US20120298468A1 - Piston Actuated Split Input Transmission Synchronizer - Google Patents

Piston Actuated Split Input Transmission Synchronizer Download PDF

Info

Publication number
US20120298468A1
US20120298468A1 US13/543,150 US201213543150A US2012298468A1 US 20120298468 A1 US20120298468 A1 US 20120298468A1 US 201213543150 A US201213543150 A US 201213543150A US 2012298468 A1 US2012298468 A1 US 2012298468A1
Authority
US
United States
Prior art keywords
instructions
split path
cvt
engine
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/543,150
Inventor
Kraig M. Love
John M. Seipold
Glen P. Calvert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Caterpillar Inc
Original Assignee
Caterpillar Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Caterpillar Inc filed Critical Caterpillar Inc
Priority to US13/543,150 priority Critical patent/US20120298468A1/en
Assigned to CATERPILLAR INC. reassignment CATERPILLAR INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CALVERT, GLEN P., LOVE, KRAIG M., SEIPOLD, JOHN M.
Publication of US20120298468A1 publication Critical patent/US20120298468A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/0403Synchronisation before shifting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D11/00Clutches in which the members have interengaging parts
    • F16D11/14Clutches in which the members have interengaging parts with clutching members movable only axially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D23/00Details of mechanically-actuated clutches not specific for one distinct type
    • F16D23/02Arrangements for synchronisation, also for power-operated clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • F16H63/3023Constructional features of the final output mechanisms the final output mechanisms comprising elements moved by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D23/00Details of mechanically-actuated clutches not specific for one distinct type
    • F16D23/02Arrangements for synchronisation, also for power-operated clutches
    • F16D23/04Arrangements for synchronisation, also for power-operated clutches with an additional friction clutch
    • F16D23/06Arrangements for synchronisation, also for power-operated clutches with an additional friction clutch and a blocking mechanism preventing the engagement of the main clutch prior to synchronisation
    • F16D2023/0693Clutches with hydraulic actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H2061/6601Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with arrangements for dividing torque and shifting between different ranges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H2061/6604Special control features generally applicable to continuously variable gearings
    • F16H2061/6609Control of clutches or brakes in torque split transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor
    • F16H63/502Signals to an engine or motor for smoothing gear shifts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19023Plural power paths to and/or from gearing
    • Y10T74/19033Fluid drive divides or combines alternate paths

Definitions

  • This patent disclosure relates generally to multiple range transmissions and, more particularly to a split input continuously variable transmission that provide multiple ratio ranges and uses one or more synchronizers when shifting between ranges.
  • CVT transmissions do not require shifts between discrete ratios, they do generally require shifts between ratio ranges.
  • a first ratio range may allow transmission ratios from 3-to-1 up to 2-to-1
  • a second range may allow transmission ratios from 2-to-1 and 1-to-1.
  • a range shift will be needed.
  • a split path CVT is provided for selectively providing multiple transmission ratio ranges between a CVT input and a CVT output.
  • the piston-actuated synchronizer system includes a cylindrical collar connected by a spline to a piston sharing a common rotational axis.
  • the collar is also part of the synchronizer assembly.
  • a cylindrical driven gear has a spline associated with it on a second common rotational axis that is coincident with the first common rotational axis.
  • the gear spline is connected to the synchronizer output ring.
  • the gear is supported on the shaft by a bearing and can rotate independently from the shaft.
  • the cylindrical collar axially movable along the second common rotational axis, engages the synchronizer hub to the synchronizer output ring to engage the shaft to the gear.
  • a piston is associated with the cylindrical collar.
  • the piston is supported by the hub, which is connected to the shaft, the hub also having one or more fluid inlets formed therein in fluid communication with the cylindrical cavity.
  • the hub is partially enclosed by a manifold.
  • the fluid inlets in the hub coincide with fluid passages in the manifold.
  • the fluid passages in the manifold coincide with fluid passages in the housing.
  • the flow of fluid from the one or more fluid inlets into the cylindrical cavity is regulated by a solenoid valve on the housing to force the piston and the associated cylindrical collar axially toward the synchronizer to engage the synchronizer hub to the synchronizer output ring and therefore to the gear.
  • a spring is provided for biasing the collar away from the synchronizer engaged position.
  • FIG. 1 is a schematic system diagram showing a split path CVT environment within which the disclosed principles may be implemented;
  • FIG. 2 is a partial cross-sectional side view of a piston-actuated synchronizer system within a split path CVT according to one aspect the disclosed principles, wherein the piston-actuated synchronizer is not engaged;
  • FIG. 3 is a partial cross-sectional side view of a piston-actuated synchronizer system within a split path CVT according to one aspect the disclosed principles, wherein the piston-actuated synchronizer is engaged;
  • FIG. 4 is a flow chart illustrating a process of range shifting within an embodiment of the disclosed principles.
  • This disclosure relates to machines requiring a transmission to link a power source to the final ground-engaging mechanism, e.g., wheels, tracks, etc., and/or to another powered function or implement.
  • machines include machines used for mining, construction, farming, transportation, or any other industry known in the art.
  • the machine may be an earth-moving machine, such as a wheel loader, excavator, dump truck, backhoe, motor grader, material handler or the like.
  • one or more implements may be connected to the machine for a variety of tasks, including, for example, loading, compacting, lifting, brushing, and include, for example, buckets, compactors, forked lifting devices, brushes, grapples, cutters, shears, blades, breakers/hammers, augers, and others.
  • FIG. 1 is a diagrammatic illustration showing a transmission architecture 100 within which embodiments of the disclosed principles may be used.
  • the illustrated transmission architecture 100 includes an engine 101 , a variator 103 , and a split path CVT 105 .
  • a controller 107 is included in order to coordinate the operation of the engine 101 , variator 103 , and split path CVT 105 .
  • a first output shaft 109 provides a first input from the engine 101 to the split path CVT 105
  • a second output 111 provides a second input from the variator 103 to the split path CVT 105 .
  • a third output 113 from the split path CVT 105 is provided for linkage to a final drive train or other power transfer system, not shown.
  • the third output 113 provides a weighted combination of the inputs to the split path CVT 105 . More precisely, at a given engine speed, the effective transmission ratio of the split path CVT 105 will depend upon the speed and direction of the variator 103 as well as upon a range setting of the split path CVT 105 .
  • the engine 101 is an example of a primary mover, but it will be appreciated that other primary mover systems may be used additionally or alternatively without departing from the scope of the described principles.
  • the variator 103 is simply an example of a secondary mover, and it will be appreciated that other types of secondary movers may be used additionally or alternatively without departing from the scope of the disclosed principles of operation.
  • the operation of the engine 101 is controlled based on one or more inputs, including, for example, an input from a user interface (not shown), e.g., a pedal or lever, as well as an input from the controller 107 , e.g., for purposes of torque control, fraction control, etc.
  • the operation of the variator 103 is controlled by the controller 107 based on the current and desired state of the split path CVT 105 .
  • the split path CVT 105 is managed by the controller 107 based on a number of parameters including, for example, available engine power and torque, as well as vehicle speed.
  • the controller 107 may be any computing device capable of sensing one or more conditions of the split path CVT 105 , engine 101 and/or variator 103 and providing control outputs to one or more of the split path CVT 105 , engine 101 and/or variator 103 .
  • the controller 107 may be integrated with an engine or machine control module, or may be a separate device.
  • the controller 105 operates by reading computer-readable instructions from a computer-readable medium and executing the read instructions.
  • the computer-readable medium may be a tangible medium such as a hard drive, optical disc, jump drive, thumb drive, flash memory, ROM, PROM, RAM, etc., or may be an intangible medium such as an electrical or optical wave form traveling in air, vacuum, or wire.
  • shift forks have traditionally served to execute accurate shift timing in split path CVT architectures, the use of these forks is not without consequence.
  • the forks are non-rotating members that must forcefully interface with rapidly rotating transmission parts to execute a shift. Because rapid shifts are required, high shift loads may be applied, causing substantial wear to the forks and/or the mating transmission surfaces. Such wear necessitates maintenance and repair, both of which can be costly.
  • the forks and the other associated parts of the system also require a fair amount of spatial volume to accommodate their bulk and range of motion.
  • a piston-actuated shift mechanism is introduced to execute one or more range shifts in the split path CVT 105 .
  • the illustrated piston-actuated shift mechanism 200 includes a cylindrical driven gear 201 and a cylindrical collar 205 that may selectively couple or uncouple the gear 201 to the shaft 225 via the synchronizer 203 .
  • the collar 205 surrounds and is keyed to a substantially annular piston 213 .
  • the piston 213 is axially slidable on a hub 209 , to selectively engage or disengage the driven gear 201 via a spline 207 .
  • a cylindrical compression spring 206 is located between the piston 213 and the synchronizer 203 to bias the assembly including the force collar 205 away from the spline 207 .
  • a distal end of the collar 205 furthest from the spline 207 is formed into or joined with the cylindrical piston 213 , which fits closely on the hub 209 , forming a cylindrical cavity 215 there between.
  • the hub 209 is attached to the shaft 225 by bolt 221 .
  • the cylindrical cavity 215 is filled and drained of pressurized hydraulic fluid via one or more fluid inlets 219 .
  • the hydraulic fluid is supplied through passages in the manifold 239 and in the housing 217 .
  • a solenoid valve 237 on the housing 217 is controlled via the controller 107 to regulate the flow of fluid from the one or more fluid inlets 219 into the cavity 215
  • the solenoid valve 237 may be proportional or binary (switching) and is electronically controlled by a solenoid control signal in an embodiment.
  • other types of solenoid control may be used instead, including mechanical or hydraulic control for example. It will be appreciated that as pressurized fluid is introduced into the cavity 215 via the one or more fluid inlets 219 , the piston 213 is forced forward, compressing the return spring 206 as in FIG. 3 .
  • the collar 205 has an annular step 242 thereon to engage a flange 241 of the piston 213 .
  • the action of displacing the piston 213 also axially displaces the collar 205 towards the spline 207 .
  • the displacement of the collar 205 will be such that the collar 205 causes the synchronizer 203 to reduce the relative speed difference of the shaft 225 and the gear 201 to zero. This allows the collar 205 to move axially to engage the spline 207 of the synchronizer output ring which is engaged to the gear 201 through spline 227 .
  • the engagement of the collar 205 with the spline 207 is used as a threshold precondition to further accelerate the shaft 225 . This is because any acceleration prior to the engagement of the driven collar 205 with the spline 207 will delay synchronization and will cause excessive wear to the synchronizer friction material.
  • a displacement sensor 229 is adapted to detect the axial position of the collar 205 and to convey a signal indicative of the axial position of the collar 205 to the transmission controller 107 via a sensor output 231 .
  • the displacement sensor 229 may be of any suitable type and configuration, but in an embodiment of the disclosed principles, the displacement sensor 229 comprises a magnetic sensor. In an alternative embodiment, the displacement sensor 229 comprises a two-state switch. The displacement sensor 229 detects the axial location of the sensor target 233 that is contained in the sensor target keyway 235 in the piston 213 . The sensor target 233 is prevented from rotating by the displacement sensor 229 .
  • FIG. 4 is a flow chart illustrating a process of range shifting within an embodiment of the disclosed principles.
  • the illustrated process 400 begins at stage 401 , wherein the controller 107 receives or generates an acceleration command to accelerate the split path CVT output.
  • the Controller 107 causes the split path CVT output to accelerate via the variator 103 and/or engine 101 at stage 403 .
  • the Controller continues to accelerate the split path CVT output at stage 405 .
  • the controller 107 determines whether a shift point has been attained.
  • the Controller 107 first reduces the torque output by the engine 101 and variator 103 at stage 409 , and then activates the solenoid valve 237 at stage 409 to fill the chamber 215 with pressurized hydraulic fluid, driving the piston 235 forward.
  • the controller determines whether the driven collar 205 has engaged the spline 207 . This can be determined based on a reading of the signal from the displacement sensor 229 . Once it is determined that he driven collar 205 has engaged the spline 207 , the controller 107 increases the torque applied by the engine 101 and variator 103 at stage 415 to resume the prior rate of acceleration.
  • the described principles are applicable to machines requiring a transmission to link a power source to the final ground-engaging mechanism, e.g., wheels, tracks, etc., and/or to another powered function or implement.
  • machines include machines used for mining, construction, farming, transportation, or any other industry known in the art.
  • the machine may be an earth-moving machine, such as a wheel loader, excavator, dump truck, backhoe, motor grader, material handler or the like.
  • Exemplary implements include, without limitation, buckets, compactors, forked lifting devices, brushes, grapples, cutters, shears, blades, breakers/hammers, augers, and others.
  • a split path CVT generally involves multiple sets of gears that mesh and unmesh to shift the range of the transmission.
  • certain range shifts can still be executed via fork shifters, such that the CVT includes a combination of one or more piston-actuated shift mechanisms as described herein and one or more traditional fork shift mechanisms.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Transmission Device (AREA)
  • Mechanical Operated Clutches (AREA)
  • Structure Of Transmissions (AREA)
  • Gear-Shifting Mechanisms (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

A piston actuated synchronizer system for a split torque transmission where the piston is attached directly to the synchronizer shift collar on the synchronizer centerline to provide the required actuation in a small volume of space and resolve fork and rod deflection issues seen on other synchronizers that use such a system. The piston is pressure applied and spring released. This design also uses a displacement sensor to monitor synchronizer engagement.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This patent application is a divisional and claims the priority benefit of copending U.S. patent application Ser. No. 12/347,972, filed Dec. 31, 2008, which disclosure is incorporated herein by reference.
  • TECHNICAL FIELD
  • This patent disclosure relates generally to multiple range transmissions and, more particularly to a split input continuously variable transmission that provide multiple ratio ranges and uses one or more synchronizers when shifting between ranges.
  • BACKGROUND
  • Because of the limited speed range of most prime mover devices, e.g., engines, motors, etc., such devices are frequently used in conjunction with a transmission to provide a range of transmission input-to-output ratios, e.g., 3-to-1, 1-to-1, or 1.5-to-1 (overdrive). Certain ratios provide lower torque at higher speed, while other ratios provide higher torque for lower speed, i.e., during acceleration or hill climbing. Such discrete ratio transmissions, while useful and ubiquitous, cause discontinuities during operation that may be disconcerting or otherwise disruptive. As such, continuously variable transmissions (CVTs) have been developed to allow smooth acceleration without sharp discontinuities between ranges, and such transmissions are now in widespread use. However, while CVT transmissions do not require shifts between discrete ratios, they do generally require shifts between ratio ranges. For example, a first ratio range may allow transmission ratios from 3-to-1 up to 2-to-1, while a second range may allow transmission ratios from 2-to-1 and 1-to-1. In order to provide ratios from 3-to-1 up to 1-to-1, therefore, a range shift will be needed.
  • While existing systems use fork activated shifting with some success, this type of activation is not optimal for every configuration, due to space constraints. Moreover, fork activated shifting systems impose maintenance and replacement requirements due to the action of spinning transmission components against the shift forks. However, the shift forks also serve to gauge the position of the transmission components and the completion of each shift. Thus, the industry has experienced difficulty in attempting to design a split path CVT shifting system that provides the benefits of fork-activated shifting within a limited volume and without the attendant wear problems caused by the forks.
  • SUMMARY
  • In an aspect of the disclosed principles, a split path CVT is provided for selectively providing multiple transmission ratio ranges between a CVT input and a CVT output. In this aspect, one or more of the ratio ranges are shifted by a piston-actuated synchronizer system. The piston-actuated synchronizer system includes a cylindrical collar connected by a spline to a piston sharing a common rotational axis. The collar is also part of the synchronizer assembly. A cylindrical driven gear has a spline associated with it on a second common rotational axis that is coincident with the first common rotational axis. The gear spline is connected to the synchronizer output ring. The gear is supported on the shaft by a bearing and can rotate independently from the shaft. The cylindrical collar, axially movable along the second common rotational axis, engages the synchronizer hub to the synchronizer output ring to engage the shaft to the gear.
  • A piston is associated with the cylindrical collar. The piston is supported by the hub, which is connected to the shaft, the hub also having one or more fluid inlets formed therein in fluid communication with the cylindrical cavity. The hub is partially enclosed by a manifold. The fluid inlets in the hub coincide with fluid passages in the manifold. The fluid passages in the manifold coincide with fluid passages in the housing. The flow of fluid from the one or more fluid inlets into the cylindrical cavity is regulated by a solenoid valve on the housing to force the piston and the associated cylindrical collar axially toward the synchronizer to engage the synchronizer hub to the synchronizer output ring and therefore to the gear. In an embodiment, a spring is provided for biasing the collar away from the synchronizer engaged position.
  • Further aspects and features of the disclosed principles will be appreciated from the following detailed description and the accompanying drawings, of which:
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic system diagram showing a split path CVT environment within which the disclosed principles may be implemented;
  • FIG. 2 is a partial cross-sectional side view of a piston-actuated synchronizer system within a split path CVT according to one aspect the disclosed principles, wherein the piston-actuated synchronizer is not engaged;
  • FIG. 3 is a partial cross-sectional side view of a piston-actuated synchronizer system within a split path CVT according to one aspect the disclosed principles, wherein the piston-actuated synchronizer is engaged; and
  • FIG. 4 is a flow chart illustrating a process of range shifting within an embodiment of the disclosed principles.
  • DETAILED DESCRIPTION
  • This disclosure relates to machines requiring a transmission to link a power source to the final ground-engaging mechanism, e.g., wheels, tracks, etc., and/or to another powered function or implement. Examples of such machines include machines used for mining, construction, farming, transportation, or any other industry known in the art. For example, the machine may be an earth-moving machine, such as a wheel loader, excavator, dump truck, backhoe, motor grader, material handler or the like. Moreover, one or more implements may be connected to the machine for a variety of tasks, including, for example, loading, compacting, lifting, brushing, and include, for example, buckets, compactors, forked lifting devices, brushes, grapples, cutters, shears, blades, breakers/hammers, augers, and others.
  • FIG. 1 is a diagrammatic illustration showing a transmission architecture 100 within which embodiments of the disclosed principles may be used. The illustrated transmission architecture 100 includes an engine 101, a variator 103, and a split path CVT 105. In addition, a controller 107 is included in order to coordinate the operation of the engine 101, variator 103, and split path CVT 105. A first output shaft 109 provides a first input from the engine 101 to the split path CVT 105, and a second output 111 provides a second input from the variator 103 to the split path CVT 105. A third output 113 from the split path CVT 105 is provided for linkage to a final drive train or other power transfer system, not shown. The third output 113 provides a weighted combination of the inputs to the split path CVT 105. More precisely, at a given engine speed, the effective transmission ratio of the split path CVT 105 will depend upon the speed and direction of the variator 103 as well as upon a range setting of the split path CVT 105.
  • The engine 101 is an example of a primary mover, but it will be appreciated that other primary mover systems may be used additionally or alternatively without departing from the scope of the described principles. Similarly, the variator 103 is simply an example of a secondary mover, and it will be appreciated that other types of secondary movers may be used additionally or alternatively without departing from the scope of the disclosed principles of operation.
  • The operation of the engine 101 is controlled based on one or more inputs, including, for example, an input from a user interface (not shown), e.g., a pedal or lever, as well as an input from the controller 107, e.g., for purposes of torque control, fraction control, etc. The operation of the variator 103 is controlled by the controller 107 based on the current and desired state of the split path CVT 105. Finally, the split path CVT 105 is managed by the controller 107 based on a number of parameters including, for example, available engine power and torque, as well as vehicle speed.
  • The controller 107 may be any computing device capable of sensing one or more conditions of the split path CVT 105, engine 101 and/or variator 103 and providing control outputs to one or more of the split path CVT 105, engine 101 and/or variator 103. By way of example but not limitation, the controller 107 may be integrated with an engine or machine control module, or may be a separate device. The controller 105 operates by reading computer-readable instructions from a computer-readable medium and executing the read instructions. The computer-readable medium may be a tangible medium such as a hard drive, optical disc, jump drive, thumb drive, flash memory, ROM, PROM, RAM, etc., or may be an intangible medium such as an electrical or optical wave form traveling in air, vacuum, or wire.
  • Although shift forks have traditionally served to execute accurate shift timing in split path CVT architectures, the use of these forks is not without consequence. The forks are non-rotating members that must forcefully interface with rapidly rotating transmission parts to execute a shift. Because rapid shifts are required, high shift loads may be applied, causing substantial wear to the forks and/or the mating transmission surfaces. Such wear necessitates maintenance and repair, both of which can be costly. Typically, the forks and the other associated parts of the system also require a fair amount of spatial volume to accommodate their bulk and range of motion.
  • In an embodiment of the disclosed principles, a piston-actuated shift mechanism is introduced to execute one or more range shifts in the split path CVT 105. Although various configurations may be used without departing from the scope of the disclosed principles, one exemplary configuration is shown in cross-sectional side view in FIG. 2 and FIG. 4. The illustrated piston-actuated shift mechanism 200 includes a cylindrical driven gear 201 and a cylindrical collar 205 that may selectively couple or uncouple the gear 201 to the shaft 225 via the synchronizer 203. The collar 205 surrounds and is keyed to a substantially annular piston 213. The piston 213 is axially slidable on a hub 209, to selectively engage or disengage the driven gear 201 via a spline 207.
  • A cylindrical compression spring 206 is located between the piston 213 and the synchronizer 203 to bias the assembly including the force collar 205 away from the spline 207. A distal end of the collar 205 furthest from the spline 207 is formed into or joined with the cylindrical piston 213, which fits closely on the hub 209, forming a cylindrical cavity 215 there between. The hub 209 is attached to the shaft 225 by bolt 221. The cylindrical cavity 215 is filled and drained of pressurized hydraulic fluid via one or more fluid inlets 219. The hydraulic fluid is supplied through passages in the manifold 239 and in the housing 217.
  • A solenoid valve 237 on the housing 217 is controlled via the controller 107 to regulate the flow of fluid from the one or more fluid inlets 219 into the cavity 215 The solenoid valve 237 may be proportional or binary (switching) and is electronically controlled by a solenoid control signal in an embodiment. However, other types of solenoid control may be used instead, including mechanical or hydraulic control for example. It will be appreciated that as pressurized fluid is introduced into the cavity 215 via the one or more fluid inlets 219, the piston 213 is forced forward, compressing the return spring 206 as in FIG. 3.
  • The collar 205 has an annular step 242 thereon to engage a flange 241 of the piston 213. Thus, the action of displacing the piston 213 also axially displaces the collar 205 towards the spline 207. If sufficient fluid is introduced into the cavity 215, the displacement of the collar 205 will be such that the collar 205 causes the synchronizer 203 to reduce the relative speed difference of the shaft 225 and the gear 201 to zero. This allows the collar 205 to move axially to engage the spline 207 of the synchronizer output ring which is engaged to the gear 201 through spline 227.
  • In an embodiment of the disclosed principles, the engagement of the collar 205 with the spline 207 is used as a threshold precondition to further accelerate the shaft 225. This is because any acceleration prior to the engagement of the driven collar 205 with the spline 207 will delay synchronization and will cause excessive wear to the synchronizer friction material.
  • To this end, a displacement sensor 229 is adapted to detect the axial position of the collar 205 and to convey a signal indicative of the axial position of the collar 205 to the transmission controller 107 via a sensor output 231. The displacement sensor 229 may be of any suitable type and configuration, but in an embodiment of the disclosed principles, the displacement sensor 229 comprises a magnetic sensor. In an alternative embodiment, the displacement sensor 229 comprises a two-state switch. The displacement sensor 229 detects the axial location of the sensor target 233 that is contained in the sensor target keyway 235 in the piston 213. The sensor target 233 is prevented from rotating by the displacement sensor 229.
  • FIG. 4 is a flow chart illustrating a process of range shifting within an embodiment of the disclosed principles. The illustrated process 400 begins at stage 401, wherein the controller 107 receives or generates an acceleration command to accelerate the split path CVT output. The Controller 107 causes the split path CVT output to accelerate via the variator 103 and/or engine 101 at stage 403. The Controller continues to accelerate the split path CVT output at stage 405. In stage 407, the controller 107 determines whether a shift point has been attained. If such a point has been reached, the Controller 107 first reduces the torque output by the engine 101 and variator 103 at stage 409, and then activates the solenoid valve 237 at stage 409 to fill the chamber 215 with pressurized hydraulic fluid, driving the piston 235 forward.
  • At stage 413, the controller determines whether the driven collar 205 has engaged the spline 207. This can be determined based on a reading of the signal from the displacement sensor 229. Once it is determined that he driven collar 205 has engaged the spline 207, the controller 107 increases the torque applied by the engine 101 and variator 103 at stage 415 to resume the prior rate of acceleration.
  • INDUSTRIAL APPLICABILITY
  • The described principles are applicable to machines requiring a transmission to link a power source to the final ground-engaging mechanism, e.g., wheels, tracks, etc., and/or to another powered function or implement. Examples of such machines include machines used for mining, construction, farming, transportation, or any other industry known in the art. For example, the machine may be an earth-moving machine, such as a wheel loader, excavator, dump truck, backhoe, motor grader, material handler or the like. Exemplary implements include, without limitation, buckets, compactors, forked lifting devices, brushes, grapples, cutters, shears, blades, breakers/hammers, augers, and others.
  • In this context, the disclosed principles allow rapid shifts in a split path CVT without the replacement and maintenance requirements imposed by the exclusive use of fork shifters. It will be appreciated, however, that a split path CVT generally involves multiple sets of gears that mesh and unmesh to shift the range of the transmission. Moreover, it is contemplated that certain range shifts can still be executed via fork shifters, such that the CVT includes a combination of one or more piston-actuated shift mechanisms as described herein and one or more traditional fork shift mechanisms.
  • It will be appreciated that the foregoing description provides examples of the disclosed system and technique. However, it is contemplated that other implementations of the disclosure may differ in detail from the foregoing examples. All references to the disclosure or examples thereof are intended to reference the particular example being discussed at that point and are not intended to imply any limitation as to the scope of the disclosure more generally. All language of distinction and disparagement with respect to certain features is intended to indicate a lack of preference for those features, but not to exclude such from the scope of the disclosure entirely unless otherwise indicated.
  • Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context.

Claims (11)

1-10. (canceled)
11. A process of range shifting in a split path CVT having a first input driven by an engine and a second input driven by another power source, the CVT also having an output and supporting multiple ratio ranges between the first input and the output, as well as a piston-driven synchronizer actuated via a solenoid valve, the method comprising:
receiving an acceleration command to accelerate the split path CVT output;
causing the split path CVT output to accelerate;
determining that a shift point has been attained;
in response to determining that a shift point has been attained, reducing a torque at one or both of the first and second inputs;
activating the solenoid valve and thereby actuating the piston of the synchronizer;
determining that the range has been shifted;
increasing the torque applied at one or both of the first and second inputs to resume the prior rate of acceleration.
12. The process of range shifting in a split path CVT according to claim 11, wherein causing the split path CVT output to accelerate further comprising causing one of the variator and the engine to accelerate.
13. The process of range shifting in a split path CVT according to claim 11, wherein reducing a torque at one or both of the first and second inputs further comprises reducing a torque at one or both of the engine and variator.
14. The process of range shifting in a split path CVT according to claim 11, wherein determining that the range has been shifted comprises detecting a position of a range shifting member via a position switch.
15. The process of range shifting in a split path CVT according to claim 11, wherein increasing the torque applied at one or both of the first and second inputs to resume the prior rate of acceleration comprises increasing the torque applied at least one of the engine and the variator.
16. A controller for executing a process of range shifting in a split path CVT having a first input driven by an engine and a second input driven by another power source, the CVT also having an output and supporting multiple ratio ranges between the first input and the output, as well as a piston-driven synchronizer actuated via a solenoid valve, the controller having a computer-readable medium containing computer-readable instructions including:
instructions for receiving an acceleration command to accelerate the split path CVT output;
instructions for causing the split path CVT output to accelerate;
instructions for determining that a shift point has been attained;
instructions for reducing a torque at one or both of the first and second inputs in response to determining that a shift point has been attained;
instructions for activating the solenoid valve and thereby actuating the piston of the synchronizer;
instructions for determining that the range has been shifted;
instructions for increasing the torque applied at one or both of the first and second inputs to resume the prior rate of acceleration.
17. The controller according to claim 16, wherein the instructions for causing the split path CVT output to accelerate further comprise instructions for causing one of the variator and the engine to accelerate.
18. The controller according to claim 16, wherein the instructions for reducing a torque at one or both of the first and second inputs further comprise instructions for reducing a torque at one or both of the engine and variator.
19. The controller according to claim 16, wherein the instructions for determining that the range has been shifted comprise instructions for detecting a position of a range shifting member via a position switch.
20. The controller according to claim 16, wherein the instructions for increasing the torque applied at one or both of the first and second inputs to resume the prior rate of acceleration comprise instructions for increasing the torque applied at least one of the engine and the variator.
US13/543,150 2008-12-31 2012-07-06 Piston Actuated Split Input Transmission Synchronizer Abandoned US20120298468A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/543,150 US20120298468A1 (en) 2008-12-31 2012-07-06 Piston Actuated Split Input Transmission Synchronizer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/347,972 US8234956B2 (en) 2008-12-31 2008-12-31 Piston actuated split input transmission synchronizer
US13/543,150 US20120298468A1 (en) 2008-12-31 2012-07-06 Piston Actuated Split Input Transmission Synchronizer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/347,972 Division US8234956B2 (en) 2008-12-31 2008-12-31 Piston actuated split input transmission synchronizer

Publications (1)

Publication Number Publication Date
US20120298468A1 true US20120298468A1 (en) 2012-11-29

Family

ID=42283336

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/347,972 Active 2030-12-27 US8234956B2 (en) 2008-12-31 2008-12-31 Piston actuated split input transmission synchronizer
US13/543,150 Abandoned US20120298468A1 (en) 2008-12-31 2012-07-06 Piston Actuated Split Input Transmission Synchronizer

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/347,972 Active 2030-12-27 US8234956B2 (en) 2008-12-31 2008-12-31 Piston actuated split input transmission synchronizer

Country Status (6)

Country Link
US (2) US8234956B2 (en)
JP (1) JP2012514173A (en)
CN (1) CN102271949B (en)
DE (1) DE112009004934T5 (en)
RU (1) RU2011131999A (en)
WO (1) WO2010078085A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111033073A (en) * 2017-08-22 2020-04-17 五十铃自动车株式会社 Estimation device and estimation method

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102057177B (en) * 2008-07-03 2013-08-28 迪尔公司 Transmission gear engagement mechanism and method of operation
EP2969631B1 (en) * 2013-03-15 2019-05-22 Allison Transmission, Inc. Variator bypass clutch
US10670124B2 (en) 2013-12-31 2020-06-02 Deere & Company Multi-mode infinitely variable transmission
US10655710B2 (en) 2013-12-31 2020-05-19 Deere & Company Multi-mode infinitely variable transmission that provides seamless shifting
US10119598B2 (en) 2013-12-31 2018-11-06 Deere & Company Multi-mode infinitely variable transmission
US9981665B2 (en) 2013-12-31 2018-05-29 Deere & Company Energy storage and delivery for power trains of work vehicles
US9206885B2 (en) 2013-12-31 2015-12-08 Deere & Company Multi-mode infinitely variable transmission
US10738868B2 (en) 2014-04-09 2020-08-11 Deere & Company Multi-mode powertrains
US10647193B2 (en) 2014-04-09 2020-05-12 Deere & Company Multi-mode power trains
US10086686B2 (en) 2016-01-14 2018-10-02 Deere & Company Transmission with a mode selection apparatus
KR101873790B1 (en) * 2016-03-16 2018-07-03 자동차부품연구원 Two stage variable speed type transmission device for electric vehicle
US10323720B2 (en) 2016-06-20 2019-06-18 Deere & Company Hydraulic synchronizer
US10619711B2 (en) 2017-04-12 2020-04-14 Deere & Company Infinitely variable transmission with power reverser
US11052747B2 (en) 2018-05-04 2021-07-06 Deere & Company Multi-mode powertrains
US11091018B2 (en) 2018-05-11 2021-08-17 Deere & Company Powertrain with variable vertical drop distance
US10975959B2 (en) 2019-04-01 2021-04-13 Deere & Company Transmission clutch braking control system
KR20210010689A (en) * 2019-07-17 2021-01-28 현대자동차주식회사 Complex synchronizer
US11137052B2 (en) 2019-08-29 2021-10-05 Deere & Company Transmission assembly with integrated CVP
US11351983B2 (en) 2019-10-31 2022-06-07 Deere & Company Power control system with transmission transient boost function
US11846085B2 (en) 2020-02-17 2023-12-19 Deere & Company Energy management system for a hybrid vehicle with an electrically powered hydraulic system
US11325459B2 (en) 2020-10-09 2022-05-10 Deere & Company Low profile transmission assembly with integrated CVP
US11613246B2 (en) 2021-01-21 2023-03-28 Deere & Company Power control system with engine throttle shift function
US11628822B2 (en) 2021-02-09 2023-04-18 Deere & Company Power control system with stall prevention clutch modulation function
US11299141B1 (en) 2021-02-10 2022-04-12 Deere & Company System for multi-layer braking and retardation in a work vehicle
US11820361B2 (en) 2021-11-30 2023-11-21 Deere & Company Transmission assembly with electrical machine unit for improved shift quality
US11585412B1 (en) 2021-12-22 2023-02-21 Deere & Company Electronically-variable, dual-path power shift transmission for work vehicles
US11607948B1 (en) 2021-12-22 2023-03-21 Deere & Company Electronically-variable power shift transmission for work vehicles
US11913528B1 (en) 2022-10-28 2024-02-27 Deere & Company Multi-mode continuously variable transmission assembly with drop set arrangement

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7448981B2 (en) * 2005-06-27 2008-11-11 Toyota Jidosha Kabushiki Kaisha Power output apparatus, vehicle equipped with power output apparatus, and control method of power output apparatus
US20100081539A1 (en) * 2006-02-01 2010-04-01 Toyota Jidosha Kabushiki Kaisha Power output apparatus, vehicle including power output apparatus, and control unit and method for power output apparatus
US20120083385A1 (en) * 2010-09-30 2012-04-05 GM Global Technology Operations LLC Control of a powertrain for a hybrid system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5048655A (en) * 1990-05-22 1991-09-17 Deere & Company Electric declutch mechanism for direct drive crawler
US5795263A (en) * 1994-03-29 1998-08-18 Kongsberg Techmatic Uk Limited Actuation systems and mechanisms
US6250446B1 (en) * 1999-11-02 2001-06-26 Ford Global Tech., Inc. Clutch assembly
DE10018649A1 (en) * 2000-04-14 2001-10-25 Mannesmann Sachs Ag Actuator for frictional coupling has control/regulating valve for controling cylinder device depending on actual/desired disengagement, control electronics with various characteristics
US6688445B2 (en) * 2001-01-19 2004-02-10 Mannesmann Sachs Ag Clutch regulating device with torque sensor and displacement sensor
ATE303536T1 (en) * 2001-05-01 2005-09-15 Torotrak Dev Ltd HYDRAULIC CONTROL CIRCUIT FOR A CONTINUOUSLY ADJUSTABLE TRANSMISSION
DE10229515A1 (en) * 2002-07-02 2004-01-15 Zf Friedrichshafen Ag transmission shift
BRPI0408795A (en) * 2003-03-27 2006-03-28 Torotrak Dev Ltd method for controlling a continuously variable transmission
US20060019797A1 (en) * 2004-07-26 2006-01-26 Eaton Corporation Input shaft brake
US7530914B2 (en) * 2005-06-03 2009-05-12 Caterpillar Inc. Hydromechanical transmission

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7448981B2 (en) * 2005-06-27 2008-11-11 Toyota Jidosha Kabushiki Kaisha Power output apparatus, vehicle equipped with power output apparatus, and control method of power output apparatus
US20100081539A1 (en) * 2006-02-01 2010-04-01 Toyota Jidosha Kabushiki Kaisha Power output apparatus, vehicle including power output apparatus, and control unit and method for power output apparatus
US20120083385A1 (en) * 2010-09-30 2012-04-05 GM Global Technology Operations LLC Control of a powertrain for a hybrid system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111033073A (en) * 2017-08-22 2020-04-17 五十铃自动车株式会社 Estimation device and estimation method

Also Published As

Publication number Publication date
WO2010078085A2 (en) 2010-07-08
DE112009004934T5 (en) 2012-11-08
CN102271949A (en) 2011-12-07
CN102271949B (en) 2014-02-26
US20100162849A1 (en) 2010-07-01
US8234956B2 (en) 2012-08-07
RU2011131999A (en) 2013-02-10
JP2012514173A (en) 2012-06-21
WO2010078085A3 (en) 2010-09-16

Similar Documents

Publication Publication Date Title
US8234956B2 (en) Piston actuated split input transmission synchronizer
KR101694328B1 (en) Working vehicle control apparatus
JP4800735B2 (en) Engine speed control device for work vehicle
US8380408B2 (en) Speed change control system for industrial vehicle
JP5503954B2 (en) Clutch control device for work vehicle
US6295497B1 (en) Method and apparatus for adaptively shifting ranges in a continuously variable transmission
US8718879B2 (en) Work vehicle and method for controlling work vehicle
US8666618B2 (en) Machine control system implementing application-based clutch modulation
US8290672B2 (en) Method and a system for controlling a vehicle
SE529905C2 (en) Gear control device and gear control method for work vehicles
AU2012352562B2 (en) Machine control system
US8825323B2 (en) Machine control system implementing speed-based clutch modulation
JP5840104B2 (en) Travel control device for work vehicle
CN113795630A (en) Work vehicle and work vehicle control method
US10443699B2 (en) Hydraulic torque converter for work machine
CN113874266B (en) Work vehicle and control method for work vehicle
JP2002295528A (en) Speed control device for vehicle
EP4045822B1 (en) A clutch engaging arrangement
KR100893848B1 (en) Running vehicle

Legal Events

Date Code Title Description
AS Assignment

Owner name: CATERPILLAR INC., ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LOVE, KRAIG M.;SEIPOLD, JOHN M.;CALVERT, GLEN P.;REEL/FRAME:028682/0572

Effective date: 20090213

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE