US20130028291A1 - Temperature measurement system and manufacturing method of same - Google Patents

Temperature measurement system and manufacturing method of same Download PDF

Info

Publication number
US20130028291A1
US20130028291A1 US13/543,290 US201213543290A US2013028291A1 US 20130028291 A1 US20130028291 A1 US 20130028291A1 US 201213543290 A US201213543290 A US 201213543290A US 2013028291 A1 US2013028291 A1 US 2013028291A1
Authority
US
United States
Prior art keywords
transmission
measurement system
temperature measurement
transmission signal
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/543,290
Inventor
Masayuki Tobo
Mamoru Fukui
Kazuhisa Watanabe
Hisanari Yoshida
Shigeru Yamaji
Makoto Suto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Plant Systems and Services Corp
Original Assignee
Toshiba Corp
Toshiba Plant Systems and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Plant Systems and Services Corp filed Critical Toshiba Corp
Assigned to KABUSHIKI KAISHA TOSHIBA, TOSHIBA PLANT SYSTEMS & SERVICES CORPORATION reassignment KABUSHIKI KAISHA TOSHIBA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FUKUI, MAMORU, SUTO, MAKOTO, TOBO, MASAYUKI, WATANABE, KAZUHISA, YAMAJI, SHIGERU, YOSHIDA, HISANARI
Publication of US20130028291A1 publication Critical patent/US20130028291A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • G01K1/026Means for indicating or recording specially adapted for thermometers arrangements for monitoring a plurality of temperatures, e.g. by multiplexing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49007Indicating transducer

Definitions

  • Embodiments of the present invention relate to a temperature measurement system of an industrial plant such as a thermal power generation plant, a nuclear power generation plant, a chemical plant, and various factories, and a manufacturing method of the temperature measurement system.
  • instrument sensors (instruments and sensors) are installed in an industrial plant for the purpose of monitoring and controlling the industrial plant. Cables are installed between the instrument sensors and a monitoring and control apparatus which monitors the measurement values measured by the instrument sensors. Current signals and voltage signals are transmitted by the cables.
  • a transmitter is used for the measurement of pressure and flow rate.
  • a thermocouple is used for the measurement of temperature.
  • the thermocouple is attached in a measurement area in the industrial plant.
  • the measurement area is an area (hereinafter referred to as “apparatus installation site area”) in the industrial plant, in which area facility apparatuses, such as a pump, a fan, a turbine, and a valve, and pipes are arranged.
  • area facility apparatuses such as a pump, a fan, a turbine, and a valve, and pipes are arranged.
  • the apparatus installation site area is also an area in the industrial plant, in which area main facility apparatuses are particularly intensively arranged.
  • the distance from the measurement area (apparatus installation site area) to the monitoring and control apparatus is about 200 m to 400 m.
  • a thermocouple is used to provide a connection over this length, a very long thermocouple is required. This results in high cost, and hence such connection is not realistic.
  • an on-site transmission technique for converting, into a transmission signal, a thermo-electromotive force signal generated by a thermocouple and for transmitting the transmission signal has been put into practical use.
  • the on-site transmission technique practically using the recent information technology (IT), and the like the amount of cables can be significantly reduced and rationalized.
  • FIG. 1 is a view showing a configuration of a first embodiment of a temperature measurement system according to the present invention
  • FIG. 2 is a view showing a temperature measurement system as a comparison example of the temperature measurement system according to the first embodiment
  • FIG. 3 is a view showing a measurement system as a reference example of the temperature measurement system according to the first embodiment
  • FIG. 4 is a view showing a modification of the temperature measurement system according to the first embodiment
  • FIG. 5 is a view showing a configuration of a second embodiment of a temperature measurement system according to the present invention.
  • FIG. 6 is a view showing a configuration of a third embodiment of a temperature measurement system according to the present invention.
  • the industrial plants have “apparatus installation site area”.
  • the apparatus installation site area is an area in which facility apparatuses, such as a pump, a fan, a turbine, and a valve, and pipes are arranged.
  • the apparatus installation site area is most intensively arranged main facility apparatuses and pipes. Therefore, there is a possibility of leakage of hot water, steam and gas generated in the apparatus installation site area.
  • a transmission cable is installed in the apparatus installation site area in the industrial plants.
  • the transmission cables may be physically weak, and hence need to be protected from the surrounding environment of the apparatus installation site area.
  • the transmission cables need to be protected from the surrounding environment including the human activities, and also need to be arranged so as not to obstruct the human activities.
  • the human activities are obstructed in such cases where the cables interfere with the path to access a facility apparatus, and where, when a facility apparatus is disassembled for maintenance, the cables are brought into contact with the disassembled facility apparatus.
  • An object of the embodiments is to provide a temperature measurement system and a manufacturing method of the temperature measurement system to which an on-site transmission technique is applied and which can improve the reliability thereof.
  • temperature measurement system including: a temperature measurement system including: a plurality of thermocouples; a transmission signal conversion unit configured to convert, to a transmission signal, the thermo-electromotive force generated by each of the plurality of the thermocouple and configured to output the transmission signal; a plurality of transmission units configured to transmit the transmission signal outputted from the transmission signal conversion unit; a first connection unit configured to connect between each of the plurality of the transmission units; a second connection unit configured to connect at least one of the plurality of transmission units to a processing unit configured to process the transmission signal; and a housing unit configured to house at least the first connection unit.
  • a temperature measurement system including: a plurality of thermocouples; a transmission signal conversion unit configured to convert, to a transmission signal, the thermo-electromotive force generated by each of the plurality of the thermocouple and configured to output the transmission signal; a plurality of transmission units configured to transmit the transmission signal outputted from the transmission signal conversion unit; a first connection unit configured to connect between each of the plurality of the transmission
  • FIG. 1 is a view showing a configuration of a first embodiment of a temperature measurement system according to the present invention.
  • the temperature measurement system 1 is provided in an industrial plant, such as a thermal power generation plant, a nuclear power generation plant, a chemical plant, and various factories.
  • the temperature measurement system 1 is mainly provided in an industrial plant 2 , and is connected, by a transmission cable 19 a , to a monitoring and control apparatus 3 provided outside the industrial plant 2 .
  • the monitoring and control apparatus 3 monitors measurement values on the basis of transmission signals measured by thermocouples 11 a to 11 d and transmitted by the on-site transmission.
  • the monitoring and control apparatus 3 includes an input apparatus which is a hardware portion for receiving the transmission signals (measurement signals).
  • the input apparatus may be separated as a remote I/O apparatus so as to be installed at a place which is closer to the temperature measurement system 1 and is inside or outside the industrial plant 2 .
  • cables are installed between the remote I/O apparatus and the thermocouples 11 a to 11 d and between the remote I/O apparatus and the monitoring and the control apparatus 3 .
  • thermocouples 11 a to 11 d 200 to 300 of thermocouples 11 a to 11 d are provided in the industrial plant 2 (for example, when 500 instrument sensors are provided as a whole).
  • the first embodiment four thermocouples 11 a to 11 d are illustrated for convenience of description.
  • Each of the thermocouples 11 a to 11 d is provided in a measurement area 14 that is an apparatus installation site area.
  • the measurement area 14 is an area in the industrial plant 2 , in which area facility apparatuses, such as a pump, a fan, a turbine, and a valve, and pipes are arranged.
  • the measurement area 14 is also an area in the industrial plant 2 , in which area main facility apparatuses are particularly intensively arranged. Note that the measurement area 14 is not clearly separated or isolated from the other area, and a part of the facility apparatuses, and the like, are also installed in the other area.
  • thermocouples 11 a to 11 d has, at the tip portion thereof, a hot junction as a measurement place, and also has a cold junction (head portion) at the end portion opposite to the measurement place.
  • the thermocouples 11 a to 11 d respectively include, at the cold junctions thereof, A/D converters 16 a to 16 d , and adapters 17 a to 17 d in this order.
  • the A/D converters 16 a to 16 d (transmission signal conversion units) respectively A/D-convert the thermo-electromotive forces generated by the thermocouples 11 a to 11 d into transmission signals, so as to output the transmission signals.
  • the adapters 17 a to 17 d (transmission units) transmit the transmission signals transmitted from the A/D converters 16 a to 16 d to the transmission cables 19 a to 19 d , respectively.
  • an apparatus configured by integrating each of the A/D converters 16 a to 16 d and each of the adapters 17 a to 17 d may be incorporated in the cold junction, or the like, of each of the thermocouples 11 a to 11 d .
  • the transmission signals may be transmitted to the monitoring and control apparatus 3 via a relay apparatus provided between the monitoring and control apparatus 3 and the adapters 17 a to 17 d.
  • the transmission cables 19 a to 19 d are, for example, optical cables, and transmit, to the monitoring and control apparatus 3 , the transmission signals transmitted from the adapters 17 a to 17 d , respectively.
  • the transmission cable 19 a (second connection unit) connects the adapter 17 a to the monitoring and control apparatus 3 .
  • the transmission cable 19 b (first connection unit) connects the adapter 17 a to the adapter 17 b .
  • the transmission cable 19 c (first connection unit) connects the adapter 17 b to the adapter 17 c .
  • the transmission cable 19 d (first connection unit) connects the adapter 17 c to the adapter 17 d.
  • the transmission cables 19 a to 19 d are connected by a wiring system (so-called Daisy Chain system) in which the mutually adjacent adapters 17 a to 17 d are connected in series.
  • the transmission signal transmitted from each of the adapters 17 b to 17 d are successively transmitted through the required transmission cables 19 b to 19 d , so as to be transmitted to the adapter 17 a .
  • the respective transmission signals are transmitted to the monitoring and control apparatus 3 through the transmission cable 19 a.
  • the transmission cable 19 a In the Daisy Chain system, only one cable of the transmission cable 19 a is used as the transmission cable which is installed over a long distance (generally, a length of 200 to 400 m) so as to be connected to the monitoring and control apparatus 3 .
  • the transmission cables 19 b to 19 d other than the transmission cable 19 a need only to be capable of connecting between mutually adjacent adapters 17 a to 17 d , and hence need only to have a very short length (generally, about 10 m to 20 m).
  • any of one-core cable or two-core cable may also be used as the transmission cables 19 a to 19 d .
  • the transmission cables 19 a to 19 d can also perform power supply from the monitoring and control apparatus 3 to the A/D converters 16 a to 16 d and the adapters 17 a to 17 d , in addition to the transmission of the transmission signals.
  • Each of the transmission cables 19 a to 19 d is configured as a single cable in which one core for supplying a positive voltage and the other core for supplying a negative voltage are paired so as to satisfy the predetermined functions.
  • a housing 12 (housing unit) is a housing which is made of, for example, iron or FRP (Fiber Reinforced Plastic) and has a self-closing property. In such a case where the housing 12 is installed at a high place, it is preferred that the housing 12 is made of FRP so as to be lightened in weight.
  • the housing 12 has a size corresponding to the number of the thermocouples housed in the housing 12 .
  • the housing 12 houses the transmission cables 19 a to 19 d (a part of the transmission cables 19 a ), the A/D converters 16 a to 16 d , the adapters 17 a to 17 d , the cold junctions at which the thermocouples 11 a to 11 d are respectively connected to the A/D converters 16 a to 16 d.
  • the transmission cables 19 a and the thermocouples 11 a to 11 d are provided so as to pass through the housing 12 .
  • the housing 12 has required protective properties which can sufficiently protect the apparatuses installed in the housing 12 in particular from hot water, steam and gas generated in the surrounding environment of the apparatus installation site area as the measurement area 14 , and from the human activities.
  • the housing 12 is provided to protect the transmission cables 19 a to 19 d from the surrounding environment and hence is required only to house at least the transmission cables 19 a to 19 d.
  • the housing 12 is installed in a suitable place which is free from the influence of human activities, and the like, and is also separated, by a required distance, from the apparatus installation site area as the measurement area 14 , and in which the connection to the cold junctions of the thermocouples 11 a to 11 d can be established.
  • FIG. 2 is a view showing a temperature measurement system 21 as a comparison example of the temperature measurement system 1 according to the first embodiment.
  • the temperature measurement system 21 is mainly provided in an industrial plant 22 and is connected, by a transmission cable 39 a , to a monitoring and control apparatus 23 provided outside the industrial plant 22 .
  • the temperature measurement system 21 includes thermocouples 31 a to 31 d , A/D converters 36 a to 36 d , adapters 37 a to 37 d , and transmission cables 39 a to 39 d which are almost the same as the thermocouples 11 a to 11 d , the A/D converters 16 a to 16 d , the adapters 17 a to 17 d and the transmission cables 19 a to 19 d of the temperature measurement system 1 according to the first embodiment.
  • the temperature measurement system 21 is different from the temperature measurement system 1 according to the first embodiment in that the transmission cables 39 a to 39 d are not housed in the housing. Further, the thermocouples 31 a to 31 d , the A/D converters 36 a to 36 d , the adapters 37 a to 37 d , and the transmission cables 39 a to 39 d are installed in the apparatus installation site area as a measurement area 34 .
  • the transmission cables 39 a to 39 d provided in the temperature measurement system 21 configured in this way need to be protected so as not to be damaged and disconnected due to the influence of the surrounding environment of the measurement area 34 as the apparatus installation site area in which facility apparatuses and pipes are most intensively arranged, and due to the influence of the human activities.
  • the transmission cables 39 a to 39 d are protected by iron pipes 40 a to 40 c (so-called conduit pipes) as protective sheathes.
  • the extra conduit pipes 40 a to 40 c need to be provided, resulting in a cost increase corresponding to the material of the conduit pipes 40 a to 40 c .
  • the conduit pipes 40 a to 40 c are placed and installed in the measurement area 34 as the apparatus installation site area in which the facility apparatuses and the pipes are most intensively arranged.
  • a large amount of design work and labor are required for the installation of the conduit pipes 40 a to 40 c.
  • the temperature measurement system 21 as the comparison example has a disadvantage that the advantage of the rationalized cable arrangement based on the Daisy Chain system is reduced or canceled by the arrangement of the conduit pipes 40 a to 40 c.
  • a measurement system 51 in which the on-site transmission is applied to transmitters for measuring pressure and flow rate, will be described as a reference example of the temperature measurement system 1 according to the first embodiment.
  • FIG. 3 is a view showing a measurement system 51 as a reference example of the temperature measurement system 1 according to the first embodiment.
  • the temperature measurement system 51 is mainly provided in an industrial plant 52 , and is connected to a monitoring and control apparatus 53 provided outside the industrial plant 52 by a transmission cable 69 a.
  • the measurement system 51 transmits signals obtained from transmitters 61 a to 61 d through transmission cables 69 a to 69 d connected by the Daisy Chain system.
  • the configuration of the measurement system 51 is different from the configuration of the temperature measurement system 1 according to the first embodiment due to the difference in the measurement principle of the measurement sensors. That is, transmitters 61 a to 61 d are installed in the inside of local instrumentation panels 62 a and 62 b (or local instrumentation racks).
  • the transmitters 61 a to 61 d transmit physical pressure (of water, steam, oil, or the like) of the measurement object processes to the local instrumentation panels 62 a and 62 b via capillary tubes (instrumentation pipes) 65 a to 65 d .
  • the transmitters 61 a to 61 d are respectively provided with A/D converters 66 a to 66 d and adapters 67 a to 67 d similarly to the thermocouples 11 a to 11 d .
  • the adapters 67 a to 67 d transmit the transmission signals transmitted from the A/D converters 66 a to 66 d to the transmission cables 69 a to 69 d , respectively.
  • the local instrumentation panels 62 a and 62 b are installed in places away from the apparatus installation site area as a measurement area 64 in which the facility apparatuses are most intensively arranged.
  • the local instrumentation panel 62 a houses the transmitters 61 a and 61 b , the A/D converters 66 a and 66 b , the adapters 67 a and 67 b , and the transmission cables 65 a to 69 c .
  • the local instrumentation panel 62 b houses the transmitters 61 c and 61 d , the A/D converters 66 c and 66 d , the adapters 67 c and 67 d , and the transmission cables 69 c and 69 d.
  • the transmission cable 69 c connects the adapter 67 b in the local instrumentation panel 62 a to the adapter 67 c in the local instrumentation panel 62 b .
  • the transmission cable 69 c is protected by a conduit pipe 70 similarly to the temperature measurement system 21 as the comparison example.
  • the influence of hot water and steam, and the influence of maintenance/patrol personnel need not be taken into consideration, and hence the transmission cables 69 b and 69 d housed in the local instrumentation panels 62 a and 62 b need not be protected by the conduit pipe.
  • the conduit pipe 70 is needed only for the transmission cable 69 c which connects between the local instrumentation panels 62 a and 62 b , and hence the necessary number of the conduit pipes is comparatively small.
  • the number of transmitters to which the Daisy Chain system can be applied is technically limited, and hence the method cannot be applied to the infinite number of transmitters.
  • the maximum number of the transmitters connectable by the Daisy Chain system is limited by the transmission capacity of the one transmission cable 69 a connected to the monitoring and control apparatus 53 , and by constraints due to the other technical factors.
  • the maximum number of the transmitters is assumed to be 20 for the convenience of description. For example, when there are 20 transmitters, and when all of the 20 transmitters are housed in the same local instrumentation panel 62 ( 62 a and 62 b ), all the transmission cables 69 ( 69 a to 69 d ) are housed in the local instrumentation panel 62 , and hence the conduit pipe 70 is not necessary at all. However, the length of the capillary tubes 65 ( 65 a to 65 d ) is limited.
  • the transmitters 61 ( 61 a to 61 d ), which are installed at measurement places comparatively close to each other, can be housed in the one local instrumentation panel 62 , and actually, only about at most five transmitters can be housed in the one local instrumentation panel 62 .
  • the 20 transmitters are separated into, for example, a set of 5 transmitters, a set of 4 transmitters, a set of 4 transmitters, a set of 3 transmitters, and a set of 4 transmitters, and then the sets of transmitters are housed in the five local instrumentation panels 62 , respectively. Therefore, the conduit pipes 70 need to be installed to protect the four transmission cables 69 which connect between the local instrumentation panels 62 .
  • the temperature measurement system 1 includes the housing 12 capable of housing the transmission cables 19 a to 19 d , without being influenced by the installation place and the number of the installed cables.
  • the housing 12 capable of housing the transmission cables 19 a to 19 d , without being influenced by the installation place and the number of the installed cables.
  • the number of installed thermocouples 11 ( 11 a to 11 d ), which provide indexes for measuring the performance of the plant, is larger than the number of the transmitters 61 , and is a majority number (for example, 200 to 300) of the measurement sensors.
  • a great merit can be obtained from the viewpoint of rationalizing the arrangement of the cables.
  • the measurement results of the respective thermocouples 11 a to 11 d are transmitted through the one transmission cable 19 a , but the measurement results may also be transmitted through two or more transmission cables.
  • FIG. 4 is a view showing a modification of the temperature measurement system 1 according to the first embodiment.
  • the configurations and portions corresponding to those of the temperature measurement system 1 according to the first embodiment are denoted by the same reference numerals and characters, and the description thereof is omitted.
  • a transmission cable 19 e (second connection unit) is newly provided between a monitoring and control apparatus 83 and the adapter 17 d.
  • thermocouples 11 b to 11 d other than the thermocouple 11 a cannot be transmitted to the monitoring and control apparatus 3 .
  • the transmission cable 19 e is provided, and thereby the measurement results of the thermocouples 11 a to 11 d can be surely transmitted to the monitoring and control apparatus 83 .
  • the measurement result of the thermocouple 11 a can be transmitted to the monitoring and control apparatus 83 via the transmission cable 19 a , and the measurement results of the thermocouples 11 b to 11 d can be respectively transmitted to the monitoring and control apparatus 83 via the required transmission cables 19 c to 19 e.
  • FIG. 5 is a view showing a configuration of a second embodiment of a temperature measurement system according to the present invention.
  • a large number means, for example, a maximum number of thermocouples which can be connected by the Daisy chain system.
  • the temperature measurement system 101 is mainly provided in the industrial plant 2 , and is connected to a monitoring and control apparatus 103 provided outside the industrial plant 2 by a transmission cable 119 a.
  • Thermocouples 111 a and 111 b are provided as thermocouples for transmitting thermo-electromotive forces by a first system.
  • the thermocouples 111 a and 111 b includes, at the cold junctions thereof, A/D converters 116 a and 116 b and adapters 117 a and 117 b , respectively.
  • the A/D converters 116 a and 116 b (transmission signal conversion units) respectively A/D-convert the thermo-electromotive forces generated by the thermocouples 111 a and 111 b to transmission signals and output the transmission signals.
  • the adapters 117 a and 117 b transmit the transmission signals transmitted from the A/D converters 116 a and 116 b to transmission cables 119 a and 119 b , respectively.
  • thermocouple 111 c is provided as a thermocouple for transmitting a thermo-electromotive force by a second system.
  • the thermocouple 111 c includes, at the cold junction thereof, a terminal box 121 c , an A/D converter 116 c , and an adapter 117 c in this order.
  • the terminal box 121 c is connected to the A/D converter 116 c by a compensation lead wire 122 c.
  • the terminal box 121 c (relaying apparatus) connects the thermocouple 111 c to the compensation lead wire 122 c .
  • the terminal box 121 c supplies the thermo-electromotive force (small thermo-electromotive force) generated by the thermocouple 111 c to the compensation lead wire 122 c (third connection unit).
  • the A/D converter 116 c (transmission signal conversion unit) A/D-converts the thermo-electromotive force transmitted via the compensation lead wire 122 c to a transmission signal and outputs the transmission signal.
  • the adapter 117 c (transmission unit) transmits the transmission signal transmitted from the A/D converter 116 c to a transmission cable 119 c.
  • thermocouple 111 n is provided as a thermocouple for transmitting a thermo-electromotive force by a third system.
  • the thermocouple 111 n includes, at the cold junction thereof, a converter 123 n , an A/D converter 116 n , and an adapter 117 n in this order.
  • the converter 123 n is connected to the A/D converter 116 n by a hard cable 124 n.
  • the converter 123 n (current signal conversion unit) converts the thermo-electromotive force (small thermo-electromotive force) generated by the thermocouple 111 n to a current signal of 4 to 20 mA (or a voltage signal of 1 to 5 V) and outputs the signal.
  • the current signal (voltage signal) is transmitted to the A/D converter 116 n via the hard cable 124 n (third connection unit).
  • the hard cable 124 n has required rigidity and/or elasticity.
  • the A/D converter 116 n (transmission signal conversion unit) A/D-converts the transmitted thermo-electromotive forces to a transmission signal and outputs the transmission signal.
  • the adapter 117 n (transmission unit) transmits the transmission signal transmitted from the A/D converter 116 n to a transmission cable 119 n.
  • the cost of the compensation lead wire 122 c is less than the cost of the thermocouple of the same length. For this reason, in the case where the distance between the housing 112 and the hot junctions (measurement area 114 ) of the thermocouples 111 a to 111 d is large, the facility cost can be reduced more when the cold junction of the thermocouple 111 c is connected to the A/D converter 116 c by the second system via the compensation lead wire 122 c , than when the cold junctions of thermocouples 111 a and 111 b are respectively connected to the A/D converters 116 a and 116 b by the first system.
  • the cost of the hard cable 124 n is less than the cost of the compensation lead wire 122 c of the same length. Therefore, from the same reason described above, the facility cost can be reduced more when the third system is adopted than when the second system is adopted.
  • the second and third systems are effective in the case where the distance between the hot junction (measurement area 114 ) and the housing 112 is large (for example, from about 10 m to 30 m), for example, where the distance is large to an extent that it is not realistic to house the cold junctions of the thermocouples 111 c and 111 n in the housing 112 .
  • the transmission cables 119 a to 119 n are, for example, optical cables, and transmit the transmission signals transmitted from the adapters 117 a to 117 n to the monitoring and control apparatus 103 .
  • the transmission cables 119 b to 119 n (first connection unit) connect the mutually adjacent adapters 117 a to 117 n .
  • the transmission signals transmitted from the respective adapters 117 b to 117 n are transmitted to the adapters 117 a to 117 (n ⁇ 1) successively through the required transmission cables 119 b to 119 n , and are finally transmitted to the monitoring and control apparatus 103 via the transmission cable 119 a (second connection unit).
  • the transmission cables 119 a to 119 n are connected by a wiring system (so-called Daisy Chain system) in which the mutually adjacent adapters 117 a to 117 n are connected by the transmission cables 119 a to 119 n in series.
  • the housing 112 houses the transmission cables 119 a to 119 n (a part of the transmission cable 119 a ), the A/D converters 116 a to 116 n , the adapters 117 a to 117 n , the cold junctions at which the thermocouples 111 a and 111 b are respectively connected to the A/D converters 116 a and 116 b , and houses the compensation lead wire 122 c and the hard cable 124 n.
  • thermocouples 111 a to 111 n With the temperature measurement system 101 according to the second embodiment, the same effects as those of the first embodiment can be obtained even for a large number of the thermocouples 111 a to 111 n (20 thermocouples in the second embodiment).
  • thermocouples 111 a to 111 n are installed the distance between the housing 112 and a part of the thermocouples 111 c to 111 n becomes large. In this case, the thermocouples having long distance are required for housing the transmission cables in the housing 112 , and the facility cost increases.
  • thermocouples 111 c to 111 n connect to the compensation lead wire 122 c and the hard cable 124 n , and the thermo-electromotive forces of the thermocouples 111 c to 111 n are transmitted by using the compensation lead wire 122 c and the hard cable 124 n , the transmission cables 119 a to 119 n can be housed in the housing 112 without increase of the facility cost depending on the distance between the housing 112 and the thermocouples 111 c to 111 n.
  • the transmission cables 119 a to 119 n can be collectively housed in the housing 112 irrespective of the number of the thermocouples.
  • a large number of the thermocouples 111 a to 111 n it is possible to significantly reduce the facility costs and the installation work of the conduit pipes for protecting the transmission cables 119 b to 119 n.
  • the compensation lead wire 122 c and of the hard cable 124 n are installed through the measurement area 114 which is the apparatus installation site area.
  • the installation routes of the part of the compensation lead wire 122 c and the part of the hard cable 124 n are limited only in very short sections which are located at the cold junctions of the thermocouples 111 a to 111 n and at the surroundings of the cold junctions.
  • the labor of the installation design work and of the installation work of the part of the compensation lead wire 122 c and the part of the hard cable 124 n is small.
  • the installation routes of the compensation lead wire 122 c and the hard cable 124 n can be selected in the area (outside the apparatus installation site area) where the surrounding environment is organized, and hence the installation design work and the installation work can be easily performed.
  • thermocouples in which 20 thermocouples are provided, is described, but the number of thermocouples housed in the one housing 112 is not limited to this. Further, in a large-scale industrial plant in which a large number of thermocouples 111 a to 111 n are installed, a plurality of housings 112 are provided so that a predetermined number of thermocouples 111 a to 111 n are housed in each of the housings 112 .
  • FIG. 6 is a view showing a configuration of a third embodiment of a temperature measurement system according to the present invention.
  • the installation place of the housing is also planned in an initial stage so that the installation place can also be secured.
  • the housing when, instead of being installed, for example, on the floor surface, the housing is attached to, for example, a building structure (for example, a wall, a pillar, a beam, and a ceiling surface) of the industrial plant, the three-dimensional height can also be used for the installation of the housing.
  • a building structure for example, a wall, a pillar, a beam, and a ceiling surface
  • the structure such as the pillar, can also be designed in consideration of the load of the housing.
  • the installation place of the housing is not determined in the initial stage of construction of the industrial plant as described above, and hence the weight of the facilities installed at high places needs to be reduced.
  • transmission cables, and the like are installed at high places by using a frame (a framed construction, rack), whereby the transmission cables are separated from the apparatus installation site area in which the facility apparatuses are intensively arranged, and thereby the influences of the surrounding environment, such as the influence of hot water, steam, or gas, and the influence of the human activities can be reduced.
  • the temperature measurement system 131 is mainly provided in the industrial plant 2 , and is connected to a monitoring and control apparatus 133 provided outside the industrial plant 2 by a transmission cable 149 a (second connection unit).
  • Each of thermocouples 141 a to 141 f includes, at the cold junction thereof, each of terminal boxes 153 a to 153 f , one of A/D converters 146 a and 146 b , and one of adapters 147 a and 147 b in this order.
  • Each of the terminal boxes 153 a to 153 f is connected to one of the A/D converters 146 a and 146 b by each of compensation lead wires 154 a to 154 f.
  • Each of the terminal boxes 153 a to 153 f is a relay unit and transmits the thermo-electromotive force (small thermo-electromotive force) generated by each of the thermocouples 141 a to 141 f to one of the A/D converters 146 a and 146 b via each of the compensation lead wires 154 a to 154 f .
  • the A/D converters 146 a and 146 b transmission signal conversion units respectively A/D-convert the transmitted thermo-electromotive forces to transmission signals and output the transmission signals.
  • the adapters 147 a and 147 b transmit the transmission signals transmitted from the A/D converters 146 a and 146 b to the transmission cables 149 a and 149 b , respectively.
  • the A/D converter 146 a and the adapter 147 a are provided in common to the compensation lead wires 154 a to 154 c .
  • the A/D converter 146 b and the adapter 147 b are provided in common to the compensation lead wires 154 d to 154 f.
  • a housing 142 houses the transmission cable 149 b (parts of transmission cables 149 a and 149 c ), the A/D converters 146 a and 146 b , the adapters 147 a and 147 b , and the compensation lead wires 154 a to 154 f each of which connects each of the thermocouples 141 a to 141 f to one of the A/D converters 146 a and 146 b .
  • the housing 142 is installed, for example on the floor surface of the industrial plant 2 .
  • Thermocouples 141 g to 141 i respectively include, at cold junctions thereof, terminal boxes 153 g to 153 i , A/D converters 146 g to 146 i , and adapters 147 g to 147 i in this order.
  • the terminal boxes 153 g to 153 i are respectively connected to the A/D converters 146 g to 146 i by the compensation lead wires 154 g to 154 i.
  • the terminal boxes 153 g to 153 i are relay units and respectively transmit the thermo-electromotive forces (small thermo-electromotive forces) generated by the thermocouples 141 g to 141 i to the A/D converters 146 g to 146 i via the compensation lead wires 154 g to 154 i .
  • the A/D converters 146 g to 146 i transmission signal conversion units respectively A/D-convert the transmitted thermo-electromotive forces to transmission signals, and output the transmission signals.
  • the adapters 147 g to 147 i respectively transmit the transmission signals transmitted from the A/D converters 146 g to 146 i to the transmission cables 149 c to 149 e (first connection units).
  • thermocouples 141 a to 141 i may respectively include the converters and the hard cables (see the second embodiment).
  • Each of the A/D converters 146 g to 146 i and of the adapters 147 g to 147 i is housed in a frame (a framed construction, rack) 156 by being fixed to a support pipe 157 by a fixing unit, such as a clamp.
  • the frame 156 (housing unit) is supported at a predetermined height by a building structure of the industrial plant 2 .
  • the frame 156 is supported by a support 159 a horizontally extended from a pillar 158 which is a building structure of the industrial plant 2 .
  • the frame 156 is not a closed type box, such as the housing 142 , but an open-type rack formed by combining the support pipes 157 made of, for example, a metal or FRP.
  • the transmission cable 149 c connected to the adapter 147 g is connected to the adapter 147 b housed in the housing 142 .
  • the transmission cable 149 c is connected to the adapter 147 b through places where the influence of the surrounding environment, such as the influence of hot water, steam, or gas, and the influence of human activities cannot be neglected. For this reason, the transmission cable 149 c is made to pass through the inside of a conduit pipe 160 and is protected by the conduit pipe 160 .
  • the conduit pipe 160 is supported by supports 159 b and 159 c and is provided in the vertical direction along the pillar 158 .
  • the frame 156 is installed in an area which is separated from the apparatus installation site area as the measurement area 144 and in which the influence of the surrounding environment, such as the influence of hot water, steam, or gas, and the influence of human activities can be neglected. For this reason, the transmission cables 149 c to 149 e connected to the adapters 147 g to 147 i need not be housed and protected in a closed space, such as the space in the housing 142 .
  • the temperature measurement system 131 it is possible to reduce the weight of the facilities for protecting the transmission cables 149 a to 149 e , and to reduce the facility cost.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

According to one embodiment, a temperature measurement system including: a plurality of thermocouples; a transmission signal conversion unit configured to convert, to a transmission signal, the thermo-electromotive force generated by each of the plurality of the thermocouple and configured to output the transmission signal; a plurality of transmission units configured to transmit the transmission signal outputted from the transmission signal conversion unit; a first connection unit configured to connect between each of the plurality of the transmission units; a second connection unit configured to connect at least one of the plurality of transmission units to a processing unit configured to process the transmission signal; and a housing unit configured to house at least the first connection unit.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is based upon and claims the benefit of priority from Japanese Patent Application No. 2011-162240, filed Jul. 25, 2011; the entire contents of which are incorporated herein by reference.
  • FIELD
  • Embodiments of the present invention relate to a temperature measurement system of an industrial plant such as a thermal power generation plant, a nuclear power generation plant, a chemical plant, and various factories, and a manufacturing method of the temperature measurement system.
  • BACKGROUND
  • Various instrument sensors (instruments and sensors) are installed in an industrial plant for the purpose of monitoring and controlling the industrial plant. Cables are installed between the instrument sensors and a monitoring and control apparatus which monitors the measurement values measured by the instrument sensors. Current signals and voltage signals are transmitted by the cables.
  • As the process amounts monitored and controlled in the industrial plant, there are mainly pressure, flow rate, and temperature. Among these amounts, a transmitter is used for the measurement of pressure and flow rate. A thermocouple is used for the measurement of temperature.
  • The thermocouple is attached in a measurement area in the industrial plant. The measurement area is an area (hereinafter referred to as “apparatus installation site area”) in the industrial plant, in which area facility apparatuses, such as a pump, a fan, a turbine, and a valve, and pipes are arranged. The apparatus installation site area is also an area in the industrial plant, in which area main facility apparatuses are particularly intensively arranged.
  • Generally, the distance from the measurement area (apparatus installation site area) to the monitoring and control apparatus is about 200 m to 400 m. When a thermocouple is used to provide a connection over this length, a very long thermocouple is required. This results in high cost, and hence such connection is not realistic.
  • In order to reduce the installation cost and to shorten the installation period, an on-site transmission technique for converting, into a transmission signal, a thermo-electromotive force signal generated by a thermocouple and for transmitting the transmission signal has been put into practical use. With the on-site transmission technique practically using the recent information technology (IT), and the like, the amount of cables can be significantly reduced and rationalized.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In the accompanying drawings:
  • FIG. 1 is a view showing a configuration of a first embodiment of a temperature measurement system according to the present invention;
  • FIG. 2 is a view showing a temperature measurement system as a comparison example of the temperature measurement system according to the first embodiment;
  • FIG. 3 is a view showing a measurement system as a reference example of the temperature measurement system according to the first embodiment;
  • FIG. 4 is a view showing a modification of the temperature measurement system according to the first embodiment;
  • FIG. 5 is a view showing a configuration of a second embodiment of a temperature measurement system according to the present invention; and
  • FIG. 6 is a view showing a configuration of a third embodiment of a temperature measurement system according to the present invention.
  • DETAILED DESCRIPTION
  • Embodiments of a temperature measurement system according to the present invention and a manufacturing method of the temperature measurement system will be described with reference to the accompanying drawings.
  • The industrial plants have “apparatus installation site area”. The apparatus installation site area is an area in which facility apparatuses, such as a pump, a fan, a turbine, and a valve, and pipes are arranged. The apparatus installation site area is most intensively arranged main facility apparatuses and pipes. Therefore, there is a possibility of leakage of hot water, steam and gas generated in the apparatus installation site area.
  • When applying an on-site transmission technique to the industrial plants, a transmission cable is installed in the apparatus installation site area in the industrial plants. The transmission cables may be physically weak, and hence need to be protected from the surrounding environment of the apparatus installation site area.
  • Further, measures need to be taken so that the transmission cables do not obstruct the human activities for maintenance and patrol inspection. The transmission cables need to be protected from the surrounding environment including the human activities, and also need to be arranged so as not to obstruct the human activities. The human activities are obstructed in such cases where the cables interfere with the path to access a facility apparatus, and where, when a facility apparatus is disassembled for maintenance, the cables are brought into contact with the disassembled facility apparatus.
  • The embodiments of a temperature measurement system according to the present invention and a manufacturing method of the temperature measurement system have been made in view of the above described circumstances. An object of the embodiments is to provide a temperature measurement system and a manufacturing method of the temperature measurement system to which an on-site transmission technique is applied and which can improve the reliability thereof.
  • This and other objects can be achieved according to the present invention by providing temperature measurement system, including: a temperature measurement system including: a plurality of thermocouples; a transmission signal conversion unit configured to convert, to a transmission signal, the thermo-electromotive force generated by each of the plurality of the thermocouple and configured to output the transmission signal; a plurality of transmission units configured to transmit the transmission signal outputted from the transmission signal conversion unit; a first connection unit configured to connect between each of the plurality of the transmission units; a second connection unit configured to connect at least one of the plurality of transmission units to a processing unit configured to process the transmission signal; and a housing unit configured to house at least the first connection unit.
  • First Embodiment
  • A first embodiment of a temperature measurement system according to the present invention and a manufacturing method of the temperature measurement system will be described with reference to the accompanying drawings.
  • FIG. 1 is a view showing a configuration of a first embodiment of a temperature measurement system according to the present invention.
  • The temperature measurement system 1 according to the first embodiment is provided in an industrial plant, such as a thermal power generation plant, a nuclear power generation plant, a chemical plant, and various factories.
  • The temperature measurement system 1 is mainly provided in an industrial plant 2, and is connected, by a transmission cable 19 a, to a monitoring and control apparatus 3 provided outside the industrial plant 2.
  • The monitoring and control apparatus 3 monitors measurement values on the basis of transmission signals measured by thermocouples 11 a to 11 d and transmitted by the on-site transmission. The monitoring and control apparatus 3 includes an input apparatus which is a hardware portion for receiving the transmission signals (measurement signals). The input apparatus may be separated as a remote I/O apparatus so as to be installed at a place which is closer to the temperature measurement system 1 and is inside or outside the industrial plant 2. In this case, cables are installed between the remote I/O apparatus and the thermocouples 11 a to 11 d and between the remote I/O apparatus and the monitoring and the control apparatus 3.
  • For example, 200 to 300 of thermocouples 11 a to 11 d are provided in the industrial plant 2 (for example, when 500 instrument sensors are provided as a whole). In the first embodiment, four thermocouples 11 a to 11 d are illustrated for convenience of description. Each of the thermocouples 11 a to 11 d is provided in a measurement area 14 that is an apparatus installation site area.
  • The measurement area 14 is an area in the industrial plant 2, in which area facility apparatuses, such as a pump, a fan, a turbine, and a valve, and pipes are arranged. The measurement area 14 is also an area in the industrial plant 2, in which area main facility apparatuses are particularly intensively arranged. Note that the measurement area 14 is not clearly separated or isolated from the other area, and a part of the facility apparatuses, and the like, are also installed in the other area.
  • Each of the thermocouples 11 a to 11 d has, at the tip portion thereof, a hot junction as a measurement place, and also has a cold junction (head portion) at the end portion opposite to the measurement place. The thermocouples 11 a to 11 d respectively include, at the cold junctions thereof, A/D converters 16 a to 16 d, and adapters 17 a to 17 d in this order.
  • The A/D converters 16 a to 16 d (transmission signal conversion units) respectively A/D-convert the thermo-electromotive forces generated by the thermocouples 11 a to 11 d into transmission signals, so as to output the transmission signals. The adapters 17 a to 17 d (transmission units) transmit the transmission signals transmitted from the A/D converters 16 a to 16 d to the transmission cables 19 a to 19 d, respectively.
  • Note that an apparatus configured by integrating each of the A/D converters 16 a to 16 d and each of the adapters 17 a to 17 d may be incorporated in the cold junction, or the like, of each of the thermocouples 11 a to 11 d. The transmission signals may be transmitted to the monitoring and control apparatus 3 via a relay apparatus provided between the monitoring and control apparatus 3 and the adapters 17 a to 17 d.
  • The transmission cables 19 a to 19 d are, for example, optical cables, and transmit, to the monitoring and control apparatus 3, the transmission signals transmitted from the adapters 17 a to 17 d, respectively.
  • The transmission cable 19 a (second connection unit) connects the adapter 17 a to the monitoring and control apparatus 3. The transmission cable 19 b (first connection unit) connects the adapter 17 a to the adapter 17 b. The transmission cable 19 c (first connection unit) connects the adapter 17 b to the adapter 17 c. The transmission cable 19 d (first connection unit) connects the adapter 17 c to the adapter 17 d.
  • The transmission cables 19 a to 19 d are connected by a wiring system (so-called Daisy Chain system) in which the mutually adjacent adapters 17 a to 17 d are connected in series. The transmission signal transmitted from each of the adapters 17 b to 17 d are successively transmitted through the required transmission cables 19 b to 19 d, so as to be transmitted to the adapter 17 a. Eventually, the respective transmission signals are transmitted to the monitoring and control apparatus 3 through the transmission cable 19 a.
  • In the Daisy Chain system, only one cable of the transmission cable 19 a is used as the transmission cable which is installed over a long distance (generally, a length of 200 to 400 m) so as to be connected to the monitoring and control apparatus 3. The transmission cables 19 b to 19 d other than the transmission cable 19 a need only to be capable of connecting between mutually adjacent adapters 17 a to 17 d, and hence need only to have a very short length (generally, about 10 m to 20 m).
  • Even in the case where the number of thermocouples 11 a to 11 d is increased, it is only necessary that the transmission cables 19 b to 19 d having short lengths are installed between the adapters adjacent to each other. Thus, from the viewpoint of reducing the amount of cable, the Daisy Chain system is advantageous.
  • Note that any of one-core cable or two-core cable may also be used as the transmission cables 19 a to 19 d. When two-core cables are applied, the transmission cables 19 a to 19 d can also perform power supply from the monitoring and control apparatus 3 to the A/D converters 16 a to 16 d and the adapters 17 a to 17 d, in addition to the transmission of the transmission signals. Each of the transmission cables 19 a to 19 d is configured as a single cable in which one core for supplying a positive voltage and the other core for supplying a negative voltage are paired so as to satisfy the predetermined functions.
  • A housing 12 (housing unit) is a housing which is made of, for example, iron or FRP (Fiber Reinforced Plastic) and has a self-closing property. In such a case where the housing 12 is installed at a high place, it is preferred that the housing 12 is made of FRP so as to be lightened in weight. The housing 12 has a size corresponding to the number of the thermocouples housed in the housing 12.
  • The housing 12 houses the transmission cables 19 a to 19 d (a part of the transmission cables 19 a), the A/D converters 16 a to 16 d, the adapters 17 a to 17 d, the cold junctions at which the thermocouples 11 a to 11 d are respectively connected to the A/D converters 16 a to 16 d.
  • The transmission cables 19 a and the thermocouples 11 a to 11 d are provided so as to pass through the housing 12. The housing 12 has required protective properties which can sufficiently protect the apparatuses installed in the housing 12 in particular from hot water, steam and gas generated in the surrounding environment of the apparatus installation site area as the measurement area 14, and from the human activities.
  • Note that the housing 12 is provided to protect the transmission cables 19 a to 19 d from the surrounding environment and hence is required only to house at least the transmission cables 19 a to 19 d.
  • It is preferred that the housing 12 is installed in a suitable place which is free from the influence of human activities, and the like, and is also separated, by a required distance, from the apparatus installation site area as the measurement area 14, and in which the connection to the cold junctions of the thermocouples 11 a to 11 d can be established.
  • Here, a temperature measurement system as a comparison example of the temperature measurement system 1 according to the first embodiment will be described.
  • FIG. 2 is a view showing a temperature measurement system 21 as a comparison example of the temperature measurement system 1 according to the first embodiment.
  • The temperature measurement system 21 is mainly provided in an industrial plant 22 and is connected, by a transmission cable 39 a, to a monitoring and control apparatus 23 provided outside the industrial plant 22.
  • The temperature measurement system 21 includes thermocouples 31 a to 31 d, A/D converters 36 a to 36 d, adapters 37 a to 37 d, and transmission cables 39 a to 39 d which are almost the same as the thermocouples 11 a to 11 d, the A/D converters 16 a to 16 d, the adapters 17 a to 17 d and the transmission cables 19 a to 19 d of the temperature measurement system 1 according to the first embodiment.
  • The temperature measurement system 21 is different from the temperature measurement system 1 according to the first embodiment in that the transmission cables 39 a to 39 d are not housed in the housing. Further, the thermocouples 31 a to 31 d, the A/D converters 36 a to 36 d, the adapters 37 a to 37 d, and the transmission cables 39 a to 39 d are installed in the apparatus installation site area as a measurement area 34.
  • The transmission cables 39 a to 39 d provided in the temperature measurement system 21 configured in this way need to be protected so as not to be damaged and disconnected due to the influence of the surrounding environment of the measurement area 34 as the apparatus installation site area in which facility apparatuses and pipes are most intensively arranged, and due to the influence of the human activities. Thus, the transmission cables 39 a to 39 d are protected by iron pipes 40 a to 40 c (so-called conduit pipes) as protective sheathes.
  • In the temperature measurement system 21, the extra conduit pipes 40 a to 40 c need to be provided, resulting in a cost increase corresponding to the material of the conduit pipes 40 a to 40 c. Further, while the arrangement relationships between the conduit pipes 40 a to 40 c and the facility apparatuses, and the like, are taken into consideration, the conduit pipes 40 a to 40 c are placed and installed in the measurement area 34 as the apparatus installation site area in which the facility apparatuses and the pipes are most intensively arranged. Thus, a large amount of design work and labor are required for the installation of the conduit pipes 40 a to 40 c.
  • Therefore, the temperature measurement system 21 as the comparison example has a disadvantage that the advantage of the rationalized cable arrangement based on the Daisy Chain system is reduced or canceled by the arrangement of the conduit pipes 40 a to 40 c.
  • Next, a measurement system 51, in which the on-site transmission is applied to transmitters for measuring pressure and flow rate, will be described as a reference example of the temperature measurement system 1 according to the first embodiment.
  • FIG. 3 is a view showing a measurement system 51 as a reference example of the temperature measurement system 1 according to the first embodiment.
  • The temperature measurement system 51 is mainly provided in an industrial plant 52, and is connected to a monitoring and control apparatus 53 provided outside the industrial plant 52 by a transmission cable 69 a.
  • The measurement system 51 transmits signals obtained from transmitters 61 a to 61 d through transmission cables 69 a to 69 d connected by the Daisy Chain system. The configuration of the measurement system 51 is different from the configuration of the temperature measurement system 1 according to the first embodiment due to the difference in the measurement principle of the measurement sensors. That is, transmitters 61 a to 61 d are installed in the inside of local instrumentation panels 62 a and 62 b (or local instrumentation racks).
  • The transmitters 61 a to 61 d transmit physical pressure (of water, steam, oil, or the like) of the measurement object processes to the local instrumentation panels 62 a and 62 b via capillary tubes (instrumentation pipes) 65 a to 65 d. The transmitters 61 a to 61 d are respectively provided with A/D converters 66 a to 66 d and adapters 67 a to 67 d similarly to the thermocouples 11 a to 11 d. The adapters 67 a to 67 d transmit the transmission signals transmitted from the A/D converters 66 a to 66 d to the transmission cables 69 a to 69 d, respectively.
  • The local instrumentation panels 62 a and 62 b are installed in places away from the apparatus installation site area as a measurement area 64 in which the facility apparatuses are most intensively arranged. The local instrumentation panel 62 a houses the transmitters 61 a and 61 b, the A/ D converters 66 a and 66 b, the adapters 67 a and 67 b, and the transmission cables 65 a to 69 c. The local instrumentation panel 62 b houses the transmitters 61 c and 61 d, the A/ D converters 66 c and 66 d, the adapters 67 c and 67 d, and the transmission cables 69 c and 69 d.
  • The transmission cable 69 c connects the adapter 67 b in the local instrumentation panel 62 a to the adapter 67 c in the local instrumentation panel 62 b. The transmission cable 69 c is protected by a conduit pipe 70 similarly to the temperature measurement system 21 as the comparison example. In the inside of the local instrumentation panels 62 a and 62 b, the influence of hot water and steam, and the influence of maintenance/patrol personnel need not be taken into consideration, and hence the transmission cables 69 b and 69 d housed in the local instrumentation panels 62 a and 62 b need not be protected by the conduit pipe.
  • That is, the conduit pipe 70 is needed only for the transmission cable 69 c which connects between the local instrumentation panels 62 a and 62 b, and hence the necessary number of the conduit pipes is comparatively small.
  • Here, the number of transmitters to which the Daisy Chain system can be applied is technically limited, and hence the method cannot be applied to the infinite number of transmitters. The maximum number of the transmitters connectable by the Daisy Chain system is limited by the transmission capacity of the one transmission cable 69 a connected to the monitoring and control apparatus 53, and by constraints due to the other technical factors.
  • The maximum number of the transmitters is assumed to be 20 for the convenience of description. For example, when there are 20 transmitters, and when all of the 20 transmitters are housed in the same local instrumentation panel 62 (62 a and 62 b), all the transmission cables 69 (69 a to 69 d) are housed in the local instrumentation panel 62, and hence the conduit pipe 70 is not necessary at all. However, the length of the capillary tubes 65 (65 a to 65 d) is limited. Therefore, only the transmitters 61 (61 a to 61 d), which are installed at measurement places comparatively close to each other, can be housed in the one local instrumentation panel 62, and actually, only about at most five transmitters can be housed in the one local instrumentation panel 62.
  • Thus, when the Daisy Chain system is applied between the 20 transmitters, the 20 transmitters are separated into, for example, a set of 5 transmitters, a set of 4 transmitters, a set of 4 transmitters, a set of 3 transmitters, and a set of 4 transmitters, and then the sets of transmitters are housed in the five local instrumentation panels 62, respectively. Therefore, the conduit pipes 70 need to be installed to protect the four transmission cables 69 which connect between the local instrumentation panels 62.
  • On the other hand, the temperature measurement system 1 according to the first embodiment includes the housing 12 capable of housing the transmission cables 19 a to 19 d, without being influenced by the installation place and the number of the installed cables. Thereby, in the temperature measurement system 1, it is not necessary to provide the units for individually protecting the transmission cables 19 a to 19 d from the severe surrounding environment, and it is possible to fully utilize the merit of the on-site transmission in which the transmission signals are transmitted through the transmission cables 19 a to 19 d connected by the Daisy Chain system.
  • Further, in the industrial plant 2, the number of installed thermocouples 11 (11 a to 11 d), which provide indexes for measuring the performance of the plant, is larger than the number of the transmitters 61, and is a majority number (for example, 200 to 300) of the measurement sensors. When the temperature measurement system 1 is applied to the thermocouples 11, a great merit can be obtained from the viewpoint of rationalizing the arrangement of the cables.
  • Note that, in the temperature measurement system 1 according to the first embodiment, the measurement results of the respective thermocouples 11 a to 11 d are transmitted through the one transmission cable 19 a, but the measurement results may also be transmitted through two or more transmission cables.
  • FIG. 4 is a view showing a modification of the temperature measurement system 1 according to the first embodiment.
  • In the temperature measurement system 81 as the modification, the configurations and portions corresponding to those of the temperature measurement system 1 according to the first embodiment are denoted by the same reference numerals and characters, and the description thereof is omitted.
  • In the temperature measurement system 81 as the modification, a transmission cable 19 e (second connection unit) is newly provided between a monitoring and control apparatus 83 and the adapter 17 d.
  • When the transmission cable 19 b is disconnected in the case of the temperature measurement system 1 according to the first embodiment, the measurement results obtained from the thermocouples 11 b to 11 d other than the thermocouple 11 a cannot be transmitted to the monitoring and control apparatus 3.
  • On the other hand, in the temperature measurement system 81 as the modification, the transmission cable 19 e is provided, and thereby the measurement results of the thermocouples 11 a to 11 d can be surely transmitted to the monitoring and control apparatus 83.
  • That is, for example, even when the transmission cable 19 b is disconnected, the measurement result of the thermocouple 11 a can be transmitted to the monitoring and control apparatus 83 via the transmission cable 19 a, and the measurement results of the thermocouples 11 b to 11 d can be respectively transmitted to the monitoring and control apparatus 83 via the required transmission cables 19 c to 19 e.
  • In the case where the Daisy Chain system is adopted for, connection of the transmission cables in the temperature measurement system 81, it is possible to further improve the reliability of the temperature measurement system 81.
  • Second Embodiment
  • A second embodiment of a temperature measurement system according to the present invention and a manufacturing method of the temperature measurement system will be described with reference to the accompanying drawings.
  • FIG. 5 is a view showing a configuration of a second embodiment of a temperature measurement system according to the present invention.
  • The configurations and portions corresponding to those of the temperature measurement system 1 according to the first embodiment are denoted by the same reference numerals and characters, and the description thereof is omitted.
  • A temperature measurement system 101 according to the second embodiment is different from the first embodiment in that a measurement area 114 measured by thermocouples is large, and n thermocouples (20 thermocouples (n=20) in the second embodiment) are housed in one housing 112. Here, “a large number” means, for example, a maximum number of thermocouples which can be connected by the Daisy chain system.
  • The temperature measurement system 101 is mainly provided in the industrial plant 2, and is connected to a monitoring and control apparatus 103 provided outside the industrial plant 2 by a transmission cable 119 a.
  • Thermocouples 111 a and 111 b are provided as thermocouples for transmitting thermo-electromotive forces by a first system. The thermocouples 111 a and 111 b includes, at the cold junctions thereof, A/ D converters 116 a and 116 b and adapters 117 a and 117 b, respectively. The A/ D converters 116 a and 116 b (transmission signal conversion units) respectively A/D-convert the thermo-electromotive forces generated by the thermocouples 111 a and 111 b to transmission signals and output the transmission signals. The adapters 117 a and 117 b (transmission units) transmit the transmission signals transmitted from the A/ D converters 116 a and 116 b to transmission cables 119 a and 119 b, respectively.
  • A thermocouple 111 c is provided as a thermocouple for transmitting a thermo-electromotive force by a second system. The thermocouple 111 c includes, at the cold junction thereof, a terminal box 121 c, an A/D converter 116 c, and an adapter 117 c in this order. The terminal box 121 c is connected to the A/D converter 116 c by a compensation lead wire 122 c.
  • The terminal box 121 c (relaying apparatus) connects the thermocouple 111 c to the compensation lead wire 122 c. The terminal box 121 c supplies the thermo-electromotive force (small thermo-electromotive force) generated by the thermocouple 111 c to the compensation lead wire 122 c (third connection unit). The A/D converter 116 c (transmission signal conversion unit) A/D-converts the thermo-electromotive force transmitted via the compensation lead wire 122 c to a transmission signal and outputs the transmission signal. The adapter 117 c (transmission unit) transmits the transmission signal transmitted from the A/D converter 116 c to a transmission cable 119 c.
  • A thermocouple 111 n is provided as a thermocouple for transmitting a thermo-electromotive force by a third system. The thermocouple 111 n includes, at the cold junction thereof, a converter 123 n, an A/D converter 116 n, and an adapter 117 n in this order. The converter 123 n is connected to the A/D converter 116 n by a hard cable 124 n.
  • The converter 123 n (current signal conversion unit) converts the thermo-electromotive force (small thermo-electromotive force) generated by the thermocouple 111 n to a current signal of 4 to 20 mA (or a voltage signal of 1 to 5 V) and outputs the signal. The current signal (voltage signal) is transmitted to the A/D converter 116 n via the hard cable 124 n (third connection unit). The hard cable 124 n has required rigidity and/or elasticity. The A/D converter 116 n (transmission signal conversion unit) A/D-converts the transmitted thermo-electromotive forces to a transmission signal and outputs the transmission signal. The adapter 117 n (transmission unit) transmits the transmission signal transmitted from the A/D converter 116 n to a transmission cable 119 n.
  • Note that the cost of the compensation lead wire 122 c is less than the cost of the thermocouple of the same length. For this reason, in the case where the distance between the housing 112 and the hot junctions (measurement area 114) of the thermocouples 111 a to 111 d is large, the facility cost can be reduced more when the cold junction of the thermocouple 111 c is connected to the A/D converter 116 c by the second system via the compensation lead wire 122 c, than when the cold junctions of thermocouples 111 a and 111 b are respectively connected to the A/ D converters 116 a and 116 b by the first system.
  • Further, the cost of the hard cable 124 n is less than the cost of the compensation lead wire 122 c of the same length. Therefore, from the same reason described above, the facility cost can be reduced more when the third system is adopted than when the second system is adopted.
  • The second and third systems are effective in the case where the distance between the hot junction (measurement area 114) and the housing 112 is large (for example, from about 10 m to 30 m), for example, where the distance is large to an extent that it is not realistic to house the cold junctions of the thermocouples 111 c and 111 n in the housing 112.
  • The transmission cables 119 a to 119 n are, for example, optical cables, and transmit the transmission signals transmitted from the adapters 117 a to 117 n to the monitoring and control apparatus 103. The transmission cables 119 b to 119 n (first connection unit) connect the mutually adjacent adapters 117 a to 117 n. The transmission signals transmitted from the respective adapters 117 b to 117 n are transmitted to the adapters 117 a to 117 (n−1) successively through the required transmission cables 119 b to 119 n, and are finally transmitted to the monitoring and control apparatus 103 via the transmission cable 119 a (second connection unit). The transmission cables 119 a to 119 n are connected by a wiring system (so-called Daisy Chain system) in which the mutually adjacent adapters 117 a to 117 n are connected by the transmission cables 119 a to 119 n in series.
  • The housing 112 (housing unit) houses the transmission cables 119 a to 119 n (a part of the transmission cable 119 a), the A/D converters 116 a to 116 n, the adapters 117 a to 117 n, the cold junctions at which the thermocouples 111 a and 111 b are respectively connected to the A/ D converters 116 a and 116 b, and houses the compensation lead wire 122 c and the hard cable 124 n.
  • With the temperature measurement system 101 according to the second embodiment, the same effects as those of the first embodiment can be obtained even for a large number of the thermocouples 111 a to 111 n (20 thermocouples in the second embodiment).
  • That is, in the case where a large number of the thermocouples 111 a to 111 n are installed the distance between the housing 112 and a part of the thermocouples 111 c to 111 n becomes large. In this case, the thermocouples having long distance are required for housing the transmission cables in the housing 112, and the facility cost increases. However, when the thermocouples 111 c to 111 n connect to the compensation lead wire 122 c and the hard cable 124 n, and the thermo-electromotive forces of the thermocouples 111 c to 111 n are transmitted by using the compensation lead wire 122 c and the hard cable 124 n, the transmission cables 119 a to 119 n can be housed in the housing 112 without increase of the facility cost depending on the distance between the housing 112 and the thermocouples 111 c to 111 n.
  • Therefore, in the temperature measurement system 101, even when a large number of the thermocouples 111 a to 111 n are provided, the transmission cables 119 a to 119 n can be collectively housed in the housing 112 irrespective of the number of the thermocouples. Particularly when a large number of the thermocouples 111 a to 111 n are provided, it is possible to significantly reduce the facility costs and the installation work of the conduit pipes for protecting the transmission cables 119 b to 119 n.
  • Further, some parts of the compensation lead wire 122 c and of the hard cable 124 n are installed through the measurement area 114 which is the apparatus installation site area. However, the installation routes of the part of the compensation lead wire 122 c and the part of the hard cable 124 n are limited only in very short sections which are located at the cold junctions of the thermocouples 111 a to 111 n and at the surroundings of the cold junctions. Thus, the labor of the installation design work and of the installation work of the part of the compensation lead wire 122 c and the part of the hard cable 124 n is small. Further, in the place away from the measurement area 114, the installation routes of the compensation lead wire 122 c and the hard cable 124 n can be selected in the area (outside the apparatus installation site area) where the surrounding environment is organized, and hence the installation design work and the installation work can be easily performed.
  • Note that in the above, the example, in which 20 thermocouples are provided, is described, but the number of thermocouples housed in the one housing 112 is not limited to this. Further, in a large-scale industrial plant in which a large number of thermocouples 111 a to 111 n are installed, a plurality of housings 112 are provided so that a predetermined number of thermocouples 111 a to 111 n are housed in each of the housings 112.
  • Third Embodiment
  • A third embodiment of a temperature measurement system according to the present invention and a manufacturing method of the temperature measurement system will be described with reference to the accompanying drawings.
  • FIG. 6 is a view showing a configuration of a third embodiment of a temperature measurement system according to the present invention.
  • The configurations and portions corresponding to those of the temperature measurement systems 1 and 101 according to the first and second embodiments are denoted by the same reference numerals and characters, and the description thereof is omitted.
  • First, a problem, which can be considered about the temperature measurement systems according to the first and second embodiments, is described.
  • In the case where a detailed plan, including an apparatus arrangement and a building structure and also including a measurement area (apparatus installation site area), is created at the time of initial planning of an industrial plant, the installation place of the housing is also planned in an initial stage so that the installation place can also be secured.
  • In practice, however, after the planning and arrangement of main facility apparatuses are performed, the installation place of the housing is determined while the relations between the housing and the surrounding facility apparatuses are adjusted. For this reason, there is a high possibility of occurrence of the case where there is no installation place of the housing.
  • In such case, when, instead of being installed, for example, on the floor surface, the housing is attached to, for example, a building structure (for example, a wall, a pillar, a beam, and a ceiling surface) of the industrial plant, the three-dimensional height can also be used for the installation of the housing.
  • When a wall or a pillar, to which the housing is attached, can be determined in an initial stage of construction of the industrial plant, the structure, such as the pillar, can also be designed in consideration of the load of the housing. However, the installation place of the housing is not determined in the initial stage of construction of the industrial plant as described above, and hence the weight of the facilities installed at high places needs to be reduced.
  • Thus, in a temperature measurement system according to a third embodiment, transmission cables, and the like, are installed at high places by using a frame (a framed construction, rack), whereby the transmission cables are separated from the apparatus installation site area in which the facility apparatuses are intensively arranged, and thereby the influences of the surrounding environment, such as the influence of hot water, steam, or gas, and the influence of the human activities can be reduced.
  • In the following, a temperature measurement system 131 according to the third embodiment will be specifically described.
  • The temperature measurement system 131 is mainly provided in the industrial plant 2, and is connected to a monitoring and control apparatus 133 provided outside the industrial plant 2 by a transmission cable 149 a (second connection unit).
  • Each of thermocouples 141 a to 141 f includes, at the cold junction thereof, each of terminal boxes 153 a to 153 f, one of A/ D converters 146 a and 146 b, and one of adapters 147 a and 147 b in this order. Each of the terminal boxes 153 a to 153 f is connected to one of the A/ D converters 146 a and 146 b by each of compensation lead wires 154 a to 154 f.
  • Each of the terminal boxes 153 a to 153 f is a relay unit and transmits the thermo-electromotive force (small thermo-electromotive force) generated by each of the thermocouples 141 a to 141 f to one of the A/ D converters 146 a and 146 b via each of the compensation lead wires 154 a to 154 f. The A/ D converters 146 a and 146 b (transmission signal conversion units) respectively A/D-convert the transmitted thermo-electromotive forces to transmission signals and output the transmission signals. The adapters 147 a and 147 b (transmission units) transmit the transmission signals transmitted from the A/ D converters 146 a and 146 b to the transmission cables 149 a and 149 b, respectively. The A/D converter 146 a and the adapter 147 a are provided in common to the compensation lead wires 154 a to 154 c. The A/D converter 146 b and the adapter 147 b are provided in common to the compensation lead wires 154 d to 154 f.
  • A housing 142 (housing unit) houses the transmission cable 149 b (parts of transmission cables 149 a and 149 c), the A/ D converters 146 a and 146 b, the adapters 147 a and 147 b, and the compensation lead wires 154 a to 154 f each of which connects each of the thermocouples 141 a to 141 f to one of the A/ D converters 146 a and 146 b. The housing 142 is installed, for example on the floor surface of the industrial plant 2.
  • Thermocouples 141 g to 141 i respectively include, at cold junctions thereof, terminal boxes 153 g to 153 i, A/D converters 146 g to 146 i, and adapters 147 g to 147 i in this order. The terminal boxes 153 g to 153 i are respectively connected to the A/D converters 146 g to 146 i by the compensation lead wires 154 g to 154 i.
  • The terminal boxes 153 g to 153 i are relay units and respectively transmit the thermo-electromotive forces (small thermo-electromotive forces) generated by the thermocouples 141 g to 141 i to the A/D converters 146 g to 146 i via the compensation lead wires 154 g to 154 i. The A/D converters 146 g to 146 i (transmission signal conversion units) respectively A/D-convert the transmitted thermo-electromotive forces to transmission signals, and output the transmission signals. The adapters 147 g to 147 i (transmission units) respectively transmit the transmission signals transmitted from the A/D converters 146 g to 146 i to the transmission cables 149 c to 149 e (first connection units).
  • Note that, in place of the terminal boxes 153 a to 153 i and of the compensation lead wires 154 a to 154 i, the thermocouples 141 a to 141 i may respectively include the converters and the hard cables (see the second embodiment).
  • Each of the A/D converters 146 g to 146 i and of the adapters 147 g to 147 i is housed in a frame (a framed construction, rack) 156 by being fixed to a support pipe 157 by a fixing unit, such as a clamp.
  • The frame 156 (housing unit) is supported at a predetermined height by a building structure of the industrial plant 2. In FIG. 6, the frame 156 is supported by a support 159 a horizontally extended from a pillar 158 which is a building structure of the industrial plant 2. The frame 156 is not a closed type box, such as the housing 142, but an open-type rack formed by combining the support pipes 157 made of, for example, a metal or FRP.
  • The transmission cable 149 c connected to the adapter 147 g is connected to the adapter 147 b housed in the housing 142. The transmission cable 149 c is connected to the adapter 147 b through places where the influence of the surrounding environment, such as the influence of hot water, steam, or gas, and the influence of human activities cannot be neglected. For this reason, the transmission cable 149 c is made to pass through the inside of a conduit pipe 160 and is protected by the conduit pipe 160. The conduit pipe 160 is supported by supports 159 b and 159 c and is provided in the vertical direction along the pillar 158.
  • The frame 156 is installed in an area which is separated from the apparatus installation site area as the measurement area 144 and in which the influence of the surrounding environment, such as the influence of hot water, steam, or gas, and the influence of human activities can be neglected. For this reason, the transmission cables 149 c to 149 e connected to the adapters 147 g to 147 i need not be housed and protected in a closed space, such as the space in the housing 142.
  • That is, with the temperature measurement system 131 according to the third embodiment, it is possible to reduce the weight of the facilities for protecting the transmission cables 149 a to 149 e, and to reduce the facility cost.
  • Although several embodiments of the present invention have been described above, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel embodiments described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the embodiments described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the invention.

Claims (10)

1. A temperature measurement system comprising:
a plurality of thermocouples;
a transmission signal conversion unit configured to convert, to a transmission signal, the thermo-electromotive force generated by each of the plurality of the thermocouple and configured to output the transmission signal;
a plurality of transmission units configured to transmit the transmission signal outputted from the transmission signal conversion unit;
a first connection unit configured to connect between each of the plurality of the transmission units;
a second connection unit configured to connect at least one of the plurality of transmission units to a processing unit configured to process the transmission signal; and
a housing unit configured to house at least the first connection unit.
2. The temperature measurement system according to claim 1, wherein the housing unit is a housing has a self-closing property.
3. The temperature measurement system according to claim 2, wherein
the first connection unit connects between each of the plurality of the transmission units in series, and
each of the plurality of the transmission units transmits the transmission signal via the first connection unit so as to allow the transmission signal to be transmitted to the processing unit via the second connection unit.
4. The temperature measurement system according to claim 3, wherein
the housing unit further houses the transmission signal conversion unit and the plurality of transmission units, and
each of the plurality of the thermocouples is connected to the transmission signal conversion unit in the housing unit.
5. The temperature measurement system according to claim 1, further comprising:
a relay unit connected to each of the plurality of the thermocouples; and
a third connection unit configured to connect the relay unit to the transmission signal conversion unit.
6. The temperature measurement system according to claim 5, wherein
the third connection unit is a compensation lead wire, and
the relay unit is a relay apparatus configured to supply the thermo-electromotive force to the compensation lead wire.
7. The temperature measurement system according to claim 5, wherein
the relay unit is a current signal conversion unit configured to convert the thermo-electromotive force generated by each of the plurality of the thermocouples to a current signal or a voltage signal, and
the third connection unit is a cable configured to transmit the current signal or the voltage signal to the transmission signal conversion unit.
8. The temperature measurement system according to claim 1, wherein two or more of the second connection units are provided.
9. The temperature measurement system according to claim 1, wherein the housing unit is a frame supported by a building structure in which the temperature measurement system is provided.
10. A manufacturing method of a temperature measurement system, the manufacturing method comprising:
installing a plurality of thermocouples in a measurement area;
connecting, to each of the plurality of the thermocouples, a transmission signal conversion unit that is configured to convert the thermo-electromotive force generated by each of the plurality of the thermocouple to a transmission signal and is configured to output the transmission signal;
connecting, to the transmission signal conversion unit, a plurality of a transmission units configured to transmit the transmission signal outputted from the transmission signal conversion unit;
connecting between each of the plurality of the transmission units by a first connection unit;
connecting, by a second connection unit, at least one of the plurality of the transmission units to a processing unit configured to process the transmission signal; and
housing at least the first connection unit in a housing unit.
US13/543,290 2011-07-25 2012-07-06 Temperature measurement system and manufacturing method of same Abandoned US20130028291A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011162240A JP2013024810A (en) 2011-07-25 2011-07-25 Temperature measurement system and method for manufacturing the same
JP2011-162240 2011-07-25

Publications (1)

Publication Number Publication Date
US20130028291A1 true US20130028291A1 (en) 2013-01-31

Family

ID=47573937

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/543,290 Abandoned US20130028291A1 (en) 2011-07-25 2012-07-06 Temperature measurement system and manufacturing method of same

Country Status (3)

Country Link
US (1) US20130028291A1 (en)
JP (1) JP2013024810A (en)
CN (1) CN102901576A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180098282A1 (en) * 2014-09-02 2018-04-05 Samsung Electronics Co., Ltd. Apparatus and Method for Controlling TCP Connections in a Wireless Communication System
US20200141815A1 (en) * 2017-06-28 2020-05-07 Iotopon Srl System and method to calculate the temperature of an external environment air corrected from the radiative error, as well as sensor device usable in such system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111562027A (en) * 2020-06-22 2020-08-21 上海羿煜电子科技有限公司 Two-wire system temperature measuring system and method for daisy chain

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3943488A (en) * 1974-07-16 1976-03-09 Fischer & Porter Co. Multiplex telemetering system
US4747700A (en) * 1987-06-19 1988-05-31 Teledyne Industries, Inc. Thermocouple rake
JPH02147927A (en) * 1988-11-30 1990-06-06 Sukegawa Electric Co Ltd Temperature measuring system
US20100158074A1 (en) * 2008-12-19 2010-06-24 Rejean Fortier Multipoint probe assembly and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4212952B2 (en) * 2003-05-21 2009-01-21 日本リライアンス株式会社 Temperature detection apparatus and method using thermocouple
JP2007178253A (en) * 2005-12-28 2007-07-12 Tokyo Electron Ltd Device and method for measuring temperature
CN101476945B (en) * 2009-01-09 2010-12-08 长安大学 Brake drum temperature measurement apparatus based on wireless transmission

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3943488A (en) * 1974-07-16 1976-03-09 Fischer & Porter Co. Multiplex telemetering system
US4747700A (en) * 1987-06-19 1988-05-31 Teledyne Industries, Inc. Thermocouple rake
JPH02147927A (en) * 1988-11-30 1990-06-06 Sukegawa Electric Co Ltd Temperature measuring system
US20100158074A1 (en) * 2008-12-19 2010-06-24 Rejean Fortier Multipoint probe assembly and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180098282A1 (en) * 2014-09-02 2018-04-05 Samsung Electronics Co., Ltd. Apparatus and Method for Controlling TCP Connections in a Wireless Communication System
US20200141815A1 (en) * 2017-06-28 2020-05-07 Iotopon Srl System and method to calculate the temperature of an external environment air corrected from the radiative error, as well as sensor device usable in such system
US11525745B2 (en) * 2017-06-28 2022-12-13 Iotopon Srl System and method to calculate the temperature of an external environment air corrected from the radiative error, as well as sensor device usable in such system

Also Published As

Publication number Publication date
CN102901576A (en) 2013-01-30
JP2013024810A (en) 2013-02-04

Similar Documents

Publication Publication Date Title
US20130028291A1 (en) Temperature measurement system and manufacturing method of same
CN206113994U (en) Utility tunnel's monitoring devices
US9261416B2 (en) Thermocouple abnormality detection system and detection method thereof
CN100589142C (en) A kind of distributed optical fiber temperature monitoring system
CN105094073A (en) Real-time dynamic monitoring system for underground pipe network
US10514420B2 (en) Systems and methods for testing ground fault circuit interrupter breakers within enclosures
CN101819072A (en) Temperature monitoring method for ultrahigh-voltage gas insulated metal closed transmission line
CN102378902A (en) Sealing device for a device for measuring the fill level in a fluid container
CN201397203Y (en) Temperature monitoring mechanism of ultrahigh voltage gas insulated metal-enclosed transmission line
CN103259554B (en) The installation method of signal transmitting and receiving system, described system and apply the factory of described system
Lalam et al. Robotic fiber optic internal deployment tool for pipeline integrity monitoring
TW202332889A (en) Heat sensor assembly and method for power distribution systems
US20140290374A1 (en) Apparatus to Monitor Flow Assurance Properties in Conduits
KR100879035B1 (en) Multi-complex cable for sensing cable temperature and cable case
CN104713597A (en) Fast radio telescope health monitoring method
RU2713918C1 (en) Heat exchanger leakage monitoring system of passive heat removal system by humidity method
WO2024084705A1 (en) Device module and plant
JPH0437373B2 (en)
JP5905376B2 (en) Measuring device, measuring system and measuring method
CN202975782U (en) Optical fiber temperature measurement-type automatic monitoring device for mine main ventilator
GB2530812A (en) Temperature measurement with optical fibre
CN209559341U (en) A kind of flexible temperature detection and protective device of large silo
CN202734989U (en) Radiation-resistant thermocouple
Kersten The ITk Common Monitoring ans Interlock System
JP6991671B2 (en) High-voltage power receiving equipment

Legal Events

Date Code Title Description
AS Assignment

Owner name: TOSHIBA PLANT SYSTEMS & SERVICES CORPORATION, JAPA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TOBO, MASAYUKI;FUKUI, MAMORU;WATANABE, KAZUHISA;AND OTHERS;REEL/FRAME:028501/0895

Effective date: 20120702

Owner name: KABUSHIKI KAISHA TOSHIBA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TOBO, MASAYUKI;FUKUI, MAMORU;WATANABE, KAZUHISA;AND OTHERS;REEL/FRAME:028501/0895

Effective date: 20120702

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION