US20130001773A1 - Semiconductor Device and Method of Forming a Wafer Level Package Structure Using Conductive Via and Exposed Bump - Google Patents

Semiconductor Device and Method of Forming a Wafer Level Package Structure Using Conductive Via and Exposed Bump Download PDF

Info

Publication number
US20130001773A1
US20130001773A1 US13/609,003 US201213609003A US2013001773A1 US 20130001773 A1 US20130001773 A1 US 20130001773A1 US 201213609003 A US201213609003 A US 201213609003A US 2013001773 A1 US2013001773 A1 US 2013001773A1
Authority
US
United States
Prior art keywords
semiconductor die
encapsulant
semiconductor
conductive
bumps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/609,003
Inventor
SungWon Cho
Joonyoung Choi
Daesik Choi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stats Chippac Pte Ltd
Original Assignee
Stats Chippac Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stats Chippac Pte Ltd filed Critical Stats Chippac Pte Ltd
Priority to US13/609,003 priority Critical patent/US20130001773A1/en
Publication of US20130001773A1 publication Critical patent/US20130001773A1/en
Assigned to CITICORP INTERNATIONAL LIMITED, AS COMMON SECURITY AGENT reassignment CITICORP INTERNATIONAL LIMITED, AS COMMON SECURITY AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: STATS CHIPPAC LTD., STATS CHIPPAC, INC.
Assigned to STATS CHIPPAC PTE. LTE. reassignment STATS CHIPPAC PTE. LTE. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: STATS CHIPPAC LTD.
Assigned to STATS CHIPPAC, INC., STATS CHIPPAC PTE. LTD. FORMERLY KNOWN AS STATS CHIPPAC LTD. reassignment STATS CHIPPAC, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: CITICORP INTERNATIONAL LIMITED, AS COMMON SECURITY AGENT
Assigned to STATS ChipPAC Pte. Ltd. reassignment STATS ChipPAC Pte. Ltd. CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE'S NAME ON COVERSHEET FROM "STATS CHIPPAC PTE. LTE." TO "STATS CHIPPAC PTE. LTD." PREVIOUSLY RECORDED ON REEL 038378 FRAME 0418. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF NAME. Assignors: STATS CHIPPAC LTD.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5389Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates the chips being integrally enclosed by the interconnect and support structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3114Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed the device being a chip scale package, e.g. CSP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • H01L23/3128Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/562Protection against mechanical damage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/20Structure, shape, material or disposition of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L24/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L24/25Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of a plurality of high density interconnect connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/105Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • H01L2221/68336Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding involving stretching of the auxiliary support post dicing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0237Disposition of the redistribution layers
    • H01L2224/02371Disposition of the redistribution layers connecting the bonding area on a surface of the semiconductor or solid-state body with another surface of the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0237Disposition of the redistribution layers
    • H01L2224/02379Fan-out arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/034Manufacturing methods by blanket deposition of the material of the bonding area
    • H01L2224/0346Plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05568Disposition the whole external layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05571Disposition the external layer being disposed in a recess of the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05573Single external layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05575Plural external layers
    • H01L2224/0558Plural external layers being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05601Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/05611Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05639Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05647Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05655Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0618Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/06181On opposite sides of the body
    • H01L2224/06182On opposite sides of the body with specially adapted redistribution layers [RDL]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L2224/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • H01L2224/081Disposition
    • H01L2224/0812Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/08135Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/08145Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1131Manufacturing methods by local deposition of the material of the bump connector in liquid form
    • H01L2224/1132Screen printing, i.e. using a stencil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1133Manufacturing methods by local deposition of the material of the bump connector in solid form
    • H01L2224/11334Manufacturing methods by local deposition of the material of the bump connector in solid form using preformed bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/114Manufacturing methods by blanket deposition of the material of the bump connector
    • H01L2224/11444Manufacturing methods by blanket deposition of the material of the bump connector in gaseous form
    • H01L2224/1145Physical vapour deposition [PVD], e.g. evaporation, or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/114Manufacturing methods by blanket deposition of the material of the bump connector
    • H01L2224/1146Plating
    • H01L2224/11462Electroplating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/118Post-treatment of the bump connector
    • H01L2224/11848Thermal treatments, e.g. annealing, controlled cooling
    • H01L2224/11849Reflowing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/119Methods of manufacturing bump connectors involving a specific sequence of method steps
    • H01L2224/11901Methods of manufacturing bump connectors involving a specific sequence of method steps with repetition of the same manufacturing step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13113Bismuth [Bi] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13116Lead [Pb] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/13124Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13139Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13155Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • H01L2224/141Disposition
    • H01L2224/1418Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/14181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/20Structure, shape, material or disposition of high density interconnect preforms
    • H01L2224/21Structure, shape, material or disposition of high density interconnect preforms of an individual HDI interconnect
    • H01L2224/214Connecting portions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/20Structure, shape, material or disposition of high density interconnect preforms
    • H01L2224/22Structure, shape, material or disposition of high density interconnect preforms of a plurality of HDI interconnects
    • H01L2224/221Disposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/2401Structure
    • H01L2224/24011Deposited, e.g. MCM-D type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/24145Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • H01L2224/24147Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked the HDI interconnect not connecting to the same level of the lower semiconductor or solid-state body at which the upper semiconductor or solid-state body is mounted, e.g. the upper semiconductor or solid-state body being mounted in a cavity or on a protrusion of the lower semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/244Connecting portions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06524Electrical connections formed on device or on substrate, e.g. a deposited or grown layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1047Details of electrical connections between containers
    • H01L2225/1052Wire or wire-like electrical connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1047Details of electrical connections between containers
    • H01L2225/107Indirect electrical connections, e.g. via an interposer, a flexible substrate, using TAB
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1076Shape of the containers
    • H01L2225/1088Arrangements to limit the height of the assembly
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1094Thermal management, e.g. cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • H01L2924/1816Exposing the passive side of the semiconductor or solid-state body
    • H01L2924/18162Exposing the passive side of the semiconductor or solid-state body of a chip with build-up interconnect

Definitions

  • the present invention relates in general to semiconductor devices and, more particularly, to a semiconductor device and method of forming a wafer level chip scale package (WLCSP) using a conductive via and an exposed bump.
  • WLCSP wafer level chip scale package
  • Semiconductor devices are commonly found in modern electronic products. Semiconductor devices vary in the number and density of electrical components. Discrete semiconductor devices generally contain one type of electrical component, e.g., light emitting diode (LED), small signal transistor, resistor, capacitor, inductor, and power metal oxide semiconductor field effect transistor (MOSFET). Integrated semiconductor devices typically contain hundreds to millions of electrical components. Examples of integrated semiconductor devices include microcontrollers, microprocessors, charged-coupled devices (CCDs), solar cells, and digital micro-mirror devices (DMDs).
  • LED light emitting diode
  • MOSFET power metal oxide semiconductor field effect transistor
  • Semiconductor devices perform a wide range of functions such as signal processing, high-speed calculations, transmitting and receiving electromagnetic signals, controlling electronic devices, transforming sunlight to electricity, and creating visual projections for television displays.
  • Semiconductor devices are found in the fields of entertainment, communications, power conversion, networks, computers, and consumer products. Semiconductor devices are also found in military applications, aviation, automotive, industrial controllers, and office equipment.
  • Semiconductor devices exploit the electrical properties of semiconductor materials.
  • the atomic structure of semiconductor material allows its electrical conductivity to be manipulated by the application of an electric field or base current or through the process of doping. Doping introduces impurities into the semiconductor material to manipulate and control the conductivity of the semiconductor device.
  • a semiconductor device contains active and passive electrical structures.
  • Active structures including bipolar and field effect transistors, control the flow of electrical current. By varying levels of doping and application of an electric field or base current, the transistor either promotes or restricts the flow of electrical current.
  • Passive structures including resistors, capacitors, and inductors, create a relationship between voltage and current necessary to perform a variety of electrical functions.
  • the passive and active structures are electrically connected to form circuits, which enable the semiconductor device to perform high-speed calculations and other useful functions.
  • Front-end manufacturing involves the formation of a plurality of die on the surface of a semiconductor wafer. Each die is typically identical and contains circuits formed by electrically connecting active and passive components.
  • semiconductor die as used herein refers to both the singular and plural form of the word, and accordingly can refer to both a single semiconductor device and multiple semiconductor devices.
  • Back-end manufacturing involves singulating individual die from the finished wafer and packaging the die to provide structural support and environmental isolation.
  • One goal of semiconductor manufacturing is to produce smaller semiconductor devices. Smaller devices typically consume less power, have higher performance, and can be produced more efficiently. In addition, smaller semiconductor devices have a smaller footprint, which is desirable for smaller end products.
  • a smaller die size can be achieved by improvements in the front-end process resulting in die with smaller, higher density active and passive components. Back-end processes may result in semiconductor device packages with a smaller footprint by improvements in electrical interconnection and packaging materials.
  • Another goal of semiconductor manufacturing is to produce semiconductor devices with adequate heat dissipation.
  • High frequency semiconductor devices generally generate more heat. Without effective heat dissipation, the generated heat can reduce performance, decrease reliability, and reduce the useful lifetime of the semiconductor device.
  • WLCSP z-direction electrical interconnect structures exhibit one or more limitations.
  • a conventional WLCSP contains a flipchip type semiconductor die and encapsulant formed over the die.
  • An interconnect structure is typically formed over, around, and through the semiconductor die and encapsulant for z-direction vertical electrical interconnect.
  • the flipchip semiconductor die is electrically connected to the interconnect structure with bumps or vias. When the vias are formed and plated directly on a pad of the semiconductor die, the semiconductor die pad can be damaged.
  • the encapsulant and bump interconnect makes package stacking difficult to achieve with fine pitch or high input/output (I/O) count electrical interconnect.
  • wire bond type semiconductor die are also difficult to stack without dramatically increasing package height.
  • the use of underfill material in packaging the semiconductor die also increases package height.
  • the present invention is a semiconductor device comprising a semiconductor wafer including a plurality of first semiconductor die comprising an active surface. A plurality of bumps is formed over the active surface of the first semiconductor die. An encapsulant is deposited around and over the first semiconductor die including around the bumps. A first conductive via is formed through the encapsulant. A conductive layer is formed over the encapsulant between the first conductive via and bumps.
  • the present invention is a semiconductor device comprising a first semiconductor die and plurality of bumps formed over a first surface of the first semiconductor die.
  • An encapsulant is deposited around the first semiconductor die and bumps.
  • a first conductive via is formed through the encapsulant.
  • a conductive layer is formed over the encapsulant between the first conductive via and bumps.
  • the present invention is a semiconductor device comprising a first semiconductor die and first interconnect structure formed over a first surface of the first semiconductor die.
  • An encapsulant is deposited around and over the first semiconductor die including around a first portion of the first interconnect structure while leaving a second portion of the first interconnect structure devoid of the encapsulant.
  • the present invention is a semiconductor device comprising a first semiconductor die and interconnect structure formed over a first surface of the first semiconductor die.
  • An encapsulant is deposited around the first semiconductor die and around a first portion of the interconnect structure while exposing a second portion of the interconnect structure.
  • FIG. 1 illustrates a PCB with different types of packages mounted to its surface
  • FIGS. 2 a - 2 c illustrate further detail of the semiconductor packages mounted to the PCB
  • FIGS. 3 a and 3 b illustrate a semiconductor wafer with a plurality of semiconductor die separated by saw streets
  • FIGS. 4 a - 4 m illustrate a process of forming WLCSP with conductive via and an exposed bump
  • FIG. 5 illustrates an embodiment of a package on package (PoP) WLCSP including a WLCSP with conductive via and an exposed bump;
  • PoP package on package
  • FIG. 6 illustrates an embodiment of a WLCSP with conductive via and an exposed bump including multiple semiconductor die
  • FIG. 7 illustrates an embodiment of WLCSPs with conductive via and an exposed bump stacked back to back to form a PoP WLCSP
  • FIG. 8 illustrates an embodiment of a PoP WLCSP including a WLCSP with conductive via and an exposed bump having a heat sink;
  • FIG. 9 illustrates an embodiment of a PoP WLCSP including a WLCSP with conductive via and an exposed bump having a redistribution layer (RDL).
  • RDL redistribution layer
  • Front-end manufacturing involves the formation of a plurality of die on the surface of a semiconductor wafer.
  • Each die on the wafer contains active and passive electrical components, which are electrically connected to form functional electrical circuits.
  • Active electrical components such as transistors and diodes, have the ability to control the flow of electrical current.
  • Passive electrical components such as capacitors, inductors, resistors, and transformers, create a relationship between voltage and current necessary to perform electrical circuit functions.
  • Passive and active components are formed over the surface of the semiconductor wafer by a series of process steps including doping, deposition, photolithography, etching, and planarization.
  • Doping introduces impurities into the semiconductor material by techniques such as ion implantation or thermal diffusion.
  • the doping process modifies the electrical conductivity of semiconductor material in active devices, transforming the semiconductor material into an insulator, conductor, or dynamically changing the semiconductor material conductivity in response to an electric field or base current.
  • Transistors contain regions of varying types and degrees of doping arranged as necessary to enable the transistor to promote or restrict the flow of electrical current upon the application of the electric field or base current.
  • Active and passive components are formed by layers of materials with different electrical properties.
  • the layers can be formed by a variety of deposition techniques determined in part by the type of material being deposited. For example, thin film deposition can involve chemical vapor deposition (CVD), physical vapor deposition (PVD), electrolytic plating, and electroless plating processes.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • electrolytic plating electroless plating processes.
  • Each layer is generally patterned to form portions of active components, passive components, or electrical connections between components.
  • the layers can be patterned using photolithography, which involves the deposition of light sensitive material, e.g., photoresist, over the layer to be patterned.
  • a pattern is transferred from a photomask to the photoresist using light.
  • the portion of the photoresist pattern subjected to light is removed using a solvent, exposing portions of the underlying layer to be patterned.
  • the portion of the photoresist pattern not subjected to light, the negative photoresist is removed using a solvent, exposing portions of the underlying layer to be patterned.
  • the remainder of the photoresist is removed, leaving behind a patterned layer.
  • some types of materials are patterned by directly depositing the material into the areas or voids formed by a previous deposition/etch process using techniques such as electroless and electrolytic plating.
  • Planarization can be used to remove material from the surface of the wafer and produce a uniformly flat surface. Planarization involves polishing the surface of the wafer with a polishing pad. An abrasive material and corrosive chemical are added to the surface of the wafer during polishing. The combined mechanical action of the abrasive and corrosive action of the chemical removes any irregular topography, resulting in a uniformly flat surface.
  • Back-end manufacturing refers to cutting or singulating the finished wafer into the individual die and then packaging the die for structural support and environmental isolation.
  • the wafer is scored and broken along non-functional regions of the wafer called saw streets or scribes.
  • the wafer is singulated using a laser cutting tool or saw blade.
  • the individual die are mounted to a package substrate that includes pins or contact pads for interconnection with other system components.
  • Contact pads formed over the semiconductor die are then connected to contact pads within the package.
  • the electrical connections can be made with solder bumps, stud bumps, conductive paste, or wirebonds.
  • An encapsulant or other molding material is deposited over the package to provide physical support and electrical isolation.
  • the finished package is then inserted into an electrical system and the functionality of the semiconductor device is made available to the other system components.
  • FIG. 1 illustrates electronic device 50 having a chip carrier substrate or printed circuit board (PCB) 52 with a plurality of semiconductor packages mounted on its surface.
  • Electronic device 50 can have one type of semiconductor package, or multiple types of semiconductor packages, depending on the application. The different types of semiconductor packages are shown in FIG. 1 for purposes of illustration.
  • Electronic device 50 can be a stand-alone system that uses the semiconductor packages to perform one or more electrical functions.
  • electronic device 50 can be a subcomponent of a larger system.
  • electronic device 50 can be part of a cellular phone, personal digital assistant (PDA), digital video camera (DVC), or other electronic communication device.
  • PDA personal digital assistant
  • DVC digital video camera
  • electronic device 50 can be a graphics card, network interface card, or other signal processing card that can be inserted into a computer.
  • the semiconductor package can include microprocessors, memories, application specific integrated circuits (ASIC), logic circuits, analog circuits, RF circuits, discrete devices, or other semiconductor die or electrical components. Miniaturization and weight reduction are essential for these products to be accepted by the market. The distance between semiconductor devices must be decreased to achieve higher density.
  • PCB 52 provides a general substrate for structural support and electrical interconnect of the semiconductor packages mounted on the PCB.
  • Conductive signal traces 54 are formed over a surface or within layers of PCB 52 using evaporation, electrolytic plating, electroless plating, screen printing, or other suitable metal deposition process. Signal traces 54 provide for electrical communication between each of the semiconductor packages, mounted components, and other external system components. Traces 54 also provide power and ground connections to each of the semiconductor packages.
  • a semiconductor device has two packaging levels.
  • First level packaging is a technique for mechanically and electrically attaching the semiconductor die to an intermediate carrier.
  • Second level packaging involves mechanically and electrically attaching the intermediate carrier to the PCB.
  • a semiconductor device may only have the first level packaging where the die is mechanically and electrically mounted directly to the PCB.
  • first level packaging including bond wire package 56 and flipchip 58
  • second level packaging including ball grid array (BGA) 60 , bump chip carrier (BCC) 62 , dual in-line package (DIP) 64 , land grid array (LGA) 66 , multi-chip module (MCM) 68 , quad flat non-leaded package (QFN) 70 , and quad flat package 72 .
  • BGA ball grid array
  • BCC bump chip carrier
  • DIP dual in-line package
  • LGA land grid array
  • MCM multi-chip module
  • QFN quad flat non-leaded package
  • quad flat package 72 quad flat package
  • electronic device 50 includes a single attached semiconductor package, while other embodiments call for multiple interconnected packages.
  • manufacturers can incorporate pre-made components into electronic devices and systems. Because the semiconductor packages include sophisticated functionality, electronic devices can be manufactured using cheaper components and a streamlined manufacturing process. The resulting devices are less likely to fail and less expensive to manufacture resulting in a lower cost for consumers.
  • FIGS. 2 a - 2 c show exemplary semiconductor packages.
  • FIG. 2 a illustrates further detail of DIP 64 mounted on PCB 52 .
  • Semiconductor die 74 includes an active region containing analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed within the die and are electrically interconnected according to the electrical design of the die.
  • the circuit can include one or more transistors, diodes, inductors, capacitors, resistors, and other circuit elements formed within the active region of semiconductor die 74 .
  • Contact pads 76 are one or more layers of conductive material, such as aluminum (Al), copper (Cu), tin (Sn), nickel (Ni), gold (Au), or silver (Ag), and are electrically connected to the circuit elements formed within semiconductor die 74 .
  • semiconductor die 74 is mounted to an intermediate carrier 78 using a gold-silicon eutectic layer or adhesive material such as thermal epoxy or epoxy resin.
  • the package body includes an insulative packaging material such as polymer or ceramic.
  • Conductor leads 80 and bond wires 82 provide electrical interconnect between semiconductor die 74 and PCB 52 .
  • Encapsulant 84 is deposited over the package for environmental protection by preventing moisture and particles from entering the package and contaminating die 74 or bond wires 82 .
  • FIG. 2 b illustrates further detail of BCC 62 mounted on PCB 52 .
  • Semiconductor die 88 is mounted over carrier 90 using an underfill or epoxy-resin adhesive material 92 .
  • Bond wires 94 provide first level packaging interconnect between contact pads 96 and 98 .
  • Molding compound or encapsulant 100 is deposited over semiconductor die 88 and bond wires 94 to provide physical support and electrical isolation for the device.
  • Contact pads 102 are formed over a surface of PCB 52 using a suitable metal deposition process such as electrolytic plating or electroless plating to prevent oxidation.
  • Contact pads 102 are electrically connected to one or more conductive signal traces 54 in PCB 52 .
  • Bumps 104 are formed between contact pads 98 of BCC 62 and contact pads 102 of PCB 52 .
  • semiconductor die 58 is mounted face down to intermediate carrier 106 with a flipchip style first level packaging.
  • Active region 108 of semiconductor die 58 contains analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed according to the electrical design of the die.
  • the circuit can include one or more transistors, diodes, inductors, capacitors, resistors, and other circuit elements within active region 108 .
  • Semiconductor die 58 is electrically and mechanically connected to carrier 106 through bumps 110 .
  • BGA 60 is electrically and mechanically connected to PCB 52 with a BGA style second level packaging using bumps 112 .
  • Semiconductor die 58 is electrically connected to conductive signal traces 54 in PCB 52 through bumps 110 , signal lines 114 , and bumps 112 .
  • a molding compound or encapsulant 116 is deposited over semiconductor die 58 and carrier 106 to provide physical support and electrical isolation for the device.
  • the flipchip semiconductor device provides a short electrical conduction path from the active devices on semiconductor die 58 to conduction tracks on PCB 52 in order to reduce signal propagation distance, lower capacitance, and improve overall circuit performance.
  • the semiconductor die 58 can be mechanically and electrically connected directly to PCB 52 using flipchip style first level packaging without intermediate carrier 106 .
  • FIGS. 3 a - 3 b and 4 a - 4 m illustrate, in relation to FIGS. 1 and 2 a - 2 c , a process of forming a WLCSP with an RDL formed over an encapsulant, and a molded laser PoP (MLP) or conductive via formed through the encapsulant.
  • the MLP provides vertical interconnect and electrically connects to bumps partially exposed from the encapsulant.
  • FIG. 3 a shows a semiconductor wafer 120 with a base substrate material 122 , such as silicon, germanium, gallium arsenide, indium phosphide, or silicon carbide, for structural support.
  • a plurality of semiconductor die or components 124 is formed on wafer 120 separated by saw streets 126 as described above.
  • FIG. 3 b shows a cross-sectional view of a portion of semiconductor wafer 120 .
  • Each semiconductor die 124 has a back surface 128 and active surface 130 containing analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed within the die and electrically interconnected according to the electrical design and function of the die.
  • the circuit can include one or more transistors, diodes, and other circuit elements formed within active surface 130 to implement analog circuits or digital circuits, such as digital signal processor (DSP), ASIC, memory, or other signal processing circuit.
  • DSP digital signal processor
  • Semiconductor die 124 can also contain IPDs, such as inductors, capacitors, and resistors, for RF signal processing.
  • IPDs such as inductors, capacitors, and resistors, for RF signal processing.
  • Semiconductor die 124 can also be a flipchip type semiconductor die.
  • An electrically conductive layer 132 is formed over and extends above active surface 130 such that a top surface of conductive layer 132 creates an uneven surface, and has a non-planar topology, with respect to active surface 130 .
  • conductive layer 132 is coplanar with active surface 130 .
  • Conductive layer 132 is formed using PVD, CVD, electrolytic plating, electroless plating process, or other suitable metal deposition process.
  • Conductive layer 132 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material.
  • Conductive layer 132 operates as contact pads electrically connected to the circuits on active surface 130 .
  • FIG. 4 a shows a carrier or substrate 134 containing temporary or sacrificial base material such as silicon, polymer, beryllium oxide, or other suitable low-cost, rigid material for structural support.
  • An interface layer or double-sided tape 138 is formed over a top surface 136 of carrier 134 as an adhesive bonding film or etch-stop layer.
  • Back surface 128 of semiconductor wafer 120 is mounted to interface layer 138 and over carrier 134 .
  • an electrically conductive bump material is deposited over conductive layer 132 using an evaporation, electrolytic plating, electroless plating, ball drop, or screen printing process.
  • the bump material can be Al, Sn, Ni, Au, Ag, Pb, Bi, Cu, solder, and combinations thereof, with an optional flux solution.
  • the bump material can be eutectic Sn/Pb, high-lead solder, or lead-free solder.
  • the bump material is bonded to conductive layer 132 using a suitable attachment or bonding process. In one embodiment, the bump material is reflowed by heating the material above its melting point to form spherical balls or bumps 140 .
  • bumps 140 are reflowed a second time to improve electrical contact to conductive layer 132 .
  • the bumps can also be compression bonded to conductive layer 132 .
  • Bumps 140 represent one type of interconnect structure that can be formed over conductive layer 132 .
  • the interconnect structure can also use bond wires, conductive paste, stud bump, micro bump, or other electrical interconnect.
  • semiconductor wafer 120 is singulated through saw street 126 using a narrow saw blade or laser cutting tool 144 .
  • Narrow saw blade or laser cutting tool 144 penetrates to top surface 136 of carrier 134 and removes a portion of interface layer 138 , but does not singulate the carrier.
  • FIG. 4 d shows opening 146 in semiconductor wafer 120 remains after saw blade or laser cutting tool 144 has removed a portion of the semiconductor wafer. Opening 146 extends from active surface 130 through semiconductor wafer 120 to back surface 128 . Opening 146 also extends to top surface 136 of carrier 134 and includes an area previously occupied by the removed portion of interface layer 138 . Opening 146 separates semiconductor wafer 120 into individual semiconductor die 124 . In one embodiment, semiconductor die 124 are flipchip type semiconductor die. Alternatively, opening 146 can have an increased width, the opening being formed with a thick bladed saw, an etching saw, a water jet saw, or other suitable sawing or cutting method.
  • FIGS. 4 e and 4 f show another method of forming opening 146 with a width greater than 90 micrometers (um) using a narrow saw blade or laser cutting tool.
  • semiconductor wafer 120 is shown with semiconductor die 124 separated by opening 146 that is formed as a narrow opening of less than 90 um. Wafer 120 undergoes a wafer expansion step to increase the width of opening 146 .
  • FIG. 4 e shows semiconductor die 124 being pulled using a wafer expansion table as shown by directional arrows 150 .
  • the expansion table moves in two-dimension lateral directions, as shown by arrows 150 , to expand the width of opening 146 .
  • the expansion table moves substantially the same distance in the x-axis and y-axis within the tolerance of the table control to provide separation around a periphery of each die.
  • a width of opening 146 has been increased from a width of less than 90 um to a width greater than or equal to 90 um.
  • the separation among semiconductor die 124 is increased.
  • Semiconductor die 124 are located farther apart from one another after the expansion than before the expansion.
  • FIG. 4 g shows an encapsulant or molding compound 152 is deposited over carrier 134 , over semiconductor die 124 , and within opening 146 using a paste printing, compressive molding, transfer molding, liquid encapsulant molding, vacuum lamination, spin coating, or other suitable applicator.
  • Encapsulant 152 can be polymer composite material, such as epoxy resin with filler, epoxy acrylate with filler, or polymer with proper filler.
  • a first surface 154 of encapsulant 152 contacts top surface 136 of carrier 134 , a sidewall of semiconductor die 124 , active surface 130 of the semiconductor die, and a portion of conductive layer 132 .
  • a second surface 156 of encapsulant 152 is planar, substantially parallel to top surface 136 of carrier 134 , and is formed around a portion of bumps 140 .
  • Bumps 140 are partially embedded within encapsulant 152 , such that a portion of the bumps are devoid of the encapsulant.
  • An end portion of bumps 140 extends to a height of h 1 above second surface 156 of encapsulant 152 . In one embodiment, h 1 is greater than 20 um.
  • Encapsulant 152 is non-conductive and environmentally protects the semiconductor device from external elements and contaminants.
  • the formation of encapsulant 152 in contact with the sidewalls of semiconductor die 124 , and around an active surface 130 of the semiconductor die leaves back surface 128 of the semiconductor die devoid of encapsulant resulting in an exposed flipchip structure.
  • the exposed back surface 128 reduces overall package height as well as produces improved thermal characteristics for the package.
  • a plurality of vias 162 is formed in encapsulant 152 by deep reactive ion etching (DRIE) or laser drilling process.
  • DRIE deep reactive ion etching
  • Vias 162 are formed around a perimeter of semiconductor die 124 , and extend from second surface 156 through encapsulant 152 to first surface 154 and expose a portion of carrier 134 .
  • a plurality of conductive vias or MLP 166 is formed by filling the plurality of vias 162 with Al, Cu, Sn, Ni, Au, Ag, titanium (Ti), tungsten (W), poly-silicon, or other suitable electrically conductive material using PVD, CVD, electrolytic plating, electroless plating process, or other suitable metal deposition process.
  • Conductive vias 166 have a first surface 168 in contact with top surface 136 of carrier 134 , and a second surface 170 substantially coplanar with second surface 156 of encapsulant 152 .
  • a plurality of stud bumps or solder balls can be formed within vias 162 .
  • Conductive vias 166 provide electrical vertical interconnect to opposing sides of the later formed WLCSP. Conductive vias 166 provide a reduced package profile by omitting wire bonding which tends to increase package height. Additionally, the formation of conductive vias 166 in encapsulant 152 and not over conductive layer 132 avoids possible damage resulting from forming and plating a conductive via directly on a contact pad of a semiconductor die.
  • an electrically conductive layer or RDL 174 is conformally applied over conductive vias 166 and encapsulant 152 , using a patterning and metal deposition process such as PVD, CVD, sputtering, electrolytic plating, and electroless plating.
  • Conductive layer 174 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material.
  • Conductive layer 174 can be one or more conductive layers including an adhesion layer, barrier layer, and seed or wetting layer.
  • Conductive layer 174 has a thickness less than a distance between second surface 156 of encapsulant 152 and an end portion of bump 140 . Thus, the thickness of conductive layer 174 is less than h 1 .
  • Conductive layer 174 electrically connects to second surface 170 of conductive via 166 and to a portion of bumps 140 free from encapsulant 152 .
  • Conductive layer 174 can be formed after conductive vias 166 are formed, or alternatively, the conductive layer can be formed with the conductive vias.
  • conductive via 166 is formed in encapsulant 152 in a periphery of semiconductor die 124 , and electrically connects to the semiconductor die through conductive layer 174 and bumps 140 .
  • the risk of damaging conductive layer 132 in establishing vertical interconnect through the package is reduced by indirectly connecting conductive via 166 to conductive layer 132 through conductive layer 174 and bumps 140 .
  • carrier 134 is removed by chemical etching, mechanical peel-off, CMP, mechanical grinding, thermal bake, laser scanning, or wet stripping to expose first surface 168 of conductive vias 166 .
  • the plurality of semiconductor die 124 is singulated through encapsulant 152 at saw street 176 using a saw blade or laser cutting tool 178 .
  • Saw street 176 is in a periphery region around semiconductor die 124 and between conductive via 166 .
  • FIG. 41 shows a cross sectional view of a semiconductor die 124 having been singulated through saw street 176 to form a WLCSP 180 .
  • FIG. 4 m shows a plan view of WLCSP 180 .
  • Second surface 156 of encapsulant 152 exposes a portion of bumps 140 and second surface 170 of conductive vias 166 .
  • Conductive layer 174 extends between and electrically connects exposed portions of bumps 140 and second surface 170 of conductive vias 166 to provide through vertical interconnect between opposing surfaces of WLCSP 180 .
  • WLCSP 180 includes conductive layer or RDL 174 formed over encapsulant 152 , and conductive via or MLP 166 formed through the encapsulant for vertical interconnect.
  • Back surface 128 of semiconductor die 124 is devoid of encapsulant, which results in an exposed flipchip structure. The exposed back surface 128 reduces overall package height and produces improved thermal characteristics for the package.
  • the use of encapsulant 152 also eliminates the need for an additional underfill step.
  • Opening 146 in which encapsulant 152 is formed, has a width less than 90 um that facilitates advanced nodes.
  • conductive vias 166 provides electrical vertical interconnect to opposing sides of WLCSP 180 and allows for manufacture at the wafer level, unlike conventional multi-stack flipchip designs that include wire bonds. Additionally, by omitting wire bonds in favor of conductive vias 166 , the package profile is reduced. By forming conductive vias 166 in encapsulant 152 and not over conductive layer 132 , possible damage resulting from forming and plating a conductive via directly on a contact pad of a semiconductor die is avoided. Furthermore, WLCSP 180 facilitates the stacking of a number of similar WLCSPs, or a multi stack with devices including different functions, without limiting the I/O count of the devices within the WLCSP.
  • FIG. 5 shows another embodiment of WLCSP 180 , continuing from FIG. 41 .
  • WLCSP 180 forms a portion of a larger PoP WLCSP 186 .
  • PoP 186 includes a bond wire WLCSP 188 mounted over and electrically connected to WLCSP 180 with bumps 190 .
  • Bumps 190 are formed by depositing electrically conductive bump material between first surface 168 of conductive via 166 and WLCSP 188 using an evaporation, electrolytic plating, electroless plating, ball drop, or screen printing process.
  • the bump material can be Al, Sn, Ni, Au, Ag, Pb, Bi, Cu, solder, and combinations thereof, with an optional flux solution.
  • the bump material can be eutectic Sn/Pb, high-lead solder, or lead-free solder.
  • the bump material is bonded between first surface 168 of conductive via 166 and WLCSP 188 using a suitable attachment or bonding process.
  • the bump material is reflowed by heating the material above its melting point to form spherical balls or bumps 190 .
  • bumps 190 are reflowed a second time to improve electrical contact to first surface 168 of conductive via 166 and WLCSP 188 .
  • bumps 190 are formed over an under bump metallization (UBM) having a wetting layer, barrier layer, and adhesive layer.
  • UBM under bump metallization
  • the bumps can also be compression bonded, and represent one type of interconnect structure that can be formed between first surface 168 of conductive via 166 and WLCSP 188 .
  • the interconnect structure can also use bond wires, conductive paste, stud bump, micro bump, or other electrical interconnect.
  • WLCSP 188 includes a semiconductor die 194 having a substrate with an active region containing analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed within the die and electrically interconnected according to the electrical design and function of the die.
  • the circuit can include one or more transistors, diodes, and other circuit elements formed within its active surface to implement baseband analog circuits or digital circuits, such as DSP, ASIC, memory, or other signal processing circuit.
  • Semiconductor die 194 can also contain IPDs, such as inductors, capacitors, and resistors, for RF signal processing.
  • Interconnect structure 196 includes an electrically conductive layer or RDL 198 formed using a patterning and metal deposition process such as sputtering, electrolytic plating, and electroless plating.
  • Conductive layer 198 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material.
  • Conductive layer 198 is electrically connected to bumps 190 and semiconductor die 194 .
  • Other portions of conductive layer 198 can be electrically common or electrically isolated depending on the design and function of semiconductor die 124 .
  • Interconnect structure 196 further includes an insulation or passivation layer 200 formed around conductive layer 198 for electrical isolation.
  • the insulation layer 200 contains one or more layers of silicon dioxide (SiO 2 ), silicon nitride (Si 3 N 4 ), silicon oxynitride (SiON), tantalum pentoxide (Ta 2 O 5 ), aluminum oxide (Al 2 O 3 ), or other material having similar insulating and structural properties. Insulation layer 200 is formed using PVD, CVD, printing, spin coating, spray coating, sintering or thermal oxidation. Portions of insulation layer 200 are removed by an etching process to expose conductive layer 198 for electrical connection to bumps 190 and bond wires 204 .
  • Bond wires 204 are formed between semiconductor die 194 and conductive layer 198 within interconnect structure 196 to electrically connect semiconductor die 194 to bumps 190 and WLCSP 180 .
  • Bond wires are a low-cost, stable technology for forming the electrical connection between interconnect structure 196 and semiconductor die 194 .
  • An encapsulant or molding compound 206 is deposited over interconnect structure 196 , semiconductor die 194 , and around bond wires 204 using a paste printing, compressive molding, transfer molding, liquid encapsulant molding, vacuum lamination, or other suitable applicator.
  • Encapsulant 206 can be polymer composite material, such as epoxy resin with filler, epoxy acrylate with filler, or polymer with proper filler.
  • Encapsulant 206 is non-conductive, provides physical support, and environmentally protects WLCSP 188 from external elements and contaminants.
  • FIG. 6 shows another embodiment of a WLCSP including an RDL formed over an encapsulant, and a MLP or conductive via formed through the encapsulant.
  • the MLP provides vertical interconnect and electrically connects to bumps partially exposed from the encapsulant.
  • the RDL contacts a portion of the bumps exposed from the encapsulant.
  • WLCSP 210 shows a chip stack application including first and second semiconductor die.
  • First semiconductor die 214 has a back surface 216 and active surface 218 .
  • Second semiconductor die 220 has a back surface 222 and active surface 224 .
  • Active surfaces 218 and 224 contain analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed within the die and electrically interconnected according to the electrical design and function of the die.
  • the circuit can include one or more transistors, diodes, and other circuit elements formed within active surfaces 218 and 224 to implement analog circuits or digital circuits, such as DSP, ASIC, memory, or other signal processing circuit.
  • Semiconductor die 214 and 220 can also contain IPDs, such as inductors, capacitors, and resistors, for RF signal processing.
  • IPDs such as inductors, capacitors, and resistors
  • An interface layer or double-sided tape 228 contacts back surface 216 of the first semiconductor die 214 as an adhesive bonding film or etch-stop layer.
  • a die attach adhesive 230 contacts back surface 222 of the second semiconductor die 220 .
  • the second semiconductor die 220 is mounted to the first semiconductor die 214 with die attach adhesive 230 .
  • Back surface 222 of second semiconductor die 220 is mounted to active surface 218 of first semiconductor die 214 with die attach adhesive 230 .
  • second semiconductor die 220 has an area less than an area of first semiconductor die 214 , the second semiconductor die covers less than the entire area of active surface 218 of first semiconductor die 214 . Accordingly, a portion of active surface 218 in a periphery of first semiconductor die 214 is exposed with respect to second semiconductor die 220 .
  • An electrically conductive layer 234 is formed over and extends above active surface 224 such that a top surface of conductive layer 234 creates an uneven surface, and has a non-planar topology, with respect to active surface 224 .
  • conductive layer 234 is coplanar with active surface 224 .
  • Conductive layer 234 is formed using PVD, CVD, electrolytic plating, electroless plating process, or other suitable metal deposition process.
  • Conductive layer 234 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material.
  • Conductive layer 234 operates as contact pads electrically connected to the circuits on active surface 224 .
  • An electrically conductive bump material is deposited over conductive layer 234 using an evaporation, electrolytic plating, electroless plating, ball drop, or screen printing process.
  • the bump material can be Al, Sn, Ni, Au, Ag, Pb, Bi, Cu, solder, and combinations thereof, with an optional flux solution.
  • the bump material can be eutectic Sn/Pb, high-lead solder, or lead-free solder.
  • the bump material is bonded to conductive layer 234 using a suitable attachment or bonding process. In one embodiment, the bump material is reflowed by heating the material above its melting point to form spherical balls or bumps 236 .
  • bumps 236 are reflowed a second time to improve electrical contact to conductive layer 234 .
  • the bumps can also be compression bonded to conductive layer 234 .
  • Bumps 236 represent one type of interconnect structure that can be formed over conductive layer 234 .
  • the interconnect structure can also use bond wires, conductive paste, stud bump, micro bump, or other electrical interconnect.
  • An encapsulant or molding compound 238 is deposited over first semiconductor die 214 , and second semiconductor die 220 using a paste printing, compressive molding, transfer molding, liquid encapsulant molding, vacuum lamination, spin coating, or other suitable applicator.
  • Encapsulant 238 can be polymer composite material, such as epoxy resin with filler, epoxy acrylate with filler, or polymer with proper filler.
  • a first surface 240 of encapsulant 238 contacts sidewalls of first and second semiconductor die 214 and 220 , active surfaces 218 and 224 , and a portion of conductive layer 234 .
  • a second surface 242 of encapsulant 238 is planar, substantially parallel to back surface 216 of first semiconductor die 214 , and is formed around a portion of bumps 236 .
  • Bumps 236 are partially embedded within encapsulant 238 , leaving a portion of the bumps free of the encapsulant. An end portion of the bumps 236 extend above second surface 242 of encapsulant 238 .
  • Encapsulant 238 is non-conductive and environmentally protects the semiconductor device from external elements and contaminants.
  • a plurality of first conductive vias or MLP 244 is formed by first forming a plurality of first vias in encapsulant 238 by DRIE or laser drilling process.
  • the plurality of first vias is formed around the perimeter of first semiconductor die 214 , and extends from second surface 242 through encapsulant 238 to first surface 240 .
  • the plurality of first vias is then filled with Al, Cu, Sn, Ni, Au, Ag, Ti, W, poly-silicon, or other suitable electrically conductive material using PVD, CVD, electrolytic plating, electroless plating process, or other suitable metal deposition process to form first conductive vias 244 .
  • First conductive vias 244 have a first surface 246 substantially coplanar with first surface 240 of encapsulant 238 , and a second surface 248 substantially coplanar with second surface 242 of encapsulant 238 .
  • a plurality of stud bumps or solder balls can be formed within the plurality of first vias.
  • First conductive vias 244 provide electrical vertical interconnect to opposing sides of WLCSP 210 .
  • First conductive vias 244 provide a reduced package profile by omitting wire bonding which tends to increase package profile. Additionally, the formation of first conductive vias 244 in encapsulant 238 and not over conductive layer 234 avoids possible damage resulting from forming and plating a conductive via directly on a contact pad of a semiconductor die.
  • a plurality of second conductive vias or MLP 250 is formed by first forming a plurality of second vias in encapsulant 238 by DRIE or laser drilling process.
  • the plurality of second vias is formed around the perimeter of second semiconductor die 220 , and extends from second surface 242 through encapsulant 238 to active surface 218 of first semiconductor die 214 .
  • the plurality of second vias is then filled with Al, Cu, Sn, Ni, Au, Ag, Ti, W, poly-silicon, or other suitable electrically conductive material using PVD, CVD, electrolytic plating, electroless plating process, or other suitable metal deposition process to form second conductive vias 250 .
  • Second conductive vias 250 have a first surface 252 that contacts active surface 218 of first semiconductor die 214 , and a second surface 254 substantially coplanar with second surface 242 of encapsulant 238 .
  • the plurality of second conductive vias 250 has a length less than a length of the plurality of first conductive vias 244 .
  • a plurality of stud bumps or solder balls can be formed within the plurality of second vias.
  • Second conductive vias 250 provide electrical vertical interconnect to first semiconductor die 214 .
  • Second conductive vias 250 also provide a reduced package profile by omitting wire bonding which tends to increase package profile.
  • An electrically conductive layer or RDL 258 is conformally applied over first conductive vias 244 , second conductive vias 250 , and encapsulant 238 , using a patterning and metal deposition process such as PVD, CVD, sputtering, electrolytic plating, and electroless plating.
  • Conductive layer 258 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material.
  • Conductive layer 258 can be one or more conductive layers including an adhesion layer, barrier layer, and seed or wetting layer.
  • Conductive layer 258 has a thickness less than a distance between second surface 242 of encapsulant 238 and an end portion of bumps 236 .
  • Conductive layer 258 electrically connects to second surface 248 of first conductive via 244 , second surface 254 of second conductive via 250 , and to a portion of bumps 236 free from encapsulant 238 , thereby providing electrical interconnect between first semiconductor die 214 , second semiconductor die 220 , and semiconductor devices external to WLCSP 210 .
  • FIG. 7 shows another embodiment of a WLCSP including an RDL formed over an encapsulant, and a MLP or conductive via formed through the encapsulant.
  • the MLP provides vertical interconnect and electrically connects to bumps partially exposed from the encapsulant.
  • the RDL contacts a portion of the bumps exposed from the encapsulant.
  • PoP WLCSP 270 shows a dual-sided application including a first WLCSP 180 , from FIG. 41 , mounted to a second WLCSP 272 similar to WLCSP 180 .
  • WLCSP 272 includes a semiconductor die 276 having a substrate with an active region containing analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed within the die and electrically interconnected according to the electrical design and function of the die.
  • the circuit can include one or more transistors, diodes, and other circuit elements formed within its active surface to implement baseband analog circuits or digital circuits, such as DSP, ASIC, memory, or other signal processing circuit.
  • Semiconductor die 276 can also contain IPDs, such as inductors, capacitors, and resistors, for RF signal processing.
  • Semiconductor die 276 is mounted to semiconductor die 124 , back surface 278 to back surface 128 , with die attach adhesive 274 .
  • Semiconductor die 124 has an area that is substantially equal to an area of semiconductor die 276 , such that sidewalls of semiconductor die 124 substantially align with sidewalls of semiconductor die 276 .
  • semiconductor die 124 and 276 can have areas of different sizes.
  • semiconductor die 124 can have an area less than an area of semiconductor die 276 , such that semiconductor die 124 covers less than the entire area of bottom surface 278 of semiconductor die 276 .
  • semiconductor die 124 can have an area greater than an area of semiconductor die 276 , such that semiconductor die 276 covers less than the entire area of bottom surface 128 of semiconductor die 124 .
  • the semiconductor die are configured for the subsequent alignment of later formed conductive vias in the periphery of the semiconductor die.
  • WLCSP 272 includes an electrically conductive layer 284 formed over and extending above active surface 280 such that a top surface of conductive layer 284 creates an uneven surface, and has a non-planar topology, with respect to active surface 280 .
  • conductive layer 284 is coplanar with active surface 280 .
  • Conductive layer 284 is formed using PVD, CVD, electrolytic plating, electroless plating process, or other suitable metal deposition process.
  • Conductive layer 284 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material.
  • Conductive layer 284 operates as contact pads electrically connected to the circuits on active surface 280 .
  • An electrically conductive bump material is deposited over conductive layer 284 using an evaporation, electrolytic plating, electroless plating, ball drop, or screen printing process.
  • the bump material can be Al, Sn, Ni, Au, Ag, Pb, Bi, Cu, solder, and combinations thereof, with an optional flux solution.
  • the bump material can be eutectic Sn/Pb, high-lead solder, or lead-free solder.
  • the bump material is bonded to conductive layer 284 using a suitable attachment or bonding process. In one embodiment, the bump material is reflowed by heating the material above its melting point to form spherical balls or bumps 286 .
  • bumps 286 are reflowed a second time to improve electrical contact to conductive layer 284 .
  • the bumps can also be compression bonded to conductive layer 284 .
  • Bumps 286 represent one type of interconnect structure that can be formed over conductive layer 284 .
  • the interconnect structure can also use bond wires, conductive paste, stud bump, micro bump, or other electrical interconnect.
  • An encapsulant or molding compound 290 contacts encapsulant 152 of WLCSP 180 , and is deposited over semiconductor die 276 using a paste printing, compressive molding, transfer molding, liquid encapsulant molding, vacuum lamination, spin coating, or other suitable applicator.
  • Encapsulant 290 can be polymer composite material, such as epoxy resin with filler, epoxy acrylate with filler, or polymer with proper filler.
  • a first surface 292 of encapsulant 290 contacts sidewalls of semiconductor die 276 , active surface 280 , and a portion of conductive layer 284 .
  • a second surface 294 of encapsulant 290 is planar, substantially parallel to back surface 278 of semiconductor die 276 , and is formed around a portion of bumps 286 .
  • Bumps 286 are partially embedded within encapsulant 290 , leaving a portion of the bumps free of the encapsulant. An end portion of the bumps 286 extend above second surface 294 of encapsulant 290 .
  • Encapsulant 290 is non-conductive and environmentally protects semiconductor die 276 from external elements and contaminants.
  • a plurality of conductive vias or MLP 298 is formed by forming a plurality of vias in encapsulant 290 by DRIE or laser drilling process.
  • the plurality of vias is formed around the perimeter of semiconductor die 276 , and extend from second surface 294 through encapsulant 290 to first surface 292 .
  • the plurality of vias is then filled with Al, Cu, Sn, Ni, Au, Ag, Ti, W, poly-silicon, or other suitable electrically conductive material using PVD, CVD, electrolytic plating, electroless plating process, or other suitable metal deposition process to form conductive vias 298 .
  • a plurality of stud bumps or solder balls can be formed within the plurality of vias to form conductive vias 298 .
  • Conductive vias 298 have a first surface 300 that aligns with, and electrically connects to, conductive vias 166 of WLCSP 180 .
  • Conductive vias 298 have a second surface 302 that is coplanar with second surface 294 of encapsulant 290 . Therefore, conductive vias 298 provide electrical vertical interconnect to opposing sides of WLCSP 272 .
  • Conductive vias 298 also provide a reduced package profile by omitting wire bonding which tends to increase package profile. The formation of conductive vias 298 in encapsulant 290 and not over conductive layer 284 avoids possible damage resulting from forming and plating a conductive via directly on a contact pad of a semiconductor die.
  • An electrically conductive layer or RDL 306 is conformally applied over second surface 302 of conductive vias 298 and second surface 294 of encapsulant 290 , using a patterning and metal deposition process such as PVD, CVD, sputtering, electrolytic plating, and electroless plating.
  • Conductive layer 306 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material.
  • Conductive layer 306 can be one or more conductive layers including an adhesion layer, barrier layer, and seed or wetting layer.
  • Conductive layer 306 has a thickness less than a distance between second surface 294 of encapsulant 290 and an end portion of bumps 286 .
  • Conductive layer 306 electrically connects to second surface 302 of conductive via 298 and to a portion of bumps 286 free from encapsulant 290 , thereby providing electrical interconnect among semiconductor die 124 , semiconductor die 276 , and semiconductor devices external to WLCSP 270 .
  • FIG. 8 shows another PoP WLCSP 310 , similar to PoP 186 from FIG. 5 .
  • PoP 310 has a thermal interface material (TIM) 314 , and heat spreader or heat sink 316 .
  • TIM 314 is a thermal epoxy, thermal epoxy resin, or thermal conductive paste that is formed on back surface 128 of semiconductor die 124 .
  • Heat spreader 316 is mounted to semiconductor die 124 with TIM 314 .
  • Heat spreader 316 can be Cu, Al, or other material with high thermal conductivity.
  • TIM 314 and heat spreader 316 form a thermally conductive path that aids with distribution and dissipation of heat generated by semiconductor die 124 and increases the thermal performance of WLCSP 310 .
  • FIG. 9 shows another PoP WLCSP 320 , similar to PoP 186 from FIG. 5 .
  • PoP 320 has a conductive layer or RDL 322 that is conformally applied over back surface 128 , interface layer 138 , encapsulant 152 , and conductive vias 166 .
  • Conductive layer 322 is formed using a patterning and metal deposition process such as PVD, CVD, sputtering, electrolytic plating, and electroless plating.
  • Conductive layer 322 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material.
  • Conductive layer 322 can be one or more conductive layers including an adhesion layer, barrier layer, and seed or wetting layer.
  • Conductive layer 322 contacts and electrically connects to first surface 168 of conductive via 166 and to bumps 190 .
  • interconnect structure 196 and bumps 190 form a BGA including multiple interconnect points that are electrically connected to conductive layer 322 according to the electrical design of PoP 320 .
  • semiconductor die 194 is electrically connected to conductive via 166 , conductive layer 174 , bumps 140 , semiconductor die 124 , and semiconductor devices external to WLCSP 320 .

Abstract

A semiconductor device has a carrier. A semiconductor wafer including a semiconductor die is mounted to the carrier with an active surface of the semiconductor die facing away from the carrier. A plurality of bumps is formed over the active surface of the semiconductor die. An opening is formed in a periphery of the semiconductor die. An encapsulant is deposited over the carrier and semiconductor die, in the opening, and around the plurality of bumps such that an exposed portion of the plurality of bumps is devoid of encapsulant. A conductive via is formed through the encapsulant, within the opening, and extends to the carrier. A conductive layer is formed over the encapsulant and electrically connects to the conductive via and the exposed portion of the plurality of bumps. The carrier is removed to expose an end of the conductive via.

Description

    CLAIM TO DOMESTIC PRIORITY
  • The present application is a division of U.S. patent application Ser. No. 13/035,617, filed Feb. 25, 2011, which application is incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention relates in general to semiconductor devices and, more particularly, to a semiconductor device and method of forming a wafer level chip scale package (WLCSP) using a conductive via and an exposed bump.
  • BACKGROUND OF THE INVENTION
  • Semiconductor devices are commonly found in modern electronic products. Semiconductor devices vary in the number and density of electrical components. Discrete semiconductor devices generally contain one type of electrical component, e.g., light emitting diode (LED), small signal transistor, resistor, capacitor, inductor, and power metal oxide semiconductor field effect transistor (MOSFET). Integrated semiconductor devices typically contain hundreds to millions of electrical components. Examples of integrated semiconductor devices include microcontrollers, microprocessors, charged-coupled devices (CCDs), solar cells, and digital micro-mirror devices (DMDs).
  • Semiconductor devices perform a wide range of functions such as signal processing, high-speed calculations, transmitting and receiving electromagnetic signals, controlling electronic devices, transforming sunlight to electricity, and creating visual projections for television displays. Semiconductor devices are found in the fields of entertainment, communications, power conversion, networks, computers, and consumer products. Semiconductor devices are also found in military applications, aviation, automotive, industrial controllers, and office equipment.
  • Semiconductor devices exploit the electrical properties of semiconductor materials. The atomic structure of semiconductor material allows its electrical conductivity to be manipulated by the application of an electric field or base current or through the process of doping. Doping introduces impurities into the semiconductor material to manipulate and control the conductivity of the semiconductor device.
  • A semiconductor device contains active and passive electrical structures. Active structures, including bipolar and field effect transistors, control the flow of electrical current. By varying levels of doping and application of an electric field or base current, the transistor either promotes or restricts the flow of electrical current. Passive structures, including resistors, capacitors, and inductors, create a relationship between voltage and current necessary to perform a variety of electrical functions. The passive and active structures are electrically connected to form circuits, which enable the semiconductor device to perform high-speed calculations and other useful functions.
  • Semiconductor devices are generally manufactured using two complex manufacturing processes, i.e., front-end manufacturing, and back-end manufacturing, each involving potentially hundreds of steps. Front-end manufacturing involves the formation of a plurality of die on the surface of a semiconductor wafer. Each die is typically identical and contains circuits formed by electrically connecting active and passive components. The term “semiconductor die” as used herein refers to both the singular and plural form of the word, and accordingly can refer to both a single semiconductor device and multiple semiconductor devices. Back-end manufacturing involves singulating individual die from the finished wafer and packaging the die to provide structural support and environmental isolation.
  • One goal of semiconductor manufacturing is to produce smaller semiconductor devices. Smaller devices typically consume less power, have higher performance, and can be produced more efficiently. In addition, smaller semiconductor devices have a smaller footprint, which is desirable for smaller end products. A smaller die size can be achieved by improvements in the front-end process resulting in die with smaller, higher density active and passive components. Back-end processes may result in semiconductor device packages with a smaller footprint by improvements in electrical interconnection and packaging materials.
  • Another goal of semiconductor manufacturing is to produce semiconductor devices with adequate heat dissipation. High frequency semiconductor devices generally generate more heat. Without effective heat dissipation, the generated heat can reduce performance, decrease reliability, and reduce the useful lifetime of the semiconductor device.
  • Most if not all WLCSPs require a z-direction electrical interconnect structure for signal routing and package integration. Conventional WLCSP z-direction electrical interconnect structures exhibit one or more limitations. In one example, a conventional WLCSP contains a flipchip type semiconductor die and encapsulant formed over the die. An interconnect structure is typically formed over, around, and through the semiconductor die and encapsulant for z-direction vertical electrical interconnect. The flipchip semiconductor die is electrically connected to the interconnect structure with bumps or vias. When the vias are formed and plated directly on a pad of the semiconductor die, the semiconductor die pad can be damaged. Furthermore, the encapsulant and bump interconnect makes package stacking difficult to achieve with fine pitch or high input/output (I/O) count electrical interconnect. In addition, wire bond type semiconductor die are also difficult to stack without dramatically increasing package height. The use of underfill material in packaging the semiconductor die also increases package height.
  • SUMMARY OF THE INVENTION
  • A need exists for a simple and cost effective WLCSP interconnect structure for applications requiring low profile packaging with vertical package integration and good thermal performance. Accordingly, in one embodiment, the present invention is a semiconductor device comprising a semiconductor wafer including a plurality of first semiconductor die comprising an active surface. A plurality of bumps is formed over the active surface of the first semiconductor die. An encapsulant is deposited around and over the first semiconductor die including around the bumps. A first conductive via is formed through the encapsulant. A conductive layer is formed over the encapsulant between the first conductive via and bumps.
  • In another embodiment, the present invention is a semiconductor device comprising a first semiconductor die and plurality of bumps formed over a first surface of the first semiconductor die. An encapsulant is deposited around the first semiconductor die and bumps. A first conductive via is formed through the encapsulant. A conductive layer is formed over the encapsulant between the first conductive via and bumps.
  • In another embodiment, the present invention is a semiconductor device comprising a first semiconductor die and first interconnect structure formed over a first surface of the first semiconductor die. An encapsulant is deposited around and over the first semiconductor die including around a first portion of the first interconnect structure while leaving a second portion of the first interconnect structure devoid of the encapsulant.
  • In another embodiment, the present invention is a semiconductor device comprising a first semiconductor die and interconnect structure formed over a first surface of the first semiconductor die. An encapsulant is deposited around the first semiconductor die and around a first portion of the interconnect structure while exposing a second portion of the interconnect structure.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a PCB with different types of packages mounted to its surface;
  • FIGS. 2 a-2 c illustrate further detail of the semiconductor packages mounted to the PCB;
  • FIGS. 3 a and 3 b illustrate a semiconductor wafer with a plurality of semiconductor die separated by saw streets;
  • FIGS. 4 a-4 m illustrate a process of forming WLCSP with conductive via and an exposed bump;
  • FIG. 5 illustrates an embodiment of a package on package (PoP) WLCSP including a WLCSP with conductive via and an exposed bump;
  • FIG. 6 illustrates an embodiment of a WLCSP with conductive via and an exposed bump including multiple semiconductor die;
  • FIG. 7 illustrates an embodiment of WLCSPs with conductive via and an exposed bump stacked back to back to form a PoP WLCSP;
  • FIG. 8 illustrates an embodiment of a PoP WLCSP including a WLCSP with conductive via and an exposed bump having a heat sink; and
  • FIG. 9 illustrates an embodiment of a PoP WLCSP including a WLCSP with conductive via and an exposed bump having a redistribution layer (RDL).
  • DETAILED DESCRIPTION OF THE DRAWINGS
  • The present invention is described in one or more embodiments in the following description with reference to the figures, in which like numerals represent the same or similar elements. While the invention is described in terms of the best mode for achieving the invention's objectives, it will be appreciated by those skilled in the art that it is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims and their equivalents as supported by the following disclosure and drawings.
  • Semiconductor devices are generally manufactured using two complex manufacturing processes: front-end manufacturing and back-end manufacturing. Front-end manufacturing involves the formation of a plurality of die on the surface of a semiconductor wafer. Each die on the wafer contains active and passive electrical components, which are electrically connected to form functional electrical circuits. Active electrical components, such as transistors and diodes, have the ability to control the flow of electrical current. Passive electrical components, such as capacitors, inductors, resistors, and transformers, create a relationship between voltage and current necessary to perform electrical circuit functions.
  • Passive and active components are formed over the surface of the semiconductor wafer by a series of process steps including doping, deposition, photolithography, etching, and planarization. Doping introduces impurities into the semiconductor material by techniques such as ion implantation or thermal diffusion. The doping process modifies the electrical conductivity of semiconductor material in active devices, transforming the semiconductor material into an insulator, conductor, or dynamically changing the semiconductor material conductivity in response to an electric field or base current. Transistors contain regions of varying types and degrees of doping arranged as necessary to enable the transistor to promote or restrict the flow of electrical current upon the application of the electric field or base current.
  • Active and passive components are formed by layers of materials with different electrical properties. The layers can be formed by a variety of deposition techniques determined in part by the type of material being deposited. For example, thin film deposition can involve chemical vapor deposition (CVD), physical vapor deposition (PVD), electrolytic plating, and electroless plating processes. Each layer is generally patterned to form portions of active components, passive components, or electrical connections between components.
  • The layers can be patterned using photolithography, which involves the deposition of light sensitive material, e.g., photoresist, over the layer to be patterned. A pattern is transferred from a photomask to the photoresist using light. In one embodiment, the portion of the photoresist pattern subjected to light is removed using a solvent, exposing portions of the underlying layer to be patterned. In another embodiment, the portion of the photoresist pattern not subjected to light, the negative photoresist, is removed using a solvent, exposing portions of the underlying layer to be patterned. The remainder of the photoresist is removed, leaving behind a patterned layer. Alternatively, some types of materials are patterned by directly depositing the material into the areas or voids formed by a previous deposition/etch process using techniques such as electroless and electrolytic plating.
  • Depositing a thin film of material over an existing pattern can exaggerate the underlying pattern and create a non-uniformly flat surface. A uniformly flat surface is required to produce smaller and more densely packed active and passive components. Planarization can be used to remove material from the surface of the wafer and produce a uniformly flat surface. Planarization involves polishing the surface of the wafer with a polishing pad. An abrasive material and corrosive chemical are added to the surface of the wafer during polishing. The combined mechanical action of the abrasive and corrosive action of the chemical removes any irregular topography, resulting in a uniformly flat surface.
  • Back-end manufacturing refers to cutting or singulating the finished wafer into the individual die and then packaging the die for structural support and environmental isolation. To singulate the die, the wafer is scored and broken along non-functional regions of the wafer called saw streets or scribes. The wafer is singulated using a laser cutting tool or saw blade. After singulation, the individual die are mounted to a package substrate that includes pins or contact pads for interconnection with other system components. Contact pads formed over the semiconductor die are then connected to contact pads within the package. The electrical connections can be made with solder bumps, stud bumps, conductive paste, or wirebonds. An encapsulant or other molding material is deposited over the package to provide physical support and electrical isolation. The finished package is then inserted into an electrical system and the functionality of the semiconductor device is made available to the other system components.
  • FIG. 1 illustrates electronic device 50 having a chip carrier substrate or printed circuit board (PCB) 52 with a plurality of semiconductor packages mounted on its surface. Electronic device 50 can have one type of semiconductor package, or multiple types of semiconductor packages, depending on the application. The different types of semiconductor packages are shown in FIG. 1 for purposes of illustration.
  • Electronic device 50 can be a stand-alone system that uses the semiconductor packages to perform one or more electrical functions. Alternatively, electronic device 50 can be a subcomponent of a larger system. For example, electronic device 50 can be part of a cellular phone, personal digital assistant (PDA), digital video camera (DVC), or other electronic communication device. Alternatively, electronic device 50 can be a graphics card, network interface card, or other signal processing card that can be inserted into a computer. The semiconductor package can include microprocessors, memories, application specific integrated circuits (ASIC), logic circuits, analog circuits, RF circuits, discrete devices, or other semiconductor die or electrical components. Miniaturization and weight reduction are essential for these products to be accepted by the market. The distance between semiconductor devices must be decreased to achieve higher density.
  • In FIG. 1, PCB 52 provides a general substrate for structural support and electrical interconnect of the semiconductor packages mounted on the PCB. Conductive signal traces 54 are formed over a surface or within layers of PCB 52 using evaporation, electrolytic plating, electroless plating, screen printing, or other suitable metal deposition process. Signal traces 54 provide for electrical communication between each of the semiconductor packages, mounted components, and other external system components. Traces 54 also provide power and ground connections to each of the semiconductor packages.
  • In some embodiments, a semiconductor device has two packaging levels. First level packaging is a technique for mechanically and electrically attaching the semiconductor die to an intermediate carrier. Second level packaging involves mechanically and electrically attaching the intermediate carrier to the PCB. In other embodiments, a semiconductor device may only have the first level packaging where the die is mechanically and electrically mounted directly to the PCB.
  • For the purpose of illustration, several types of first level packaging, including bond wire package 56 and flipchip 58, are shown on PCB 52. Additionally, several types of second level packaging, including ball grid array (BGA) 60, bump chip carrier (BCC) 62, dual in-line package (DIP) 64, land grid array (LGA) 66, multi-chip module (MCM) 68, quad flat non-leaded package (QFN) 70, and quad flat package 72, are shown mounted on PCB 52. Depending upon the system requirements, any combination of semiconductor packages, configured with any combination of first and second level packaging styles, as well as other electronic components, can be connected to PCB 52. In some embodiments, electronic device 50 includes a single attached semiconductor package, while other embodiments call for multiple interconnected packages. By combining one or more semiconductor packages over a single substrate, manufacturers can incorporate pre-made components into electronic devices and systems. Because the semiconductor packages include sophisticated functionality, electronic devices can be manufactured using cheaper components and a streamlined manufacturing process. The resulting devices are less likely to fail and less expensive to manufacture resulting in a lower cost for consumers.
  • FIGS. 2 a-2 c show exemplary semiconductor packages. FIG. 2 a illustrates further detail of DIP 64 mounted on PCB 52. Semiconductor die 74 includes an active region containing analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed within the die and are electrically interconnected according to the electrical design of the die. For example, the circuit can include one or more transistors, diodes, inductors, capacitors, resistors, and other circuit elements formed within the active region of semiconductor die 74. Contact pads 76 are one or more layers of conductive material, such as aluminum (Al), copper (Cu), tin (Sn), nickel (Ni), gold (Au), or silver (Ag), and are electrically connected to the circuit elements formed within semiconductor die 74. During assembly of DIP 64, semiconductor die 74 is mounted to an intermediate carrier 78 using a gold-silicon eutectic layer or adhesive material such as thermal epoxy or epoxy resin. The package body includes an insulative packaging material such as polymer or ceramic. Conductor leads 80 and bond wires 82 provide electrical interconnect between semiconductor die 74 and PCB 52. Encapsulant 84 is deposited over the package for environmental protection by preventing moisture and particles from entering the package and contaminating die 74 or bond wires 82.
  • FIG. 2 b illustrates further detail of BCC 62 mounted on PCB 52. Semiconductor die 88 is mounted over carrier 90 using an underfill or epoxy-resin adhesive material 92. Bond wires 94 provide first level packaging interconnect between contact pads 96 and 98. Molding compound or encapsulant 100 is deposited over semiconductor die 88 and bond wires 94 to provide physical support and electrical isolation for the device. Contact pads 102 are formed over a surface of PCB 52 using a suitable metal deposition process such as electrolytic plating or electroless plating to prevent oxidation. Contact pads 102 are electrically connected to one or more conductive signal traces 54 in PCB 52. Bumps 104 are formed between contact pads 98 of BCC 62 and contact pads 102 of PCB 52.
  • In FIG. 2 c, semiconductor die 58 is mounted face down to intermediate carrier 106 with a flipchip style first level packaging. Active region 108 of semiconductor die 58 contains analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed according to the electrical design of the die. For example, the circuit can include one or more transistors, diodes, inductors, capacitors, resistors, and other circuit elements within active region 108. Semiconductor die 58 is electrically and mechanically connected to carrier 106 through bumps 110.
  • BGA 60 is electrically and mechanically connected to PCB 52 with a BGA style second level packaging using bumps 112. Semiconductor die 58 is electrically connected to conductive signal traces 54 in PCB 52 through bumps 110, signal lines 114, and bumps 112. A molding compound or encapsulant 116 is deposited over semiconductor die 58 and carrier 106 to provide physical support and electrical isolation for the device. The flipchip semiconductor device provides a short electrical conduction path from the active devices on semiconductor die 58 to conduction tracks on PCB 52 in order to reduce signal propagation distance, lower capacitance, and improve overall circuit performance. In another embodiment, the semiconductor die 58 can be mechanically and electrically connected directly to PCB 52 using flipchip style first level packaging without intermediate carrier 106.
  • FIGS. 3 a-3 b and 4 a-4 m illustrate, in relation to FIGS. 1 and 2 a-2 c, a process of forming a WLCSP with an RDL formed over an encapsulant, and a molded laser PoP (MLP) or conductive via formed through the encapsulant. The MLP provides vertical interconnect and electrically connects to bumps partially exposed from the encapsulant. FIG. 3 a shows a semiconductor wafer 120 with a base substrate material 122, such as silicon, germanium, gallium arsenide, indium phosphide, or silicon carbide, for structural support. A plurality of semiconductor die or components 124 is formed on wafer 120 separated by saw streets 126 as described above.
  • FIG. 3 b shows a cross-sectional view of a portion of semiconductor wafer 120. Each semiconductor die 124 has a back surface 128 and active surface 130 containing analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed within the die and electrically interconnected according to the electrical design and function of the die. For example, the circuit can include one or more transistors, diodes, and other circuit elements formed within active surface 130 to implement analog circuits or digital circuits, such as digital signal processor (DSP), ASIC, memory, or other signal processing circuit. Semiconductor die 124 can also contain IPDs, such as inductors, capacitors, and resistors, for RF signal processing. Semiconductor die 124 can also be a flipchip type semiconductor die.
  • An electrically conductive layer 132 is formed over and extends above active surface 130 such that a top surface of conductive layer 132 creates an uneven surface, and has a non-planar topology, with respect to active surface 130. Alternatively, conductive layer 132 is coplanar with active surface 130. Conductive layer 132 is formed using PVD, CVD, electrolytic plating, electroless plating process, or other suitable metal deposition process. Conductive layer 132 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material. Conductive layer 132 operates as contact pads electrically connected to the circuits on active surface 130.
  • FIG. 4 a shows a carrier or substrate 134 containing temporary or sacrificial base material such as silicon, polymer, beryllium oxide, or other suitable low-cost, rigid material for structural support. An interface layer or double-sided tape 138 is formed over a top surface 136 of carrier 134 as an adhesive bonding film or etch-stop layer. Back surface 128 of semiconductor wafer 120 is mounted to interface layer 138 and over carrier 134.
  • In FIG. 4 b, an electrically conductive bump material is deposited over conductive layer 132 using an evaporation, electrolytic plating, electroless plating, ball drop, or screen printing process. The bump material can be Al, Sn, Ni, Au, Ag, Pb, Bi, Cu, solder, and combinations thereof, with an optional flux solution. For example, the bump material can be eutectic Sn/Pb, high-lead solder, or lead-free solder. The bump material is bonded to conductive layer 132 using a suitable attachment or bonding process. In one embodiment, the bump material is reflowed by heating the material above its melting point to form spherical balls or bumps 140. In some applications, bumps 140 are reflowed a second time to improve electrical contact to conductive layer 132. The bumps can also be compression bonded to conductive layer 132. Bumps 140 represent one type of interconnect structure that can be formed over conductive layer 132. The interconnect structure can also use bond wires, conductive paste, stud bump, micro bump, or other electrical interconnect.
  • In FIG. 4 c, semiconductor wafer 120 is singulated through saw street 126 using a narrow saw blade or laser cutting tool 144. Narrow saw blade or laser cutting tool 144 penetrates to top surface 136 of carrier 134 and removes a portion of interface layer 138, but does not singulate the carrier.
  • FIG. 4 d shows opening 146 in semiconductor wafer 120 remains after saw blade or laser cutting tool 144 has removed a portion of the semiconductor wafer. Opening 146 extends from active surface 130 through semiconductor wafer 120 to back surface 128. Opening 146 also extends to top surface 136 of carrier 134 and includes an area previously occupied by the removed portion of interface layer 138. Opening 146 separates semiconductor wafer 120 into individual semiconductor die 124. In one embodiment, semiconductor die 124 are flipchip type semiconductor die. Alternatively, opening 146 can have an increased width, the opening being formed with a thick bladed saw, an etching saw, a water jet saw, or other suitable sawing or cutting method.
  • FIGS. 4 e and 4 f show another method of forming opening 146 with a width greater than 90 micrometers (um) using a narrow saw blade or laser cutting tool. In FIG. 4 e, semiconductor wafer 120 is shown with semiconductor die 124 separated by opening 146 that is formed as a narrow opening of less than 90 um. Wafer 120 undergoes a wafer expansion step to increase the width of opening 146. FIG. 4 e shows semiconductor die 124 being pulled using a wafer expansion table as shown by directional arrows 150. The expansion table moves in two-dimension lateral directions, as shown by arrows 150, to expand the width of opening 146. The expansion table moves substantially the same distance in the x-axis and y-axis within the tolerance of the table control to provide separation around a periphery of each die.
  • In FIG. 4 f, a width of opening 146 has been increased from a width of less than 90 um to a width greater than or equal to 90 um. As a result, the separation among semiconductor die 124 is increased. Semiconductor die 124 are located farther apart from one another after the expansion than before the expansion.
  • Continuing from FIG. 4 d or 4 f, FIG. 4 g shows an encapsulant or molding compound 152 is deposited over carrier 134, over semiconductor die 124, and within opening 146 using a paste printing, compressive molding, transfer molding, liquid encapsulant molding, vacuum lamination, spin coating, or other suitable applicator. Encapsulant 152 can be polymer composite material, such as epoxy resin with filler, epoxy acrylate with filler, or polymer with proper filler. A first surface 154 of encapsulant 152 contacts top surface 136 of carrier 134, a sidewall of semiconductor die 124, active surface 130 of the semiconductor die, and a portion of conductive layer 132. A second surface 156 of encapsulant 152 is planar, substantially parallel to top surface 136 of carrier 134, and is formed around a portion of bumps 140. Bumps 140 are partially embedded within encapsulant 152, such that a portion of the bumps are devoid of the encapsulant. An end portion of bumps 140 extends to a height of h1 above second surface 156 of encapsulant 152. In one embodiment, h1 is greater than 20 um.
  • Encapsulant 152 is non-conductive and environmentally protects the semiconductor device from external elements and contaminants. The formation of encapsulant 152 in contact with the sidewalls of semiconductor die 124, and around an active surface 130 of the semiconductor die leaves back surface 128 of the semiconductor die devoid of encapsulant resulting in an exposed flipchip structure. The exposed back surface 128 reduces overall package height as well as produces improved thermal characteristics for the package. By forming encapsulant 152 over active surface 130 and around bumps 140, the need for an additional underfill step is eliminated and the package profile is further reduced.
  • In FIG. 4 h, a plurality of vias 162 is formed in encapsulant 152 by deep reactive ion etching (DRIE) or laser drilling process. Vias 162 are formed around a perimeter of semiconductor die 124, and extend from second surface 156 through encapsulant 152 to first surface 154 and expose a portion of carrier 134.
  • In FIG. 4 i, a plurality of conductive vias or MLP 166 is formed by filling the plurality of vias 162 with Al, Cu, Sn, Ni, Au, Ag, titanium (Ti), tungsten (W), poly-silicon, or other suitable electrically conductive material using PVD, CVD, electrolytic plating, electroless plating process, or other suitable metal deposition process. Conductive vias 166 have a first surface 168 in contact with top surface 136 of carrier 134, and a second surface 170 substantially coplanar with second surface 156 of encapsulant 152. Alternatively, a plurality of stud bumps or solder balls can be formed within vias 162. Conductive vias 166 provide electrical vertical interconnect to opposing sides of the later formed WLCSP. Conductive vias 166 provide a reduced package profile by omitting wire bonding which tends to increase package height. Additionally, the formation of conductive vias 166 in encapsulant 152 and not over conductive layer 132 avoids possible damage resulting from forming and plating a conductive via directly on a contact pad of a semiconductor die.
  • In FIG. 4 j, an electrically conductive layer or RDL 174 is conformally applied over conductive vias 166 and encapsulant 152, using a patterning and metal deposition process such as PVD, CVD, sputtering, electrolytic plating, and electroless plating. Conductive layer 174 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material. Conductive layer 174 can be one or more conductive layers including an adhesion layer, barrier layer, and seed or wetting layer. Conductive layer 174 has a thickness less than a distance between second surface 156 of encapsulant 152 and an end portion of bump 140. Thus, the thickness of conductive layer 174 is less than h1.
  • Conductive layer 174 electrically connects to second surface 170 of conductive via 166 and to a portion of bumps 140 free from encapsulant 152. Conductive layer 174 can be formed after conductive vias 166 are formed, or alternatively, the conductive layer can be formed with the conductive vias. By indirectly connecting semiconductor die 124 to conductive via 166 through conductive layer 174 and bumps 140, potential damage to conductive layer or contact pad 132 is avoided. While a contact pad on a semiconductor die can be damaged due to directly plating and forming a via on the pad, the formation of conductive via 166 does not occur directly on conductive layer or contact pad 132. Instead, conductive via 166 is formed in encapsulant 152 in a periphery of semiconductor die 124, and electrically connects to the semiconductor die through conductive layer 174 and bumps 140. Thus, the risk of damaging conductive layer 132 in establishing vertical interconnect through the package is reduced by indirectly connecting conductive via 166 to conductive layer 132 through conductive layer 174 and bumps 140.
  • In FIG. 4 k, carrier 134 is removed by chemical etching, mechanical peel-off, CMP, mechanical grinding, thermal bake, laser scanning, or wet stripping to expose first surface 168 of conductive vias 166. Additionally, the plurality of semiconductor die 124 is singulated through encapsulant 152 at saw street 176 using a saw blade or laser cutting tool 178. Saw street 176 is in a periphery region around semiconductor die 124 and between conductive via 166.
  • FIG. 41 shows a cross sectional view of a semiconductor die 124 having been singulated through saw street 176 to form a WLCSP 180.
  • FIG. 4 m shows a plan view of WLCSP 180. Second surface 156 of encapsulant 152 exposes a portion of bumps 140 and second surface 170 of conductive vias 166. Conductive layer 174 extends between and electrically connects exposed portions of bumps 140 and second surface 170 of conductive vias 166 to provide through vertical interconnect between opposing surfaces of WLCSP 180.
  • Accordingly, WLCSP 180 includes conductive layer or RDL 174 formed over encapsulant 152, and conductive via or MLP 166 formed through the encapsulant for vertical interconnect. Back surface 128 of semiconductor die 124 is devoid of encapsulant, which results in an exposed flipchip structure. The exposed back surface 128 reduces overall package height and produces improved thermal characteristics for the package. The use of encapsulant 152 also eliminates the need for an additional underfill step. Opening 146, in which encapsulant 152 is formed, has a width less than 90 um that facilitates advanced nodes. The use of conductive vias 166 provides electrical vertical interconnect to opposing sides of WLCSP 180 and allows for manufacture at the wafer level, unlike conventional multi-stack flipchip designs that include wire bonds. Additionally, by omitting wire bonds in favor of conductive vias 166, the package profile is reduced. By forming conductive vias 166 in encapsulant 152 and not over conductive layer 132, possible damage resulting from forming and plating a conductive via directly on a contact pad of a semiconductor die is avoided. Furthermore, WLCSP 180 facilitates the stacking of a number of similar WLCSPs, or a multi stack with devices including different functions, without limiting the I/O count of the devices within the WLCSP.
  • FIG. 5 shows another embodiment of WLCSP 180, continuing from FIG. 41. In FIG. 5, WLCSP 180 forms a portion of a larger PoP WLCSP 186. PoP 186 includes a bond wire WLCSP 188 mounted over and electrically connected to WLCSP 180 with bumps 190. Bumps 190 are formed by depositing electrically conductive bump material between first surface 168 of conductive via 166 and WLCSP 188 using an evaporation, electrolytic plating, electroless plating, ball drop, or screen printing process. The bump material can be Al, Sn, Ni, Au, Ag, Pb, Bi, Cu, solder, and combinations thereof, with an optional flux solution. For example, the bump material can be eutectic Sn/Pb, high-lead solder, or lead-free solder. The bump material is bonded between first surface 168 of conductive via 166 and WLCSP 188 using a suitable attachment or bonding process. In one embodiment, the bump material is reflowed by heating the material above its melting point to form spherical balls or bumps 190. In some applications, bumps 190 are reflowed a second time to improve electrical contact to first surface 168 of conductive via 166 and WLCSP 188. In one embodiment, bumps 190 are formed over an under bump metallization (UBM) having a wetting layer, barrier layer, and adhesive layer. The bumps can also be compression bonded, and represent one type of interconnect structure that can be formed between first surface 168 of conductive via 166 and WLCSP 188. The interconnect structure can also use bond wires, conductive paste, stud bump, micro bump, or other electrical interconnect.
  • WLCSP 188 includes a semiconductor die 194 having a substrate with an active region containing analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed within the die and electrically interconnected according to the electrical design and function of the die. For example, the circuit can include one or more transistors, diodes, and other circuit elements formed within its active surface to implement baseband analog circuits or digital circuits, such as DSP, ASIC, memory, or other signal processing circuit. Semiconductor die 194 can also contain IPDs, such as inductors, capacitors, and resistors, for RF signal processing.
  • Semiconductor die 194 is mounted over interconnect structure 196 using a die attach adhesive 195. Interconnect structure 196 includes an electrically conductive layer or RDL 198 formed using a patterning and metal deposition process such as sputtering, electrolytic plating, and electroless plating. Conductive layer 198 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material. Conductive layer 198 is electrically connected to bumps 190 and semiconductor die 194. Other portions of conductive layer 198 can be electrically common or electrically isolated depending on the design and function of semiconductor die 124. Interconnect structure 196 further includes an insulation or passivation layer 200 formed around conductive layer 198 for electrical isolation. The insulation layer 200 contains one or more layers of silicon dioxide (SiO2), silicon nitride (Si3N4), silicon oxynitride (SiON), tantalum pentoxide (Ta2O5), aluminum oxide (Al2O3), or other material having similar insulating and structural properties. Insulation layer 200 is formed using PVD, CVD, printing, spin coating, spray coating, sintering or thermal oxidation. Portions of insulation layer 200 are removed by an etching process to expose conductive layer 198 for electrical connection to bumps 190 and bond wires 204.
  • Bond wires 204 are formed between semiconductor die 194 and conductive layer 198 within interconnect structure 196 to electrically connect semiconductor die 194 to bumps 190 and WLCSP 180. Bond wires are a low-cost, stable technology for forming the electrical connection between interconnect structure 196 and semiconductor die 194.
  • An encapsulant or molding compound 206 is deposited over interconnect structure 196, semiconductor die 194, and around bond wires 204 using a paste printing, compressive molding, transfer molding, liquid encapsulant molding, vacuum lamination, or other suitable applicator. Encapsulant 206 can be polymer composite material, such as epoxy resin with filler, epoxy acrylate with filler, or polymer with proper filler. Encapsulant 206 is non-conductive, provides physical support, and environmentally protects WLCSP 188 from external elements and contaminants.
  • FIG. 6 shows another embodiment of a WLCSP including an RDL formed over an encapsulant, and a MLP or conductive via formed through the encapsulant. The MLP provides vertical interconnect and electrically connects to bumps partially exposed from the encapsulant. The RDL contacts a portion of the bumps exposed from the encapsulant.
  • WLCSP 210 shows a chip stack application including first and second semiconductor die. First semiconductor die 214 has a back surface 216 and active surface 218. Second semiconductor die 220 has a back surface 222 and active surface 224. Active surfaces 218 and 224 contain analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed within the die and electrically interconnected according to the electrical design and function of the die. For example, the circuit can include one or more transistors, diodes, and other circuit elements formed within active surfaces 218 and 224 to implement analog circuits or digital circuits, such as DSP, ASIC, memory, or other signal processing circuit. Semiconductor die 214 and 220 can also contain IPDs, such as inductors, capacitors, and resistors, for RF signal processing. An interface layer or double-sided tape 228 contacts back surface 216 of the first semiconductor die 214 as an adhesive bonding film or etch-stop layer. Similarly, a die attach adhesive 230 contacts back surface 222 of the second semiconductor die 220.
  • Within WLCSP 210, the second semiconductor die 220 is mounted to the first semiconductor die 214 with die attach adhesive 230. Back surface 222 of second semiconductor die 220 is mounted to active surface 218 of first semiconductor die 214 with die attach adhesive 230. Because second semiconductor die 220 has an area less than an area of first semiconductor die 214, the second semiconductor die covers less than the entire area of active surface 218 of first semiconductor die 214. Accordingly, a portion of active surface 218 in a periphery of first semiconductor die 214 is exposed with respect to second semiconductor die 220.
  • An electrically conductive layer 234 is formed over and extends above active surface 224 such that a top surface of conductive layer 234 creates an uneven surface, and has a non-planar topology, with respect to active surface 224. Alternatively, conductive layer 234 is coplanar with active surface 224. Conductive layer 234 is formed using PVD, CVD, electrolytic plating, electroless plating process, or other suitable metal deposition process. Conductive layer 234 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material. Conductive layer 234 operates as contact pads electrically connected to the circuits on active surface 224.
  • An electrically conductive bump material is deposited over conductive layer 234 using an evaporation, electrolytic plating, electroless plating, ball drop, or screen printing process. The bump material can be Al, Sn, Ni, Au, Ag, Pb, Bi, Cu, solder, and combinations thereof, with an optional flux solution. For example, the bump material can be eutectic Sn/Pb, high-lead solder, or lead-free solder. The bump material is bonded to conductive layer 234 using a suitable attachment or bonding process. In one embodiment, the bump material is reflowed by heating the material above its melting point to form spherical balls or bumps 236. In some applications, bumps 236 are reflowed a second time to improve electrical contact to conductive layer 234. The bumps can also be compression bonded to conductive layer 234. Bumps 236 represent one type of interconnect structure that can be formed over conductive layer 234. The interconnect structure can also use bond wires, conductive paste, stud bump, micro bump, or other electrical interconnect.
  • An encapsulant or molding compound 238 is deposited over first semiconductor die 214, and second semiconductor die 220 using a paste printing, compressive molding, transfer molding, liquid encapsulant molding, vacuum lamination, spin coating, or other suitable applicator. Encapsulant 238 can be polymer composite material, such as epoxy resin with filler, epoxy acrylate with filler, or polymer with proper filler. A first surface 240 of encapsulant 238 contacts sidewalls of first and second semiconductor die 214 and 220, active surfaces 218 and 224, and a portion of conductive layer 234. A second surface 242 of encapsulant 238 is planar, substantially parallel to back surface 216 of first semiconductor die 214, and is formed around a portion of bumps 236. Bumps 236 are partially embedded within encapsulant 238, leaving a portion of the bumps free of the encapsulant. An end portion of the bumps 236 extend above second surface 242 of encapsulant 238. Encapsulant 238 is non-conductive and environmentally protects the semiconductor device from external elements and contaminants.
  • A plurality of first conductive vias or MLP 244 is formed by first forming a plurality of first vias in encapsulant 238 by DRIE or laser drilling process. The plurality of first vias is formed around the perimeter of first semiconductor die 214, and extends from second surface 242 through encapsulant 238 to first surface 240. The plurality of first vias is then filled with Al, Cu, Sn, Ni, Au, Ag, Ti, W, poly-silicon, or other suitable electrically conductive material using PVD, CVD, electrolytic plating, electroless plating process, or other suitable metal deposition process to form first conductive vias 244. First conductive vias 244 have a first surface 246 substantially coplanar with first surface 240 of encapsulant 238, and a second surface 248 substantially coplanar with second surface 242 of encapsulant 238. Alternatively, a plurality of stud bumps or solder balls can be formed within the plurality of first vias. First conductive vias 244 provide electrical vertical interconnect to opposing sides of WLCSP 210. First conductive vias 244 provide a reduced package profile by omitting wire bonding which tends to increase package profile. Additionally, the formation of first conductive vias 244 in encapsulant 238 and not over conductive layer 234 avoids possible damage resulting from forming and plating a conductive via directly on a contact pad of a semiconductor die.
  • A plurality of second conductive vias or MLP 250 is formed by first forming a plurality of second vias in encapsulant 238 by DRIE or laser drilling process. The plurality of second vias is formed around the perimeter of second semiconductor die 220, and extends from second surface 242 through encapsulant 238 to active surface 218 of first semiconductor die 214. The plurality of second vias is then filled with Al, Cu, Sn, Ni, Au, Ag, Ti, W, poly-silicon, or other suitable electrically conductive material using PVD, CVD, electrolytic plating, electroless plating process, or other suitable metal deposition process to form second conductive vias 250. Second conductive vias 250 have a first surface 252 that contacts active surface 218 of first semiconductor die 214, and a second surface 254 substantially coplanar with second surface 242 of encapsulant 238. Thus, the plurality of second conductive vias 250 has a length less than a length of the plurality of first conductive vias 244. Alternatively, a plurality of stud bumps or solder balls can be formed within the plurality of second vias. Second conductive vias 250 provide electrical vertical interconnect to first semiconductor die 214. Second conductive vias 250 also provide a reduced package profile by omitting wire bonding which tends to increase package profile.
  • An electrically conductive layer or RDL 258 is conformally applied over first conductive vias 244, second conductive vias 250, and encapsulant 238, using a patterning and metal deposition process such as PVD, CVD, sputtering, electrolytic plating, and electroless plating. Conductive layer 258 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material. Conductive layer 258 can be one or more conductive layers including an adhesion layer, barrier layer, and seed or wetting layer. Conductive layer 258 has a thickness less than a distance between second surface 242 of encapsulant 238 and an end portion of bumps 236. Conductive layer 258 electrically connects to second surface 248 of first conductive via 244, second surface 254 of second conductive via 250, and to a portion of bumps 236 free from encapsulant 238, thereby providing electrical interconnect between first semiconductor die 214, second semiconductor die 220, and semiconductor devices external to WLCSP 210.
  • FIG. 7 shows another embodiment of a WLCSP including an RDL formed over an encapsulant, and a MLP or conductive via formed through the encapsulant. The MLP provides vertical interconnect and electrically connects to bumps partially exposed from the encapsulant. The RDL contacts a portion of the bumps exposed from the encapsulant.
  • PoP WLCSP 270 shows a dual-sided application including a first WLCSP 180, from FIG. 41, mounted to a second WLCSP 272 similar to WLCSP 180. WLCSP 272 includes a semiconductor die 276 having a substrate with an active region containing analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed within the die and electrically interconnected according to the electrical design and function of the die. For example, the circuit can include one or more transistors, diodes, and other circuit elements formed within its active surface to implement baseband analog circuits or digital circuits, such as DSP, ASIC, memory, or other signal processing circuit. Semiconductor die 276 can also contain IPDs, such as inductors, capacitors, and resistors, for RF signal processing.
  • Semiconductor die 276 is mounted to semiconductor die 124, back surface 278 to back surface 128, with die attach adhesive 274. Semiconductor die 124 has an area that is substantially equal to an area of semiconductor die 276, such that sidewalls of semiconductor die 124 substantially align with sidewalls of semiconductor die 276. Alternatively, semiconductor die 124 and 276 can have areas of different sizes. For example, semiconductor die 124 can have an area less than an area of semiconductor die 276, such that semiconductor die 124 covers less than the entire area of bottom surface 278 of semiconductor die 276. Alternatively, semiconductor die 124 can have an area greater than an area of semiconductor die 276, such that semiconductor die 276 covers less than the entire area of bottom surface 128 of semiconductor die 124. Regardless of the relative sizing of semiconductor die 124 and 276, the semiconductor die are configured for the subsequent alignment of later formed conductive vias in the periphery of the semiconductor die.
  • WLCSP 272 includes an electrically conductive layer 284 formed over and extending above active surface 280 such that a top surface of conductive layer 284 creates an uneven surface, and has a non-planar topology, with respect to active surface 280. Alternatively, conductive layer 284 is coplanar with active surface 280. Conductive layer 284 is formed using PVD, CVD, electrolytic plating, electroless plating process, or other suitable metal deposition process. Conductive layer 284 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material. Conductive layer 284 operates as contact pads electrically connected to the circuits on active surface 280.
  • An electrically conductive bump material is deposited over conductive layer 284 using an evaporation, electrolytic plating, electroless plating, ball drop, or screen printing process. The bump material can be Al, Sn, Ni, Au, Ag, Pb, Bi, Cu, solder, and combinations thereof, with an optional flux solution. For example, the bump material can be eutectic Sn/Pb, high-lead solder, or lead-free solder. The bump material is bonded to conductive layer 284 using a suitable attachment or bonding process. In one embodiment, the bump material is reflowed by heating the material above its melting point to form spherical balls or bumps 286. In some applications, bumps 286 are reflowed a second time to improve electrical contact to conductive layer 284. The bumps can also be compression bonded to conductive layer 284. Bumps 286 represent one type of interconnect structure that can be formed over conductive layer 284. The interconnect structure can also use bond wires, conductive paste, stud bump, micro bump, or other electrical interconnect.
  • An encapsulant or molding compound 290 contacts encapsulant 152 of WLCSP 180, and is deposited over semiconductor die 276 using a paste printing, compressive molding, transfer molding, liquid encapsulant molding, vacuum lamination, spin coating, or other suitable applicator. Encapsulant 290 can be polymer composite material, such as epoxy resin with filler, epoxy acrylate with filler, or polymer with proper filler. A first surface 292 of encapsulant 290 contacts sidewalls of semiconductor die 276, active surface 280, and a portion of conductive layer 284. A second surface 294 of encapsulant 290 is planar, substantially parallel to back surface 278 of semiconductor die 276, and is formed around a portion of bumps 286. Bumps 286 are partially embedded within encapsulant 290, leaving a portion of the bumps free of the encapsulant. An end portion of the bumps 286 extend above second surface 294 of encapsulant 290. Encapsulant 290 is non-conductive and environmentally protects semiconductor die 276 from external elements and contaminants.
  • A plurality of conductive vias or MLP 298 is formed by forming a plurality of vias in encapsulant 290 by DRIE or laser drilling process. The plurality of vias is formed around the perimeter of semiconductor die 276, and extend from second surface 294 through encapsulant 290 to first surface 292. The plurality of vias is then filled with Al, Cu, Sn, Ni, Au, Ag, Ti, W, poly-silicon, or other suitable electrically conductive material using PVD, CVD, electrolytic plating, electroless plating process, or other suitable metal deposition process to form conductive vias 298. Alternatively, a plurality of stud bumps or solder balls can be formed within the plurality of vias to form conductive vias 298. Conductive vias 298 have a first surface 300 that aligns with, and electrically connects to, conductive vias 166 of WLCSP 180. Conductive vias 298 have a second surface 302 that is coplanar with second surface 294 of encapsulant 290. Therefore, conductive vias 298 provide electrical vertical interconnect to opposing sides of WLCSP 272. Conductive vias 298 also provide a reduced package profile by omitting wire bonding which tends to increase package profile. The formation of conductive vias 298 in encapsulant 290 and not over conductive layer 284 avoids possible damage resulting from forming and plating a conductive via directly on a contact pad of a semiconductor die.
  • An electrically conductive layer or RDL 306 is conformally applied over second surface 302 of conductive vias 298 and second surface 294 of encapsulant 290, using a patterning and metal deposition process such as PVD, CVD, sputtering, electrolytic plating, and electroless plating. Conductive layer 306 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material. Conductive layer 306 can be one or more conductive layers including an adhesion layer, barrier layer, and seed or wetting layer. Conductive layer 306 has a thickness less than a distance between second surface 294 of encapsulant 290 and an end portion of bumps 286. Conductive layer 306 electrically connects to second surface 302 of conductive via 298 and to a portion of bumps 286 free from encapsulant 290, thereby providing electrical interconnect among semiconductor die 124, semiconductor die 276, and semiconductor devices external to WLCSP 270.
  • FIG. 8 shows another PoP WLCSP 310, similar to PoP 186 from FIG. 5. In FIG. 8, PoP 310 has a thermal interface material (TIM) 314, and heat spreader or heat sink 316. TIM 314 is a thermal epoxy, thermal epoxy resin, or thermal conductive paste that is formed on back surface 128 of semiconductor die 124. Heat spreader 316 is mounted to semiconductor die 124 with TIM 314. Heat spreader 316 can be Cu, Al, or other material with high thermal conductivity. TIM 314 and heat spreader 316 form a thermally conductive path that aids with distribution and dissipation of heat generated by semiconductor die 124 and increases the thermal performance of WLCSP 310.
  • FIG. 9 shows another PoP WLCSP 320, similar to PoP 186 from FIG. 5. In FIG. 9, PoP 320 has a conductive layer or RDL 322 that is conformally applied over back surface 128, interface layer 138, encapsulant 152, and conductive vias 166. Conductive layer 322 is formed using a patterning and metal deposition process such as PVD, CVD, sputtering, electrolytic plating, and electroless plating. Conductive layer 322 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material. Conductive layer 322 can be one or more conductive layers including an adhesion layer, barrier layer, and seed or wetting layer. Conductive layer 322 contacts and electrically connects to first surface 168 of conductive via 166 and to bumps 190. In PoP 320, interconnect structure 196 and bumps 190 form a BGA including multiple interconnect points that are electrically connected to conductive layer 322 according to the electrical design of PoP 320. By electrically connecting bumps 190 to interconnect structure 196 and conductive layer 322, semiconductor die 194 is electrically connected to conductive via 166, conductive layer 174, bumps 140, semiconductor die 124, and semiconductor devices external to WLCSP 320.
  • While one or more embodiments of the present invention have been illustrated in detail, the skilled artisan will appreciate that modifications and adaptations to those embodiments may be made without departing from the scope of the present invention as set forth in the following claims.

Claims (25)

1. A semiconductor device, comprising:
a semiconductor wafer including a plurality of first semiconductor die comprising an active surface;
a plurality of bumps formed over the active surface of the first semiconductor die;
an encapsulant deposited around and over the first semiconductor die including around the bumps;
a first conductive via formed through the encapsulant; and
a conductive layer formed over the encapsulant between the first conductive via and bumps.
2. The semiconductor device of claim 1, wherein a portion of the bumps is devoid of the encapsulant.
3. The semiconductor device of claim 1, further including a second semiconductor die disposed over the first semiconductor die.
4. The semiconductor device of claim 3, further including a second conductive via formed through the encapsulant between the conductive layer and second semiconductor die.
5. The semiconductor device of claim 1, further including a heat spreader disposed over the first semiconductor die.
6. The semiconductor device of claim 1, further including a plurality of stacked semiconductor devices electrically connected through the first conductive via.
7. A semiconductor device, comprising:
a first semiconductor die;
a plurality of bumps formed over a first surface of the first semiconductor die;
an encapsulant deposited around the first semiconductor die and bumps;
a first conductive via formed through the encapsulant; and
a conductive layer formed over the encapsulant between the first conductive via and bumps.
8. The semiconductor device of claim 7, wherein a portion of the bumps is devoid of the encapsulant.
9. The semiconductor device of claim 7, further including a second semiconductor die disposed over the first semiconductor die.
10. The semiconductor device of claim 9, further including a second conductive via formed through the encapsulant between the conductive layer and second semiconductor die.
11. The semiconductor device of claim 9, further including an interconnect structure disposed between the first semiconductor die and second semiconductor die.
12. The semiconductor device of claim 7, further including a heat spreader disposed over the first semiconductor die.
13. The semiconductor device of claim 7, further including a plurality of stacked semiconductor devices electrically connected through the first conductive via.
14. A semiconductor device, comprising:
a first semiconductor die;
a first interconnect structure formed over a first surface of the first semiconductor die; and
an encapsulant deposited around and over the first semiconductor die including around a first portion of the first interconnect structure while leaving a second portion of the first interconnect structure devoid of the encapsulant.
15. The semiconductor device of claim 14, further including a conductive via formed through the encapsulant.
16. The semiconductor device of claim 15, further including a conductive layer formed over the encapsulant between the conductive via and first interconnect structure.
17. The semiconductor device of claim 15, further including a plurality of stacked semiconductor devices electrically connected through the conductive via.
18. The semiconductor device of claim 14, wherein the first interconnect structure includes a bump.
19. The semiconductor device of claim 14, further including a second semiconductor die disposed over the first semiconductor die.
20. The semiconductor device of claim 19, further including a second interconnect structure disposed between the first semiconductor die and second semiconductor die.
21. A semiconductor device, comprising:
a first semiconductor die;
an interconnect structure formed over a first surface of the first semiconductor die; and
an encapsulant deposited around the first semiconductor die and around a first portion of the interconnect structure while exposing a second portion of the interconnect structure.
22. The semiconductor device of claim 21, further including:
a conductive via formed through the encapsulant; and
a conductive layer formed over the encapsulant and electrically connected to the conductive via and interconnect structure.
23. The semiconductor device of claim 22, further including a plurality of stacked semiconductor devices electrically connected through the conductive via.
24. The semiconductor device of claim 21, wherein the interconnect structure includes a bump.
25. The semiconductor device of claim 21, further including a second semiconductor die disposed over the first semiconductor die.
US13/609,003 2011-02-25 2012-09-10 Semiconductor Device and Method of Forming a Wafer Level Package Structure Using Conductive Via and Exposed Bump Abandoned US20130001773A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/609,003 US20130001773A1 (en) 2011-02-25 2012-09-10 Semiconductor Device and Method of Forming a Wafer Level Package Structure Using Conductive Via and Exposed Bump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/035,617 US8288203B2 (en) 2011-02-25 2011-02-25 Semiconductor device and method of forming a wafer level package structure using conductive via and exposed bump
US13/609,003 US20130001773A1 (en) 2011-02-25 2012-09-10 Semiconductor Device and Method of Forming a Wafer Level Package Structure Using Conductive Via and Exposed Bump

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/035,617 Division US8288203B2 (en) 2011-02-25 2011-02-25 Semiconductor device and method of forming a wafer level package structure using conductive via and exposed bump

Publications (1)

Publication Number Publication Date
US20130001773A1 true US20130001773A1 (en) 2013-01-03

Family

ID=46718416

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/035,617 Active 2031-04-22 US8288203B2 (en) 2011-02-25 2011-02-25 Semiconductor device and method of forming a wafer level package structure using conductive via and exposed bump
US13/609,003 Abandoned US20130001773A1 (en) 2011-02-25 2012-09-10 Semiconductor Device and Method of Forming a Wafer Level Package Structure Using Conductive Via and Exposed Bump

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/035,617 Active 2031-04-22 US8288203B2 (en) 2011-02-25 2011-02-25 Semiconductor device and method of forming a wafer level package structure using conductive via and exposed bump

Country Status (1)

Country Link
US (2) US8288203B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI552288B (en) * 2013-04-01 2016-10-01 英特爾股份有限公司 Hybrid carbon-metal interconnect structures
US11107763B2 (en) 2016-12-30 2021-08-31 Intel Corporation Interconnect structure for stacked die in a microelectronic device
KR20230117689A (en) * 2022-01-31 2023-08-09 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Integrated circuit package and method

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9324659B2 (en) * 2011-08-01 2016-04-26 Stats Chippac, Ltd. Semiconductor device and method of forming POP with stacked semiconductor die and bumps formed directly on the lower die
US20130040423A1 (en) * 2011-08-10 2013-02-14 Taiwan Semiconductor Manufacturing Company, Ltd. Method of Multi-Chip Wafer Level Packaging
US20130075923A1 (en) * 2011-09-23 2013-03-28 YeongIm Park Integrated circuit packaging system with encapsulation and method of manufacture thereof
US9190391B2 (en) * 2011-10-26 2015-11-17 Maxim Integrated Products, Inc. Three-dimensional chip-to-wafer integration
US9263412B2 (en) * 2012-03-09 2016-02-16 Taiwan Semiconductor Manufacturing Company, Ltd. Packaging methods and packaged semiconductor devices
US20130234317A1 (en) 2012-03-09 2013-09-12 Taiwan Semiconductor Manufacturing Company, Ltd. Packaging Methods and Packaged Semiconductor Devices
KR20130105175A (en) * 2012-03-16 2013-09-25 삼성전자주식회사 Semiconductor package having protective layer and method of forming the same
US8742597B2 (en) * 2012-06-29 2014-06-03 Intel Corporation Package substrates with multiple dice
TWI473217B (en) * 2012-07-19 2015-02-11 矽品精密工業股份有限公司 Semiconductor package and method of forming the same
US9030010B2 (en) * 2012-09-20 2015-05-12 Taiwan Semiconductor Manufacturing Company, Ltd. Packaging devices and methods
ITMI20130654A1 (en) * 2013-04-22 2014-10-23 St Microelectronics Srl ELECTRONIC ASSEMBLY FOR MOUNTING ON ELECTRONIC BOARD
US9543373B2 (en) 2013-10-23 2017-01-10 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor structure and manufacturing method thereof
TWI584387B (en) * 2014-08-15 2017-05-21 矽品精密工業股份有限公司 Method of manufacturing package structure
TWI566339B (en) * 2014-11-11 2017-01-11 矽品精密工業股份有限公司 Electronic package and method of manufacture
US9601472B2 (en) 2015-04-24 2017-03-21 Qualcomm Incorporated Package on package (POP) device comprising solder connections between integrated circuit device packages
FR3036917B1 (en) * 2015-05-28 2018-11-02 IFP Energies Nouvelles ELECTRONIC DEVICE COMPRISING A PRINTED CIRCUIT BOARD WITH IMPROVED COOLING.
US9899285B2 (en) * 2015-07-30 2018-02-20 Semtech Corporation Semiconductor device and method of forming small Z semiconductor package
US9659911B1 (en) * 2016-04-20 2017-05-23 Powertech Technology Inc. Package structure and manufacturing method thereof
US10056428B2 (en) * 2016-09-07 2018-08-21 Semiconductor Components Industries, Llc Semiconductor device and method of forming curved image sensor region robust against buckling
CN109950214A (en) * 2017-12-20 2019-06-28 安世有限公司 Wafer-level package semiconductor devices and its manufacturing method
US10880991B2 (en) * 2018-04-04 2020-12-29 Marvell Asia Pte, Ltd. Apparatus and methods for enhancing signaling bandwidth in an integrated circuit package
CN110875294B (en) * 2018-08-29 2024-01-23 恒劲科技股份有限公司 Package structure of semiconductor device and method for manufacturing the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6329608B1 (en) * 1995-04-05 2001-12-11 Unitive International Limited Key-shaped solder bumps and under bump metallurgy
US20040033654A1 (en) * 2002-08-14 2004-02-19 Osamu Yamagata Semiconductor device and method of fabricating the same
US20050017374A1 (en) * 2003-07-24 2005-01-27 Helmut Kiendl Semiconductor component of semiconductor chip size with flip-chip-like external contacts, and method of producing the same
US20050184377A1 (en) * 2004-01-30 2005-08-25 Shinko Electric Industries Co., Ltd. Semiconductor device and method of manufacturing the same
US7321164B2 (en) * 2005-08-15 2008-01-22 Phoenix Precision Technology Corporation Stack structure with semiconductor chip embedded in carrier
US20110042796A1 (en) * 2009-08-20 2011-02-24 Shu-Ming Chang Chip package and fabrication method thereof
US8238113B2 (en) * 2010-07-23 2012-08-07 Imbera Electronics Oy Electronic module with vertical connector between conductor patterns
US8405213B2 (en) * 2010-03-22 2013-03-26 Advanced Semiconductor Engineering, Inc. Semiconductor package including a stacking element

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344401B1 (en) 2000-03-09 2002-02-05 Atmel Corporation Method of forming a stacked-die integrated circuit chip package on a water level
JP3701542B2 (en) 2000-05-10 2005-09-28 シャープ株式会社 Semiconductor device and manufacturing method thereof
US7723159B2 (en) 2007-05-04 2010-05-25 Stats Chippac, Ltd. Package-on-package using through-hole via die on saw streets
KR101501739B1 (en) * 2008-03-21 2015-03-11 삼성전자주식회사 Method of Fabricating Semiconductor Packages

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6329608B1 (en) * 1995-04-05 2001-12-11 Unitive International Limited Key-shaped solder bumps and under bump metallurgy
US20040033654A1 (en) * 2002-08-14 2004-02-19 Osamu Yamagata Semiconductor device and method of fabricating the same
US20050017374A1 (en) * 2003-07-24 2005-01-27 Helmut Kiendl Semiconductor component of semiconductor chip size with flip-chip-like external contacts, and method of producing the same
US20050184377A1 (en) * 2004-01-30 2005-08-25 Shinko Electric Industries Co., Ltd. Semiconductor device and method of manufacturing the same
US7321164B2 (en) * 2005-08-15 2008-01-22 Phoenix Precision Technology Corporation Stack structure with semiconductor chip embedded in carrier
US20110042796A1 (en) * 2009-08-20 2011-02-24 Shu-Ming Chang Chip package and fabrication method thereof
US8405213B2 (en) * 2010-03-22 2013-03-26 Advanced Semiconductor Engineering, Inc. Semiconductor package including a stacking element
US8238113B2 (en) * 2010-07-23 2012-08-07 Imbera Electronics Oy Electronic module with vertical connector between conductor patterns

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI552288B (en) * 2013-04-01 2016-10-01 英特爾股份有限公司 Hybrid carbon-metal interconnect structures
US9680105B2 (en) 2013-04-01 2017-06-13 Intel Corporation Hybrid carbon-metal interconnect structures
US10003028B2 (en) 2013-04-01 2018-06-19 Intel Corporation Hybrid carbon-metal interconnect structures
US11107763B2 (en) 2016-12-30 2021-08-31 Intel Corporation Interconnect structure for stacked die in a microelectronic device
TWI769189B (en) * 2016-12-30 2022-07-01 美商英特爾股份有限公司 Interconnect structure for stacked die in a microelectronic device
KR20230117689A (en) * 2022-01-31 2023-08-09 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Integrated circuit package and method
KR102642271B1 (en) 2022-01-31 2024-02-29 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Integrated circuit package and method

Also Published As

Publication number Publication date
US8288203B2 (en) 2012-10-16
US20120217629A1 (en) 2012-08-30

Similar Documents

Publication Publication Date Title
US8288203B2 (en) Semiconductor device and method of forming a wafer level package structure using conductive via and exposed bump
US9824975B2 (en) Semiconductor device and method of forming stepped interconnect layer for stacked semiconductor die
US8994048B2 (en) Semiconductor device and method of forming recesses in substrate for same size or different sized die with vertical integration
US8994184B2 (en) Semiconductor device and method of forming interposer and opposing build-up interconnect structure with connecting conductive TMV for electrical interconnect of FO-WLCSP
US9252032B2 (en) Semiconductor device and method of stacking semiconductor die in mold laser package interconnected by bumps and conductive vias
US9754858B2 (en) Semiconductor device and method of forming TSV semiconductor wafer with embedded semiconductor die
US9153494B2 (en) Semiconductor die and method of forming Fo-WLCSP vertical interconnect using TSV and TMV
US8896109B2 (en) Semiconductor device and method of forming different height conductive pillars to electrically interconnect stacked laterally offset semiconductor die
US8883561B2 (en) Semiconductor device and method of embedding TSV semiconductor die within encapsulant with TMV for vertical interconnect in POP
US8921161B2 (en) Semiconductor device and method of forming EWLB package containing stacked semiconductor die electrically connected through conductive vias formed in encapsulant around die
US8519544B2 (en) Semiconductor device and method of forming WLCSP structure using protruded MLP
US9385009B2 (en) Semiconductor device and method of forming stacked vias within interconnect structure for Fo-WLCSP
US9190297B2 (en) Semiconductor device and method of forming a stackable semiconductor package with vertically-oriented discrete electrical devices as interconnect structures
US9324659B2 (en) Semiconductor device and method of forming POP with stacked semiconductor die and bumps formed directly on the lower die
US20120056329A1 (en) Semiconductor Device and Method of Forming Interposer Frame Over Semiconductor Die to Provide Vertical Interconnect
US9472427B2 (en) Semiconductor device and method of forming leadframe with notched fingers for stacking semiconductor die

Legal Events

Date Code Title Description
AS Assignment

Owner name: CITICORP INTERNATIONAL LIMITED, AS COMMON SECURITY AGENT, HONG KONG

Free format text: SECURITY INTEREST;ASSIGNORS:STATS CHIPPAC, INC.;STATS CHIPPAC LTD.;REEL/FRAME:036288/0748

Effective date: 20150806

Owner name: CITICORP INTERNATIONAL LIMITED, AS COMMON SECURITY

Free format text: SECURITY INTEREST;ASSIGNORS:STATS CHIPPAC, INC.;STATS CHIPPAC LTD.;REEL/FRAME:036288/0748

Effective date: 20150806

AS Assignment

Owner name: STATS CHIPPAC PTE. LTE., SINGAPORE

Free format text: CHANGE OF NAME;ASSIGNOR:STATS CHIPPAC LTD.;REEL/FRAME:038378/0418

Effective date: 20160329

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: STATS CHIPPAC, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITICORP INTERNATIONAL LIMITED, AS COMMON SECURITY AGENT;REEL/FRAME:053511/0298

Effective date: 20190503

Owner name: STATS CHIPPAC PTE. LTD. FORMERLY KNOWN AS STATS CHIPPAC LTD., SINGAPORE

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITICORP INTERNATIONAL LIMITED, AS COMMON SECURITY AGENT;REEL/FRAME:053511/0298

Effective date: 20190503

AS Assignment

Owner name: STATS CHIPPAC PTE. LTD., SINGAPORE

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE'S NAME ON COVERSHEET FROM "STATS CHIPPAC PTE. LTE." TO "STATS CHIPPAC PTE. LTD." PREVIOUSLY RECORDED ON REEL 038378 FRAME 0418. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF NAME;ASSIGNOR:STATS CHIPPAC LTD.;REEL/FRAME:064908/0920

Effective date: 20160329