US20130033351A1 - Power supply apparatus - Google Patents

Power supply apparatus Download PDF

Info

Publication number
US20130033351A1
US20130033351A1 US13/547,992 US201213547992A US2013033351A1 US 20130033351 A1 US20130033351 A1 US 20130033351A1 US 201213547992 A US201213547992 A US 201213547992A US 2013033351 A1 US2013033351 A1 US 2013033351A1
Authority
US
United States
Prior art keywords
magnetic core
core
coil
magnetic
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/547,992
Inventor
Eun Soo Kim
Jun Ho Park
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JEONJU UNIVERSITY OFFICE OF INDUSTRY-UNIVERSITY COOPERATION
LG Innotek Co Ltd
Original Assignee
JEONJU UNIVERSITY OFFICE OF INDUSTRY-UNIVERSITY COOPERATION
LG Innotek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JEONJU UNIVERSITY OFFICE OF INDUSTRY-UNIVERSITY COOPERATION, LG Innotek Co Ltd filed Critical JEONJU UNIVERSITY OFFICE OF INDUSTRY-UNIVERSITY COOPERATION
Assigned to LG INNOTEK CO., LTD., JEONJU UNIVERSITY OFFICE OF INDUSTRY-UNIVERSITY COOPERATION reassignment LG INNOTEK CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KIM, EUN SOO, PARK, JUN HO
Publication of US20130033351A1 publication Critical patent/US20130033351A1/en
Priority to US14/023,212 priority Critical patent/US9224530B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/38Auxiliary core members; Auxiliary coils or windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F2003/106Magnetic circuits using combinations of different magnetic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/14Constrictions; Gaps, e.g. air-gaps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • circuits can be prepared with the small-size and light weight.
  • studies and research have been continuously performed to reduce the size and the weight of the inductor installed in the electronic product.
  • a PFC (Power Factor Correction) converter which is an input power factor correction circuit, has been extensively used for a power supply apparatus of the electronic product in response to the demand for reducing harmonics and correcting input power factor in commercial power.
  • an interleaved PFC converter (or interleaved boost converter) employing two individual inductors has been used.
  • an air gap is essentially required in an intermediate magnetic path or a lateral magnetic path of a core to manufacture a couple inductor.
  • an additional cutting work is necessary, so the manufacturing cost may be increased and the management for the air gap may be difficult.
  • the embodiment provides a power supply apparatus including an inductor, a transformer and an inductor-transformer having the novel structure.
  • a power supply apparatus includes a first magnetic core; a second magnetic core having a shape equal to a shape of the first magnetic core; a third magnetic core between the first and second magnetic cores; a first coil wound around one of the first and third magnetic cores; and a second coil wound around one of the second and third magnetic cores.
  • FIGS. 1 a and 1 b are circuit views showing a power supply apparatus including a couple inductor according to the embodiment
  • FIGS. 2 a to 18 are views showing a couple inductor according to the embodiment
  • FIG. 19 is a view showing a power supply apparatus including a couple transformer according to the embodiment.
  • FIGS. 20 to 23 are views showing a couple transformer according to the embodiment.
  • FIG. 24 is a view showing a power supply apparatus including a couple inductor-transformer according to the embodiment.
  • FIGS. 25 to 29 are views showing a power supply apparatus including a couple inductor-transformer according to the embodiment.
  • FIG. 30 is a view showing a couple inductor, a couple transformer and a couple inductor-transformer according to another embodiment.
  • FIG. 31 is view showing an experimental result obtained by a couple inductor manufactured according to the embodiment.
  • part when referred to as it includes a component, the part may not exclude other components but further include another component unless the context indicates otherwise.
  • FIGS. 1 a and 1 b are circuit views showing a power supply apparatus including a couple inductor according to the embodiment
  • the power supply apparatus 100 including the inductor may include a filter 110 , a rectifying unit 120 and a power factor correction unit 130 .
  • the filter 110 is provided at an input side to which commercial power (85V to 260V) is input in order to reduce conductive noise.
  • the filter 110 may include coils provided at a pair of power lines, respectively, and a capacitor connected to the power lines in parallel at both ends of the coils.
  • the coils may be common mode chock coils and two windings are provided per one core at in-phase.
  • the rectifying unit 120 is connected to an output side of the filter 110 to rectify the wave of the commercial power.
  • the rectifying unit 120 is a bridge diode BD including a plurality of diodes.
  • the power factor correction unit 130 charges/discharges the energy accumulated in inductors L 1 and L 2 through the operation of semiconductor switches S 1 and S 2 to make input voltage and current in-phase.
  • the power factor correction unit 130 includes a first inductor L 1 , a second inductor L 2 , a first semiconductor switch Si for switching the charge/discharge operation of the first inductor L 1 , a second semiconductor switch S 2 for switching the charge/discharge operation of the second inductor L 2 , a first diode D 1 connected to the first inductor L 1 , a second diode D 2 connected to the second inductor L 2 and an output condenser Co.
  • Reference numeral R L represents resistance.
  • the power supply apparatus is applicable not only for AC input power as shown in FIG. 1 a , but also for DC input power as shown in FIG. 1 b.
  • FIG. 1 b is a view showing a power supply apparatus 100 ′ according to another embodiment.
  • the power supply apparatus 100 ′ may be a DC/DC converter.
  • the power supply apparatus 100 ′ shown in FIG. 1 b includes the power factor correction unit having the structure the same as that of the power factor correction unit 130 included in the power supply apparatus 100 shown in FIG. 1 a , so the detailed description thereof will be omitted.
  • the couple inductor according to the embodiment may include a core having the shape of U,
  • a gap sheet or a core having low permeability is employed to form the air gap, instead of cutting a magnetic path to form the air gap, thereby reducing the cost required for the cutting process.
  • the above structure of the couple inductor can be used for the structure of a couple transformer and the structure of a couple inductor-transformer in which the inductor is integrated with the transformer.
  • FIG. 2 a is a view showing a couple inductor according to the first embodiment.
  • the couple inductor 200 includes a first magnetic core 210 , a second magnetic core 220 , a third magnetic core 230 , a first coil 240 wound around the first magnetic core 210 , and a second coil 250 wound around the second magnetic core 220 .
  • the first magnetic core 210 has a shape of ‘U’.
  • the second magnetic core 220 also has a shape of ‘U’.
  • the first magnetic core 210 is arranged in the shape of ‘U’ and the second magnetic core 220 is arranged symmetrically to the first magnetic core 210 while interposing the third magnetic core 230 therebetween.
  • the first magnetic core 210 includes a first core part 211 having a shape of ‘
  • the second magnetic core 220 includes a first core part 221 having a shape of ‘
  • the third magnetic core 220 has a shape of ‘
  • the couple inductor 200 includes the first coil 240 wound around the first magnetic core 210 and the second coil 250 wound around the second magnetic core 220 .
  • the first coil 240 is wound around the first core part 211 of the first magnetic core 210 . At this time, the first coil 240 is wound around the center portion of the first core part 211 of the first magnetic core 210 several times.
  • the second coil 250 is wound around the first core part 221 of the second magnetic core 220 .
  • the second coil 250 is wound around the center portion of the first core part 221 of the second magnetic core 220 several times.
  • the first coil 240 can be wound lengthwise along the first magnetic core 210 .
  • the first coil 240 can be wound lengthwise along the first core part 211 of the first magnetic core 210 .
  • the second coil 250 can be wound lengthwise along the second magnetic core 220 .
  • the second coil 250 can be wound lengthwise along the first core part 221 of the second magnetic core 220 .
  • a first air gap (Ig) 260 is formed between the first and third magnetic cores 210 and 230 and a second air gap (Ig) 270 is formed between the second and third magnetic cores 220 and 230 .
  • a top surface of the second core part 212 of the first magnetic core 210 is aligned on the same plane with a top surface of the third magnetic core 230 .
  • a bottom surface of the third core part 213 of the first magnetic core 210 is aligned on the same plane with a bottom surface of the third magnetic core 230 .
  • the first air gap 260 is formed between the right lateral side of the second core part 212 of the first magnetic core 210 and the left lateral side of the third magnetic core 230 .
  • the first air gap 260 is formed between the right lateral side of the third core part 213 of the first magnetic core 210 and the left lateral side of the third magnetic core 230 .
  • the first air gap 260 may be formed between right lateral sides of the second and third core parts 212 and 213 of the first magnetic core 210 and the left lateral side of the third magnetic core 230 , respectively.
  • a top surface of the second core part 222 of the second magnetic core 220 is aligned on the same plane with a top surface of the third magnetic core 230 .
  • a bottom surface of the third core part 223 of the second magnetic core 220 is aligned on the same plane with a bottom surface of the third magnetic core 230 .
  • the second air gap 270 is formed between the left lateral side of the second core part 222 of the second magnetic core 220 and the right lateral side of the third magnetic core 230 .
  • the second air gap 270 is formed between the left lateral side of the third core part 223 of the second magnetic core 220 and the right lateral side of the third magnetic core 230 .
  • the second air gap 270 may be formed between left lateral sides of the second and third core parts 222 and 223 of the second magnetic core 220 and the right lateral side of the third magnetic core 230 , respectively.
  • the couple inductor 200 including two inductors is prepared as an integrated couple inductor by winding coils around the core.
  • the air gap is simply formed by employing a gap sheet or a bottom without performing the cutting process when manufacturing the couple inductor.
  • the winding scheme for the first and second coils 240 and 250 of the couple inductor 200 may be different from the winding scheme shown in FIG. 2 a.
  • the first coil 240 may be wound around the first magnetic core 210 in the direction crossing the length direction of the first magnetic core 210 , which is different from FIG. 2 a .
  • the first coil 240 can be wound around the first core part 211 of the first magnetic core 210 in the direction crossing the length direction of the first core part 211 of the first magnetic core 210 .
  • the second coil 250 may be wound around the second magnetic core 220 in the direction crossing the length direction of the second magnetic core 220 .
  • the second coil 250 can be wound around the first core part 221 of the second magnetic core 220 in the direction crossing the length direction of the first core part 221 of the second magnetic core 220 .
  • the first coil 240 of the couple inductor 200 may include a primary coil 240 a wound around the first core part 211 of the first magnetic core 210 and a secondary coil 240 b wound around the third magnetic core 230 while being connected to the primary coil 240 a in series.
  • the second coil 250 of the couple inductor 200 may include a tertiary coil 250 a wound around the first core part 221 of the second magnetic core 220 and a quaternary coil 250 b wound around the third magnetic core 230 while being connected to the tertiary coil 250 a in series.
  • FIG. 3 a is a view showing a couple inductor according to the second embodiment.
  • the couple inductor 300 includes a first magnetic core 310 , a second magnetic core 320 , a third magnetic core 330 , a first coil 340 wound around the first magnetic core 310 , and a second coil 350 wound around the second magnetic core 320 .
  • the first magnetic core 310 has a shape of ‘U’.
  • the second magnetic core 320 also has a shape of ‘U’.
  • the first magnetic core 310 is arranged in the shape of ‘U’ and the second magnetic core 320 is arranged symmetrically to the first magnetic core 310 while interposing the third magnetic core 330 therebetween.
  • the first magnetic core 310 includes a first core part 311 having a shape of ‘
  • the second magnetic core 320 includes a first core part 321 having a shape of ‘
  • the third magnetic core 320 has a shape of ‘
  • the couple inductor 300 includes the first coil 340 wound around the first magnetic core 310 and the second coil 350 wound around the second magnetic core 320 .
  • the first coil 340 is wound around the second core part 312 of the first magnetic core 310 . At this time, the first coil 340 is wound around the center portion of the second core part 312 of the first magnetic core 310 several times.
  • the second coil 350 is wound around the second core part 322 of the second magnetic core 320 .
  • the second coil 350 is wound around the center portion of the second core part 322 of the second magnetic core 320 several times.
  • a first air gap (Ig) 360 is formed between the first and third magnetic cores 310 and 330 and a second air gap (Ig) 370 is formed between the second and third magnetic cores 320 and 330 .
  • the coils 240 and 250 are wound around the first core parts 211 and 221 of the first and second magnetic cores 210 and 220
  • the coils 340 and 350 are wound around the second core parts 312 and 322 of the first and second magnetic cores 310 and 320 .
  • the first coil 340 of the couple inductor 300 may include a primary coil 340 a wound around the second core part 312 of the first magnetic core 310 and a secondary coil 340 b wound around a third core part 313 of the first magnetic core 310 while being connected to the primary coil 340 a in series.
  • the second coil 350 of the couple inductor 300 may include a tertiary coil 350 a wound around the second core part 332 of the second magnetic core 320 and a quaternary coil 350 b wound around a third core part 323 of the second magnetic core 320 while being connected to the tertiary coil 350 a in series.
  • FIG. 4 is a view showing a couple inductor according to the third embodiment.
  • the couple inductor 300 includes a first magnetic core 410 , a second magnetic core 420 , a third magnetic core 430 , a first air gap 460 and a second air gap 470 , which have the structure the same as that of the first embodiment.
  • the coils are wound around the first core parts of the first and second magnetic cores, and, according to the second embodiment, the coils are wound around the second core parts of the first and second magnetic cores.
  • a first coil 440 is wound around a third core part 413 of the first magnetic core 410 and a second coil 450 is wound around a third core part 423 of the second magnetic core 420 .
  • the first magnetic cores 210 , 310 and 410 , the second magnetic cores 220 , 320 and 420 , and the third magnetic cores 230 , 330 and 430 according to the first to third embodiments may include ferrite cores having the magnetic property of high permeability.
  • FIG. 5 is a view showing a couple inductor according to the fourth embodiment.
  • the couple inductor 500 includes a first magnetic core 510 having a shape of ‘U’, a second magnetic core 520 having a shape the same as that of the first magnetic core 510 and disposed symmetrically to the first magnetic core 510 , and a third magnetic core 530 having a shape of ‘
  • the couple inductor 500 includes a first coil 540 wound around the first magnetic core 510 and a second coil 550 wound around the second magnetic core 520 .
  • first coil 540 is wound around the second core part of the first magnetic core 510 and the second coil 550 is wound around the second core part of the second coil 550 , this is illustrative purpose only.
  • first and second coils 540 and 550 can be wound around the first core parts or the third core parts of the first and second magnetic cores, respectively.
  • the air gap may not be formed between the first and third magnetic cores 510 and 530 and between the second and third cores 520 and 530 .
  • the first and second magnetic cores 510 and 520 are formed by using the same material and the third magnetic core 530 is formed by using the material different from the material for the first and second magnetic cores 510 and 520 .
  • first and second magnetic cores 510 and 520 may include powder cores having low permeability and the third magnetic core 530 may include a ferrite core having high permeability.
  • the air gap is not formed in the couple inductor and the magnetic cores are prepared by using different magnetic materials, so the eddy current losses generated from the first and second coils 540 and 550 caused by the fringing flux can be reduced.
  • the additional process such as the cutting process, may be omitted.
  • FIG. 6 is a view showing a couple inductor according to the fifth embodiment.
  • the couple inductor 600 includes a first magnetic core 610 , a second magnetic core 620 , a third magnetic core 630 , a first coil 640 and a second coil 650 , which have the shapes identical to those of the couple inductor 500 according to the fourth embodiment.
  • first and second magnetic cores 510 and 520 according to the fourth embodiment have the magnetic property of low permeability
  • first and second magnetic cores 610 and 620 according to the fifth embodiment have the magnetic property of high permeability.
  • the third magnetic core 630 has the magnetic property of low permeability different from the first and second magnetic cores 610 and 620 .
  • FIG. 7 is a view showing a couple inductor according to the sixth embodiment.
  • the couple inductor 700 includes a first magnetic core 710 , a second magnetic core 720 , a third magnetic core 730 , a first coil 740 and a second coil 750 , which have the shapes identical to those of the couple inductor 300 according to the second embodiment.
  • a plurality of first air gaps 360 are formed between the first and third magnetic cores 310 and 330 and a plurality of second air gaps 370 are formed between the second and third magnetic cores 320 and 330 due to the structures of the first to third magnetic cores 310 , 320 and 330 .
  • one third air gap 760 is formed between the first and third magnetic cores 710 and 730 and one fourth air gap 770 is formed between the second and third magnetic cores 720 and 730 .
  • one end of a third core part 713 of the first magnetic core 710 is cut such that the first magnetic core 710 can be spaced apart from the third magnetic core 730 , thereby forming the third air gap 760 .
  • one end of a third core part 723 of the second magnetic core 720 is cut such that the second magnetic core 720 can be spaced apart from the third magnetic core 730 .
  • the width of the third and fourth air gaps 760 and 770 is wider than the width of the first and second air gaps 360 and 370 .
  • a second core part 712 of the first magnetic core 710 is longer than the third core part 713 and a second core part 722 of the second magnetic core 720 is longer than the third core part 723 of the second magnetic core 720 .
  • first coil 740 may be wound around the first core part 711 of the first magnetic core 710 and the second coil 750 may be wound around the first core part 721 of the second magnetic core 720 .
  • FIG. 8 is a view showing a couple inductor according to the seventh embodiment.
  • the couple inductor 800 includes a first magnetic core 810 , a second magnetic core 820 , a third magnetic core 830 , a first coil 840 and a second coil 850 , which have the shapes identical to those of the couple inductor 700 according to the sixth embodiment.
  • the fourth air gap 770 is formed between the third core part 723 of the second magnetic core 720 and the third magnetic core 730 .
  • a fourth air gap 870 is formed between a second core part 822 of the second magnetic core 820 and the third magnetic core.
  • the third and fourth air gaps 760 and 770 are formed at the bottom surface of the couple inductor 700 together.
  • third and fourth air gaps 860 and 870 are separately formed at the top and bottom surfaces of the couple inductor 800 , respectively.
  • a third core part 823 of the second magnetic core 820 is longer than a second core part 822 of the second magnetic core 820 in the couple inductor 800 according to the seventh embodiment.
  • FIG. 9 a is a view showing a couple inductor according to the eighth embodiment.
  • the couple inductor 900 includes a first magnetic core 910 , a second magnetic core 920 , a third magnetic core 930 , a first coil 940 , a second coil 950 , a fifth air gap 960 and a sixth air gap 970 .
  • the first and second magnetic cores 910 and 920 may have the same shape of ‘
  • the third magnetic core 930 is formed between the first and second magnetic cores 910 and 920 .
  • the third magnetic core 930 has a shape of ‘H’, which is different from the shape of the first and second magnetic cores 910 and 920 .
  • the third magnetic core 930 includes a fourth core part 931 having a shape of ‘
  • the first and second magnetic cores 910 and 920 are parallel to a fourth core part 931 of the third magnetic core 930 .
  • first and second magnetic cores 910 and 920 are longer than the fourth core part 931 of the third magnetic core 930 .
  • the right side of the first magnetic core 910 may face the fifth core part 932 and the left side of the seventh core part 934 of the third magnetic core 930 .
  • the left side of the second magnetic core 920 may face the sixth core part 933 and the right side of the eighth core part 935 of the third magnetic core 930 .
  • the fifth air gap 960 may be formed among the right side of the first magnetic core 910 , the fifth core part 932 and the left side of the seventh core part 934 of the third magnetic core 930 .
  • sixth air gap 970 may be formed among the left side of the second magnetic core 920 , the sixth core part 933 and the right side of the eighth core part 935 of the third magnetic core 930 .
  • the first coil 940 is wound around the first magnetic core 910 and the second coil 950 is wound around the second magnetic core 920 .
  • the first coil 940 may be wound lengthwise along the first magnetic core 910 .
  • the second coil 950 may be wound lengthwise along the second magnetic core 920 .
  • the first coil 940 may be wound around the first magnetic core 910 in the direction crossing the length direction of the first magnetic core 910 .
  • the second coil 950 can be wound around the second magnetic core 920 in the direction crossing the length direction of the second magnetic core 920 .
  • the first coil 940 may include a primary coil 940 a wound around the first magnetic core 910 and a secondary coil 940 b wound around the fourth core part 931 of the third magnetic core 230 while being connected to the primary coil 940 a in series.
  • the second coil 950 may include a tertiary coil 950 a wound around the second magnetic core 920 and a quaternary coil 950 b wound around the third magnetic core 230 while being connected to the tertiary coil 950 a in series.
  • FIG. 10 a is a view showing a couple inductor according to the ninth embodiment.
  • the couple inductor 1000 includes a first magnetic core 1010 , a second magnetic core 1020 , a third magnetic core 1030 , a fifth air gap 1060 and a sixth air gap 1070 , which are similar to those of the couple inductor 900 according to the eighth embodiment.
  • first coil 940 is wound around the first magnetic core 910 and the second coil 950 is wound around the second magnetic core 920 .
  • first and second coils 1040 and 1050 are wound around the third magnetic core 1030 .
  • the first coil 1040 is wound around a fifth coil part 1032 of the third magnetic core 1030 and the second coil 1050 is wound around a sixth coil part 1033 of the third magnetic core 1030 .
  • the first coil 1040 may include a primary coil 1040 a wound around a fifth core part 1032 of the third magnetic core 1030 and a secondary coil 1040 b wound around a seventh core part 1034 of the third magnetic core 1030 while being connected to the primary coil 1040 a in series.
  • the second coil 1050 may include a tertiary coil 1050 a wound around a sixth coil part 1033 of the third magnetic core 1030 and a quaternary coil 1050 b wound around an eighth core part 1035 of the third magnetic core 230 while being connected to the tertiary coil 1050 a in series.
  • FIG. 11 is a view showing a couple inductor according to the tenth embodiment.
  • the couple inductor 1100 includes a first magnetic core 1110 , a second magnetic core 1120 , a third magnetic core 1130 , a fifth air gap 1160 and a sixth air gap 1170 , which are similar to those of the couple inductors 900 and 1000 according to the eighth and ninth embodiments.
  • first coil 940 is wound around the first magnetic core 910 and the second coil 950 is wound around the second magnetic core 920 .
  • first and second coils 1140 and 1150 are wound around the third magnetic core 1130 .
  • the first coil 1140 is wound around a seventh coil part 1134 of the third magnetic core 1130 and the second coil 1150 is wound around an eighth coil part 1135 of the third magnetic core 1130 .
  • FIG. 12 is a view showing a couple inductor 1200 according to the eleventh embodiment.
  • the couple inductor 1200 includes a first magnetic core 1210 , a second magnetic core 1220 , a third magnetic core 1230 , a first coil 1240 and a second coil 1250 , which are similar to those of the couple inductor 900 according to the eighth embodiment.
  • the fifth and sixth air gaps 960 and 970 are included in the eighth embodiment, but the couple inductor 1200 according to the eleventh embodiment may not include an air gap.
  • the first magnetic core 1210 makes contact with the third magnetic core 1230 and the second magnetic core 1220 makes contact with the third magnetic core 1230 .
  • first and second cores 1210 and 1220 are formed by using the same magnetic material and the third magnetic core 1230 is formed by using the magnetic material different from the magnetic material for the first and second magnetic cores 1210 and 1220 .
  • first and second magnetic cores 1210 and 1220 may include powder cores having low permeability and the third magnetic core 1230 may include a ferrite core having high permeability.
  • the air gap is not formed in the couple inductor and the magnetic cores are prepared by using different magnetic materials, so the eddy current losses generated from the first and second coils 1240 and 1250 caused by the fringing flux can be reduced.
  • the additional process such as the cutting process, may be omitted.
  • FIG. 13 is a view showing a couple inductor according to the twelfth embodiment.
  • the couple inductor 1300 includes a first magnetic core 1310 , a second magnetic core 1320 , a third magnetic core 1330 , a first coil 1340 and a second coil 1350 , which have the shapes identical to those of the couple inductor 1200 according to the eleventh embodiment.
  • first and second magnetic cores 1210 and 1220 according to the eleventh embodiment have the magnetic property of low permeability
  • the first and second magnetic cores 1310 and 1320 according to the twelfth embodiment have the magnetic property of high permeability.
  • the third magnetic core 1330 has the magnetic property of low permeability different from the first and second magnetic cores 1310 and 1320 .
  • FIG. 14 is a view showing a couple inductor according to the thirteenth embodiment.
  • the couple inductor 1400 includes a first magnetic core 1410 , a second magnetic core 1420 , a third magnetic core 1430 , a first coil 1440 and a second coil 1450 , which have the shapes identical to those of the couple inductor 900 according to the eighth embodiment.
  • a plurality of fifth air gaps 960 are formed between the first and third magnetic cores 910 and 930 and a plurality of sixth air gaps 970 are formed between the second and third magnetic cores 920 and 930 due to the structures of the first to third magnetic cores 910 , 920 and 930 .
  • one fifth air gap 1460 is formed between the first and third magnetic cores 1410 and 1430 and one sixth air gap 1470 is formed between the second and third magnetic cores 1420 and 1430 .
  • one end of a fifth core part 1432 of the third magnetic core 1430 is cut such that the third magnetic core 1430 can be spaced apart from the first magnetic core 1410 , thereby forming the fifth air gap 1460 .
  • one end of a sixth core part 1433 of the third magnetic core 1430 is cut such that the third magnetic core 1430 can be spaced apart from the second magnetic core 1420 , thereby forming the sixth air gap 1470 .
  • the width of the fifth and sixth air gaps 1460 and 1470 is wider than the width of the fifth and sixth air gaps 960 and 970 according to the eighth embodiment.
  • a fifth core part 1432 of the third magnetic core 1430 is longer than a fifth core part 1434 and an eighth core part 1435 of the third magnetic core 1430 is longer than a sixth core part 1433 .
  • first coil 1440 may be wound around the first magnetic core 1410 and the second coil 1450 may be wound around the second magnetic core 1420 .
  • FIG. 15 is a view showing a couple inductor according to the fourteenth embodiment.
  • the couple inductor 1500 includes a first magnetic core 1510 , a second magnetic core 1520 , a third magnetic core 1530 , a first coil 1540 and a second coil 1550 , which have the shapes identical to those of the couple inductor 1400 according to the thirteenth embodiment.
  • the sixth air gap 1470 is formed between the sixth core part 1433 of the third magnetic core 1430 and the second magnetic core 1420 .
  • a sixth air gap 1570 is formed between an eighth core part 1535 of the third magnetic core 1530 and the second magnetic core.
  • the fifth and sixth air gaps 1460 and 1470 are formed at the top surface of the couple inductor 1400 together.
  • fifth and sixth air gaps 1560 and 1570 are separately formed at the top and bottom surfaces of the couple inductor 1500 , respectively.
  • a sixth core part 1533 of the third magnetic core 1530 is longer than an eighth core part 1535 of the third magnetic core 1530 in the couple inductor 1500 according to the fourteenth embodiment.
  • FIG. 16 is a view showing a couple inductor according to the fifteenth embodiment.
  • the couple inductor 1600 includes a first magnetic core 1610 , a second magnetic core 2620 , a third magnetic core 2630 , a first coil 1640 , a second coil 1650 , a fifth air gap 1660 and a sixth air gap 1670 , which are similar to those of the couple inductor 900 according to the eighth embodiment.
  • the first and second magnetic cores 1610 and 1620 may have the same shape of ‘
  • the third magnetic core 1630 is formed between the first and second magnetic cores 1610 and 1620 .
  • the third magnetic core 1630 has a shape of ‘H’, which is different from the shape of the first and second magnetic cores 1610 and 1620 .
  • the first and second magnetic cores 1610 and 1620 may have the length the same as that of a fourth core part 1631 of the third magnetic core 1630 .
  • the top surface of the first magnetic core 1610 faces the bottom surface of a fifth core part 1632 of the third magnetic core 1630
  • the bottom surface of the first magnetic core 1610 faces the top surface of a seventh core part 1634 of the third magnetic core 1630
  • the top surface of the second magnetic core 1620 faces the bottom surface of a sixth core part 1633 of the third magnetic core 1630
  • the bottom surface of the second magnetic core 1620 faces the top surface of an eighth core part 1635 of the third magnetic core 1630 .
  • one fifth air gap 1660 is formed between the top surface of the first magnetic core 1610 and the bottom surface of the fifth core part 1632 of the third magnetic core 1630
  • another fifth air gap 1660 is formed between the bottom surface of the first magnetic core 1610 and the top surface of the seventh core part 1634 of the third magnetic core 1630
  • one sixth air gap 1670 is formed between the top surface of the second magnetic core 1620 and the bottom surface of the sixth core part 1633 of the third magnetic core 1630
  • another sixth air gap 1670 is formed between the bottom surface of the second magnetic core 1620 and the top surface of the eighth core part 1635 of the third magnetic core 1630 .
  • the first coil 1640 is wound around the first magnetic core 1610 and the second coil 1650 is wound around the second magnetic core 1620 .
  • FIG. 17 is a view showing a couple inductor according to the sixteenth embodiment.
  • the couple inductor 1700 includes a first magnetic core 1710 , a second magnetic core 1720 , a third magnetic core 1730 , a fifth air gap 1760 and a sixth air gap 1770 , which are similar to those of the couple inductor 1600 according to the fifteenth embodiment.
  • First and second coils 1740 and 1750 are wound around the third magnetic core 1730 .
  • the first coil 1740 is wound around a fifth core part 1732 of the third magnetic core 1730 and the second coil 1750 is wound around a sixth core part 1733 of the third magnetic core 1730 .
  • FIG. 18 is a view showing a couple inductor according to the seventeenth embodiment.
  • the couple inductor 1800 includes a first magnetic core 1810 , a second magnetic core 1820 , a third magnetic core 1830 , a fifth air gap 1860 and a sixth air gap 1870 , which are similar to those of the couple inductor 1600 according to the fifteenth embodiment.
  • the first coil 1840 is wound around a seventh core part 1834 of the third magnetic core 1830 and the second coil 1850 is wound around an eighth core part 1835 of the third magnetic core 1830 .
  • FIG. 19 is a view showing a power supply apparatus according to the embodiment.
  • the power supply apparatus 1900 includes a first transformer and a second transformer.
  • the first transformer includes a primary coil part 1910 and a secondary coil part 1920 .
  • the second transformer also includes a primary coil part 1930 and a secondary coil part 1940 .
  • the primary coil parts 1910 and 1930 may include a plurality of coils.
  • the structure of the couple transformer may be identical to the structure of the couple inductor described above. However, although the first and second coils are wound in the couple inductor, a plurality of primary coils and one secondary coil are wound instead of the first coil and a plurality of primary coils and one secondary coil are wound instead of the second coil in the couple transformer.
  • the structure of the couple transformer according to one exemplary embodiment from among various embodiments will be described below and the structure of the couple inductor, which may be omitted in the description for the structure of the couple transformer, will be applicable for the structure of the couple transformer.
  • FIG. 20 a is a view showing a couple transformer according to the first embodiment.
  • the couple transformer 2000 includes a first magnetic core 2010 , a second magnetic core 2020 , a third magnetic core 2030 , a first air gap 2060 , and a second air gap 2070 , which are identical to those of the couple inductor 200 shown in FIG. 2 .
  • inductor coils 240 and 250 are wound around the first and second magnetic cores 210 and 220 in the couple inductor 200
  • transformer coils 2040 and 2050 are wound around the first and second magnetic cores 2010 and 2020 in the couple transformer 2000 .
  • first transformer coil 2040 including primary and secondary coils 2041 and 2042 is wound around the first magnetic core 2010
  • second transformer coil 2050 including primary and secondary coils 2051 and 2052 is wound around the second magnetic core 2020 .
  • the first transformer coil 2040 can be wound lengthwise along the first magnetic core 2010 .
  • the second transformer coil 2050 can be wound lengthwise along the second magnetic core 2020 .
  • the first transformer coil 2040 may be wound around the first magnetic core 2010 in the direction crossing the length direction of the first magnetic core 2010 .
  • the second transformer coil 2050 may be wound around the second magnetic core 2020 in the direction crossing the length direction of the second magnetic core 2020 .
  • FIG. 21 a is a view showing a couple transformer according to the second embodiment.
  • the couple transformer 2100 includes a first magnetic core 2110 , a second magnetic core 2120 , a third magnetic core 2130 , a first air gap 2160 , and a second air gap 2170 , which are identical to those of the couple transformer 2000 shown in FIG. 20 a.
  • a first transformer coil 2140 is wound around a second core part 2112 located at an upper portion of the first magnetic core 2110
  • a second transformer coil 2150 is wound around a second core part 2122 located at an upper portion of the second magnetic core 2120 .
  • the first transformer coil 2140 may include a primary transformer coil 2140 a wound around the second core part 2112 of the first magnetic core 2110 and a secondary transformer coil 2140 b wound around a third core part 2113 of the first magnetic core 2110 and connected to the primary transformer coil 2140 a in series.
  • the second transformer coil 2150 may include a tertiary transformer coil 2150 a wound around the second core part 2122 of the second magnetic core 2120 and a quaternary transformer coil 2150 b wound around a third core part 2123 of the second magnetic core 2120 and connected to the tertiary transformer coil 2150 a in series.
  • FIG. 22 a is a view showing a couple transformer according to the third embodiment.
  • the couple transformer 2200 includes a first magnetic core 2210 , a second magnetic core 2220 , a third magnetic core 2230 , a fifth air gap 2260 , and a sixth air gap 2270 , which are identical to those of the couple inductor 900 shown in FIG. 9 a.
  • inductor coils 940 and 950 are wound around the first and second magnetic cores 910 and 920 in the couple inductor 900
  • transformer coils 2240 and 2250 are wound around the first and second magnetic cores 2210 and 2220 in the couple transformer 2200 .
  • first transformer coil 2240 including primary and secondary coils 2241 and 2242 is wound around the first magnetic core 2210
  • second transformer coil 2250 including primary and secondary coils 2251 and 2252 is wound around the second magnetic core 2220 .
  • the first transformer coil 2240 can be wound lengthwise along the first magnetic core 2210 .
  • the second transformer coil 2250 can be wound lengthwise along the second magnetic core 2220 .
  • the first transformer coil 2240 may be wound around the first magnetic core 2210 in the direction crossing the length direction of the first magnetic core 2210 .
  • the second transformer coil 2250 may be wound around the second magnetic core 2220 in the direction crossing the length direction of the second magnetic core 2220 .
  • FIG. 23 a is a view showing a couple transformer according to the fourth embodiment.
  • the couple transformer 2300 includes a first magnetic core 2310 , a second magnetic core 2320 , a third magnetic core 2330 , a fifth air gap 2360 , and a sixth air gap 2370 , which are identical to those of the couple transformer 2200 according to the third embodiment.
  • the first and second transformer coils 2340 and 2350 are wound around the third magnetic core 2330 in the fourth embodiment.
  • the first transformer coil 2340 is wound around a fifth core part 2332 located at an upper left portion of the third magnetic core 2330 and the second transformer coil 2350 is wound around a sixth core part 2333 located at an upper right portion of the third magnetic core 2330 .
  • the first transformer coil 2340 may include a primary transformer coil 2340 a wound around the fifth core part 2332 of the third magnetic core 2330 and a secondary transformer coil 2340 b wound around a seventh core part 2334 of the third magnetic core 2330 and connected to the primary transformer coil 2340 a in series.
  • the second transformer coil 2350 may include a tertiary transformer coil 2350 a wound around the sixth core part 2333 of the third magnetic core 2330 and a quaternary transformer coil 2350 b wound around an eighth core part 2335 of the third magnetic core 2330 and connected to the tertiary transformer coil 2350 a in series.
  • FIG. 24 is a view showing a power supply apparatus according to the embodiment.
  • the power supply apparatus 2400 includes an inductor 2410 and a transformer 2420 .
  • the transformer 2420 includes primary and secondary coils.
  • the structure of the couple inductor-transformer may be identical to the structure of the couple inductor described above. However, although the first and second coils are wound in the couple inductor, a transformer coil including a plurality of primary coils and one secondary coil is wound instead of the second coil in the couple inductor-transformer.
  • the structure of the couple inductor-transformer according to one exemplary embodiment from among various embodiments will be described below and the structure of the couple inductor, which may be omitted in the description for the structure of the couple inductor-transformer, will be applicable for the structure of the couple inductor-transformer.
  • FIG. 25 a is a view showing a couple inductor-transformer according to the first embodiment.
  • the couple inductor-transformer 2500 includes a first magnetic core 2510 , a second magnetic core 2520 , a third magnetic core 2530 , a first air gap 2560 , and a second air gap 2570 , which are identical to those of the couple inductor 200 shown in FIG. 2 .
  • inductor coils 240 and 250 are wound around the first and second magnetic cores 210 and 220 in the couple inductor 200
  • a transformer coil 2550 is wound around the second magnetic core 2520 in the couple inductor-transformer 2500 .
  • an inductor coil 2540 is wound around the first magnetic core 2510 and a transformer coil 2550 including primary and secondary coils 2551 and 2552 is wound around the second magnetic core 2520 .
  • the inductor coil 2540 can be wound lengthwise along the first magnetic core 2510 .
  • the transformer coil 2550 can be wound lengthwise along the second magnetic core 2520 .
  • the inductor coil 2540 may be wound around the first magnetic core 2510 in the direction crossing the length direction of the first magnetic core 2510 .
  • the transformer coil 2550 may be wound around the second magnetic core 2520 in the direction crossing the length direction of the second magnetic core 2520 .
  • FIG. 26 is a view showing a couple inductor-transformer according to the second embodiment.
  • the couple inductor-transformer 2600 includes a first magnetic core 2610 , a second magnetic core 2620 , a third magnetic core 2630 , a first air gap 2660 , and a second air gap 2670 , which are identical to those of the couple inductor-transformer 2500 shown in FIG. 25 .
  • An inductor coil 2640 is wound around a third core part 2613 located at a lower portion of the first magnetic core 2610
  • a transformer coil 2650 is wound around a third core part 2633 located at a lower portion of the second magnetic core 2620 .
  • FIG. 27 a is a view showing a couple inductor-transformer according to the third embodiment.
  • the couple inductor-transformer 2700 includes a first magnetic core 2710 , a second magnetic core 2720 , a third magnetic core 2730 , a first air gap 2760 , and a second air gap 2770 , which are identical to those of the couple transformer 900 shown in FIG. 9 a.
  • inductor coils 940 and 950 are wound around the first and second magnetic cores 910 and 920 in the couple inductor 900
  • an inductor coil 2740 is wound around the first magnetic core 2710 and a transformer coil 2750 is wound around the second magnetic core 2720 in the couple inductor-transformer 2700 .
  • the inductor coil 2740 can be wound lengthwise along the first magnetic core 2710 .
  • the transformer coil 2750 can be wound lengthwise along the second magnetic core 2720 .
  • the inductor coil 2740 may be wound around the first magnetic core 2710 in the direction crossing the length direction of the first magnetic core 2710 .
  • the transformer coil 2750 may be wound around the second magnetic core 2720 in the direction crossing the length direction of the second magnetic core 2720 .
  • FIG. 28 is a view showing a couple inductor-transformer according to the fourth embodiment.
  • the couple inductor-transformer 2800 includes a first magnetic core 2810 , a second magnetic core 2820 , a third magnetic core 2830 , a fifth air gap 2860 , and a sixth air gap 2870 , which are identical to those of the couple inductor-transformer 2700 according to the third embodiment.
  • inductor coil 2740 and the transformer coil 2750 are wound around the first and second magnetic cores 2710 and 2720 in the third embodiment
  • an inductor coil 2840 and a transformer coil 2850 are wound around the third magnetic core 2830 in the fourth embodiment.
  • the inductor coil 2840 is wound around a fifth core part 2832 located at an upper left portion of the third magnetic core 2830 and the transformer coil 2850 is wound around a sixth core part 2833 located at an upper right portion of the third magnetic core 2830 .
  • FIG. 29 is a view showing a couple inductor-transformer according to the fifth embodiment.
  • the couple inductor-transformer 2900 includes a first magnetic core 2910 , a second magnetic core 2920 , a third magnetic core 2930 , a fifth air gap 2960 , and a sixth air gap 2970 , which are identical to those of the couple inductor-transformer 2800 according to the fourth embodiment.
  • an inductor coil 2940 is wound around a seventh core part 2934 located at a lower left portion of the third magnetic core 2730
  • a transformer coil 2950 is wound around an eighth core part 2935 located at a lower right portion of the third magnetic core 2930 .
  • FIG. 30 is a view showing a couple inductor, a couple transformer and a couple inductor-transformer according to another embodiment.
  • each of the couple inductor, the couple transformer and the couple inductor-transformer may include a first magnetic core 3010 , a second magnetic core 3020 , a third magnetic core 3030 , a fourth magnetic core 3040 , a fifth magnetic core 3050 , a first coil 3060 wound around the first magnetic core 3010 , a second coil 3070 wound around the second magnetic core 3020 , a third coil 3080 wound around the third magnetic coil 3030 , and a fourth coil 3090 wound around the fourth magnetic coil 3040 .
  • all of the first to fourth coils 3060 , 3070 , 3080 and 3090 may be inductor coils or transformer coils.
  • the first and third coils 3060 and 3080 may be inductor coils and the second and fourth coils 3070 and 3090 may be transformer coils.
  • the magnetic cores are arranged in two directions (left and right directions about the central magnetic path) and coils are wound around the magnetic cores having the above configuration.
  • the magnetic cores may be arranged in the front and rear directions in addition to the left and right directions about the central magnetic path, so the embodiment can be applied to the 4-interleaved boost converter or 4-interleaved flyback converter where the cores are arranged in four directions and the coils are wound around the cores.
  • the fifth magnetic core 3050 corresponding to the central magnetic path may have great loss because the fifth magnetic core 3050 has high magnetic flux variation. For this reason, the fifth magnetic core 3050 must have size twice larger than the other core.
  • the fifth magnetic core 3050 has the property of low permeability, the saturation magnetic flux density is high, so the fifth magnetic core 3050 having the sectional area of the magnetic path the same as that of the cores located at both sides of the fifth magnetic core 3050 can be employed.
  • the fifth magnetic core 3050 has the property of low permeability, the magnetic flux variation is low and the constant magnetic flux is achieved, so the core loss is reduced and the fringing flux is distributed due to the distribution of the air gaps, thereby minimizing copper loss caused by eddy current.
  • FIG. 31 is view showing an experimental result obtained by the couple inductor manufactured according to the embodiment.
  • the experiment was performed by using a control board capable of controlling an operation according to the control operation waveform and one couple inductor according to the embodiment under the conditions of 400 W of load, and 90 VAC and 220 VAC of commercial input voltage.
  • Current waveforms Is 1 and Is 2 , terminal voltage waveforms Vs 1 and Vs 2 , input voltage Vac and current waveforms are shown in FIG. 31 .
  • the couple inductor according to the embodiment is applicable.

Abstract

Disclosed is a power supply apparatus. The power supply apparatus includes a first magnetic core; a second magnetic core having a shape equal to a shape of the first magnetic core; a third magnetic core between the first and second magnetic cores; a first coil wound around one of the first and third magnetic cores; and a second coil wound around one of the second and third magnetic cores.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application claims priority under 35 U.S.C. 119 and 35 U.S.C. 365 to Korean Patent Application No. 10-2011-0077639 (filed on 4 Aug. 2011), which is hereby incorporated by reference in its entirety.
  • BACKGROUND
  • Recently, electronic products have various functions and superior perfolinance and have tended toward the small-size and light-weight. In order to realize the electronic products having the small-size and light-weight, the size or volume of parts installed in the electronic products must be reduced.
  • In particular, as the semiconductor integrated circuits have been developed, circuits can be prepared with the small-size and light weight. However, there is a problem to reduce the volume of an inductor installed in the electronic products. In this regard, studies and research have been continuously performed to reduce the size and the weight of the inductor installed in the electronic product.
  • Meanwhile, a PFC (Power Factor Correction) converter, which is an input power factor correction circuit, has been extensively used for a power supply apparatus of the electronic product in response to the demand for reducing harmonics and correcting input power factor in commercial power.
  • In addition, in order to reduce the ripple of input current Iin and to improve the efficiency of the PFC converter, an interleaved PFC converter (or interleaved boost converter) employing two individual inductors has been used.
  • To this end, according to the related art, an air gap is essentially required in an intermediate magnetic path or a lateral magnetic path of a core to manufacture a couple inductor. However, in order to form the air gap, an additional cutting work is necessary, so the manufacturing cost may be increased and the management for the air gap may be difficult.
  • SUMMARY
  • The embodiment provides a power supply apparatus including an inductor, a transformer and an inductor-transformer having the novel structure.
  • Technical objects of the embodiment may not be limited to the above object and other technical objects of the embodiment will be apparent to those skilled in the art from the following description.
  • A power supply apparatus according to the embodiment includes a first magnetic core; a second magnetic core having a shape equal to a shape of the first magnetic core; a third magnetic core between the first and second magnetic cores; a first coil wound around one of the first and third magnetic cores; and a second coil wound around one of the second and third magnetic cores.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1 a and 1 b are circuit views showing a power supply apparatus including a couple inductor according to the embodiment;
  • FIGS. 2 a to 18 are views showing a couple inductor according to the embodiment;
  • FIG. 19 is a view showing a power supply apparatus including a couple transformer according to the embodiment;
  • FIGS. 20 to 23 are views showing a couple transformer according to the embodiment;
  • FIG. 24 is a view showing a power supply apparatus including a couple inductor-transformer according to the embodiment;
  • FIGS. 25 to 29 are views showing a power supply apparatus including a couple inductor-transformer according to the embodiment;
  • FIG. 30 is a view showing a couple inductor, a couple transformer and a couple inductor-transformer according to another embodiment; and
  • FIG. 31 is view showing an experimental result obtained by a couple inductor manufactured according to the embodiment.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • Hereinafter, the embodiments will be described with reference to accompanying drawings in detail so that those skilled in the art to which the invention pertains can easily realize the embodiments. However, the embodiments may have various modifications without limitation.
  • In the following description, when a part is referred to as it includes a component, the part may not exclude other components but further include another component unless the context indicates otherwise.
  • The thickness and size of each layer shown in the drawings may be exaggerated, omitted or schematically drawn for the purpose of convenience or clarity. In addition, the size of elements does not utterly reflect an actual size. In the following description, the similar components will be assigned with the similar reference numerals throughout the specification.
  • FIGS. 1 a and 1 b are circuit views showing a power supply apparatus including a couple inductor according to the embodiment;
  • As shown in FIG. 1 a, the power supply apparatus 100 including the inductor may include a filter 110, a rectifying unit 120 and a power factor correction unit 130.
  • The filter 110 is provided at an input side to which commercial power (85V to 260V) is input in order to reduce conductive noise.
  • To this end, the filter 110 may include coils provided at a pair of power lines, respectively, and a capacitor connected to the power lines in parallel at both ends of the coils. The coils may be common mode chock coils and two windings are provided per one core at in-phase.
  • The rectifying unit 120 is connected to an output side of the filter 110 to rectify the wave of the commercial power. The rectifying unit 120 is a bridge diode BD including a plurality of diodes.
  • The power factor correction unit 130 charges/discharges the energy accumulated in inductors L1 and L2 through the operation of semiconductor switches S1 and S2 to make input voltage and current in-phase.
  • The power factor correction unit 130 includes a first inductor L1, a second inductor L2, a first semiconductor switch Si for switching the charge/discharge operation of the first inductor L1, a second semiconductor switch S2 for switching the charge/discharge operation of the second inductor L2, a first diode D1 connected to the first inductor L1, a second diode D2 connected to the second inductor L2 and an output condenser Co. Reference numeral RL represents resistance.
  • Meanwhile, the power supply apparatus according to the embodiment is applicable not only for AC input power as shown in FIG. 1 a, but also for DC input power as shown in FIG. 1 b.
  • FIG. 1 b is a view showing a power supply apparatus 100′ according to another embodiment. The power supply apparatus 100′ may be a DC/DC converter.
  • The power supply apparatus 100′ shown in FIG. 1 b includes the power factor correction unit having the structure the same as that of the power factor correction unit 130 included in the power supply apparatus 100 shown in FIG. 1 a, so the detailed description thereof will be omitted.
  • Hereinafter, the structure of the couple inductor including the first and second inductors L1 and L2 will be described.
  • The couple inductor according to the embodiment may include a core having the shape of U, |, U or |, H, |. Although an air gap can be separately prepared, a gap sheet or a core having low permeability (powder core) is employed to form the air gap, instead of cutting a magnetic path to form the air gap, thereby reducing the cost required for the cutting process.
  • In addition, the above structure of the couple inductor can be used for the structure of a couple transformer and the structure of a couple inductor-transformer in which the inductor is integrated with the transformer.
  • FIG. 2 a is a view showing a couple inductor according to the first embodiment.
  • Referring to FIG. 2 a, the couple inductor 200 includes a first magnetic core 210, a second magnetic core 220, a third magnetic core 230, a first coil 240 wound around the first magnetic core 210, and a second coil 250 wound around the second magnetic core 220.
  • The first magnetic core 210 has a shape of ‘U’.
  • In addition, the second magnetic core 220 also has a shape of ‘U’. In this case, the first magnetic core 210 is arranged in the shape of ‘U’ and the second magnetic core 220 is arranged symmetrically to the first magnetic core 210 while interposing the third magnetic core 230 therebetween.
  • In detail, the first magnetic core 210 includes a first core part 211 having a shape of ‘|’, a second core part 212 extending from one end of the first core part 211 (an upper end of the first core part in the drawing) vertically to the length direction of the first core part 211, and a third core part 213 extending from the other end of the first core part 211 (a lower end of the first core part in the drawing) vertically to the length direction of the first core part 211.
  • Similarly, the second magnetic core 220 includes a first core part 221 having a shape of ‘|’, a second core part 222 extending from one end of the first core part 221 (an upper end of the first core part in the drawing) vertically to the length direction of the first core part 221, and a third core part 223 extending from the other end of the first core part 221 (a lower end of the first core part in the drawing) vertically to the length direction of the first core part 221.
  • The third magnetic core 220 has a shape of ‘|’ and is interposed between the first and second magnetic cores 210 and 220.
  • In addition, the couple inductor 200 according to the first embodiment includes the first coil 240 wound around the first magnetic core 210 and the second coil 250 wound around the second magnetic core 220.
  • In detail, the first coil 240 is wound around the first core part 211 of the first magnetic core 210. At this time, the first coil 240 is wound around the center portion of the first core part 211 of the first magnetic core 210 several times.
  • In addition, the second coil 250 is wound around the first core part 221 of the second magnetic core 220. At this time, the second coil 250 is wound around the center portion of the first core part 221 of the second magnetic core 220 several times.
  • Meanwhile, the first coil 240 can be wound lengthwise along the first magnetic core 210. Preferably, as shown in FIG. 2 a, the first coil 240 can be wound lengthwise along the first core part 211 of the first magnetic core 210.
  • In the same manner, the second coil 250 can be wound lengthwise along the second magnetic core 220. Preferably, as shown in FIG. 2 a, the second coil 250 can be wound lengthwise along the first core part 221 of the second magnetic core 220.
  • At this time, a first air gap (Ig) 260 is formed between the first and third magnetic cores 210 and 230 and a second air gap (Ig) 270 is formed between the second and third magnetic cores 220 and 230.
  • A top surface of the second core part 212 of the first magnetic core 210 is aligned on the same plane with a top surface of the third magnetic core 230. In addition, a bottom surface of the third core part 213 of the first magnetic core 210 is aligned on the same plane with a bottom surface of the third magnetic core 230.
  • As a result, the first air gap 260 is formed between the right lateral side of the second core part 212 of the first magnetic core 210 and the left lateral side of the third magnetic core 230. In addition, the first air gap 260 is formed between the right lateral side of the third core part 213 of the first magnetic core 210 and the left lateral side of the third magnetic core 230. According to the first embodiment, the first air gap 260 may be formed between right lateral sides of the second and third core parts 212 and 213 of the first magnetic core 210 and the left lateral side of the third magnetic core 230, respectively.
  • In the same manner, a top surface of the second core part 222 of the second magnetic core 220 is aligned on the same plane with a top surface of the third magnetic core 230. In addition, a bottom surface of the third core part 223 of the second magnetic core 220 is aligned on the same plane with a bottom surface of the third magnetic core 230.
  • As a result, the second air gap 270 is formed between the left lateral side of the second core part 222 of the second magnetic core 220 and the right lateral side of the third magnetic core 230. In addition, the second air gap 270 is formed between the left lateral side of the third core part 223 of the second magnetic core 220 and the right lateral side of the third magnetic core 230. According to the first embodiment, the second air gap 270 may be formed between left lateral sides of the second and third core parts 222 and 223 of the second magnetic core 220 and the right lateral side of the third magnetic core 230, respectively.
  • In detail, according to the first embodiment, the couple inductor 200 including two inductors is prepared as an integrated couple inductor by winding coils around the core. Although it is possible to form the air gap through the conventional cutting process, according to the embodiment, the air gap is simply formed by employing a gap sheet or a bottom without performing the cutting process when manufacturing the couple inductor.
  • Meanwhile, as shown in FIG. 2 b, the winding scheme for the first and second coils 240 and 250 of the couple inductor 200 may be different from the winding scheme shown in FIG. 2 a.
  • That is, as shown in FIG. 2 b, the first coil 240 may be wound around the first magnetic core 210 in the direction crossing the length direction of the first magnetic core 210, which is different from FIG. 2 a. Preferably, as shown in FIG. 2 b, the first coil 240 can be wound around the first core part 211 of the first magnetic core 210 in the direction crossing the length direction of the first core part 211 of the first magnetic core 210.
  • In the same manner, the second coil 250 may be wound around the second magnetic core 220 in the direction crossing the length direction of the second magnetic core 220. Preferably, as shown in FIG. 2 b, the second coil 250 can be wound around the first core part 221 of the second magnetic core 220 in the direction crossing the length direction of the first core part 221 of the second magnetic core 220.
  • Meanwhile, as shown in FIG. 2 c, the first coil 240 of the couple inductor 200 may include a primary coil 240 a wound around the first core part 211 of the first magnetic core 210 and a secondary coil 240 b wound around the third magnetic core 230 while being connected to the primary coil 240 a in series.
  • In addition, the second coil 250 of the couple inductor 200 may include a tertiary coil 250 a wound around the first core part 221 of the second magnetic core 220 and a quaternary coil 250 b wound around the third magnetic core 230 while being connected to the tertiary coil 250 a in series.
  • FIG. 3 a is a view showing a couple inductor according to the second embodiment.
  • Referring to FIG. 3 a, the couple inductor 300 includes a first magnetic core 310, a second magnetic core 320, a third magnetic core 330, a first coil 340 wound around the first magnetic core 310, and a second coil 350 wound around the second magnetic core 320.
  • The first magnetic core 310 has a shape of ‘U’.
  • In addition, the second magnetic core 320 also has a shape of ‘U’. In this case, the first magnetic core 310 is arranged in the shape of ‘U’ and the second magnetic core 320 is arranged symmetrically to the first magnetic core 310 while interposing the third magnetic core 330 therebetween.
  • In detail, the first magnetic core 310 includes a first core part 311 having a shape of ‘|’, a second core part 312 extending from one end of the first core part 311 (an upper end of the first core part in the drawing) vertically to the length direction of the first core part 311, and a third core part 313 extending from the other end of the first core part 311 (a lower end of the first core part in the drawing) vertically to the length direction of the first core part 311.
  • Similarly, the second magnetic core 320 includes a first core part 321 having a shape of ‘|’, a second core part 322 extending from one end of the first core part 321 (an upper end of the first core part in the drawing) vertically to the length direction of the first core part 321, and a third core part 323 extending from the other end of the first core part 321 (a lower end of the first core part in the drawing) vertically to the length direction of the first core part 321.
  • The third magnetic core 320 has a shape of ‘|’ and is interposed between the first and second magnetic cores 310 and 320.
  • In addition, the couple inductor 300 according to the second embodiment includes the first coil 340 wound around the first magnetic core 310 and the second coil 350 wound around the second magnetic core 320.
  • In detail, the first coil 340 is wound around the second core part 312 of the first magnetic core 310. At this time, the first coil 340 is wound around the center portion of the second core part 312 of the first magnetic core 310 several times.
  • In addition, the second coil 350 is wound around the second core part 322 of the second magnetic core 320. At this time, the second coil 350 is wound around the center portion of the second core part 322 of the second magnetic core 320 several times.
  • At this time, a first air gap (Ig) 360 is formed between the first and third magnetic cores 310 and 330 and a second air gap (Ig) 370 is formed between the second and third magnetic cores 320 and 330.
  • That is, according to the first embodiment, the coils 240 and 250 are wound around the first core parts 211 and 221 of the first and second magnetic cores 210 and 220, and, according to the second embodiment, the coils 340 and 350 are wound around the second core parts 312 and 322 of the first and second magnetic cores 310 and 320.
  • Meanwhile, as shown in FIG. 3 b, the first coil 340 of the couple inductor 300 may include a primary coil 340 a wound around the second core part 312 of the first magnetic core 310 and a secondary coil 340 b wound around a third core part 313 of the first magnetic core 310 while being connected to the primary coil 340 a in series.
  • In addition, the second coil 350 of the couple inductor 300 may include a tertiary coil 350 a wound around the second core part 332 of the second magnetic core 320 and a quaternary coil 350 b wound around a third core part 323 of the second magnetic core 320 while being connected to the tertiary coil 350 a in series.
  • FIG. 4 is a view showing a couple inductor according to the third embodiment.
  • Referring to FIG. 4, the couple inductor 300 according to the third embodiment includes a first magnetic core 410, a second magnetic core 420, a third magnetic core 430, a first air gap 460 and a second air gap 470, which have the structure the same as that of the first embodiment.
  • According to the couple inductor 200 of the first embodiment, the coils are wound around the first core parts of the first and second magnetic cores, and, according to the second embodiment, the coils are wound around the second core parts of the first and second magnetic cores.
  • However, according to the third embodiment, a first coil 440 is wound around a third core part 413 of the first magnetic core 410 and a second coil 450 is wound around a third core part 423 of the second magnetic core 420.
  • At this time, the first magnetic cores 210, 310 and 410, the second magnetic cores 220, 320 and 420, and the third magnetic cores 230, 330 and 430 according to the first to third embodiments may include ferrite cores having the magnetic property of high permeability.
  • FIG. 5 is a view showing a couple inductor according to the fourth embodiment.
  • Referring to FIG. 5, the couple inductor 500 includes a first magnetic core 510 having a shape of ‘U’, a second magnetic core 520 having a shape the same as that of the first magnetic core 510 and disposed symmetrically to the first magnetic core 510, and a third magnetic core 530 having a shape of ‘|’ and disposed between the first and second magnetic cores 510 and 520.
  • In addition, the couple inductor 500 includes a first coil 540 wound around the first magnetic core 510 and a second coil 550 wound around the second magnetic core 520.
  • Although it is illustrated that the first coil 540 is wound around the second core part of the first magnetic core 510 and the second coil 550 is wound around the second core part of the second coil 550, this is illustrative purpose only. For instance, as illustrated in the first and third embodiments, the first and second coils 540 and 550 can be wound around the first core parts or the third core parts of the first and second magnetic cores, respectively.
  • According to the fourth embodiment, different from the first to third embodiments, the air gap may not be formed between the first and third magnetic cores 510 and 530 and between the second and third cores 520 and 530.
  • To this end, according to the fourth embodiment, the first and second magnetic cores 510 and 520 are formed by using the same material and the third magnetic core 530 is formed by using the material different from the material for the first and second magnetic cores 510 and 520.
  • That is, the first and second magnetic cores 510 and 520 may include powder cores having low permeability and the third magnetic core 530 may include a ferrite core having high permeability.
  • In other words, the air gap is not formed in the couple inductor and the magnetic cores are prepared by using different magnetic materials, so the eddy current losses generated from the first and second coils 540 and 550 caused by the fringing flux can be reduced. In addition, since the couple inductor is fabricated without the air gap, the additional process, such as the cutting process, may be omitted.
  • FIG. 6 is a view showing a couple inductor according to the fifth embodiment.
  • Referring to FIG. 6, the couple inductor 600 includes a first magnetic core 610, a second magnetic core 620, a third magnetic core 630, a first coil 640 and a second coil 650, which have the shapes identical to those of the couple inductor 500 according to the fourth embodiment.
  • Although the first and second magnetic cores 510 and 520 according to the fourth embodiment have the magnetic property of low permeability, the first and second magnetic cores 610 and 620 according to the fifth embodiment have the magnetic property of high permeability.
  • Therefore, contrary to the fourth embodiment, the third magnetic core 630 has the magnetic property of low permeability different from the first and second magnetic cores 610 and 620.
  • FIG. 7 is a view showing a couple inductor according to the sixth embodiment.
  • Referring to FIG. 7, the couple inductor 700 includes a first magnetic core 710, a second magnetic core 720, a third magnetic core 730, a first coil 740 and a second coil 750, which have the shapes identical to those of the couple inductor 300 according to the second embodiment.
  • According to the second embodiment, a plurality of first air gaps 360 are formed between the first and third magnetic cores 310 and 330 and a plurality of second air gaps 370 are formed between the second and third magnetic cores 320 and 330 due to the structures of the first to third magnetic cores 310, 320 and 330.
  • However, according to the sixth embodiment, one third air gap 760 is formed between the first and third magnetic cores 710 and 730 and one fourth air gap 770 is formed between the second and third magnetic cores 720 and 730.
  • To this end, one end of a third core part 713 of the first magnetic core 710 is cut such that the first magnetic core 710 can be spaced apart from the third magnetic core 730, thereby forming the third air gap 760. In addition, one end of a third core part 723 of the second magnetic core 720 is cut such that the second magnetic core 720 can be spaced apart from the third magnetic core 730.
  • At this time, since only one air gap is formed between the first and third magnetic cores 710 and 730 of the couple inductor 700 and only one air gap is formed between the second and third magnetic cores 720 and 730 of the couple inductor 700, the width of the third and fourth air gaps 760 and 770 is wider than the width of the first and second air gaps 360 and 370.
  • Thus, in the couple inductor 700, a second core part 712 of the first magnetic core 710 is longer than the third core part 713 and a second core part 722 of the second magnetic core 720 is longer than the third core part 723 of the second magnetic core 720.
  • In addition, the first coil 740 may be wound around the first core part 711 of the first magnetic core 710 and the second coil 750 may be wound around the first core part 721 of the second magnetic core 720.
  • FIG. 8 is a view showing a couple inductor according to the seventh embodiment.
  • Referring to FIG. 8, the couple inductor 800 includes a first magnetic core 810, a second magnetic core 820, a third magnetic core 830, a first coil 840 and a second coil 850, which have the shapes identical to those of the couple inductor 700 according to the sixth embodiment.
  • According to the couple inductor 700 of the sixth embodiment, the fourth air gap 770 is formed between the third core part 723 of the second magnetic core 720 and the third magnetic core 730. However, according to the couple inductor 800 of the seventh embodiment, a fourth air gap 870 is formed between a second core part 822 of the second magnetic core 820 and the third magnetic core.
  • In other words, according to the couple inductor 700 of the sixth embodiment, the third and fourth air gaps 760 and 770 are formed at the bottom surface of the couple inductor 700 together. However, according to the couple inductor 800 of the seventh embodiment, third and fourth air gaps 860 and 870 are separately formed at the top and bottom surfaces of the couple inductor 800, respectively.
  • Thus, a third core part 823 of the second magnetic core 820 is longer than a second core part 822 of the second magnetic core 820 in the couple inductor 800 according to the seventh embodiment.
  • FIG. 9 a is a view showing a couple inductor according to the eighth embodiment.
  • Referring to FIG. 9 a, the couple inductor 900 includes a first magnetic core 910, a second magnetic core 920, a third magnetic core 930, a first coil 940, a second coil 950, a fifth air gap 960 and a sixth air gap 970.
  • The first and second magnetic cores 910 and 920 may have the same shape of ‘|’.
  • The third magnetic core 930 is formed between the first and second magnetic cores 910 and 920. The third magnetic core 930 has a shape of ‘H’, which is different from the shape of the first and second magnetic cores 910 and 920.
  • In detail, the third magnetic core 930 includes a fourth core part 931 having a shape of ‘|’, a fifth core part 932 vertically extending from one end of the fourth core part 931 (an upper end of the fourth core part in the drawing) in the left direction with respect to the length direction of the fourth core part 931, a sixth core part 933 vertically extending from one end of the fourth core part 931 in the right direction, a seventh core part 934 vertically extending from the other end of the fourth core part 931 (a lower end of the fourth core part in the drawing) in the left direction, and an eighth core part 935 vertically extending from one end of the fourth core part 931 in the right direction.
  • At this time, the first and second magnetic cores 910 and 920 are parallel to a fourth core part 931 of the third magnetic core 930.
  • In addition, the first and second magnetic cores 910 and 920 are longer than the fourth core part 931 of the third magnetic core 930.
  • Thus, the right side of the first magnetic core 910 may face the fifth core part 932 and the left side of the seventh core part 934 of the third magnetic core 930. In addition, the left side of the second magnetic core 920 may face the sixth core part 933 and the right side of the eighth core part 935 of the third magnetic core 930.
  • Therefore, the fifth air gap 960 may be formed among the right side of the first magnetic core 910, the fifth core part 932 and the left side of the seventh core part 934 of the third magnetic core 930. In addition, sixth air gap 970 may be formed among the left side of the second magnetic core 920, the sixth core part 933 and the right side of the eighth core part 935 of the third magnetic core 930.
  • The first coil 940 is wound around the first magnetic core 910 and the second coil 950 is wound around the second magnetic core 920.
  • At this time, the first coil 940 may be wound lengthwise along the first magnetic core 910. In addition, the second coil 950 may be wound lengthwise along the second magnetic core 920.
  • Meanwhile, as shown in FIG. 9 b, the first coil 940 may be wound around the first magnetic core 910 in the direction crossing the length direction of the first magnetic core 910. In the same manner, the second coil 950 can be wound around the second magnetic core 920 in the direction crossing the length direction of the second magnetic core 920.
  • Further, as shown in FIG. 9 c, the first coil 940 may include a primary coil 940 a wound around the first magnetic core 910 and a secondary coil 940 b wound around the fourth core part 931 of the third magnetic core 230 while being connected to the primary coil 940 a in series.
  • In addition, the second coil 950 may include a tertiary coil 950 a wound around the second magnetic core 920 and a quaternary coil 950 b wound around the third magnetic core 230 while being connected to the tertiary coil 950 a in series.
  • FIG. 10 a is a view showing a couple inductor according to the ninth embodiment.
  • Referring to FIG. 10 a, the couple inductor 1000 includes a first magnetic core 1010, a second magnetic core 1020, a third magnetic core 1030, a fifth air gap 1060 and a sixth air gap 1070, which are similar to those of the couple inductor 900 according to the eighth embodiment.
  • According to the eighth embodiment, the first coil 940 is wound around the first magnetic core 910 and the second coil 950 is wound around the second magnetic core 920. However, according to the ninth embodiment, first and second coils 1040 and 1050 are wound around the third magnetic core 1030.
  • In detail, the first coil 1040 is wound around a fifth coil part 1032 of the third magnetic core 1030 and the second coil 1050 is wound around a sixth coil part 1033 of the third magnetic core 1030.
  • Meanwhile, as shown in FIG. 10 b, the first coil 1040 may include a primary coil 1040 a wound around a fifth core part 1032 of the third magnetic core 1030 and a secondary coil 1040 b wound around a seventh core part 1034 of the third magnetic core 1030 while being connected to the primary coil 1040 a in series.
  • In addition, the second coil 1050 may include a tertiary coil 1050 a wound around a sixth coil part 1033 of the third magnetic core 1030 and a quaternary coil 1050 b wound around an eighth core part 1035 of the third magnetic core 230 while being connected to the tertiary coil 1050 a in series.
  • FIG. 11 is a view showing a couple inductor according to the tenth embodiment.
  • Referring to FIG. 11, the couple inductor 1100 includes a first magnetic core 1110, a second magnetic core 1120, a third magnetic core 1130, a fifth air gap 1160 and a sixth air gap 1170, which are similar to those of the couple inductors 900 and 1000 according to the eighth and ninth embodiments.
  • According to the eighth embodiment, the first coil 940 is wound around the first magnetic core 910 and the second coil 950 is wound around the second magnetic core 920. However, according to the tenth embodiment, first and second coils 1140 and 1150 are wound around the third magnetic core 1130.
  • In detail, the first coil 1140 is wound around a seventh coil part 1134 of the third magnetic core 1130 and the second coil 1150 is wound around an eighth coil part 1135 of the third magnetic core 1130.
  • FIG. 12 is a view showing a couple inductor 1200 according to the eleventh embodiment.
  • Referring to FIG. 12, the couple inductor 1200 includes a first magnetic core 1210, a second magnetic core 1220, a third magnetic core 1230, a first coil 1240 and a second coil 1250, which are similar to those of the couple inductor 900 according to the eighth embodiment.
  • The fifth and sixth air gaps 960 and 970 are included in the eighth embodiment, but the couple inductor 1200 according to the eleventh embodiment may not include an air gap.
  • Thus, the first magnetic core 1210 makes contact with the third magnetic core 1230 and the second magnetic core 1220 makes contact with the third magnetic core 1230.
  • In addition, the first and second cores 1210 and 1220 are formed by using the same magnetic material and the third magnetic core 1230 is formed by using the magnetic material different from the magnetic material for the first and second magnetic cores 1210 and 1220.
  • That is, the first and second magnetic cores 1210 and 1220 may include powder cores having low permeability and the third magnetic core 1230 may include a ferrite core having high permeability.
  • In other words, the air gap is not formed in the couple inductor and the magnetic cores are prepared by using different magnetic materials, so the eddy current losses generated from the first and second coils 1240 and 1250 caused by the fringing flux can be reduced. In addition, since the couple inductor is fabricated without the air gap, the additional process, such as the cutting process, may be omitted.
  • FIG. 13 is a view showing a couple inductor according to the twelfth embodiment.
  • Referring to FIG. 13, the couple inductor 1300 includes a first magnetic core 1310, a second magnetic core 1320, a third magnetic core 1330, a first coil 1340 and a second coil 1350, which have the shapes identical to those of the couple inductor 1200 according to the eleventh embodiment.
  • Although the first and second magnetic cores 1210 and 1220 according to the eleventh embodiment have the magnetic property of low permeability, the first and second magnetic cores 1310 and 1320 according to the twelfth embodiment have the magnetic property of high permeability.
  • Therefore, contrary to the eleventh embodiment, the third magnetic core 1330 has the magnetic property of low permeability different from the first and second magnetic cores 1310 and 1320.
  • FIG. 14 is a view showing a couple inductor according to the thirteenth embodiment.
  • Referring to FIG. 14, the couple inductor 1400 includes a first magnetic core 1410, a second magnetic core 1420, a third magnetic core 1430, a first coil 1440 and a second coil 1450, which have the shapes identical to those of the couple inductor 900 according to the eighth embodiment.
  • According to the eighth embodiment, a plurality of fifth air gaps 960 are formed between the first and third magnetic cores 910 and 930 and a plurality of sixth air gaps 970 are formed between the second and third magnetic cores 920 and 930 due to the structures of the first to third magnetic cores 910, 920 and 930.
  • However, according to the thirteenth embodiment, one fifth air gap 1460 is formed between the first and third magnetic cores 1410 and 1430 and one sixth air gap 1470 is formed between the second and third magnetic cores 1420 and 1430.
  • To this end, one end of a fifth core part 1432 of the third magnetic core 1430 is cut such that the third magnetic core 1430 can be spaced apart from the first magnetic core 1410, thereby forming the fifth air gap 1460. In addition, one end of a sixth core part 1433 of the third magnetic core 1430 is cut such that the third magnetic core 1430 can be spaced apart from the second magnetic core 1420, thereby forming the sixth air gap 1470.
  • At this time, since only one air gap is formed between the first and third magnetic cores 1410 and 1430 of the couple inductor 1400 and only one air gap is formed between the second and third magnetic cores 1420 and 1430 of the couple inductor 1400, the width of the fifth and sixth air gaps 1460 and 1470 is wider than the width of the fifth and sixth air gaps 960 and 970 according to the eighth embodiment.
  • Thus, in the couple inductor 1400, a fifth core part 1432 of the third magnetic core 1430 is longer than a fifth core part 1434 and an eighth core part 1435 of the third magnetic core 1430 is longer than a sixth core part 1433.
  • In addition, the first coil 1440 may be wound around the first magnetic core 1410 and the second coil 1450 may be wound around the second magnetic core 1420.
  • FIG. 15 is a view showing a couple inductor according to the fourteenth embodiment.
  • Referring to FIG. 15, the couple inductor 1500 includes a first magnetic core 1510, a second magnetic core 1520, a third magnetic core 1530, a first coil 1540 and a second coil 1550, which have the shapes identical to those of the couple inductor 1400 according to the thirteenth embodiment.
  • According to the couple inductor 1400 of the thirteenth embodiment, the sixth air gap 1470 is formed between the sixth core part 1433 of the third magnetic core 1430 and the second magnetic core 1420. However, according to the couple inductor 1500 of the fourteenth embodiment, a sixth air gap 1570 is formed between an eighth core part 1535 of the third magnetic core 1530 and the second magnetic core.
  • In other words, according to the couple inductor 1400 of the thirteenth embodiment, the fifth and sixth air gaps 1460 and 1470 are formed at the top surface of the couple inductor 1400 together. However, according to the couple inductor 1500 of the fourteenth embodiment, fifth and sixth air gaps 1560 and 1570 are separately formed at the top and bottom surfaces of the couple inductor 1500, respectively.
  • Thus, a sixth core part 1533 of the third magnetic core 1530 is longer than an eighth core part 1535 of the third magnetic core 1530 in the couple inductor 1500 according to the fourteenth embodiment.
  • FIG. 16 is a view showing a couple inductor according to the fifteenth embodiment.
  • Referring to FIG. 16, the couple inductor 1600 includes a first magnetic core 1610, a second magnetic core 2620, a third magnetic core 2630, a first coil 1640, a second coil 1650, a fifth air gap 1660 and a sixth air gap 1670, which are similar to those of the couple inductor 900 according to the eighth embodiment.
  • The first and second magnetic cores 1610 and 1620 may have the same shape of ‘|’.
  • The third magnetic core 1630 is formed between the first and second magnetic cores 1610 and 1620. The third magnetic core 1630 has a shape of ‘H’, which is different from the shape of the first and second magnetic cores 1610 and 1620.
  • According to the fifteenth embodiment, different from the eighth embodiment, the first and second magnetic cores 1610 and 1620 may have the length the same as that of a fourth core part 1631 of the third magnetic core 1630.
  • Thus, the top surface of the first magnetic core 1610 faces the bottom surface of a fifth core part 1632 of the third magnetic core 1630, and the bottom surface of the first magnetic core 1610 faces the top surface of a seventh core part 1634 of the third magnetic core 1630. In addition, the top surface of the second magnetic core 1620 faces the bottom surface of a sixth core part 1633 of the third magnetic core 1630, and the bottom surface of the second magnetic core 1620 faces the top surface of an eighth core part 1635 of the third magnetic core 1630.
