US20120270883A1 - Use of a polymorph of flibanserin for treating disease - Google Patents

Use of a polymorph of flibanserin for treating disease Download PDF

Info

Publication number
US20120270883A1
US20120270883A1 US13/541,214 US201213541214A US2012270883A1 US 20120270883 A1 US20120270883 A1 US 20120270883A1 US 201213541214 A US201213541214 A US 201213541214A US 2012270883 A1 US2012270883 A1 US 2012270883A1
Authority
US
United States
Prior art keywords
flibanserin
polymorph
disease
patient
sexual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/541,214
Inventor
Carlo Bombarda
Enrica Dubini
Antoine Ezhaya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sprout Pharmaceuticals Inc
Original Assignee
Sprout Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sprout Pharmaceuticals Inc filed Critical Sprout Pharmaceuticals Inc
Priority to US13/541,214 priority Critical patent/US20120270883A1/en
Publication of US20120270883A1 publication Critical patent/US20120270883A1/en
Priority to US13/905,709 priority patent/US20140031365A1/en
Priority to US14/269,420 priority patent/US20150005316A1/en
Priority to US14/876,235 priority patent/US20160095855A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/20Hypnotics; Sedatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/22Anxiolytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/04Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D233/20Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D233/26Radicals substituted by carbon atoms having three bonds to hetero atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/24Benzimidazoles; Hydrogenated benzimidazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 2
    • C07D235/26Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms

Definitions

  • the invention relates to the polymorph A of flibanserin, to a technical process for the preparation thereof, as well as to the use thereof for preparing medicaments.
  • Flibanserin shows affinity for the 5-HT IA and 5-HT 2 -receptor. It is therefore a promising therapeutic agent for the treatment of a variety of diseases, for instance depression, schizophrenia, Parkinson, anxiety, sleep disturbances, sexual and mental disorders and age associated memory impairment.
  • a certain pharmaceutical activity is of course the basic prerequisite to be fulfilled by a pharmaceutically active agent before same is approved as a medicament on the market.
  • a pharmaceutically active agent has to comply with. These requirements are based on various parameters which are connected with the nature of the active substance itself. Without being restrictive, examples of these parameters are the stability of the active agent under various environmental conditions, its stability during production of the pharmaceutical formulation and the stability of the active agent in the final medicament compositions.
  • the pharmaceutically active substance used for preparing the pharmaceutical compositions should be as pure as possible and its stability in long-term storage must be guaranteed under various environmental conditions. This is absolutely essential to prevent the use of pharmaceutical compositions which contain, in addition to the actual active substance, breakdown products thereof, for example. In such cases the content of active substance in the medicament might be less than that specified.
  • Uniform distribution of the medicament in the formulation is a critical factor, particularly when the medicament has to be given in low doses.
  • the particle size of the active substance can be reduced to a suitable level, e.g. by grinding. Since breakdown of the pharmaceutically active substance as a side effect of the grinding (or micronising) has to be avoided as far as possible, in spite of the hard conditions required during the process, it is absolutely essential that the active substance should be highly stable throughout the grinding process. Only if the active substance is sufficiently stable during the grinding process is it possible to produce a homogeneous pharmaceutical formulation which always contains the specified amount of active substance in reproducible manner.
  • Another problem which may arise in the grinding process for preparing the desired pharmaceutical formulation is the input of energy caused by this process and the stress on the surface of the crystals. This may in certain circumstances lead to polymorphous changes, to a change in the amorphous configuration or to a change in the crystal lattice. Since the pharmaceutical quality of a pharmaceutical formulation requires that the active substance should always have the same crystalline morphology, the stability and properties of the crystalline active substance are subject to stringent requirements from this point of view as well.
  • the stability of a pharmaceutically active substance is also important in pharmaceutical compositions for determining the shelf life of the particular medicament; the shelf life is the length of time during which the medicament can be administered without any risk. High stability of a medicament in the abovementioned pharmaceutical compositions under various storage conditions is therefore an additional advantage for both the patient and the manufacturer.
  • the aim of the invention is thus to provide a new, stable crystalline form of the compound flibanserin which meets the stringent requirements imposed on pharmaceutically active substances as mentioned above.
  • FIG. 1 shows the X-ray powder diffraction pattern of polymorph A of flibanserin.
  • polymorph A which can be obtained in crystalline form by choosing specific reaction conditions, meets the stringent requirements mentioned above and thus solves the problem on which the present invention is based. Accordingly the present invention relates to polymorph A of flibanserin.
  • Polymorph A of flibanserin is characterised by a melting point of about 161° C. (determined via DSC; heating rate 10 K/min). 161° C. as determined using DSC.
  • Polymorph B the less stable modification of flibanserin displays a melting point of about 120° C. (determined via DSC; heating rate 10 K/min). Whereas polymorph B shows little stability under the effects of for instance mechanical stress produced by grinding, polymorph A turned out to fulfill the aforementioned stability requirements.
  • the present invention relates to a process for the manufacture of polymorph A of flibanserin in technical scale.
  • the process according to the invention is illustrated in diagram 1.
  • the benzimidazolone 2 is reacted with the piperazine-derivative 3 under basic reaction conditions in a suitable solvent to lead to 1.
  • the group R denotes an amino protecting group.
  • the protecting group used may be any of the groups commonly used to protect the amino function. Examples include groups selected from alkyl, substituted alkyl, heterosubstituted alkyl, unsaturated alkyl, alkyl substituted heteroatoms, substituted or unsubstituted phenyl, substituted or unsubstituted benzyl, alkyloxycarbonyl groups and aryloxycarbonyl groups.
  • Preferred protecting groups are selected from butyl, 1,1-diphenylmethyl, methoxymethyl, benzyloxymethyl, trichloroethoxymethyl, pyrrolidinomethyl, cyanomethyl, pivaloyloxymethyl, allyl, 2-propenyl, t-butyldimethylsilyl, methoxy, thiomethyl, 4-methoxyphenyl, benzyl, 4-methoxybenzyl, 2,4-dimethoxybenzyl, 2-nitrobenzyl, t-butoxycarbonyl, benzyloxycarbonyl, phenoxy carbonyl, 4-chloro-phenoxycarbonyl, 4-nitro-phenoxycarbonyl, methoxycarbonyl and ethoxycarbonyl.
  • the preferred protecting groups are selected from t-butoxycarbonyl, ethoxycarbonyl, methoxycarbonyl, benzyloxycarbonyl, phenoxycarbonyl and 2-propenyl, the latter being most preferred.
  • X in 3 represents a leaving group selected from chlorine, bromine, iodine, methanesulphonate, trifluoromethanesulphonate or para-toluenesulphonate.
  • X denotes chlorine, bromine or iodine, chlorine being most preferred.
  • Suitable solvents are selected from water, alcohols and mixtures of water with alcohols, polar aprotic solvents and mixtures thereof with water.
  • Preferred solvents are selected from the group consisting of dimethylformamid, dimethylsulfoxid, acetonitrile, tetrahydrofurane, dioxane, methanol, ethanol isopropanaol and mixtures of one or several of the aforementioned solvents with water.
  • Preferred solvents are those being readily miscible with water.
  • a mixture of water with one of the alcohols methanol, ethanol or isopropanol is used as the solvent.
  • a mixture of water and isopropanol is used as the solvent.
  • the base used may be an alkali metal- or alkaline earth metal carbonate of lithium, sodium, potassium, calcium such as sodium carbonate, lithium carbonate, potassium carbonate, calcium carbonate and preferably potassium carbonate. It is also possible to use the hydrogen carbonates of lithium, sodium and potassium.
  • the alkali metal- or alkaline earth metal hydroxides of lithium, sodium, potassium, magnesium, calcium, but preferably sodium hydroxide, potassium hydroxide, lithium hydroxide and calcium hydroxide in alcohols or water may also be used.
  • Most preferred base is sodium hydroxide.
  • the base is preferably added in form of its aqueous solution, preferably in form of concentrated aqueous solutions, for example in concentrations between 30-50% weight/volume. In a preferred embodiment aqueous sodium hydroxide solution in a concentration of about 45% weight/volume is used.
  • the compounds 2 and 3 are introduced into the reaction in a molar ratio of between 1:1 to 1:2, preferably in a molar ratio of between 1:1.1 to 1:1.5.
  • a mixture of water and isopropanol is used as a preferred solvent mixture for the conduction of the process according to the invention.
  • the weight-ratio of water to isopropanol in the preferred solvent mixture is between 10:1 and 1:1, more preferred between 8:1 and 3:1, particular preferred between 7:1 and 5:1.
  • Per mol of compound 2 about 2-10 kg, preferably
  • the reaction is conducted using aqueous sodium hydroxide solution in a concentration of about 45% weight/volume as the base. Per mol of 2 about 0.1-1.5 kg, preferably 0.2-1.0 kg, particularly preferred 0.3-0.6 kg of the aforementioned sodium hydroxide solution are used.
  • the reaction mixture containing 2, 3 and the base in the aforementioned suitable solvent is preferably heated to at least 50° C. In a preferred embodiment the reaction temperature is in a range of between 60° C. to the boiling point of the solvent. Particularly preferred is a temperature between 70-90° C.
  • the reaction mixture is heated at the aforementioned temperature for about 10 minutes to about 12 hours, preferably for about 15 minutes to about 6 hours, more preferably for about 30 minutes to about 3 hours.
  • the reaction mixture is preferably heated at the aforementioned temperature for about 45 to 60 minutes.
  • the protective group R is cleaved.
  • the cleaving conditions depend on the choice of group R. If R denotes for instance benzyl, cleavage is conducted via hydrogenation in acetic acid in the presence of an appropriate catalyst (e.g. Pd on charcoal) or it can be cleaved in aqueous HBr.
  • R is methoxycarbonyl, ethoxycarbonyl, phenoxy carbonyl, 4-nitrophenoxycarbonyl it can be cleaved for example by using aqueous alkaline solutions such as NaOH (aq) or KOH (aq).
  • R is t-butoxycarbonyl it can be cleaved for instance in aqueous HCl or HBr.
  • R denotes 2-propenyl
  • the particularly preferred protective group according to the invention cleavage of R is effected via acidic reaction conditions.
  • the 2-propenyl group is cleaved by using a strong mineral acid, preferably an acid selected from the group consisting of hydrobromic acid, hydrochloric acid and sulfuric acid, more preferably hydrochloric acid.
  • Hydrochloric acid can be added in gaseous form or in form of its aqueous solutions, the addition of aqueous solutions being preferred.
  • hydrochloric acid in form of its concentrated solution (about 36% weight/volume).
  • at least one mol of hydrochloric acid is to be added.
  • the amount of added concentrated hydrochloric acid (36% weight/volume) per mol 2 is between 50-500 g, more preferred between 80-250 g.
  • Particularly preferred about 120-160 g of concentrated (36% w/v) aqueous hydrochloric acid are added per mol 2 used.
  • Additional water can be optionally added.
  • a temperature of about 70-90° C. about 30-70%, preferably about 35-60% of the solvent is removed via distillation.
  • the pH of the remaining residue is adjusted to about 5-9, preferably to about 6-8 by addition of aqueous sodium hydroxide (45% w/v).
  • aqueous sodium hydroxide 45% w/v
  • the pH is adjusted to about 8-9 by addition of aqueous sodium hydroxide (45% w/v).
  • the mixture is cooled to about 20-40° C., preferably about 30-35° C. and centrifuged.
  • the residue thus obtained is washed with about 100 to 750 ml water per mol introduced 2, preferably with about 200 to 500, particularly preferred with about 300 to 400 ml water per mol introduced 2 and isopropanol (about 50 to 250 g per mol 2, preferably about 100 to 200 g per mol 2) and then with water until chlorides elimination.
  • the product thus obtained can be subjected to another purification step.
  • said purification is conducted via crystallization of 1 from for instance acetone.
  • One aspect of the present invention relates to flibanserin polymorph A obtainable via the method described above.
  • the final yield is 280 kg of pure flibanserin polymorph A.
  • polymorph A was characterised by DSC (Differential Scanning calorimetry).
  • the peak temperature (endothermic maximum) determined for polymorph A is about 161° C.
  • a Mettler TA 3000 System equipped with TC 10-A processor and DSC 20 cell was applied. The heating rate was 10 K/min.
  • the flibanserin polymorph A was additionally characterised by powder x-ray diffractometry.
  • the x-ray powder diffraction pattern for polymorph A was obtained according to the following conditions:
  • the x-ray powder diffraction pattern obtained for polymorph A is illustrated in FIG. 1 .
  • the appropriate values are shown below in Table 1.
  • the present invention furthermore relates to the use of flibanserin polymorph A as a medicament.
  • a further aspect of the present invention relates to the use of flibanserin polymorph A for preparing a pharmaceutical composition for treating diseases in which the use of compounds displaying affinity for the 5-HT IA and 5-HT 2 -receptor may have a therapeutic benefit.
  • a further aspect of the present invention relates to the use of flibanserin polymorph A for preparing a pharmaceutical composition for treating a disease selected from depression, schizophrenia, Parkinson, anxiety, sleep disturbances, sexual and mental disorders and age associated memory impairment.
  • the instant invention relates to the use of flibanserin polymorph A for the preparation of a medicament for the treatment of disorders of sexual desire.
  • the invention relates to the use of flibanserin polymorph A for the preparation of a medicament for the treatment of disorders selected from the group consisting of Hypoactive Sexual Desire Disorder, loss of sexual desire, lack of sexual desire, decreased sexual desire, inhibited sexual desire, loss of libido, libido disturbance, and frigidity.
  • flibanserin polymorph A for the preparation of a medicament for the treatment of disorders selected from the group consisting of Hypoactive Sexual Desire Disorder, loss of sexual desire, lack of sexual desire, decreased sexual desire, inhibited sexual desire.
  • the invention relates to the use of flibanserin polymorph A for the preparation of a medicament for the treatment of disorders selected from the group of Hypoactive Sexual Desire Disorder and loss of sexual desire.
  • flibanserin polymorph A can be achieved in men and women.
  • the use of flibanserin polymorph A for the preparation of a medicament for the treatment of female sexual dysfunction is preferred.
  • flibanserin polymorph A The beneficial effects of flibanserin polymorph A can be observed regardless of whether the disturbance existed lifelong or was acquired, and independent of etiologic origin (organic—both, physically and drug induced-, psychogen, a combination of organic—both, physically and drug induced-, and psychogen, or unknown).
  • compositions comprising as an active ingredient flibanserin polymorph A in addition with one or more pharmaceutical carrier, diluents or excipients.
  • flibanserin polymorph A may be incorporated into the conventional pharmaceutical preparation in solid, liquid or spray form.
  • the composition may, for example, be presented in a form suitable for oral, rectal, parenteral administration or for nasal inhalation: preferred forms includes for example, capsules, tablets, coated tablets, ampoules, suppositories and nasal spray.
  • the active ingredient may be incorporated in excipients or carriers conventionally used in pharmaceutical compositions such as, for example, talc, arabic gum, lactose, gelatine, magnesium stearate, corn starch, aqueous or non acqueous vehicles, polyvinyl pyrrolidone, semisynthetic glycerides of fatty acids, benzalconium chloride, sodium phosphate, EDTA, polysorbate 80.
  • the compositions are advantageously formulated in dosage units, each dosage unit being adapted to supply a single dose of the active ingredient.
  • Each dosage unit may conveniently contain from 0.01 mg to 100 mg, preferably from 0.1 to 50 mg.

Abstract

The invention relates to the polymorph A of flibanserin, to a technical process for the preparation thereof, as well as to the use thereof for preparing medicaments.

Description

    RELATED APPLICATIONS
  • This application is a divisional of U.S. Ser. No. 10/210,474, filed Aug. 1, 2002, which claims, as does the present application, benefit of U.S. Provisional Application Ser. No. 60/329,435, filed on Oct. 15, 2001, European Patent Application EP 01 118 593, filed Aug. 2, 2001, and European Patent Application EP 01 130 180, filed Dec. 19, 2001, the disclosures of all of which are incorporated by reference in their entireties.
  • FIELD OF THE INVENTION
  • The invention relates to the polymorph A of flibanserin, to a technical process for the preparation thereof, as well as to the use thereof for preparing medicaments.
  • BACKGROUND OF THE INVENTION
  • The compound 1-[2-(4-(3-trifluoromethyl-phenyl)piperazin-1-yl)ethyl]-2,3-dihydro-1H-benzimidazol-2-one (flibanserin) is disclosed in form of its hydrochloride in European Patent Application EP-A-526434 and has the following chemical structure:
  • Figure US20120270883A1-20121025-C00001
  • Flibanserin shows affinity for the 5-HTIA and 5-HT2-receptor. It is therefore a promising therapeutic agent for the treatment of a variety of diseases, for instance depression, schizophrenia, Parkinson, anxiety, sleep disturbances, sexual and mental disorders and age associated memory impairment.
  • A certain pharmaceutical activity is of course the basic prerequisite to be fulfilled by a pharmaceutically active agent before same is approved as a medicament on the market. However, there are a variety of additional requirements a pharmaceutically active agent has to comply with. These requirements are based on various parameters which are connected with the nature of the active substance itself. Without being restrictive, examples of these parameters are the stability of the active agent under various environmental conditions, its stability during production of the pharmaceutical formulation and the stability of the active agent in the final medicament compositions. The pharmaceutically active substance used for preparing the pharmaceutical compositions should be as pure as possible and its stability in long-term storage must be guaranteed under various environmental conditions. This is absolutely essential to prevent the use of pharmaceutical compositions which contain, in addition to the actual active substance, breakdown products thereof, for example. In such cases the content of active substance in the medicament might be less than that specified.
  • Uniform distribution of the medicament in the formulation is a critical factor, particularly when the medicament has to be given in low doses. To ensure uniform distribution, the particle size of the active substance can be reduced to a suitable level, e.g. by grinding. Since breakdown of the pharmaceutically active substance as a side effect of the grinding (or micronising) has to be avoided as far as possible, in spite of the hard conditions required during the process, it is absolutely essential that the active substance should be highly stable throughout the grinding process. Only if the active substance is sufficiently stable during the grinding process is it possible to produce a homogeneous pharmaceutical formulation which always contains the specified amount of active substance in reproducible manner.
  • Another problem which may arise in the grinding process for preparing the desired pharmaceutical formulation is the input of energy caused by this process and the stress on the surface of the crystals. This may in certain circumstances lead to polymorphous changes, to a change in the amorphous configuration or to a change in the crystal lattice. Since the pharmaceutical quality of a pharmaceutical formulation requires that the active substance should always have the same crystalline morphology, the stability and properties of the crystalline active substance are subject to stringent requirements from this point of view as well.
  • The stability of a pharmaceutically active substance is also important in pharmaceutical compositions for determining the shelf life of the particular medicament; the shelf life is the length of time during which the medicament can be administered without any risk. High stability of a medicament in the abovementioned pharmaceutical compositions under various storage conditions is therefore an additional advantage for both the patient and the manufacturer.
  • Apart from the requirements indicated above, it should be generally borne in mind that any change to the solid state of a pharmaceutical composition which is capable of improving its physical and chemical stability gives a significant advantage over less stable forms of the same medicament.
  • The aim of the invention is thus to provide a new, stable crystalline form of the compound flibanserin which meets the stringent requirements imposed on pharmaceutically active substances as mentioned above.
  • BRIEF DESCRIPTION OF THE DRAWING
  • FIG. 1 shows the X-ray powder diffraction pattern of polymorph A of flibanserin.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Surprisingly, it has been found that the free base of flibanserin in a specific polymorphic form fulfills the requirements mentioned hereinbefore.
  • Moreover it has been found that, depending on the choice of conditions which can be applied during the synthesis of flibanserin the free base occurs in different crystalline modifications, polymorphs A and B.
  • It has been found that these different modifications can be deliberately produced by a suitable choice of the process conditions used in the manufacturing process.
  • Surprisingly, it has been found that polymorph A, which can be obtained in crystalline form by choosing specific reaction conditions, meets the stringent requirements mentioned above and thus solves the problem on which the present invention is based. Accordingly the present invention relates to polymorph A of flibanserin.
  • Polymorph A of flibanserin is characterised by a melting point of about 161° C. (determined via DSC; heating rate 10 K/min). 161° C. as determined using DSC.
  • Polymorph B, the less stable modification of flibanserin displays a melting point of about 120° C. (determined via DSC; heating rate 10 K/min). Whereas polymorph B shows little stability under the effects of for instance mechanical stress produced by grinding, polymorph A turned out to fulfill the aforementioned stability requirements.
  • According to another aspect, the present invention relates to a process for the manufacture of polymorph A of flibanserin in technical scale. The process according to the invention is illustrated in diagram 1.
  • Figure US20120270883A1-20121025-C00002
  • The benzimidazolone 2 is reacted with the piperazine-derivative 3 under basic reaction conditions in a suitable solvent to lead to 1. In 2 the group R denotes an amino protecting group. The protecting group used may be any of the groups commonly used to protect the amino function. Examples include groups selected from alkyl, substituted alkyl, heterosubstituted alkyl, unsaturated alkyl, alkyl substituted heteroatoms, substituted or unsubstituted phenyl, substituted or unsubstituted benzyl, alkyloxycarbonyl groups and aryloxycarbonyl groups. Preferred protecting groups are selected from butyl, 1,1-diphenylmethyl, methoxymethyl, benzyloxymethyl, trichloroethoxymethyl, pyrrolidinomethyl, cyanomethyl, pivaloyloxymethyl, allyl, 2-propenyl, t-butyldimethylsilyl, methoxy, thiomethyl, 4-methoxyphenyl, benzyl, 4-methoxybenzyl, 2,4-dimethoxybenzyl, 2-nitrobenzyl, t-butoxycarbonyl, benzyloxycarbonyl, phenoxy carbonyl, 4-chloro-phenoxycarbonyl, 4-nitro-phenoxycarbonyl, methoxycarbonyl and ethoxycarbonyl. Among them the preferred protecting groups are selected from t-butoxycarbonyl, ethoxycarbonyl, methoxycarbonyl, benzyloxycarbonyl, phenoxycarbonyl and 2-propenyl, the latter being most preferred. X in 3 represents a leaving group selected from chlorine, bromine, iodine, methanesulphonate, trifluoromethanesulphonate or para-toluenesulphonate. Preferably X denotes chlorine, bromine or iodine, chlorine being most preferred. Suitable solvents are selected from water, alcohols and mixtures of water with alcohols, polar aprotic solvents and mixtures thereof with water. Preferred solvents are selected from the group consisting of dimethylformamid, dimethylsulfoxid, acetonitrile, tetrahydrofurane, dioxane, methanol, ethanol isopropanaol and mixtures of one or several of the aforementioned solvents with water. Preferred solvents are those being readily miscible with water. Preferably, a mixture of water with one of the alcohols methanol, ethanol or isopropanol is used as the solvent. In a preferred embodiment a mixture of water and isopropanol is used as the solvent. The base used may be an alkali metal- or alkaline earth metal carbonate of lithium, sodium, potassium, calcium such as sodium carbonate, lithium carbonate, potassium carbonate, calcium carbonate and preferably potassium carbonate. It is also possible to use the hydrogen carbonates of lithium, sodium and potassium. Preferably, the alkali metal- or alkaline earth metal hydroxides of lithium, sodium, potassium, magnesium, calcium, but preferably sodium hydroxide, potassium hydroxide, lithium hydroxide and calcium hydroxide in alcohols or water may also be used. Most preferred base is sodium hydroxide. The base is preferably added in form of its aqueous solution, preferably in form of concentrated aqueous solutions, for example in concentrations between 30-50% weight/volume. In a preferred embodiment aqueous sodium hydroxide solution in a concentration of about 45% weight/volume is used.
  • The compounds 2 and 3 are introduced into the reaction in a molar ratio of between 1:1 to 1:2, preferably in a molar ratio of between 1:1.1 to 1:1.5.
  • As mentioned hereinbefore a mixture of water and isopropanol is used as a preferred solvent mixture for the conduction of the process according to the invention. In this solvent mixture the weight-ratio of water to isopropanol in the preferred solvent mixture is between 10:1 and 1:1, more preferred between 8:1 and 3:1, particular preferred between 7:1 and 5:1. Per mol of compound 2 about 2-10 kg, preferably
  • 3-8 kg, more preferred 4-7 kg of the aforementioned solvent mixture are used. In a preferred embodiment the reaction is conducted using aqueous sodium hydroxide solution in a concentration of about 45% weight/volume as the base. Per mol of 2 about 0.1-1.5 kg, preferably 0.2-1.0 kg, particularly preferred 0.3-0.6 kg of the aforementioned sodium hydroxide solution are used. The reaction mixture containing 2, 3 and the base in the aforementioned suitable solvent is preferably heated to at least 50° C. In a preferred embodiment the reaction temperature is in a range of between 60° C. to the boiling point of the solvent. Particularly preferred is a temperature between 70-90° C. The reaction mixture is heated at the aforementioned temperature for about 10 minutes to about 12 hours, preferably for about 15 minutes to about 6 hours, more preferably for about 30 minutes to about 3 hours. The reaction mixture is preferably heated at the aforementioned temperature for about 45 to 60 minutes.
  • Subsequently the protective group R is cleaved. The cleaving conditions depend on the choice of group R. If R denotes for instance benzyl, cleavage is conducted via hydrogenation in acetic acid in the presence of an appropriate catalyst (e.g. Pd on charcoal) or it can be cleaved in aqueous HBr. In case R is methoxycarbonyl, ethoxycarbonyl, phenoxy carbonyl, 4-nitrophenoxycarbonyl it can be cleaved for example by using aqueous alkaline solutions such as NaOH (aq) or KOH (aq). In case R is t-butoxycarbonyl it can be cleaved for instance in aqueous HCl or HBr. In case R denotes 2-propenyl, the particularly preferred protective group according to the invention, cleavage of R is effected via acidic reaction conditions. In a particularly preferred process according to the invention the 2-propenyl group is cleaved by using a strong mineral acid, preferably an acid selected from the group consisting of hydrobromic acid, hydrochloric acid and sulfuric acid, more preferably hydrochloric acid. Hydrochloric acid can be added in gaseous form or in form of its aqueous solutions, the addition of aqueous solutions being preferred. Particularly preferred is the addition of hydrochloric acid in form of its concentrated solution (about 36% weight/volume). Per mol 2 at least one mol of hydrochloric acid is to be added. Preferably the amount of added concentrated hydrochloric acid (36% weight/volume) per mol 2 is between 50-500 g, more preferred between 80-250 g. Particularly preferred about 120-160 g of concentrated (36% w/v) aqueous hydrochloric acid are added per mol 2 used. Additional water can be optionally added. At a temperature of about 70-90° C. about 30-70%, preferably about 35-60% of the solvent is removed via distillation. At a temperature of about 60-80° C. the pH of the remaining residue is adjusted to about 5-9, preferably to about 6-8 by addition of aqueous sodium hydroxide (45% w/v). At a temperature of about 40-55° C. the pH is adjusted to about 8-9 by addition of aqueous sodium hydroxide (45% w/v). Subsequently the mixture is cooled to about 20-40° C., preferably about 30-35° C. and centrifuged. The residue thus obtained is washed with about 100 to 750 ml water per mol introduced 2, preferably with about 200 to 500, particularly preferred with about 300 to 400 ml water per mol introduced 2 and isopropanol (about 50 to 250 g per mol 2, preferably about 100 to 200 g per mol 2) and then with water until chlorides elimination. Optionally the product thus obtained can be subjected to another purification step. Preferably, said purification is conducted via crystallization of 1 from for instance acetone.
  • One aspect of the present invention relates to flibanserin polymorph A obtainable via the method described above.
  • The following example of synthesis serves to illustrate a method of preparing polymorph A of flibanserin. It is to be regarded only as a possible method described by way of example, without restricting the invention to its contents.
  • Example
  • 375 kg of 1-[(3-trifluoromethyl)phenyl]-4-(2-cloroethyl)piperazin are charged in a reactor with 2500 kg of water and 200 kg of aqueous Sodium Hydroxide 45%. Under stirring 169.2 kg of 1-(2-propenyl)-1,3-dihydro-benzimidazol-2H-one, 780 kg of isopropanol, 2000 kg of water and 220 kg of aqueous Sodium Hydroxide 45% are added. The reaction mixture is heated to 75-85° C. and 160 kg of concentrated hydrochloric acid and 200 kg of water are added. The reaction mixture is stirred at constant temperature for about 45 minutes. After distillation of a mixture of water and Isopropanol (about 3000 kg) the remaining residue is cooled to about 65-75° C. and the pH is adjusted to 6.5-7.5 by addition of 125 kg of aqueous Sodium Hydroxide 45%. After cooling to a temperature of 45-50° C., the pH value is adjusted to 8-9 by addition of about 4 kg of aqueous Sodium Hydroxide 45%. Subsequently the mixture is cooled to 30-35° C. and centrifuged. The residue thus obtained is washed with 340 l of water and 126 l of isopropanol and then with water until chlorides elimination. The wet product is dried under vacuum at a temperature of about 45-55° C. which leads to 358 kg of crude flibanserin polymorph A. The crude product thus obtained is loaded in a reactor with 1750 kg of Acetone and the resulting mixture is heated under stirring until reflux. The obtained solution is filtered and the filtrate is concentrated by distillation. The temperature is maintained for about 1 hour 0-5° C., then the precipitate solid is isolated by filtration and dried at 55° C. for at least 12 hours.
  • The final yield is 280 kg of pure flibanserin polymorph A.
  • As mentioned here inbefore flibanserin polymorph A was characterised by DSC (Differential Scanning calorimetry). The peak temperature (endothermic maximum) determined for polymorph A is about 161° C. For the characterization via DSC a Mettler TA 3000 System equipped with TC 10-A processor and DSC 20 cell was applied. The heating rate was 10 K/min.
  • The flibanserin polymorph A was additionally characterised by powder x-ray diffractometry. The x-ray powder diffraction pattern for polymorph A was obtained according to the following conditions:
  • Equipment: Philips PW 1800/10 diffractometer equipped
    with a digital microvax 2000.
    Setting parameters: X-ray
    Type tube: Cu (long fine focus)
    Wavelengths (λ): Kα1 = 1.54060 Å
    Kα2 = 1.54439 Å
    Intensity ratio (α2/α1): 0.500
    Start angle [°2Θ]: 2.000
    End angle [°2Θ]: 60.000
    Step size [°2Θ]: 0.020
    Maximum intensity[s]: 7310.250
    Type of scan: continuous
    Minimum peak tip width: 0.00
    Maximum peak tip width: 1.00
    Peak base width: 2.00
    Minimum significance: 0.75
    Number of peaks: 69
    Generator: high voltage: 50 KV
    tube current: 30 mA
  • The x-ray powder diffraction pattern obtained for polymorph A is illustrated in FIG. 1. The appropriate values are shown below in Table 1.
  • TABLE 1
    Peak Back.
    Angle d-value d-value width Peak int int Rel. int
    [°2Θ] α1 [Å] α2 [Å] [°2Θ] [counts] [counts] [%] Signif.
    5.195 16.9967 17.0390 0.960 8 69 0.1 1.05
    9.045 9.7689 9.7931 0.100 92 96 1.3 0.97
    9.335 9.4660 9.4896 0.080 114 98 1.6 0.88
    10.025 8.8160 8.8379 0.140 400 100 5.5 7.18
    10.595 8.3430 8.3637 0.140 204 102 2.8 3.46
    11.290 7.8309 7.8503 0.140 467 104 6.4 6.91
    13.225 6.6891 6.7058 0.180 548 112 7.5 13.10
    14.595 6.0642 6.0793 0.180 404 121 5.5 9.17
    15.460 5.7268 5.7410 0.140 4186 125 57.3 23.20
    16.655 5.3185 5.3317 0.200 515 130 7.0 12.38
    17.085 5.1856 5.1985 0.100 1347 132 18.4 2.78
    17.285 5.1260 5.1388 0.060 1399 135 19.1 2.26
    17.420 5.0866 5.0992 0.100 1204 135 16.5 4.71
    18.140 4.8863 4.8984 0.180 1043 139 14.3 13.14
    18.650 4.7538 4.7656 0.120 1063 142 14.5 0.91
    19.140 4.6332 4.6447 0.140 7310 144 100.0 32.77
    19.820 4.4757 4.4869 0.160 3624 146 49.6 9.02
    20.080 4.4184 4.4294 0.140 5402 149 73.9 21.06
    20.385 4.3530 4.3638 0.160 2652 149 36.3 23.25
    21.215 4.1845 4.1949 0.160 369 154 5.0 5.78
    21.890 4.0570 4.0670 0.200 773 156 10.6 3.09
    22.630 3.9259 3.9357 0.280 4277 161 58.5 74.66
    23.210 3.8291 3.8386 0.120 484 164 6.6 3.33
    24.355 3.6516 3.6607 0.060 2725 169 37.3 1.16
    24.610 3.6144 3.6234 0.140 3540 172 48.4 17.08
    24.995 3.5596 3.5684 0.100 529 174 7.2 1.01
    25.260 3.5228 3.5316 0.120 557 174 7.6 3.02
    26.575 3.3514 3.3597 0.240 2421 182 33.1 42.58
    27.155 3.2811 3.2893 0.140 676 185 9.2 1.32
    27.310 3.2629 3.2710 0.100 767 185 10.5 2.75
    27.865 3.1991 3.2071 0.120 420 188 5.7 1.08
    28.210 3.1608 3.1686 0.100 1467 190 20.1 0.79
    28.325 3.1482 3.1560 0.140 1789 190 24.5 4.41
    28.650 3.1132 3.1210 0.180 1204 190 16.5 11.65
    29.520 3.0234 3.0309 0.220 1011 196 13.8 15.74
    30.250 2.9521 2.9594 0.120 159 199 2.2 1.22
    31.105 2.8729 2.8800 0.360 282 204 3.9 8.14
    31.905 2.8026 2.8096 0.100 339 207 4.6 0.96
    32.350 2.7651 2.7720 0.120 237 210 3.2 3.01
    33.300 2.6884 2.6950 0.180 1347 216 18.4 14.06
    33.640 2.6620 2.6686 0.100 404 216 5.5 1.45
    34.880 2.5701 2.5765 0.200 202 222 2.8 1.04
    35.275 2.5422 2.5486 0.240 299 225 4.1 4.84
    36.055 2.4890 2.4952 0.280 202 228 2.8 3.78
    36.910 2.4333 2.4393 0.320 169 234 2.3 0.90
    37.160 2.4175 2.4235 0.120 216 234 3.0 2.14
    37.680 2.3853 2.3912 0.240 240 237 3.3 1.58
    39.435 2.2831 2.2888 0.280 449 246 6.1 2.67
    39.675 2.2698 2.2755 0.080 396 246 5.4 0.82
    40.325 2.2347 2.2403 0.160 520 250 7.1 0.95
    40.930 2.2031 2.2086 0.120 480 253 6.6 2.66
    41.445 2.1769 2.1823 0.240 372 256 5.1 2.65
    41.990 2.1499 2.1552 0.120 538 259 7.4 1.31
    42.670 2.1172 2.1225 0.160 428 262 5.9 1.45
    43.145 2.0950 2.1002 0.120 433 266 5.9 1.50
    44.190 2.0478 2.0529 0.160 376 269 5.1 0.89
    46.095 1.9675 1.9724 0.160 279 279 3.8 0.86
    46.510 1.9509 1.9558 0.240 310 282 4.2 0.87
    48.305 1.8826 1.8872 0.200 506 292 6.9 2.06
    48.900 1.8610 1.8657 0.240 615 296 8.4 1.67
    50.330 1.8115 1.8160 0.160 437 303 6.0 1.73
    51.035 1.7881 1.7925 0.080 416 306 5.7 0.93
    53.550 1.7099 1.7141 0.480 177 317 2.4 2.84
    54.500 1.6823 1.6865 0.400 130 324 1.8 1.37
    55.420 1.6565 1.6606 0.320 130 328 1.8 1.72
    56.220 1.6348 1.6389 0.320 121 331 1.7 0.87
    56.770 1.6203 1.6243 0.240 142 335 1.9 1.59
    57.405 1.6039 1.6079 0.240 112 339 1.5 1.19
    58.500 1.5764 1.5804 0.240 67 342 0.9 1.57
  • In the light of the pharmaceutical efficacy of flibanserin, the present invention furthermore relates to the use of flibanserin polymorph A as a medicament.
  • A further aspect of the present invention relates to the use of flibanserin polymorph A for preparing a pharmaceutical composition for treating diseases in which the use of compounds displaying affinity for the 5-HTIA and 5-HT2-receptor may have a therapeutic benefit.
  • A further aspect of the present invention relates to the use of flibanserin polymorph A for preparing a pharmaceutical composition for treating a disease selected from depression, schizophrenia, Parkinson, anxiety, sleep disturbances, sexual and mental disorders and age associated memory impairment.
  • In particular, the instant invention relates to the use of flibanserin polymorph A for the preparation of a medicament for the treatment of disorders of sexual desire.
  • In a preferred embodiment the invention relates to the use of flibanserin polymorph A for the preparation of a medicament for the treatment of disorders selected from the group consisting of Hypoactive Sexual Desire Disorder, loss of sexual desire, lack of sexual desire, decreased sexual desire, inhibited sexual desire, loss of libido, libido disturbance, and frigidity.
  • Particular preferred according to the invention is the use of flibanserin polymorph A for the preparation of a medicament for the treatment of disorders selected from the group consisting of Hypoactive Sexual Desire Disorder, loss of sexual desire, lack of sexual desire, decreased sexual desire, inhibited sexual desire.
  • In a particularly preferred embodiment the invention relates to the use of flibanserin polymorph A for the preparation of a medicament for the treatment of disorders selected from the group of Hypoactive Sexual Desire Disorder and loss of sexual desire.
  • The aforementioned therapeutic effects of flibanserin polymorph A can be achieved in men and women. However, according to a further aspect of the invention the use of flibanserin polymorph A for the preparation of a medicament for the treatment of female sexual dysfunction is preferred.
  • The beneficial effects of flibanserin polymorph A can be observed regardless of whether the disturbance existed lifelong or was acquired, and independent of etiologic origin (organic—both, physically and drug induced-, psychogen, a combination of organic—both, physically and drug induced-, and psychogen, or unknown).
  • As a further feature of the present invention there are provided pharmaceutical compositions comprising as an active ingredient flibanserin polymorph A in addition with one or more pharmaceutical carrier, diluents or excipients. For pharmaceutical administration flibanserin polymorph A may be incorporated into the conventional pharmaceutical preparation in solid, liquid or spray form. The composition may, for example, be presented in a form suitable for oral, rectal, parenteral administration or for nasal inhalation: preferred forms includes for example, capsules, tablets, coated tablets, ampoules, suppositories and nasal spray. The active ingredient may be incorporated in excipients or carriers conventionally used in pharmaceutical compositions such as, for example, talc, arabic gum, lactose, gelatine, magnesium stearate, corn starch, aqueous or non acqueous vehicles, polyvinyl pyrrolidone, semisynthetic glycerides of fatty acids, benzalconium chloride, sodium phosphate, EDTA, polysorbate 80. The compositions are advantageously formulated in dosage units, each dosage unit being adapted to supply a single dose of the active ingredient. Each dosage unit may conveniently contain from 0.01 mg to 100 mg, preferably from 0.1 to 50 mg.

Claims (6)

1. A method of treating a disease, wherein said disease is schizophrenia, Parkinson's, anxiety, sleep disturbances, sexual and mental disorders or age associated memory impairment in a patient, comprising administering to said patient a therapeutically effective amount of a crystalline polymorph of flibanserin 1,
Figure US20120270883A1-20121025-C00003
having an endothermic maximum at about 161° C. which occurs during thermal analysis using Differential Scanning calorimetry.
2. The method of claim 1, wherein the crystalline polymorph of flibanserin 1 of flibanserin is characterized by an X-ray powder diffraction pattern comprising peaks (°2Θ) at 15.460, 19.140, 19.820, 20.080, 20.385, 22.630, 24.355, 24.610, 26.575, and 28.325.
3. The method of claim 1, wherein the crystalline polymorph of flibanserin 1 of flibanserin is characterized by an X-ray powder diffraction pattern comprising peaks (°2Θ) at 5.195, 9.045, 9.335, 10.025, 10.595, 11.290, 13.225, 14.595, 15.460, 16.655, 17.085, 17.285, 17.420, 18.140, 18.650, 19.140, 19.820, 20.080, 20.385, 21.215, 21.890, 22.630, 23.210, 24.355, 24.610, 24.995, 25.260, 26.575, 27.155, 27.310, 27.865, 28.210, 28.325, 28.650, 29.520, 30.250, 31.105, 31.905, 32.350, 33.300, 33.640, 34.880, 35.275, 36.055, 36.910, 37.160, 37.680, 39.435, 39.675, 40.325, 40.930, 41.445, 41.990, 42.670, 43.145, 44.190, 46.095, 46.510, 48.305, 48.900, 50.330, 51.035, 53.550, 54.500, 55.420, 56.220, 56.770, 57.405, and 58.500.
4. A method of treating a disease, wherein said disease is schizophrenia, Parkinson's, anxiety, sleep disturbances, sexual and mental disorders or age associated memory impairment in a patient, comprising administering to said patient a therapeutically effective amount of flibanserin 1,
Figure US20120270883A1-20121025-C00004
having an endothermic maximum at about 161° C. which occurs during thermal analysis using Differential Scanning calorimetry.
5. A method of treating a disease, wherein said disease is schizophrenia, Parkinson's, anxiety, sleep disturbances, sexual and mental disorders or age associated memory impairment in a patient, comprising administering to said patient a therapeutically effective amount of a polymorph of flibanserin 1 characterized by the following X-ray powder diffraction pattern:
Peak Back. Angle d-value d-value width Peak int int Rel. int [°2Θ] α1 [Å] α2 [Å] [°2Θ] [counts] [counts] [%] Signif. 5.195 16.9967 17.0390 0.960 8 69 0.1 1.05 9.045 9.7689 9.7931 0.100 92 96 1.3 0.97 9.335 9.4660 9.4896 0.080 114 98 1.6 0.88 10.025 8.8160 8.8379 0.140 400 100 5.5 7.18 10.595 8.3430 8.3637 0.140 204 102 2.8 3.46 11.290 7.8309 7.8503 0.140 467 104 6.4 6.91 13.225 6.6891 6.7058 0.180 548 112 7.5 13.10 14.595 6.0642 6.0793 0.180 404 121 5.5 9.17 15.460 5.7268 5.7410 0.140 4186 125 57.3 23.20 16.655 5.3185 5.3317 0.200 515 130 7.0 12.38 17.085 5.1856 5.1985 0.100 1347 132 18.4 2.78 17.285 5.1260 5.1388 0.060 1399 135 19.1 2.26 17.420 5.0866 5.0992 0.100 1204 135 16.5 4.71 18.140 4.8863 4.8984 0.180 1043 139 14.3 13.14 18.650 4.7538 4.7656 0.120 1063 142 14.5 0.91 19.140 4.6332 4.6447 0.140 7310 144 100.0 32.77 19.820 4.4757 4.4869 0.160 3624 146 49.6 9.02 20.080 4.4184 4.4294 0.140 5402 149 73.9 21.06 20.385 4.3530 4.3638 0.160 2652 149 36.3 23.25 21.215 4.1845 4.1949 0.160 369 154 5.0 5.78 21.890 4.0570 4.0670 0.200 773 156 10.6 3.09 22.630 3.9259 3.9357 0.280 4277 161 58.5 74.66 23.210 3.8291 3.8386 0.120 484 164 6.6 3.33 24.355 3.6516 3.6607 0.060 2725 169 37.3 1.16 24.610 3.6144 3.6234 0.140 3540 172 48.4 17.08 24.995 3.5596 3.5684 0.100 529 174 7.2 1.01 25.260 3.5228 3.5316 0.120 557 174 7.6 3.02 26.575 3.3514 3.3597 0.240 2421 182 33.1 42.58 27.155 3.2811 3.2893 0.140 676 185 9.2 1.32 27.310 3.2629 3.2710 0.100 767 185 10.5 2.75 27.865 3.1991 3.2071 0.120 420 188 5.7 1.08 28.210 3.1608 3.1686 0.100 1467 190 20.1 0.79 28.325 3.1482 3.1560 0.140 1789 190 24.5 4.41 28.650 3.1132 3.1210 0.180 1204 190 16.5 11.65 29.520 3.0234 3.0309 0.220 1011 196 13.8 15.74 30.250 2.9521 2.9594 0.120 159 199 2.2 1.22 31.105 2.8729 2.8800 0.360 282 204 3.9 8.14 31.905 2.8026 2.8096 0.100 339 207 4.6 0.96 32.350 2.7651 2.7720 0.120 237 210 3.2 3.01 33.300 2.6884 2.6950 0.180 1347 216 18.4 14.06 33.640 2.6620 2.6686 0.100 404 216 5.5 1.45 34.880 2.5701 2.5765 0.200 202 222 2.8 1.04 35.275 2.5422 2.5486 0.240 299 225 4.1 4.84 36.055 2.4890 2.4952 0.280 202 228 2.8 3.78 36.910 2.4333 2.4393 0.320 169 234 2.3 0.90 37.160 2.4175 2.4235 0.120 216 234 3.0 2.14 37.680 2.3853 2.3912 0.240 240 237 3.3 1.58 39.435 2.2831 2.2888 0.280 449 246 6.1 2.67 39.675 2.2698 2.2755 0.080 396 246 5.4 0.82 40.325 2.2347 2.2403 0.160 520 250 7.1 0.95 40.930 2.2031 2.2086 0.120 480 253 6.6 2.66 41.445 2.1769 2.1823 0.240 372 256 5.1 2.65 41.990 2.1499 2.1552 0.120 538 259 7.4 1.31 42.670 2.1172 2.1225 0.160 428 262 5.9 1.45 43.145 2.0950 2.1002 0.120 433 266 5.9 1.50 44.190 2.0478 2.0529 0.160 376 269 5.1 0.89 46.095 1.9675 1.9724 0.160 279 279 3.8 0.86 46.510 1.9509 1.9558 0.240 310 282 4.2 0.87 48.305 1.8826 1.8872 0.200 506 292 6.9 2.06 48.900 1.8610 1.8657 0.240 615 296 8.4 1.67 50.330 1.8115 1.8160 0.160 437 303 6.0 1.73 51.035 1.7881 1.7925 0.080 416 306 5.7 0.93 53.550 1.7099 1.7141 0.480 177 317 2.4 2.84 54.500 1.6823 1.6865 0.400 130 324 1.8 1.37 55.420 1.6565 1.6606 0.320 130 328 1.8 1.72 56.220 1.6348 1.6389 0.320 121 331 1.7 0.87 56.770 1.6203 1.6243 0.240 142 335 1.9 1.59 57.405 1.6039 1.6079 0.240 112 339 1.5 1.19 58.500 1.5764 1.5804 0.240 67 342 0.9 1.57
6. A method of treating a disease, wherein said disease is schizophrenia, Parkinson's, anxiety, sleep disturbances, sexual and mental disorders or age associated memory impairment in a patient, comprising administering to said patient a therapeutically effective amount of a polymorph of flibanserin 1 characterized by having an X-ray powder diffraction pattern as shown in FIG. 1.
US13/541,214 2001-08-02 2012-07-03 Use of a polymorph of flibanserin for treating disease Abandoned US20120270883A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/541,214 US20120270883A1 (en) 2001-08-02 2012-07-03 Use of a polymorph of flibanserin for treating disease
US13/905,709 US20140031365A1 (en) 2001-08-02 2013-05-30 Use of a polymorph of flibanserin for treating disease
US14/269,420 US20150005316A1 (en) 2001-08-02 2014-05-05 Use of a polymorph of flibanserin for treating disease
US14/876,235 US20160095855A1 (en) 2001-08-02 2015-10-06 Use of a polymorph of flibanserin for treating disease

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
EP01118593 2001-08-02
EP01118593.1 2001-08-02
US32943501P 2001-10-15 2001-10-15
EP01130180.1 2001-12-19
EP01130180 2001-12-19
US10/210,474 US7183410B2 (en) 2001-08-02 2002-08-01 Stable polymorph of flibanserin
US11/079,070 US20050159430A1 (en) 2001-08-02 2005-03-14 Use of a polymorph of flibanserin for treating disease
US12/170,884 US20090054458A1 (en) 2001-08-02 2008-07-10 Use of a polymorph of flibanserin for treating disease
US13/541,214 US20120270883A1 (en) 2001-08-02 2012-07-03 Use of a polymorph of flibanserin for treating disease

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/170,884 Continuation US20090054458A1 (en) 2001-08-02 2008-07-10 Use of a polymorph of flibanserin for treating disease

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/905,709 Continuation US20140031365A1 (en) 2001-08-02 2013-05-30 Use of a polymorph of flibanserin for treating disease

Publications (1)

Publication Number Publication Date
US20120270883A1 true US20120270883A1 (en) 2012-10-25

Family

ID=27440133

Family Applications (9)

Application Number Title Priority Date Filing Date
US10/210,474 Expired - Lifetime US7183410B2 (en) 2001-08-02 2002-08-01 Stable polymorph of flibanserin
US11/079,070 Abandoned US20050159430A1 (en) 2001-08-02 2005-03-14 Use of a polymorph of flibanserin for treating disease
US11/546,303 Abandoned US20070032654A1 (en) 2001-08-02 2006-10-12 Stable polymorph of flibanserin
US11/546,304 Expired - Lifetime US7420057B2 (en) 2001-08-02 2006-10-12 Stable polymorph of flibanserin
US12/170,884 Abandoned US20090054458A1 (en) 2001-08-02 2008-07-10 Use of a polymorph of flibanserin for treating disease
US13/541,214 Abandoned US20120270883A1 (en) 2001-08-02 2012-07-03 Use of a polymorph of flibanserin for treating disease
US13/905,709 Abandoned US20140031365A1 (en) 2001-08-02 2013-05-30 Use of a polymorph of flibanserin for treating disease
US14/269,420 Abandoned US20150005316A1 (en) 2001-08-02 2014-05-05 Use of a polymorph of flibanserin for treating disease
US14/876,235 Abandoned US20160095855A1 (en) 2001-08-02 2015-10-06 Use of a polymorph of flibanserin for treating disease

Family Applications Before (5)

Application Number Title Priority Date Filing Date
US10/210,474 Expired - Lifetime US7183410B2 (en) 2001-08-02 2002-08-01 Stable polymorph of flibanserin
US11/079,070 Abandoned US20050159430A1 (en) 2001-08-02 2005-03-14 Use of a polymorph of flibanserin for treating disease
US11/546,303 Abandoned US20070032654A1 (en) 2001-08-02 2006-10-12 Stable polymorph of flibanserin
US11/546,304 Expired - Lifetime US7420057B2 (en) 2001-08-02 2006-10-12 Stable polymorph of flibanserin
US12/170,884 Abandoned US20090054458A1 (en) 2001-08-02 2008-07-10 Use of a polymorph of flibanserin for treating disease

Family Applications After (3)

Application Number Title Priority Date Filing Date
US13/905,709 Abandoned US20140031365A1 (en) 2001-08-02 2013-05-30 Use of a polymorph of flibanserin for treating disease
US14/269,420 Abandoned US20150005316A1 (en) 2001-08-02 2014-05-05 Use of a polymorph of flibanserin for treating disease
US14/876,235 Abandoned US20160095855A1 (en) 2001-08-02 2015-10-06 Use of a polymorph of flibanserin for treating disease

Country Status (1)

Country Link
US (9) US7183410B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110015207A1 (en) * 2006-12-20 2011-01-20 Boehringer Ingelheim International Gmbh Sulfated benzimidazolone derivatives having mixed serotonine receptor affinity
US8785458B2 (en) 2005-08-03 2014-07-22 Sprout Pharmaceuticals, Inc. Use of flibanserin in the treatment of obesity
US9782403B2 (en) 2001-10-20 2017-10-10 Sprout Pharmaceuticals, Inc. Treating sexual desire disorders with flibanserin
US10675280B2 (en) 2001-10-20 2020-06-09 Sprout Pharmaceuticals, Inc. Treating sexual desire disorders with flibanserin

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7183410B2 (en) 2001-08-02 2007-02-27 Bidachem S.P.A. Stable polymorph of flibanserin
US20030060475A1 (en) * 2001-08-10 2003-03-27 Boehringer Ingelheim Pharma Kg Method of using flibanserin for neuroprotection
US20040048877A1 (en) * 2002-05-22 2004-03-11 Boehringer Ingelheim Pharma Gmbh & Co. Kg Pharmaceutical compositions containing flibanserin
US20050239798A1 (en) * 2004-04-22 2005-10-27 Boehringer Ingelheim Pharmaceuticals, Inc. Method for the treatment of premenstrual and other female sexual disorders
MXPA06012059A (en) * 2004-04-22 2007-01-25 Boehringer Ingelheim Int New pharmaceutical compositions for the treatment of sexual disorders ii.
US20060025420A1 (en) * 2004-07-30 2006-02-02 Boehringer Ingelheimn International GmbH Pharmaceutical compositions for the treatment of female sexual disorders
EP1789048A1 (en) * 2004-09-03 2007-05-30 Boehringer Ingelheim International GmbH Method for the treatment of attention deficit hyperactivity disorder
WO2006096439A2 (en) * 2005-03-04 2006-09-14 Boehringer Ingelheim International Gmbh Pharmaceutical compositions for the treatment and/or prevention of schizophrenia and related diseases
JP2008538741A (en) * 2005-03-04 2008-11-06 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Pharmaceutical composition for the treatment and / or prevention of depression
WO2006096434A2 (en) * 2005-03-04 2006-09-14 Boehringer Ingelheim International Gmbh Pharmaceutical compositions for the treatment and/or prevention of anxiety disorders
CA2608249A1 (en) * 2005-05-06 2006-11-16 Boehringer Ingelheim International Gmbh Method for the treatment of drug abuse with flibanserin
CA2608713A1 (en) * 2005-05-19 2006-11-23 Boehringer Ingelheim International Gmbh Method for the treatment of sexual dysfunctions due to medical conditions
US20060264511A1 (en) * 2005-05-19 2006-11-23 Boehringer Ingelheim International Gmbh Method for the treatment of drug-induced sexual dysfunction
EP1945214A1 (en) * 2005-10-29 2008-07-23 Boehringer Ingelheim International GmbH Benzimidazolone derivatives for the treatment of premenstrual and other female sexual disorders
US20070123540A1 (en) * 2005-10-29 2007-05-31 Angelo Ceci Sexual desire enhancing medicaments comprising benzimidazolone derivatives
US20070105869A1 (en) * 2005-11-08 2007-05-10 Stephane Pollentier Use of flibanserin for the treatment of pre-menopausal sexual desire disorders
CA2649938A1 (en) * 2006-05-09 2007-11-15 Boehringer Ingelheim International Gmbh Use of flibanserin for the treatment of post-menopausal sexual desire disorders
ATE456369T1 (en) 2006-06-30 2010-02-15 Boehringer Ingelheim Int FLIBANSERIN FOR THE TREATMENT OF URINARY INCONTINENCE AND ASSOCIATED DISEASES
CA2657043A1 (en) * 2006-07-14 2008-01-17 Boehringer Ingelheim International Gmbh Use of flibanserin for the treatment of sexual disorders in females
CL2007002214A1 (en) * 2006-08-14 2008-03-07 Boehringer Ingelheim Int PHARMACEUTICAL COMPOSITION IN THE FORM OF COMPRESSED, WHERE AT LEAST THE LENGTH OF THE COMPRESSED IN THE PREVIOUS STATE OF THE APPLICATION IS AT LEAST 7/12 OF THE PILOR DIAMETER OF THE PATIENT AND AFTER INGERING IT IN THE FOOD STATE, THE LENGTH OF THE COMP
WO2008019996A2 (en) * 2006-08-14 2008-02-21 Boehringer Ingelheim International Gmbh Formulations of flibanserin and method for manufacturing the same
MX2009002031A (en) * 2006-08-25 2009-03-06 Boehringer Ingelheim Int Controlled release system and method for manufacturing the same.
WO2008090742A1 (en) * 2007-01-23 2008-07-31 National University Corporation Hokkaido University Non-human animal for eye disease model
US20100093754A1 (en) * 2007-03-28 2010-04-15 Boehringer Ingelheim International Gmbh Pharmaceutical Compositions Comprising Flibanserin and a Further Agent in the Treatment of Sexual Disorders
CL2008002693A1 (en) 2007-09-12 2009-10-16 Boehringer Ingelheim Int Use of flibanserin for the treatment of selected vasomotor symptoms of hot flashes, night sweats, mood swings, and irritability
CA2686480A1 (en) 2008-12-15 2010-06-15 Boehringer Ingelheim International Gmbh New salts
CN113683570A (en) * 2016-01-31 2021-11-23 孟晓明 New crystal form of flibanserin, preparation method and application thereof
CN109020923A (en) * 2017-06-12 2018-12-18 上海百灵医药科技有限公司 A kind of Preparation Method And Their Intermediate of flibanserin intermediate
CN109232434A (en) * 2018-10-29 2019-01-18 湖北大学 A kind of new method synthesizing flibanserin

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0526434A1 (en) * 1991-07-30 1993-02-03 BOEHRINGER INGELHEIM ITALIA S.p.A. Benzimidazolone derivatives as 5-HT1A and 5-HT2 antagonists

Family Cites Families (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US546303A (en) * 1895-09-17 Half to james stewart
US210474A (en) * 1878-12-03 Improvement in leather-finishing machines
US546304A (en) * 1895-09-17 Shutter-hook
US658611A (en) * 1898-10-12 1900-09-25 Bausch & Lomb Microscope.
US658551A (en) * 1899-10-21 1900-09-25 Edward S Lord Bracket or fixture.
US658566A (en) * 1900-06-18 1900-09-25 John F Deems Feed-water heater.
US734405A (en) * 1902-08-05 1903-07-21 Samuel J H Howell Fertilizer-distributer and seed-dropper.
US3096248A (en) * 1959-04-06 1963-07-02 Rexall Drug & Chemical Company Method of making an encapsulated tablet
US3406178A (en) * 1964-02-04 1968-10-15 Monsanto Chem Australia Ltd Preparation of 2-substituted benzimidazoles
US3362956A (en) * 1965-08-19 1968-01-09 Sterling Drug Inc 1-[(heterocyclyl)-lower-alkyl]-4-substituted-piperazines
US4200641A (en) * 1976-12-21 1980-04-29 Janssen Pharmaceutica, N.V. 1-[(Heterocyclyl)-alkyl]-4-diarylmethoxy piperidine derivatives
IL57569A0 (en) 1978-06-20 1979-10-31 Synthelabo Phenylpiperazine derivative,their preparation and pharmaceutical compositions containing them
DE3000979A1 (en) * 1980-01-12 1981-07-23 Dr. Karl Thomae Gmbh, 7950 Biberach NEW DIPYRIDAMOL RETARD FORMS AND METHOD FOR THEIR PRODUCTION
IT1176613B (en) * 1984-08-14 1987-08-18 Ravizza Spa PHARMACOLOGICALLY ACTIVE PIPERAZINIC DERIVATIVES AND PROCESS FOR THEIR PREPARATION
IE58370B1 (en) 1985-04-10 1993-09-08 Lundbeck & Co As H Indole derivatives
GB8607294D0 (en) * 1985-04-17 1986-04-30 Ici America Inc Heterocyclic amide derivatives
HUT43600A (en) 1985-06-22 1987-11-30 Sandoz Ag Process for production of new thiazole derivatives and medical compound containing those
DE3620643A1 (en) 1985-06-22 1987-01-22 Sandoz Ag Thiazoles, their preparation and use
GB8601160D0 (en) * 1986-01-17 1986-02-19 Fujisawa Pharmaceutical Co Heterocyclic compounds
US5036088A (en) * 1986-06-09 1991-07-30 Pfizer Inc. Antiallergy and antiinflammatory agents, compositions and use
JPH0784462B2 (en) * 1986-07-25 1995-09-13 日清製粉株式会社 Benzimidazole derivative
US4968508A (en) * 1987-02-27 1990-11-06 Eli Lilly And Company Sustained release matrix
US4792452A (en) * 1987-07-28 1988-12-20 E. R. Squibb & Sons, Inc. Controlled release formulation
GB8830312D0 (en) 1988-12-28 1989-02-22 Lundbeck & Co As H Heterocyclic compounds
US4954503A (en) * 1989-09-11 1990-09-04 Hoechst-Roussel Pharmaceuticals, Inc. 3-(1-substituted-4-piperazinyl)-1H-indazoles
AU647518B2 (en) 1990-08-24 1994-03-24 Shin-Etsu Chemical Co. Ltd. Coating base for pharmaceutical film and production thereof
NZ241613A (en) * 1991-02-27 1993-06-25 Janssen Pharmaceutica Nv Highlighting intagliations in tablets
SE9100860D0 (en) * 1991-03-22 1991-03-22 Kabi Pharmacia Ab NEW USE
FR2675800A1 (en) 1991-04-26 1992-10-30 Rhone Poulenc Rorer Sa HETEROCYCLIC ANTISEROTONINE DERIVATIVES AND PREPARATION AND MEDICAMENTS CONTAINING SAME.
US5407686A (en) * 1991-11-27 1995-04-18 Sidmak Laboratories, Inc. Sustained release composition for oral administration of active ingredient
US5225417A (en) * 1992-01-21 1993-07-06 G. D. Searle & Co. Opioid agonist compounds
US5492907A (en) * 1992-12-09 1996-02-20 The United States Of America As Represented By The Department Of Health & Human Services Antipsychotic composition and method of treatment
FR2707294B1 (en) * 1993-07-06 1995-09-29 Pf Medicament New derivatives of 3,5-dioxo- (2H, 4H) -1,2,4-triazine, their preparation and their application in human therapy.
CA2192975C (en) 1994-06-14 1999-09-21 Anton F. Fliri Benzimidazolone derivatives
PT777477E (en) 1994-08-23 2003-03-31 Smithkline Beecham Plc IMPROVED PHARMACEUTICAL FORMULATIONS CONTAINING IBUPROFEN AND CODEINA
DE69531476T2 (en) 1994-09-12 2004-06-09 Lilly Industries Ltd., Basingstoke Serotonergic modulators
JPH08143476A (en) 1994-11-18 1996-06-04 Japan Tobacco Inc Medicinal agent release-controlling membrane and solid preparation
FR2727682A1 (en) 1994-12-02 1996-06-07 Pf Medicament NOVEL DERIVATIVES OF 3,5-DIOXO- (2H, 4H) -1,2,4-TRIAZINES, THEIR PREPARATION AND THEIR USE AS A MEDICINAL PRODUCT
US5552412A (en) * 1995-01-09 1996-09-03 Pfizer Inc 5-substitued-6-cyclic-5,6,7,8-tetrahydronaphthalen2-ol compounds which are useful for treating osteoporosis
US5883094A (en) * 1995-04-24 1999-03-16 Pfizer Inc. Benzimidazolone derivatives with central dopaminergic activity
US5854290A (en) * 1995-09-21 1998-12-29 Amy F. T. Arnsten Use of guanfacine in the treatment of behavioral disorders
US6083947A (en) * 1996-01-29 2000-07-04 The Regents Of The University Of California Method for treating sexual dysfunctions
GB9613423D0 (en) 1996-06-26 1996-08-28 Lilly Industries Ltd Pharmaceutical compounds
US5916916A (en) * 1996-10-10 1999-06-29 Eli Lilly And Company 1-aryloxy-2-arylnaphthyl compounds, intermediates, compositions, and methods
JP2001504851A (en) * 1996-12-02 2001-04-10 メルク シヤープ エンド ドーム リミテツド Use of an NK-1 receptor antagonist for the treatment of sexual dysfunction
US5859246A (en) 1997-01-30 1999-01-12 Neurogen Corporation 1-phenyl-4-benzylpiperazines: dopamine receptor subtype specific ligands
GB9706089D0 (en) 1997-03-24 1997-05-14 Scherer Ltd R P Pharmaceutical composition
US20040023948A1 (en) * 1997-03-24 2004-02-05 Green Richard David Fast-dispersing dosage form containing 5-HT1 agonists
ES2226128T3 (en) * 1997-06-11 2005-03-16 THE PROCTER & GAMBLE COMPANY COMPRESSED COVERED WITH A FILM FOR IMPROVED SUPERIOR GASTROINTESTINAL TRACT SECURITY.
EP0901787B1 (en) * 1997-09-10 2003-05-28 Takeda Chemical Industries, Ltd. Stabilized pharmaceutical composition
CH692199A8 (en) 1997-10-09 2002-06-14 Cermol S.A. PYRIDIC COMPOUNDS AND PHARMACEUTICAL COMPOSITIONS
JP3724157B2 (en) * 1997-10-30 2005-12-07 コニカミノルタホールディングス株式会社 Video observation device
FR2775188B1 (en) * 1998-02-23 2001-03-09 Lipha IMMEDIATE RELEASE ORAL EXTENDED RELEASE GALENIC FORM COMPRISING AN ABSORPTION PROMOTING AGENT AND USE OF THE ABSORPTION PROMOTING AGENT
US20020151543A1 (en) * 1998-05-28 2002-10-17 Sepracor Inc. Compositions and methods employing R (-) fluoxetine and other active ingredients
US6068846A (en) * 1998-08-05 2000-05-30 Melaleuca, Incorporated Methods and materials for treating depression and mood disorder
EP0982030A3 (en) 1998-08-17 2000-05-10 Pfizer Products Inc. 2,7-substituted octahydro-pyrrolo 1,2-a]pyrazine derivatives as 5ht 1a ligands
AU1738900A (en) 1998-11-19 2000-06-05 Nortran Pharmaceuticals Inc. Serotonin ligands as pro-erectile compounds
US6680071B1 (en) * 1999-03-03 2004-01-20 R. P. Scherer Technologies, Inc. Opioid agonist in a fast dispersing dosage form
EP1173168A2 (en) 1999-04-28 2002-01-23 Respiratorius AB Compound for use as a medicament for treatment of disorders involving bronchocontraction
EP1198682B1 (en) * 1999-07-23 2005-11-16 Mann + Hummel GmbH Rapid-action coupling for opening a valve
US6346548B1 (en) * 1999-08-16 2002-02-12 Cephalon, Inc. Compositions including modafinil for treatment of attention deficit hyperactivity disorder and multiple sclerosis fatigue
IT1313625B1 (en) 1999-09-22 2002-09-09 Boehringer Ingelheim Italia BENZIMIDAZOLONIC DERIVATIVES WITH MIXED AFFINITY FOR DYEROTONIN AND DOPAMIN RECEPTORS.
US7310618B2 (en) * 2000-02-22 2007-12-18 Lehman Brothers Inc. Automated loan evaluation system
MXPA02008183A (en) * 2000-02-24 2002-11-29 Upjohn Co New drug combinations.
US6586435B2 (en) * 2000-09-19 2003-07-01 Boehringer Ingelheim Pharma Kg Benzimidazolone derivatives displaying affinity at the serotonin and dopamine receptors
ATE341538T1 (en) 2000-09-19 2006-10-15 Boehringer Ingelheim Pharma BENZIMIDAZOLONE DERIVATIVES WITH AFFINITY FOR SEROTONIN AND DOPAMINE RECEPTORS
US6521623B1 (en) * 2000-09-19 2003-02-18 Boehringer Ingelheim Pharma Kg N,N'-disubstituted benzimidazolone derivatives with affinity at the serotonin and dopamine receptors
EP1373192A1 (en) 2001-03-28 2004-01-02 Pfizer Limited N-phenpropylcyclopentyl-substituted glutaramide derivatives as nep inhibitors for fsad
DK1256343T3 (en) * 2001-05-11 2006-10-30 Juergen K Dr Beck Flibanserin for the treatment of extrapyramidal movement disorders
US6627646B2 (en) * 2001-07-17 2003-09-30 Sepracor Inc. Norastemizole polymorphs
DE60231070D1 (en) 2001-07-30 2009-03-19 Spectrum Pharmaceuticals Inc Arylpiperazine bound purine derivatives
ATE288911T1 (en) 2001-08-02 2005-02-15 Bidachem Spa STABLE POLYMORPHOE OF FLIBANSERIN, INDUSTRIAL PROCESS FOR THE PRODUCTION THEREOF AND ITS USE FOR THE PRODUCTION OF MEDICATIONS
US7183410B2 (en) 2001-08-02 2007-02-27 Bidachem S.P.A. Stable polymorph of flibanserin
US20030060475A1 (en) * 2001-08-10 2003-03-27 Boehringer Ingelheim Pharma Kg Method of using flibanserin for neuroprotection
DE10138273A1 (en) 2001-08-10 2003-02-27 Boehringer Ingelheim Pharma Medicines with neuroprotective effects
HUP0202719A3 (en) * 2001-08-21 2006-01-30 Pfizer Prod Inc Pharmaceutical compositions for the treatment of female sexual dysfunctions
DE10149674A1 (en) * 2001-10-09 2003-04-24 Apogepha Arzneimittel Gmbh Orally administered composition for sustained release of propiverine, useful for treatment of hypertonic bladder disorders, especially by once-daily administration
UA78974C2 (en) * 2001-10-20 2007-05-10 Boehringer Ingelheim Pharma Use of flibanserin for treating disorders of sexual desire
DE10209982A1 (en) * 2002-03-07 2003-09-25 Boehringer Ingelheim Pharma Dosage form to be administered orally for poorly soluble basic active ingredients
US6856211B2 (en) * 2002-05-21 2005-02-15 Nagano Japan Radio Co., Ltd. Coaxial type impedance matching device
US20040048877A1 (en) * 2002-05-22 2004-03-11 Boehringer Ingelheim Pharma Gmbh & Co. Kg Pharmaceutical compositions containing flibanserin
US20040116532A1 (en) * 2002-09-13 2004-06-17 Craig Heacock Pharmaceutical formulations of modafinil
US20040132697A1 (en) * 2002-11-06 2004-07-08 Pfizer Inc. Treatment of female sexual dysfunction
US20040147581A1 (en) * 2002-11-18 2004-07-29 Pharmacia Corporation Method of using a Cox-2 inhibitor and a 5-HT1A receptor modulator as a combination therapy
WO2004063864A2 (en) * 2003-01-06 2004-07-29 Laura Berman Method and system for computerized sexual function assessment of female users
US20050004105A1 (en) * 2003-01-29 2005-01-06 Emer Leahy Treatment for a attention-deficit hyperactivity disorder
US20050037983A1 (en) * 2003-03-11 2005-02-17 Timothy Dinan Compositions and methods for the treatment of depression and other affective disorders
US20050065158A1 (en) * 2003-07-16 2005-03-24 Pfizer Inc. Treatment of sexual dysfunction
EP1510133A1 (en) * 2003-09-01 2005-03-02 Belovo S.A., Egg Science & Technology Balanced oil composition
US20050239798A1 (en) * 2004-04-22 2005-10-27 Boehringer Ingelheim Pharmaceuticals, Inc. Method for the treatment of premenstrual and other female sexual disorders
MXPA06012059A (en) * 2004-04-22 2007-01-25 Boehringer Ingelheim Int New pharmaceutical compositions for the treatment of sexual disorders ii.
US20060014757A1 (en) * 2004-07-14 2006-01-19 Boehringer Ingelheim Pharmaceuticals Method for the treatment of anorexia nervosa
US20060025420A1 (en) * 2004-07-30 2006-02-02 Boehringer Ingelheimn International GmbH Pharmaceutical compositions for the treatment of female sexual disorders
EP1789048A1 (en) * 2004-09-03 2007-05-30 Boehringer Ingelheim International GmbH Method for the treatment of attention deficit hyperactivity disorder
JP2008538741A (en) * 2005-03-04 2008-11-06 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Pharmaceutical composition for the treatment and / or prevention of depression
WO2006096434A2 (en) * 2005-03-04 2006-09-14 Boehringer Ingelheim International Gmbh Pharmaceutical compositions for the treatment and/or prevention of anxiety disorders
WO2006096439A2 (en) * 2005-03-04 2006-09-14 Boehringer Ingelheim International Gmbh Pharmaceutical compositions for the treatment and/or prevention of schizophrenia and related diseases
CA2608249A1 (en) * 2005-05-06 2006-11-16 Boehringer Ingelheim International Gmbh Method for the treatment of drug abuse with flibanserin
US20060258640A1 (en) * 2005-05-13 2006-11-16 Boehringer Ingelheim International Gmbh Use of Flibanserin in the treatment of chronic pain
CA2608713A1 (en) * 2005-05-19 2006-11-23 Boehringer Ingelheim International Gmbh Method for the treatment of sexual dysfunctions due to medical conditions
US20060264511A1 (en) * 2005-05-19 2006-11-23 Boehringer Ingelheim International Gmbh Method for the treatment of drug-induced sexual dysfunction
US8227476B2 (en) * 2005-08-03 2012-07-24 Sprout Pharmaceuticals, Inc. Use of flibanserin in the treatment of obesity
US20070123540A1 (en) * 2005-10-29 2007-05-31 Angelo Ceci Sexual desire enhancing medicaments comprising benzimidazolone derivatives
EP1945214A1 (en) * 2005-10-29 2008-07-23 Boehringer Ingelheim International GmbH Benzimidazolone derivatives for the treatment of premenstrual and other female sexual disorders
US20070105869A1 (en) * 2005-11-08 2007-05-10 Stephane Pollentier Use of flibanserin for the treatment of pre-menopausal sexual desire disorders
EP1988898A2 (en) * 2006-02-18 2008-11-12 Boehringer Ingelheim International Gmbh Pharmaceutical compositions for the treatment of attention deficit hyperactivity disorder comprising flibanserin
JP2009527525A (en) * 2006-02-20 2009-07-30 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Benzimidazolone derivatives for the treatment of urinary incontinence
CA2642368A1 (en) * 2006-02-28 2007-09-07 Boehringer Ingelheim International Gmbh Treatment of prevention of valvular heart disease with flibanserin
CA2649938A1 (en) * 2006-05-09 2007-11-15 Boehringer Ingelheim International Gmbh Use of flibanserin for the treatment of post-menopausal sexual desire disorders
JP2009543767A (en) * 2006-07-14 2009-12-10 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Composition comprising flibanserin and caffeine, its preparation method and use as a medicine
WO2008019996A2 (en) * 2006-08-14 2008-02-21 Boehringer Ingelheim International Gmbh Formulations of flibanserin and method for manufacturing the same
CL2007002214A1 (en) * 2006-08-14 2008-03-07 Boehringer Ingelheim Int PHARMACEUTICAL COMPOSITION IN THE FORM OF COMPRESSED, WHERE AT LEAST THE LENGTH OF THE COMPRESSED IN THE PREVIOUS STATE OF THE APPLICATION IS AT LEAST 7/12 OF THE PILOR DIAMETER OF THE PATIENT AND AFTER INGERING IT IN THE FOOD STATE, THE LENGTH OF THE COMP
MX2009002031A (en) * 2006-08-25 2009-03-06 Boehringer Ingelheim Int Controlled release system and method for manufacturing the same.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0526434A1 (en) * 1991-07-30 1993-02-03 BOEHRINGER INGELHEIM ITALIA S.p.A. Benzimidazolone derivatives as 5-HT1A and 5-HT2 antagonists

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9782403B2 (en) 2001-10-20 2017-10-10 Sprout Pharmaceuticals, Inc. Treating sexual desire disorders with flibanserin
US10675280B2 (en) 2001-10-20 2020-06-09 Sprout Pharmaceuticals, Inc. Treating sexual desire disorders with flibanserin
US11058683B2 (en) 2001-10-20 2021-07-13 Sprout Pharmaceuticals, Inc. Treating sexual desire disorders with flibanserin
US8785458B2 (en) 2005-08-03 2014-07-22 Sprout Pharmaceuticals, Inc. Use of flibanserin in the treatment of obesity
US9730927B2 (en) 2005-08-03 2017-08-15 Sprout Pharmaceuticals, Inc. Use of flibanserin in the treatment of obesity
US10335407B2 (en) 2005-08-03 2019-07-02 Sprout Pharmaceuticals, Inc. Use of flibanserin in the treatment of obesity
US10874668B2 (en) 2005-08-03 2020-12-29 Sprout Pharmaceuticals, Inc. Use of Flibanserin in the treatment of obesity
US20110015207A1 (en) * 2006-12-20 2011-01-20 Boehringer Ingelheim International Gmbh Sulfated benzimidazolone derivatives having mixed serotonine receptor affinity
US8722682B2 (en) 2006-12-20 2014-05-13 Sprout Pharmaceuticals, Inc. Sulfated benzimidazolone derivatives having mixed serotonin receptor affinity

Also Published As

Publication number Publication date
US20140031365A1 (en) 2014-01-30
US7420057B2 (en) 2008-09-02
US20090054458A1 (en) 2009-02-26
US20160095855A1 (en) 2016-04-07
US7183410B2 (en) 2007-02-27
US20030119850A1 (en) 2003-06-26
US20070032655A1 (en) 2007-02-08
US20150005316A1 (en) 2015-01-01
US20070032654A1 (en) 2007-02-08
US20050159430A1 (en) 2005-07-21

Similar Documents

Publication Publication Date Title
US7420057B2 (en) Stable polymorph of flibanserin
EP1414816B1 (en) Stable polymorph of flibanserin, technical process for its preparation and the use thereof for preparing medicaments
AU2002331361A1 (en) Stable polymorph of flibanserin, technical process for its preparation and the use thereof for preparing medicaments
JPS639501B2 (en)
KR20010079696A (en) Pyrazine Compounds
HU184859B (en) Process for producing new 1-figure bracket-square bracket-bracket-alkoxy-carbonyl-bracket closed-alkyl-square bracket closed-amino-figure bracket closed-3-bracket-substituted phenoxy-bracket closed-2-propanol derivatives
JPH0825997B2 (en) 3-Aminopropyloxyphenyl derivative, process for producing the same, and pharmaceutical composition containing them
KR100519870B1 (en) Novel amide derivatives and a pharmaceutical composition containing the same
ZA200309586B (en) Stable polymorph of flibanserin technical process for its preparation and the use thereof for preparing medicaments
US4616011A (en) Novel indole derivatives and pharmaceutical compositions containing same
AU2008286823A1 (en) Therapeutic compounds
EP0324543A2 (en) Antiarrhythmic agents
WO1993014091A1 (en) Alkyl derivatives of trazodone with cns activity
NO326098B1 (en) Stable polymorph of flibanserin, technical process for the preparation thereof and use thereof for the manufacture of medicaments
NZ196928A (en) 1-(cyano(acylamino)phenoxy)-3-alkylaminopropan-2-ols
BR122012029907B1 (en) CRYSTAL POLYMORPHINE (FORM) OF FLIBANSERIN 1, ITS USE, PROCESS FOR PREPARATION OF FLIBANSERIN 1, AND PHARMACEUTICAL COMPOSITIONS
KR890000620B1 (en) Process for the preparation of 1-aryloxy-3-alkylamino propan-2-ols
CA1087199A (en) 1-(naphthylethyl)imidazole derivatives

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION