US20120252001A1 - Method of Blood Pooling and Storage - Google Patents

Method of Blood Pooling and Storage Download PDF

Info

Publication number
US20120252001A1
US20120252001A1 US13/483,379 US201213483379A US2012252001A1 US 20120252001 A1 US20120252001 A1 US 20120252001A1 US 201213483379 A US201213483379 A US 201213483379A US 2012252001 A1 US2012252001 A1 US 2012252001A1
Authority
US
United States
Prior art keywords
component
blood
units
rbcs
rbc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US13/483,379
Other versions
US10385317B2 (en
Inventor
Beth Shaz
Christopher D. Hillyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New York Blood Center Inc
Original Assignee
New York Blood Center Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New York Blood Center Inc filed Critical New York Blood Center Inc
Priority to US13/483,379 priority Critical patent/US10385317B2/en
Assigned to NEW YORK BLOOD CENTER, INC. reassignment NEW YORK BLOOD CENTER, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HILLYER, CHRISTOPHER D., SHAZ, BETH
Publication of US20120252001A1 publication Critical patent/US20120252001A1/en
Priority to US16/514,689 priority patent/US20190338248A1/en
Application granted granted Critical
Publication of US10385317B2 publication Critical patent/US10385317B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0641Erythrocytes
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K5/00Feeding devices for stock or game ; Feeding wagons; Feeding stacks
    • A01K5/01Feed troughs; Feed pails
    • A01K5/0114Pet food dispensers; Pet food trays
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K5/00Feeding devices for stock or game ; Feeding wagons; Feeding stacks
    • A01K5/02Automatic devices
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K5/00Feeding devices for stock or game ; Feeding wagons; Feeding stacks
    • A01K5/02Automatic devices
    • A01K5/0291Automatic devices with timing mechanisms, e.g. pet feeders
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0205Chemical aspects
    • A01N1/021Preservation or perfusion media, liquids, solids or gases used in the preservation of cells, tissue, organs or bodily fluids
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0205Chemical aspects
    • A01N1/021Preservation or perfusion media, liquids, solids or gases used in the preservation of cells, tissue, organs or bodily fluids
    • A01N1/0226Physiologically active agents, i.e. substances affecting physiological processes of cells and tissue to be preserved, e.g. anti-oxidants or nutrients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/16Blood plasma; Blood serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/18Erythrocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/19Platelets; Megacaryocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/02Blood transfusion apparatus
    • A61M1/0272Apparatus for treatment of blood or blood constituents prior to or for conservation, e.g. freezing, drying or centrifuging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • A61M1/342Adding solutions to the blood, e.g. substitution solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • A61M1/3496Plasmapheresis; Leucopheresis; Lymphopheresis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0644Platelets; Megakaryocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/04Liquids
    • A61M2202/0413Blood
    • A61M2202/0429Red blood cells; Erythrocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/20Pathogenic agents

Definitions

  • RBCs red blood cell
  • platelets platelets
  • plasma products which can potentially benefit three different patients.
  • blood processing by blood banks is not optimized for quality and reproducibility of blood components.
  • Stored RBCs suffer certain disadvantages.
  • the lifespan of stored RBCs is 42 days, which given the fluctuation of supply and demand for RBCs, can lead to dangerous shortages in times of unexpected need.
  • RBCs can also harbor pathogens that can endanger the recipient if the pathogen is transmitted via transfusion.
  • each individual unit of blood collected is fractionated (separated into its components: RBCs, platelets, plasma) resulting in a great degree of variance in the amount of RBCs stored in each unit based on the individual donor characteristics.
  • RBCs red blood cells
  • platelets platelets
  • plasma plasma
  • a pathogen-free RBC, platelet or plasma product that has an increased lifespan and provides a uniform dose per unit would be highly desirable.
  • a method for preparing uniform dose blood components from a plurality of whole blood units of the same blood group and type comprising leukoreducing whole blood units to form a leukoreduced blood component, wherein the leukoreduced blood component comprises RBCs, platelets, and plasma; pooling the leukoreduced blood component from the plurality of whole blood units; treating the blood component to inactivate one or more pathogens; removing any inactivating agent, if necessary; separating an RBC component, a platelet component, and a plasma component from the blood component; optionally passing RBCs through a filter to remove poorly-deformable RBCs; adding a storage solution to the RBC component and dividing the RBC into uniform dose and volume units; adding a storage solution to the platelet component and dividing the platelets into uniform dose and volume units; and dividing the plasma component into uniform dose and volume units.
  • a method is provided preparing uniform dose blood components from a plurality of whole blood units of the same blood group and type comprising: separating a cellular component and a plasma component from the plurality of whole blood units, wherein the cellular component comprises RBCs, platelets, and white blood cells; pooling the cellular component from the plurality of blood units and pooling the plasma component from the plurality of blood units; treating the plasma component with a solvent/detergent process to inactivate viruses and dividing the plasma into uniform dose and volume units; leukoreducing the cellular component; treating the leukoreduced cellular component to inactivate one or more pathogens; separating the leukoreduced cellular component into an RBC component and a platelet component; optionally passing the RBC component through a filter to remove poorly-deformable RBCs; adding a storage solution to the RBC component and dividing the RBCs into uniform dose and volume units; and adding a storage solution to the platelet component and dividing the platelets into uniform dose and volume units
  • the storage solution comprises at least one material selected from the group consisting of adenine, glucose, phosphate, mannitol, guanosine, and a combination thereof.
  • the treating step inactivates one or more pathogens without damaging the structure or function of the non-WBC cell component.
  • Pathogen inactivation may additionally damage WBCs to render them unable to replicate.
  • the one or more pathogens are selected from the group consisting of viruses, bacteria, fungi, prions, parasites, and combinations thereof.
  • the one or more pathogens are inactivated by at least one method selected from the group consisting of irradiation, and agent that inactivates pathogen DNA/RNA, solvent and detergent, magnetophoresis, immunomagnetic bead technology, filtration, and a combination thereof.
  • the method further comprises a step for inactivating residual white blood cells in the pooled blood, RBC or platelet components.
  • each unit of the RBC component contains about 1 ⁇ 10 12 to about 5 ⁇ 10 12 RBCs/unit. In another embodiment, each unit of the RBC component contains about 20-80 g of hemoglobin.
  • the method further comprises the step of removing poorly-deformable RBCs from the RBC component.
  • FIG. 1 is a schematic of the steps of a blood pooling, pathogen inactivation, and blood storage method in accordance with an embodiment of the disclosure.
  • FIG. 2 depicts a scheme for producing uniform doses of plasma, platelets, and RBCs in which whole blood is pooled and leukoreduced prior to fractionation into plasma, platelets and RBCs.
  • the scheme optionally includes a filter to remove poorly-deformable RBCs from an RBC component.
  • FIG. 3 depicts a scheme for producing uniform doses of plasma, platelets, and RBCs in which the whole blood is fractionated into plasma and cellular fractions and the cellular fraction is further leukoreduced and fractionated into platelets and RBCs.
  • the scheme optionally includes a filter to remove poorly-deformable RBCs from an RBC component.
  • the disclosure provides a method for obtaining a pathogen-free pharmaceutical grade red blood cell (RBC), platelet, or plasma product that contains a uniform unit dose and volume, presents a reduced risk of inducing adverse effects in the recipient, and may have an increased storage life.
  • RBC red blood cell
  • a further advantage of administering the units obtained according to the disclose methods is the mitigation of adverse events such as transfusion associated graft vs. host disease, disease transmission, transfusion related immunomodulation (potentially resulting in nosocomial infection, multiorgan failure), allergic reactions, febrile nonhemolytic reactions, and transfusion associated lung injury.
  • a method of making a cell-containing component comprises a) obtaining a plurality of whole blood units, b) separating a desired cell component from the blood units, c) leukoreducing the whole blood or the desired cell component, d) pooling the desired cell components from the blood units, e) treating the cell component to inactivate one or more pathogens, and f) adding a storage solution to the cell component.
  • the step of inactivating one or more pathogens can take place prior to separating the desired cell component from the pooled blood.
  • Blood units are obtained from donors according to methods known to persons of ordinary skill in the art.
  • the blood is segregated according to one or more blood types and/or groups prior to pooling.
  • the pooled RBCs or blood units have the same blood type of at least one blood group (ABO, Kell, Duffy, Lewis, MNS, etc.) and type (Rh).
  • the blood units can be typed for one, two or more blood groups and pooled based on the one, two or more blood groups and/or types.
  • the pooled blood units each have the same ABO blood group and the same Rh blood type (selected from the group consisting of E, D, C, K, Fya, Fyb, Jka, Jkb, S, e, and c).
  • the pooled blood units each have the same ABO group but differ in Rh blood type.
  • the donors are typically mammals, such as humans. The donors can be any gender, age, race or ethnicity so long as they are eligible to donate according to US Food and Drug Administration and other accreditation agency criteria.
  • RBCs are obtained from whole blood or from apheresis donors.
  • the obtained blood units are first fractionated and blood components are obtained.
  • the fractionated components are pooled; for example, RBCs from a plurality of blood units are collected and stored together for further processing and subsequent transfusion.
  • the blood cell product is a homogenous RBC product that is obtained by fractionation or other known separation means.
  • Blood and erythrocyte fractionation relies on the unique structure of the RBCs to separate them from plasma and other elements in the blood.
  • Fractionation of whole blood into its constituents is an established technique, well known in the art.
  • whole blood is centrifuged with or without an isotonic buffer at low speed for a short period of time.
  • centrifugation at a range of about 600 to about 3900 rpm for about 5 to about 20 minutes at about ⁇ 10°-20° C. is usually sufficient to separate the RBCs from the other components.
  • whole blood stored at 4° C.
  • the RBC concentrate is diluted 2-fold with a phosphate buffered saline.
  • the blood fractionation step can occur before or after leukoreduction and/or the pathogen and white blood cell (WBC) inactivation and removal step.
  • WBC white blood cell
  • leukoreduction Removal of WBCs from the pooled blood, leukoreduction, can be achieved by any known means of leukoreduction including, but not limited to, leukoreduction filters, gradient centrifugation, etc. (see, for example, LEUKOTRAP®, Pall Corp)
  • the blood components are separated using a blood component separation system, such as the system described in co-pending U.S. patent application Ser. 13/291,822 filed on Nov. 8, 2011.
  • Other blood component separation systems are known in the art and any system which produces a cell-containing product are suitable for use with the methods disclosed herein.
  • the separated blood components or whole blood units are pooled in a vat or container large enough to contain the blood components and any additional materials necessary (storage solution, additives, radiation sensitizers, photoquenchers, etc.).
  • the vat or storage container maintains the blood components and additives in a sterile, temperature controlled environment and allows the addition or removal or material without exposure to a non-sterile environment.
  • any number of units of whole blood, leukoreduced blood, RBCs, or platelets can be pooled.
  • 5-100 units of whole blood or blood components are pooled.
  • 10-100 units, 20-80, 30-70, 40-60, 5-10, 5-20, 5-30, 5-40, or 5-50 units of whole blood are pooled according to the methods disclosed herein.
  • the pooled blood components are then treated to inactivate any pathogens present in the donated blood.
  • pathogens can be inactivated with the methods disclosed herein.
  • residual WBCs not removed during leukoreduction which can transmit pathogens contained within and also invoke immunogenic reactions, are removed and/or inactivated.
  • Pathogen and WBC inactivation in accordance with the methods disclosed herein, results in an eradication of pathogens while preserving the structure and function of the RBCs and platelets.
  • the post-transfusion 24 hour recovery of the RBCs must be greater than or equal to 75% following pathogen inactivation and subsequent storage, which is indicative of a high level of retention of intact cell function and structure.
  • RBC viability can be assessed by visual inspection of the sample and/or by determining the percent hemolysis in a stored unit. RBCs suitable for transfusion must exhibit less than 1% hemolysis. Such analyses are routine in the art and can be conducted by the tetramethylbenzidiene (TMB) method or using a hematology analyzer (e.g., Beckman Coulter AcT). RBC viability and extent of the RBC storage lesion (i.e. membrane damage, ATP levels) impacts post-transfusion in vivo circulatory survival time. Methods for determining whether RBCs meet regulatory requirements are known to persons of ordinary skill in the art (see for example, Hess Jr for BEST collaborative, Transfusion, 2012 epub).
  • pathogen inactivation can be used in accordance with the disclosed methods. Via the inactivation procedures disclosed herein, pathogens in the whole blood or RBC component are reduced. Methods for determining infectivity levels are known to persons of ordinary skill in the art (see for example, Thrombosis and Hemostasis, 44:138-142, 1980). In accordance with the disclosed methods, at least 10 4 infectious units of pathogen are inactivated. In certain embodiments, at least 10 5 infection units or at least 10 6 infectious units of pathogen are inactivated.
  • inactivation of pathogen is obtained to the extent of at least “4 logs”, and alternatively, greater than 5 logs or greater than 6 logs, such that pathogen in the sample is reduced to the extent determined by infectivity studies where that pathogen is present in the untreated sample in such a concentration that even after dilution to 10 4 , 10 5 , or 10 6 , pathogen activity can be measured.
  • the terms “inactivate” and “reduce” both refer to a multiple log reduction in the number of viable pathogens in the whole blood or RBC component.
  • a pathogen in the blood cell product is inactivated using irradiation.
  • irradiation refers to any form of radiation conventionally used to inactivate cells or pathogens (WBCs, viruses, parasites, bacteria, or other pathogenic organisms) either alone or in combination with some other agent or condition.
  • Non-limiting examples of irradiation include ultraviolet (UVA, UVB, UVC), gamma-irradiation, X-irradiation, and visible light. Monochromatic light in the range of about 660-700 nm is included in this definition as well.
  • Irradiation can be conducted in the presence of an agent that promotes inactivation or protects cells from the radiation. Exemplary agents are quenchers and radiation sensitizers (radiosensitizers).
  • an effective amount of irradiation is applied in the presence of a mixture of (a) compound that quenches photodynamic type I reactions and a compound that quenches type II photodynamic reactions, and/or (b) a bifunctional compound that quenches both types of photodynamic reactions.
  • a typical radiation fluence range is 5-100 J/cm 2 or 50-100 J/cm 2 for UVA, 0.02-2 J/cm 2 or 0.05-0.2 J/cm 2 for UVC, and 1-40 kGy for gamma-irradiation.
  • Quenchers scavenge type I and or II reactions and thereby provide protection to the RBCs.
  • Suitable quenchers are any known to react with both free radicals (type I quenchers) or reactive forms of oxygen (type II quenchers).
  • Representative quenchers include unsaturated fatty acids, reduced sugars, cholesterol indole derivatives, azides (e.g., sodium azide), tryptophan, polyhydric alcohols (e.g., glycerol, mannitol), thiols (e.g., glutathione), superoxide dismutase, flavonoids (e.g., quercetin and rutin), amino acids, DABCO (1,4-diazabicyclo[2.2.2]octane), vitamins, and combinations thereof.
  • the irradiation process can be carried out over a temperature range of about 0°-42° C. In certain embodiments, the temperature is about 20°-27° C., or about 20°-25° C.
  • the pathogen inactivation process is carried out for a time less than 24 hours, and in certain embodiments, less than 10, less than 8, or less than 4 hours. In certain embodiments, irradiation is carried out for about 1 minute to about 240 minutes or, alternately, about 5 minutes to about 120 minutes.
  • the RBC suspension can be maintained at a pH range of about 6.5-8, preferably 7.2-7.6.
  • the irradiation process can occur in the presence of one or more radiation sensitizers.
  • Suitable radiation sensitizers include, but are not limited to, phthalocyanines, purpurins, and other molecules resembling porphyrins, photoactive compounds excited by UV light (e.g., psoralen, 8-methoxypsoralen, 4′-aminomethyl-4,5′,8-trimethylpsoralen, bergapten, angelicin), dyes that absorb light in the visible spectrum (e.g., pypericin, methylene blue, eosin, fluoresceins, flavins), dyes that absorb X-irradiation (e.g., brominated psoralen, brominated hematoporphyrin, iodinated phthalocyanine), and combinations thereof.
  • UV light e.g., psoralen, 8-methoxypsoralen, 4′-aminomethyl-4,5′
  • irradiation sensitizers are known in the art and is described in, for example, U.S. Pat. Nos. 5,120,649, 5,232,844, 6,136,586, and 6,548,242, the disclosures of which are incorporated herein by reference.
  • the agent can be removed, if necessary, by any known means, such as, centrifugation, washing, dialysis, and/or adsorption onto hydrophobic matrices.
  • a solvent-detergent method can be used to inactivate pathogens in blood plasma. This method is described, for example, in U.S. Pat. No. 4,540,573, which is incorporated herein by reference.
  • Organic solvents can be combined with anionic or nonionic detergents to kill pathogens.
  • an organic solvent such as tri(n-butyl)phosphate combined with nonionic detergents such as TWEEN 80 or TRITON X-100.
  • a nonanionic detergent, alcohol, ether, or mixtures thereof can be used.
  • plasma can be contacted with a dialkylphosphate or a trialkylphosphate having alkyl groups that contain 1 to 10 carbon atoms, preferably 2-10 carbon atoms.
  • Mixture of such compounds can be used as well as phosphates having alkyl groups of different length chains, for example, ethyl di(n-butyl) phosphate.
  • Mixtures of di- and trialkylphosphates can be utilized in accordance with the disclosure.
  • Di- or trialkylphosphates can be used in an amount of about 0.01 mg/ml to about 100 mg/ml, preferably about 0.1 mg/ml to about 10 mg/ml. Treatment can occur at a temperature of about ⁇ 5° 70° C.
  • treatment can occur at a temperature between about 0° 60° C. Treatment can occur for about 1 hour to about 24 hours.
  • the di-, trialkylphosphate, or nonionic detergent can be removed by any known means such as extraction (see U.S. Pat. No. 4,789,545), diafiltration with either insoluble (e.g., TEFLON microporous membranes), adsorption using chromatographic or affinity chromographic supports, and/or precipitation.
  • wetting agents can be used in conjunction with the di- and trialkylphosphates to enhance the contact of the pathogen with the di- and trialkylphosphates.
  • the wetting agent is a nonionic detergent.
  • Detergents containing polyoxyethylene derivatives of fatty acids, or partial esters of sorbitol anhydrides are suitable. Examples of such detergents include, but are not limited to commercially available products TWEEN 80, TWEEN 20, polysorbate 80, and nonionic oil soluble water detergents such as oxyethylated alkylphenol (aka TRITON X100).
  • Zwitterionic detergents such as N-dodecyl-N,N-dimethyl-2-ammonio-1-ethane sulphonate and its congeners, or non-ionic detergents such as octyl-beta-D-glucopyranoside are also suitable.
  • the amount of wetting agent can be in a range from about 0.001% to about 10%. In certain embodiments, the wetting agent is present in an amount of about 0.01% to about 1.5%.
  • pathogen inactivation such as heat treatment, pH manipulation, methylene treatment, additional radiation treatments (with or without a chemical agent, such as formaldehyde, cyanines, riboflavin), inactivation and removal with microparticles (see U.S. Pat. No. 6,730,230), magnetophoresis, microdevices utilizing immunomagnetic and microfluidic technology, and/or immunomagnetic beads, can be used.
  • pathogens in the blood samples are inactivated.
  • a number of blood-borne pathogens are known and, if present in a blood sample, can transmit disease to a recipient.
  • Diseases such as human immunodeficiency virus (HIV), hepatitis, syphilis, malaria, babesiosis, brucellosis, leptospirosis, arboviral infection, relapsing fever, Creutzfeldt-Jakob disease, human T-lymphotropic virus type I, and viral hemorrhagic fever can be transmitted via blood.
  • HIV human immunodeficiency virus
  • hepatitis hepatitis
  • syphilis malaria
  • babesiosis brucellosis
  • leptospirosis arboviral infection
  • Creutzfeldt-Jakob disease human T-lymphotropic virus type I
  • viral hemorrhagic fever can be transmitted via blood.
  • the categories of pathogens that can be inactivated using the disclosed methods include, but are not limited to, viruses (including cell-free lipid enveloped viruses, actively replicating cell-associated viruses, non-enveloped viruses, and latent cell-associated viruses), bacteria, fungi, prions, and parasites.
  • viruses including cell-free lipid enveloped viruses, actively replicating cell-associated viruses, non-enveloped viruses, and latent cell-associated viruses
  • bacteria including fungi, prions, and parasites.
  • Non-limiting examples of lipid-coated human viruses include, but are not limited to, vesicular stomatitis virus (VSV), moloney sarcoma virus, Sindvis virus, human immunodeficiency virus (HIV-1, HIV-2), human T-cell lymphotrophic virus-I (HTLV-I), hepatitis B virus, non-A, non-B hepatitis virus (NANB; aka hepatitis C), cytomegalovirus, Epstein Barr, virus, lactate dehydrogenase elevating virus, herpes group viruses, rhabdovirus, leukoviruses, myxoviruses, alphaviruses, arboviruses (group B), paramyxoviruses, arenaviruses, and coronaviruses.
  • VSV vesicular stomatitis virus
  • HTLV-I human T-cell lymphotrophic virus-I
  • hepatitis B virus non-A, non
  • Nonlimiting examples of non-enveloped virus that can be inactivated in accordance with the disclosed methods include parvovirus, polio virus, hepatitis A virus, enteric non-a, non-B hepatitis virus, bacteriophage M13, and satellite adeno-associated virus (AAV).
  • Bacterial contamination of blood products can cause infection in a recipient.
  • bacterial infections that can be inactivated in accordance with the methods disclosed herein include Yersinia pestis, Haemophilus influenzae, Staphylococcus aureus, Neisseria meningitides, Neisseria gonorrhoeae , and Streptococcus pyogenes.
  • Protozoa can cause a number of infections in humans, including, but not limited to, malaria, amoebiasis, babesiosis, giardiasis, toxoplasmosis, cryptosporidiosis, trichomoniasis, leishmaniasis, trypanosomiasis, and sleeping sickness.
  • the organisms causing these illnesses can be inactivated in accordance with the disclosed methods.
  • Some fungi can cause disease in humans, including, but not limited to, aspergilloses, candidoses, coccidioidomycosis, cryptococcosis, histoplasmosis, mycetomas, and paracoccidioidomycosis.
  • the fungi leading to these and other infections can be inactivated with the disclosed methods.
  • Prions are proteinaceous infection particles that cause a number of diseases in mammals. In humans, prions are associated with Creutzfeldt-Jakob disease (i.e., mad cow disease). Prion inactivation or removal may be achieved with the pathogen inactivation methods disclosed herein or by other methods known to persons of ordinary skill in the art, such as filtration.
  • pooled units of whole blood having the same blood type and/or blood group are passed through a leukoreduction filter and the leukoreduced s RBC-containing component is collected.
  • the leukoreduced RBC-containing component includes RBCs, platelets and plasma is then pathogen inactivated, and the inactivation agent is removed, inactivated, or otherwise rendered harmless.
  • the leukoreduced, pathogen inactivated RBC-containing component is then separated into components such as RBCs, platelets, and/or plasma according to the disclosure in co-pending U.S. patent application Ser. No. 13/291,822 filed on Nov. 8, 2011 and incorporated by reference herein, and each component is transferred into a storage container.
  • Platelets and RBCs are transferred into storage containers with an appropriate storage solution. Each component is then divided into uniform units of suitable dose and volume for transfusion and stored under the appropriate conditions. Only as an example, RBCs are optimally stored at 1-6° C., plasma is stored at ⁇ 18° C. or below, and platelets are stored at 20-24° C.
  • the method optionally comprises filtering to remove poorly-deformable RBCs from any RBC-containing preparation.
  • pooled units of whole blood having the same blood type and/or blood group are collected into a container suitable for centrifugation or similar separation method, such as the method of co-pending U.S. patent application Ser. No. 13/291,822 filed on Nov. 8, 2011 incorporated by reference herein.
  • the pooled whole blood is then centrifuged or separated into a plasma fraction and a cellular fraction containing red blood cells, white blood cells and platelets.
  • the plasma fraction is collected and subjected to solvent/detergent pathogen inactivation and the pathogen-inactivated plasma is processed into uniform volume units and stored at ⁇ 18° C. or below.
  • the cellular fraction is leukoreduced and the leukoreduced fraction (red blood cells and platelets) is pathogen inactivated and following inactivation the inactivation agent is removed, inactivated, or otherwise rendered harmless.
  • the pathogen-inactivated cellular fractions is separated into red blood cells and platelets by filtration or centrifugation, including methods disclosed in co-pending U.S. patent application Ser. No. 13/291,822 filed on Nov. 8, 2011 incorporated by reference herein.
  • Platelets are collected in a platelet storage solution and separated into units of uniform volume and dose and stored at 20-24° C.
  • RBCs are collected in a preservation solution and distributed into units of uniform volume and dose and stored at 1-6° C.
  • the method optionally comprises filtering to remove poorly-deformable RBCs from any RBC-containing preparation.
  • red blood cell pools are filtered prior to storage to remove poorly-deformable red blood cells in an artificial spleen filtering system.
  • the filtering system can comprise any filtering material having pores (or channels) in the range of 1 to 10 ⁇ m such that rigid red blood cells are retained by the filter system and deformable (normal) red blood cells pass through the filter system.
  • poorly-deformable red blood cells in a red blood cell preparation are removed prior to, or after, storage to prevent certain transfusion-related adverse effects in the transfusion recipient.
  • the pores (or channels) of the filtering unit have a diameter in the range of 1 to 10 ⁇ m, in the range of 1.85 to 9.4 ⁇ m, or 1 to 3, or 1 to 2 ⁇ m, for example a diameter of 2 ⁇ m.
  • the channels of the filtering unit have a thickness of less than 24 ⁇ m, and preferably less than 5 ⁇ m.
  • the flow of red blood cells through the filtering unit is driven by gravity, flush (for example by applying a constant pressure), aspiration, or by centrifugation.
  • the filtering unit is placed in a column (for example when the flow through the filtering unit is driven by gravity or flush) or in a tube (for example when the flow through the filtering unit is driven by centrifugation).
  • the filtering unit comprises or consists of channel-perforated membrane(s), for example polycarbonate channel-perforated membrane(s).
  • channel-perforated membranes from Sterlitech Corporation in which channel diameter is in the range of 1 to 3 ⁇ m and channel length is 24 ⁇ m are particularly appropriate.
  • 2 ⁇ m-wide and 24 ⁇ m-thick polycarbonate channel-perforated membranes from Sterlitech Corporation can be used.
  • the flow through the filtering unit is generally gravity-driven.
  • flow can be gravity driven and performed under a constant pressure, for example a constant pressure of 80-85 cm of water, and preferably at a temperature of about 34-37° C.
  • the filtering unit can comprise or consist of one or several layer(s) of beads, wherein beads present in the filtering unit have a diameter in the range of 2-25 ⁇ m or 5-25 ⁇ m, and wherein channels (pores) formed by the inter-bead space within the filtering unit preferably varies between 0.74 and 9.4 ⁇ m or 1.85 ⁇ m and 9.4 ⁇ m.
  • Suitable beads include, but are not limited to tin beads, polymeric beads, glass bead, or any other beads capable of forming pores of the desired size.
  • each layer of beads present in the filtering unit is at least 0.5-10 ⁇ m thick, the total thickness of beads in the filtering unit being of at least 5 mm, preferably 7 mm.
  • a layer of a thickness of at least 5 mm and preferably 7 mm, composed of a mixture of equal weight of beads the diameter of which is ranging from 5 to 15 ⁇ m and beads the diameter of which is ranging from 15 to 25 ⁇ m can be used.
  • a 7 mm-thick layer of beads the diameter of which is ranging from 5 to 25 ⁇ m is used.
  • the filtering unit comprises a 7 mm-thick layer of beads the diameter of which is ranging from 5 to 25 ⁇ m and a layer above comprising beads of lower diameter than 5 ⁇ m.
  • the layers of beads are staked up on a filter suitable to maintain the beads and that is not involved in the retention capacity of the filtering unit.
  • the flow through the filtering unit is generally obtained using a syringe-pressured flow or by centrifugation (for example by centrifuging at 1500-2500 g).
  • a syringe-pressured flow or by centrifugation for example by centrifuging at 1500-2500 g.
  • an electric pump can be used to generate a constant flow of suspending medium (for example PBS+1% Albumax II) through the layer.
  • the upper pressure limit can be for example 999 mbars.
  • the flow through the filtering unit can also be obtained using other techniques, and can, for example, be gravity-driven.
  • step a) is performed under a constant pressure, for example a constant pressure of 80-85 cm of water, and preferably at a temperature of about 20-25° C.
  • a plurality of platelet or RBC units are prepared in which each unit has an approximately uniform dose of RBCs or platelets.
  • the pooled platelets or RBCs are kept suspended in solution by any known means (mechanical agitation, fluid agitation) in order to maintain the platelets or RBCs evenly distributed in solution such that a unit having a uniform dose of platelets or RBCs can be prepared.
  • uniform dose it is meant that the amount of platelets or RBCs, i.e., the number of platelets or RBCs per unit, does not vary by more than about 20%, about 15%, about 10% or about 5% from unit to unit.
  • the size of a unit prepared in accordance with the disclosed methods can vary depending on the desired use.
  • the platelets or RBCs can be stored in smaller and/or larger aliquots in order to serve neonatal, pediatric and/or adult populations.
  • RBC units contain at least about 1 ⁇ 10 9 RBCs/mL, at least about 5 ⁇ 10 9 RBCs/mL, or at least 1 ⁇ 10 10 RBCs/mL.
  • the uniform dose of RBCs is 1-5 ⁇ 10 12 RBCs per unit.
  • the uniform dose of RBCs is 2-4 ⁇ 10 12 RBCs per unit or 2-3 ⁇ 10 12 RBCs per unit.
  • a “uniform dose of RBCs” can refer to a uniform concentration of RBCs in each unit which will allow for a standardized range of hemoglobin concentration per unit of RBCs independent of the RBC concentration of the donor blood.
  • each unit contains 20-80 grams of hemoglobin, 30-70 grams of hemoglobin, 40-60 grams of hemoglobin, or about 50 grams of hemoglobin per unit of RBCs
  • the uniform dose of platelets is 1-6 ⁇ 10 11 platelets per unit.
  • the uniform dose of platelets is can be 2-6 ⁇ 10 11 platelets per unit, 2-4 ⁇ 10 11 platelets per unit, 2-3 ⁇ 10 11 platelets per unit, 3-4 ⁇ 10 12 platelets per unit, or 3-5 ⁇ 10 11 platelets per unit.
  • platelets and RBCs are stored in a storage solution.
  • the RBC storage solution can be any that preserves 2,3-diphosphoglycerate (DPG) and maintains high adenine triphosphate (ATP) concentrations, minimizes hemolysis (hemolysis ⁇ 1%), and reduces potassium leak, thereby improving the structure and function of the stored RBCs.
  • DPG 2,3-diphosphoglycerate
  • ATP adenine triphosphate
  • RBC storage solutions are known in the art (e.g., ADSOL, Baxter Healthcare, Deerfield Ill.; SAGM [saline-adenine-glucose-mannitol] and PAGGSM [phosphate, adenine, glucose, guanosine, saline and mannitol]).
  • the storage solutions disclosed herein include one or more of adenine, glucose, sodium phosphate, mannitol, dextrose, sodium chloride, sodium citrate, citric acid, and guanosine.
  • the storage solution comprises adenine, glucose, sodium phosphate, mannitol and guanosine.
  • the platelet storage solution is a platelet additive solution such as, but not limited to, InterSolTM (Fenwal Inc.), examples of which are know to persons of ordinary skill in the art.
  • RBCs using known protocols and storage solutions, can be stored for approximately 42 days before administration to a subject, after which time the structure, function and viability of the of the RBCs is compromised.
  • the obtained RBC product can be stored for about 42 days to about 100 days, or for about 60 days to about 100 days, or for about 70 days to about 90 days.
  • the units can be stored at a temperature of about 1°-6° C.
  • the biochemical changes loss of 2,3-DPG/ATP, inability to release adequate oxygen, potassium leakage
  • biomechanical changes deformation of biconcave disc, impaired movement through microcirculation, hemolysis
  • immunologic changes that occur in ex vivo storage of RBCs are reduced.
  • RBC storage lesion a reduction in one or more of these parameters can confer significant advantages and increase the success of the RBC transfusion.
  • RBC units are filtered post-storage, just prior to transfusion, to remove poorly-deformable RBCs.
  • the methods disclosed herein can be performed utilizing known equipment and reagents. Any available assortment of collection tubing, collection bags, and storage bags or other types of vessels can be used in accordance with the disclosed methods. In certain embodiments, di(2-ethylhexyl) phthalate (DEHP) free tubing, collection, and storage bags are desirable.
  • DEHP di(2-ethylhexyl) phthalate
  • the methods disclosed herein are well suited for a variety of settings, including but not limited to, community and other blood banks, military sites, hospitals, and clinics.
  • the pooled leukoreduced blood (RBCs, plasma, and platelets) is treated with UV radiation and optionally a type I and II quencher and/or radiation sensitizer to remove any pathogen and inactivate residual WBCs. If a quencher or radiation sensitizer is present, the cells are washed prior to continuing. The material is then fractionated into plasma, RBCs and platelets. A storage solution of adenine, glucose, sodium phosphate, mannitol and guanosine is added to the RBC component following pathogen inactivation.
  • a filtering step is optionally added to remove poorly-deformable RBCs from any RBC-containing component.
  • the resultant RBC-containing composition is further divided into RBC units comprising a uniform number and volume of RBCs/mL. The units are stored at 1°-6° C.
  • a storage solution is added to the platelet component following pathogen inactivation and the resultant platelet-containing composition is further divided into platelet units comprising a uniform number and volume of platelets/mL.
  • the units are stored at 20°-24° C.
  • the plasma component is further divided into plasma units comprising a uniform volume of plasma.
  • the units are stored at ⁇ 18° C. or below.
  • the cell containing composition from Example 1 is analyzed for stability and viability of RBCs at a time period of 20 days, 40 days, 60 days and 100 days. Analysis of ATP and 2,3-DPG levels and percentage hemolysis as well as post-transfusion survival studies are used to determine the stability and viability of the RBCs in the cell containing solution. Storage life of the cell containing composition is determined therefrom.
  • About 100 units of blood are same blood group and type are individually subjected to a process of leukoreduction with a leukoreduction filter and subsequently fractionated via centrifugation for about 20 min at 2000 rpm.
  • the isolated RBCs from each unit are washed with a phosphate buffered saline are and then pooled.
  • the pooled RBCs are further subjected to UV radiation for about 2-4 hours or to inactivate any pathogenic contaminants.
  • a storage solution is added to the RBCs and the RBCs are gently agitated by mechanical means to maintain the RBCs uniformly dispersed in the storage solution.
  • the RBCs are divided into units having a uniform number of RBCs/mL. The units are stored at 1°-6° C. for about 42 to about 100 days prior to use.
  • Approximately 5 to 100 units of whole blood of the same type and group are collected and leukoreduced as depicted in FIG. 2 .
  • the leukoreduced blood is treated via UV radiation and a type I and II quencher to remove any pathogens and inactivate residual WBCs. Platelets, RBCs, and plasma are then separated in one step or in multiple steps.
  • a storage solution of adenine, glucose, sodium phosphate, mannitol and guanosine is added to the RBCs following pathogen inactivation.
  • the method optionally comprises the addition of a filter to remove poorly-deformable RBCs from any RBC-containing preparation.
  • the resultant RBCs are aliquoted into units comprising a uniform volume and number of RBCs/mL.
  • the units are stored at 1°-6° C.
  • a storage solution is added to the separated platelets and the platelets are aliquoted into units comprising a uniform volume and number of platelets/mL and stored at 20-24° C.
  • the plasma fraction is aliquoted into uniform volume units and stored at ⁇ 18° C. or below.
  • Approximately 5 to 100 units of whole blood of the same type and group are collected and separated into plasma and cellular fractions as depicted in FIG. 3 .
  • the plasma fraction is treated with solvent/detergent to inactivate viruses and then aliquoted into uniform volume units and stored at ⁇ 18° C. or below.
  • the cellular fraction is leukoreduced and is treated via UV radiation and a type I and II quencher to remove any pathogens and inactivate residual WBCs before separating into platelets and RBCs.
  • a storage solution of adenine, glucose, sodium phosphate, mannitol and guanosine is added to the RBCs following pathogen inactivation.
  • the method optionally comprises the addition of a filter to remove poorly-deformable RBCs from any RBC-containing preparation.
  • the resultant RBCs are aliquoted into units comprising a uniform volume and number of RBCs/mL.
  • the units are stored at 1°-6° C.
  • a storage solution is added to the separated platelets and the platelets are aliquoted into units comprising a uniform volume and number of platelets/mL and stored at 20-24° C.
  • Filtration of poorly-deformable RBCs is conducted before or after storage of pooled or single-unit leukocyte-reduced RBCs.
  • Upstream and downstream RBC sub-populations can be retrieved and centrifuged (2 minutes at 1500 g) and the obtained RBC pellets used for quantification or analysis.
  • RBCs are allowed to flow through 0.5-2 mm-thick layers of beads (such as, for example, tin beads from Industrie des façades spheriques (IPS), Annemasse, France) of increasing diameter (from 2-12 ⁇ m, 5-15 ⁇ m, 15-25 ⁇ m and more than 40 ⁇ m) after suspension at 2-2.5% hematocrit in PBS or RPMI supplemented with 1% albumax II® (Gibco). Filtration is performed at 20-25° C. under a constant pressure (80-85 cm of water). Column surfaces and bead layers are blocked with suspending medium (PBS-+1% Albumax II®) during 15 minutes prior to introduction of RBCs.
  • beads such as, for example, tin beads from Industrie des façades spheriques (IPS), Annemasse, France
  • IPS Industrie des façades spheriques
  • Filtration is performed at 20-25° C. under a constant pressure (80-85 cm of water). Column surfaces and bead layers
  • a mixture of equal weight of 5-15 ⁇ m and 15-25 ⁇ m (thereafter referred to as “5-25 ⁇ m layer”) induces the retention of RBCs provided that the thickness of the layer is >5 mm.
  • An electric pump is used to generate a constant flow of solution through the layer.
  • Upper pressure limit is 999 mbars.
  • Centrifugation-based filtration Alternatively, bead-containing tips are used as filtering units then centrifuged at 1500-2500 (until the whole sample has flown through). The bead layer(s) are rinsed of suspending medium by the same centrifugation method. Upstream, downstream and retained RBC sub-populations can be retrieved and processed for quantification as described below.
  • the “upstream” sample can be reserved prior to filtration, centrifuged (1500 g), and the obtained RBC pellet can be used for quantification.
  • the “downstream” sample containing RBCs that had flown through the bead layer can be centrifuged at 1500 g, and the thus obtained RBC pellet used for quantification.
  • the bead layer is retrieved at the end of the filtration process. Three steps of decantation by gravity allows for the retrieval of an RBC pellet containing minimal beads.

Abstract

The disclosure provides methods of making a red blood cell, plasma, and platelet products having a uniform dose and volume. The method comprises pooling a plurality of blood units, leukoreducing the blood and inactivating any pathogen contained therein. Plasma, RBCs, and platelets are then divided into uniform dose and volume units which have an extended shelf life.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application claims the benefit under 35 U.S.C. §119(e) to U.S. Provisional Application 61/649,121 filed May 18, 2012 and is a continuation-in-part of U.S. application Ser. No. 13/306,759 and International Patent Application PCT/US2011/62460, both filed Nov. 29, 2011, both of which claim the benefit under 35 U.S.C. §119(e) to U.S. Provisional Application 61/417,771 filed Nov. 29, 2010, the entire contents of all of which are incorporated by reference herein.
  • BACKGROUND
  • A single donation of whole blood can supply red blood cell (RBCs), platelets, and plasma products, which can potentially benefit three different patients. However, blood processing by blood banks is not optimized for quality and reproducibility of blood components. Stored RBCs suffer certain disadvantages. The lifespan of stored RBCs is 42 days, which given the fluctuation of supply and demand for RBCs, can lead to dangerous shortages in times of unexpected need. RBCs can also harbor pathogens that can endanger the recipient if the pathogen is transmitted via transfusion.
  • In addition, each individual unit of blood collected is fractionated (separated into its components: RBCs, platelets, plasma) resulting in a great degree of variance in the amount of RBCs stored in each unit based on the individual donor characteristics. As a result, the concentration and volume of RBCs varies from unit to unit and thus the number of RBCs administered to a given recipient is variable.
  • Accordingly, a pathogen-free RBC, platelet or plasma product that has an increased lifespan and provides a uniform dose per unit would be highly desirable.
  • BRIEF SUMMARY
  • Disclosed herein are methods of producing uniform dose and volume pathogen-free blood components. Specifically, a method is disclosed for preparing uniform dose blood components from a plurality of whole blood units of the same blood group and type comprising leukoreducing whole blood units to form a leukoreduced blood component, wherein the leukoreduced blood component comprises RBCs, platelets, and plasma; pooling the leukoreduced blood component from the plurality of whole blood units; treating the blood component to inactivate one or more pathogens; removing any inactivating agent, if necessary; separating an RBC component, a platelet component, and a plasma component from the blood component; optionally passing RBCs through a filter to remove poorly-deformable RBCs; adding a storage solution to the RBC component and dividing the RBC into uniform dose and volume units; adding a storage solution to the platelet component and dividing the platelets into uniform dose and volume units; and dividing the plasma component into uniform dose and volume units.
  • In another embodiment, a method is provided preparing uniform dose blood components from a plurality of whole blood units of the same blood group and type comprising: separating a cellular component and a plasma component from the plurality of whole blood units, wherein the cellular component comprises RBCs, platelets, and white blood cells; pooling the cellular component from the plurality of blood units and pooling the plasma component from the plurality of blood units; treating the plasma component with a solvent/detergent process to inactivate viruses and dividing the plasma into uniform dose and volume units; leukoreducing the cellular component; treating the leukoreduced cellular component to inactivate one or more pathogens; separating the leukoreduced cellular component into an RBC component and a platelet component; optionally passing the RBC component through a filter to remove poorly-deformable RBCs; adding a storage solution to the RBC component and dividing the RBCs into uniform dose and volume units; and adding a storage solution to the platelet component and dividing the platelets into uniform dose and volume units.
  • In one embodiment, the storage solution comprises at least one material selected from the group consisting of adenine, glucose, phosphate, mannitol, guanosine, and a combination thereof.
  • In another embodiment, the treating step inactivates one or more pathogens without damaging the structure or function of the non-WBC cell component. Pathogen inactivation may additionally damage WBCs to render them unable to replicate. The one or more pathogens are selected from the group consisting of viruses, bacteria, fungi, prions, parasites, and combinations thereof. In another embodiment, the one or more pathogens are inactivated by at least one method selected from the group consisting of irradiation, and agent that inactivates pathogen DNA/RNA, solvent and detergent, magnetophoresis, immunomagnetic bead technology, filtration, and a combination thereof.
  • In another embodiment, the method further comprises a step for inactivating residual white blood cells in the pooled blood, RBC or platelet components.
  • In another embodiment, each unit of the RBC component contains about 1×1012 to about 5×1012 RBCs/unit. In another embodiment, each unit of the RBC component contains about 20-80 g of hemoglobin.
  • In another embodiment, the method further comprises the step of removing poorly-deformable RBCs from the RBC component.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic of the steps of a blood pooling, pathogen inactivation, and blood storage method in accordance with an embodiment of the disclosure.
  • FIG. 2 depicts a scheme for producing uniform doses of plasma, platelets, and RBCs in which whole blood is pooled and leukoreduced prior to fractionation into plasma, platelets and RBCs. The scheme optionally includes a filter to remove poorly-deformable RBCs from an RBC component.
  • FIG. 3 depicts a scheme for producing uniform doses of plasma, platelets, and RBCs in which the whole blood is fractionated into plasma and cellular fractions and the cellular fraction is further leukoreduced and fractionated into platelets and RBCs. The scheme optionally includes a filter to remove poorly-deformable RBCs from an RBC component.
  • DETAILED DESCRIPTION
  • The disclosure provides a method for obtaining a pathogen-free pharmaceutical grade red blood cell (RBC), platelet, or plasma product that contains a uniform unit dose and volume, presents a reduced risk of inducing adverse effects in the recipient, and may have an increased storage life. A further advantage of administering the units obtained according to the disclose methods is the mitigation of adverse events such as transfusion associated graft vs. host disease, disease transmission, transfusion related immunomodulation (potentially resulting in nosocomial infection, multiorgan failure), allergic reactions, febrile nonhemolytic reactions, and transfusion associated lung injury.
  • In one embodiment, a method of making a cell-containing component is provided that comprises a) obtaining a plurality of whole blood units, b) separating a desired cell component from the blood units, c) leukoreducing the whole blood or the desired cell component, d) pooling the desired cell components from the blood units, e) treating the cell component to inactivate one or more pathogens, and f) adding a storage solution to the cell component. In certain embodiments, the step of inactivating one or more pathogens can take place prior to separating the desired cell component from the pooled blood.
  • Blood units are obtained from donors according to methods known to persons of ordinary skill in the art. In each embodiment, the blood is segregated according to one or more blood types and/or groups prior to pooling. In certain embodiments, the pooled RBCs or blood units have the same blood type of at least one blood group (ABO, Kell, Duffy, Lewis, MNS, etc.) and type (Rh). The blood units can be typed for one, two or more blood groups and pooled based on the one, two or more blood groups and/or types. In certain embodiments, the pooled blood units each have the same ABO blood group and the same Rh blood type (selected from the group consisting of E, D, C, K, Fya, Fyb, Jka, Jkb, S, e, and c). In another embodiment, the pooled blood units each have the same ABO group but differ in Rh blood type. The donors are typically mammals, such as humans. The donors can be any gender, age, race or ethnicity so long as they are eligible to donate according to US Food and Drug Administration and other accreditation agency criteria. In another embodiment, RBCs are obtained from whole blood or from apheresis donors.
  • In one embodiment, the obtained blood units are first fractionated and blood components are obtained. The fractionated components are pooled; for example, RBCs from a plurality of blood units are collected and stored together for further processing and subsequent transfusion.
  • In certain embodiments, the blood cell product is a homogenous RBC product that is obtained by fractionation or other known separation means. Blood and erythrocyte fractionation relies on the unique structure of the RBCs to separate them from plasma and other elements in the blood. Fractionation of whole blood into its constituents is an established technique, well known in the art. Typically, whole blood is centrifuged with or without an isotonic buffer at low speed for a short period of time. Although the speed of centrifugation can vary, centrifugation at a range of about 600 to about 3900 rpm for about 5 to about 20 minutes at about −10°-20° C. is usually sufficient to separate the RBCs from the other components. In one embodiment, for example, whole blood stored at 4° C. is centrifuged at 2000 rpm for about 20 minutes. The RBC concentrate is diluted 2-fold with a phosphate buffered saline. The blood fractionation step can occur before or after leukoreduction and/or the pathogen and white blood cell (WBC) inactivation and removal step.
  • Removal of WBCs from the pooled blood, leukoreduction, can be achieved by any known means of leukoreduction including, but not limited to, leukoreduction filters, gradient centrifugation, etc. (see, for example, LEUKOTRAP®, Pall Corp)
  • In another embodiment, the blood components are separated using a blood component separation system, such as the system described in co-pending U.S. patent application Ser. 13/291,822 filed on Nov. 8, 2011. Other blood component separation systems are known in the art and any system which produces a cell-containing product are suitable for use with the methods disclosed herein.
  • The separated blood components or whole blood units are pooled in a vat or container large enough to contain the blood components and any additional materials necessary (storage solution, additives, radiation sensitizers, photoquenchers, etc.). The vat or storage container maintains the blood components and additives in a sterile, temperature controlled environment and allows the addition or removal or material without exposure to a non-sterile environment.
  • Any number of units of whole blood, leukoreduced blood, RBCs, or platelets can be pooled. In certain embodiments, 5-100 units of whole blood or blood components are pooled. Alternatively, 10-100 units, 20-80, 30-70, 40-60, 5-10, 5-20, 5-30, 5-40, or 5-50 units of whole blood are pooled according to the methods disclosed herein.
  • The pooled blood components are then treated to inactivate any pathogens present in the donated blood. A variety of pathogens can be inactivated with the methods disclosed herein. In addition, residual WBCs not removed during leukoreduction, which can transmit pathogens contained within and also invoke immunogenic reactions, are removed and/or inactivated. Pathogen and WBC inactivation, in accordance with the methods disclosed herein, results in an eradication of pathogens while preserving the structure and function of the RBCs and platelets. In order to achieve Food and Drug Administration regulatory requirements, the post-transfusion 24 hour recovery of the RBCs must be greater than or equal to 75% following pathogen inactivation and subsequent storage, which is indicative of a high level of retention of intact cell function and structure. RBC viability can be assessed by visual inspection of the sample and/or by determining the percent hemolysis in a stored unit. RBCs suitable for transfusion must exhibit less than 1% hemolysis. Such analyses are routine in the art and can be conducted by the tetramethylbenzidiene (TMB) method or using a hematology analyzer (e.g., Beckman Coulter AcT). RBC viability and extent of the RBC storage lesion (i.e. membrane damage, ATP levels) impacts post-transfusion in vivo circulatory survival time. Methods for determining whether RBCs meet regulatory requirements are known to persons of ordinary skill in the art (see for example, Hess Jr for BEST collaborative, Transfusion, 2012 epub).
  • One or more methods of pathogen inactivation can be used in accordance with the disclosed methods. Via the inactivation procedures disclosed herein, pathogens in the whole blood or RBC component are reduced. Methods for determining infectivity levels are known to persons of ordinary skill in the art (see for example, Thrombosis and Hemostasis, 44:138-142, 1980). In accordance with the disclosed methods, at least 104 infectious units of pathogen are inactivated. In certain embodiments, at least 105 infection units or at least 106 infectious units of pathogen are inactivated. Restated, inactivation of pathogen is obtained to the extent of at least “4 logs”, and alternatively, greater than 5 logs or greater than 6 logs, such that pathogen in the sample is reduced to the extent determined by infectivity studies where that pathogen is present in the untreated sample in such a concentration that even after dilution to 104, 105, or 106, pathogen activity can be measured. For the purposes of this disclosure, the terms “inactivate” and “reduce” both refer to a multiple log reduction in the number of viable pathogens in the whole blood or RBC component.
  • In certain embodiments, a pathogen in the blood cell product is inactivated using irradiation. The term “irradiation” refers to any form of radiation conventionally used to inactivate cells or pathogens (WBCs, viruses, parasites, bacteria, or other pathogenic organisms) either alone or in combination with some other agent or condition. Non-limiting examples of irradiation include ultraviolet (UVA, UVB, UVC), gamma-irradiation, X-irradiation, and visible light. Monochromatic light in the range of about 660-700 nm is included in this definition as well. Irradiation can be conducted in the presence of an agent that promotes inactivation or protects cells from the radiation. Exemplary agents are quenchers and radiation sensitizers (radiosensitizers).
  • In one embodiment, an effective amount of irradiation is applied in the presence of a mixture of (a) compound that quenches photodynamic type I reactions and a compound that quenches type II photodynamic reactions, and/or (b) a bifunctional compound that quenches both types of photodynamic reactions. A typical radiation fluence range is 5-100 J/cm2 or 50-100 J/cm2 for UVA, 0.02-2 J/cm2 or 0.05-0.2 J/cm2 for UVC, and 1-40 kGy for gamma-irradiation. Quenchers scavenge type I and or II reactions and thereby provide protection to the RBCs. Suitable quenchers are any known to react with both free radicals (type I quenchers) or reactive forms of oxygen (type II quenchers). Representative quenchers include unsaturated fatty acids, reduced sugars, cholesterol indole derivatives, azides (e.g., sodium azide), tryptophan, polyhydric alcohols (e.g., glycerol, mannitol), thiols (e.g., glutathione), superoxide dismutase, flavonoids (e.g., quercetin and rutin), amino acids, DABCO (1,4-diazabicyclo[2.2.2]octane), vitamins, and combinations thereof.
  • The irradiation process can be carried out over a temperature range of about 0°-42° C. In certain embodiments, the temperature is about 20°-27° C., or about 20°-25° C. The pathogen inactivation process is carried out for a time less than 24 hours, and in certain embodiments, less than 10, less than 8, or less than 4 hours. In certain embodiments, irradiation is carried out for about 1 minute to about 240 minutes or, alternately, about 5 minutes to about 120 minutes. During the inactivation process, the RBC suspension can be maintained at a pH range of about 6.5-8, preferably 7.2-7.6.
  • The irradiation process can occur in the presence of one or more radiation sensitizers. Suitable radiation sensitizers include, but are not limited to, phthalocyanines, purpurins, and other molecules resembling porphyrins, photoactive compounds excited by UV light (e.g., psoralen, 8-methoxypsoralen, 4′-aminomethyl-4,5′,8-trimethylpsoralen, bergapten, angelicin), dyes that absorb light in the visible spectrum (e.g., pypericin, methylene blue, eosin, fluoresceins, flavins), dyes that absorb X-irradiation (e.g., brominated psoralen, brominated hematoporphyrin, iodinated phthalocyanine), and combinations thereof. The use of irradiation sensitizers is known in the art and is described in, for example, U.S. Pat. Nos. 5,120,649, 5,232,844, 6,136,586, and 6,548,242, the disclosures of which are incorporated herein by reference.
  • Following pathogen inactivation with agents, the agent can be removed, if necessary, by any known means, such as, centrifugation, washing, dialysis, and/or adsorption onto hydrophobic matrices.
  • In lieu of, or in addition to, the above described pathogen inactivation methods, a solvent-detergent method can be used to inactivate pathogens in blood plasma. This method is described, for example, in U.S. Pat. No. 4,540,573, which is incorporated herein by reference. Organic solvents can be combined with anionic or nonionic detergents to kill pathogens. For instance, an organic solvent, such as tri(n-butyl)phosphate combined with nonionic detergents such as TWEEN 80 or TRITON X-100. Alternately, a nonanionic detergent, alcohol, ether, or mixtures thereof can be used. In one embodiment, plasma can be contacted with a dialkylphosphate or a trialkylphosphate having alkyl groups that contain 1 to 10 carbon atoms, preferably 2-10 carbon atoms. Mixture of such compounds can be used as well as phosphates having alkyl groups of different length chains, for example, ethyl di(n-butyl) phosphate. Mixtures of di- and trialkylphosphates can be utilized in accordance with the disclosure. Di- or trialkylphosphates can be used in an amount of about 0.01 mg/ml to about 100 mg/ml, preferably about 0.1 mg/ml to about 10 mg/ml. Treatment can occur at a temperature of about −5° 70° C. In certain embodiments, treatment can occur at a temperature between about 0° 60° C. Treatment can occur for about 1 hour to about 24 hours. Following pathogen inactivation of the RBC containing solution, the di-, trialkylphosphate, or nonionic detergent can be removed by any known means such as extraction (see U.S. Pat. No. 4,789,545), diafiltration with either insoluble (e.g., TEFLON microporous membranes), adsorption using chromatographic or affinity chromographic supports, and/or precipitation.
  • Wetting agents can be used in conjunction with the di- and trialkylphosphates to enhance the contact of the pathogen with the di- and trialkylphosphates. In certain embodiments, the wetting agent is a nonionic detergent. Detergents containing polyoxyethylene derivatives of fatty acids, or partial esters of sorbitol anhydrides are suitable. Examples of such detergents include, but are not limited to commercially available products TWEEN 80, TWEEN 20, polysorbate 80, and nonionic oil soluble water detergents such as oxyethylated alkylphenol (aka TRITON X100). Zwitterionic detergents such as N-dodecyl-N,N-dimethyl-2-ammonio-1-ethane sulphonate and its congeners, or non-ionic detergents such as octyl-beta-D-glucopyranoside are also suitable. The amount of wetting agent can be in a range from about 0.001% to about 10%. In certain embodiments, the wetting agent is present in an amount of about 0.01% to about 1.5%.
  • Other known methods of pathogen inactivation such as heat treatment, pH manipulation, methylene treatment, additional radiation treatments (with or without a chemical agent, such as formaldehyde, cyanines, riboflavin), inactivation and removal with microparticles (see U.S. Pat. No. 6,730,230), magnetophoresis, microdevices utilizing immunomagnetic and microfluidic technology, and/or immunomagnetic beads, can be used.
  • As stated above, in certain embodiments of the disclosed methods, pathogens in the blood samples are inactivated. A number of blood-borne pathogens are known and, if present in a blood sample, can transmit disease to a recipient. Diseases such as human immunodeficiency virus (HIV), hepatitis, syphilis, malaria, babesiosis, brucellosis, leptospirosis, arboviral infection, relapsing fever, Creutzfeldt-Jakob disease, human T-lymphotropic virus type I, and viral hemorrhagic fever can be transmitted via blood. Accordingly, the categories of pathogens that can be inactivated using the disclosed methods include, but are not limited to, viruses (including cell-free lipid enveloped viruses, actively replicating cell-associated viruses, non-enveloped viruses, and latent cell-associated viruses), bacteria, fungi, prions, and parasites.
  • A number of viruses are blood borne and therefore transmittable via transfusion. Non-limiting examples of lipid-coated human viruses include, but are not limited to, vesicular stomatitis virus (VSV), moloney sarcoma virus, Sindvis virus, human immunodeficiency virus (HIV-1, HIV-2), human T-cell lymphotrophic virus-I (HTLV-I), hepatitis B virus, non-A, non-B hepatitis virus (NANB; aka hepatitis C), cytomegalovirus, Epstein Barr, virus, lactate dehydrogenase elevating virus, herpes group viruses, rhabdovirus, leukoviruses, myxoviruses, alphaviruses, arboviruses (group B), paramyxoviruses, arenaviruses, and coronaviruses.
  • Nonlimiting examples of non-enveloped virus that can be inactivated in accordance with the disclosed methods include parvovirus, polio virus, hepatitis A virus, enteric non-a, non-B hepatitis virus, bacteriophage M13, and satellite adeno-associated virus (AAV).
  • Bacterial contamination of blood products can cause infection in a recipient. Examples of bacterial infections that can be inactivated in accordance with the methods disclosed herein include Yersinia pestis, Haemophilus influenzae, Staphylococcus aureus, Neisseria meningitides, Neisseria gonorrhoeae, and Streptococcus pyogenes.
  • Protozoa can cause a number of infections in humans, including, but not limited to, malaria, amoebiasis, babesiosis, giardiasis, toxoplasmosis, cryptosporidiosis, trichomoniasis, leishmaniasis, trypanosomiasis, and sleeping sickness. The organisms causing these illnesses can be inactivated in accordance with the disclosed methods.
  • Some fungi can cause disease in humans, including, but not limited to, aspergilloses, candidoses, coccidioidomycosis, cryptococcosis, histoplasmosis, mycetomas, and paracoccidioidomycosis. The fungi leading to these and other infections can be inactivated with the disclosed methods.
  • Prions are proteinaceous infection particles that cause a number of diseases in mammals. In humans, prions are associated with Creutzfeldt-Jakob disease (i.e., mad cow disease). Prion inactivation or removal may be achieved with the pathogen inactivation methods disclosed herein or by other methods known to persons of ordinary skill in the art, such as filtration.
  • In additional embodiments, pooled units of whole blood having the same blood type and/or blood group are passed through a leukoreduction filter and the leukoreduced s RBC-containing component is collected. The leukoreduced RBC-containing component includes RBCs, platelets and plasma is then pathogen inactivated, and the inactivation agent is removed, inactivated, or otherwise rendered harmless. The leukoreduced, pathogen inactivated RBC-containing component is then separated into components such as RBCs, platelets, and/or plasma according to the disclosure in co-pending U.S. patent application Ser. No. 13/291,822 filed on Nov. 8, 2011 and incorporated by reference herein, and each component is transferred into a storage container. Platelets and RBCs are transferred into storage containers with an appropriate storage solution. Each component is then divided into uniform units of suitable dose and volume for transfusion and stored under the appropriate conditions. Only as an example, RBCs are optimally stored at 1-6° C., plasma is stored at −18° C. or below, and platelets are stored at 20-24° C. The method optionally comprises filtering to remove poorly-deformable RBCs from any RBC-containing preparation.
  • In yet another embodiment, pooled units of whole blood having the same blood type and/or blood group are collected into a container suitable for centrifugation or similar separation method, such as the method of co-pending U.S. patent application Ser. No. 13/291,822 filed on Nov. 8, 2011 incorporated by reference herein. The pooled whole blood is then centrifuged or separated into a plasma fraction and a cellular fraction containing red blood cells, white blood cells and platelets. The plasma fraction is collected and subjected to solvent/detergent pathogen inactivation and the pathogen-inactivated plasma is processed into uniform volume units and stored at −18° C. or below. The cellular fraction is leukoreduced and the leukoreduced fraction (red blood cells and platelets) is pathogen inactivated and following inactivation the inactivation agent is removed, inactivated, or otherwise rendered harmless. The pathogen-inactivated cellular fractions is separated into red blood cells and platelets by filtration or centrifugation, including methods disclosed in co-pending U.S. patent application Ser. No. 13/291,822 filed on Nov. 8, 2011 incorporated by reference herein. Platelets are collected in a platelet storage solution and separated into units of uniform volume and dose and stored at 20-24° C. RBCs are collected in a preservation solution and distributed into units of uniform volume and dose and stored at 1-6° C. The method optionally comprises filtering to remove poorly-deformable RBCs from any RBC-containing preparation.
  • In one embodiment, red blood cell pools are filtered prior to storage to remove poorly-deformable red blood cells in an artificial spleen filtering system. The filtering system can comprise any filtering material having pores (or channels) in the range of 1 to 10 μm such that rigid red blood cells are retained by the filter system and deformable (normal) red blood cells pass through the filter system. In this manner, poorly-deformable red blood cells in a red blood cell preparation are removed prior to, or after, storage to prevent certain transfusion-related adverse effects in the transfusion recipient.
  • In certain embodiments, the pores (or channels) of the filtering unit have a diameter in the range of 1 to 10 μm, in the range of 1.85 to 9.4 μm, or 1 to 3, or 1 to 2 μm, for example a diameter of 2 μm. In another embodiment, the channels of the filtering unit have a thickness of less than 24 μm, and preferably less than 5 μm.
  • The flow of red blood cells through the filtering unit is driven by gravity, flush (for example by applying a constant pressure), aspiration, or by centrifugation. In one embodiment, the filtering unit is placed in a column (for example when the flow through the filtering unit is driven by gravity or flush) or in a tube (for example when the flow through the filtering unit is driven by centrifugation).
  • In one embodiment, the filtering unit comprises or consists of channel-perforated membrane(s), for example polycarbonate channel-perforated membrane(s). Channel-perforated membranes from Sterlitech Corporation in which channel diameter is in the range of 1 to 3 μm and channel length is 24 μm are particularly appropriate. For example, 2 μm-wide and 24 μm-thick polycarbonate channel-perforated membranes from Sterlitech Corporation can be used.
  • When channel-perforated membrane(s) are used, the flow through the filtering unit is generally gravity-driven. In particular, flow can be gravity driven and performed under a constant pressure, for example a constant pressure of 80-85 cm of water, and preferably at a temperature of about 34-37° C.
  • Alternatively, the filtering unit can comprise or consist of one or several layer(s) of beads, wherein beads present in the filtering unit have a diameter in the range of 2-25 μm or 5-25 μm, and wherein channels (pores) formed by the inter-bead space within the filtering unit preferably varies between 0.74 and 9.4 μm or 1.85 μm and 9.4 μm. Suitable beads include, but are not limited to tin beads, polymeric beads, glass bead, or any other beads capable of forming pores of the desired size.
  • In one embodiment, each layer of beads present in the filtering unit is at least 0.5-10 μm thick, the total thickness of beads in the filtering unit being of at least 5 mm, preferably 7 mm. For example, a layer of a thickness of at least 5 mm and preferably 7 mm, composed of a mixture of equal weight of beads the diameter of which is ranging from 5 to 15 μm and beads the diameter of which is ranging from 15 to 25 μm can be used. In another embodiment, a 7 mm-thick layer of beads the diameter of which is ranging from 5 to 25 μm is used. In another embodiment, the filtering unit comprises a 7 mm-thick layer of beads the diameter of which is ranging from 5 to 25 μm and a layer above comprising beads of lower diameter than 5 μm. In the filtering unit, the layers of beads are staked up on a filter suitable to maintain the beads and that is not involved in the retention capacity of the filtering unit.
  • When layer(s) of beads are used, the flow through the filtering unit is generally obtained using a syringe-pressured flow or by centrifugation (for example by centrifuging at 1500-2500 g). For example, an electric pump can be used to generate a constant flow of suspending medium (for example PBS+1% Albumax II) through the layer. The upper pressure limit can be for example 999 mbars. Alternatively, the flow through the filtering unit can also be obtained using other techniques, and can, for example, be gravity-driven.
  • In another embodiment, layer(s) of beads are used and step a) is performed under a constant pressure, for example a constant pressure of 80-85 cm of water, and preferably at a temperature of about 20-25° C.
  • Before or after addition of a storage solution, a plurality of platelet or RBC units are prepared in which each unit has an approximately uniform dose of RBCs or platelets. The pooled platelets or RBCs are kept suspended in solution by any known means (mechanical agitation, fluid agitation) in order to maintain the platelets or RBCs evenly distributed in solution such that a unit having a uniform dose of platelets or RBCs can be prepared. By uniform dose, it is meant that the amount of platelets or RBCs, i.e., the number of platelets or RBCs per unit, does not vary by more than about 20%, about 15%, about 10% or about 5% from unit to unit. The size of a unit prepared in accordance with the disclosed methods can vary depending on the desired use. That is, the platelets or RBCs can be stored in smaller and/or larger aliquots in order to serve neonatal, pediatric and/or adult populations. In general, RBC units contain at least about 1×109 RBCs/mL, at least about 5×109 RBCs/mL, or at least 1×1010 RBCs/mL. Alternatively, the uniform dose of RBCs is 1-5×1012 RBCs per unit. In additional embodiments, the uniform dose of RBCs is 2-4×1012 RBCs per unit or 2-3×1012 RBCs per unit.
  • Additionally, a “uniform dose of RBCs” can refer to a uniform concentration of RBCs in each unit which will allow for a standardized range of hemoglobin concentration per unit of RBCs independent of the RBC concentration of the donor blood. In one embodiment, each unit contains 20-80 grams of hemoglobin, 30-70 grams of hemoglobin, 40-60 grams of hemoglobin, or about 50 grams of hemoglobin per unit of RBCs
  • In general, the uniform dose of platelets is 1-6×1011 platelets per unit. In additional embodiments, the uniform dose of platelets is can be 2-6×1011 platelets per unit, 2-4×1011 platelets per unit, 2-3×1011 platelets per unit, 3-4×1012 platelets per unit, or 3-5×1011 platelets per unit. Following pathogen inactivation, platelets and RBCs are stored in a storage solution. The RBC storage solution can be any that preserves 2,3-diphosphoglycerate (DPG) and maintains high adenine triphosphate (ATP) concentrations, minimizes hemolysis (hemolysis <1%), and reduces potassium leak, thereby improving the structure and function of the stored RBCs. RBC storage solutions are known in the art (e.g., ADSOL, Baxter Healthcare, Deerfield Ill.; SAGM [saline-adenine-glucose-mannitol] and PAGGSM [phosphate, adenine, glucose, guanosine, saline and mannitol]). The storage solutions disclosed herein include one or more of adenine, glucose, sodium phosphate, mannitol, dextrose, sodium chloride, sodium citrate, citric acid, and guanosine. In one embodiment, the storage solution comprises adenine, glucose, sodium phosphate, mannitol and guanosine. In an alternative embodiment, the platelet storage solution is a platelet additive solution such as, but not limited to, InterSol™ (Fenwal Inc.), examples of which are know to persons of ordinary skill in the art.
  • RBCs, using known protocols and storage solutions, can be stored for approximately 42 days before administration to a subject, after which time the structure, function and viability of the of the RBCs is compromised. In contrast, using the disclosed methods, the obtained RBC product can be stored for about 42 days to about 100 days, or for about 60 days to about 100 days, or for about 70 days to about 90 days. The units can be stored at a temperature of about 1°-6° C. Further, in accordance with the disclosed methods, the biochemical changes (loss of 2,3-DPG/ATP, inability to release adequate oxygen, potassium leakage), biomechanical changes (deformation of biconcave disc, impaired movement through microcirculation, hemolysis), and immunologic changes that occur in ex vivo storage of RBCs (collectively referred to as “RBC storage lesion”) are reduced. These changes can greatly affect RBC and patient survival post-transfusion and therefore, a reduction in one or more of these parameters can confer significant advantages and increase the success of the RBC transfusion.
  • In an additional embodiment, RBC units are filtered post-storage, just prior to transfusion, to remove poorly-deformable RBCs.
  • The methods disclosed herein can be performed utilizing known equipment and reagents. Any available assortment of collection tubing, collection bags, and storage bags or other types of vessels can be used in accordance with the disclosed methods. In certain embodiments, di(2-ethylhexyl) phthalate (DEHP) free tubing, collection, and storage bags are desirable.
  • The methods disclosed herein are well suited for a variety of settings, including but not limited to, community and other blood banks, military sites, hospitals, and clinics.
  • Example 1
  • Approximately 5 to 100 units of whole blood of the same type and group and leukoreduced and pooled. The pooled leukoreduced blood (RBCs, plasma, and platelets) is treated with UV radiation and optionally a type I and II quencher and/or radiation sensitizer to remove any pathogen and inactivate residual WBCs. If a quencher or radiation sensitizer is present, the cells are washed prior to continuing. The material is then fractionated into plasma, RBCs and platelets. A storage solution of adenine, glucose, sodium phosphate, mannitol and guanosine is added to the RBC component following pathogen inactivation. A filtering step is optionally added to remove poorly-deformable RBCs from any RBC-containing component. The resultant RBC-containing composition is further divided into RBC units comprising a uniform number and volume of RBCs/mL. The units are stored at 1°-6° C.
  • A storage solution is added to the platelet component following pathogen inactivation and the resultant platelet-containing composition is further divided into platelet units comprising a uniform number and volume of platelets/mL. The units are stored at 20°-24° C.
  • The plasma component is further divided into plasma units comprising a uniform volume of plasma. The units are stored at −18° C. or below.
  • Example 2
  • The cell containing composition from Example 1 is analyzed for stability and viability of RBCs at a time period of 20 days, 40 days, 60 days and 100 days. Analysis of ATP and 2,3-DPG levels and percentage hemolysis as well as post-transfusion survival studies are used to determine the stability and viability of the RBCs in the cell containing solution. Storage life of the cell containing composition is determined therefrom.
  • Example 3
  • About 100 units of blood are same blood group and type are individually subjected to a process of leukoreduction with a leukoreduction filter and subsequently fractionated via centrifugation for about 20 min at 2000 rpm. The isolated RBCs from each unit are washed with a phosphate buffered saline are and then pooled. The pooled RBCs are further subjected to UV radiation for about 2-4 hours or to inactivate any pathogenic contaminants. A storage solution is added to the RBCs and the RBCs are gently agitated by mechanical means to maintain the RBCs uniformly dispersed in the storage solution. The RBCs are divided into units having a uniform number of RBCs/mL. The units are stored at 1°-6° C. for about 42 to about 100 days prior to use.
  • Example 4
  • Approximately 5 to 100 units of whole blood of the same type and group (i.e., ABO, Rh, etc.) are collected and leukoreduced as depicted in FIG. 2. The leukoreduced blood is treated via UV radiation and a type I and II quencher to remove any pathogens and inactivate residual WBCs. Platelets, RBCs, and plasma are then separated in one step or in multiple steps. A storage solution of adenine, glucose, sodium phosphate, mannitol and guanosine is added to the RBCs following pathogen inactivation. The method optionally comprises the addition of a filter to remove poorly-deformable RBCs from any RBC-containing preparation. The resultant RBCs are aliquoted into units comprising a uniform volume and number of RBCs/mL. The units are stored at 1°-6° C. A storage solution is added to the separated platelets and the platelets are aliquoted into units comprising a uniform volume and number of platelets/mL and stored at 20-24° C. The plasma fraction is aliquoted into uniform volume units and stored at −18° C. or below.
  • Example 5
  • Approximately 5 to 100 units of whole blood of the same type and group (i.e., ABO, Rh, etc.) are collected and separated into plasma and cellular fractions as depicted in FIG. 3. The plasma fraction is treated with solvent/detergent to inactivate viruses and then aliquoted into uniform volume units and stored at −18° C. or below. The cellular fraction is leukoreduced and is treated via UV radiation and a type I and II quencher to remove any pathogens and inactivate residual WBCs before separating into platelets and RBCs. A storage solution of adenine, glucose, sodium phosphate, mannitol and guanosine is added to the RBCs following pathogen inactivation. The method optionally comprises the addition of a filter to remove poorly-deformable RBCs from any RBC-containing preparation. The resultant RBCs are aliquoted into units comprising a uniform volume and number of RBCs/mL. The units are stored at 1°-6° C. A storage solution is added to the separated platelets and the platelets are aliquoted into units comprising a uniform volume and number of platelets/mL and stored at 20-24° C.
  • Example 6
  • Filtration of poorly-deformable RBCs is conducted before or after storage of pooled or single-unit leukocyte-reduced RBCs.
  • Filtration with Channel-Perforated Membranes
  • Column surfaces and membranes are blocked with suspending medium (RPMI+4% albumin+5% Plasmion®) during 15 minutes prior to introduction of RBCs. RBCs are allowed to flow through 24 μm-thick polycarbonate membranes perforated with 0.8-8 μm-wide channels (Sterlitech Corporation), after suspension at 2%-2.5% hematocrit in RPMI supplemented with 4% albumin and 5% Plasmion®. Filtration is performed at 34-37° C. under a constant pressure (80-85 cm of water). Flow is typically unimpaired when the channel diameter was ≧3 μm whereas no flow is observed through pores the diameter values of which are ≦1 μm. No retention of poorly-deformable RBCs is observed when channel width is ≧3 μm.
  • “Upstream” and “downstream” RBC sub-populations can be retrieved and centrifuged (2 minutes at 1500 g) and the obtained RBC pellets used for quantification or analysis.
  • Bead Filtration
  • RBCs are allowed to flow through 0.5-2 mm-thick layers of beads (such as, for example, tin beads from Industrie des poudres spheriques (IPS), Annemasse, France) of increasing diameter (from 2-12 μm, 5-15 μm, 15-25 μm and more than 40 μm) after suspension at 2-2.5% hematocrit in PBS or RPMI supplemented with 1% albumax II® (Gibco). Filtration is performed at 20-25° C. under a constant pressure (80-85 cm of water). Column surfaces and bead layers are blocked with suspending medium (PBS-+1% Albumax II®) during 15 minutes prior to introduction of RBCs. Retention of RBCs with thin bead layers made of beads of diameter 5-15 or 15-25 or more than 40 μm, or with only the filter in the tip used to maintain the bead layers. A mixture of equal weight of 5-15 μm and 15-25 μm (thereafter referred to as “5-25 μm layer”) induces the retention of RBCs provided that the thickness of the layer is >5 mm.
  • An electric pump is used to generate a constant flow of solution through the layer. Upper pressure limit is 999 mbars.
  • Centrifugation-based filtration. Alternatively, bead-containing tips are used as filtering units then centrifuged at 1500-2500 (until the whole sample has flown through). The bead layer(s) are rinsed of suspending medium by the same centrifugation method. Upstream, downstream and retained RBC sub-populations can be retrieved and processed for quantification as described below.
  • The “upstream” sample can be reserved prior to filtration, centrifuged (1500 g), and the obtained RBC pellet can be used for quantification. The “downstream” sample containing RBCs that had flown through the bead layer can be centrifuged at 1500 g, and the thus obtained RBC pellet used for quantification.
  • The bead layer is retrieved at the end of the filtration process. Three steps of decantation by gravity allows for the retrieval of an RBC pellet containing minimal beads.
  • Filtration is associated with a significant retention of poorly-deformable RBCs.
  • Unless otherwise indicated, all numbers expressing quantities of ingredients, properties such as molecular weight, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements.
  • The terms “a,” “an,” “the” and similar referents used in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Recitation of ranges of values herein is merely intended to serve as a shorthand method of referring individually to each separate value falling within the range. Unless otherwise indicated herein, each individual value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention otherwise claimed. No language in the specification should be construed as indicating any non-claimed element essential to the practice of the invention.
  • Groupings of alternative elements or embodiments of the invention disclosed herein are not to be construed as limitations. Each group member may be referred to and claimed individually or in any combination with other members of the group or other elements found herein. It is anticipated that one or more members of a group may be included in, or deleted from, a group for reasons of convenience and/or patentability. When any such inclusion or deletion occurs, the specification is deemed to contain the group as modified thus fulfilling the written description of all Markush groups used in the appended claims.
  • Certain embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Of course, variations on these described embodiments will become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventor expects skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
  • Specific embodiments disclosed herein may be further limited in the claims using consisting of or consisting essentially of language. When used in the claims, whether as filed or added per amendment, the transition term “consisting of” excludes any element, step, or ingredient not specified in the claims. The transition term “consisting essentially of” limits the scope of a claim to the specified materials or steps and those that do not materially affect the basic and novel characteristic(s). Embodiments of the invention so claimed are inherently or expressly described and enabled herein.
  • Furthermore, numerous references have been made to patents and printed publications throughout this specification. Each of the above-cited references and printed publications are individually incorporated herein by reference in their entirety.
  • In closing, it is to be understood that the embodiments of the invention disclosed herein are illustrative of the principles of the present invention. Other modifications that may be employed are within the scope of the invention. Thus, by way of example, but not of limitation, alternative configurations of the present invention may be utilized in accordance with the teachings herein. Accordingly, the present invention is not limited to that precisely as shown and described.

Claims (21)

1. A method for preparing uniform dose blood components from a plurality of whole blood units of the same blood group and type comprising:
a) leukoreducing a plurality of individual whole blood units to form leukoreduced blood components, wherein the leukoreduced blood components comprises RBCs, platelets, and plasma;
b) pooling the leukoreduced blood components from the plurality of blood units;
c) treating the blood component to inactivate one or more pathogens;
d) separating an RBC component, a platelet component, and a plasma component from the blood component;
e) adding a storage solution to the RBC component and dividing the RBC into uniform volume and dose units;
f) adding a storage solution to the platelet component and dividing the platelets into uniform volume and dose units; and
g) dividing the plasma component into uniform volume and dose units.
2. The method of claim 1, wherein the storage solution comprises at least one material selected from the group consisting of adenine, glucose, phosphate, mannitol, guanosine, and a combination thereof.
3. The method of claim 1, wherein the treating step inactivates one or more pathogens without damaging the structure or function of the cell component.
4. The method of claim 1, wherein the one or more pathogens are selected from the group consisting of viruses, bacteria, fungi, prions, parasites, and combinations thereof.
5. The method of claim 1, wherein the one or more pathogens are inactivated by at least one method selected from the group consisting of irradiation, solvent and detergent, magnetophoresis, immunomagnetic bead technology, filtration, and a combination thereof.
6. The method of claim 1, wherein each unit of the RBC component contains about 1×1012 to about 5×1012 RBCs/unit.
7. The method of claim 1, wherein each unit of the RBC component contains about 20-80 g of hemoglobin.
8. The method of claim 1, wherein each unit of the platelet component contains about 2-6×1011 platelets/unit.
9. The method of claim 1, further comprising the step of filtering out poorly-deformable RBCs from an RBC or blood component.
10. A method for preparing a uniform dose blood components from a plurality of whole blood units of the same blood group and type comprising:
a) separating a cellular component and a plasma component from the plurality of whole blood units, wherein the cellular component comprises RBCs, platelets, and white blood cells;
b) pooling the cellular component from the plurality of blood units and pooling the plasma component from the plurality of blood units;
c) treating the pooled plasma component with a solvent/detergent to inactivate pathogens and dividing the pooled plasma into uniform volume and dose units;
d) leukoreducing the pooled cellular component;
e) treating the leukoreduced cellular component to inactivate one or more pathogens;
f) separating the leukoreduced cellular component into an RBC component and a platelet component;
g) adding a storage solution to the RBC component and dividing the RBCs into uniform volume and uniform dose aliquots; and
h) adding a storage solution to the platelet component and dividing the platelets into uniform volume and uniform dose aliquots.
11. The method of claim 10, wherein the storage solution comprises at least one material selected from the group consisting of adenine, glucose, phosphate, mannitol, guanosine, and a combination thereof.
12. The method of claim 10, wherein the treating step inactivates one or more pathogens without damaging the structure or function of the cell component.
13. The method of claim 10, wherein the one or more pathogens are selected from the group consisting of viruses, bacteria, fungi, prions, parasites, and combinations thereof.
14. The method of claim 10, wherein the one or more pathogens are inactivated by at least one method selected from the group consisting of irradiation, solvent and detergent, magnetophoresis, immunomagnetic bead technology, filtration and a combination thereof.
15. The method of claim 10, wherein each unit of the RBC component contains about 1×1012 to about 5×1012 RBCs/unit.
16. The method of claim 10, wherein each unit of the RBC component contains about 20-80 g of hemoglobin.
17. The method of claim 10, wherein each unit of the platelet component contains about 2-6×1011 platelets/unit.
18. The method of claim 10, further comprising the step of filtering out poorly-deformable RBCs from the RBC or cellular component.
19. A method for preparing uniform dose blood components from a plurality of whole blood units of the same blood group and type comprising:
a) leukoreducing a plurality of individual whole blood units to form leukoreduced blood components, wherein the leukoreduced blood components comprises RBCs, platelets, and plasma;
b) pooling the leukoreduced blood components from the plurality of blood units;
c) treating the blood component to inactivate one or more pathogens;
d) separating at least one of an RBC component, a platelet component, and a plasma component from the leukoreduced blood component; and
e) dividing the at least one of RBCs, platelets, and plasma into uniform volume and dose units.
20. The method of claim 19, wherein the blood component is separated into at least two, or all three, of RBCs, platelets, and plasma from the leukoreduced blood component.
21. A method for preparing a uniform dose blood components from a plurality of whole blood units of the same blood group and type comprising:
a) separating a cellular component and a plasma component from the plurality of whole blood units, wherein the cellular component comprises RBCs, platelets, and white blood cells;
b) pooling the cellular component from the plurality of blood units and pooling the plasma component from the plurality of blood units;
c) treating the pooled plasma component with a solvent/detergent to inactivate pathogens and dividing the pooled plasma into uniform volume and dose units;
d) leukoreducing the pooled cellular component;
e) treating the leukoreduced cellular component to inactivate one or more pathogens;
e) separating the leukoreduced cellular component into at least one of an RBC component and a platelet component; and
f) dividing the at least one of an RBC component and a platelet component into uniform volume and dose units.
US13/483,379 2010-11-29 2012-05-30 Method of blood pooling storage Active 2033-01-07 US10385317B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/483,379 US10385317B2 (en) 2010-11-29 2012-05-30 Method of blood pooling storage
US16/514,689 US20190338248A1 (en) 2010-11-29 2019-07-17 Method of blood pooling and storage

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US41777010P 2010-11-29 2010-11-29
PCT/US2011/062460 WO2012075041A2 (en) 2010-11-29 2011-11-29 Method of blood pooling and storage
US13/306,759 US8512942B2 (en) 2010-11-29 2011-11-29 Method of blood pooling and storage
US201261649121P 2012-05-18 2012-05-18
US13/483,379 US10385317B2 (en) 2010-11-29 2012-05-30 Method of blood pooling storage

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/306,759 Continuation-In-Part US8512942B2 (en) 2010-11-29 2011-11-29 Method of blood pooling and storage

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/514,689 Continuation US20190338248A1 (en) 2010-11-29 2019-07-17 Method of blood pooling and storage

Publications (2)

Publication Number Publication Date
US20120252001A1 true US20120252001A1 (en) 2012-10-04
US10385317B2 US10385317B2 (en) 2019-08-20

Family

ID=46126913

Family Applications (7)

Application Number Title Priority Date Filing Date
US13/306,759 Active US8512942B2 (en) 2010-11-29 2011-11-29 Method of blood pooling and storage
US13/483,379 Active 2033-01-07 US10385317B2 (en) 2010-11-29 2012-05-30 Method of blood pooling storage
US13/944,674 Active US8968993B2 (en) 2010-11-29 2013-07-17 Method of blood pooling and storage
US14/598,938 Active US9394518B2 (en) 2010-11-29 2015-01-16 Method of preparing red blood cell and platelet products
US15/181,195 Active US9982230B2 (en) 2010-11-29 2016-06-13 Uniform dose pooled blood products
US15/969,081 Active 2032-01-12 US10612000B2 (en) 2010-11-29 2018-05-02 Method of blood pooling and storage
US16/514,689 Pending US20190338248A1 (en) 2010-11-29 2019-07-17 Method of blood pooling and storage

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/306,759 Active US8512942B2 (en) 2010-11-29 2011-11-29 Method of blood pooling and storage

Family Applications After (5)

Application Number Title Priority Date Filing Date
US13/944,674 Active US8968993B2 (en) 2010-11-29 2013-07-17 Method of blood pooling and storage
US14/598,938 Active US9394518B2 (en) 2010-11-29 2015-01-16 Method of preparing red blood cell and platelet products
US15/181,195 Active US9982230B2 (en) 2010-11-29 2016-06-13 Uniform dose pooled blood products
US15/969,081 Active 2032-01-12 US10612000B2 (en) 2010-11-29 2018-05-02 Method of blood pooling and storage
US16/514,689 Pending US20190338248A1 (en) 2010-11-29 2019-07-17 Method of blood pooling and storage

Country Status (4)

Country Link
US (7) US8512942B2 (en)
EP (1) EP2645854B1 (en)
CA (1) CA2826969C (en)
WO (1) WO2012075041A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101426804B1 (en) 2012-10-09 2014-08-05 김홍승 Platelet preserving composition, and kit for preserving platelet, and method for preserving platelet using the same
US8968993B2 (en) 2010-11-29 2015-03-03 The New York Blood Center, Inc. Method of blood pooling and storage
US20180289744A1 (en) * 2015-05-29 2018-10-11 Maco Pharma Method for sterilising a platelet lysate
US20190344008A1 (en) * 2016-03-21 2019-11-14 Terumo Kabushiki Kaisha Blood component separation device and blood component separation method
US20210322479A1 (en) * 2014-07-23 2021-10-21 Cerus Corporation Methods for preparing platelet products

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014031852A2 (en) * 2012-08-22 2014-02-27 Haemonetics Corporation Blood storage container containing aqueous composition for the storage of red blood cells
US9066909B2 (en) 2012-09-06 2015-06-30 Biomet Biologics, Llc Methods for producing and using rejuvenated red blood cells
US10253295B2 (en) 2012-09-06 2019-04-09 Biomet Manufacturing, Llc Methods for producing rejuvenated red blood cells
US9011408B2 (en) * 2013-01-31 2015-04-21 Biomet Biologics, Llc Functionally-closed, sterile blood processing solution system and method
US9102918B2 (en) 2013-01-31 2015-08-11 Biomet Biologics, Llc Methods for rejuvenating red blood cells
US9103842B2 (en) 2013-01-31 2015-08-11 Biomet Biologics, Llc Methods for rejuvenating red blood cells
US9796166B2 (en) 2014-03-24 2017-10-24 Fenwal, Inc. Flexible biological fluid filters
US10376627B2 (en) 2014-03-24 2019-08-13 Fenwal, Inc. Flexible biological fluid filters
US9968738B2 (en) 2014-03-24 2018-05-15 Fenwal, Inc. Biological fluid filters with molded frame and methods for making such filters
US9782707B2 (en) 2014-03-24 2017-10-10 Fenwal, Inc. Biological fluid filters having flexible walls and methods for making such filters
US10159778B2 (en) 2014-03-24 2018-12-25 Fenwal, Inc. Biological fluid filters having flexible walls and methods for making such filters
EP3250713A2 (en) * 2015-01-26 2017-12-06 Stichting Sanquin Bloedvoorziening Methods and systems for the detection and removal of pathogens from blood
MX2018008359A (en) * 2016-01-07 2019-01-31 Cerus Corp Systems and methods for preparation of platelets.
WO2018125994A1 (en) * 2016-12-31 2018-07-05 Cerus Corporation Compositions and methods for preparation of red blood cells
WO2021187988A2 (en) * 2020-03-20 2021-09-23 Hemoclear Bv Blood separation system and blood products
CN111662869A (en) * 2020-06-02 2020-09-15 北京康思润业生物技术有限公司 Immunomagnetic bead for separating red blood cells and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6447987B1 (en) * 1978-09-09 2002-09-10 The United States Of America As Represented By The Secretary Of The Army Prolonged storage of red blood cells
US20020192632A1 (en) * 1995-06-07 2002-12-19 Hei Derek J. Method and devices for the removal of psoralens from blood products

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4540573A (en) 1983-07-14 1985-09-10 New York Blood Center, Inc. Undenatured virus-free biologically active protein derivatives
US4789545A (en) 1986-03-31 1988-12-06 New York Blood Center, Inc. Removal of lipid soluble process chemicals from biological materials by extraction with naturally occurring oils or synthetic substitutes thereof
US5712086A (en) 1990-05-15 1998-01-27 New York Blood Center, Inc. Process for transfusing cell containing fractions sterilized with radiation and a quencher of type I and type II photodynamic reactions
US6077659A (en) 1990-05-15 2000-06-20 New York Blood Center, Inc. Vitamin E and derivatives thereof prevent potassium ion leakage and other types of damage in red cells that are virus sterilized by phthalocyanines and light
US5981163A (en) 1990-05-15 1999-11-09 New York Blood Center, Inc. Process for the sterilization of biological compositions using irradiation and quenchers of type I and type II photodynamic reactions
US5232844A (en) 1990-05-15 1993-08-03 New York Blood Center Photodynamic inactivation of viruses in cell-containing compositions
US5120649A (en) 1990-05-15 1992-06-09 New York Blood Center, