US20130062554A1 - Deicing salt composition and method for preparing the same - Google Patents

Deicing salt composition and method for preparing the same Download PDF

Info

Publication number
US20130062554A1
US20130062554A1 US13/586,894 US201213586894A US2013062554A1 US 20130062554 A1 US20130062554 A1 US 20130062554A1 US 201213586894 A US201213586894 A US 201213586894A US 2013062554 A1 US2013062554 A1 US 2013062554A1
Authority
US
United States
Prior art keywords
sodium
deicing
formate
deicing salt
silicate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US13/586,894
Other versions
US8409465B1 (en
Inventor
Xinchuan CHENG
Zhijun Xu
Shengli WEN
Lu Feng
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei Ruifuyang Chemical Tech Co Ltd
Original Assignee
Hubei Ruifuyang Chemical Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN 201110270365 external-priority patent/CN102277134B/en
Application filed by Hubei Ruifuyang Chemical Tech Co Ltd filed Critical Hubei Ruifuyang Chemical Tech Co Ltd
Assigned to Hubei Ruifuyang Chemical Technology Co., Ltd. reassignment Hubei Ruifuyang Chemical Technology Co., Ltd. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHENG, Xinchuan, FENG, LU, WEN, Shengli, XU, ZHIJUN
Publication of US20130062554A1 publication Critical patent/US20130062554A1/en
Application granted granted Critical
Publication of US8409465B1 publication Critical patent/US8409465B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/18Materials not provided for elsewhere for application to surfaces to minimize adherence of ice, mist or water thereto; Thawing or antifreeze materials for application to surfaces
    • C09K3/185Thawing materials

Definitions

  • the invention relates to a deicing salt composition, and more particularly to an ecological deicing salt composition comprising formate as the main ingredient.
  • chlorine deicers contain chlorine ions and thus are corrosive. Although rust inhibitors (slushing compounds) are always added into chlorine deicers to reduce the corrosiveness on metals and road construction materials, the corrosiveness is still prominent. Furthermore, chlorine ions have an impact on soils and vegetations, and do harm to the growth of plants. Biological deicers made from grain crops, waste water originated from paper-making, wine by-products, and lipolysaccharide products have low cost and no environmental pollution, however, the deicing effect is not so good.
  • Urea deicers are apt to degrade into ammonia, and calcium nitrate and magnesium nitrate deicing salt contain nitrate radical, both of which may result in eutrophication.
  • Alcohol deicing salts containing glycol or glycerin have a high COD (Chemical Oxygen Demand) value.
  • Formate salts are new organic deicing salts, with fast and effective deicing ability, easy degradation, low oxygen demand, and little impact on the environment. Thus, it is a mild deicing salt friendly to ecology and the environment. However, formate has certain corrosive effect on metals, particularly on light metals, and thus, rust inhibitors must be added to compromise the corrosiveness.
  • inorganic phosphates are generally employed as rust inhibitors, which, however, will react with calcium ions in the water to form calcium carbonate. Thus, a scale inhibitor is needed. Furthermore, inorganic phosphates in the water stimulate the growth of algae and thus result in water eutrophication.
  • a deicing salt which has a fast and effective deicing ability, low corrosiveness, and easy degradation.
  • a deicing salt comprising between 95 and 98 wt. % of a formate, between 1 and 3.5 wt. % of a silicate, between 0.05 and 0.5 wt. % of sodium metaaluminate, between 0.1 and 1 wt. % of sodium carbonate, and between 0.05 and 0.5 wt. % of a organophosphate containing a phosphoryl group.
  • the formate is selected from the group consisting of sodium formate, potassium formate, or a mixture thereof;
  • the silicate is selected from the group consisting of sodium disilicate, potassium disilicate, sodium metasilicate, potassium metasilicate, or a mixture thereof;
  • the organophosphate containing phosphoryl groups is selected from the group consisting of hydroxy ethyl disodium diphosphate (HEDPNa 2 ), 2-phosphate butane-1,2,4-tricarboxylic acid tetrasodium (PBTCANa 4 ), ⁇ -hydroxy-phosphorus sodium acetate (HPAANa), or a mixture thereof.
  • a modulus of the silicate is between 1 and 3.5.
  • a method of preparation of the deicing salt comprising: grinding, mixing, stirring, and squeezing the formate, the silicate, the sodium metaaluminate, the sodium carbonate, and the organophosphate containing the phosphoryl group, to yield particles with diameters of between 2 and 6 mm, and drying the particles.
  • Example 1 Components of deicing salts of Examples 1-4 Component Example 1
  • Example 2 Example 3
  • Example 4 Sodium formate 96 98 97.5 97.2
  • Sodium carbonate 0.5 0.2 0.5 0.3
  • Sodium disilicate 3.25 1.58 1.75
  • 2.3 Sodium metaaluminate 0.1 0.1 0.1 0.1 0.1 HEDPNa 2 0.15 0 0 0 PBTCANa 4 0 0.12 0.15 0 HPAANa 0 0 0 0.1 0.1
  • the modulus of silicate is 2.
  • each component was collected by weight percent, ground, mixed, and stirred uniformly, then the resulting mixture was squeezed into particles between 2 and 6 mm in diameter, and finally oven-dried to yield the deicing salts.
  • Each of the deicing salts of Examples 1-4 was diluted with water to yield a water solution with a concentration of 0.2 g/mL 25 mL of the water solution was added into the ceramic crucible.
  • the ceramic crucible was then put in the low-temperature calorstat at the temperature of ⁇ 10° C. for 30 minutes, thereafter, the liquid in the ceramic crucible was poured out, and the ceramic crucible with remnant ice was quickly weighed.
  • the deicing ability of the deicing salts of this invention is stronger than that of the sodium chloride deicing salt.
  • a concrete block with a dimension of 100 ⁇ 100 ⁇ 100 mm 3 was first immersed in a 3% deicing salt solution at a freezing temperature of ⁇ 20° C. for 16 hours, and then defrozen at room temperature for 8 hours. The above freezing and defreezing processes were repeated for 50 days, once per week, and the deicing salt was renewed and the concrete block was weighed. The corrosion rate of concrete was calculated based on the weight loss, and the corrosion ratio was calculated based on comparison to the sodium chloride. Results of the testing are given below in Table 4.
  • the deicing salt was diluted with water to yield a 15% water solution, and then incubated at a constant temperature of 20° C. for 15 days. Testing results are given below in Table 5:
  • the deicing salt of the invention is easier to be biodegraded, and the BOD and the COD of the deicing salt of the invention are both lower than those of the sodium acetate deicing salt or the urea deicing salt, thus the deicing salt of the invention has a better performance of environmental protection.
  • ASTMF 483 comprises steps of below: a metal sheet in a dimension of 50.8 ⁇ 25.4 ⁇ 1.6 mm 3 was totally immersed in a 15% deicing salt solution at a constant temperature of 38 ⁇ 3° C. under one standard atmospheric pressure for 24 hours, during which weight change and color change of the corrosion appearance were recorded.
  • the unit of the weight change before and after the immersion is mg/cm 2 ⁇ 24 hours.
  • Example 1 Example 2
  • Example 3 Example 4
  • the corrosion test of magaluma, aluminum, and other light metal materials indicates that the deicing salt of the invention has meet the standard of total immersion corrosion test of SAE AMS 1431C.
  • a deicing salt comprises 95 wt. % of a formate, 3.5 wt. % of a sodium disilicate, 0.5 wt. % of sodium metaaluminate, 0.5 wt. % of sodium carbonate, and 0.5 wt. % of PBTCANa 4 .
  • the modulus of the silicate is 1.
  • each component was collected by weight percent, ground, mixed, and stirred uniformly, then the resulting mixture was squeezed into particles between 2 and 6 mm in diameter, and finally oven-dried to yield the deicing salt.
  • a deicing salt comprises 97.9 wt. % of a formate, 1 wt. % of a sodium disilicate, 0.05 wt. % of sodium metaaluminate, 1 wt. % of sodium carbonate, and 0.05 wt. % of HPAANa.
  • the modulus of the silicate is 3.5.
  • the method for preparing the deicing salt is the same as that in Example 10.
  • a deicing salt comprises 96.35 wt. % of a formate, 3 wt. % of a sodium disilicate, 0.05 wt. % of sodium metaaluminate, 0.1 wt. % of sodium carbonate, and 0.5 wt. % of HPAANa.
  • the modulus of the silicate is 2.
  • the deicing salt of the invention is mainly used to remove and prevent the accumulation of frost, ice, and snow, in airport runways or in streets, roads, bicycle routes, sidewalks, bridges, courtyards, parking lots, playgrounds, and other traffic areas.

Abstract

A deicing salt composition, including: between 95 and 98 wt. % of a formate, between 1 and 3.5 wt. % of a silicate, between 0.05 and 0.5 wt. % of sodium metaaluminate, between 0.1 and 1 wt. % of sodium carbonate, and between 0.05 and 0.5 wt. % of a organophosphate containing a phosphoryl group. The formate is selected from the group consisting of sodium formate, potassium formate, or a mixture thereof. The silicate is selected from the group consisting of sodium disilicate, potassium disilicate, sodium metasilicate, potassium metasilicate, or a mixture thereof. The organophosphate containing the phosphoryl groups is selected from the group consisting of hydroxy ethyl disodium diphosphate, 2-phosphate butane-1,2,4-tricarboxylic acid tetrasodium, α-hydroxy-phosphorus sodium acetate, or a mixture thereof.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation-in-part of International Patent Application No. PCT/CN2011/081957 with an international filing date of Nov. 8, 2011, designating the United States, now pending, and further claims priority benefits to Chinese Patent Application No. 201110270365.2 filed Sep. 9, 2011. The contents of all of the aforementioned applications, including any intervening amendments thereto, are incorporated herein by reference. Inquiries from the public to applicants or assignees concerning this document or the related applications should be directed to: Matthias Scholl P. C., Attn.: Dr. Matthias Scholl Esq., 14781 Memorial Drive, Suite 1319, Houston, Tex. 77079.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The invention relates to a deicing salt composition, and more particularly to an ecological deicing salt composition comprising formate as the main ingredient.
  • 2. Description of the Related Art
  • Conventional chlorine deicers contain chlorine ions and thus are corrosive. Although rust inhibitors (slushing compounds) are always added into chlorine deicers to reduce the corrosiveness on metals and road construction materials, the corrosiveness is still prominent. Furthermore, chlorine ions have an impact on soils and vegetations, and do harm to the growth of plants. Biological deicers made from grain crops, waste water originated from paper-making, wine by-products, and lipolysaccharide products have low cost and no environmental pollution, however, the deicing effect is not so good. Urea deicers are apt to degrade into ammonia, and calcium nitrate and magnesium nitrate deicing salt contain nitrate radical, both of which may result in eutrophication. Alcohol deicing salts containing glycol or glycerin have a high COD (Chemical Oxygen Demand) value.
  • Formate salts are new organic deicing salts, with fast and effective deicing ability, easy degradation, low oxygen demand, and little impact on the environment. Thus, it is a mild deicing salt friendly to ecology and the environment. However, formate has certain corrosive effect on metals, particularly on light metals, and thus, rust inhibitors must be added to compromise the corrosiveness. In the prior art, inorganic phosphates are generally employed as rust inhibitors, which, however, will react with calcium ions in the water to form calcium carbonate. Thus, a scale inhibitor is needed. Furthermore, inorganic phosphates in the water stimulate the growth of algae and thus result in water eutrophication.
  • SUMMARY OF THE INVENTION
  • In view of the above-described problems, it is one objective of the invention to provide a deicing salt, which has a fast and effective deicing ability, low corrosiveness, and easy degradation.
  • To achieve the above objectives, in accordance with one embodiment of the invention, there is provided a deicing salt comprising between 95 and 98 wt. % of a formate, between 1 and 3.5 wt. % of a silicate, between 0.05 and 0.5 wt. % of sodium metaaluminate, between 0.1 and 1 wt. % of sodium carbonate, and between 0.05 and 0.5 wt. % of a organophosphate containing a phosphoryl group. The formate is selected from the group consisting of sodium formate, potassium formate, or a mixture thereof; the silicate is selected from the group consisting of sodium disilicate, potassium disilicate, sodium metasilicate, potassium metasilicate, or a mixture thereof; the organophosphate containing phosphoryl groups is selected from the group consisting of hydroxy ethyl disodium diphosphate (HEDPNa2), 2-phosphate butane-1,2,4-tricarboxylic acid tetrasodium (PBTCANa4), α-hydroxy-phosphorus sodium acetate (HPAANa), or a mixture thereof.
  • In a class of this embodiment, a modulus of the silicate is between 1 and 3.5.
  • In accordance with another embodiment of the invention, there is provided a method of preparation of the deicing salt, comprising: grinding, mixing, stirring, and squeezing the formate, the silicate, the sodium metaaluminate, the sodium carbonate, and the organophosphate containing the phosphoryl group, to yield particles with diameters of between 2 and 6 mm, and drying the particles.
  • Advantages of the invention are summarized below:
      • 1) the deicing salt has a potent deicing ability;
      • 2) the organophosphate containing the phosphoryl group [—PO(OH)2] mixed with the silicate acts as an anti-corrosive agent, and a small amount of sodium metaaluminate and sodium carbonate are added, which improves the anti-corrosiveness of the anti-corrosive agent on the magnalium alloy, and the deicing salt has low corrosiveness on carbon steel and concrete; in particular, the deicing salt has such a low corrosiveness on magnalium alloy materials and aluminum alloy materials in airplanes that it meets the standard of environmental requirements to aerial materials in SAE-AMS-1431C of America;
      • 3) the deicing salt can be biodegradable easily, and the biochemical oxygen demand (BOD) and the chemical oxygen demand during the biodegradation are very low, thus it has a good performance of environmental protection; and
      • 4) the deicing salt has the ability of fast dissolution and high solubility at low temperature, and the particles of the deicing salt have strong hydroscopicity, they can rapidly absorb the water from the ambient air to form salt water at low temperature, penetrate into the earth surface, and spread outward to destroy the adhesion between the ice/snow and the freezing earth, to achieve the objective of deicing fast and effectively.
    DETAILED DESCRIPTION OF THE EMBODIMENTS
  • To further illustrate the invention, experiments detailing a deicing salt and a method for preparing the same are described below. It should be noted that the following examples are intended to describe and not to limit the invention.
  • EXAMPLES 1-4
  • Components of deicing salts of 4 examples of the invention are given below in Table 1 (data hereinbelow mean weight percents of each component in the total of a deicing salt):
  • TABLE 1
    Components of deicing salts of Examples 1-4
    Component Example 1 Example 2 Example 3 Example 4
    Sodium formate 96 98 97.5 97.2
    Sodium carbonate 0.5 0.2 0.5 0.3
    Sodium disilicate 3.25 1.58 1.75 2.3
    Sodium metaaluminate 0.1 0.1 0.1 0.1
    HEDPNa2 0.15 0 0 0
    PBTCANa4 0 0.12 0.15 0
    HPAANa 0 0 0 0.1
  • The modulus of silicate is 2.
  • A method for preparing the deicing salts of Examples 1-4 is given below: each component was collected by weight percent, ground, mixed, and stirred uniformly, then the resulting mixture was squeezed into particles between 2 and 6 mm in diameter, and finally oven-dried to yield the deicing salts.
  • EXAMPLE 5 Test of Deicing Ability of Deicing Salts of Examples 1-4
  • In accordance with GB/T23851-2009 (Road deicing agent), deicing ability of the deicing salts of Examples 1-4 has been tested, and the testing method was as follows:
  • 100 mL of water was added into a ceramic crucible, which was then put in a low-temperature calorstat at a temperature of −10° C. After the water was frozen into ice, the ceramic crucible was taken out. Then the water and the ice on the outer surface of the ceramic crucible were wiped away, and the ceramic crucible was weighed, readings of which were accurate to 0.1 g.
  • Each of the deicing salts of Examples 1-4 was diluted with water to yield a water solution with a concentration of 0.2 g/mL 25 mL of the water solution was added into the ceramic crucible. The ceramic crucible was then put in the low-temperature calorstat at the temperature of −10° C. for 30 minutes, thereafter, the liquid in the ceramic crucible was poured out, and the ceramic crucible with remnant ice was quickly weighed.
  • A sodium chloride deicing salt was tested under the same conditions as above, and a deicing ability ratio of the deicing salt of the invention to the sodium chloride deicing salt was calculated according to the formula: K=(m0−m1)×100/(m01−m11), m0 and the m1 represent the total weight (g) of the ice and ceramic crucible before and after adding the deicing salt of this invention, respectively, and m01 and m11 represent the total weight (g) of the ice and ceramic crucible before and after adding the sodium chloride deicing salt, respectively. Results of the testing are given below in Table 2.
  • TABLE 2
    Deicing ability of deicing salts of the invention
    No. Example Deicing ability ratio K (%)
    1 1 108
    2 2 123
    3 3 121
    4 4 116
  • As shown in the above table, the deicing ability of the deicing salts of this invention is stronger than that of the sodium chloride deicing salt.
  • EXAMPLE 6 Test of Corrosiveness of Deicing Salts of Examples 1-4 on Carbon Steel
  • According to Chinese national standard GB/T10124-1988, the corrosiveness of the deicing salts of Examples 1-4 on carbon steel has been tested, and the method is summarized as follows:
  • 1) 5 carbon steel sheets with a dimension of 50×25×2 mm3, each having a hole of 3 mm in diameter in the center, were separately immersed in a 5% sulfuric acid solution for 5 minutes, and then washed with water, alcohol, and acetone in turn. After dried with nitrogen, the sheets were put in a dry cabinet, numbered, measured, and weighed;
  • 2) To each of 5 beakers with a capacity of 200 mL, 1,000 mL of purified water was added. 200 g of sodium chloride was then added in one of the beakers, and 200 g of deicing salts of Examples 1-4 of the invention was separately added in the other four beakers;
  • 3) Each carbon steel sheet was hung to one end of a nylon cord, respectively, and the other end of the nylon cord was attached to a glass rod disposed on the edge of the beaker, to make sure the carbon steel sheet be in a center or a lower position of the solution;
  • 4) After being immersed in the solutions for 48 hours, the 5 carbon steel sheets were treated with a 3% chlorhydric acid for another 10 minutes, then taken out with rusts cleaned off with brushes, further washed with water and alcohol in turn, thereafter, dried with nitrogen, put in a dry cabinet, and finally weighed;
  • 5) Assessment of the corrosive effect, and the results are given below in Table 3.
  • TABLE 3
    Results of corrosive effect on carbon steel metal sheets
    Weight Corro- Corro-
    Original after Weight loss sion sion
    weight corrosion of corrosion rate R ratio
    No. Example M (g) M1 (g) (g) (mm/a) (%)*
    1 Sodium 19.1841 19.1278 0.0563 0.4675
    chloride
    2 Example 1 19.2939 19.2891 0.0048 0.0399 8.53
    3 Example 2 19.6620 19.6599 0.0021 0.0174 3.73
    4 Example 3 20.0181 20.0154 0.0027 0.0224 4.79
    5 Example 4 19.1117 19.1102 0.0015 0.0125 2.66
    *Corrosion rate (%) is calculated on the premise that the corrosion rate of the sodium chloride is 100%.
    Corrosion rate R = [8760 × (M − M1)] ÷ STD × 10
  • In the formula, S represents the area of the testing carbon steel sheet, and the standard value is 28 m2; T represents the time of immersion, the value is 48 hours; D represents the density of the carbon steel sheet, and the value is 7.85 g/cm3; 8760 represents the number of hours in one year; and 10 is a unit conversion coefficient.
  • As shown in the above table, the corrosive effects on the carbon steel sheets of the deicing salts of this invention are obviously lower than that of sodium chloride.
  • EXAMPLE 7 Test of Corrosiveness of Deicing Salts of Examples 1-4 on Concrete
  • According to the method of ASTM designation C672-84, the corrosiveness of the deicing salts of Examples 1-4 on concrete has been tested, and the testing method is summarized below:
  • A concrete block with a dimension of 100×100×100 mm3 was first immersed in a 3% deicing salt solution at a freezing temperature of −20° C. for 16 hours, and then defrozen at room temperature for 8 hours. The above freezing and defreezing processes were repeated for 50 days, once per week, and the deicing salt was renewed and the concrete block was weighed. The corrosion rate of concrete was calculated based on the weight loss, and the corrosion ratio was calculated based on comparison to the sodium chloride. Results of the testing are given below in Table 4.
  • TABLE 4
    Corrosive effects of deicing salts of Examples 1-4 on concrete
    Concrete corrosion Corrosion
    No. Example rate (%) ratio (%) *
    1 Sodium chloride 4.98
    2 Example 1 0.30 6.02
    3 Example 2 0.23 4.62
    4 Example 3 0.17 3.41
    5 Example 4 0.14 2.81
    * Corrosion ratio (%) is calculated on the premise that the corrosion rate of sodium chloride is 100%.
  • As shown in the above table, the corrosive effect of the deicing salt of this invention on concrete is prominently lower than that of the sodium chloride.
  • EXAMPLE 8 Test of Biodegradation Ability and Appearance of Deicing Salts of Examples 1-4
  • According to APAH standard methods for examination of water and waste water, the biodegradation ability of deicing salts of Examples 1-4 has been tested. The testing method is summarized below.
  • The deicing salt was diluted with water to yield a 15% water solution, and then incubated at a constant temperature of 20° C. for 15 days. Testing results are given below in Table 5:
  • TABLE 5
    Results of biodegradation ability of deicing salts
    15 days' 15 days' Biodegradation
    BOD (O2/kg COD (O2/kg ratio after
    Sample Odor of sample) of sample) 15 days (%)
    Example 1 Odorless 0.22 0.28 92
    Example 2 Odorless 0.20 0.32 95
    Example 3 Odorless 0.09 0.19 90
    Example 4 Odorless 0.25 0.27 91
    Sodium acetate Slightly 0.54 0.86 58
    deicing salt acidic
    Urea deicing 3.44 2.95 34
    salt
  • As shown in the above table, compared with the sodium acetate deicing salt or the urea deicing salt, the deicing salt of the invention is easier to be biodegraded, and the BOD and the COD of the deicing salt of the invention are both lower than those of the sodium acetate deicing salt or the urea deicing salt, thus the deicing salt of the invention has a better performance of environmental protection.
  • EXAMPLE 9 Total Immersion Corrosion Test
  • According to the standard practice for total immersion corrosion test of ASTMF 483 in SAE AMS 1431C-Compound, Solid Deicing/Anti-Icing Runways and Taxiways, total immersion corrosion test of Examples 1-4 of the invention has been carried out:
  • The standard practice of ASTMF 483 comprises steps of below: a metal sheet in a dimension of 50.8×25.4×1.6 mm3 was totally immersed in a 15% deicing salt solution at a constant temperature of 38±3° C. under one standard atmospheric pressure for 24 hours, during which weight change and color change of the corrosion appearance were recorded. The unit of the weight change before and after the immersion is mg/cm2·24 hours.
  • Results of the total immersion corrosion test on the metal sheet are given below in Table 6:
  • TABLE 6
    Results of the total immersion corrosion test on metal sheet
    Allowable value of the
    Specifications standard (weight change Weight change (mg/cm2 · 24 hours) and appearance change
    of metal sheets and appearance) Example 1 Example 2 Example 3 Example 4
    Aluminum alloy ≦0.3 0.06 0.01  0.005 0.005
    of AMS 4037 no visible no no no no
    treated with corrosion (such discoloration discoloration discoloration discoloration
    the method of as discoloration,
    AMS 2470 etching spots,
    and imprints)
    Aluminum alloy ≦0.3 0.06 0.04  0.010 0.005
    of AMS 4041 no visible no no no no
    corrosion (such discoloration discoloration discoloration discoloration
    as discoloration,
    etching spots,
    and imprints)
    Aluminum alloy ≦0.3 0.09 0.006 0.008 0.001
    of AMS 4049 no visible no no no no
    corrosion (such discoloration discoloration discoloration discoloration
    as discoloration,
    etching spots,
    and imprints)
    Magnesium alloy ≦0.2 0.08 0.070 0.001  0.0006
    of AMS 4376 no visible no no no no
    treated with corrosion (such discoloration discoloration discoloration discoloration
    the dichromate as discoloration,
    method of etching spots,
    AMS 2475 and imprints)
  • As shown in the above table, the corrosion test of magaluma, aluminum, and other light metal materials indicates that the deicing salt of the invention has meet the standard of total immersion corrosion test of SAE AMS 1431C.
  • The above examples have exemplified components and their weight percents of four deicing salts. To further illustrate the invention, examples of the deicing salt are provided hereinbelow.
  • EXAMPLE 10
  • A deicing salt comprises 95 wt. % of a formate, 3.5 wt. % of a sodium disilicate, 0.5 wt. % of sodium metaaluminate, 0.5 wt. % of sodium carbonate, and 0.5 wt. % of PBTCANa4.
  • The modulus of the silicate is 1.
  • The method for preparing the deicing method is as follows: each component was collected by weight percent, ground, mixed, and stirred uniformly, then the resulting mixture was squeezed into particles between 2 and 6 mm in diameter, and finally oven-dried to yield the deicing salt.
  • EXAMPLE 11
  • A deicing salt comprises 97.9 wt. % of a formate, 1 wt. % of a sodium disilicate, 0.05 wt. % of sodium metaaluminate, 1 wt. % of sodium carbonate, and 0.05 wt. % of HPAANa.
  • The modulus of the silicate is 3.5.
  • The method for preparing the deicing salt is the same as that in Example 10.
  • EXAMPLE 12
  • A deicing salt comprises 96.35 wt. % of a formate, 3 wt. % of a sodium disilicate, 0.05 wt. % of sodium metaaluminate, 0.1 wt. % of sodium carbonate, and 0.5 wt. % of HPAANa.
  • The modulus of the silicate is 2.
  • The use dosage of the deicing salt of the invention can be referred to Table 7 hereinbelow:
  • TABLE 7
    Usage amount of deicing salt of the invention
    Atmospheric Usage amount for Usage amount for
    temperature prevention (g/m2) deicing (g/m2)
    0-−5° C. 30 50
    −5-−10° C. 50 80
    −10-−15° C. 80 120
  • The deicing salt of the invention is mainly used to remove and prevent the accumulation of frost, ice, and snow, in airport runways or in streets, roads, bicycle routes, sidewalks, bridges, courtyards, parking lots, playgrounds, and other traffic areas.
  • While particular embodiments of the invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications may be made without departing from the invention in its broader aspects, and therefore, the aim in the appended claims is to cover all such changes and modifications as fall within the true spirit and scope of the invention.

Claims (4)

1. A deicing salt composition, comprising:
a) between 95 and 98 wt. % of a formate;
b) between 1 and 3.5 wt. % of a silicate;
c) between 0.05 and 0.5 wt. % of sodium metaaluminate;
d) between 0.1 and 1 wt. % of sodium carbonate; and
e) between 0.05 and 0.5 wt. % of a organophosphate containing a phosphoryl group;
wherein
said formate is selected from the group consisting of sodium formate, potassium formate, or a mixture thereof;
said silicate is selected from the group consisting of sodium disilicate, potassium disilicate, sodium metasilicate, potassium metasilicate, or a mixture thereof; and
said organophosphate containing said phosphoryl groups is selected from the group consisting of hydroxy ethyl disodium diphosphate, 2-phosphate butane-1,2,4-tricarboxylic acid tetrasodium, α-hydroxy-phosphorus sodium acetate, or a mixture thereof.
2. The deicing salt composition of claim 1, wherein a modulus of said silicate is between 1 and 3.5.
3. A method of preparation of the deicing salt composition of claim 1, the method comprising: grinding, mixing, stirring, and squeezing said formate, said silicate, said sodium metaaluminate, said sodium carbonate, and said organophosphate containing said phosphoryl group, to yield particles with diameters of between 2 and 6 mm, and drying the particles.
4. The method of claim 3, wherein a modulus of said silicate is between 1 and 3.5.
US13/586,894 2011-09-09 2012-08-16 Deicing salt composition and method for preparing the same Active US8409465B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN 201110270365 CN102277134B (en) 2011-09-09 2011-09-09 Snow-melting agent
CN201110270365.2 2011-09-09
CN201110270365 2011-09-09
PCT/CN2011/081957 WO2013033947A1 (en) 2011-09-09 2011-11-08 Snow thawing agent

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/081957 Continuation-In-Part WO2013033947A1 (en) 2011-09-09 2011-11-08 Snow thawing agent

Publications (2)

Publication Number Publication Date
US20130062554A1 true US20130062554A1 (en) 2013-03-14
US8409465B1 US8409465B1 (en) 2013-04-02

Family

ID=47828990

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/586,894 Active US8409465B1 (en) 2011-09-09 2012-08-16 Deicing salt composition and method for preparing the same

Country Status (1)

Country Link
US (1) US8409465B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2597122C1 (en) * 2015-03-04 2016-09-10 Артем Юрьевич Чайка Method for producing solid deicing material based on table salt and calcined calcium chloride (versions)
EP3184600A1 (en) * 2015-12-22 2017-06-28 Chemical Advisory & Trade Sp. z o.o. Ecological composition for de-icing of ground infrastructure
CN113265225A (en) * 2021-06-02 2021-08-17 杨毅男 Multifunctional ice and snow fast melting agent

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUA20164510A1 (en) * 2016-06-20 2017-12-20 Iterchimica S R L Anti-ice additive composition for bituminous conglomerates

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK0902817T3 (en) * 1996-06-07 2001-08-20 Clariant Gmbh De-icing agent on the basis of acetates and / or formates, as well as the process of melting ace and ice on traffic areas by means of this agent
DE19845490C2 (en) * 1998-10-02 2003-11-20 Clariant Gmbh Process for melting snow and / or ice and a deicing agent containing sodium formate and sodium chloride
EP1341867B1 (en) * 2001-10-16 2007-03-21 MKS Marmara Entegre Kimya San. A.S. A novel deicing composition
SE526350C2 (en) * 2003-09-08 2005-08-30 Perstorp Specialty Chem Ab New de-icing composition and use of the same
WO2005071036A2 (en) * 2004-01-21 2005-08-04 Cargill, Incorporated Deicer compositions including corrosion inhibitors
SE528592C2 (en) * 2005-02-11 2006-12-27 Perstorp Specialty Chem Ab Rejection composition and use thereof
US20070063169A1 (en) * 2005-09-22 2007-03-22 Fmc Corporation Deicing composition
US7655153B2 (en) * 2006-10-27 2010-02-02 Cargill, Incorporated Deicer compositions including corrosion inhibitors for galvanized metal
US20090250654A1 (en) * 2007-06-28 2009-10-08 Chevron U.S.A. Inc. Antifreeze concentrate and coolant compositions and preparation thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2597122C1 (en) * 2015-03-04 2016-09-10 Артем Юрьевич Чайка Method for producing solid deicing material based on table salt and calcined calcium chloride (versions)
EP3184600A1 (en) * 2015-12-22 2017-06-28 Chemical Advisory & Trade Sp. z o.o. Ecological composition for de-icing of ground infrastructure
CN113265225A (en) * 2021-06-02 2021-08-17 杨毅男 Multifunctional ice and snow fast melting agent

Also Published As

Publication number Publication date
US8409465B1 (en) 2013-04-02

Similar Documents

Publication Publication Date Title
CN102277134B (en) Snow-melting agent
US5922240A (en) Deicing composition and method
US5891225A (en) Method for applying halide brines to surfaces
CA2396054C (en) Deicing compositions and methods of use
KR102126593B1 (en) Environmentally-friendly improved deicer compositions
US8409465B1 (en) Deicing salt composition and method for preparing the same
US5350533A (en) Pavement deicer compositions
KR19990081885A (en) Ice making composition and ice making method
CZ299898A3 (en) Agent for removing ice and process for preparing thereof
US20120193569A1 (en) Deicer composition
US6059989A (en) Deicing composition based on acetates and/or formates, and method for melting snow and ice on traffic areas with the aid of said composition
US9434868B2 (en) De-icer and/or anti-icer compositions and methods
KR20080108580A (en) Improved deicer composition
WO2006003966A1 (en) Snow-melting/antifreezing agents
CA2057639A1 (en) Deicing compositions
RU2259383C1 (en) Composite of anti-glaze of ice reagent
CN112694868B (en) Plant-based efficient corrosion-inhibition composite snow-melting agent as well as preparation method and use method thereof
JPS63117089A (en) Liquid snow and ice thawing agent
RU2556676C2 (en) Anti-icing fluid for aerodrome landing strips
RU2556675C2 (en) Anti-icing fluid for aerodrome landing strips
EP1516899B1 (en) Environmentally friendly deicer with minimized corrosiveness
CN109415617B (en) Aqueous deicing composition with inhibiting action
JPS6386791A (en) Nonfreezing composition
RU2243248C1 (en) Antiicing composition
KR101902961B1 (en) Ecofriendly cleaner composition having improved anti-freezing and antistaining and a method of manufacturing the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: HUBEI RUIFUYANG CHEMICAL TECHNOLOGY CO., LTD., CHI

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHENG, XINCHUAN;XU, ZHIJUN;WEN, SHENGLI;AND OTHERS;REEL/FRAME:029918/0572

Effective date: 20130131

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 8