  • As a result, one fifth air gap 1660 is formed between the top surface of the first magnetic core 1610 and the bottom surface of the fifth core part 1632 of the third magnetic core 1630, and another fifth air gap 1660 is formed between the bottom surface of the first magnetic core 1610 and the top surface of the seventh core part 1634 of the third magnetic core 1630. In addition, one sixth air gap 1670 is formed between the top surface of the second magnetic core 1620 and the bottom surface of the sixth core part 1633 of the third magnetic core 1630, and another sixth air gap 1670 is formed between the bottom surface of the second magnetic core 1620 and the top surface of the eighth core part 1635 of the third magnetic core 1630.
  • The first coil 1640 is wound around the first magnetic core 1610 and the second coil 1650 is wound around the second magnetic core 1620.
  • FIG. 17 is a view showing a couple inductor according to the sixteenth embodiment.
  • Referring to FIG. 17, the couple inductor 1700 includes a first magnetic core 1710, a second magnetic core 1720, a third magnetic core 1730, a fifth air gap 1760 and a sixth air gap 1770, which are similar to those of the couple inductor 1600 according to the fifteenth embodiment.
  • First and second coils 1740 and 1750 are wound around the third magnetic core 1730.
  • In detail, the first coil 1740 is wound around a fifth core part 1732 of the third magnetic core 1730 and the second coil 1750 is wound around a sixth core part 1733 of the third magnetic core 1730.
  • FIG. 18 is a view showing a couple inductor according to the seventeenth embodiment.
  • Referring to FIG. 18, the couple inductor 1800 includes a first magnetic core 1810, a second magnetic core 1820, a third magnetic core 1830, a fifth air gap 1860 and a sixth air gap 1870, which are similar to those of the couple inductor 1600 according to the fifteenth embodiment.
  • At this time, the first coil 1840 is wound around a seventh core part 1834 of the third magnetic core 1830 and the second coil 1850 is wound around an eighth core part 1835 of the third magnetic core 1830.
  • FIG. 19 is a view showing a power supply apparatus according to the embodiment.
  • Referring to FIG. 19, the power supply apparatus 1900 includes a first transformer and a second transformer.
  • The first transformer includes a primary coil part 1910 and a secondary coil part 1920. In addition, the second transformer also includes a primary coil part 1930 and a secondary coil part 1940. In this case, the primary coil parts 1910 and 1930 may include a plurality of coils.
  • Hereinafter, the structure of a couple transformer including the first and second transformers will be described.
  • The structure of the couple transformer may be identical to the structure of the couple inductor described above. However, although the first and second coils are wound in the couple inductor, a plurality of primary coils and one secondary coil are wound instead of the first coil and a plurality of primary coils and one secondary coil are wound instead of the second coil in the couple transformer.
  • Therefore, the structure of the couple transformer according to one exemplary embodiment from among various embodiments will be described below and the structure of the couple inductor, which may be omitted in the description for the structure of the couple transformer, will be applicable for the structure of the couple transformer.
  • FIG. 20 a is a view showing a couple transformer according to the first embodiment.
  • Referring to FIG. 20 a, the couple transformer 2000 includes a first magnetic core 2010, a second magnetic core 2020, a third magnetic core 2030, a first air gap 2060, and a second air gap 2070, which are identical to those of the couple inductor 200 shown in FIG. 2.
  • However, although the inductor coils 240 and 250 are wound around the first and second magnetic cores 210 and 220 in the couple inductor 200, transformer coils 2040 and 2050 are wound around the first and second magnetic cores 2010 and 2020 in the couple transformer 2000.
  • In detail, the first transformer coil 2040 including primary and secondary coils 2041 and 2042 is wound around the first magnetic core 2010, and the second transformer coil 2050 including primary and secondary coils 2051 and 2052 is wound around the second magnetic core 2020.
  • At this time, the first transformer coil 2040 can be wound lengthwise along the first magnetic core 2010. In the same manner, the second transformer coil 2050 can be wound lengthwise along the second magnetic core 2020.
  • Meanwhile as shown in FIG. 20 b, the first transformer coil 2040 may be wound around the first magnetic core 2010 in the direction crossing the length direction of the first magnetic core 2010. In the same manner, the second transformer coil 2050 may be wound around the second magnetic core 2020 in the direction crossing the length direction of the second magnetic core 2020.
  • FIG. 21 a is a view showing a couple transformer according to the second embodiment.
  • Referring to FIG. 21 a, the couple transformer 2100 includes a first magnetic core 2110, a second magnetic core 2120, a third magnetic core 2130, a first air gap 2160, and a second air gap 2170, which are identical to those of the couple transformer 2000 shown in FIG. 20 a.
  • A first transformer coil 2140 is wound around a second core part 2112 located at an upper portion of the first magnetic core 2110, and a second transformer coil 2150 is wound around a second core part 2122 located at an upper portion of the second magnetic core 2120.
  • Meanwhile, as shown in FIG. 21 b, the first transformer coil 2140 may include a primary transformer coil 2140 a wound around the second core part 2112 of the first magnetic core 2110 and a secondary transformer coil 2140 b wound around a third core part 2113 of the first magnetic core 2110 and connected to the primary transformer coil 2140 a in series.
  • In the same manner, the second transformer coil 2150 may include a tertiary transformer coil 2150 a wound around the second core part 2122 of the second magnetic core 2120 and a quaternary transformer coil 2150 b wound around a third core part 2123 of the second magnetic core 2120 and connected to the tertiary transformer coil 2150 a in series.
  • FIG. 22 a is a view showing a couple transformer according to the third embodiment.
  • Referring to FIG. 22 a, the couple transformer 2200 includes a first magnetic core 2210, a second magnetic core 2220, a third magnetic core 2230, a fifth air gap 2260, and a sixth air gap 2270, which are identical to those of the couple inductor 900 shown in FIG. 9 a.
  • However, although the inductor coils 940 and 950 are wound around the first and second magnetic cores 910 and 920 in the couple inductor 900, transformer coils 2240 and 2250 are wound around the first and second magnetic cores 2210 and 2220 in the couple transformer 2200.
  • In detail, the first transformer coil 2240 including primary and secondary coils 2241 and 2242 is wound around the first magnetic core 2210, and the second transformer coil 2250 including primary and secondary coils 2251 and 2252 is wound around the second magnetic core 2220.
  • At this time, the first transformer coil 2240 can be wound lengthwise along the first magnetic core 2210. In the same manner, the second transformer coil 2250 can be wound lengthwise along the second magnetic core 2220.
  • Meanwhile as shown in FIG. 22 b, the first transformer coil 2240 may be wound around the first magnetic core 2210 in the direction crossing the length direction of the first magnetic core 2210. In the same manner, the second transformer coil 2250 may be wound around the second magnetic core 2220 in the direction crossing the length direction of the second magnetic core 2220.
  • FIG. 23 a is a view showing a couple transformer according to the fourth embodiment.
  • Referring to FIG. 23 a, the couple transformer 2300 includes a first magnetic core 2310, a second magnetic core 2320, a third magnetic core 2330, a fifth air gap 2360, and a sixth air gap 2370, which are identical to those of the couple transformer 2200 according to the third embodiment.
  • Different from the third embodiment in which the first and second transformer coils 2240 and 2250 are wound around the first and second magnetic cores 2210 and 2220, respectively, the first and second transformer coils 2340 and 2350 are wound around the third magnetic core 2330 in the fourth embodiment.
  • In detail, the first transformer coil 2340 is wound around a fifth core part 2332 located at an upper left portion of the third magnetic core 2330 and the second transformer coil 2350 is wound around a sixth core part 2333 located at an upper right portion of the third magnetic core 2330.
  • Meanwhile, as shown in FIG. 23 b, the first transformer coil 2340 may include a primary transformer coil 2340 a wound around the fifth core part 2332 of the third magnetic core 2330 and a secondary transformer coil 2340 b wound around a seventh core part 2334 of the third magnetic core 2330 and connected to the primary transformer coil 2340 a in series.
  • In the same manner, the second transformer coil 2350 may include a tertiary transformer coil 2350 a wound around the sixth core part 2333 of the third magnetic core 2330 and a quaternary transformer coil 2350 b wound around an eighth core part 2335 of the third magnetic core 2330 and connected to the tertiary transformer coil 2350 a in series.
  • FIG. 24 is a view showing a power supply apparatus according to the embodiment.
  • Referring to FIG. 24, the power supply apparatus 2400 includes an inductor 2410 and a transformer 2420. The transformer 2420 includes primary and secondary coils.
  • Hereinafter, the structure of a couple inductor-transformer including the inductor 2410 and the transformer 2420 will be described.
  • The structure of the couple inductor-transformer may be identical to the structure of the couple inductor described above. However, although the first and second coils are wound in the couple inductor, a transformer coil including a plurality of primary coils and one secondary coil is wound instead of the second coil in the couple inductor-transformer.
  • In the following description, the structure and elements that have been described with reference to the couple inductor will be omitted in order to avoid redundancy.
  • Therefore, the structure of the couple inductor-transformer according to one exemplary embodiment from among various embodiments will be described below and the structure of the couple inductor, which may be omitted in the description for the structure of the couple inductor-transformer, will be applicable for the structure of the couple inductor-transformer.
  • FIG. 25 a is a view showing a couple inductor-transformer according to the first embodiment.
  • Referring to FIG. 25 a, the couple inductor-transformer 2500 includes a first magnetic core 2510, a second magnetic core 2520, a third magnetic core 2530, a first air gap 2560, and a second air gap 2570, which are identical to those of the couple inductor 200 shown in FIG. 2.
  • However, although the inductor coils 240 and 250 are wound around the first and second magnetic cores 210 and 220 in the couple inductor 200, a transformer coil 2550 is wound around the second magnetic core 2520 in the couple inductor-transformer 2500.
  • In detail, an inductor coil 2540 is wound around the first magnetic core 2510 and a transformer coil 2550 including primary and secondary coils 2551 and 2552 is wound around the second magnetic core 2520.
  • At this time, the inductor coil 2540 can be wound lengthwise along the first magnetic core 2510. In the same manner, the transformer coil 2550 can be wound lengthwise along the second magnetic core 2520.
  • Meanwhile as shown in FIG. 25 b, the inductor coil 2540 may be wound around the first magnetic core 2510 in the direction crossing the length direction of the first magnetic core 2510. In the same manner, the transformer coil 2550 may be wound around the second magnetic core 2520 in the direction crossing the length direction of the second magnetic core 2520.
  • FIG. 26 is a view showing a couple inductor-transformer according to the second embodiment.
  • Referring to FIG. 26, the couple inductor-transformer 2600 includes a first magnetic core 2610, a second magnetic core 2620, a third magnetic core 2630, a first air gap 2660, and a second air gap 2670, which are identical to those of the couple inductor-transformer 2500 shown in FIG. 25.
  • An inductor coil 2640 is wound around a third core part 2613 located at a lower portion of the first magnetic core 2610, and a transformer coil 2650 is wound around a third core part 2633 located at a lower portion of the second magnetic core 2620.
  • FIG. 27 a is a view showing a couple inductor-transformer according to the third embodiment.
  • Referring to FIG. 27 a, the couple inductor-transformer 2700 includes a first magnetic core 2710, a second magnetic core 2720, a third magnetic core 2730, a first air gap 2760, and a second air gap 2770, which are identical to those of the couple transformer 900 shown in FIG. 9 a.
  • However, although the inductor coils 940 and 950 are wound around the first and second magnetic cores 910 and 920 in the couple inductor 900, an inductor coil 2740 is wound around the first magnetic core 2710 and a transformer coil 2750 is wound around the second magnetic core 2720 in the couple inductor-transformer 2700.
  • At this time, the inductor coil 2740 can be wound lengthwise along the first magnetic core 2710. In the same manner, the transformer coil 2750 can be wound lengthwise along the second magnetic core 2720.
  • Meanwhile as shown in FIG. 27 b, the inductor coil 2740 may be wound around the first magnetic core 2710 in the direction crossing the length direction of the first magnetic core 2710. In the same manner, the transformer coil 2750 may be wound around the second magnetic core 2720 in the direction crossing the length direction of the second magnetic core 2720.
  • FIG. 28 is a view showing a couple inductor-transformer according to the fourth embodiment.
  • Referring to FIG. 28, the couple inductor-transformer 2800 includes a first magnetic core 2810, a second magnetic core 2820, a third magnetic core 2830, a fifth air gap 2860, and a sixth air gap 2870, which are identical to those of the couple inductor-transformer 2700 according to the third embodiment.
  • However, although the inductor coil 2740 and the transformer coil 2750 are wound around the first and second magnetic cores 2710 and 2720 in the third embodiment, an inductor coil 2840 and a transformer coil 2850 are wound around the third magnetic core 2830 in the fourth embodiment.
  • In detail, the inductor coil 2840 is wound around a fifth core part 2832 located at an upper left portion of the third magnetic core 2830 and the transformer coil 2850 is wound around a sixth core part 2833 located at an upper right portion of the third magnetic core 2830.
  • FIG. 29 is a view showing a couple inductor-transformer according to the fifth embodiment.
  • Referring to FIG. 29, the couple inductor-transformer 2900 includes a first magnetic core 2910, a second magnetic core 2920, a third magnetic core 2930, a fifth air gap 2960, and a sixth air gap 2970, which are identical to those of the couple inductor-transformer 2800 according to the fourth embodiment.
  • However, an inductor coil 2940 is wound around a seventh core part 2934 located at a lower left portion of the third magnetic core 2730, and a transformer coil 2950 is wound around an eighth core part 2935 located at a lower right portion of the third magnetic core 2930.
  • FIG. 30 is a view showing a couple inductor, a couple transformer and a couple inductor-transformer according to another embodiment.
  • Referring to FIG. 30, each of the couple inductor, the couple transformer and the couple inductor-transformer may include a first magnetic core 3010, a second magnetic core 3020, a third magnetic core 3030, a fourth magnetic core 3040, a fifth magnetic core 3050, a first coil 3060 wound around the first magnetic core 3010, a second coil 3070 wound around the second magnetic core 3020, a third coil 3080 wound around the third magnetic coil 3030, and a fourth coil 3090 wound around the fourth magnetic coil 3040.
  • In this case, all of the first to fourth coils 3060, 3070, 3080 and 3090 may be inductor coils or transformer coils. Otherwise, the first and third coils 3060 and 3080 may be inductor coils and the second and fourth coils 3070 and 3090 may be transformer coils.
  • That is, in the couple inductor, the couple transformer and the couple inductor-transformer shown in the drawing, the magnetic cores are arranged in two directions (left and right directions about the central magnetic path) and coils are wound around the magnetic cores having the above configuration.
  • Otherwise, the magnetic cores may be arranged in the front and rear directions in addition to the left and right directions about the central magnetic path, so the embodiment can be applied to the 4-interleaved boost converter or 4-interleaved flyback converter where the cores are arranged in four directions and the coils are wound around the cores.
  • If the magnetic cores are arranged in four directions, the fifth magnetic core 3050 corresponding to the central magnetic path may have great loss because the fifth magnetic core 3050 has high magnetic flux variation. For this reason, the fifth magnetic core 3050 must have size twice larger than the other core.
  • Meanwhile, if the fifth magnetic core 3050 has the property of low permeability, the saturation magnetic flux density is high, so the fifth magnetic core 3050 having the sectional area of the magnetic path the same as that of the cores located at both sides of the fifth magnetic core 3050 can be employed. In detail, if the fifth magnetic core 3050 has the property of low permeability, the magnetic flux variation is low and the constant magnetic flux is achieved, so the core loss is reduced and the fringing flux is distributed due to the distribution of the air gaps, thereby minimizing copper loss caused by eddy current.
  • FIG. 31 is view showing an experimental result obtained by the couple inductor manufactured according to the embodiment.
  • The experiment was performed by using a control board capable of controlling an operation according to the control operation waveform and one couple inductor according to the embodiment under the conditions of 400 W of load, and 90 VAC and 220 VAC of commercial input voltage. Current waveforms Is1 and Is2, terminal voltage waveforms Vs1 and Vs2, input voltage Vac and current waveforms are shown in FIG. 31.
  • When taking the experimental result into consideration, the couple inductor according to the embodiment is applicable.
  • Although embodiments have been described with reference to a number of illustrative embodiments thereof, it should be understood that numerous other modifications and embodiments can be devised by those skilled in the art that will fall within the spirit and scope of the principles of this disclosure. More particularly, various variations and modifications are possible in the component parts and/or arrangements of the subject combination arrangement within the scope of the disclosure, the drawings and the appended claims. In addition to variations and modifications in the component parts and/or arrangements, alternative uses will also be apparent to those skilled in the art.

Claims (23)

1. A power supply apparatus comprising:
a first magnetic core;
a second magnetic core having a shape equal to a shape of the first magnetic core;
a third magnetic core between the first and second magnetic cores;
a first coil wound around one of the first and third magnetic cores; and
a second coil wound around one of the second and third magnetic cores.
2. The power supply apparatus of claim 1, wherein each of the first and second magnetic cores comprises:
a first core part;
a second core part extending from one end of the first core part vertically to a length direction of the first core part; and
a third core part extending from an opposite end of the first core part vertically to the length direction of the first core part, and
wherein the third magnetic core is parallel to the first core parts of the first and second magnetic cores.
3. The power supply apparatus of claim 2, wherein the first magnetic core has a shape of ‘U’,
the second magnetic core is symmetrical to the first magnetic core about the third magnetic core, and
the third magnetic core has a shape of ‘|’.
4. The power supply apparatus of claim 2, wherein the first and third magnetic cores are spaced apart from each other by a first air gap formed between at least one of the second and third core parts of the first magnetic core and the third magnetic core, and
the second and third magnetic cores are spaced apart from each other by a second air gap formed between at least one of the second and third core parts of the second magnetic core and the third magnetic core.
5. The power supply apparatus of claim 4, wherein the first air gap is formed in at least one of right sides of the second and third core parts of the first magnetic core and a left side of the third magnetic core, and
the second air gap is formed in at least one of left sides of the second and third core parts of the second magnetic core and a right side of the third magnetic core.
6. The power supply apparatus of claim 2, wherein the first coil is wound around one of the first to third core parts of the first magnetic core, and
the second coil is wound around one of core parts of the second magnetic core, which is symmetrical to the core part of the first magnetic core around which the first coil is wound.
7. The power supply apparatus of claim 6, wherein the first coil is wound lengthwise along the first core part of the first magnetic core or wound in a direction crossing a length direction of the first core part of the first magnetic core, and
the second coil is wound lengthwise along the first core part of the second magnetic core or wound in a direction crossing a length direction of the first core part of the second magnetic core.
8. The power supply apparatus of claim 7, wherein the first coil includes a plurality of first coils disposed on a plurality of regions, respectively, while being connected with each other in series, and
the second coil includes a plurality of second coils disposed on a plurality of regions, respectively, while being connected with each other in series.
9. The power supply apparatus of claim 1, wherein the third magnetic core comprises:
a fourth core part;
a fifth core part vertically extending from one end of the fourth core part in a left direction;
a sixth core part vertically extending from one end of the fourth core part in a right direction;
a seventh core part vertically extending from an opposite end of the fourth core part in a left direction; and
an eighth core part vertically extending from the opposite end of the fourth core part in a right direction, and
the first and second magnetic cores are parallel to the fourth core part of the third magnetic core.
10. The power supply apparatus of claim 9, wherein the first and second magnetic cores have a shape of ‘|’, and
the third magnetic core has a shape of ‘H’.
11. The power supply apparatus of claim 9, wherein the first coil is wound lengthwise along the first magnetic core or wound in a direction crossing a length direction of the first magnetic core, and
the second coil is wound lengthwise along the second magnetic core or wound in a direction crossing a length direction of the second magnetic core.
12. The power supply apparatus of claim 9, wherein the first coil is wound around one of the fifth and sixth core parts, and
the second coil is wound around one of sixth and eighth core parts, which is symmetrical to the core part around which the first coil is wound.
13. The power supply apparatus of claim 12, wherein the first coil includes a plurality of first coils disposed on a plurality of regions, respectively, while being connected with each other in series, and
the second coil includes a plurality of second coils disposed on a plurality of regions, respectively, while being connected with each other in series.
14. The power supply apparatus of claim 9, wherein the first and third magnetic cores are spaced apart from each other by a third air gap formed in at least one of between the first magnetic core and the fifth core part and between the first magnetic core and the seventh core part, and
the second and third magnetic cores are spaced apart from each other by a fourth air gap formed in at least one of between the second magnetic core and the sixth core part and between the second magnetic core and the eighth core part.
15. The power supply apparatus of claim 14, wherein the third air gap is formed in at least one of between a right side of the first magnetic core and a left side of the fifth core part and between the right side of the first magnetic core and a left side of the seventh core part, and
the fourth air gap is formed in at least one of between a left side of the second magnetic core and a right side of the sixth core part and between the left side of the second magnetic core and the right side of the eighth core part.
16. The power supply apparatus of claim 14, wherein the third air gap is formed in at least one of between a top surface of the first magnetic core and a bottom surface of the fifth core part and between a bottom surface of the first magnetic core and a top surface of the seventh core part, and
the fourth air gap is formed in at least one of between a top surface of the second magnetic core and a bottom surface of the sixth core part and between a bottom surface of the second magnetic core and a top surface of the eighth core part.
17. The power supply apparatus of claim 1, wherein the first and second magnetic cores have high permeability, and
the third magnetic core has low permeability.
18. The power supply apparatus of claim 1, wherein the first and second magnetic cores have low permeability, and
the third magnetic core has high permeability.
19. The power supply apparatus of claim 1, further comprising:
a fourth magnetic core;
a fifth magnetic core;
a third coil wound around the fourth magnetic core; and
a fourth coil wound around the fifth magnetic core,
wherein the first magnetic core is formed in a first direction about the third magnetic core, the second magnetic core is formed in a second direction about the third magnetic core, the fourth magnetic core is formed in a third direction about the third magnetic core, and the fifth magnetic core is formed in a fourth direction about the third magnetic core.
20. The power supply apparatus of claim 19, wherein the first, second, fourth, and fifth cores have a cross shape about the third magnetic core.
21. The power supply apparatus of claim 1, wherein the first and second coils are inductor coils, and
the power supply apparatus includes a couple inductor.
22. The power supply apparatus of claim 1, wherein the first coil is a first transformer coil including a primary coil and a secondary coil,
the second coil is a second transformer coil including a primary coil and a secondary coil, and
the power supply apparatus includes a couple transformer.
23. The power supply apparatus of claim 1, wherein the first coil is an inductor coil,
the second coil is a transformer coil including a primary coil and a secondary coil, and
the power supply apparatus includes a couple inductor-transformer.
US13/547,992 2011-08-04 2012-07-12 Power supply apparatus Abandoned US20130033351A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/023,212 US9224530B2 (en) 2011-08-04 2013-09-10 Power supply apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110077639A KR101241564B1 (en) 2011-08-04 2011-08-04 Couple inductor, Couple transformer and Couple inductor-transformer
KR10-2011-0077639 2011-08-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/023,212 Continuation US9224530B2 (en) 2011-08-04 2013-09-10 Power supply apparatus

Publications (1)

Publication Number Publication Date
US20130033351A1 true US20130033351A1 (en) 2013-02-07

Family

ID=47614855

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/547,992 Abandoned US20130033351A1 (en) 2011-08-04 2012-07-12 Power supply apparatus
US14/023,212 Active US9224530B2 (en) 2011-08-04 2013-09-10 Power supply apparatus

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/023,212 Active US9224530B2 (en) 2011-08-04 2013-09-10 Power supply apparatus

Country Status (3)

Country Link
US (2) US20130033351A1 (en)
KR (1) KR101241564B1 (en)
CN (1) CN102916594B (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130106500A1 (en) * 2011-10-29 2013-05-02 Intersil Americas Llc. Inductor structure including inductors with negligible magnetic coupling therebetween
EP2779180A1 (en) * 2013-03-15 2014-09-17 Emerson Network Power, Energy Systems, North America, Inc. Transformer
EP2782105A1 (en) * 2013-03-20 2014-09-24 Schneider Toshiba Inverter Europe SAS Differential mode and common mode choke
CN104064338A (en) * 2014-06-17 2014-09-24 华为技术有限公司 Coupling inductor
WO2014183986A1 (en) * 2013-05-17 2014-11-20 Koninklijke Philips N.V. Distributed air gap inductor
EP3032549A1 (en) * 2014-12-11 2016-06-15 LG Innotek Co., Ltd. Inductor
DE102015200716A1 (en) * 2015-01-19 2016-07-21 Efficient Energy Gmbh Switching Power Supply
US20170005566A1 (en) * 2015-07-01 2017-01-05 Abb Schweiz Ag Common mode and differential mode filter for an inverter and inverter comprising such filter
WO2017140674A1 (en) * 2016-02-18 2017-08-24 Valeo Systemes De Controle Moteur Magnetic component, resonant electric circuit, electric converter and electric system
US20170264130A1 (en) * 2016-03-10 2017-09-14 Wireless Advanced Vehicle Electrification, Inc. Bi-plane wireless power transmission pad
CN108389702A (en) * 2018-04-26 2018-08-10 广东美的厨房电器制造有限公司 Transformer, for electric installation and microwave cooking electric appliance
WO2019105681A1 (en) * 2017-11-28 2019-06-06 Siemens Aktiengesellschaft Winding assembly for at least two power-electronics converters that cycle at an offset, and converter assembly
US20190214181A1 (en) * 2018-01-10 2019-07-11 Tdk Corporation Inductor element
WO2019142755A1 (en) * 2018-01-17 2019-07-25 パナソニックIpマネジメント株式会社 Reactor, core member, and power supply circuit
WO2019205249A1 (en) * 2018-04-26 2019-10-31 广东美的厨房电器制造有限公司 Transformer, power supply device, and electronic microwave cooking device
WO2020001760A1 (en) * 2018-06-27 2020-01-02 Siemens Aktiengesellschaft Power converter
US10685769B2 (en) * 2015-04-10 2020-06-16 Delta Electronics, Inc. Integrated inductor and integrated inductor magnetic core of the same
US10763028B2 (en) * 2015-04-10 2020-09-01 Delta Electronics, Inc. Magnetic component and magnetic core of the same
US20200312505A1 (en) * 2019-03-28 2020-10-01 Murata Manufacturing Co., Ltd. Integrated magnetic device
US20210225573A1 (en) * 2020-01-22 2021-07-22 Murata Manufacturing Co., Ltd. Inductor structure
CN113161122A (en) * 2020-01-22 2021-07-23 株式会社村田制作所 Inductance structure
US20210349131A1 (en) * 2020-05-08 2021-11-11 Hamilton Sundstrand Corporation Radiation hardened magnetic current sensor
US11437854B2 (en) 2018-02-12 2022-09-06 Wireless Advanced Vehicle Electrification, Llc Variable wireless power transfer system
US11462943B2 (en) 2018-01-30 2022-10-04 Wireless Advanced Vehicle Electrification, Llc DC link charging of capacitor in a wireless power transfer pad

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9929640B2 (en) * 2012-11-20 2018-03-27 Lg Innotek Co., Ltd. Integrated-type transformer
EP2953148B1 (en) * 2013-01-30 2020-09-16 Panasonic Intellectual Property Management Co., Ltd. Contactless-power-transfer-device coil and contactless power-transfer device
KR102091584B1 (en) 2013-08-07 2020-03-20 엘지이노텍 주식회사 Power supply device
US9905353B2 (en) * 2014-09-24 2018-02-27 Hiq Solar, Inc. Construction of double gap inductor
JP6237586B2 (en) * 2014-11-17 2017-11-29 株式会社豊田自動織機 Induction equipment
DE102014117551B4 (en) * 2014-11-28 2021-06-10 Sma Solar Technology Ag Multiple choke and power converter with a multiple choke
US20160247627A1 (en) * 2015-02-24 2016-08-25 Maxim Integrated Products, Inc. Low-profile coupled inductors with leakage control
CN108573795A (en) * 2017-03-07 2018-09-25 诺科技股份有限公司 Avoid the magnetic core and preparation method thereof of rapidly direct current saturation decaying
US10418166B2 (en) * 2017-06-16 2019-09-17 ITG Electronics, Inc. None-coupling dual inductor
CN207250270U (en) * 2017-10-17 2018-04-17 台达电子企业管理(上海)有限公司 A kind of multi-coil inductance
CN108365763B (en) * 2018-04-26 2020-11-03 广东美的厨房电器制造有限公司 Electronic transformer and microwave cooking appliance
DE102018112100A1 (en) * 2018-05-18 2019-12-05 Tdk Electronics Ag Choke with high common mode inductance
CN109686538B (en) * 2018-12-11 2020-07-28 华为技术有限公司 Transformer and power supply
JP2021118363A (en) * 2020-01-27 2021-08-10 株式会社デンソー Ignition coil
US11682515B2 (en) * 2020-04-15 2023-06-20 Monolithic Power Systems, Inc. Inductors with magnetic core parts of different materials
TWI740686B (en) * 2020-10-22 2021-09-21 宏碁股份有限公司 Boost converter for reducing total harmonic distortion
WO2022169236A1 (en) * 2021-02-03 2022-08-11 엘지이노텍(주) Inductor-integrated transformer
KR20220153193A (en) * 2021-05-11 2022-11-18 삼성전자주식회사 Electronic apparatus and power supply
EP4246540A1 (en) * 2022-03-18 2023-09-20 Delta Electronics (Thailand) Public Co., Ltd. Choke assembly and electric conversion device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5889373A (en) * 1996-12-30 1999-03-30 General Electric Company Fluorescent lamp ballast with current feedback using a dual-function magnetic device
US20110080246A1 (en) * 2006-09-21 2011-04-07 Ford Global Technologies5 Inductor topologies with substantial common-mode and differential-mode inductance

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3631534A (en) * 1969-09-05 1971-12-28 Matsushita Electric Ind Co Ltd Variable inductance device
US3686561A (en) * 1971-04-23 1972-08-22 Westinghouse Electric Corp Regulating and filtering transformer having a magnetic core constructed to facilitate adjustment of non-magnetic gaps therein
DK173534B1 (en) * 1990-11-14 2001-02-05 Scanpower Power supply circuit with integrated magnetic components
JPH11273955A (en) 1998-03-19 1999-10-08 Tokin Corp Winding component
US6617814B1 (en) * 2001-04-11 2003-09-09 Rockwell Automation Technologies, Inc. Integrated DC link choke and method for suppressing common-mode voltage in a motor drive
DE10119106A1 (en) * 2001-04-19 2002-10-24 Philips Corp Intellectual Pty Transformer for switch-mode power supply, has three cores formed as separate components and with air gaps between
CN1257601C (en) * 2001-06-08 2006-05-24 台达电子工业股份有限公司 Differential mode and common mode integrated filter
DE10308077B4 (en) 2003-02-26 2005-10-13 Robert Bosch Gmbh Device for energy storage and energy transformation
US7489219B2 (en) 2003-07-16 2009-02-10 Marvell World Trade Ltd. Power inductor with reduced DC current saturation
JP4960110B2 (en) * 2006-04-19 2012-06-27 スミダコーポレーション株式会社 Transformer device and drive circuit thereof
WO2010114914A1 (en) * 2009-03-31 2010-10-07 Flextronics International Usa, Inc. Magnetic device formed with u-shaped core pieces and power converter employing the same
JP5062439B2 (en) * 2009-04-28 2012-10-31 Tdk株式会社 PFC choke coil for interleaving
CN101640101B (en) * 2009-07-21 2011-04-06 清流县鑫磁线圈制品有限公司 Inductive apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5889373A (en) * 1996-12-30 1999-03-30 General Electric Company Fluorescent lamp ballast with current feedback using a dual-function magnetic device
US20110080246A1 (en) * 2006-09-21 2011-04-07 Ford Global Technologies5 Inductor topologies with substantial common-mode and differential-mode inductance

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10529475B2 (en) * 2011-10-29 2020-01-07 Intersil Americas LLC Inductor structure including inductors with negligible magnetic coupling therebetween
US20130106500A1 (en) * 2011-10-29 2013-05-02 Intersil Americas Llc. Inductor structure including inductors with negligible magnetic coupling therebetween
US10068695B2 (en) * 2013-03-15 2018-09-04 Vertiv Energy Systems, Inc. Transformer
EP2779180A1 (en) * 2013-03-15 2014-09-17 Emerson Network Power, Energy Systems, North America, Inc. Transformer
US9251941B2 (en) 2013-03-15 2016-02-02 Emerson Network Power, Energy Systems, North America, Inc. Transformer
US20160148747A1 (en) * 2013-03-15 2016-05-26 Emerson Network Power, Energy Systems, North America, Inc. Transformer
EP2782105A1 (en) * 2013-03-20 2014-09-24 Schneider Toshiba Inverter Europe SAS Differential mode and common mode choke
WO2014183986A1 (en) * 2013-05-17 2014-11-20 Koninklijke Philips N.V. Distributed air gap inductor
CN104064338A (en) * 2014-06-17 2014-09-24 华为技术有限公司 Coupling inductor
CN105702423A (en) * 2014-12-11 2016-06-22 Lg伊诺特有限公司 Inductor
US9805854B2 (en) 2014-12-11 2017-10-31 Lg Innotek Co., Ltd. Inductor
EP3032549A1 (en) * 2014-12-11 2016-06-15 LG Innotek Co., Ltd. Inductor
US9960681B2 (en) 2015-01-19 2018-05-01 Efficient Energy Gmbh Multi-phase buck switching power supply
DE102015200716A1 (en) * 2015-01-19 2016-07-21 Efficient Energy Gmbh Switching Power Supply
US10763028B2 (en) * 2015-04-10 2020-09-01 Delta Electronics, Inc. Magnetic component and magnetic core of the same
US10685769B2 (en) * 2015-04-10 2020-06-16 Delta Electronics, Inc. Integrated inductor and integrated inductor magnetic core of the same
US10381916B2 (en) * 2015-07-01 2019-08-13 Abb Schweiz Ag Common mode and differential mode filter for an inverter and inverter comprising such filter
US20170005566A1 (en) * 2015-07-01 2017-01-05 Abb Schweiz Ag Common mode and differential mode filter for an inverter and inverter comprising such filter
WO2017140674A1 (en) * 2016-02-18 2017-08-24 Valeo Systemes De Controle Moteur Magnetic component, resonant electric circuit, electric converter and electric system
FR3048118A1 (en) * 2016-02-18 2017-08-25 Valeo Systemes De Controle Moteur MAGNETIC COMPONENT, RESONANT ELECTRIC CIRCUIT, ELECTRIC CONVERTER, AND ELECTRICAL SYSTEM
US10530178B2 (en) * 2016-03-10 2020-01-07 Wireless Advanced Vehicle Electrification, Inc. Bi-plane wireless power transmission pad
US20170264130A1 (en) * 2016-03-10 2017-09-14 Wireless Advanced Vehicle Electrification, Inc. Bi-plane wireless power transmission pad
WO2019105681A1 (en) * 2017-11-28 2019-06-06 Siemens Aktiengesellschaft Winding assembly for at least two power-electronics converters that cycle at an offset, and converter assembly
CN111418136A (en) * 2017-11-28 2020-07-14 西门子股份公司 Winding arrangement and converter arrangement for a power electronic converter with at least two interleaved switches
US20190214181A1 (en) * 2018-01-10 2019-07-11 Tdk Corporation Inductor element
US11587717B2 (en) * 2018-01-10 2023-02-21 Tdk Corporation Inductor element
WO2019142755A1 (en) * 2018-01-17 2019-07-25 パナソニックIpマネジメント株式会社 Reactor, core member, and power supply circuit
US11955267B2 (en) 2018-01-17 2024-04-09 Panasonic Intellectual Property Management Co., Ltd. Reactor, core member, and power supply circuit
JP7246028B2 (en) 2018-01-17 2023-03-27 パナソニックIpマネジメント株式会社 Reactor, core material, and power supply circuit
JPWO2019142755A1 (en) * 2018-01-17 2021-01-14 パナソニックIpマネジメント株式会社 Reactor, core member, and power supply circuit
US11462943B2 (en) 2018-01-30 2022-10-04 Wireless Advanced Vehicle Electrification, Llc DC link charging of capacitor in a wireless power transfer pad
US11437854B2 (en) 2018-02-12 2022-09-06 Wireless Advanced Vehicle Electrification, Llc Variable wireless power transfer system
US11824374B2 (en) 2018-02-12 2023-11-21 Wireless Advanced Vehicle Electrification, Llc Variable wireless power transfer system
WO2019205249A1 (en) * 2018-04-26 2019-10-31 广东美的厨房电器制造有限公司 Transformer, power supply device, and electronic microwave cooking device
CN108389702A (en) * 2018-04-26 2018-08-10 广东美的厨房电器制造有限公司 Transformer, for electric installation and microwave cooking electric appliance
WO2020001760A1 (en) * 2018-06-27 2020-01-02 Siemens Aktiengesellschaft Power converter
US11469019B2 (en) * 2019-03-28 2022-10-11 Murata Manufacturing Co., Ltd. Integrated magnetic device
US20200312505A1 (en) * 2019-03-28 2020-10-01 Murata Manufacturing Co., Ltd. Integrated magnetic device
EP3855457A1 (en) * 2020-01-22 2021-07-28 Murata Manufacturing Co., Ltd. Inductor structure
CN113161122A (en) * 2020-01-22 2021-07-23 株式会社村田制作所 Inductance structure
US20210225573A1 (en) * 2020-01-22 2021-07-22 Murata Manufacturing Co., Ltd. Inductor structure
US11881340B2 (en) * 2020-01-22 2024-01-23 Murata Manufacturing Co., Ltd. Inductor structure
US20210349131A1 (en) * 2020-05-08 2021-11-11 Hamilton Sundstrand Corporation Radiation hardened magnetic current sensor
US11656251B2 (en) * 2020-05-08 2023-05-23 Hamilton Sundstrand Corporation Radiation hardened magnetic current sensor

Also Published As

Publication number Publication date
CN102916594B (en) 2015-09-09
KR20130015580A (en) 2013-02-14
KR101241564B1 (en) 2013-03-11
US20140085035A1 (en) 2014-03-27
CN102916594A (en) 2013-02-06
US9224530B2 (en) 2015-12-29

Similar Documents

Publication Publication Date Title
US9224530B2 (en) Power supply apparatus
US11349400B2 (en) Multiple parallel-connected resonant converter, inductor-integrated magnetic element and transformer-integrated magnetic element
CN109390118B (en) Magnetic assembly and power conversion device applicable to same
EP2600512B1 (en) Resonant conversion circuit
CN109391156B (en) Power supply conversion device
US7280026B2 (en) Extended E matrix integrated magnetics (MIM) core
US10083791B2 (en) Integrated magnetics for soft switching converter
KR101285646B1 (en) Multilayer inductor
US20090237195A1 (en) Center-tapped transformer
WO2012169325A1 (en) High-frequency transformer
TW201528298A (en) Magnetic core structure and reactor
US20220158562A1 (en) Integrated inductor and a power conversion module including the integrated inductor
CN110212784B (en) Passive element integration device for single-phase three-level AC/DC resonant converter
TWI747508B (en) Planar winding transformer
TWM446964U (en) Edge-winding type winding transformer
JP2007109735A (en) Coil, transformer and switching power supply
Santi et al. Issues in flat integrated magnetics design
CN210378703U (en) Hybrid magnetic circuit structure
JP6542499B1 (en) Welding transformer
US20220108823A1 (en) Inductor
CN110610795A (en) Three-phase transformer for two-phase rectifier
US20180308615A1 (en) Magnetic assembly, inductor and transformer
CN102982967B (en) Inductor assembly structure capable of reducing leakage magnetic flux
KR101951329B1 (en) IM inductor and Interleaved PFC boost converter using the same
JPH04285475A (en) Power source

Legal Events

Date Code Title Description
AS Assignment

Owner name: JEONJU UNIVERSITY OFFICE OF INDUSTRY-UNIVERSITY CO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, EUN SOO;PARK, JUN HO;REEL/FRAME:028543/0652

Effective date: 20120516

Owner name: LG INNOTEK CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, EUN SOO;PARK, JUN HO;REEL/FRAME:028543/0652

Effective date: 20120516

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION