US20120279912A1 - Chemical Mixing System and Method - Google Patents

Chemical Mixing System and Method Download PDF

Info

Publication number
US20120279912A1
US20120279912A1 US13/099,086 US201113099086A US2012279912A1 US 20120279912 A1 US20120279912 A1 US 20120279912A1 US 201113099086 A US201113099086 A US 201113099086A US 2012279912 A1 US2012279912 A1 US 2012279912A1
Authority
US
United States
Prior art keywords
mixing
injector
chemical
fluid
injector assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/099,086
Inventor
Brent McCurdy
Michael Maurizi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dubois Chemicals Inc
Original Assignee
Dubois Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dubois Chemicals Inc filed Critical Dubois Chemicals Inc
Priority to US13/099,086 priority Critical patent/US20120279912A1/en
Assigned to DUBOIS CHEMICALS, INC. reassignment DUBOIS CHEMICALS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MAURIZI, MICHAEL, MCCURDY, BRENT
Priority to AU2012202373A priority patent/AU2012202373B2/en
Priority to CA2775520A priority patent/CA2775520A1/en
Publication of US20120279912A1 publication Critical patent/US20120279912A1/en
Assigned to GENERAL ELECTRIC CAPITAL CORPORATION, AS AGENT reassignment GENERAL ELECTRIC CAPITAL CORPORATION, AS AGENT SECURITY AGREEMENT Assignors: DUBOIS CHEMICALS, INC.
Priority to US14/674,855 priority patent/US10710037B2/en
Assigned to ANTARES CAPITAL LP, AS SUCCESSOR AGENT reassignment ANTARES CAPITAL LP, AS SUCCESSOR AGENT ASSIGNMENT OF INTELLECTUAL PROPERTY SECURITY AGREEMENTS Assignors: GENERAL ELECTRIC CAPITAL CORPORATION, AS RETIRING AGENT
Assigned to DUBOIS CHEMICALS, INC. reassignment DUBOIS CHEMICALS, INC. RELEASE OF SECURITY INTEREST IN INTELLECTUAL PROPERTY COLLATERAL RECORDED AT REEL 029549/FRAME 0142 Assignors: ANTARES CAPITAL LP, SUCCESSOR AGENT TO GENERAL ELECTRIC CAPITAL CORPORATION
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/7176Feed mechanisms characterised by the means for feeding the components to the mixer using pumps
    • B01F35/717614Venturi pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/48Mixing liquids with liquids; Emulsifying characterised by the nature of the liquids
    • B01F23/483Mixing liquids with liquids; Emulsifying characterised by the nature of the liquids using water for diluting a liquid ingredient, obtaining a predetermined concentration or making an aqueous solution of a concentrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/45Mixing liquids with liquids; Emulsifying using flow mixing
    • B01F23/451Mixing liquids with liquids; Emulsifying using flow mixing by injecting one liquid into another
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/49Mixing systems, i.e. flow charts or diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3124Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof characterised by the place of introduction of the main flow
    • B01F25/31242Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof characterised by the place of introduction of the main flow the main flow being injected in the central area of the venturi, creating an aspiration in the circumferential part of the conduit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/316Injector mixers in conduits or tubes through which the main component flows with containers for additional components fixed to the conduit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/81Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles
    • B01F33/812Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles in two or more alternative mixing receptacles, e.g. mixing in one receptacle and dispensing from another receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/22Control or regulation
    • B01F35/221Control or regulation of operational parameters, e.g. level of material in the mixer, temperature or pressure
    • B01F35/2212Level of the material in the mixer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L37/00Couplings of the quick-acting type
    • F16L37/24Couplings of the quick-acting type in which the connection is made by inserting one member axially into the other and rotating it to a limited extent, e.g. with bayonet action
    • F16L37/244Couplings of the quick-acting type in which the connection is made by inserting one member axially into the other and rotating it to a limited extent, e.g. with bayonet action the coupling being co-axial with the pipe
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D11/00Control of flow ratio
    • G05D11/006Control of flow ratio involving a first fluid acting on the feeding of a second fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/2204Mixing chemical components in generals in order to improve chemical treatment or reactions, independently from the specific application
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/24Mixing of ingredients for cleaning compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2215/00Auxiliary or complementary information in relation with mixing
    • B01F2215/04Technical information in relation with mixing
    • B01F2215/0413Numerical information
    • B01F2215/0436Operational information
    • B01F2215/0468Numerical pressure values
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents

Definitions

  • Venturi injectors are commonly used to introduce a secondary fluid into a primary fluid stream. These injectors include an inlet for a primary fluid flow, a suction port introducing a second fluid flow into the primary fluid flow path, and an outlet for dispensing the combined primary and secondary fluids.
  • U.S. Pat. Nos. 5,439,020 and 5,678,593 describe detergent mixing systems for use with a highly pressurized water source. These systems include a mixing tank and several liquid chemical supply containers each accommodating a liquid chemical composition. A water supply conduit connects the pressurized water source with the mixing tank. Venturi chambers are disposed within the water supply conduit and are arranged for parallel flow. Each of the venturi chambers includes a suction port in fluid communication, respectively, with one of the liquid chemical supply containers so as to draw the liquid chemical from each chemical supply container as pressurized water passes through the venturi chamber, thus entraining the liquid chemical into the water.
  • U.S. Patent Application Publication No. 2009/0090415 describes an ultra-high pressure chemical delivery system sharing a common bulk fluid inlet and bulk fluid flow path to direct a bulk fluid through injectors.
  • the system includes a manifold body having a bulk fluid inlet fluidly interconnected to a plurality of injector flow channels.
  • Each injector flow channel includes a valve conduit and an injector conduit.
  • the valve conduits include a valve mounting port and the injector conduits include an injector mounting port.
  • the injector members each include a chemical inlet portion and a mixed fluid outlet portion, where the valve member selectively directs the bulk fluid through the injectors for drawing a chemical through the inlet portion for mixing with the bulk fluid and dispensing through to a point of use through the mixed fluid outlet portion.
  • This system is specifically designed for use of extremely high water pressures upwards of 1000 psi.
  • the aforementioned systems are designed for creation of final use-level or application-level diluted solutions, that are no longer concentrated, such as dilutions of 1:20, 1:50, 1:100 or 1:500 (chemical to water).
  • dilutions 1:20, 1:50, 1:100 or 1:500 (chemical to water).
  • higher concentrated solution mixes such as solutions having concentrations of greater than 1:5
  • these systems are not suitable for creation of higher concentrated solution mixes.
  • the present invention relates to a chemical component mixing apparatus for use with a fluid source in creation of a concentrated solution mixture.
  • the mixing apparatus includes at least one mixing station.
  • the mixing station includes an injector assembly, where the injector assembly includes at least one venturi chamber having at least one suction port in fluid communication with the at least one venturi chamber.
  • the apparatus also includes at least one super concentrate chemical component housed within a chemical container, where the chemical container is fluidly connected by a first tube to the at least one venturi chamber via the at least one suction port, a receiving container fluidly connected to the injector assembly via a second tube, and a fluid source inlet introducing a fluid into the at least one mixing station, where the pressure within the at least one mixing station is less than 150 psi.
  • the fluid passes through the at least one venturi chamber, thereby drawing the at least one super concentrate chemical component into the venturi chamber, and the concentrated solution mixture is dispensed from the injector assembly into the receiving container.
  • the pressure within the at least one mixing station is between 10-50 psi. In another embodiment, the pressure within the at least one mixing station is between 15-40 psi. In another embodiment, the apparatus further includes a pump. In another embodiment, the apparatus further includes a water softener. In another embodiment, the injector assembly includes a multi-port injector. In another embodiment, the first tube is 1 ⁇ 2 inch tubing. In a further embodiment, the 1 ⁇ 2 inch tubing is connected to an adapter for releasably securing the 1 ⁇ 2 inch tubing to the at least one suction port of the at least one venturi chamber.
  • the 1 ⁇ 2 inch tubing contains a metering tip within the tubing for at least partially restricting flow of the chemical component housed in the chemical container into the injector assembly.
  • the at least one mixing station further includes a pressure regulator.
  • the at least one mixing station further includes a valve upstream of the pressure regulator.
  • the at least one mixing station further includes a float positioned at least partially within the receiving container.
  • the at least one mixing station further includes a circuitry hub electrically connecting the float to the valve.
  • the valve is a water solenoid valve.
  • the float signals the valve to cease flow of the fluid through the mixing station when the receiving container is filled with a predetermined amount of the concentrated solution mixture dispensed from the injector assembly.
  • the electrical connection of the float to the circuitry hub comprises an adapter cord.
  • the at least one mixing station is a plurality of mixing stations, and the adapter cord connects multiple circuitry hubs of the multiple mixing stations to a single float at least partially within a single receiving container.
  • the single float signals the valve of each of the multiple mixing stations to cease flow of the fluid through the mixing stations when the receiving container is filled with a predetermined amount of the concentrated solution mixture.
  • the present invention also relates to a method for mixing a concentrated chemical solution.
  • the method comprises the steps of receiving a base fluid flow into a mixing station having an injector assembly that includes at least one venturi chamber having at least one suction port in fluid communication with the at least one venturi chamber, regulating the pressure of the base fluid flow to less than 150 psi, providing a source of at least one liquid chemical component in fluid communication with the injector assembly via a first tube, providing a receiving container for collection of the final concentrated chemical solution that is in fluid communication with the injector assembly via a second tube, mixing the at least one chemical component with the base fluid in the at least one venturi chamber to create the concentrated chemical solution, wherein flow of the base fluid through the at least one venturi chamber of the injector assembly draws the at least one liquid chemical component through the at least one suction port and into the flow of the base fluid, and dispensing the concentrated chemical solution into the receiving container.
  • the present invention also relates to an adapter for connecting a tube to a venturi-style injector.
  • the adapter comprises a housing having a hollow interior, the housing comprising an inlet and an outlet to the hollow interior, a first attachment mechanism for attaching a tube to the inlet, and a second attachment mechanism for attaching the outlet to a suction port arm of a venturi-style injector, where the second attachment mechanism includes a notch pattern sized and shaped to receive a reciprocal knob pattern forming part of the arm of the injector when the adapter is pressed onto the injector arm, and wherein, upon passage of the knob pattern through the notch pattern, the adapter can be twisted, such that the notch patter rotates away from the knobs and releasably locks the adapter onto the injector.
  • FIG. 1 is a schematic back view of an exemplary chemical mixing apparatus in accordance with the present invention.
  • FIG. 2 is a schematic front view (or operating face) of the exemplary chemical mixing apparatus of FIG. 1 , in accordance with the present invention.
  • FIG. 3 is a schematic of an exemplary injector assembly, including an injector, fitting and line adapter, in accordance with the present invention.
  • FIG. 4 is a schematic top view of an exemplary multi-arm injector assembly, in accordance with the present invention.
  • FIG. 5 is a perspective view illustrating an exemplary locking mechanism for attachment of the line adapter to the injector arm of the injector assembly, in accordance with the present invention.
  • FIG. 6 is a perspective view of the injector assembly of FIG. 5 in the locked position, in accordance with the present invention.
  • FIG. 7 is a cross-sectional view of the injector assembly of FIG. 5 , illustrating directional flow through the venturi chamber and introduction of a second flow of a chemical component through the line adapter, injector arm and first flow within the venturi chamber.
  • FIG. 8 is a chart of the amount of water (grams) drawn through the venturi of a 0.083 injector at various pressures.
  • an element means one element or more than one element.
  • “About” as used herein when referring to a measurable value such as an amount, a temporal duration, and the like, is meant to encompass variations of ⁇ 20% or ⁇ 10%, more preferably ⁇ 5%, even more preferably ⁇ 1%, and still more preferably ⁇ 0.1% from the specified value, as such variations are appropriate to perform the disclosed methods.
  • “Concentrated Solution” as used herein means a solution having a total chemical to water concentration ratio of greater than about 1:5.
  • total chemical refers to the total amount of a single chemical component or a combination of multiple chemical components admixed into a water volume.
  • Super concentrated solution as used herein means a solution having a total chemical to water concentration of greater than the desired concentrated solution being created therefrom.
  • range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the invention. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual numbers within that range, for example, 1, 2, 2.7, 3, 4, 5, 5.3, 6 and any whole and partial increments therebetween. This applies regardless of the breadth of the range.
  • the present invention provides a unique and valuable system and method for shipping and delivering super concentrated chemical components to an end-user who can simply and consistently create a desired concentrated solution for use with application-level delivery systems to further create application-level mixed dilutions on-site.
  • the present invention thereby bypasses the need for increased packaging and shipment costs to distributors or operators worldwide.
  • super concentrate chemical components can be packaged and shipped at lower costs to the distributor or operator, who then operates the mixing apparatus of the present invention to make concentrated solutions, which are in turn used with application-level systems for delivering application-level dilutions.
  • the mixing apparatus merely requires the hook up of pre-set venturis with a lock and release mechanism, a one-push button for activation of the system, and the resulting mixture will be automatically made and dispensed into a desired container.
  • This process allows anyone to become their own blender and sell a product of the desired concentration to local customers or for internal use.
  • the present invention can make any chemical solution mix from a concentrate for any application in any chemical industry.
  • the present invention utilizes injectors to create concentrated equivalents of market strength concentrates from super concentrates.
  • the present invention may generally be described as a chemical mixing system for the creation of mixed liquid solutions of various concentrations from higher concentrated liquid chemical components.
  • the concentrated solutions created by the present invention may have total chemical to water concentration ratios of greater than about 1:5, greater than about 1:4, greater than about 1:3, greater than about 1:2, and even about 1:1, and any whole or partial ratios therebetween.
  • the present invention may be used for creating concentrated, multi-component liquid detergent solutions for use at a car wash.
  • the mixing apparatus of the present invention may be positioned at any location, such as at a car wash detergent distributor or merchant retail facility, or at an automated car wash facility, where a detergent solution of predetermined concentration is required.
  • the mixing apparatus of the present invention can be programmed to create the desired concentration level of the desired mixed solution. For example, a detergent distributor may want to create concentrated mixed solutions of higher concentrate components, whereas a car wash operator may want to create a finished solution of application-strength concentration.
  • the present invention may be used to mix any number and any type of liquid based (or otherwise substantially fluid) materials suitable for passage through a hose and manifold assembly, including all chemical and detergent/cleaning components, and any other liquid chemicals designed for industrial or retail use.
  • chemical components include all those used in the car wash, bus wash, train wash, airplane wash and in the general washing, rinsing and coating applications of vehicles and equipment in the transportation industry.
  • FIG. 1 represents a back view of an exemplary mixing apparatus of the present invention
  • FIG. 2 represents a front view, or interface of the exemplary mixing apparatus.
  • the mixing apparatus may be constructed as a stand-alone assembly having a basic frame with front and back sides that are easily accessible by a user.
  • the mixing apparatus may be integrated into a facility wall, where a customer is limited to access to the front side for receiving the mixed solution, and an operator or facility owner has access to the back side and various equipment components.
  • the components of the mixing apparatus may be enclosed or secured within a housing.
  • mixing apparatus 10 includes any number of mixing stations, where a mixing station is depicted generally as including some or all of the components within dashed line box 15 .
  • apparatus 10 includes four mixing stations, where each mixing station includes a feed from water manifold line 14 , water solenoid valve 18 , electrical circuitry hub 16 electrically connecting a float 32 to water solenoid valve 18 via float adapter cord 33 and power line 34 , pressure regulator 20 , injector assembly 22 , super concentrate liquid chemical component containers 24 and delivery tubes 26 for drawing the super concentrate chemical components of containers 24 into injector assembly 22 , and dispensing tube 28 for dispensing the final concentrated solution mixture into a receiving container 30 .
  • float 32 , water solenoid valve 18 and pressure regulator 20 may be standard, commercially available floats, water valves and pressure regulators as would be understood by those skilled in the art.
  • Electrical box and circuitry 36 is a main switch for providing power to mixing apparatus 10 .
  • Each mixing station 15 is individually fed by a manifold assembly 14 , delivering a water flow 12 into each mixing station 15 .
  • water is generally used as a base fluid for flow 12 , it should be appreciated that any liquid component can form the base fluid in flow 12 to be mixed within each mixing station. For example, a diluted, concentrated or even super concentrate liquid solution may form the base fluid.
  • a hose from container 30 can also be in fluid communication with the base fluid flow line (incorporating any additional valves, junctions and/or pressure regulators) to create a “feedback” flow pattern, where the resulting concentrated solution dispensed from injector assembly 22 is being re-fed back into the venturi of injector assembly 22 as the base fluid.
  • Receiving container 30 may be any size container, such as a 1 gallon, 5 gallon, 6 gallon, 30 gallon, 55 gallon, or any size container imaginable. Receiving container 30 may be fabricated from any material suitable for storing or transporting liquid chemical compositions. Container 30 may also include a lid suitable for closing and sealing the resultant mixed solution within container 30 . Depending on the type of final solution mixture, the lid may also include a venting feature to allow airflow. As described herein, the float 32 may be integrated into such a lid, or may be separately attachable or passable through the lid.
  • Tubing 26 and 28 may be manufactured from any standard material resistant to the chemical components passing through them in the operation of mixing apparatus 10 .
  • Tubing 26 and 28 are preferably flexible, but this is not required.
  • Chemical delivery tubes 26 attached to adapter 62 are preferably 1 ⁇ 2 inch or larger tubing (instead of the standard 1 ⁇ 4 inch tubing used in existing systems).
  • 1 ⁇ 2 inch or larger tubing for delivery tubes 26 provided significantly improved flow over smaller tubing, due in part to reduced resistance. This significantly improved the chemical draw and mixing environment within the venturi chamber of the injector assembly 22 . To accomplish this, a specialized adapter 62 had to be created.
  • venturi style injectors are designed for creation of significantly diluted solutions under high pressure, and can tolerate the higher resistance of 1 ⁇ 4 inch tubing.
  • venturis it has been discovered that the higher the concentration of chemical component and higher concentration of final solution mixture, the more critical the tubing size (in conjunction with lower pressure ranges, as later described herein).
  • the creation of selected concentrated solutions only by use of 1 ⁇ 2 inch or larger tubing was the creation of such solutions successful.
  • Circuitry hub 16 includes standard components and configurations for receiving and sending electrical signals as would be understood by those skilled in the art. In alternative embodiments, circuitry hub 16 may further include one or more processing units, as well as wired or wireless communication components, to input and/or actuate user input for mixing apparatus 10 .
  • the water solenoid valve 18 may be used to control the flow of pressurized water or base fluid 12 from manifold assembly 14 .
  • the valve 18 may be actuated by the motion of a float 32 suspended within container 30 , or integrated with a lid for container 30 .
  • Valve 18 and float 32 are electrically connected via a float adapter cord 33 and power line 34 controlled by circuitry hub 16 .
  • a user activates the fill switch (turning the mixing station on)
  • water flows from manifold assembly 14 through valve 18 , pressure regulator 20 , combined with chemical components at injector assembly 22 and dispensed into receiving container 30 .
  • the fluid sensing float switch contacts are closed, creating an activated relay.
  • the float switch opens and unlatches the relay, thereby closing valve 18 and ultimately stopping flow into receiving container 30 .
  • valve 18 remains closed regardless of the position of float 32 , such that a user can safely remove and replace receiving container 30 with a new or empty one at a comfortable and variable speed.
  • the switch may then be reset to allow for the opening of valve 18 to start the process again when the user is ready.
  • float adapter cord 33 allows a user to automatically change out for various container sizes easily and quickly, without disturbing power line 34 leading into circuitry hub 16 .
  • Each end of float adapter cord 33 includes an electrical attachment component, as would be understood by those skilled in the art, for electrically connecting or bridging float 32 with power line 34 .
  • float adapter cord 33 may include multiple attachment components for connecting a single float to multiple power lines 34 extending from multiple mixing stations 15 .
  • a user desires to increase the rate of filling a large (55 gallon) receiving container with a concentrated chemical solution mix
  • the user can place dispensing tubes 28 from each mixing station into the 55 gallon container, and activate two or more mixing stations in unison by hooking up a float adapter cord 33 having one float attachment and two or more corresponding power line 34 attachments, such that when the user activates each of the mixing stations, each of the mixing stations automatically shut off in parallel when float 32 signals the relay to unlatch.
  • the float adapter cords as contemplated herein, can have any number of line 34 attachments as desired, all connecting to a single float 32 .
  • any number of mixing stations 15 may be incorporated into mixing apparatus 10 . Additionally, and as previously described, any number of mixing stations 15 may be combined, such that multiple mixing stations 15 may be used to speed up mixing and production of a final chemical solution mixture into a single or smaller number of larger receiving containers 30 .
  • FIG. 2 depicts the front face, or operational side, of mixing apparatus 10 .
  • water flow 12 entering manifold assembly 14 may also include a water softener 52 , as well as a pump 50 for increasing water pressure throughout mixing apparatus 10 .
  • Water softener 52 and pump 50 may be any standard and commercially available water softener and pump as would be understood by those skilled in the art.
  • water softener 52 may be any softening or treatment system, including magnetic softening or an ion exchange system. In some embodiments, use of a water softener may result a more stable mixed solution. It should be appreciated that neither water softener 52 nor pump 50 are required for operation of mixing apparatus 10 .
  • This front face also serves as a user interface 38 for operation of mixing apparatus 10 .
  • interface 38 includes, for each mixing station 15 , a pressure gauge 42 , an activation signal 44 , a one-push activation button 46 , and dispensing tube 28 leading to receiving container 30 .
  • Interface 38 also includes system power on/off panel 36 (corresponding to electrical box 36 of FIG. 1 ). While the user interface 38 of FIG.
  • user interface 38 may include any number of additional components, such as additional data input keys for adjusting pressure, menu buttons for any number of pre-set final solution mixtures, receiving container 30 sizes, etc., and any other visual/audio components as might be desired, such as a help or call function to a facility manager.
  • additional components such as additional data input keys for adjusting pressure, menu buttons for any number of pre-set final solution mixtures, receiving container 30 sizes, etc., and any other visual/audio components as might be desired, such as a help or call function to a facility manager.
  • FIG. 3 depicts a close-up of injector assembly 22 .
  • injector assembly 22 includes an injector 58 , an optional fitting 60 , a manifold assembly 14 attachment mechanism 56 , and chemical line adapter 62 .
  • injector 58 is a standard, commercially available injector as would be understood by those skilled in the art.
  • injector 58 may be designed to be directly and sealed by 1 ⁇ 2 inch or larger tubing to create fluid communication with a super concentrate chemical source, thereby removing the necessity of adapter 62 and/or fitting 60 .
  • fitting 60 may be cut tubing, an O-ring or any other component improving the attachment and sealing of adapter 62 to injector 58 .
  • Adapter 62 has an internal chamber (illustrated in FIG. 7 ) which passes through an inlet 66 that engages delivery tube 26 , an arm 68 extending to adapter head 65 , which adapter head 65 includes an injector arm attachment portion 64 having a notch pattern 63 that reciprocally corresponds to the same size and shape of injector knob pattern 57 .
  • Attachment portion 64 is uniquely designed to securely and releasably engage, lock and seal adapter 62 to injector 58 , such that chemical components drawn from containers 24 can be in fluid communication with the water flow passing through injector 58 .
  • Injector 58 generally includes a molded body having an inlet for receiving flow of a base fluid, a chemical inlet arm for introduction of a flow of a liquid chemical component, and an outlet for dispensing resultant mixed solution.
  • Injector 58 is generally designed for insertion and/or sealed coupling with a hose, tube or line assembly to receive, feed and dispense liquid flow as understood by those skilled in the art.
  • the injector inlet and/or outlet may include a hose barb, a flare fitting, or a quick-release configuration.
  • injector 58 has a single arm 59 to which adapter 62 attaches for fluidly connecting a chemical flow from chemical component containers 24 into the water flow from manifold assembly 14 .
  • Injector arm 59 includes a knob pattern 57 in addition to a barbed tube attachment end 61 .
  • injector 58 can include multiple arms 59 for combining a plurality of chemical components from a plurality of containers 24 into a single fluid flow.
  • FIG. 4 illustrates an injector 58 having two such arms 59 . It should be appreciated that the injectors of the present invention may include any number of arms, provided that the venturi chamber within injector 58 maintains functionality and effectively draws each of the concentrated chemical components as desired.
  • Injector 58 includes an internal venturi chamber 70 , seen in FIG. 7 , defining a flow passage from the inlet 71 to the outlet 73 thereof.
  • a suction port 75 through the injector arm 59 provides lateral access to the venturi chamber 70 .
  • chemical line adapter 62 By means of chemical line adapter 62 removably engaging the injector arm, a fluid transfer conduit is created, extending all the way from chemical component containers 24 , such that the chemical component is in fluid communication with the injector assembly 22 .
  • each chemical component is in fluid communication with injector assembly 22 .
  • the base fluid flow 72 through venturi chamber 70 creates a draw through suction port 75 , thereby drawing the chemical component from containers 24 into a flow 74 through adapter 62 , into suction port 75 and mixed into the base flow 72 within chamber 70 .
  • the mixed solution creates a final concentration solution flow 76 through outlet 73 and into receiving container 30 via dispensing tube 28 .
  • adapter 62 is uniquely designed to include an attachment portion 64 , such that adapter 62 can be securely (and releasably attached to injector 58 by pressing attachment portion 64 over injector arm 59 and twisting the adapter to lock adapter 62 in place via a locking mechanism.
  • attachment portion 64 includes notch pattern 63 that is sized and shaped to receive knob patter 57 of injector arm 59 , such that the adapter head 65 slides over the injector arm knobs until the knobs clear the wall ring (from which the notches are cut) within adapter portion 64 .
  • an additional fitting 60 may be included to help seal the adapter 62 to the injector arm.
  • the fitting 60 may also help create a tighter seal, and thereby permit better draw of the chemical components through the internal chamber of adapter 62 into and through the injector arm and venturi chamber.
  • the present invention provides for automatic mixing of the various components within the system, such that no additional mixing steps of the final solution mixture are needed. This feature is made possible through the venturi combined with a mixing and vacuum ring.
  • the ideal pressure for the creation of high concentration mixes from super concentrates is different than when making an application level mix from a regular concentrate.
  • existing systems use pressures in a range from 150 to 250 psi, and even upwards of 1000 psi.
  • a much lower operating pressure such as between about 20-40 psi, is optimal for creation of concentrated solution mixes from super concentrates.
  • the pressure within a mixing station is less than 150 psi.
  • the pressure is less than 100 psi.
  • the pressure is less than 60 psi.
  • the pressure is in a range of between about 2-50 psi, between about 5-40 psi, between about 10-30 psi, between about 15-25 psi, and any whole or partial increments therebetween.
  • This lower pressure range also reduces the cost of the pump, the hazards of working around a high pressure machine, improves the mixing environment, and reduces the difficulties of dispensing a chemical solution into a container, such as the reduction of foaming.
  • each mixing station includes a pressure regulator to ensure that the desired flow rate of base fluid through the venturi occurs, as this flow rate can be used to optimize the suction of super concentrated chemical components, thereby optimizing the flow rate of each such chemical component to create accurate concentrations and/or mixture ratios within the final concentrated solution mix.
  • venturis for ease of use by operators to arrive at various qualities and settings of final solution mixes without a thorough understanding of the process.
  • the venturis can be pre-set to manufacture any number and variety of detergents and other concentrated chemical products, as well as allow them to make a range of qualities within that product range, simply by employing a predetermined set of dilution arrangements.
  • the flow rate of any particular chemical component can be controlled as desired in the creation of the desired mixed solution.
  • control provides the ability to create different mixed solutions having variable proportions of one or more chemical components.
  • the present invention utilizes the viscosities of the various chemical components to create the proper ratio of chemical components within the mix.
  • the present invention also includes a method of tip “balancing” for further controlling the draw of at least one chemical component, resulting in a controlled blending of the multiple chemical components through a multiport injector.
  • a metering tip of variable orifice size is placed in the tube just prior to the venturi, which restricts the draw of the component passing through the metering tip, and thereby increasing the amount of other components in the final solution mix.
  • the component drawn through a tube having a metering tip in it will be drawn into the venturi at a slower rate than a component drawn though a line without a metering tip.
  • Table 1 The effects of such metering tips can be seen in Table 1:
  • restrictors may optionally be used within dispensing line 28 , to cause a liquid backup to more quickly fill a discharge region within injector assembly 22 , speeding up a vacuum in the injector and thereby avoiding or reducing an initial uneven draw of one or more chemical components.
  • a liquid backup may thus prevent or reduce cavitation and permit injector 58 to evenly draw the various chemical components from containers 24 as desired after valve 18 is re-opened. Consequently, use of these restrictors also provides a better mixing environment as the resulting concentrated solution is dispensed into container 30 .
  • the turbulence of the final solution flow into receiving tank 30 as dispensed from injector assembly 22 is also controlled by maintaining a preferred pressure range within mixing apparatus 10 , so as to provide proper mixing of the resulting solution.
  • the present invention also relates to a method for mixing a concentrated chemical solution.
  • the method comprises the steps of receiving a base fluid flow into a mixing station having an injector assembly that includes at least one venturi chamber having at least one suction port in fluid communication with the at least one venturi chamber, regulating the pressure of the base fluid flow to less than 150 psi, providing a source of at least one liquid chemical component in fluid communication with the injector assembly via a first tube, providing a receiving container for collection of the final concentrated chemical solution that is in fluid communication with the injector assembly via a second tube, mixing the at least one chemical component with the base fluid in the at least one venturi chamber to create the concentrated chemical solution, wherein flow of the base fluid through the at least one venturi chamber of the injector assembly draws the at least one liquid chemical component through the at least one suction port and into the flow of the base fluid, and dispensing the concentrated chemical solution into the receiving container.
  • the methods of mixing concentrated chemical solutions according to the present invention can be performed using the mixing apparatus described hereinthroughout,
  • pressure in the range of about 15-20 psi should be used. In some instances, a very high concentrate solution mix can only be created when pressure is within the 15-20 psi range. It should be appreciated that the mixing apparatus, as described herein, can operate at any pressure between about 5-100 psi. Pressures higher than 100 psi are generally only suitable for use-level solution mixtures that are not concentrated.
  • the samples where clear and homogenous after storage at room temp, 40° F. and 120° F. can each be controlled to result in a stable, final concentrated solution mix.

Abstract

A chemical component mixing apparatus for use with a fluid source in creation of a concentrated solution mixture is described. The mixing apparatus includes at least one mixing station. The mixing station includes an injector assembly, where the injector assembly includes at least one venturi chamber having at least one suction port in fluid communication with the at least one venturi chamber. The apparatus also includes at least one super concentrate chemical component housed within a chemical container, where the chemical container is fluidly connected by a first tube to the at least one venturi chamber via the at least one suction port, a receiving container fluidly connected to the injector assembly via a second tube, and a fluid source inlet introducing a fluid into the at least one mixing station, where the pressure within the at least one mixing station is less than 150 psi. The fluid passes through the at least one venturi chamber, thereby drawing the at least one super concentrate chemical component into the venturi chamber, and the concentrated solution mixture is dispensed from the injector assembly into the receiving container.

Description

    BACKGROUND OF THE INVENTION
  • Venturi injectors are commonly used to introduce a secondary fluid into a primary fluid stream. These injectors include an inlet for a primary fluid flow, a suction port introducing a second fluid flow into the primary fluid flow path, and an outlet for dispensing the combined primary and secondary fluids.
  • Systems for mixing chemical components using a venturi are well known in the art. For example, U.S. Pat. Nos. 5,439,020 and 5,678,593 describe detergent mixing systems for use with a highly pressurized water source. These systems include a mixing tank and several liquid chemical supply containers each accommodating a liquid chemical composition. A water supply conduit connects the pressurized water source with the mixing tank. Venturi chambers are disposed within the water supply conduit and are arranged for parallel flow. Each of the venturi chambers includes a suction port in fluid communication, respectively, with one of the liquid chemical supply containers so as to draw the liquid chemical from each chemical supply container as pressurized water passes through the venturi chamber, thus entraining the liquid chemical into the water.
  • In another example, U.S. Patent Application Publication No. 2009/0090415 describes an ultra-high pressure chemical delivery system sharing a common bulk fluid inlet and bulk fluid flow path to direct a bulk fluid through injectors. The system includes a manifold body having a bulk fluid inlet fluidly interconnected to a plurality of injector flow channels. Each injector flow channel includes a valve conduit and an injector conduit. The valve conduits include a valve mounting port and the injector conduits include an injector mounting port. The injector members each include a chemical inlet portion and a mixed fluid outlet portion, where the valve member selectively directs the bulk fluid through the injectors for drawing a chemical through the inlet portion for mixing with the bulk fluid and dispensing through to a point of use through the mixed fluid outlet portion. This system is specifically designed for use of extremely high water pressures upwards of 1000 psi.
  • In either case, the aforementioned systems are designed for creation of final use-level or application-level diluted solutions, that are no longer concentrated, such as dilutions of 1:20, 1:50, 1:100 or 1:500 (chemical to water). For creation of higher concentrated solution mixes (such as solutions having concentrations of greater than 1:5) from super concentrates, a highly controlled and delicate mixing environment is needed. Because the aforementioned systems require water under high pressure flows through the venturi chamber, these systems are not suitable for creation of higher concentrated solution mixes.
  • Further, these systems require a thorough understanding of the underlying mechanical functionality of multiple venturis operating in parallel or in series, and their effects on mixing, in order to operate the equipment effectively. Unfortunately, these systems do not provide a straight forward, ease-of-use platform and interface, as is highly desired by chemical mixing station operators.
  • Therefore, there is a need in the art for a system and method for creating concentrated chemical solution mixes from super concentrates, designed for simple operation by a user. The present invention satisfies this need.
  • SUMMARY OF THE INVENTION
  • The present invention relates to a chemical component mixing apparatus for use with a fluid source in creation of a concentrated solution mixture. The mixing apparatus includes at least one mixing station. The mixing station includes an injector assembly, where the injector assembly includes at least one venturi chamber having at least one suction port in fluid communication with the at least one venturi chamber. The apparatus also includes at least one super concentrate chemical component housed within a chemical container, where the chemical container is fluidly connected by a first tube to the at least one venturi chamber via the at least one suction port, a receiving container fluidly connected to the injector assembly via a second tube, and a fluid source inlet introducing a fluid into the at least one mixing station, where the pressure within the at least one mixing station is less than 150 psi. The fluid passes through the at least one venturi chamber, thereby drawing the at least one super concentrate chemical component into the venturi chamber, and the concentrated solution mixture is dispensed from the injector assembly into the receiving container.
  • In one embodiment, the pressure within the at least one mixing station is between 10-50 psi. In another embodiment, the pressure within the at least one mixing station is between 15-40 psi. In another embodiment, the apparatus further includes a pump. In another embodiment, the apparatus further includes a water softener. In another embodiment, the injector assembly includes a multi-port injector. In another embodiment, the first tube is ½ inch tubing. In a further embodiment, the ½ inch tubing is connected to an adapter for releasably securing the ½ inch tubing to the at least one suction port of the at least one venturi chamber. In another embodiment, the ½ inch tubing contains a metering tip within the tubing for at least partially restricting flow of the chemical component housed in the chemical container into the injector assembly. In another embodiment, the at least one mixing station further includes a pressure regulator. In another embodiment, the at least one mixing station further includes a valve upstream of the pressure regulator. In another embodiment, the at least one mixing station further includes a float positioned at least partially within the receiving container. In another embodiment, the at least one mixing station further includes a circuitry hub electrically connecting the float to the valve. In another embodiment, the valve is a water solenoid valve. In another embodiment, the float signals the valve to cease flow of the fluid through the mixing station when the receiving container is filled with a predetermined amount of the concentrated solution mixture dispensed from the injector assembly. In another embodiment, the electrical connection of the float to the circuitry hub comprises an adapter cord. In another embodiment, the at least one mixing station is a plurality of mixing stations, and the adapter cord connects multiple circuitry hubs of the multiple mixing stations to a single float at least partially within a single receiving container. In another embodiment, the single float signals the valve of each of the multiple mixing stations to cease flow of the fluid through the mixing stations when the receiving container is filled with a predetermined amount of the concentrated solution mixture.
  • The present invention also relates to a method for mixing a concentrated chemical solution. The method comprises the steps of receiving a base fluid flow into a mixing station having an injector assembly that includes at least one venturi chamber having at least one suction port in fluid communication with the at least one venturi chamber, regulating the pressure of the base fluid flow to less than 150 psi, providing a source of at least one liquid chemical component in fluid communication with the injector assembly via a first tube, providing a receiving container for collection of the final concentrated chemical solution that is in fluid communication with the injector assembly via a second tube, mixing the at least one chemical component with the base fluid in the at least one venturi chamber to create the concentrated chemical solution, wherein flow of the base fluid through the at least one venturi chamber of the injector assembly draws the at least one liquid chemical component through the at least one suction port and into the flow of the base fluid, and dispensing the concentrated chemical solution into the receiving container.
  • The present invention also relates to an adapter for connecting a tube to a venturi-style injector. The adapter comprises a housing having a hollow interior, the housing comprising an inlet and an outlet to the hollow interior, a first attachment mechanism for attaching a tube to the inlet, and a second attachment mechanism for attaching the outlet to a suction port arm of a venturi-style injector, where the second attachment mechanism includes a notch pattern sized and shaped to receive a reciprocal knob pattern forming part of the arm of the injector when the adapter is pressed onto the injector arm, and wherein, upon passage of the knob pattern through the notch pattern, the adapter can be twisted, such that the notch patter rotates away from the knobs and releasably locks the adapter onto the injector.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For the purpose of illustrating the invention, there are depicted in the drawings certain embodiments of the invention. However, the invention is not limited to the precise arrangements and instrumentalities of the embodiments depicted in the drawings.
  • FIG. 1 is a schematic back view of an exemplary chemical mixing apparatus in accordance with the present invention.
  • FIG. 2 is a schematic front view (or operating face) of the exemplary chemical mixing apparatus of FIG. 1, in accordance with the present invention.
  • FIG. 3 is a schematic of an exemplary injector assembly, including an injector, fitting and line adapter, in accordance with the present invention.
  • FIG. 4 is a schematic top view of an exemplary multi-arm injector assembly, in accordance with the present invention.
  • FIG. 5 is a perspective view illustrating an exemplary locking mechanism for attachment of the line adapter to the injector arm of the injector assembly, in accordance with the present invention.
  • FIG. 6 is a perspective view of the injector assembly of FIG. 5 in the locked position, in accordance with the present invention.
  • FIG. 7 is a cross-sectional view of the injector assembly of FIG. 5, illustrating directional flow through the venturi chamber and introduction of a second flow of a chemical component through the line adapter, injector arm and first flow within the venturi chamber.
  • FIG. 8 is a chart of the amount of water (grams) drawn through the venturi of a 0.083 injector at various pressures.
  • DETAILED DESCRIPTION Definitions
  • Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are described.
  • As used herein, each of the following terms has the meaning associated with it in this section.
  • The articles “a” and “an” are used herein to refer to one or to more than one (i.e., to at least one) of the grammatical object of the article. By way of example, “an element” means one element or more than one element.
  • “About” as used herein when referring to a measurable value such as an amount, a temporal duration, and the like, is meant to encompass variations of ±20% or ±10%, more preferably ±5%, even more preferably ±1%, and still more preferably ±0.1% from the specified value, as such variations are appropriate to perform the disclosed methods.
  • “Concentrated Solution” as used herein means a solution having a total chemical to water concentration ratio of greater than about 1:5. The meaning of “total chemical” refers to the total amount of a single chemical component or a combination of multiple chemical components admixed into a water volume.
  • “Super concentrated solution” as used herein means a solution having a total chemical to water concentration of greater than the desired concentrated solution being created therefrom.
  • Throughout this disclosure, various aspects of the invention can be presented in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the invention. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual numbers within that range, for example, 1, 2, 2.7, 3, 4, 5, 5.3, 6 and any whole and partial increments therebetween. This applies regardless of the breadth of the range.
  • DESCRIPTION
  • It is to be understood that the figures and descriptions of the present invention have been simplified to illustrate elements that are relevant for a clear understanding of the present invention, while eliminating, for the purpose of clarity, many other elements found in typical chemical mixing systems and the methods of manufacturing and using the same. Those of ordinary skill in the art will recognize that other elements and/or steps are desirable and/or required in implementing the present invention. However, because such elements and steps are well known in the art, and because they do not facilitate a better understanding of the present invention, a discussion of such elements and steps is not provided herein. Therefore, the disclosure herein is directed to all such variations and modifications to such elements and methods as would be understood by those skilled in the art. Furthermore, the embodiments identified and illustrated herein are for exemplary purposes only, and are not meant to be exclusive or limited in their description of the present invention.
  • The present invention provides a unique and valuable system and method for shipping and delivering super concentrated chemical components to an end-user who can simply and consistently create a desired concentrated solution for use with application-level delivery systems to further create application-level mixed dilutions on-site. The present invention thereby bypasses the need for increased packaging and shipment costs to distributors or operators worldwide. After installation of the mixing apparatus of the present invention at the distributor or operator location, super concentrate chemical components can be packaged and shipped at lower costs to the distributor or operator, who then operates the mixing apparatus of the present invention to make concentrated solutions, which are in turn used with application-level systems for delivering application-level dilutions. Generally, the mixing apparatus merely requires the hook up of pre-set venturis with a lock and release mechanism, a one-push button for activation of the system, and the resulting mixture will be automatically made and dispensed into a desired container. This process allows anyone to become their own blender and sell a product of the desired concentration to local customers or for internal use. As contemplated herein, the present invention can make any chemical solution mix from a concentrate for any application in any chemical industry.
  • Unlike existing systems which use injectors only for the purpose of creating solutions at application level concentrations, the present invention utilizes injectors to create concentrated equivalents of market strength concentrates from super concentrates.
  • The present invention may generally be described as a chemical mixing system for the creation of mixed liquid solutions of various concentrations from higher concentrated liquid chemical components. As contemplated herein, the concentrated solutions created by the present invention may have total chemical to water concentration ratios of greater than about 1:5, greater than about 1:4, greater than about 1:3, greater than about 1:2, and even about 1:1, and any whole or partial ratios therebetween.
  • In one embodiment, the present invention may be used for creating concentrated, multi-component liquid detergent solutions for use at a car wash. Of course, the mixing apparatus of the present invention may be positioned at any location, such as at a car wash detergent distributor or merchant retail facility, or at an automated car wash facility, where a detergent solution of predetermined concentration is required. Depending on the location and/or desired use of the resulting mixed solutions, the mixing apparatus of the present invention can be programmed to create the desired concentration level of the desired mixed solution. For example, a detergent distributor may want to create concentrated mixed solutions of higher concentrate components, whereas a car wash operator may want to create a finished solution of application-strength concentration. The present invention may be used to mix any number and any type of liquid based (or otherwise substantially fluid) materials suitable for passage through a hose and manifold assembly, including all chemical and detergent/cleaning components, and any other liquid chemicals designed for industrial or retail use. Without limitation, such chemical components include all those used in the car wash, bus wash, train wash, airplane wash and in the general washing, rinsing and coating applications of vehicles and equipment in the transportation industry.
  • As illustrated herein, FIG. 1 represents a back view of an exemplary mixing apparatus of the present invention, while FIG. 2 represents a front view, or interface of the exemplary mixing apparatus. As contemplated herein, the mixing apparatus may be constructed as a stand-alone assembly having a basic frame with front and back sides that are easily accessible by a user. Alternatively, the mixing apparatus may be integrated into a facility wall, where a customer is limited to access to the front side for receiving the mixed solution, and an operator or facility owner has access to the back side and various equipment components. In another embodiment, the components of the mixing apparatus may be enclosed or secured within a housing. Of course, it should be appreciated that there is no limitation as to whether a particular component of the mixing apparatus be on the front face, or user operating side, or the back face, which is typically hidden from view but still accessible by a user.
  • According to an aspect of the present invention and as shown generally in FIG. 1, mixing apparatus 10 includes any number of mixing stations, where a mixing station is depicted generally as including some or all of the components within dashed line box 15. For example, as illustrated in FIG. 1, apparatus 10 includes four mixing stations, where each mixing station includes a feed from water manifold line 14, water solenoid valve 18, electrical circuitry hub 16 electrically connecting a float 32 to water solenoid valve 18 via float adapter cord 33 and power line 34, pressure regulator 20, injector assembly 22, super concentrate liquid chemical component containers 24 and delivery tubes 26 for drawing the super concentrate chemical components of containers 24 into injector assembly 22, and dispensing tube 28 for dispensing the final concentrated solution mixture into a receiving container 30. As contemplated herein, float 32, water solenoid valve 18 and pressure regulator 20 may be standard, commercially available floats, water valves and pressure regulators as would be understood by those skilled in the art.
  • Electrical box and circuitry 36 is a main switch for providing power to mixing apparatus 10. Each mixing station 15 is individually fed by a manifold assembly 14, delivering a water flow 12 into each mixing station 15. While water is generally used as a base fluid for flow 12, it should be appreciated that any liquid component can form the base fluid in flow 12 to be mixed within each mixing station. For example, a diluted, concentrated or even super concentrate liquid solution may form the base fluid. In certain embodiments, a hose from container 30, or from an additional overflow container in fluid communication with container 30 (not shown), can also be in fluid communication with the base fluid flow line (incorporating any additional valves, junctions and/or pressure regulators) to create a “feedback” flow pattern, where the resulting concentrated solution dispensed from injector assembly 22 is being re-fed back into the venturi of injector assembly 22 as the base fluid. By using this sort of system design, total chemical to water solution concentrations of approximately 1:1 can be reached.
  • Receiving container 30 may be any size container, such as a 1 gallon, 5 gallon, 6 gallon, 30 gallon, 55 gallon, or any size container imaginable. Receiving container 30 may be fabricated from any material suitable for storing or transporting liquid chemical compositions. Container 30 may also include a lid suitable for closing and sealing the resultant mixed solution within container 30. Depending on the type of final solution mixture, the lid may also include a venting feature to allow airflow. As described herein, the float 32 may be integrated into such a lid, or may be separately attachable or passable through the lid.
  • Tubing 26 and 28 may be manufactured from any standard material resistant to the chemical components passing through them in the operation of mixing apparatus 10. Tubing 26 and 28 are preferably flexible, but this is not required. Chemical delivery tubes 26 attached to adapter 62 are preferably ½ inch or larger tubing (instead of the standard ¼ inch tubing used in existing systems). Surprisingly, it was discovered that ½ inch or larger tubing for delivery tubes 26 provided significantly improved flow over smaller tubing, due in part to reduced resistance. This significantly improved the chemical draw and mixing environment within the venturi chamber of the injector assembly 22. To accomplish this, a specialized adapter 62 had to be created. This is due in part to the fact that existing venturi style injectors are designed for creation of significantly diluted solutions under high pressure, and can tolerate the higher resistance of ¼ inch tubing. In contrast to this traditional use of venturis and as demonstrated herein, it has been discovered that the higher the concentration of chemical component and higher concentration of final solution mixture, the more critical the tubing size (in conjunction with lower pressure ranges, as later described herein). In the creation of selected concentrated solutions, only by use of ½ inch or larger tubing was the creation of such solutions successful.
  • Circuitry hub 16 includes standard components and configurations for receiving and sending electrical signals as would be understood by those skilled in the art. In alternative embodiments, circuitry hub 16 may further include one or more processing units, as well as wired or wireless communication components, to input and/or actuate user input for mixing apparatus 10.
  • The water solenoid valve 18 may be used to control the flow of pressurized water or base fluid 12 from manifold assembly 14. The valve 18 may be actuated by the motion of a float 32 suspended within container 30, or integrated with a lid for container 30. Valve 18 and float 32 are electrically connected via a float adapter cord 33 and power line 34 controlled by circuitry hub 16. When a user activates the fill switch (turning the mixing station on), water flows from manifold assembly 14 through valve 18, pressure regulator 20, combined with chemical components at injector assembly 22 and dispensed into receiving container 30. When there is no liquid solution in receiving container 30, the fluid sensing float switch contacts are closed, creating an activated relay. Once the fluid level in receiving container 30 reaches a predetermined level, the float switch opens and unlatches the relay, thereby closing valve 18 and ultimately stopping flow into receiving container 30. Once the relay is unlatched, valve 18 remains closed regardless of the position of float 32, such that a user can safely remove and replace receiving container 30 with a new or empty one at a comfortable and variable speed. The switch may then be reset to allow for the opening of valve 18 to start the process again when the user is ready. Thus, the use of a float to cease the system from filling automatically can be designed into a certain container size for accurate and automatic flow cessation.
  • Additionally, the float adapter cord 33 allows a user to automatically change out for various container sizes easily and quickly, without disturbing power line 34 leading into circuitry hub 16. Each end of float adapter cord 33 includes an electrical attachment component, as would be understood by those skilled in the art, for electrically connecting or bridging float 32 with power line 34. In certain embodiments, float adapter cord 33 may include multiple attachment components for connecting a single float to multiple power lines 34 extending from multiple mixing stations 15. For example, if a user desires to increase the rate of filling a large (55 gallon) receiving container with a concentrated chemical solution mix, the user can place dispensing tubes 28 from each mixing station into the 55 gallon container, and activate two or more mixing stations in unison by hooking up a float adapter cord 33 having one float attachment and two or more corresponding power line 34 attachments, such that when the user activates each of the mixing stations, each of the mixing stations automatically shut off in parallel when float 32 signals the relay to unlatch. It should be appreciated that the float adapter cords, as contemplated herein, can have any number of line 34 attachments as desired, all connecting to a single float 32.
  • It should be appreciated that any number of mixing stations 15 may be incorporated into mixing apparatus 10. Additionally, and as previously described, any number of mixing stations 15 may be combined, such that multiple mixing stations 15 may be used to speed up mixing and production of a final chemical solution mixture into a single or smaller number of larger receiving containers 30.
  • FIG. 2 depicts the front face, or operational side, of mixing apparatus 10. As shown in FIG. 2, water flow 12 entering manifold assembly 14 may also include a water softener 52, as well as a pump 50 for increasing water pressure throughout mixing apparatus 10. Water softener 52 and pump 50 may be any standard and commercially available water softener and pump as would be understood by those skilled in the art. For example, water softener 52 may be any softening or treatment system, including magnetic softening or an ion exchange system. In some embodiments, use of a water softener may result a more stable mixed solution. It should be appreciated that neither water softener 52 nor pump 50 are required for operation of mixing apparatus 10. In particular, because mixing apparatus 10 may operate at surprisingly low pressure levels, water flow 12 may already have sufficient pressure for mixing concentrated solutions within each mixing station 15. This front face also serves as a user interface 38 for operation of mixing apparatus 10. As illustrated in FIG. 2, interface 38 includes, for each mixing station 15, a pressure gauge 42, an activation signal 44, a one-push activation button 46, and dispensing tube 28 leading to receiving container 30. Interface 38 also includes system power on/off panel 36 (corresponding to electrical box 36 of FIG. 1). While the user interface 38 of FIG. 2 is designed for a simple, ease of use operation, user interface 38 may include any number of additional components, such as additional data input keys for adjusting pressure, menu buttons for any number of pre-set final solution mixtures, receiving container 30 sizes, etc., and any other visual/audio components as might be desired, such as a help or call function to a facility manager.
  • FIG. 3 depicts a close-up of injector assembly 22. As shown in FIG. 3, injector assembly 22 includes an injector 58, an optional fitting 60, a manifold assembly 14 attachment mechanism 56, and chemical line adapter 62. In one embodiment, injector 58 is a standard, commercially available injector as would be understood by those skilled in the art. In alternative embodiments, injector 58 may be designed to be directly and sealed by ½ inch or larger tubing to create fluid communication with a super concentrate chemical source, thereby removing the necessity of adapter 62 and/or fitting 60. When used, fitting 60 may be cut tubing, an O-ring or any other component improving the attachment and sealing of adapter 62 to injector 58.
  • Adapter 62 has an internal chamber (illustrated in FIG. 7) which passes through an inlet 66 that engages delivery tube 26, an arm 68 extending to adapter head 65, which adapter head 65 includes an injector arm attachment portion 64 having a notch pattern 63 that reciprocally corresponds to the same size and shape of injector knob pattern 57. Attachment portion 64 is uniquely designed to securely and releasably engage, lock and seal adapter 62 to injector 58, such that chemical components drawn from containers 24 can be in fluid communication with the water flow passing through injector 58.
  • Injector 58 generally includes a molded body having an inlet for receiving flow of a base fluid, a chemical inlet arm for introduction of a flow of a liquid chemical component, and an outlet for dispensing resultant mixed solution. Injector 58 is generally designed for insertion and/or sealed coupling with a hose, tube or line assembly to receive, feed and dispense liquid flow as understood by those skilled in the art. For example, the injector inlet and/or outlet may include a hose barb, a flare fitting, or a quick-release configuration.
  • As shown in FIG. 3, injector 58 has a single arm 59 to which adapter 62 attaches for fluidly connecting a chemical flow from chemical component containers 24 into the water flow from manifold assembly 14. Injector arm 59 includes a knob pattern 57 in addition to a barbed tube attachment end 61. In alternative embodiments, injector 58 can include multiple arms 59 for combining a plurality of chemical components from a plurality of containers 24 into a single fluid flow. For example, FIG. 4 illustrates an injector 58 having two such arms 59. It should be appreciated that the injectors of the present invention may include any number of arms, provided that the venturi chamber within injector 58 maintains functionality and effectively draws each of the concentrated chemical components as desired.
  • Injector 58 includes an internal venturi chamber 70, seen in FIG. 7, defining a flow passage from the inlet 71 to the outlet 73 thereof. A suction port 75 through the injector arm 59 provides lateral access to the venturi chamber 70. By means of chemical line adapter 62 removably engaging the injector arm, a fluid transfer conduit is created, extending all the way from chemical component containers 24, such that the chemical component is in fluid communication with the injector assembly 22. In an embodiment such as illustrated in FIG. 4 (multi-port injectors), each chemical component is in fluid communication with injector assembly 22. In operation, the base fluid flow 72 through venturi chamber 70 creates a draw through suction port 75, thereby drawing the chemical component from containers 24 into a flow 74 through adapter 62, into suction port 75 and mixed into the base flow 72 within chamber 70. The mixed solution creates a final concentration solution flow 76 through outlet 73 and into receiving container 30 via dispensing tube 28.
  • To ensure secure attachment of adapter 62 to injector arm 59, adapter 62 is uniquely designed to include an attachment portion 64, such that adapter 62 can be securely (and releasably attached to injector 58 by pressing attachment portion 64 over injector arm 59 and twisting the adapter to lock adapter 62 in place via a locking mechanism. For example, as illustrated in FIGS. 5 and 6, attachment portion 64 includes notch pattern 63 that is sized and shaped to receive knob patter 57 of injector arm 59, such that the adapter head 65 slides over the injector arm knobs until the knobs clear the wall ring (from which the notches are cut) within adapter portion 64. Upon twisting adapter 62, the injector arm knobs rotate away from the notches and lock the adapter in place. To remove the adapter 62 from the injector arm, the adapter is twisted to once again align the notches with the injector arm knobs, thus permitting the knobs to slide through the notches when the adapter is pulled away from the injector arm. In some embodiments, an additional fitting 60 may be included to help seal the adapter 62 to the injector arm. In such embodiments, the fitting 60 may also help create a tighter seal, and thereby permit better draw of the chemical components through the internal chamber of adapter 62 into and through the injector arm and venturi chamber.
  • The present invention provides for automatic mixing of the various components within the system, such that no additional mixing steps of the final solution mixture are needed. This feature is made possible through the venturi combined with a mixing and vacuum ring.
  • Additionally, it was discovered that the ideal pressure for the creation of high concentration mixes from super concentrates is different than when making an application level mix from a regular concentrate. For example, existing systems use pressures in a range from 150 to 250 psi, and even upwards of 1000 psi. Surprisingly, it was found that a much lower operating pressure, such as between about 20-40 psi, is optimal for creation of concentrated solution mixes from super concentrates. In one embodiment, the pressure within a mixing station is less than 150 psi. In another embodiment, the pressure is less than 100 psi. In yet another embodiment, the pressure is less than 60 psi. In still other embodiments, the pressure is in a range of between about 2-50 psi, between about 5-40 psi, between about 10-30 psi, between about 15-25 psi, and any whole or partial increments therebetween. This lower pressure range also reduces the cost of the pump, the hazards of working around a high pressure machine, improves the mixing environment, and reduces the difficulties of dispensing a chemical solution into a container, such as the reduction of foaming.
  • The arrangement of the present invention allows for independent adjustment of the pressure for each of the dilution venturis of each mixing station. To accomplish this each mixing station includes a pressure regulator to ensure that the desired flow rate of base fluid through the venturi occurs, as this flow rate can be used to optimize the suction of super concentrated chemical components, thereby optimizing the flow rate of each such chemical component to create accurate concentrations and/or mixture ratios within the final concentrated solution mix.
  • The present invention utilizes preset venturis for ease of use by operators to arrive at various qualities and settings of final solution mixes without a thorough understanding of the process. For example, the venturis can be pre-set to manufacture any number and variety of detergents and other concentrated chemical products, as well as allow them to make a range of qualities within that product range, simply by employing a predetermined set of dilution arrangements.
  • According to another aspect of the present invention, the flow rate of any particular chemical component can be controlled as desired in the creation of the desired mixed solution. Such control provides the ability to create different mixed solutions having variable proportions of one or more chemical components. For example, the present invention utilizes the viscosities of the various chemical components to create the proper ratio of chemical components within the mix.
  • The present invention also includes a method of tip “balancing” for further controlling the draw of at least one chemical component, resulting in a controlled blending of the multiple chemical components through a multiport injector. For example, a metering tip of variable orifice size is placed in the tube just prior to the venturi, which restricts the draw of the component passing through the metering tip, and thereby increasing the amount of other components in the final solution mix. In other words, the component drawn through a tube having a metering tip in it will be drawn into the venturi at a slower rate than a component drawn though a line without a metering tip. The effects of such metering tips can be seen in Table 1:
  • TABLE 1
    Water Test ml/gal
    Tip color (orifice diameter) ml % change
    No Tip 1332
    Gray/0.128 in 1277  −4%
    Black/0.098 in 1215  −5%
    Beige/0.07 in 1061 −13%
    Red/0.052 in 837 −21%
    White/0.043 in 691 −17%
    Blue/0.04 in 608 −12%
  • Other restrictors may optionally be used within dispensing line 28, to cause a liquid backup to more quickly fill a discharge region within injector assembly 22, speeding up a vacuum in the injector and thereby avoiding or reducing an initial uneven draw of one or more chemical components. Such a liquid backup may thus prevent or reduce cavitation and permit injector 58 to evenly draw the various chemical components from containers 24 as desired after valve 18 is re-opened. Consequently, use of these restrictors also provides a better mixing environment as the resulting concentrated solution is dispensed into container 30.
  • As contemplated herein, the turbulence of the final solution flow into receiving tank 30 as dispensed from injector assembly 22 is also controlled by maintaining a preferred pressure range within mixing apparatus 10, so as to provide proper mixing of the resulting solution.
  • The present invention also relates to a method for mixing a concentrated chemical solution. The method comprises the steps of receiving a base fluid flow into a mixing station having an injector assembly that includes at least one venturi chamber having at least one suction port in fluid communication with the at least one venturi chamber, regulating the pressure of the base fluid flow to less than 150 psi, providing a source of at least one liquid chemical component in fluid communication with the injector assembly via a first tube, providing a receiving container for collection of the final concentrated chemical solution that is in fluid communication with the injector assembly via a second tube, mixing the at least one chemical component with the base fluid in the at least one venturi chamber to create the concentrated chemical solution, wherein flow of the base fluid through the at least one venturi chamber of the injector assembly draws the at least one liquid chemical component through the at least one suction port and into the flow of the base fluid, and dispensing the concentrated chemical solution into the receiving container. As contemplated herein, the methods of mixing concentrated chemical solutions according to the present invention can be performed using the mixing apparatus described hereinthroughout, including all such described embodiments, and the steps necessary for the implementation of such embodiments.
  • EXPERIMENTAL EXAMPLES
  • The invention is now described with reference to the following Examples. These Examples are provided for the purpose of illustration only and the invention should in no way be construed as being limited to these Examples, but rather should be construed to encompass any and all variations which become evident as a result of the teaching provided herein.
  • Without further description, it is believed that one of ordinary skill in the art can, using the preceding description and the following illustrative examples, make and utilize the present invention and practice the claimed methods. The following working examples therefore, specifically point out the preferred embodiments of the present invention, and are not to be construed as limiting in any way the remainder of the disclosure.
  • Example 1 Determination of Optimal Pressure Ranges
  • For creation of higher concentrated solution mixes from super concentrates, a highly controlled and delicate mixing environment is needed. Part of this mixing environment includes control of pressure and flow rate of the base fluid through the venturis. It was initially found that use of standard pressure ranges for similar systems (150-250 psi) proved ineffective, and a much lower pressure range was required. Thus, experiments for determining the optimal pressure ranges for mixing concentrated solutions were performed.
  • Using the mixing apparatus of the present invention, the following results (Table 2) were obtained using a 0.083 injector and charted as shown in FIG. 8.
  • TABLE 2
    pressure (psi) water draw through single venturi (g)
    5 1013
    10 1137
    15 1236
    20 1236
    25 1207
    30 1176
    35 1117
    40 1086
    45 1052
    50 1028
    55 1016

    Additionally, the following results listed in Table 3 were obtained using a 0.098 injector:
  • TABLE 3
    pressure (psi) water draw through single venturi (g)
    25 1146
    35 1075

    The following results listed in Table 4 were obtained using a 0.086 injector:
  • TABLE 4
    pressure (psi) water draw through single venturi (g)
    25 1140
    35 1077
  • This data demonstrates that the optimal pressure for maximum water draw is between about 15-20 psi. Further, this data also demonstrates that a 0.083 injector provides for better performance over different sized injectors (0.086 and 0.098). However, because filling times are shortened at higher pressures, a pressure in the range between about 25-30 psi provides for both improved water draw and shorter filling times (fill time at 30 psi is approximately half that of 15 psi). It should be appreciated that the present invention may utilize these features to customize the mixing apparatus to produce the desired type and speed of solution mixture. For example, if maximum efficiency is desired, the system can operate at a pressure between about 15-20 psi. If increased speed is desired, a pressure in the range of 20-50 psi can be used. Generally speaking, the higher the concentration level of the final solution mixture, pressure in the range of about 15-20 psi should be used. In some instances, a very high concentrate solution mix can only be created when pressure is within the 15-20 psi range. It should be appreciated that the mixing apparatus, as described herein, can operate at any pressure between about 5-100 psi. Pressures higher than 100 psi are generally only suitable for use-level solution mixtures that are not concentrated.
  • Testing on the creation of multiple products at one time was performed. Water pressure was monitored, which drives the ratio of the dilution. Four injectors were set at 25 psi and the apparatus was activated without a pump. The pressure at the first mixing station was 25 psi, pressure at the second station dropped to 22 psi, pressure at the third station dropped to 20 psi and pressure at the fourth station dropped to 15 lbs. When the same tests were performed with inclusion of a pump set to maintain pressure and flow over all four mixing stations, the pressure was indeed steady at 25 psi for each station.
  • Example 2 Improvement of Chemical Flow Via Larger Tubing
  • Experiments for evaluating the effect of larger tubing for use in drawing chemical components into the injector assembly were performed. A 10 foot section of standard ½ inch hose was used to feed an injector capable of 1:6 chemical to water solution concentrations. It was found that 7398 ml of a solvent was pulled into an untipped venturi in creation of a 5 gallon solution. Surprisingly, when using the same setup having a 10 foot section of standard ¼ inch hose feeding the very same venturi creating a 5 gallon solution, only 3900 ml of solvent was pulled. Thus, the use of at least a ½ inch feed line into the base fluid flow within the venturi chamber results in a dramatic and significant increase in chemical component draw. This feature permits a user the ability to utilize lower system pressure, and consequently produce higher concentrated solution mixes.
  • Example 3 Improved Mixing of Concentrated Solutions
  • Experiments for evaluating chemical component mixing were performed, and it was found that instability existed within certain formulas upon standard lab mixing, as compared to the mixing function of the present invention. In effect, mixing of increased concentration solutions was significantly improved by use of the mixing apparatus of the present invention in comparison to standard mixing techniques. For example, drying agents Total Car Protectant (TCP) and Clear Coat Protectant (CCP) (produced and sold by Blendco Systems, LLC of Bristol, Pa.) were combined with water at recommended chemical to water ratios of approximately 1:2. When these mixtures were shaken by hand and then stored at room temperature, 40° F. or 120° F., there was haziness and or separation in the solution mix, which is a sign of solution instability. However, when the same mixture was prepared with the mixing apparatus of the present invention, the samples where clear and homogenous after storage at room temp, 40° F. and 120° F. The combination of multi part injection, the mixing from the water, the mixing through the mix ring and the mixing into the receiving container, and some contribution from air into the mix, can each be controlled to result in a stable, final concentrated solution mix.
  • The disclosures of each and every patent, patent application, and publication cited herein are hereby incorporated herein by reference in their entirety.
  • While this invention has been disclosed with reference to specific embodiments, it is apparent that other embodiments and variations of this invention may be devised by others skilled in the art without departing from the true spirit and scope of the invention. The appended claims are intended to be construed to include all such embodiments and equivalent variations.

Claims (26)

1. A chemical component mixing apparatus for use with a fluid source in creation of a concentrated solution mixture, comprising:
at least one mixing station, the mixing station including:
an injector assembly, wherein the injector assembly includes at least one venturi chamber having at least one suction port in fluid communication with the at least one venturi chamber;
at least one super concentrate chemical component housed within a chemical container, wherein the chemical container is fluidly connected by a first tube to the at least one venturi chamber via the at least one suction port;
a receiving container fluidly connected to the injector assembly via a second tube; and
a fluid source inlet introducing a fluid into the at least one mixing station, wherein the pressure within the at least one mixing station is less than 150 psi;
wherein the fluid passes through the at least one venturi chamber, thereby drawing the at least one super concentrate chemical component into the venturi chamber and mixing the at least one super concentrate chemical component with the fluid therein to create a concentrated solution mixture; and
wherein the concentrated solution mixture is dispensed from the injector assembly into the receiving container.
2. The apparatus of claim 1, wherein the pressure within the at least one mixing station is between 10-50 psi.
3. The apparatus of claim 2, wherein the pressure within the at least one mixing station is between 15-40 psi.
4. The apparatus of claim 1, further comprising a pump.
5. The apparatus of claim 1, further comprising a water softener.
6. The apparatus of claim 1, wherein the injector assembly includes a multi-port injector.
7. The apparatus of claim 1, wherein the first tube is ½ inch tubing.
8. The apparatus of claim 7, wherein the ½ inch tubing is connected to an adapter for releasably securing the ½ inch tubing to the at least one suction port of the at least one venturi chamber.
9. The apparatus of claim 7, wherein the ½ inch tubing contains a metering tip within the tubing for at least partially restricting flow of the chemical component housed in the chemical container into the injector assembly.
10. The apparatus of claim 1, wherein the at least one mixing station further includes a pressure regulator.
11. The apparatus of claim 10, wherein the at least one mixing station further includes a valve upstream of the pressure regulator.
12. The apparatus of claim 11, wherein the at least one mixing station further includes a float positioned at least partially within the receiving container.
13. The apparatus of claim 12, wherein the at least one mixing station further includes a circuitry hub electrically connecting the float to the valve.
14. The apparatus of claim 13, wherein the valve is a water solenoid valve.
15. The apparatus of claim 14, wherein the float signals the valve to cease flow of the fluid through the mixing station when the receiving container is filled with a predetermined amount of the concentrated solution mixture dispensed from the injector assembly.
16. The apparatus of claim 15, wherein the electrical connection of the float to the circuitry hub comprises an adapter cord.
17. The apparatus of claim 16, wherein the at least one mixing station is a plurality of mixing stations, and the adapter cord connects multiple circuitry hubs of the multiple mixing stations to a single float at least partially within a single receiving container.
18. The apparatus of claim 17, wherein the single float signals the valve of each of the multiple mixing stations to cease flow of the fluid through the mixing stations when the receiving container is filled with a predetermined amount of the concentrated solution mixture.
19. A method for mixing a concentrated chemical solution, comprising:
receiving a base fluid flow into a mixing station having an injector assembly that includes at least one venturi chamber having at least one suction port in fluid communication with the at least one venturi chamber;
regulating the pressure of the base fluid flow to less than 150 psi;
providing a source of at least one liquid chemical component in fluid communication with the injector assembly via a first tube;
providing a receiving container for collection of the final concentrated chemical solution that is in fluid communication with the injector assembly via a second tube;
mixing the at least one chemical component with the base fluid in the at least one venturi chamber to create the concentrated chemical solution, wherein flow of the base fluid through the at least one venturi chamber of the injector assembly draws the at least one liquid chemical component through the at least one suction port and into the flow of the base fluid; and
dispensing the concentrated chemical solution into the receiving container.
20. The method of claim 19, wherein the pressure is regulated between 10-50 psi.
21. The method of claim 20, wherein the pressure is regulated between 15-40 psi.
22. The method of claim 19, further comprising pressurizing the base fluid flow.
23. The method of claim 19, wherein the injector assembly includes a multi-port injector.
24. The method of claim 19, further comprising reducing the resistance area of the first tube by increasing the diameter of the first tube.
25. The method of claim 24, further comprising at least partially restricting the flow of the at least one chemical component flowing into the injector assembly with a metering tip.
26. An adapter for connecting a tube to a venturi-style injector, comprising:
a housing having a hollow interior, the housing comprising an inlet and an outlet to the hollow interior;
a first attachment mechanism for attaching a tube to the inlet; and
a second attachment mechanism for attaching the outlet to a suction port arm of a venturi-style injector;
wherein the second attachment mechanism includes a notch pattern sized and shaped to receive a reciprocal knob pattern forming part of the arm of the injector when the adapter is pressed onto the injector arm; and
wherein, upon passage of the knob pattern through the notch pattern, the adapter can be twisted, such that the notch patter rotates away from the knobs and releasably locks the adapter onto the injector.
US13/099,086 2011-05-02 2011-05-02 Chemical Mixing System and Method Abandoned US20120279912A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/099,086 US20120279912A1 (en) 2011-05-02 2011-05-02 Chemical Mixing System and Method
AU2012202373A AU2012202373B2 (en) 2011-05-02 2012-04-24 Chemical Mixing System and Method
CA2775520A CA2775520A1 (en) 2011-05-02 2012-04-27 Chemical mixing system and method
US14/674,855 US10710037B2 (en) 2011-05-02 2015-03-31 Chemical mixing system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/099,086 US20120279912A1 (en) 2011-05-02 2011-05-02 Chemical Mixing System and Method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/674,855 Division US10710037B2 (en) 2011-05-02 2015-03-31 Chemical mixing system and method

Publications (1)

Publication Number Publication Date
US20120279912A1 true US20120279912A1 (en) 2012-11-08

Family

ID=47087772

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/099,086 Abandoned US20120279912A1 (en) 2011-05-02 2011-05-02 Chemical Mixing System and Method
US14/674,855 Active 2032-11-09 US10710037B2 (en) 2011-05-02 2015-03-31 Chemical mixing system and method

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/674,855 Active 2032-11-09 US10710037B2 (en) 2011-05-02 2015-03-31 Chemical mixing system and method

Country Status (3)

Country Link
US (2) US20120279912A1 (en)
AU (1) AU2012202373B2 (en)
CA (1) CA2775520A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014089411A1 (en) 2012-12-07 2014-06-12 Ecolab Usa Inc. System for handling displacement of liquid products
EP2821131A1 (en) * 2013-07-02 2015-01-07 AEW Wassertechnologie GmbH Apparatus for conditioning water of water circulation systems
US20160101393A1 (en) * 2014-10-14 2016-04-14 Dustin Jensen Car wash chemical delivery devices, systems, and associated methods
ES2812279A1 (en) * 2019-09-16 2021-03-16 Dosage S L Equipment for the preparation and dosage of liquid polyelectrolytes (Machine-translation by Google Translate, not legally binding)
US11491500B2 (en) 2019-10-11 2022-11-08 Delaware Capital Formation, Inc. Portable chemical dispenser and method of using same
US11679360B1 (en) * 2019-01-17 2023-06-20 Jack Lindon Skinner Chemical injection unit for drilling operations
EP4219018A1 (en) * 2022-01-27 2023-08-02 Captioplastic, S.L. Process for the continuous magnetic removal of microplastics present in aqueous matrices

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111203161B (en) * 2020-02-18 2021-05-28 中国神华煤制油化工有限公司 Multi-reactor feeding control method and device and feeding system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE30610E (en) * 1975-09-03 1981-05-12 Picker Corporation Fluid mixing and dispensing system
US5655713A (en) * 1994-08-26 1997-08-12 Turtle Wax, Inc. Automated vehicle washing systems using concentrated detergents
US20070036024A1 (en) * 2005-08-10 2007-02-15 Cleaning Systems, Inc. Fluid blending and mixing system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2080872A (en) * 1933-01-30 1937-05-18 Paterson William Method of and apparatus for adding reagents to liquids
US3804299A (en) * 1973-01-08 1974-04-16 P Kain Automatic shampoo mixing and dispensing system
US3857409A (en) * 1973-03-26 1974-12-31 R Giordano Liquid mixing apparatus
US4087881A (en) * 1976-03-09 1978-05-09 Bates Jack A Carpet cleaning machine
US4058296A (en) * 1976-04-05 1977-11-15 Graymills Inc. Mixing apparatus
US4123800A (en) * 1977-05-18 1978-10-31 Mazzei Angelo L Mixer-injector
US4171710A (en) * 1978-02-10 1979-10-23 Boynton Edgar M Closed pesticide mix system
US5439020A (en) * 1994-05-27 1995-08-08 Lockhart; Barton Detergent mixing apparatus and method
US5678593A (en) * 1994-05-27 1997-10-21 Lockhart; Barton Detergent mixing apparatus
WO1999048588A1 (en) * 1998-03-20 1999-09-30 Mazzei Angelo L Stripping of contaminants from water
US20050185505A1 (en) * 2004-02-19 2005-08-25 Mccurdy Brent K. Apparatus for dissolving a solid material in a liquid
US20070084515A1 (en) * 2005-10-13 2007-04-19 Kimsey Timothy P Method and apparatus for proportional mixing of cleaning compositions
US8322367B2 (en) * 2007-10-05 2012-12-04 Hydra-Flex Inc. Chemical delivery system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE30610E (en) * 1975-09-03 1981-05-12 Picker Corporation Fluid mixing and dispensing system
USRE30610F1 (en) * 1975-09-03 1984-06-05 Picker Corp Fluid mixing and dispensing system
US5655713A (en) * 1994-08-26 1997-08-12 Turtle Wax, Inc. Automated vehicle washing systems using concentrated detergents
US20070036024A1 (en) * 2005-08-10 2007-02-15 Cleaning Systems, Inc. Fluid blending and mixing system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9475017B2 (en) 2012-12-07 2016-10-25 Ecolab Usa Inc. System for handling displacement of liquid products
WO2014089404A1 (en) 2012-12-07 2014-06-12 Ecolab Usa Inc. System for handling displacement of liquid products
WO2014089411A1 (en) 2012-12-07 2014-06-12 Ecolab Usa Inc. System for handling displacement of liquid products
EP3042670A1 (en) * 2012-12-07 2016-07-13 Ecolab USA Inc. System for handling displacement of liquid products
EP2928509A4 (en) * 2012-12-07 2016-07-13 Ecolab Usa Inc System for handling displacement of liquid products
EP2928508A4 (en) * 2012-12-07 2016-10-12 Ecolab Usa Inc System for handling displacement of liquid products
EP2821131A1 (en) * 2013-07-02 2015-01-07 AEW Wassertechnologie GmbH Apparatus for conditioning water of water circulation systems
US20160101393A1 (en) * 2014-10-14 2016-04-14 Dustin Jensen Car wash chemical delivery devices, systems, and associated methods
US11679360B1 (en) * 2019-01-17 2023-06-20 Jack Lindon Skinner Chemical injection unit for drilling operations
ES2812279A1 (en) * 2019-09-16 2021-03-16 Dosage S L Equipment for the preparation and dosage of liquid polyelectrolytes (Machine-translation by Google Translate, not legally binding)
US11491500B2 (en) 2019-10-11 2022-11-08 Delaware Capital Formation, Inc. Portable chemical dispenser and method of using same
EP4219018A1 (en) * 2022-01-27 2023-08-02 Captioplastic, S.L. Process for the continuous magnetic removal of microplastics present in aqueous matrices
WO2023144264A1 (en) * 2022-01-27 2023-08-03 Captoplastic, S.L. Process for the continuous magnetic removal of microplastics present in aqueous matrices

Also Published As

Publication number Publication date
AU2012202373A1 (en) 2012-11-22
AU2012202373B2 (en) 2015-05-21
CA2775520A1 (en) 2012-11-02
US20150202580A1 (en) 2015-07-23
US10710037B2 (en) 2020-07-14

Similar Documents

Publication Publication Date Title
US10710037B2 (en) Chemical mixing system and method
CA2194378C (en) Method and apparatus for storing and dispensing chemical solutions
US7963304B2 (en) Multi-station liquid dispensing apparatus with automatic selection of proper flow rate
US7615122B2 (en) Method and apparatus for dispensing a use solution
US8042578B2 (en) System and method for making paints from prepaints
AU2012201467B2 (en) A variable flow concentration product dispenser
US20090065076A1 (en) Manifold apparatus
CN104169009A (en) Liquid material discharge mechanism and liquid material discharge device
US6541531B2 (en) Method of introduction of liquid additives utilizing an improved dosing assembly
US9561481B2 (en) Multi-chemical dispensing device
AU2001247913A1 (en) Improved dosing assembly
US10344419B2 (en) Washing machine appliance and additive dispensing assembly
US20160101393A1 (en) Car wash chemical delivery devices, systems, and associated methods
US11078067B2 (en) Inoculant direct injection system
WO2016016737A1 (en) Detergents vending machine
US9701528B2 (en) Method for cleaning a bargun dispenser
US9861074B2 (en) Animal bathing system
GB2501712A (en) Fluid line connector
US20120048307A1 (en) Method and system for dispensing incompatible products
DE102010040295A1 (en) Water-bearing household appliance i.e. front-loading washer, for washing and/or drying clothes, has lift piston indirectly pressurized against spring force of spring element by pressure of water for actuating dosage device

Legal Events

Date Code Title Description
AS Assignment

Owner name: DUBOIS CHEMICALS, INC., OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MCCURDY, BRENT;MAURIZI, MICHAEL;REEL/FRAME:026591/0989

Effective date: 20110630

AS Assignment

Owner name: GENERAL ELECTRIC CAPITAL CORPORATION, AS AGENT, CO

Free format text: SECURITY AGREEMENT;ASSIGNOR:DUBOIS CHEMICALS, INC.;REEL/FRAME:029549/0142

Effective date: 20121220

AS Assignment

Owner name: ANTARES CAPITAL LP, AS SUCCESSOR AGENT, ILLINOIS

Free format text: ASSIGNMENT OF INTELLECTUAL PROPERTY SECURITY AGREEMENTS;ASSIGNOR:GENERAL ELECTRIC CAPITAL CORPORATION, AS RETIRING AGENT;REEL/FRAME:036826/0621

Effective date: 20150821

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: DUBOIS CHEMICALS, INC., OHIO

Free format text: RELEASE OF SECURITY INTEREST IN INTELLECTUAL PROPERTY COLLATERAL RECORDED AT REEL 029549/FRAME 0142;ASSIGNOR:ANTARES CAPITAL LP, SUCCESSOR AGENT TO GENERAL ELECTRIC CAPITAL CORPORATION;REEL/FRAME:042020/0826

Effective date: 20170315