US20120328472A1 - Forging of glassy aluminum-based alloys - Google Patents

Forging of glassy aluminum-based alloys Download PDF

Info

Publication number
US20120328472A1
US20120328472A1 US13/169,210 US201113169210A US2012328472A1 US 20120328472 A1 US20120328472 A1 US 20120328472A1 US 201113169210 A US201113169210 A US 201113169210A US 2012328472 A1 US2012328472 A1 US 2012328472A1
Authority
US
United States
Prior art keywords
forging
billet
devitrified
die
forged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/169,210
Inventor
Thomas J. Watson
Venkatarama K. Seetharaman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Technologies Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Priority to US13/169,210 priority Critical patent/US20120328472A1/en
Assigned to UNITED TECHNOLOGIES CORPORATION reassignment UNITED TECHNOLOGIES CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SEETHARAMAN, VENKATARAMA K., WATSON, THOMAS J.
Priority to EP12162571A priority patent/EP2540856A1/en
Publication of US20120328472A1 publication Critical patent/US20120328472A1/en
Assigned to DARPA reassignment DARPA CONFIRMATORY LICENSE (SEE DOCUMENT FOR DETAILS). Assignors: UNITED TECHNOLOGIES CORPORATION
Priority to US14/086,540 priority patent/US20140076463A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/002Extruding materials of special alloys so far as the composition of the alloy requires or permits special extruding methods of sequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/003Selecting material
    • B21J1/006Amorphous metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K3/00Making engine or like machine parts not covered by sub-groups of B21K1/00; Making propellers or the like
    • B21K3/04Making engine or like machine parts not covered by sub-groups of B21K1/00; Making propellers or the like blades, e.g. for turbines; Upsetting of blade roots
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/11Making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/03Amorphous or microcrystalline structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/25Manufacture essentially without removing material by forging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/173Aluminium alloys, e.g. AlCuMgPb

Definitions

  • PA0009510U-U73.12-667KL PA0009510U-U73.12-667KL; and PRODUCTION OF ATOMIZED POWDER FOR GLASSY ALUMINUM-BASED ALLOYS, Ser. No. ______, Attorney Docket No. PA0009512U-U73.12-668KL. All referenced incorporated herein.
  • Aluminum alloys are important in many industries. Glassy Al-based alloys and their devitrified derivatives are currently being considered for applications in the aerospace industry. These alloys involve the addition of rare earth and transition metal elements. These alloys have high strength and, when processed appropriately, have high ductility.
  • One of the key requirements for high ductility is control of the second phase size during thermomechanical processing; in this case, forging extruded billet into various forged shapes.
  • the alloys are heated, such as to 700° F. to 800° F., and are forged at high press speeds. There is normally no concern for adiabatic heating because the alloys are usually heat-treatable. In a heat treatment, they are solutionized, quenched and aged to a desired temper after forging.
  • Al-based alloys such as Al—Y—Ni—Co alloys are devitrified glass-forming aluminum alloys that derive their strength from a nanometer-sized grain structure and nanometer-sized intermetallic second phase or phases. Examples of such alloys are disclosed in co-owned U.S. Pat. Nos. 6,974,510 and 7,413,621, the disclosures of which are incorporated herein by reference in their entirety.
  • the invention involves the forging of extruded billet, or forging mults, in a direction whose axis is parallel to the axis of extrusion that formed the alloy billet.
  • the alloy itself is a devitrified derivative of glassy aluminum alloys such as those described in the above identified patents.
  • aluminum based alloys containing from 3 to 18.5 atomic percent nickel and 3 to 14.0 atomic percent yttrium.
  • the alloy billet is textured and has an axis of extrusion in which the microstructure is aligned. Forging in this direction changes the microstructure to give maximum strength, and also causes the plate phases within the subject alloys to become randomly oriented, resulting in improved ductility.
  • FIG. 1 is a schematic view of an alloy billet inserted in a cylinder.
  • FIG. 2 is a schematic view of a forging die.
  • FIG. 3 is a schematic view of the cylinder and billet of FIG. 1 inserted into the die of FIG. 2 .
  • FIG. 4 is a schematic view of the die of FIG. 3 with the billet just below the lip of the die.
  • FIG. 5 is a schematic view of the use of a punch inserted into the die and billet of FIG. 4 .
  • FIG. 6 is a schematic view of the billet after forging in FIG. 5 .
  • FIG. 7 is a schematic view of the billet after being extracted from the die of FIG. 6 .
  • FIG. 8 is a schematic view of the extracted billet of FIG. 7 inserted into a forging die such that the forging direction is parallel to the axis of extrusion.
  • FIG. 9 is a schematic view of a part produced by the forging in FIG. 8 .
  • An alloy billet 11 that, for example, is 4 inches in diameter and 36 inches tall, is potted in a two inch diameter cylinder 13 of aluminum alloy 6061 or other such metals, as shown in FIG. 1 .
  • Billet 11 may be formed from any devitrified aluminum alloy, such as an aluminum based alloy containing from 3 to 18.5 atomic percent nickel and 3 to 14.0 atomic percent yttrium.
  • Cylinder 13 with billet 11 is then put in a steel plane strain die 15 in FIGS. 2 and 3 , where die 15 is wider than cylinder 13 .
  • Billet 11 is aligned so that its extrusion axis 17 will be parallel to the axis of forging in plane strain forge die 15 and is just below the lip 15 a of die 15 , as seen in FIG. 4 .
  • punch 19 is inserted into die 15 and plane strain forges billet 11 into the shape shown in FIG. 6 .
  • a maximum amount of work is placed in the direction of extrusion, axis 17 .
  • billet 11 is elongated in the horizontal direction so as to prepare billet 11 for further processing to form a useful part such as an airfoil.
  • FIG. 7 shows the elongated billet 11 after it is removed from die 15 .
  • Billet 11 is then placed in a forging die 21 , shown in FIG. 8 for forming an airfoil.
  • Such forging dies could include blocker dies and a final forging die. Again, the forging is done in the direction of extrusion axis 17 .
  • Airfoil 23 is the result of forging in die 21 .
  • the plate phases Al 23 Ni 6 Y 4 and Al 19 Ni 5 Y 3 ) that give the alloy its strength, become aligned with the extrusion direction 17 . This leads to low ductility in the extrusion direction and even lower ductility in the transverse direction.
  • the plate phases become randomly oriented and smaller in size. This leads to more uniform flow during plastic deformation, resulting in improved ductility.
  • the temperature of the forged product must be controlled. This is accomplished through careful control of the temperature of the dies and the billet.
  • the temperature of the dies typically ranges from 500° F. to about 800° F. (260° C. to 426.7° C.). For more control, this temperature is maintained from about 675° F. to about 750° F. (357.2° C. to 398.9° C.) during forging the billet.
  • the billet temperature is also controlled to be at a temperature from about 500° F. to about 800° F. (260° C. to (426.7° C.). Again, more control will use a temperature range from about 700° F. to about 750° F. (371.1° C. to 398.9° C.) during forging the billet.
  • adiabatic heating is controlled by controlling the press speed. Good results have been attained at a press speed of from about 0.001 inches per second to 0.1 inches per second.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Forging (AREA)

Abstract

A forged devitrified aluminum alloy of forging devitrified aluminum alloys having a desired shape. The alloy is forged in a plane strain forging die with the axis of extrusion being parallel to the direction of forging. The alloy is then forged in a product forming forging die having a desired shape such that the original axis of extrusion is aligned with the axis of the forging die resulting in the desired shape

Description

    CROSS-REFERENCE TO RELATED APPLICATION(S)
  • This application is related to the following co-pending applications that are filed on even date herewith and are assigned to the same assignee: DIFFUSION BONDING OF GLASSY ALUMINUM-BASED ALLOYS, Ser. No. ______, Attorney Docket No. PA0009506U-U73.12-665KL; MASTER ALLOY PRODUCTION FOR GLASSY ALUMINUM-BASED ALLOYS, Ser. No. ______, Attorney Docket No. PA0009509U-U73.12-666KL; EXTRUSION OF GLASSY ALUMINUM-BASED ALLOYS, Ser. No. ______, Attorney Docket No. PA0009510U-U73.12-667KL; and PRODUCTION OF ATOMIZED POWDER FOR GLASSY ALUMINUM-BASED ALLOYS, Ser. No. ______, Attorney Docket No. PA0009512U-U73.12-668KL. All referenced incorporated herein.
  • BACKGROUND
  • Aluminum alloys are important in many industries. Glassy Al-based alloys and their devitrified derivatives are currently being considered for applications in the aerospace industry. These alloys involve the addition of rare earth and transition metal elements. These alloys have high strength and, when processed appropriately, have high ductility.
  • One of the key requirements for high ductility is control of the second phase size during thermomechanical processing; in this case, forging extruded billet into various forged shapes.
  • When pure Al or Al-based alloys are forged, the alloys are heated, such as to 700° F. to 800° F., and are forged at high press speeds. There is normally no concern for adiabatic heating because the alloys are usually heat-treatable. In a heat treatment, they are solutionized, quenched and aged to a desired temper after forging.
  • Al-based alloys such as Al—Y—Ni—Co alloys are devitrified glass-forming aluminum alloys that derive their strength from a nanometer-sized grain structure and nanometer-sized intermetallic second phase or phases. Examples of such alloys are disclosed in co-owned U.S. Pat. Nos. 6,974,510 and 7,413,621, the disclosures of which are incorporated herein by reference in their entirety.
  • However, devitrified derivatives of glassy aluminum alloys have nanocrystalline microstructures that have mechanical properties that cannot be obtained when starting out with powder in the crystalline state. Standard forging practices will destroy the nanocrystalline microstructure and the important properties are lost.
  • SUMMARY
  • The invention involves the forging of extruded billet, or forging mults, in a direction whose axis is parallel to the axis of extrusion that formed the alloy billet. The alloy itself is a devitrified derivative of glassy aluminum alloys such as those described in the above identified patents.
  • Of particular use are aluminum based alloys containing from 3 to 18.5 atomic percent nickel and 3 to 14.0 atomic percent yttrium.
  • The alloy billet is textured and has an axis of extrusion in which the microstructure is aligned. Forging in this direction changes the microstructure to give maximum strength, and also causes the plate phases within the subject alloys to become randomly oriented, resulting in improved ductility.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic view of an alloy billet inserted in a cylinder.
  • FIG. 2 is a schematic view of a forging die.
  • FIG. 3 is a schematic view of the cylinder and billet of FIG. 1 inserted into the die of FIG. 2.
  • FIG. 4 is a schematic view of the die of FIG. 3 with the billet just below the lip of the die.
  • FIG. 5 is a schematic view of the use of a punch inserted into the die and billet of FIG. 4.
  • FIG. 6 is a schematic view of the billet after forging in FIG. 5.
  • FIG. 7 is a schematic view of the billet after being extracted from the die of FIG. 6.
  • FIG. 8 is a schematic view of the extracted billet of FIG. 7 inserted into a forging die such that the forging direction is parallel to the axis of extrusion.
  • FIG. 9 is a schematic view of a part produced by the forging in FIG. 8.
  • DETAILED DESCRIPTION
  • An alloy billet 11 that, for example, is 4 inches in diameter and 36 inches tall, is potted in a two inch diameter cylinder 13 of aluminum alloy 6061 or other such metals, as shown in FIG. 1. Billet 11 may be formed from any devitrified aluminum alloy, such as an aluminum based alloy containing from 3 to 18.5 atomic percent nickel and 3 to 14.0 atomic percent yttrium.
  • Cylinder 13 with billet 11 is then put in a steel plane strain die 15 in FIGS. 2 and 3, where die 15 is wider than cylinder 13. Billet 11 is aligned so that its extrusion axis 17 will be parallel to the axis of forging in plane strain forge die 15 and is just below the lip 15 a of die 15, as seen in FIG. 4.
  • In FIG. 5, punch 19 is inserted into die 15 and plane strain forges billet 11 into the shape shown in FIG. 6. In this process, a maximum amount of work is placed in the direction of extrusion, axis 17. At the same time, billet 11 is elongated in the horizontal direction so as to prepare billet 11 for further processing to form a useful part such as an airfoil.
  • FIG. 7 shows the elongated billet 11 after it is removed from die 15. Billet 11 is then placed in a forging die 21, shown in FIG. 8 for forming an airfoil. Such forging dies could include blocker dies and a final forging die. Again, the forging is done in the direction of extrusion axis 17. Airfoil 23 is the result of forging in die 21.
  • During extrusion to form billet 11, the plate phases (Al23Ni6Y4 and Al19Ni5Y3) that give the alloy its strength, become aligned with the extrusion direction 17. This leads to low ductility in the extrusion direction and even lower ductility in the transverse direction. When forged parallel to the direction of extrusion, axis 17, the plate phases become randomly oriented and smaller in size. This leads to more uniform flow during plastic deformation, resulting in improved ductility.
  • To provide for the retention of the nano-scale microstructure during forging, the temperature of the forged product must be controlled. This is accomplished through careful control of the temperature of the dies and the billet. The temperature of the dies typically ranges from 500° F. to about 800° F. (260° C. to 426.7° C.). For more control, this temperature is maintained from about 675° F. to about 750° F. (357.2° C. to 398.9° C.) during forging the billet. The billet temperature is also controlled to be at a temperature from about 500° F. to about 800° F. (260° C. to (426.7° C.). Again, more control will use a temperature range from about 700° F. to about 750° F. (371.1° C. to 398.9° C.) during forging the billet. During forging, adiabatic heating is controlled by controlling the press speed. Good results have been attained at a press speed of from about 0.001 inches per second to 0.1 inches per second.
  • Once the product has been formed, normal finish operations are performed. In the airfoil of FIG. 9, the forging path resulted in high yield strength and high ductility perpendicular to the chord direction for a blade. This is important for bird strike capability.
  • While the invention has been described with reference to an exemplary embodiment(s), it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment(s) disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.

Claims (20)

1. A method of forging devitrified aluminum alloys, comprising the steps of:
selecting a devitrified aluminum alloy billet having an axis of extrusion;
placing the billet in a plane strain forging die so the axis of extrusion is parallel to the direction of forging;
forging the billet in the plane strain forging die to elongate the billet in the horizontal direction;
removing the billet and placing it in a blocker die or series of blocker dies having a desired shape such that the original axis of extrusion is aligned with the axis of the forging die; and
forging the billet in the product forging final die to produce a forged billet having a desired shape.
2. The method of claim 1, wherein the plane strain forging die and product forging die during forging the billet is maintained at a temperature from about 500° F. to about 800° F. (260° C. to 426.7° C.).
3. The method of claim 2, wherein the temperature ranges from about 675° F. to about 750° F. (357.2° C. to 398.9° C.) during forging the billet.
4. The method of claim 1, wherein the plane strain forging is done at a press speed of from about 0.001 inches per second to 0.1 inches per second.
5. The method of claim 1, wherein the billet during forging the billet is maintained at a temperature from about 500° F. to about 800° F. (260° C. to 426.7° C.).
6. The method of claim 5, wherein the temperature ranges from about 700° F. to about 750° F. (371.1° C. to 398.9° C.) during forging the billet.
7. The method of claim 1, wherein the devitrified aluminum alloy is an aluminum based alloy containing from 3 to 18.5 atomic percent nickel and 3 to 14.0 atomic percent yttrium.
8. A method of forging devitrified aluminum alloys, comprising the steps of:
selecting a devitrified aluminum alloy billet having an axis of extrusion;
placing the billet in a plane strain forging die so the axis of extrusion is parallel to the direction of forging;
forging the billet in the plane strain forging die at a temperature of the die from about 500° F. to about 800° F. (260° C. to 426.7° C.) to elongate the billet in the horizontal direction while maintaining the temperature of the billet at a temperature from about 500° F. to about 800° F. (260° C. to 426.7° C.).;
removing the billet and placing it in a blocker die or series of blocker dies having a desired shape such that the original axis of extrusion is aligned with the axis of the forging die; and
forging the billet in the product forging final die at a temperature of the die from about 500° F. to about 800° F. (260° C. to 426.7° C.) to produce a forged billet having a desired shape.
9. The method of claim 8, wherein the temperature of the die ranges from about 675° F. to about 750° F. (357.2° C. to 398.9° C.) during plane strain forging the billet.
10. The method of claim 8, wherein the plane strain forging is done at a press speed of from about 0.001 inches per second to 0.1 inches per second.
11. The method of claim 8, wherein the temperature of the billet ranges from about 700° F. to about 750° F. (371.1° C. to 398.9° C.) during plane strain forging the billet.
12. The method of claim 8, wherein the devitrified aluminum alloy is an aluminum based alloy containing from 3 to 18.5 atomic percent nickel and 3 to 14.0 atomic percent yttrium.
13. A forged devitrified aluminum alloy made according to the method of clam 8.
14. A forged devitrified aluminum alloy of forging devitrified aluminum alloys having a desired shape, comprising:
a devitrified aluminum alloy billet having an axis of extrusion;
the alloy being forged in a plane strain forging die so the axis of extrusion is parallel to the direction of forging;
the billet being elongated in the horizontal direction; and
the billet further being forged in a product forming forging die having a desired shape such that the original axis of extrusion is aligned with the axis of the forging die resulting in the desired shape.
15. The forged devitrified aluminum alloy of claim 14, wherein the plane strain forging die and the product forging during forging the billet is maintained at a temperature from about 500° F. to about 800° F. (260° C. to 426.7° C.).
16. The forged devitrified aluminum alloy of claim 15, wherein the temperature ranges from about 675° F. to about 750° F. (357.2° C. to 398.9° C.) during plane strain forging the billet.
17. The forged devitrified aluminum alloy of claim 14, wherein the plane strain forging is done at a press speed of from about 0.001 inches per second to 0.1 inches per second.
18. The forged devitrified aluminum alloy of claim 14, wherein the billet during forging the billet is maintained at a temperature from about 500° F. to about 800° F. (260° C. to (426.7° C.).
19. The forged devitrified aluminum alloy of claim 18, wherein the temperature ranges from about 700° F. to about 750° F. (371.1° C. to 398.9° C.) during plane strain forging the billet.
20. The forged devitrified aluminum alloy of claim 14, wherein the devitrified aluminum alloy is an aluminum based alloy containing from 3 to 18.5 atomic percent nickel and 3 to 14.0 atomic percent yttrium.
US13/169,210 2011-06-27 2011-06-27 Forging of glassy aluminum-based alloys Abandoned US20120328472A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/169,210 US20120328472A1 (en) 2011-06-27 2011-06-27 Forging of glassy aluminum-based alloys
EP12162571A EP2540856A1 (en) 2011-06-27 2012-03-30 Forging of glassy aluminum-based alloys
US14/086,540 US20140076463A1 (en) 2011-06-27 2013-11-21 Master alloy production for glassy aluminum-based alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/169,210 US20120328472A1 (en) 2011-06-27 2011-06-27 Forging of glassy aluminum-based alloys

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/169,207 Division US20120325051A1 (en) 2011-06-27 2011-06-27 Production of atomized powder for glassy aluminum-based alloys

Publications (1)

Publication Number Publication Date
US20120328472A1 true US20120328472A1 (en) 2012-12-27

Family

ID=45930616

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/169,210 Abandoned US20120328472A1 (en) 2011-06-27 2011-06-27 Forging of glassy aluminum-based alloys

Country Status (2)

Country Link
US (1) US20120328472A1 (en)
EP (1) EP2540856A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130212856A1 (en) * 2010-06-22 2013-08-22 The Swatch Group Research And Development Ltd. Method of assembling a part
WO2015006466A1 (en) 2013-07-10 2015-01-15 United Technologies Corporation Aluminum alloys and manufacture methods
CN114603072A (en) * 2022-01-13 2022-06-10 上海交通大学 Forging method of titanium diboride-7075 aluminum-based composite material small blade based on induction heating

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6974510B2 (en) 2003-02-28 2005-12-13 United Technologies Corporation Aluminum base alloys
US20080308197A1 (en) * 2007-06-15 2008-12-18 United Technologies Corporation Secondary processing of structures derived from AL-RE-TM alloys

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130212856A1 (en) * 2010-06-22 2013-08-22 The Swatch Group Research And Development Ltd. Method of assembling a part
US9108279B2 (en) * 2010-06-22 2015-08-18 The Swatch Group Research And Development Ltd Method of assembling a part
WO2015006466A1 (en) 2013-07-10 2015-01-15 United Technologies Corporation Aluminum alloys and manufacture methods
US10450636B2 (en) 2013-07-10 2019-10-22 United Technologies Corporation Aluminum alloys and manufacture methods
EP3739073A1 (en) 2013-07-10 2020-11-18 United Technologies Corporation Aluminum alloys and manufacture methods
CN114603072A (en) * 2022-01-13 2022-06-10 上海交通大学 Forging method of titanium diboride-7075 aluminum-based composite material small blade based on induction heating

Also Published As

Publication number Publication date
EP2540856A1 (en) 2013-01-02

Similar Documents

Publication Publication Date Title
CA2892938C (en) Split-pass open-die forging for hard-to-forge, strain-path sensitive titanium-base and nickel-base alloys
JP2020032466A (en) Methods for producing forged products and other worked products
JP5669451B2 (en) Method for producing forged pieces from γ titanium-aluminum-mother alloy
CN104759830B (en) The method of the metal material of production performance enhancing
US10407745B2 (en) Methods for producing titanium and titanium alloy articles
CN103447433A (en) Preparation method of large-sized magnesium alloy forged disc
RU2301845C1 (en) Method of production of items from high-temperature wrought nickel alloy
US20120328472A1 (en) Forging of glassy aluminum-based alloys
JP4782987B2 (en) Magnesium-based alloy screw manufacturing method
Lee et al. Novel forging technology of a magnesium alloy impeller with twisted blades of micro-thickness
CN110802125B (en) Preparation method of magnesium alloy bar
US8603267B2 (en) Extrusion of glassy aluminum-based alloys
RU2707006C1 (en) Method of forging workpieces with ultra-fine-grained structure of two-phase titanium alloys
RU2371512C1 (en) Method of product receiving from heatproof nickel alloy
RU2345173C1 (en) Method of producing superductile plates from aluminium alloys of aluminium-magnesium-lithium system
RU2381083C1 (en) Manufacturing method of scapular blanks
Tao et al. Influence of secondary extrusion on microstructures and mechanical properties of ZK60 Mg alloy processed by extrusion and ECAP
RU2255136C1 (en) Method of plastic working of the high-temperature resistant alloys bars used for production of gas-turbine engine compressor blades
JP5249367B2 (en) Magnesium-based alloy screw
RU2486275C1 (en) Method to produce ultra-fine grain blank of gte blade of titanium alloys
RU2614294C1 (en) Method of blades forgings manufacturing from titanium alloys
Vilotic et al. Severe plastic deformation-key features, methods and application
Bochniak et al. Nano grained structure in KOBO extruded bulk products
Jafarzadeh et al. Study of the cyclic extrusion–compression in production of high stringed and ultrafine grained AM60 Magnesium noncircular thin section beams
RU2583551C2 (en) Method of production of ultrafine-grained titanium work pieces

Legal Events

Date Code Title Description
AS Assignment

Owner name: UNITED TECHNOLOGIES CORPORATION, CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WATSON, THOMAS J.;SEETHARAMAN, VENKATARAMA K.;SIGNING DATES FROM 20110623 TO 20110624;REEL/FRAME:026504/0930

AS Assignment

Owner name: DARPA, VIRGINIA

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:UNITED TECHNOLOGIES CORPORATION;REEL/FRAME:031200/0663

Effective date: 20130521

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION