US20120322435A1 - Method and System for Communication Between a Plurality of Femtocells to Mitigate Interference Between the Femtocells - Google Patents

Method and System for Communication Between a Plurality of Femtocells to Mitigate Interference Between the Femtocells Download PDF

Info

Publication number
US20120322435A1
US20120322435A1 US13/595,718 US201213595718A US2012322435A1 US 20120322435 A1 US20120322435 A1 US 20120322435A1 US 201213595718 A US201213595718 A US 201213595718A US 2012322435 A1 US2012322435 A1 US 2012322435A1
Authority
US
United States
Prior art keywords
femtocell
femtocells
interference
configuration information
noise ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/595,718
Inventor
Vinko Erceg
Charles Abraham
Xuemin Chen
Wael William Diab
Victor Hou
Jeyhan Karaoguz
Mark Kent
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Avago Technologies International Sales Pte Ltd
Original Assignee
Broadcom Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Broadcom Corp filed Critical Broadcom Corp
Priority to US13/595,718 priority Critical patent/US20120322435A1/en
Assigned to BROADCOM CORPORATION reassignment BROADCOM CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KARAOGUZ, JEYHAN, DIAB, WAEL WILLIAM, ABRAHAM, CHARLES, HOU, VICTOR, KENT, MARK, CHEN, XUEMIN, ERCEG, VINKO
Publication of US20120322435A1 publication Critical patent/US20120322435A1/en
Assigned to BROADCOM CORPORATION reassignment BROADCOM CORPORATION CORRECTIVE ASSIGNMENT TO CORRECT THE INCORRECT APPLICATION NUMBER 13597718 PREVIOUSLY RECORDED ON REEL 028861 FRAME 0546. ASSIGNOR(S) HEREBY CONFIRMS THE CORRECT APPLICATION NUMBER IS 13595718. Assignors: KARAOGUZ, JEYHAN, DIAB, WAEL WILLIAM, ABRAHAM, CHARLES, HOU, VICTOR, KENT, MARK, CHEN, XUEMIN, ERCEG, VINKO
Assigned to BANK OF AMERICA, N.A., AS COLLATERAL AGENT reassignment BANK OF AMERICA, N.A., AS COLLATERAL AGENT PATENT SECURITY AGREEMENT Assignors: BROADCOM CORPORATION
Assigned to AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD. reassignment AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BROADCOM CORPORATION
Assigned to BROADCOM CORPORATION reassignment BROADCOM CORPORATION TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS Assignors: BANK OF AMERICA, N.A., AS COLLATERAL AGENT
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B

Definitions

  • Certain embodiments of the invention relate to communications. More specifically, certain embodiments of the invention relate to a method and system for communication between a plurality of femtocells to mitigate interference between the femtocells.
  • a femtocell is a small base station that may be placed in a customer's residence or in a small business environment, for example. Femtocells may be utilized for off-loading macro radio network facilities, improving coverage locally in a cost-effective manner, and/or implementing home-zone services to increase revenue. Femtocells, like macro base stations, may be enabled to connect “standard” phones to a cellular provider's network by a physical broadband connection which may be a digital subscriber line (DSL) connection, fiber connection, and/or a cable connection, for example. Since the traffic between a customer's premises femtocell equipment and the operator's network may be traversing a public network, the traffic may be prone to various risks.
  • DSL digital subscriber line
  • femtocells Communication between femtocells and one or more cellular provider's networks enables operation in private and public areas.
  • the capacity of a femtocell may be adequate to address a typical family use model supporting two to four simultaneous voice calls and/or data, for example.
  • femtocells An important characteristic of femtocells is their ability to control access.
  • any terminal and/or subscriber that may be subscribed to any cellular base station may be allowed to communicate with the femtocell. Accordingly, the femtocell usage may somewhat resemble that of a macrocellular system.
  • a closed access scenario only a limited number of terminals and/or subscribers that may be subscribed to a given cellular base station may be allowed to communicate with the femtocell. In this regard, the cellular base station may be perceived as being deployed for private usage.
  • femtocells use licensed frequencies that radiate at a very low power in a controlled environment. It may be likely that they may not require a license from a local authority, as macrocellular base stations do.
  • An additional regulatory issue may arise from the relationship between a femtocell operator and a broadband services operator.
  • One possible scenario may include the broadband operator being unaware of the existence of a femtocell operator. Conversely, the broadband operator and femtocell operator may have an agreement or they may be the same operator, for example.
  • Interference between femtocells may be an issue for femtocell deployments based on wideband technologies such as WCDMA or OFDM, for example, because initial operator deployments may use the same frequency for both the femtocell and the macrocellular networks or due to the proximity of femtocell base stations in dense urban areas
  • femtocells There are a plurality of design models for deployment and integration of femtocells, for example, an IP based radio network controller (RNC) node B (lu-b), a session initiation protocol (SIP) based approach using an lu/A interface, use of unlicensed spectrum in a technique known as unlicensed mobile access (UMA) and/or use of IP multimedia subsystem (IMS) voice call continuity (VCC), for example.
  • RNC radio network controller
  • SIP session initiation protocol
  • UMA unlicensed mobile access
  • VCC IP multimedia subsystem
  • femtocells may be fully integrated into the wireless carrier's network and may be treated like any other remote node in a network.
  • the lu-b protocol may have a plurality of responsibilities, such as the management of common channels, common resources, and radio links along with configuration management, including cell configuration management, measurement handling and control, time division duplex (TDD) synchronization, and/or error reporting, for example.
  • TDD time division duplex
  • mobile devices may access the network and its services via the Node B link, and femtocells may be treated as traditional base stations.
  • a SIP client embedded in the femtocell may be enabled to utilize SIP to communicate with the SIP-enabled mobile switching center (MSC).
  • the MSC may perform the operational translation between the IP SIP network and the traditional mobile network, for example.
  • a generic access network may offer an alternative way to access GSM and GPRS core network services over broadband.
  • GAN GSM
  • GPRS GPRS
  • a UMA Network Controller UMA Network Controller
  • the UNC may be enabled to interface into a core network via existing 3GPP interfaces, for example, to support core network integration of femtocell based services by delivering a standards based, scalable IP interface for mobile core networks.
  • VCC may provide for a network design that may extend an IMS network to include cellular coverage and address the handoff process.
  • the IMS VCC may be designed to provide seamless call continuity between cellular networks and any network that supports VoIP, for example.
  • the VCC may also provide for interoperability between GSM, UMTS, and CDMA cellular networks and any IP capable wireless access network, for example.
  • the IMS VCC may also support the use of a single phone number or SIP identity and may offer a broad collection of functional advantages, for example, support for multiple markets and market segments, provisioning of enhanced IMS multimedia services, including greater service personalization and control, seamless handoff between circuit-switched and IMS networks, and/or access to services from any IP device.
  • a system and/or method for communication between a plurality of femtocells to mitigate interference between the femtocells, substantially as shown in and/or described in connection with at least one of the figures, as set forth more completely in the claims.
  • FIG. 1A is a diagram illustrating an exemplary cellular network, in accordance with an embodiment of the invention.
  • FIG. 1B is a block diagram of an exemplary femtocell, in accordance with an embodiment of the invention.
  • FIG. 2 is a diagram illustrating communication between a plurality of femtocells to mitigate interference between the femtocells, in accordance with an embodiment of the invention.
  • FIG. 3 is a flow chart illustrating exemplary steps for communication between a plurality of femtocells to mitigate interference between the femtocells, in accordance with an embodiment of the invention.
  • a first of a plurality of femtocells in the network may receive interference information from one or more other femtocells, one or more base stations, and/or one or more communication devices in the network.
  • the first femtocell may determine configuration information for the first femtocell and one or more other femtocells in the network based on the communicated interference information.
  • the first femtocell and the other femtocells in the network may be configured based on the determined configuration information.
  • the determined configuration information may comprise one or more of power levels, frequencies of operation, and/or directionality of antennas of each of the plurality of femtocells.
  • the interference between the plurality of femtocells may be mitigated based on configuring the first femtocell and the other femtocells in the network based on the determined configuration information.
  • the determined configuration information may comprise one or more of power levels, frequencies of operation, location, and/or directionality of antennas of each of the plurality of femtocells.
  • FIG. 1A is a diagram illustrating an exemplary cellular network, in accordance with an embodiment of the invention.
  • a cellular network 100 comprising sub-networks 101 a , 101 b and 101 c .
  • the exemplary sub-network 101 a may comprise a base station 102 , femtocells 110 a , 110 b , 110 c and 110 d , which are collectively referred to herein as femtocells 110 , and cellular enabled communication devices 112 a and 112 b , which are collectively referred to herein as cellular enabled communication devices 112 .
  • the femtocells 110 may be installed in one or more commercial properties 104 , one or more residential properties 106 , and/or one or more multi-tenant properties 108 .
  • the commercial properties 104 may comprise, for example, stores, restaurants, offices, and municipal buildings.
  • the residential properties 106 may comprise, for example, single-family homes, home offices, and/or town-houses.
  • Multi-tenant properties 108 may comprise residential and/or commercial tenants such as apartments, condos, hotels, and/or high rises.
  • the base station 102 may be operable to communicate data wirelessly utilizing one or more wireless standards such as IS-95, CDMA, GSM, TDMA, GPRS, EDGE, UMTS/WCDMA, TD-SCDMA, OFDM, HSDPA, Bluetooth, WLAN, WiMAX, ZigBee extensions thereto, and/or variants thereof. Notwithstanding, the invention may not be so limited, and the base station 102 may be operable to communicate data to the plurality of femtocells via a wired network, for example, a digital subscriber line (DSL) connection, fiber connection, and/or a cable connection without limiting the scope of the invention.
  • DSL digital subscriber line
  • Data may refer to any analog and/or digital information including but not limited to voice, Internet data, and/or multimedia content.
  • Multimedia content may comprise audio and/or visual content comprising, video, still images, animated images, and/or textual content.
  • the base station 102 may communicate with the cellular enabled communication devices such as the cellular enabled communication devices 112 .
  • Exemplary cellular standards supported by the base station 102 may be specified in the International Mobile Telecomunnications-2000 (IMT-2000) standard and/or developed by the 3 rd generation partnership project (3GPP) and/or the 3 rd generation partnership project 2 (3GPP2).
  • the base station 102 may communicate data amongst the various components of the sub-network 101 a .
  • data communicated to and/or from the base station 102 may be communicated to sub-network 101 b , sub-network 101 c , and/or to one or more other networks (not shown) via one or more backhaul links 103 .
  • data communicated to and/or from the base station 102 may be communicated to and/or from, other portions of the network 100 and/or other networks.
  • Exemplary networks with which data may be communicated may comprise public switched telephone networks (PSTN) and/or IP networks such as the Internet or an intranet.
  • PSTN public switched telephone networks
  • IP networks such as the Internet or an intranet.
  • the femtocells 110 may each comprise suitable logic, circuitry, and/or code that may be operable to communicate wirelessly utilizing one or more wireless standards such as IS-95, CDMA, GSM, TDMA, GPRS, EDGE, UMTS/WCDMA, TD-SCDMA, OFDM, HSDPA, Bluetooth, WLAN, WiMAX, ZigBee extensions thereto, and/or variants thereof.
  • the femtocells 110 may each communicate with the cellular enabled communication devices such as the cellular enabled communication devices 112 .
  • Exemplary cellular standards supported by the femtocells 110 may be specified in the International Mobile Telecomunnications-2000 (IMT-2000) standard and/or developed by the 3 rd generation partnership project (3GPP) and/or the 3 rd generation partnership project 2 (3GPP2). Additionally, the femtocells 110 may each comprise suitable logic, circuitry, and/or code that may be operable to communicate over an IP network (not shown in FIG. 1A ).
  • IMT-2000 International Mobile Telecomunnications-2000
  • 3GPP 3 rd generation partnership project
  • 3GPP2 3 rd generation partnership project 2
  • the femtocells 110 may each comprise suitable logic, circuitry, and/or code that may be operable to communicate over an IP network (not shown in FIG. 1A ).
  • the cellular enabled communication devices 112 may each comprise suitable logic, circuitry, and/or code that may be operable to communicate utilizing one or more cellular standards. In this regard, the cellular enabled communication devices 112 may each be operable to transmit and/or receive data via the cellular network 100 .
  • Exemplary cellular enabled communication devices may comprise laptop computers, mobile phones, and personal media players, for example.
  • the cellular enabled communication devices 112 may be enabled to receive, process, and present multimedia content and may additionally be enabled run a network browser or other applications for providing Internet services to a user of the cellular enabled device 112 .
  • the cellular enabled communication devices 112 may gain access to the cellular network 100 and/or to other communication networks via cellular communications with the base station 102 and/or the femtocells 110 .
  • the data may be communicated between the cellular enabled communication device 112 and the base station 102 .
  • the data may be communicated between the cellular enabled communication device 112 and the femtocell 110 .
  • owners and/or operators (owners/operators) of the femtocells 110 may desire and/or need a way to mitigate the cellular interference caused by the femtocells 110 in the cellular network 100 .
  • the plurality of femtocells for example, femtocells 110 a , 110 b , 110 c and 110 d within the cellular sub-network 101 a may be interconnected via a wired and/or wireless connection, for example.
  • Each of the plurality of femtocells 110 a , 110 b , 110 c and 110 d may be operable to communicate and/or exchange interference information between each other.
  • each of the femtocells 110 b , 110 c and 110 d may be operable to communicate interference information to femtocell 110 a .
  • the communicated interference information may comprise one or more of signal to noise ratio (SNR), signal to interference noise ratio (SINR), carrier to noise ratio (CNR), carrier to interference noise ratio (CINR), receive signal strength indication (MST), potential interference, power levels, and/or directionality of antennas of each of the plurality of femtocells 110 b , 110 c and 110 d.
  • SNR signal to noise ratio
  • SINR signal to interference noise ratio
  • CNR carrier to noise ratio
  • CINR carrier to interference noise ratio
  • MST receive signal strength indication
  • potential interference potential interference
  • power levels and/or directionality of antennas of each of the plurality of femtocells 110 b , 110 c and 110 d.
  • the femtocell 110 a may be operable to determine configuration information for itself and the other femtocells 110 b , 110 c and 110 d based on the communicated interference information.
  • the determined configuration information may comprise one or more of power levels, frequencies of operation, location, and/or directionality of antennas of each of the plurality of femtocells 110 b , 110 c and 110 d.
  • the femtocell 110 a may be operable to configure itself based on the determined configuration information.
  • the femtocell 110 a may be operable to communicate the determined configuration information for one or more other femtocells 110 b , 110 c and 110 d to corresponding ones of the one or more other femtocells 110 b , 110 c and 110 d .
  • the one or more other femtocells 110 b , 110 c and 110 d may be operable to utilize the communicated determined configuration information to configure corresponding ones of the one or more other femtocells 110 b , 110 c and 110 d .
  • the interference between the plurality of femtocells 110 a , 110 b , 110 c and 110 d may be mitigated based on the configuring of the first femtocell 110 a and the configuring of the corresponding ones of the one or more other femtocells 110 b , 110 c and 110 d.
  • FIG. 1B is a block diagram of an exemplary femtocell, in accordance with an embodiment of the invention.
  • a femtocell 150 comprising an antenna 152 , a cellular transmitter and/or receiver (Tx/Rx) 154 , a broadband transmitter and/or receiver (Tx/Rx) 156 , a processor 158 , a memory 160 , and a digital signal processor (DSP) 162 .
  • the femtocell 150 may be similar to or the same as the femtocells 110 described with respect to FIG. 1A .
  • the femtocell 150 may be part of a mesh network of interconnected femtocells, for example, and may be connected to other femtocells or an IP network via a wired and/or wireless connection.
  • the antenna 152 may be suitable for transmitting and/or receiving cellular signals. Although a single antenna is illustrated, the invention may not be so limited.
  • the cellular Tx/Rx 154 may utilize a common antenna for transmission and reception, or may utilize different antennas for transmission and reception, and/or may utilize a plurality of antennas for transmission and/or reception.
  • the cellular Tx/Rx 154 may comprise suitable logic circuitry and/or code that may be operable to transmit and/or receive voice and/or data utilizing one or more cellular standards.
  • the cellular Tx/Rx 154 may be operable to perform amplification, down-conversion, filtering, demodulation, and analog to digital conversion of received cellular signals.
  • the cellular Tx/Rx 154 may be operable to perform amplification, up-conversion, filtering, modulation, and digital to analog conversion of transmitted cellular signals.
  • the cellular Tx/Rx 154 may support communication over a plurality of communication channels utilizing time division multiple access (TDMA), code division multiple access (CDMA) and/or orthogonal frequency division multiplexing (OFDM) Exemplary cellular standards supported by the femtocells 110 may be specified in the International Mobile Telecomunnications-2000 (IMT-2000) standard developed by the 3 rd generation partnership project (3GPP) and/or the 3 rd generation partnership project 2 (3GPP2).
  • the cellular Tx/Rx 154 may be operable to transmit and/or receive on one or more frequencies and/or channels.
  • One or more of the frequencies and/or one or more of the channels on which the cellular Tx/Rx 154 receives and/or transmits may be configured via one or more control signals from the processor 158 , memory 160 , and/or the DSP 162 .
  • the cellular Tx/Rx 154 may also comprise a processor that may be enabled to monitor the received signal strength and for characterizing an environment in which the femtocell 150 resides.
  • the broadband Tx/Rx 156 may comprise suitable logic, circuitry, and/or code that may be operable to transmit voice and/or data in adherence to one or more broadband standards.
  • the broadband Tx/Rx 156 may be operable to perform amplification, down-conversion, filtering, demodulation, and analog to digital conversion of received signals.
  • the broadband Tx/Rx 156 may be operable to perform amplification, up-conversion, filtering, modulation, and digital to analog conversion of transmitted signals.
  • the broadband Tx/Rx 156 may transmit and/or receive voice and/or data over the link 157 which may be a T1/E1 line, optical fiber, DSL, cable television infrastructure, satellite broadband interne connection, satellite television infrastructure, and/or Ethernet.
  • data received via the broadband Tx/Rx 156 may be conveyed to the processor 158 , memory 160 , and/or the DSP 162 and may be utilized to control one or more frequencies and/or channels on which the cellular Tx/Rx 154 transmits and/or receives.
  • the processor 158 may comprise suitable logic, circuitry, and/or code that may enable processing data and/or controlling operations of the femtocell 150 .
  • the processor 158 may be enabled to provide control signals to the various other blocks comprising the femtocell 150 .
  • the processor 158 may also control data transfers between various portions of the femtocell 150 .
  • the processor 158 may enable execution of applications programs and/or code.
  • the applications, programs, and/or code may enable, for example, parsing, transcoding, or otherwise processing data.
  • the applications, programs, and/or code may enable, for example, configuring or controlling operation of the cellular Tx/Rx 154 , the broadband Tx/Rx 156 , the DSP 162 , and/or the memory 160 .
  • the applications, programs, and/or code may enable detecting interference and/or controlling cellular one or more frequencies and/or one or more channels on which the cellular Tx/Rx 154 transmits and/or receives.
  • the processor 158 may be operable to receive data at the femtocell 150 within the network from a source, for example, a base station 146 , an IP network 132 , a cellular enabled communication device 138 a and/or another femtocell, for example, femtocell 110 a within a coverage area of the femtocell 150 .
  • the processor 158 in the femtocell 110 a may be operable to receive interference information from the plurality of femtocells 110 b , 110 c and 110 d .
  • the processor 158 may be operable to determine configuration information for each of the femtocells 110 a , 110 b , 110 c and 110 d based on the received interference information.
  • each femtocell may be operable to configure itself based on the received interference information from the other femtocells in its vicinity.
  • the determined configuration information may comprise one or more of power levels, frequencies of operation, location, and/or directionality of antennas of each of the plurality of femtocells, for example, femtocells 110 a , 110 b , 110 c and 110 d .
  • the processor 158 may be operable to configure each of the femtocells 110 a , 110 b , 110 c and 110 d utilizing the received determined configuration information.
  • the memory 160 may comprise suitable logic, circuitry, and/or code that may enable storage or programming of information that includes parameters and/or code that may effectuate the operation of the femtocell 150 .
  • the parameters may comprise configuration data and the code may comprise operational code such as software and/or firmware, but the information need not be limited in this regard.
  • the parameters may include adaptive filter and/or block coefficients.
  • the memory 160 may buffer or otherwise store received data and/or data to be transmitted.
  • the memory 160 may comprise one or more look-up tables utilized for determining cellular devices within a coverage area of the femtocell 150 .
  • the memory 160 may comprise one or more look-up tables or other data structures which may comprise information controlling one or more frequencies and/or one or more channels on which the cellular Tx/Rx 154 transmits and/or receives.
  • the DSP 162 may comprise suitable logic, circuitry, and/or code operable to process audio and/or video signals.
  • the DSP 162 may encode, decode, modulate, demodulate, encrypt, and/or decrypt voice and/or data signals.
  • the DSP 162 may be operable to perform computationally intensive processing of voice and/or data signals.
  • the DSP 162 may be operable to detect interference and/or control one or more frequencies and/or one or more channels on which the cellular Tx/Rx 154 transmits and/or receives.
  • the DSP 162 may be operable to perform, for example, fast Fourier transform analysis (FFT) of received signals to characterize radio environment in which the femtocell 150 resides.
  • FFT fast Fourier transform analysis
  • the femtocell 150 may characterize its environment by receiving signals on one or more frequencies and/or channels via the cellular Tx/Rx 154 , conveying the received signals to the DSP 162 , and performing one or more measurements and/or calculations on the signals via the DSP 162 .
  • the DSP may characterize received signals utilizing metrics such as in-band interference, out-of-band interference, and/or signal-to-noise ratio (e.g. SNR, SINR, CNR). The characterization may enable detection of interfering signals.
  • Results of the characterization may be conveyed to the processor 158 and/or stored in the memory 160 and may be utilized, at least in part, to determine one or more frequencies and/or channels on which the cellular Tx/Rx 154 may transmit and/or receive. In this manner, interference may be reduced.
  • the results of the characterization may be communicated over, for example, an IP network to which the femtocell 150 is communicatively coupled via the broadband Tx/Rx 156 .
  • the one or more frequencies and/or channels on which the cellular Tx/Rx 154 may transmit and/or receive may also be determined, at least in part, based on data received via the broadband Tx/Rx 156 .
  • other femtocells and/or base stations may characterize the environment in which they are operating and may communicate results of those characterizations over, for example, an IP network to which the femtocell 150 is communicatively coupled.
  • characterizing an environment may comprise measuring signal strengths on one or more frequencies and/or channels and perform one or more calculations and/or analyses utilizing the measurements. In this manner, signals which may interfere with cellular communications with the femtocell 150 may be detected.
  • FIG. 2 is a diagram illustrating communication between a plurality of femtocells to mitigate interference between the femtocells, in accordance with an embodiment of the invention.
  • the network 200 may comprise a base station 220 , a plurality of femtocells 202 , 204 , 206 and 207 , and a plurality of cellular enabled communication devices 208 a and 208 b .
  • the plurality of femtocells 202 , 204 , 206 and 207 and the base station 220 may be communicatively coupled to an IP network via a wired connection 212 .
  • the plurality of femtocells 202 , 204 , 206 and 207 , and the plurality of cellular enabled communication devices 208 a and 208 b may be communicatively coupled via wireless connections 213 .
  • the base station 220 may be may be substantially as described with respect to FIG. 1A .
  • Each of the plurality of femtocells 202 , 204 , 206 and 207 may be substantially as described with respect to FIGS. 1A and 1B .
  • Each of the plurality of cellular enabled communication devices 208 a and 208 b may be substantially as described in FIG. 1A .
  • the invention may not be so limited and the network 200 may comprise other femtocells, cellular enabled communication devices and base stations, which are not shown in FIG. 2 .
  • the plurality of femtocells 202 , 204 , 206 and 207 may be communicatively coupled to an IP network via a wired connection 212 .
  • the IP network may comprise one or more network devices and/or network links operable to transmit and/or receive IP packets.
  • the IP network may provide access to the Internet and/or one or more private networks.
  • the wired connection 212 may comprise a broadband link such as a digital subscriber line (DSL), a T1/E1 line, a cable television infrastructure, a satellite television infrastructure, and/or a satellite broadband Internet link.
  • the wired connection 212 may comprise one or more optical, fiber, and/or wired links.
  • the plurality of femtocells 202 , 204 , 206 and 207 may be communicatively coupled via a wireless connection 213 , for example.
  • Each of the plurality of femtocells 202 , 204 , 206 and 207 may be a node in the network 200 .
  • Each of the plurality of femtocells 202 , 204 , 206 and 207 may be operable to communicate with other femtocells, base stations and/or wired enabled communication devices within a particular coverage area via a wireless connection 213 .
  • the wireless connection 213 may be enabled to communicate data wirelessly utilizing one or more wireless standards such as IS-95, CDMA, GSM, TDMA, GPRS, EDGE, UMTS/WCDMA, TD-SCDMA, OFDM, HSDPA, Bluetooth, WLAN, WiMAX, ZigBee extensions thereto, and/or variants thereof.
  • the femtocell 202 may be operable to communicate with other femtocells, base stations and/or cellular enabled communication devices within a femtocell coverage area 210 a .
  • the femtocell 204 may be operable to communicate with other femtocells, base stations and/or cellular enabled communication devices within a femtocell coverage area 210 b .
  • the femtocell 206 may be operable to communicate with other femtocells, base stations and/or cellular enabled communication devices within a femtocell coverage area 210 c .
  • the femtocell 207 may be operable to communicate with other femtocells, base stations and/or cellular enabled communication devices within a femtocell coverage area 210 d.
  • the cellular enabled communication device 208 a may be located within the femtocell coverage area 210 a of femtocell 202 and within the femtocell coverage area 210 b of femtocell 204 , for example.
  • the cellular enabled communication device 208 b may be located within the femtocell coverage area 210 c of femtocell 206 , for example.
  • the invention may not be so limited and the cellular enabled communication devices 208 a and 208 b may be located in other locations within the network 200 without limiting the scope of the invention.
  • the cellular enabled communication devices 208 a and 208 b may gain access to the cellular network 100 and/or to other communication networks via cellular communications with the base station 220 and the femtocells 202 , 204 and 206 .
  • a reliable connection may be established between the base station 220 and a cellular enabled communication device, for example, 208 a
  • data may be communicated between the cellular enabled communication device 208 a and the base station 220 .
  • a reliable connection may be established between a femtocell, for example, femtocell 202 and a cellular enabled communication device, for example, 208 a
  • data may be communicated between the cellular enabled communication device 208 a and the femtocell 202 .
  • the network 200 may be operable to increase the bandwidth, spectral efficiency and range of the network over a specific coverage area.
  • one or more intermediate nodes or femtocells in the network 200 may be operable to boost the signal and cooperatively make decisions to route data based on their knowledge of the network 200 .
  • Each of the plurality of femtocells 202 , 204 , 206 and 207 may be operable as routers to transmit and/or receive data to/from neighboring femtocells.
  • the network 200 may be decentralized with no central server or centrally managed with a central server, for example.
  • the femtocell 204 may be operable to transmit the received data from the femtocell 202 to the neighboring femtocell 206 within the femtocell coverage area 210 b .
  • the femtocell 206 may be operable to transmit the received data from the femtocell 204 to the cellular enabled communication device 208 b within the femtocell coverage area 210 c .
  • each of the plurality of femtocells 202 , 204 , 206 and 207 in the network 200 may be operable to detect neighboring femtocells in the network 200 without contacting the base station 220 .
  • one or more processors for example, the processor 158 in a first of the plurality of femtocells, for example, the femtocell 202 may be operable to receive interference information from the plurality of femtocells 204 , 206 and 207 .
  • the received interference information may comprise one or more of signal to noise ratio (SNR), signal to interference noise ratio (SINR), carrier to noise ratio (CNR), carrier to interference noise ratio (CINR), receive signal strength indication (RSSI), potential interference, power levels, location, and/or directionality of antennas of each of the plurality of femtocells, for example, femtocells 204 , 206 and 207 .
  • SNR signal to noise ratio
  • SINR carrier to noise ratio
  • RSSI receive signal strength indication
  • the processor 158 in the femtocell 202 may be operable to determine configuration information for each of the femtocells 202 , 204 , 206 and 207 based on the received interference information.
  • the determined configuration information may comprise one or more of power levels, frequencies of operation, location, and/or directionality of antennas of each of the plurality of femtocells, for example, femtocells 202 , 204 , 206 and 207 .
  • the processor 158 in the femtocell 202 may be operable to configure the femtocell 202 based on the determined configuration information.
  • the femtocell 202 may be operable to adjust one or more of its power levels, frequencies of operation, and/or directionality of antennas based on the determined configuration information.
  • the femtocell 202 may be operable to communicate the determined configuration information for one or more other femtocells 204 , 206 and 207 to corresponding ones of the one or more other femtocells 204 , 206 and 207 .
  • the one or more other femtocells 204 , 206 and 207 may be operable to utilize the communicated determined configuration information to configure corresponding ones of the one or more other femtocells 204 , 206 and 207 .
  • the interference between the plurality of femtocells 202 , 204 , 206 and 207 may be mitigated based on the configuring of the first femtocell 202 and the configuring of the corresponding ones of the one or more other femtocells 204 , 206 and 207 .
  • the processor 158 in the femtocell 202 may be operable to receive the communicated interference information and/or radio environment information from one or more communication devices, for example, cellular enabled communication devices 208 a and 208 b , one or more femtocells 204 , 206 and 207 and/or one or more base stations 220 .
  • the communication device for example, the cellular enabled communication devices 208 a and 208 b may comprise a wired and/or wireless communication device.
  • the interference information may be received by the femtocell 202 via a wireless connection 213 .
  • the determined configuration information may be communicated to one or more other of the plurality of femtocells, for example, femtocells 204 , 206 and 207 via a wireless connection 213 .
  • the wireless connection 213 may be operable to handle signals comprising IS-95, CDMA, GSM, TDMA, GPRS, EDGE, UMTS, WCDMA, OFDM, TD-SCDMA, WiMAX, WLAN, Bluetooth, ZigBee and/or HSDPA signals.
  • FIG. 3 is a flow chart illustrating exemplary steps for communication between a plurality of femtocells to mitigate interference between the femtocells, in accordance with an embodiment of the invention.
  • exemplary steps may begin with step 302 .
  • a first of a plurality of femtocells in a network may be operable to receive interference information from one or more other of the plurality of femtocells, one or more base stations, and/or one or more communication devices.
  • the first femtocell may be operable to scan the radio spectrum to detect interference levels from one or more neighboring femtocells, one or more base stations, and/or one or more cellular enabled communication devices.
  • the communicated interference information may comprise one or more of signal to noise ratio (SNR), signal to interference noise ratio (SINR), carrier to noise ratio (CNR), carrier to interference noise ratio (CINR), receive signal strength indication (RSSI), potential interference, power levels, and/or directionality of antennas of each of the plurality of femtocells.
  • the first femtocell may be operable to determine configuration information for itself and one or more other femtocells based on the received interference information.
  • each femtocell may be operable to configure itself based on the scanned information and/or communicated interference information from other femtocells.
  • the determined configuration information may comprise one or more of power levels, frequencies of operation, location, and/or directionality of antennas of each of the plurality of femtocells.
  • the first femtocell may be operable to configure itself based on the determined configuration information and/or the scanned interference information.
  • the first femtocell may be operable to communicate the determined configuration information for one or more other femtocells to corresponding ones of the one or more other femtocells.
  • the one or more other femtocells may be operable to utilize the communicated determined configuration information and/or the scanned interference information to configure corresponding ones of the one or more other femtocells.
  • it may be determined whether the current interference between the plurality of femtocells is below a particular interference threshold level. Control then returns to end step 304 .
  • a method and system for communication between a plurality of femtocells to mitigate interference between the femtocells may comprise a network 200 comprising a plurality of femtocells, for example, femtocells 202 , 204 , 206 and 207 , one or more base stations 220 , and/or one or more communication devices 208 a and 208 b .
  • One or more processors, for example, the processor 158 for use in a first of the plurality of femtocells, for example, the femtocell 204 may be operable to receive interference information from one or more other of the plurality of femtocells, for example, the femtocells 202 , 206 and 207 , one or more base stations 220 , and/or one or more communication devices 208 a and 208 b .
  • the processor 158 may be operable to determine configuration information for the first femtocell 204 based on the received interference information.
  • the processor 158 may be operable to configure the first femtocell 204 based on the determined configuration information.
  • the processor 158 in the femtocell 204 may be operable to communicate the determined configuration information for one or more other femtocells, for example, the femtocells 202 , 206 and 207 to corresponding ones of the one or more other femtocells, for example, the femtocells 202 , 206 and 207 .
  • the femtocell 204 may be operable to scan the radio spectrum to detect interference information from one or more neighboring femtocells, for example, the femtocells 202 , 206 and 207 , one or more base stations 220 , and/or one or more cellular enabled communication devices 208 a and 208 b .
  • the one or more other femtocells for example, the femtocells 202 , 206 and 207 may be operable to utilize the communicated determined configuration information and/or scanned interference information to configure corresponding ones of the one or more other femtocells, for example, the femtocells 202 , 206 and 207 .
  • the interference between the plurality of femtocells may be mitigated based on the configuring of the first femtocell 204 and the configuring of the corresponding ones of the one or more other femtocells, for example, the femtocells 202 , 206 and 207 .
  • One or more processors may be operable to receive the communicated interference information from one or more communication devices, for example, the cellular enabled communication devices 208 a and 208 b .
  • the communication device for example, the cellular enabled communication devices 208 a and 208 b may comprise a wired and/or wireless communication device.
  • the communicated interference information may comprise one or more of signal to noise ratio (SNR), signal to interference noise ratio (SINR), carrier to noise ratio (CNR), carrier to interference noise ratio (CINR), receive signal strength indication (RSSI), potential interference, power levels, multiple power levels as a function of directionality of antennas, and/or directionality of antennas of each of the plurality of femtocells, for example, the femtocells 202 , 204 , 206 and 207 .
  • the determined configuration information may comprise one or more of power levels, frequencies of operation, location, and/or directionality of antennas of each of the plurality of femtocells, for example, the femtocells 202 , 204 , 206 and 207 .
  • the interference information may be received by the first femtocell 204 via a wireless connection 213 .
  • the processor 158 in the first femtocell 204 may be operable to communicate the determined configuration information to the one or more other femtocells, for example, the femtocells 202 , 206 and 207 via a wireless connection 213 .
  • the wireless connection 213 may be operable to handle signals comprising IS-95, CDMA, GSM, TDMA, GPRS, EDGE, UMTS, WCDMA, OFDM, TD-SCDMA, Bluetooth, WLAN, WiMAX, ZigBee and/or HSDPA signals.
  • Another embodiment of the invention may provide a machine and/or computer readable storage and/or medium, having stored thereon, a machine code and/or a computer program having at least one code section executable by a machine and/or a computer, thereby causing the machine and/or computer to perform the steps as described herein for communication between a plurality of femtocells to mitigate interference between the femtocells.
  • the present invention may be realized in hardware, software, or a combination of hardware and software.
  • the present invention may be realized in a centralized fashion in at least one computer system, or in a distributed fashion where different elements are spread across several interconnected computer systems. Any kind of computer system or other apparatus adapted for carrying out the methods described herein is suited.
  • a typical combination of hardware and software may be a general-purpose computer system with a computer program that, when being loaded and executed, controls the computer system such that it carries out the methods described herein.
  • the present invention may also be embedded in a computer program product, which comprises all the features enabling the implementation of the methods described herein, and which when loaded in a computer system is able to carry out these methods.
  • Computer program in the present context means any expression, in any language, code or notation, of a set of instructions intended to cause a system having an information processing capability to perform a particular function either directly or after either or both of the following: a) conversion to another language, code or notation; b) reproduction in a different material form.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Aspects of a method and system for communication between a plurality of femtocells to mitigate interference between the femtocells are provided. In this regard, a first of a plurality of femtocells in a network may receive interference information from one or more other femtocells, one or more base stations, and/or one or more communication devices in the network. The first femtocell may determine configuration information for the first femtocell and one or more other femtocells in the network based on the communicated interference information. The first femtocell and the other femtocells in the network may be configured based on the determined configuration information. The interference between the plurality of femtocells may be mitigated based on configuring the first femtocell and the other femtocells in the network based on the determined configuration information.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS/INCORPORATION BY REFERENCE
  • This application is a Continuation application of U.S. patent application Ser. No. 12/415,844, filed on Mar. 31, 2009, which is hereby incorporated by reference in its entirety.
  • FIELD OF THE INVENTION
  • Certain embodiments of the invention relate to communications. More specifically, certain embodiments of the invention relate to a method and system for communication between a plurality of femtocells to mitigate interference between the femtocells.
  • BACKGROUND OF THE INVENTION
  • A femtocell is a small base station that may be placed in a customer's residence or in a small business environment, for example. Femtocells may be utilized for off-loading macro radio network facilities, improving coverage locally in a cost-effective manner, and/or implementing home-zone services to increase revenue. Femtocells, like macro base stations, may be enabled to connect “standard” phones to a cellular provider's network by a physical broadband connection which may be a digital subscriber line (DSL) connection, fiber connection, and/or a cable connection, for example. Since the traffic between a customer's premises femtocell equipment and the operator's network may be traversing a public network, the traffic may be prone to various risks.
  • Communication between femtocells and one or more cellular provider's networks enables operation in private and public areas. The capacity of a femtocell may be adequate to address a typical family use model supporting two to four simultaneous voice calls and/or data, for example.
  • An important characteristic of femtocells is their ability to control access. In an open access scenario, any terminal and/or subscriber that may be subscribed to any cellular base station may be allowed to communicate with the femtocell. Accordingly, the femtocell usage may somewhat resemble that of a macrocellular system. In a closed access scenario, only a limited number of terminals and/or subscribers that may be subscribed to a given cellular base station may be allowed to communicate with the femtocell. In this regard, the cellular base station may be perceived as being deployed for private usage.
  • A regulatory issue with regard to femtocells is that they use licensed frequencies that radiate at a very low power in a controlled environment. It may be likely that they may not require a license from a local authority, as macrocellular base stations do. An additional regulatory issue may arise from the relationship between a femtocell operator and a broadband services operator. One possible scenario may include the broadband operator being unaware of the existence of a femtocell operator. Conversely, the broadband operator and femtocell operator may have an agreement or they may be the same operator, for example. Interference between femtocells may be an issue for femtocell deployments based on wideband technologies such as WCDMA or OFDM, for example, because initial operator deployments may use the same frequency for both the femtocell and the macrocellular networks or due to the proximity of femtocell base stations in dense urban areas
  • There are a plurality of design models for deployment and integration of femtocells, for example, an IP based radio network controller (RNC) node B (lu-b), a session initiation protocol (SIP) based approach using an lu/A interface, use of unlicensed spectrum in a technique known as unlicensed mobile access (UMA) and/or use of IP multimedia subsystem (IMS) voice call continuity (VCC), for example.
  • In an lu-b model based femtocell deployment approach, femtocells may be fully integrated into the wireless carrier's network and may be treated like any other remote node in a network. The lu-b protocol may have a plurality of responsibilities, such as the management of common channels, common resources, and radio links along with configuration management, including cell configuration management, measurement handling and control, time division duplex (TDD) synchronization, and/or error reporting, for example. In lu-b configurations, mobile devices may access the network and its services via the Node B link, and femtocells may be treated as traditional base stations.
  • In a SIP based femtocell deployment approach, a SIP client, embedded in the femtocell may be enabled to utilize SIP to communicate with the SIP-enabled mobile switching center (MSC). The MSC may perform the operational translation between the IP SIP network and the traditional mobile network, for example.
  • In a UMA based femtocell deployment approach, a generic access network (GAN) may offer an alternative way to access GSM and GPRS core network services over broadband. To support this approach, a UMA Network Controller (UNC) and protocols that guarantee secure transport of signaling and user traffic over IP may be utilized. The UNC may be enabled to interface into a core network via existing 3GPP interfaces, for example, to support core network integration of femtocell based services by delivering a standards based, scalable IP interface for mobile core networks.
  • In an IMS VCC based femtocell deployment approach, VCC may provide for a network design that may extend an IMS network to include cellular coverage and address the handoff process. The IMS VCC may be designed to provide seamless call continuity between cellular networks and any network that supports VoIP, for example. The VCC may also provide for interoperability between GSM, UMTS, and CDMA cellular networks and any IP capable wireless access network, for example. The IMS VCC may also support the use of a single phone number or SIP identity and may offer a broad collection of functional advantages, for example, support for multiple markets and market segments, provisioning of enhanced IMS multimedia services, including greater service personalization and control, seamless handoff between circuit-switched and IMS networks, and/or access to services from any IP device.
  • Further limitations and disadvantages of conventional and traditional approaches will become apparent to one of skill in the art, through comparison of such systems with some aspects of the present invention as set forth in the remainder of the present application with reference to the drawings.
  • BRIEF SUMMARY OF THE INVENTION
  • A system and/or method is provided for communication between a plurality of femtocells to mitigate interference between the femtocells, substantially as shown in and/or described in connection with at least one of the figures, as set forth more completely in the claims.
  • These and other advantages, aspects and novel features of the present invention, as well as details of an illustrated embodiment thereof, will be more fully understood from the following description and drawings.
  • BRIEF DESCRIPTION OF SEVERAL VIEWS OF THE DRAWINGS
  • FIG. 1A is a diagram illustrating an exemplary cellular network, in accordance with an embodiment of the invention.
  • FIG. 1B is a block diagram of an exemplary femtocell, in accordance with an embodiment of the invention.
  • FIG. 2 is a diagram illustrating communication between a plurality of femtocells to mitigate interference between the femtocells, in accordance with an embodiment of the invention.
  • FIG. 3 is a flow chart illustrating exemplary steps for communication between a plurality of femtocells to mitigate interference between the femtocells, in accordance with an embodiment of the invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Certain embodiments of the invention may be found in a method and system for communication between a plurality of femtocells to mitigate interference between the femtocells. In various exemplary embodiments of the invention, a first of a plurality of femtocells in the network may receive interference information from one or more other femtocells, one or more base stations, and/or one or more communication devices in the network. The first femtocell may determine configuration information for the first femtocell and one or more other femtocells in the network based on the communicated interference information. The first femtocell and the other femtocells in the network may be configured based on the determined configuration information. The determined configuration information may comprise one or more of power levels, frequencies of operation, and/or directionality of antennas of each of the plurality of femtocells. The interference between the plurality of femtocells may be mitigated based on configuring the first femtocell and the other femtocells in the network based on the determined configuration information. The determined configuration information may comprise one or more of power levels, frequencies of operation, location, and/or directionality of antennas of each of the plurality of femtocells.
  • FIG. 1A is a diagram illustrating an exemplary cellular network, in accordance with an embodiment of the invention. Referring to FIG. 1A, there is shown a cellular network 100 comprising sub-networks 101 a, 101 b and 101 c. The exemplary sub-network 101 a may comprise a base station 102, femtocells 110 a, 110 b, 110 c and 110 d, which are collectively referred to herein as femtocells 110, and cellular enabled communication devices 112 a and 112 b, which are collectively referred to herein as cellular enabled communication devices 112. The femtocells 110 may be installed in one or more commercial properties 104, one or more residential properties 106, and/or one or more multi-tenant properties 108.
  • The commercial properties 104 may comprise, for example, stores, restaurants, offices, and municipal buildings. The residential properties 106 may comprise, for example, single-family homes, home offices, and/or town-houses. Multi-tenant properties 108 may comprise residential and/or commercial tenants such as apartments, condos, hotels, and/or high rises.
  • The base station 102 may be operable to communicate data wirelessly utilizing one or more wireless standards such as IS-95, CDMA, GSM, TDMA, GPRS, EDGE, UMTS/WCDMA, TD-SCDMA, OFDM, HSDPA, Bluetooth, WLAN, WiMAX, ZigBee extensions thereto, and/or variants thereof. Notwithstanding, the invention may not be so limited, and the base station 102 may be operable to communicate data to the plurality of femtocells via a wired network, for example, a digital subscriber line (DSL) connection, fiber connection, and/or a cable connection without limiting the scope of the invention. “Data,” as utilized herein, may refer to any analog and/or digital information including but not limited to voice, Internet data, and/or multimedia content. Multimedia content may comprise audio and/or visual content comprising, video, still images, animated images, and/or textual content. The base station 102 may communicate with the cellular enabled communication devices such as the cellular enabled communication devices 112. Exemplary cellular standards supported by the base station 102 may be specified in the International Mobile Telecomunnications-2000 (IMT-2000) standard and/or developed by the 3rd generation partnership project (3GPP) and/or the 3rd generation partnership project 2 (3GPP2). The base station 102 may communicate data amongst the various components of the sub-network 101 a. Additionally, data communicated to and/or from the base station 102 may be communicated to sub-network 101 b, sub-network 101 c, and/or to one or more other networks (not shown) via one or more backhaul links 103. In this manner, data communicated to and/or from the base station 102 may be communicated to and/or from, other portions of the network 100 and/or other networks. Exemplary networks with which data may be communicated may comprise public switched telephone networks (PSTN) and/or IP networks such as the Internet or an intranet.
  • The femtocells 110 may each comprise suitable logic, circuitry, and/or code that may be operable to communicate wirelessly utilizing one or more wireless standards such as IS-95, CDMA, GSM, TDMA, GPRS, EDGE, UMTS/WCDMA, TD-SCDMA, OFDM, HSDPA, Bluetooth, WLAN, WiMAX, ZigBee extensions thereto, and/or variants thereof. In this regard, the femtocells 110 may each communicate with the cellular enabled communication devices such as the cellular enabled communication devices 112. Exemplary cellular standards supported by the femtocells 110 may be specified in the International Mobile Telecomunnications-2000 (IMT-2000) standard and/or developed by the 3rd generation partnership project (3GPP) and/or the 3rd generation partnership project 2 (3GPP2). Additionally, the femtocells 110 may each comprise suitable logic, circuitry, and/or code that may be operable to communicate over an IP network (not shown in FIG. 1A).
  • The cellular enabled communication devices 112 may each comprise suitable logic, circuitry, and/or code that may be operable to communicate utilizing one or more cellular standards. In this regard, the cellular enabled communication devices 112 may each be operable to transmit and/or receive data via the cellular network 100. Exemplary cellular enabled communication devices may comprise laptop computers, mobile phones, and personal media players, for example. The cellular enabled communication devices 112 may be enabled to receive, process, and present multimedia content and may additionally be enabled run a network browser or other applications for providing Internet services to a user of the cellular enabled device 112.
  • In operation, the cellular enabled communication devices 112 may gain access to the cellular network 100 and/or to other communication networks via cellular communications with the base station 102 and/or the femtocells 110. In this regard, in instances that a reliable connection may be established between the base station 102 and a cellular enabled communication device 112, the data may be communicated between the cellular enabled communication device 112 and the base station 102. Alternatively, in instances that a reliable connection may be established between a femtocell 110 and a cellular enabled communication device 112, the data may be communicated between the cellular enabled communication device 112 and the femtocell 110. However, because of the finite number of cellular channels and limited availability and cost of licensing cellular frequencies, there may be a significant risk for interference between two or more of the femtocells 110 and/or between one or more femtocells 110 and the base station 102. Thus, owners and/or operators (owners/operators) of the femtocells 110 may desire and/or need a way to mitigate the cellular interference caused by the femtocells 110 in the cellular network 100.
  • In accordance with an embodiment of the invention, the plurality of femtocells, for example, femtocells 110 a, 110 b, 110 c and 110 d within the cellular sub-network 101 a may be interconnected via a wired and/or wireless connection, for example. Each of the plurality of femtocells 110 a, 110 b, 110 c and 110 d may be operable to communicate and/or exchange interference information between each other. For example, each of the femtocells 110 b, 110 c and 110 d may be operable to communicate interference information to femtocell 110 a. The communicated interference information may comprise one or more of signal to noise ratio (SNR), signal to interference noise ratio (SINR), carrier to noise ratio (CNR), carrier to interference noise ratio (CINR), receive signal strength indication (MST), potential interference, power levels, and/or directionality of antennas of each of the plurality of femtocells 110 b, 110 c and 110 d.
  • The femtocell 110 a may be operable to determine configuration information for itself and the other femtocells 110 b, 110 c and 110 d based on the communicated interference information. The determined configuration information may comprise one or more of power levels, frequencies of operation, location, and/or directionality of antennas of each of the plurality of femtocells 110 b, 110 c and 110 d.
  • The femtocell 110 a may be operable to configure itself based on the determined configuration information. The femtocell 110 a may be operable to communicate the determined configuration information for one or more other femtocells 110 b, 110 c and 110 d to corresponding ones of the one or more other femtocells 110 b, 110 c and 110 d. The one or more other femtocells 110 b, 110 c and 110 d may be operable to utilize the communicated determined configuration information to configure corresponding ones of the one or more other femtocells 110 b, 110 c and 110 d. The interference between the plurality of femtocells 110 a, 110 b, 110 c and 110 d may be mitigated based on the configuring of the first femtocell 110 a and the configuring of the corresponding ones of the one or more other femtocells 110 b, 110 c and 110 d.
  • FIG. 1B is a block diagram of an exemplary femtocell, in accordance with an embodiment of the invention. Referring to FIG. 1B, there is shown a femtocell 150 comprising an antenna 152, a cellular transmitter and/or receiver (Tx/Rx) 154, a broadband transmitter and/or receiver (Tx/Rx) 156, a processor 158, a memory 160, and a digital signal processor (DSP) 162. The femtocell 150 may be similar to or the same as the femtocells 110 described with respect to FIG. 1A. The femtocell 150 may be part of a mesh network of interconnected femtocells, for example, and may be connected to other femtocells or an IP network via a wired and/or wireless connection.
  • The antenna 152 may be suitable for transmitting and/or receiving cellular signals. Although a single antenna is illustrated, the invention may not be so limited. In this regard, the cellular Tx/Rx 154 may utilize a common antenna for transmission and reception, or may utilize different antennas for transmission and reception, and/or may utilize a plurality of antennas for transmission and/or reception.
  • The cellular Tx/Rx 154 may comprise suitable logic circuitry and/or code that may be operable to transmit and/or receive voice and/or data utilizing one or more cellular standards. The cellular Tx/Rx 154 may be operable to perform amplification, down-conversion, filtering, demodulation, and analog to digital conversion of received cellular signals. The cellular Tx/Rx 154 may be operable to perform amplification, up-conversion, filtering, modulation, and digital to analog conversion of transmitted cellular signals. The cellular Tx/Rx 154 may support communication over a plurality of communication channels utilizing time division multiple access (TDMA), code division multiple access (CDMA) and/or orthogonal frequency division multiplexing (OFDM) Exemplary cellular standards supported by the femtocells 110 may be specified in the International Mobile Telecomunnications-2000 (IMT-2000) standard developed by the 3rd generation partnership project (3GPP) and/or the 3rd generation partnership project 2 (3GPP2). The cellular Tx/Rx 154 may be operable to transmit and/or receive on one or more frequencies and/or channels. One or more of the frequencies and/or one or more of the channels on which the cellular Tx/Rx 154 receives and/or transmits may be configured via one or more control signals from the processor 158, memory 160, and/or the DSP 162. The cellular Tx/Rx 154 may also comprise a processor that may be enabled to monitor the received signal strength and for characterizing an environment in which the femtocell 150 resides.
  • The broadband Tx/Rx 156 may comprise suitable logic, circuitry, and/or code that may be operable to transmit voice and/or data in adherence to one or more broadband standards. The broadband Tx/Rx 156 may be operable to perform amplification, down-conversion, filtering, demodulation, and analog to digital conversion of received signals. The broadband Tx/Rx 156 may be operable to perform amplification, up-conversion, filtering, modulation, and digital to analog conversion of transmitted signals. In various exemplary embodiments of the invention, the broadband Tx/Rx 156 may transmit and/or receive voice and/or data over the link 157 which may be a T1/E1 line, optical fiber, DSL, cable television infrastructure, satellite broadband interne connection, satellite television infrastructure, and/or Ethernet. In various exemplary embodiments of the invention, data received via the broadband Tx/Rx 156 may be conveyed to the processor 158, memory 160, and/or the DSP 162 and may be utilized to control one or more frequencies and/or channels on which the cellular Tx/Rx 154 transmits and/or receives.
  • The processor 158 may comprise suitable logic, circuitry, and/or code that may enable processing data and/or controlling operations of the femtocell 150. In this regard, the processor 158 may be enabled to provide control signals to the various other blocks comprising the femtocell 150. The processor 158 may also control data transfers between various portions of the femtocell 150. Additionally, the processor 158 may enable execution of applications programs and/or code. In various embodiments of the invention, the applications, programs, and/or code may enable, for example, parsing, transcoding, or otherwise processing data. In various embodiments of the invention, the applications, programs, and/or code may enable, for example, configuring or controlling operation of the cellular Tx/Rx 154, the broadband Tx/Rx 156, the DSP 162, and/or the memory 160. In various embodiments of the invention, the applications, programs, and/or code may enable detecting interference and/or controlling cellular one or more frequencies and/or one or more channels on which the cellular Tx/Rx 154 transmits and/or receives.
  • The processor 158 may be operable to receive data at the femtocell 150 within the network from a source, for example, a base station 146, an IP network 132, a cellular enabled communication device 138 a and/or another femtocell, for example, femtocell 110 a within a coverage area of the femtocell 150. The processor 158 in the femtocell 110 a may be operable to receive interference information from the plurality of femtocells 110 b, 110 c and 110 d. The processor 158 may be operable to determine configuration information for each of the femtocells 110 a, 110 b, 110 c and 110 d based on the received interference information. In accordance with another embodiment of the invention, each femtocell may be operable to configure itself based on the received interference information from the other femtocells in its vicinity. The determined configuration information may comprise one or more of power levels, frequencies of operation, location, and/or directionality of antennas of each of the plurality of femtocells, for example, femtocells 110 a, 110 b, 110 c and 110 d. The processor 158 may be operable to configure each of the femtocells 110 a, 110 b, 110 c and 110 d utilizing the received determined configuration information.
  • The memory 160 may comprise suitable logic, circuitry, and/or code that may enable storage or programming of information that includes parameters and/or code that may effectuate the operation of the femtocell 150. The parameters may comprise configuration data and the code may comprise operational code such as software and/or firmware, but the information need not be limited in this regard. Moreover, the parameters may include adaptive filter and/or block coefficients. Additionally, the memory 160 may buffer or otherwise store received data and/or data to be transmitted. In various embodiments of the invention, the memory 160 may comprise one or more look-up tables utilized for determining cellular devices within a coverage area of the femtocell 150. In various embodiments of the invention, the memory 160 may comprise one or more look-up tables or other data structures which may comprise information controlling one or more frequencies and/or one or more channels on which the cellular Tx/Rx 154 transmits and/or receives.
  • The DSP 162 may comprise suitable logic, circuitry, and/or code operable to process audio and/or video signals. In various embodiments of the invention, the DSP 162 may encode, decode, modulate, demodulate, encrypt, and/or decrypt voice and/or data signals. In this regard, the DSP 162 may be operable to perform computationally intensive processing of voice and/or data signals. In various embodiments of the invention, the DSP 162 may be operable to detect interference and/or control one or more frequencies and/or one or more channels on which the cellular Tx/Rx 154 transmits and/or receives. The DSP 162 may be operable to perform, for example, fast Fourier transform analysis (FFT) of received signals to characterize radio environment in which the femtocell 150 resides.
  • In an exemplary embodiment of the invention, the femtocell 150 may characterize its environment by receiving signals on one or more frequencies and/or channels via the cellular Tx/Rx 154, conveying the received signals to the DSP 162, and performing one or more measurements and/or calculations on the signals via the DSP 162. In this regard, the DSP may characterize received signals utilizing metrics such as in-band interference, out-of-band interference, and/or signal-to-noise ratio (e.g. SNR, SINR, CNR). The characterization may enable detection of interfering signals. Results of the characterization may be conveyed to the processor 158 and/or stored in the memory 160 and may be utilized, at least in part, to determine one or more frequencies and/or channels on which the cellular Tx/Rx 154 may transmit and/or receive. In this manner, interference may be reduced. The results of the characterization may be communicated over, for example, an IP network to which the femtocell 150 is communicatively coupled via the broadband Tx/Rx 156.
  • The one or more frequencies and/or channels on which the cellular Tx/Rx 154 may transmit and/or receive may also be determined, at least in part, based on data received via the broadband Tx/Rx 156. In this regard, other femtocells and/or base stations may characterize the environment in which they are operating and may communicate results of those characterizations over, for example, an IP network to which the femtocell 150 is communicatively coupled. In various embodiments of the invention, characterizing an environment may comprise measuring signal strengths on one or more frequencies and/or channels and perform one or more calculations and/or analyses utilizing the measurements. In this manner, signals which may interfere with cellular communications with the femtocell 150 may be detected.
  • FIG. 2 is a diagram illustrating communication between a plurality of femtocells to mitigate interference between the femtocells, in accordance with an embodiment of the invention. Referring to FIG. 2, there is shown a network 200. The network 200 may comprise a base station 220, a plurality of femtocells 202, 204, 206 and 207, and a plurality of cellular enabled communication devices 208 a and 208 b. The plurality of femtocells 202, 204, 206 and 207 and the base station 220 may be communicatively coupled to an IP network via a wired connection 212. The plurality of femtocells 202, 204, 206 and 207, and the plurality of cellular enabled communication devices 208 a and 208 b may be communicatively coupled via wireless connections 213. The base station 220 may be may be substantially as described with respect to FIG. 1A. Each of the plurality of femtocells 202, 204, 206 and 207 may be substantially as described with respect to FIGS. 1A and 1B. Each of the plurality of cellular enabled communication devices 208 a and 208 b may be substantially as described in FIG. 1A. Notwithstanding, the invention may not be so limited and the network 200 may comprise other femtocells, cellular enabled communication devices and base stations, which are not shown in FIG. 2.
  • The plurality of femtocells 202, 204, 206 and 207 may be communicatively coupled to an IP network via a wired connection 212. The IP network may comprise one or more network devices and/or network links operable to transmit and/or receive IP packets. The IP network may provide access to the Internet and/or one or more private networks. The wired connection 212 may comprise a broadband link such as a digital subscriber line (DSL), a T1/E1 line, a cable television infrastructure, a satellite television infrastructure, and/or a satellite broadband Internet link. The wired connection 212 may comprise one or more optical, fiber, and/or wired links.
  • In accordance with an embodiment of the invention, the plurality of femtocells 202, 204, 206 and 207 may be communicatively coupled via a wireless connection 213, for example. Each of the plurality of femtocells 202, 204, 206 and 207 may be a node in the network 200. Each of the plurality of femtocells 202, 204, 206 and 207 may be operable to communicate with other femtocells, base stations and/or wired enabled communication devices within a particular coverage area via a wireless connection 213. The wireless connection 213 may be enabled to communicate data wirelessly utilizing one or more wireless standards such as IS-95, CDMA, GSM, TDMA, GPRS, EDGE, UMTS/WCDMA, TD-SCDMA, OFDM, HSDPA, Bluetooth, WLAN, WiMAX, ZigBee extensions thereto, and/or variants thereof. For example, the femtocell 202 may be operable to communicate with other femtocells, base stations and/or cellular enabled communication devices within a femtocell coverage area 210 a. The femtocell 204 may be operable to communicate with other femtocells, base stations and/or cellular enabled communication devices within a femtocell coverage area 210 b. The femtocell 206 may be operable to communicate with other femtocells, base stations and/or cellular enabled communication devices within a femtocell coverage area 210 c. Similarly, the femtocell 207 may be operable to communicate with other femtocells, base stations and/or cellular enabled communication devices within a femtocell coverage area 210 d.
  • In accordance with an embodiment of the invention, the cellular enabled communication device 208 a may be located within the femtocell coverage area 210 a of femtocell 202 and within the femtocell coverage area 210 b of femtocell 204, for example. The cellular enabled communication device 208 b may be located within the femtocell coverage area 210 c of femtocell 206, for example. Notwithstanding, the invention may not be so limited and the cellular enabled communication devices 208 a and 208 b may be located in other locations within the network 200 without limiting the scope of the invention.
  • In operation, the cellular enabled communication devices 208 a and 208 b may gain access to the cellular network 100 and/or to other communication networks via cellular communications with the base station 220 and the femtocells 202, 204 and 206. In this regard, in instances that a reliable connection may be established between the base station 220 and a cellular enabled communication device, for example, 208 a, data may be communicated between the cellular enabled communication device 208 a and the base station 220. Alternatively, in instances that a reliable connection may be established between a femtocell, for example, femtocell 202 and a cellular enabled communication device, for example, 208 a, data may be communicated between the cellular enabled communication device 208 a and the femtocell 202.
  • In accordance with another embodiment of the invention, the network 200 may be operable to increase the bandwidth, spectral efficiency and range of the network over a specific coverage area. For example, one or more intermediate nodes or femtocells in the network 200 may be operable to boost the signal and cooperatively make decisions to route data based on their knowledge of the network 200. Each of the plurality of femtocells 202, 204, 206 and 207 may be operable as routers to transmit and/or receive data to/from neighboring femtocells.
  • In accordance with another embodiment of the invention, the network 200 may be decentralized with no central server or centrally managed with a central server, for example. The femtocell 204 may be operable to transmit the received data from the femtocell 202 to the neighboring femtocell 206 within the femtocell coverage area 210 b. The femtocell 206 may be operable to transmit the received data from the femtocell 204 to the cellular enabled communication device 208 b within the femtocell coverage area 210 c. Notwithstanding, the invention may not be so limited and other routes in the network 200 may be utilized to transmit data from the femtocell 202 to the cellular enabled communication device 208 b without limiting the scope of the invention. In accordance with another embodiment of the invention, each of the plurality of femtocells 202, 204, 206 and 207 in the network 200 may be operable to detect neighboring femtocells in the network 200 without contacting the base station 220.
  • In accordance with another embodiment of the invention, one or more processors, for example, the processor 158 in a first of the plurality of femtocells, for example, the femtocell 202 may be operable to receive interference information from the plurality of femtocells 204, 206 and 207. The received interference information may comprise one or more of signal to noise ratio (SNR), signal to interference noise ratio (SINR), carrier to noise ratio (CNR), carrier to interference noise ratio (CINR), receive signal strength indication (RSSI), potential interference, power levels, location, and/or directionality of antennas of each of the plurality of femtocells, for example, femtocells 204, 206 and 207.
  • The processor 158 in the femtocell 202 may be operable to determine configuration information for each of the femtocells 202, 204, 206 and 207 based on the received interference information. The determined configuration information may comprise one or more of power levels, frequencies of operation, location, and/or directionality of antennas of each of the plurality of femtocells, for example, femtocells 202, 204, 206 and 207.
  • The processor 158 in the femtocell 202 may be operable to configure the femtocell 202 based on the determined configuration information. For example, the femtocell 202 may be operable to adjust one or more of its power levels, frequencies of operation, and/or directionality of antennas based on the determined configuration information.
  • The femtocell 202 may be operable to communicate the determined configuration information for one or more other femtocells 204, 206 and 207 to corresponding ones of the one or more other femtocells 204, 206 and 207. The one or more other femtocells 204, 206 and 207 may be operable to utilize the communicated determined configuration information to configure corresponding ones of the one or more other femtocells 204, 206 and 207. The interference between the plurality of femtocells 202, 204, 206 and 207 may be mitigated based on the configuring of the first femtocell 202 and the configuring of the corresponding ones of the one or more other femtocells 204, 206 and 207.
  • The processor 158 in the femtocell 202 may be operable to receive the communicated interference information and/or radio environment information from one or more communication devices, for example, cellular enabled communication devices 208 a and 208 b, one or more femtocells 204, 206 and 207 and/or one or more base stations 220. The communication device, for example, the cellular enabled communication devices 208 a and 208 b may comprise a wired and/or wireless communication device.
  • The interference information may be received by the femtocell 202 via a wireless connection 213. The determined configuration information may be communicated to one or more other of the plurality of femtocells, for example, femtocells 204, 206 and 207 via a wireless connection 213. The wireless connection 213 may be operable to handle signals comprising IS-95, CDMA, GSM, TDMA, GPRS, EDGE, UMTS, WCDMA, OFDM, TD-SCDMA, WiMAX, WLAN, Bluetooth, ZigBee and/or HSDPA signals.
  • FIG. 3 is a flow chart illustrating exemplary steps for communication between a plurality of femtocells to mitigate interference between the femtocells, in accordance with an embodiment of the invention. Referring to FIG. 3, exemplary steps may begin with step 302. In step 304, a first of a plurality of femtocells in a network may be operable to receive interference information from one or more other of the plurality of femtocells, one or more base stations, and/or one or more communication devices. In accordance with an embodiment of the invention, the first femtocell may be operable to scan the radio spectrum to detect interference levels from one or more neighboring femtocells, one or more base stations, and/or one or more cellular enabled communication devices. The communicated interference information may comprise one or more of signal to noise ratio (SNR), signal to interference noise ratio (SINR), carrier to noise ratio (CNR), carrier to interference noise ratio (CINR), receive signal strength indication (RSSI), potential interference, power levels, and/or directionality of antennas of each of the plurality of femtocells.
  • In step 306, the first femtocell may be operable to determine configuration information for itself and one or more other femtocells based on the received interference information. In accordance with another embodiment of the invention, each femtocell may be operable to configure itself based on the scanned information and/or communicated interference information from other femtocells. The determined configuration information may comprise one or more of power levels, frequencies of operation, location, and/or directionality of antennas of each of the plurality of femtocells. In step 308, the first femtocell may be operable to configure itself based on the determined configuration information and/or the scanned interference information. In step 310, the first femtocell may be operable to communicate the determined configuration information for one or more other femtocells to corresponding ones of the one or more other femtocells. In step 312, the one or more other femtocells may be operable to utilize the communicated determined configuration information and/or the scanned interference information to configure corresponding ones of the one or more other femtocells. In step 314, it may be determined whether the current interference between the plurality of femtocells is below a particular interference threshold level. Control then returns to end step 304.
  • In accordance with an embodiment of the invention, a method and system for communication between a plurality of femtocells to mitigate interference between the femtocells may comprise a network 200 comprising a plurality of femtocells, for example, femtocells 202, 204, 206 and 207, one or more base stations 220, and/or one or more communication devices 208 a and 208 b. One or more processors, for example, the processor 158 for use in a first of the plurality of femtocells, for example, the femtocell 204 may be operable to receive interference information from one or more other of the plurality of femtocells, for example, the femtocells 202, 206 and 207, one or more base stations 220, and/or one or more communication devices 208 a and 208 b. The processor 158 may be operable to determine configuration information for the first femtocell 204 based on the received interference information. The processor 158 may be operable to configure the first femtocell 204 based on the determined configuration information.
  • The processor 158 in the femtocell 204 may be operable to communicate the determined configuration information for one or more other femtocells, for example, the femtocells 202, 206 and 207 to corresponding ones of the one or more other femtocells, for example, the femtocells 202, 206 and 207. In accordance with an embodiment of the invention, the femtocell 204 may be operable to scan the radio spectrum to detect interference information from one or more neighboring femtocells, for example, the femtocells 202, 206 and 207, one or more base stations 220, and/or one or more cellular enabled communication devices 208 a and 208 b. The one or more other femtocells, for example, the femtocells 202, 206 and 207 may be operable to utilize the communicated determined configuration information and/or scanned interference information to configure corresponding ones of the one or more other femtocells, for example, the femtocells 202, 206 and 207. The interference between the plurality of femtocells may be mitigated based on the configuring of the first femtocell 204 and the configuring of the corresponding ones of the one or more other femtocells, for example, the femtocells 202, 206 and 207.
  • One or more processors, for example, the processor 158 in the first femtocell 204 may be operable to receive the communicated interference information from one or more communication devices, for example, the cellular enabled communication devices 208 a and 208 b. The communication device, for example, the cellular enabled communication devices 208 a and 208 b may comprise a wired and/or wireless communication device.
  • The communicated interference information may comprise one or more of signal to noise ratio (SNR), signal to interference noise ratio (SINR), carrier to noise ratio (CNR), carrier to interference noise ratio (CINR), receive signal strength indication (RSSI), potential interference, power levels, multiple power levels as a function of directionality of antennas, and/or directionality of antennas of each of the plurality of femtocells, for example, the femtocells 202, 204, 206 and 207. The determined configuration information may comprise one or more of power levels, frequencies of operation, location, and/or directionality of antennas of each of the plurality of femtocells, for example, the femtocells 202, 204, 206 and 207.
  • The interference information may be received by the first femtocell 204 via a wireless connection 213. The processor 158 in the first femtocell 204 may be operable to communicate the determined configuration information to the one or more other femtocells, for example, the femtocells 202, 206 and 207 via a wireless connection 213. The wireless connection 213 may be operable to handle signals comprising IS-95, CDMA, GSM, TDMA, GPRS, EDGE, UMTS, WCDMA, OFDM, TD-SCDMA, Bluetooth, WLAN, WiMAX, ZigBee and/or HSDPA signals.
  • Another embodiment of the invention may provide a machine and/or computer readable storage and/or medium, having stored thereon, a machine code and/or a computer program having at least one code section executable by a machine and/or a computer, thereby causing the machine and/or computer to perform the steps as described herein for communication between a plurality of femtocells to mitigate interference between the femtocells.
  • Accordingly, the present invention may be realized in hardware, software, or a combination of hardware and software. The present invention may be realized in a centralized fashion in at least one computer system, or in a distributed fashion where different elements are spread across several interconnected computer systems. Any kind of computer system or other apparatus adapted for carrying out the methods described herein is suited. A typical combination of hardware and software may be a general-purpose computer system with a computer program that, when being loaded and executed, controls the computer system such that it carries out the methods described herein.
  • The present invention may also be embedded in a computer program product, which comprises all the features enabling the implementation of the methods described herein, and which when loaded in a computer system is able to carry out these methods. Computer program in the present context means any expression, in any language, code or notation, of a set of instructions intended to cause a system having an information processing capability to perform a particular function either directly or after either or both of the following: a) conversion to another language, code or notation; b) reproduction in a different material form.
  • While the present invention has been described with reference to certain embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the scope of the present invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the present invention without departing from its scope. Therefore, it is intended that the present invention not be limited to the particular embodiment disclosed, but that the present invention will include all embodiments falling within the scope of the appended claims.

Claims (20)

1. A method for network management, comprising:
receiving at a femtocell interference information from at least one other femtocell;
determining configuration information comprising at least one frequency of operation for the receiving femtocell based on the received interference information;
configuring the receiving femtocell based on the determined configuration information; and
communicating the determined configuration information for the receiving femtocell to the at least one other femtocell, wherein the at least one other femtocell utilizes the communicated determined configuration information to configure at least a further femtocell.
2. The method according to claim 1, wherein the interference information comprises at least one of signal to noise ratio (SNR), signal to interference noise ratio (SINR), carrier to noise ratio (CNR), carrier to interference noise ratio (CINR), receive signal strength indication (RSSI), potential interference, power levels, and/or directionality of antennas of the receiving femtocell and the at least one other femtocell.
3. The method according to claim 1, wherein the determined configuration information comprises at least one of: power levels, the at least one frequency of operation, location, and/or directionality of antennas of each of the femtocells.
4. The method according to claim 1, further comprising
receiving the interference information from at least one base station and/or at least one communication device.
5. The method according to claim 1, further comprising
receiving the interference information via a wireless connection.
6. The method according to claim 5, further comprising
communicating the determined configuration information to the at least one other femtocell via the wireless connection.
7. The method according to claim 6, wherein the wireless connection handles signals comprising IS-95, CDMA, GSM, TDMA, GPRS, EDGE, UMTS, WCDMA, OFDM, TD-SCDMA, WiMAX, WLAN, Bluetooth, ZigBee and/or HSDPA signals.
8. The method according to claim 1, further comprising receiving the interference information from at least one communication device.
9. The method according to claim 8, wherein the communication device comprises a wired and/or wireless communication device.
10. A system for network management, comprising:
a processor for use in a femtocell, wherein:
the processor is operable to receive interference information from at least one other femtocell;
the processor is operable to determine configuration information comprising at least one frequency of operation for the femtocell based on the received interference information;
the processor is operable to configure the receiving femtocell based on the determined configuration information;
the processor is configured to communicate the determined configuration information for the receiving femtocell to the at least one other femtocell; and
the at least one other femtocell is configured to utilize the communicated determined configuration information to configure the at least one other femtocell.
11. The system according to claim 10, wherein the interference information comprises at least one of signal to noise ratio (SNR), signal to interference noise ratio (SINR), carrier to noise ratio (CNR), carrier to interference noise ratio (CINR), receive signal strength indication (RSSI), potential interference, power levels, and/or directionality of antennas of the receiving femtocell and the at least one other femtocell.
12. The system according to claim 10, wherein the determined configuration information comprises at least one of: power levels, frequency of operation, location, and/or directionality of antennas of each of the receiving femtocell and the at least one other femtocell.
13. The system according to claim 10, wherein the processor is configured to receive the interference information from at least one base station and/or at least one communication device.
14. The system according to claim 10, wherein the processor is configured to receive the interference information via a wireless connection.
15. The system according to claim 14, wherein the processor is configured to communicate the determined configuration information to the at least one other femtocell via the wireless connection.
16. The system according to claim 15, wherein the wireless connection handles signals comprising IS-95, CDMA, GSM, TDMA, GPRS, EDGE, UMTS, WCDMA, OFDM, TD-SCDMA, WiMAX, WLAN, Bluetooth, ZigBee and/or HSDPA signals.
17. The system according to claim 10, wherein the processor is configured to receive the interference information from at least one communication device.
18. A method for network management in a network having a plurality of femtocells, comprising:
receiving at a first of the plurality of femtocells, interference information comprising carrier to interference noise ratio (CINR) of the plurality of femtocells, from at least one other of the plurality of femtocells;
determining configuration information comprising at least one frequency of operation for the first of the plurality of femtocells based on the received interference information;
configuring the first of the plurality of femtocells based on the determined configuration information; and
communicating the determined configuration information for the receiving femtocell to the at least one other of the plurality of femtocells, wherein the at least one other of the plurality of femtocells utilizes the communicated determined configuration information to configure a further one of the plurality of femtocells.
19. The method according to claim 18, wherein the interference information comprises at least one of signal to noise ratio (SNR), signal to interference noise ratio (SINR), carrier to noise ratio (CNR), carrier to interference noise ratio (CINR), receive signal strength indication (RSSI), potential interference, power levels, and/or directionality of antennas of the receiving femtocell and the at least one other femtocell.
20. The method according to claim 18, wherein the determined configuration information comprises at least one of: power levels, the at least one frequency of operation, location, and/or directionality of antennas of each of the femtocells.
US13/595,718 2009-03-31 2012-08-27 Method and System for Communication Between a Plurality of Femtocells to Mitigate Interference Between the Femtocells Abandoned US20120322435A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/595,718 US20120322435A1 (en) 2009-03-31 2012-08-27 Method and System for Communication Between a Plurality of Femtocells to Mitigate Interference Between the Femtocells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/415,844 US8254931B2 (en) 2009-03-31 2009-03-31 Method and system for communication between a plurality of femtocells to mitigate interference between the femtocells
US13/595,718 US20120322435A1 (en) 2009-03-31 2012-08-27 Method and System for Communication Between a Plurality of Femtocells to Mitigate Interference Between the Femtocells

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/415,844 Continuation US8254931B2 (en) 2009-03-31 2009-03-31 Method and system for communication between a plurality of femtocells to mitigate interference between the femtocells

Publications (1)

Publication Number Publication Date
US20120322435A1 true US20120322435A1 (en) 2012-12-20

Family

ID=42784146

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/415,844 Active 2030-11-19 US8254931B2 (en) 2009-03-31 2009-03-31 Method and system for communication between a plurality of femtocells to mitigate interference between the femtocells
US13/595,718 Abandoned US20120322435A1 (en) 2009-03-31 2012-08-27 Method and System for Communication Between a Plurality of Femtocells to Mitigate Interference Between the Femtocells

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/415,844 Active 2030-11-19 US8254931B2 (en) 2009-03-31 2009-03-31 Method and system for communication between a plurality of femtocells to mitigate interference between the femtocells

Country Status (1)

Country Link
US (2) US8254931B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160037525A1 (en) * 2014-07-31 2016-02-04 Qualcomm Incorporated Interference-aware frequency selection for small cells in wireless networks
US10390353B2 (en) * 2010-09-07 2019-08-20 Aerohive Networks, Inc. Distributed channel selection for wireless networks
US10389650B2 (en) 2013-03-15 2019-08-20 Aerohive Networks, Inc. Building and maintaining a network
US10523458B2 (en) 2012-06-14 2019-12-31 Extreme Networks, Inc. Multicast to unicast conversion technique
US10542035B2 (en) 2013-03-15 2020-01-21 Aerohive Networks, Inc. Managing rogue devices through a network backhaul
US10700892B2 (en) 2008-05-14 2020-06-30 Extreme Networks Inc. Predictive roaming between subnets
US10798634B2 (en) 2007-04-27 2020-10-06 Extreme Networks, Inc. Routing method and system for a wireless network
US10833948B2 (en) 2011-10-31 2020-11-10 Extreme Networks, Inc. Zero configuration networking on a subnetted network
US10945127B2 (en) 2008-11-04 2021-03-09 Extreme Networks, Inc. Exclusive preshared key authentication
US11115857B2 (en) 2009-07-10 2021-09-07 Extreme Networks, Inc. Bandwidth sentinel

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9060311B2 (en) * 2009-05-22 2015-06-16 Broadcom Corporation Enterprise level management in a multi-femtocell network
US9025534B2 (en) * 2009-05-22 2015-05-05 Broadcom Corporation Hybrid network controller for femtocells and access points
US8929331B2 (en) * 2009-05-22 2015-01-06 Broadcom Corporation Traffic management in a hybrid femtocell/WLAN wireless enterprise network
US20100296498A1 (en) * 2009-05-22 2010-11-25 Jeyhan Karaoguz Integrated femtocell and wlan access point
US8730835B2 (en) * 2009-05-22 2014-05-20 Broadcom Corporation Multi-dimensional resource management in a wireless network
KR101369395B1 (en) * 2009-10-01 2014-03-05 닛본 덴끼 가부시끼가이샤 Mobile communication system, base station apparatus, control apparatus, control method, and computer readable medium
US8649797B2 (en) * 2009-10-06 2014-02-11 Institute For Information Industry Resource allocation apparatus, subscriber station, resource allocation method, and non-transitory computer readable medium
CN102202310A (en) * 2010-03-25 2011-09-28 上海贝尔股份有限公司 Method and device for eliminating interference between micro cells in access equipment of micro cells
WO2011129448A1 (en) * 2010-04-16 2011-10-20 京セラ株式会社 Wireless communication system, high-power base station, low-power base station and communication control method
JP5756564B2 (en) * 2011-05-04 2015-07-29 エンパイア テクノロジー ディベロップメント エルエルシー Method for distributed interference coordination in femtocell environment
US8942745B2 (en) * 2011-06-10 2015-01-27 Telefonaktiebolaget L M. Ericsson (Publ) Methods and apparatus for dynamic carrier selection for cell base stations
CN103297979B (en) 2012-02-29 2016-08-03 国际商业机器公司 Realize method and the base station of interference coordination
US9048982B2 (en) 2012-08-02 2015-06-02 Empire Technology Development Llc Method for distributed interference coordination in a femtocell environment
US9167460B2 (en) * 2013-06-28 2015-10-20 Rogers Communications Inc. Detection of cable network interference on wireless network
US9131513B2 (en) * 2013-08-16 2015-09-08 Blackberry Limited Coordinating allocation of resources for use by small cells
US11165519B2 (en) * 2019-10-14 2021-11-02 Nokia Solutions And Networks Oy Interactive logical visualization of interactions between Wi-Fi access points

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100027694A1 (en) * 2008-07-31 2010-02-04 Designart Networks Ltd Wireless telecommunicatons network
US20100118844A1 (en) * 2008-11-12 2010-05-13 At&T Intellectual Property I, Lp Dynamic lightweight remote management of hybrid femtocell gateways
US20100120438A1 (en) * 2008-11-12 2010-05-13 Industrial Technology Research Institute Communication network method and apparatus including macro base station and femto base station
US20100157911A1 (en) * 2008-12-23 2010-06-24 Motorola, Inc. Method and apparatus for configuring radio frequency resources for a customer premises base station
US20100240382A1 (en) * 2009-03-19 2010-09-23 Qualcomm Incorporated Systems, apparatus and methods for interference management in wireless networks

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8594678B2 (en) * 2007-04-18 2013-11-26 Qualcomm Incorporated Backhaul network for femto base stations

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100027694A1 (en) * 2008-07-31 2010-02-04 Designart Networks Ltd Wireless telecommunicatons network
US20100118844A1 (en) * 2008-11-12 2010-05-13 At&T Intellectual Property I, Lp Dynamic lightweight remote management of hybrid femtocell gateways
US20100120438A1 (en) * 2008-11-12 2010-05-13 Industrial Technology Research Institute Communication network method and apparatus including macro base station and femto base station
US20100157911A1 (en) * 2008-12-23 2010-06-24 Motorola, Inc. Method and apparatus for configuring radio frequency resources for a customer premises base station
US20100240382A1 (en) * 2009-03-19 2010-09-23 Qualcomm Incorporated Systems, apparatus and methods for interference management in wireless networks

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10798634B2 (en) 2007-04-27 2020-10-06 Extreme Networks, Inc. Routing method and system for a wireless network
US10880730B2 (en) 2008-05-14 2020-12-29 Extreme Networks, Inc. Predictive and nomadic roaming of wireless clients across different network subnets
US10700892B2 (en) 2008-05-14 2020-06-30 Extreme Networks Inc. Predictive roaming between subnets
US10945127B2 (en) 2008-11-04 2021-03-09 Extreme Networks, Inc. Exclusive preshared key authentication
US11115857B2 (en) 2009-07-10 2021-09-07 Extreme Networks, Inc. Bandwidth sentinel
US10390353B2 (en) * 2010-09-07 2019-08-20 Aerohive Networks, Inc. Distributed channel selection for wireless networks
US10966215B2 (en) 2010-09-07 2021-03-30 Extreme Networks, Inc. Distributed channel selection for wireless networks
US10833948B2 (en) 2011-10-31 2020-11-10 Extreme Networks, Inc. Zero configuration networking on a subnetted network
US10523458B2 (en) 2012-06-14 2019-12-31 Extreme Networks, Inc. Multicast to unicast conversion technique
US10389650B2 (en) 2013-03-15 2019-08-20 Aerohive Networks, Inc. Building and maintaining a network
US10542035B2 (en) 2013-03-15 2020-01-21 Aerohive Networks, Inc. Managing rogue devices through a network backhaul
US9801080B2 (en) * 2014-07-31 2017-10-24 Qualcomm Incorporated Interference-aware frequency selection for small cells in wireless networks
US20160037525A1 (en) * 2014-07-31 2016-02-04 Qualcomm Incorporated Interference-aware frequency selection for small cells in wireless networks

Also Published As

Publication number Publication date
US8254931B2 (en) 2012-08-28
US20100246483A1 (en) 2010-09-30

Similar Documents

Publication Publication Date Title
US8254931B2 (en) Method and system for communication between a plurality of femtocells to mitigate interference between the femtocells
US8838129B2 (en) Method and system for mitigating interference among femtocells via intelligent channel selection
US8504044B2 (en) Method and system for dynamic adjustment of power and frequencies in a femtocell network
US9226134B2 (en) Method and system for installation and configuration of a femtocell
US8929331B2 (en) Traffic management in a hybrid femtocell/WLAN wireless enterprise network
US9060311B2 (en) Enterprise level management in a multi-femtocell network
US20100184450A1 (en) Method and system for controlling parameters of a communication channel between a femtocell and a cellular enabled communication device
EP2254382B1 (en) Method and system for integrated femtocell and WLAN access point
US20100246386A1 (en) Method and System for Communicating Data Via a Mesh Network of Interconnected Femtocells
US8855048B2 (en) Method and system for peer-to-peer cellular communications
US9025534B2 (en) Hybrid network controller for femtocells and access points
US8446836B2 (en) Method and system for supporting a plurality of providers via a single femtocell
US8730835B2 (en) Multi-dimensional resource management in a wireless network
US20100189084A1 (en) Method and system for optimal control of data delivery paths for a femtocell network
US8588148B2 (en) System and method for selecting channels in wireless communication
US20100255848A1 (en) Method and System for Evaluating Deployment of Femtocells as Part of a Cellular Network
JP2010288280A (en) System and method for selecting channel in wireless communication
US20090310565A1 (en) System And Method For Selecting Parameters In Wireless Communication
US20100254357A1 (en) Method and System for Remotely Communicating Information to a Plurality of Devices Within a Femtocell Network
US8964635B2 (en) Method and system for determining a location of a device using femtocell information
US20100189085A1 (en) Method and system for high reliability delivery of content to a plurality of users via a plurality of femtocells
US8620220B2 (en) Method and system for mitigating interference between a plurality of femtocells utilizing transmission deferral

Legal Events

Date Code Title Description
AS Assignment

Owner name: BROADCOM CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ERCEG, VINKO;ABRAHAM, CHARLES;CHEN, XUEMIN;AND OTHERS;SIGNING DATES FROM 20090202 TO 20090331;REEL/FRAME:028861/0546

AS Assignment

Owner name: BROADCOM CORPORATION, CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE INCORRECT APPLICATION NUMBER 13597718 PREVIOUSLY RECORDED ON REEL 028861 FRAME 0546. ASSIGNOR(S) HEREBY CONFIRMS THE CORRECT APPLICATION NUMBER IS 13595718;ASSIGNORS:ERCEG, VINKO;ABRAHAM, CHARLES;CHEN, XUEMIN;AND OTHERS;SIGNING DATES FROM 20090202 TO 20090331;REEL/FRAME:030441/0285

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE

AS Assignment

Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, NORTH CAROLINA

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:BROADCOM CORPORATION;REEL/FRAME:037806/0001

Effective date: 20160201

Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, NORTH

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:BROADCOM CORPORATION;REEL/FRAME:037806/0001

Effective date: 20160201

AS Assignment

Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD., SINGAPORE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BROADCOM CORPORATION;REEL/FRAME:041706/0001

Effective date: 20170120

Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BROADCOM CORPORATION;REEL/FRAME:041706/0001

Effective date: 20170120

AS Assignment

Owner name: BROADCOM CORPORATION, CALIFORNIA

Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS COLLATERAL AGENT;REEL/FRAME:041712/0001

Effective date: 20170119