparing Feeds (AREA)
- Reciprocating Pumps (AREA)
- Closures For Containers (AREA)
Abstract
Description
- This application is a continuation of U.S. patent application Ser. No. 13/461,932, filed May 2, 2012, entitled “Spray Dispensing Device,” which claims priority to U.S. Provisional Patent Application No. 61/486,112, filed May 13, 2011, entitled “Hand-Held Device for Spraying Fruit Juice Directly from the Fruit,” and which also claims priority to U.S. Provisional Patent Application No. 61/565,410, filed Nov. 30, 2011, entitled “Spray Dispensing Device.” The entire contents of each of the above-referenced applications are incorporated herein by reference.
- Exemplary embodiments described herein relate generally to a device for spraying a liquid. Certain exemplary embodiments described herein relate to a device for spraying fruit juice directly from a fruit, vegetable, berry, or other liquid source (for brevity, “fruit”).
- Known methods for obtaining juice from a citrus fruit often include cutting the peel of a citrus fruit and/or cutting the citrus fruit in half and squeezing the fruit. With such known methods it can be difficult to avoid getting juice on one's hands. In some cases, only a small amount of fruit juice may be needed as an ingredient in cooking. In such instances, it can be difficult to obtain a small amount of juice and/or obtain juice in small particles (e.g., a spray or atomization) by such known methods. Furthermore, the juice may need to be filtered to remove seeds and/or pulp from the juice.
- Thus, a need exists for an improved apparatus and methods for spraying fruit juice directly from the fruit. Exemplary aspects and embodiments are described herein.
- One exemplary aspect comprises a device for spraying liquid, the device comprising: a liquid extractor having a top portion and a bottom portion, the bottom portion of the liquid extractor adapted to be inserted into a liquid source, the liquid extractor comprising a portion defining a cavity for collecting liquid from the liquid source; and a spray dispenser comprising a top portion and bottom portion, and comprising a spray pump partially disposed within and extending from the top portion of the spray dispenser, the bottom portion of the spray dispenser configured to be coupled with the top portion of the liquid extractor, the spray pump comprising a tube having a lower end disposed within the cavity for collecting liquid from the liquid source.
- In one or more exemplary embodiments: (1) the liquid source is at least one of a fruit, vegetable, and berry, and the spray dispenser is operable to spray juice extracted from the at least one of a fruit, vegetable, and berry; (2) the bottom portion of the liquid extractor comprises a lower end having a concave surface defining a plurality of openings; (3) the lower end of the liquid extractor defines a serrated edge; (4) the bottom portion of the liquid extractor defines a plurality of channels for guiding liquid into the cavity; (5) the liquid extractor further comprises a filter disposed within the cavity and configured to prevent particles of a fruit from flowing into the cavity; (6) the filter is removable; (7) the device comprises a surface extending substantially perpendicular to an axis passing through the cavity and the spray dispenser, thereby defining an insertion stop point for inserting the device into at least one of a fruit, vegetable, and berry; (8) the top portion of the spray dispenser flares towards the bottom portion, the flared portion having a diameter larger than a diameter of the lower end of the spray dispenser and a bottom surface of the flared portion forming the insertion stop point; (9) the spray pump further comprises a pump activator having a spray outlet, the pump activator configured to be pressed to cause liquid collected within the cavity to flow within the tube of the spray pump toward the spray outlet for distribution; (10) the spray dispenser and the liquid extractor are detachably coupled; (11) the spray dispenser and the liquid extractor are detachably coupled via a threaded coupling; and/or (12) the liquid source is a fruit, and the spray dispenser is operable to spray juice extracted from the fruit by the liquid extractor.
- Another exemplary aspect comprises a method for spraying a liquid, comprising: (a) inserting an embodiment of the device into a juice source to collect juice; (b) directing a spray outlet of the device in a desired direction; and (c) pressing a pump activator to cause juice collected within the cavity of the device to flow within the tube of the spray pump toward a spray outlet for spraying the juice in the desired direction.
- In one or more exemplary embodiments, the step of inserting comprises rotating a lower end of a juice extractor portion having a serrated edge, so that the serrated edge penetrates a peel region of the juice source and the cavity is filled with juice.
- Another exemplary aspect comprises a method comprising decoupling the liquid extractor of an embodiment from the spray dispenser; and cleaning the liquid extractor of an embodiment to remove liquid or debris. In one or more exemplary embodiment: (1) a source of the liquid or debris is at least one of a fruit, vegetable, and berry; and/or (2) the method comprises cleaning a filter to remove liquid or debris.
- Another exemplary aspect comprises a method comprising coupling the liquid extractor of an embodiment to the spray dispenser of an embodiment. In one or more exemplary embodiments coupling the liquid extractor of an embodiment to the spray dispenser of an embodiment is performed via a threaded coupling.
- Other exemplary aspects and embodiments will be apparent from the drawings and description below.
-
FIG. 1 is a perspective view of a spray device, according to an exemplary embodiment. -
FIG. 2 is an exploded view of the spray device ofFIG. 1 . -
FIG. 3 is a cross-sectional view of the spray device ofFIG. 1 . -
FIG. 4 is a perspective view of a portion of the spray device ofFIG. 1 . -
FIG. 5 is a perspective view showing two components of an exemplary embodiment. -
FIG. 6 depicts two views of a juice extractor component of the embodiment depicted inFIG. 5 . -
FIG. 7 depicts an exemplary use of the device ofFIG. 5 . -
FIGS. 8-11 are perspective views of exemplary embodiments. -
FIGS. 12A and 12B provide an exemplary parts list. -
FIG. 13 provides an alternate view of a bottom portion of a liquid extractor of an exemplary embodiment. - Certain exemplary embodiments described herein comprise a spray device that is inserted directly into a fruit, vegetable, berry, or other liquid source (again, for brevity, “fruit”). The spray device facilitates the spraying of juice directly from the fruit, thus avoiding the limitations of the procedures described above.
-
FIGS. 1-4 illustrate aspray device 100, according to an exemplary embodiment. As shown inFIG. 1 , thespray device 100 may include abody 110, anactuator 140, apump 160, and anengagement member 120. Thebody 110 may include a flaredportion 111, configured to couple to theactuator 140, and aneck 112, configured to couple to theengagement member 120. Thebody 110 may further include aninner surface 115 that defines achannel 116 and receives thepump 160 therebetween. Similarly stated, thepump 160 may be at least partially disposed within thechannel 116 defined by theinner surface 115 of thebody 110. - The
body 110 may be any appropriate shape, size, or configuration. For example, as shown inFIG. 1 , the flaredportion 111 of thebody 110 may include a first end (e.g., a top end) that defines a first diameter, and a second end (e.g., a bottom end) that defines a second diameter substantially larger than the first diameter. In this manner, the flaredportion 111 may define an ergonomic shape such that a user's hand can easily grasp the flaredportion 111. Similarly stated, the flaredportion 111 can define a surface that prevents further insertion of thespray device 100 into a citrus fruit. That is, the flared portion prevents the product from being inserted too far into the fruit. - While the surface is shown in
FIG. 1 as substantially smooth, thebody 110 can define any suitable surface. For example, in some embodiments, the flaredportion 111 may include a grip with ridges and/or protrusions configured to engage a user's hand or fingers. - The
body 110 may be formed of any suitable material, such as, for example, a plastic, thermoplastic, polymer, ceramic, metal, glass, and/or any combination thereof. Additionally, the flaredportion 111 may include any suitable surface treatment, such as, for example, a textured surface to increase the friction between a user's hand and the flaredportion 111. - The
neck 112 may be configured to extend from the flaredportion 111. While depicted inFIG. 1 as defining a smaller diameter than the flaredportion 111, theneck 112 may define any suitable size or shape. For example, in some embodiments, theneck 112 may be wider than the flaredportion 111. Alternatively, in other embodiments, theneck 112 may have other cross-sections including, for example, oval, square, rectangular, etc. - Referring to
FIG. 2 , anactuator 140 may be configured to be operative coupled to thebody 110. More specifically,actuator 140 may include anouter surface 141 configured to be inserted into thechannel 116 defined by theinner surface 115 of thebody 110. Additionally, aninner surface 145 of theactuator 140 may include anannular protrusion 146 that extends from a top portion of the inner surface 115 (seeFIG. 3 ). Theannular protrusion 146 may be configured to receive a portion of thepump 160. In this manner, theactuator 140 may be coupled to thepump 160 and either or both may be disposed within thebody 110. - The
outer surface 141 of theactuator 140 may include anengagement portion 142. Theengagement portion 142 may define an ergonomic shape configured to receive a user's finger. In this manner, the user can depress theactuator 140 to actuate thespray device 100. - Additionally, the
actuator 140 may include anoutlet portion 143 configured to receive anozzle 150. Thenozzle 150 may be any suitable nozzle configured to spray a liquid. In some embodiments, thenozzle 150 may be integrally formed with theactuator 140. Similarly stated, in some embodiments, theoutlet portion 143 of theactuator 140 may define an orifice configured to deliver a spray of a fluid. - As described above, the
pump 160 may be at least partially disposed within thebody 110 of thespray device 100. Thepump 160 can be coupled to thebody 110 in any suitable manner. For example, theinner surface 115 of thebody 110 may define anupper seat 117 configured to engage a portion of thepump 160. In some embodiments, thepump 160 may define a friction fit with theinner surface 115 of thebody 110. In other embodiments, thepump 160 and thebody 110 may define a threaded coupling. Thepump 160 may be anysuitable pump 160 configured to deliver a spray of a liquid. For example, in some embodiments, thepump 160 may be a positive displacement pump. - In some embodiments, the
pump 160 may be configured to deliver a fluid to an outlet and/or outlet portion in response to a negative pressure differential. For example, thepump 160 may be actuated such that air and/or fluid within a chamber is expelled. The expulsion of the air and/or fluid may cause a negative pressure to exist such that thepump 160 draws a fluid through a suction tube into the chamber. In some embodiments, thepump 160 may include a valve assembly configured to open and close in response to theactuator 140. For example, in some embodiments, thepump 160 may be configured such that when theactuator 140 is depressed by a user the valve opens to deliver a fluid. - As described above,
engagement member 120 may be configured to be coupled to theneck 112 of thebody 110. More specifically,engagement member 120 may include anextension 122 configured to be inserted into theneck 112 of thebody 110. Theengagement member 120 may include anouter surface 121 that defines an annular slot 123 (seeFIG. 4 ) configured to engage anannular protrusion 118 defined by theinner surface 115 of thebody 110. Therefore, when theextension 122 of theengagement member 120 is inserted into theneck 112 of thebody 110, theannular slot 123 may receive theannular protrusion 118. In this manner,engagement member 120 may be coupled to thebody 110. - In some embodiments, an
annular protrusion 118 may be formed of a material defining a high friction coefficient, such as, for example, polypropylene (PP). In other embodiments, anannular protrusion 118 may be any suitable material and may be formed as an over mold (e.g., thebody 110 is formed of a given material and theannular protrusion 118 is formed of a second material, molded on top of the first material). In still other embodiments,engagement member 120 may be coupled to theneck 112 of thebody 110 using a threaded coupling. In such embodiments,engagement member 120 may be coupled to and decoupled from thebody 110 by twisting theengagement portion 120 relative to thebody 110. Alternatively,engagement member 120 may be integrally formed with the body 110 (e.g.,engagement member 120 may be formed together with the body 110). -
Engagement member 120 may include an engagement portion 124 (seeFIG. 4 ). Theengagement portion 124 may be configured to be inserted into the citrus fruit. More specifically, theengagement portion 124 may includes aserrated end surface 127 configured to cut the peel of a citrus fruit such that theengagement portion 124 may be inserted into the citrus fruit. Additionally, theengagement portion 124 may include aconcave surface 125 configured to receive a portion of the peel disposed within theengagement portion 124. Similarly stated, theconcave surface 125 may be configured to allow theserrated end surface 127 to extend beyond the peel. - With the
engagement portion 124 inserted into the citrus fruit, theactuator 140 may be actuated such that thepump 160 transfers a suction force to the citrus fruit. Theengagement portion 124 may include a set ofpassages 126 configured to allow the juice within the fruit to enter theengagement portion 124. More specifically, as juice is transferred through thepassages 126, the juice can enter achannel 129 defined by aninner surface 128 of the engagement member 120 (seeFIG. 3 ). Thechannel 129 may include afilter 130 configured to filter the juice of pulp, seeds, and/or debris before entering a suction tube included in thepump 160. Thefilter 130 may be any suitable filter such as, for example, amesh filter 130. - In such embodiments, the
mesh filter 130 may define any suitable mesh size configured to allow for a given flow rate of juice through the filter and may be made from metal, plastic, or any other suitable material. While depicted inFIGS. 3 and 4 as substantially thimble shaped, thefilter 130 may be any suitable shape. - For example, in some embodiments, the filter may be a flat disc, a conical filter, a frustoconical filter, a convex/concave filter, and/or any other suitable filter. In this manner, the juice contained in the citrus fruit may be transferred to the
pump 160 and delivered through thenozzle 150. In some embodiments, themesh filter 130 may be removed to be cleaned. For example, a user may remove theengagement member 120 from thebody 110 by twisting theengagement portion 120 relative to thebody 110 to rinse thefilter 130 of pulp, seeds, or other debris. After thefilter 130 is cleaned or replaced, it may be inserted back into theengagement portion 120 and re-coupled to thebody 110. In some embodiments, thefilter 130 may be integrally formed with thebody 110 and/or theengagement member 120. - In certain embodiments, instead of or in addition to using a separate filter piece, functionality of a filter may be achieved using a set of perforations in a bottom portion of a juice extractor component (see, for example,
FIGS. 10 , 11, and 13). - In certain exemplary embodiments, inserting of a bottom portion of the spray device, such as the engagement portion 124 (
FIGS. 1-4 ), directly into a fruit (or vegetable, berry, etc.), may cause juice to flow from the fruit into a cavity, such as a channel 129 (FIG. 3 ), defined within the body of the spray device. Then, resulting from depressing of a pump activator (e.g.,actuator 140,FIG. 3 ) of a pump (e.g., 160,FIG. 3 ), a suction force may cause the juice collected within the cavity to be transferred, via a pump tube, up towards the pump activator, and released via a nozzle (e.g., 150,FIG. 2 ) in small particles, such as a mist. - Directing of the nozzle in a desired direction enables the user of the spray device to control the direction of the mist. The lower portion of the spray device may define one or more channels, such as passages 126 (
FIGS. 2-4 ), and/or a concave end with a plurality of openings to facilitate and/or guide the flow of the fruit juice into the cavity upon insertion of the spray device into the fruit. AlthoughFIGS. 1-4 depict the spay device including four channels, fewer or more channels may be formed within the lower portion of the spray device. - Another exemplary embodiment comprises a hand-held device for spraying fruit juice directly from a fruit, vegetable, berry, or other liquid source. The device comprises two parts: an aerosol spray pump component and a juice extractor component (see
FIG. 5 ). The aerosol spray pump component includes a pump, a pump activator, an aerosol port, a siphon tube, and a threaded collar. The juice extractor component includes a threaded end, a hollow body part, a solid body part with channels, and a serrated end. - The pump used in this exemplary embodiment may be cylindrical in shape and made of hard plastic. The siphon tube may be made from a hollow, flexible plastic tube and extend from one end of the pump. The pump activator may be cylindrical in shape and made of hard plastic; and may be integrated with the end of the pump opposite that of the siphon tube. The circular aerosol port may be integrated into the annular surface of the pump activator. The threaded collar may be a short, hollow cylinder made of hard plastic with a diameter that is greater than that of the pump.
- The interior surface of the threaded collar may be threaded like a screw. One end of the threaded collar may be closed and attached to the exterior surface of the pump where the pump meets the pump activator, while the other end may be open and encompass the pump. The juice extractor may be a tube shaped cylinder that is hollow on one half and solid on the other half, having a diameter that is slightly less than that of the threaded collar, but more than that of the pump.
- All parts of the juice extractor may be made from hard plastic, may be cylindrical, and may be formed from the same piece of material. One end of the hollow body part may be threaded like a screw on the exterior surface, comprising the threaded end. The opposing end of the hollow body part integrates with the remaining half of the juice extractor, the solid body part. Two channels may be cut perpendicular to each other through the entirety of the solid body part, resulting in four coaxial channels spaced at right angles to each other.
- The end of the solid body part opposite that integrated to the hollow body part may be concave and serrated, forming the serrated end. The threaded collar of the aerosol spray pump may be joined to the threaded end of the juice extractor with a twisting motion, with the pump fitting into the hollow body part and the siphon tube fitting and reaching half-way into the solid body part with channels (
FIGS. 5 and 6 ). - Another exemplary aspect comprises two parts: means for spraying juice and means for extracting juice. The means for spraying juice may include means for pumping juice, means to operate a pump, means of exit of aerosol, means of juice uptake, and means to connect to the means for extracting juice.
- The means for extracting juice may include means to connect to the means for spraying juice, means to accommodate the pump, means to allow juice flow, and means to pierce the fruit. The means for pumping juice may be cylindrical in shape and made of hard plastic.
- The means of juice uptake may be made from a hollow, flexible plastic tube and extend from one end of the means for pumping juice. The means to operate a pump may be cylindrical in shape and made of hard plastic; and may be integrated with the end of the means for pumping juice opposite that of the means of juice uptake. The means of exit of aerosol may be integrated into the annular surface of the means to operate the pump.
- The means to connect to the means for extracting juice may be a short, hollow cylinder made of hard plastic with a diameter that is greater than that of the means for pumping juice. The interior surface of the means to connect to the means for extracting juice may be threaded like a screw. One end of the means to connect to the means for extracting juice may be closed and attached to the exterior surface of the means for pumping juice where the means for pumping juice meets the means to operate the pump, while the other end may be open and encompass the means for pumping juice. The means for extracting juice may be a tube shaped cylinder that is hollow on one half and solid on the other half, having a diameter that is slightly less than that of the means to connect to the means for extracting juice, but more than that of the means for pumping juice.
- All parts of the means for extracting juice may be made from hard plastic, may be cylindrical, and may be formed from the same piece of material. One end of the means to accommodate pump may be threaded like a screw on the exterior surface, comprising the means to connect to the means for spraying juice. The opposing end of the means to accommodate pump may be integrated with the remaining half of the means for extracting juice, the means to allow juice flow.
- Two channels may be cut perpendicular to each other through the entirety of the means to allow juice flow, resulting in four coaxial channels spaced at right angle to each other. The end of the means to allow juice flow opposite that is integrated to the means to accommodate pump may be concave and serrated, forming the means to pierce the fruit. The means to connect to the means for extracting juice may be joined to the means to connect to the means for spraying juice with a twisting motion, with the means for pumping juice fitting into the means to accommodate pump and the means of juice uptake fitting and reaching half-way into the means to allow juice flow.
- In operation, a user may, for example, roll a piece of citrus fruit on a hard surface while applying pressure to loosen the interior. The serrated end of the invention may then be inserted with a twisting motion through the skin of the fruit and into the interior flesh, preferably through the area of the fruit where the stem was once attached. The user may then use a finger to operate the aerosol pump by pressing down on the pump activator. Juice will exit in aerosol form from the aerosol port (see
FIG. 7 ). -
FIGS. 8-11 are perspective views of exemplary embodiments. -
FIGS. 12A and 12B comprise a parts list that may be used to purchase certain component parts to construct an exemplary embodiment. The parts supplier in this case is ZheJiang YuYao City ZhiBing Spray Factory, in China. - The parts list in
FIGS. 12A and 12B is provided for informational and enablement purposes only, and does not constitute, and is not intended to provide, any sort of implied license to practice the claimed invention. - While certain exemplary embodiments are described herein, it should be understood that those embodiments are presented by way of example only, and not limitation. While the embodiments have been particularly shown and described, it will be understood that various changes in form and details may be made. Although various embodiments have been described as having particular features and/or combinations of components, other embodiments are possible having a combination of any features and/or components from any of embodiments as discussed above.
Claims (23)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/712,719 US20130115352A1 (en) | 2011-05-13 | 2012-12-12 | Spray dispensing device |
US13/771,893 US8813641B2 (en) | 2011-05-13 | 2013-02-20 | Spray dispensing device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161486112P | 2011-05-13 | 2011-05-13 | |
US201161565410P | 2011-11-30 | 2011-11-30 | |
US13/461,932 US20120288602A1 (en) | 2011-05-13 | 2012-05-02 | Spray dispensing device |
US13/712,719 US20130115352A1 (en) | 2011-05-13 | 2012-12-12 | Spray dispensing device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/461,932 Continuation US20120288602A1 (en) | 2011-05-13 | 2012-05-02 | Spray dispensing device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/771,893 Continuation US8813641B2 (en) | 2011-05-13 | 2013-02-20 | Spray dispensing device |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130115352A1 true US20130115352A1 (en) | 2013-05-09 |
Family
ID=47142042
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/461,932 Abandoned US20120288602A1 (en) | 2011-05-13 | 2012-05-02 | Spray dispensing device |
US13/712,719 Abandoned US20130115352A1 (en) | 2011-05-13 | 2012-12-12 | Spray dispensing device |
US13/771,893 Expired - Fee Related US8813641B2 (en) | 2011-05-13 | 2013-02-20 | Spray dispensing device |
US14/162,167 Expired - Fee Related US8916218B2 (en) | 2011-05-13 | 2014-01-23 | Spray dispensing device |
US14/455,319 Expired - Fee Related US9107532B2 (en) | 2011-05-13 | 2014-08-08 | Spray dispensing device |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/461,932 Abandoned US20120288602A1 (en) | 2011-05-13 | 2012-05-02 | Spray dispensing device |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/771,893 Expired - Fee Related US8813641B2 (en) | 2011-05-13 | 2013-02-20 | Spray dispensing device |
US14/162,167 Expired - Fee Related US8916218B2 (en) | 2011-05-13 | 2014-01-23 | Spray dispensing device |
US14/455,319 Expired - Fee Related US9107532B2 (en) | 2011-05-13 | 2014-08-08 | Spray dispensing device |
Country Status (9)
Country | Link |
---|---|
US (5) | US20120288602A1 (en) |
EP (1) | EP2568856B1 (en) |
JP (1) | JP5781689B2 (en) |
KR (1) | KR20140066669A (en) |
CN (1) | CN203302837U (en) |
DE (1) | DE202012012428U1 (en) |
ES (2) | ES2526688T3 (en) |
HK (1) | HK1184627A2 (en) |
WO (1) | WO2012158349A2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2526688T3 (en) * | 2011-05-13 | 2015-01-14 | Quirky, Inc. | Spray dispensing device |
TWM477236U (en) * | 2013-09-12 | 2014-05-01 | Ten Sheng Assorted Houseware Co Ltd | Combined juice extracting device |
JP3188948U (en) * | 2013-12-05 | 2014-02-13 | 株式会社レーベン販売 | Juice squeezer with multiple protrusions |
US11317647B2 (en) * | 2014-12-02 | 2022-05-03 | Monarch Media, Llc | Coconut water removal device and method therefor |
US20180037398A1 (en) * | 2016-08-05 | 2018-02-08 | Vante Brands | Aerosol Spray Device Resembling a Writing Instrument |
JP6569044B2 (en) * | 2016-10-17 | 2019-09-04 | プラスワン株式会社 | Juice spray tool |
WO2019161556A1 (en) * | 2018-02-24 | 2019-08-29 | Albea Packaging (Suzhou) Co., Ltd. | Filtration device |
KR102151190B1 (en) * | 2019-12-06 | 2020-09-02 | (주)더맛있는 하루 | Portable fruit juice extractor |
CN212326102U (en) * | 2020-04-14 | 2021-01-12 | 浙江久康电器有限公司 | Juice press |
CN111772457B (en) * | 2020-07-24 | 2021-08-03 | 江西师范大学 | Fruit juice extractor |
US11607508B1 (en) * | 2020-12-23 | 2023-03-21 | Stat Capsule Inc. | Device for sublingual application of a therapeutic dose of medication in fractions |
CN112756947A (en) * | 2020-12-28 | 2021-05-07 | 张家港市霞飞塑业有限公司 | Intubation device for inserting pump body and suction tube of perfume sprayer |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4995973A (en) * | 1989-03-06 | 1991-02-26 | Fmc Corporation | Modular longitudinal spray finisher |
US20070237864A1 (en) * | 2006-04-07 | 2007-10-11 | Conopco, Inc., D/B/A Unilever | Salad dressing product dispensed as a spray |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1889883A (en) * | 1928-11-26 | 1932-12-06 | Marie D Cody | Fruit juice extractor |
FR808744A (en) * | 1935-10-30 | 1937-02-13 | Lemon squeezers | |
US2766792A (en) * | 1952-10-21 | 1956-10-16 | Ralph B Potter | Pressure juice extractor |
US2807205A (en) * | 1955-04-06 | 1957-09-24 | George H Gilman | Fruit juicers |
US3073237A (en) * | 1961-01-09 | 1963-01-15 | Albert H Stronstorff | Fruit juicing, storing and dispensing apparatus |
JPS4024439Y1 (en) * | 1964-03-14 | 1965-08-19 | ||
FI41190C (en) * | 1964-12-10 | 1969-09-10 | Press for oranges and similar fruits | |
FR2285815A1 (en) * | 1974-09-26 | 1976-04-23 | Welsford Peter | Flavour and taste improvement of semi-luxury foodstuffs - essential oils, extracts, sprayed in controlled quantities from containers |
JPS5814894Y2 (en) * | 1979-12-18 | 1983-03-25 | 喜久子 原田 | lemon squeezer |
US5070778A (en) * | 1989-12-06 | 1991-12-10 | Fmc Corporation | Juice extractor having modified plug-forming cutter |
JPH04170910A (en) * | 1990-11-02 | 1992-06-18 | Sharp Corp | Juicer for fruit juice |
US5445068A (en) * | 1994-06-02 | 1995-08-29 | Michelson; Yigal | Apparatus and method for extracting juide from citrus fruits |
JPH09294672A (en) * | 1996-05-01 | 1997-11-18 | Tamotsu Mori | Fruit juice oozing-out device |
CN2388895Y (en) * | 1999-09-01 | 2000-07-26 | 陆征军 | Juice squeezer for beautifying |
US20030165433A1 (en) * | 2000-05-19 | 2003-09-04 | Hussein Amr | Throat spray for stopping hiccups |
FR2813889A1 (en) * | 2000-09-14 | 2002-03-15 | Jean Michel Egretier | Breaking up marc formed by floating fruit residue in fermentation vat includes using part immersed pump(s) with rotating ducts to deliver liquid onto cap |
US6389783B1 (en) * | 2000-09-26 | 2002-05-21 | Eric Segal | Fruit injector |
WO2003099704A1 (en) * | 2002-05-23 | 2003-12-04 | Eiji Yoshida | Device, unit, and system for fluid extraction |
GB2404844B (en) * | 2004-06-30 | 2005-07-20 | Sarah Barnard | Manually operated citrus fruit juice extractor |
US7305920B2 (en) * | 2004-08-18 | 2007-12-11 | Fmc Technologies, Inc. | Juice extractor with orifice tube beam drive extending into side panels |
WO2007148049A1 (en) * | 2006-06-21 | 2007-12-27 | Royal College Of Art | Juice extractor |
ES1074566Y (en) | 2011-04-11 | 2011-08-25 | Soler Jordi Olucha | DEVICE FOR OBTAINING JUICE DIRECTLY FROM THE FRUIT |
ES2526688T3 (en) * | 2011-05-13 | 2015-01-14 | Quirky, Inc. | Spray dispensing device |
KR101343599B1 (en) * | 2013-05-27 | 2013-12-20 | 김재원 | Mesh drum and juice extractor including the same |
CN103892684A (en) * | 2014-04-04 | 2014-07-02 | 宁波厨聚厨房科技有限公司 | Juicer structure |
-
2012
- 2012-05-02 ES ES12785962.7T patent/ES2526688T3/en active Active
- 2012-05-02 CN CN2012900001615U patent/CN203302837U/en not_active Expired - Fee Related
- 2012-05-02 ES ES201290015U patent/ES1078920Y/en not_active Expired - Fee Related
- 2012-05-02 KR KR1020137033233A patent/KR20140066669A/en not_active Application Discontinuation
- 2012-05-02 JP JP2014511384A patent/JP5781689B2/en not_active Expired - Fee Related
- 2012-05-02 EP EP12785962.7A patent/EP2568856B1/en not_active Not-in-force
- 2012-05-02 US US13/461,932 patent/US20120288602A1/en not_active Abandoned
- 2012-05-02 HK HK13106399.9A patent/HK1184627A2/en not_active IP Right Cessation
- 2012-05-02 DE DE202012012428U patent/DE202012012428U1/en not_active Expired - Lifetime
- 2012-05-02 WO PCT/US2012/036109 patent/WO2012158349A2/en active Application Filing
- 2012-12-12 US US13/712,719 patent/US20130115352A1/en not_active Abandoned
-
2013
- 2013-02-20 US US13/771,893 patent/US8813641B2/en not_active Expired - Fee Related
-
2014
- 2014-01-23 US US14/162,167 patent/US8916218B2/en not_active Expired - Fee Related
- 2014-08-08 US US14/455,319 patent/US9107532B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4995973A (en) * | 1989-03-06 | 1991-02-26 | Fmc Corporation | Modular longitudinal spray finisher |
US20070237864A1 (en) * | 2006-04-07 | 2007-10-11 | Conopco, Inc., D/B/A Unilever | Salad dressing product dispensed as a spray |
Non-Patent Citations (1)
Title |
---|
Engstrom, Martha, The Farmer's Wife Cookbook, Voyageur Press, 2008, pp. 108. * |
Also Published As
Publication number | Publication date |
---|---|
US20140345480A1 (en) | 2014-11-27 |
US20120288602A1 (en) | 2012-11-15 |
US9107532B2 (en) | 2015-08-18 |
US8916218B2 (en) | 2014-12-23 |
ES1078920Y (en) | 2013-06-28 |
DE202012012428U1 (en) | 2013-01-23 |
US20140134313A1 (en) | 2014-05-15 |
JP5781689B2 (en) | 2015-09-24 |
US8813641B2 (en) | 2014-08-26 |
ES2526688T3 (en) | 2015-01-14 |
EP2568856A4 (en) | 2013-07-31 |
CN203302837U (en) | 2013-11-27 |
HK1184627A2 (en) | 2014-01-24 |
WO2012158349A3 (en) | 2013-03-21 |
US20130164423A1 (en) | 2013-06-27 |
KR20140066669A (en) | 2014-06-02 |
ES1078920U (en) | 2013-04-02 |
EP2568856A2 (en) | 2013-03-20 |
EP2568856B1 (en) | 2014-12-03 |
JP2014522266A (en) | 2014-09-04 |
WO2012158349A2 (en) | 2012-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9107532B2 (en) | Spray dispensing device | |
US10946135B2 (en) | Nasal rinse tip | |
US6135358A (en) | Apparatus for washing the nasal cavities | |
US10870121B2 (en) | Pressurizable fluid container apparatus | |
EP2181771B1 (en) | Dome pump spray assembly | |
EP2496361B2 (en) | Pushbutton for a system for dispensing a pressurized substance | |
US20190262516A1 (en) | Hand Held Irrigation And Suction Tool | |
US10717092B2 (en) | Spray nozzle, in particular for a system for dispensing a pressurized fluid provided with a pushbutton, and dispensing system comprising such a nozzle | |
EP2779980B1 (en) | Nasal irrigation device | |
EP1584340B1 (en) | Apparatus for cleaning the nose | |
US6618873B2 (en) | Automatic feed waste disposal tool | |
RU2644115C2 (en) | Control device and dispensing device | |
US20100186237A1 (en) | Fluidic utensils | |
US20120312176A1 (en) | Hand Held Fruit Juicer | |
KR102392145B1 (en) | A steam device for beauty | |
JP6569044B2 (en) | Juice spray tool | |
WO2018197798A1 (en) | Head for dispensing a fluid product | |
KR20180008356A (en) | Bottle For Liquid | |
CN107206150B (en) | Angled cover for dispensing fluids | |
US20080293006A1 (en) | Method and Device for Oral Irrigation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: COMERICA BANK, MICHIGAN Free format text: SECURITY INTEREST;ASSIGNOR:QUIRKY, INC.;REEL/FRAME:032794/0873 Effective date: 20140422 |
|
AS | Assignment |
Owner name: Q HOLDINGS LLC, NEW YORK Free format text: ASSET PURCHASE AGREEMENT;ASSIGNOR:QUIRKY, INC.;REEL/FRAME:038805/0487 Effective date: 20151125 |
|
AS | Assignment |
Owner name: Q HOLDINGS LLC, NEW YORK Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE PAT. NO. 9,137,104 PREVIOUSLY RECORDED ON REEL 038805 FRAME 0487. ASSIGNOR(S) HEREBY CONFIRMS THE ASSET PURCHASE AGREEMENT;ASSIGNOR:QUIRKY, INC.;REEL/FRAME:040980/0001 Effective date: 20151124 |
|
AS | Assignment |
Owner name: Q HOLDINGS LLC, NEW YORK Free format text: ASSET PURCHASE AGREEMENT;ASSIGNOR:QUIRKY, INC.;REEL/FRAME:040342/0417 Effective date: 20151125 Owner name: Q HOLDINGS LLC, NEW YORK Free format text: RESUBMISSION;ASSIGNOR:QUIRKY, INC.;REEL/FRAME:040342/0417 Effective date: 20151125 |
|
AS | Assignment |
Owner name: QUIRKY IP LICENSING LLC, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:Q HOLDINGS LLC;REEL/FRAME:045215/0283 Effective date: 20180123 |
|
AS | Assignment |
Owner name: BANK HAPOALIM B.M., NEW YORK Free format text: SECURITY INTEREST;ASSIGNOR:QUIRKY IP LICENSING LLC;REEL/FRAME:047238/0915 Effective date: 20180731 |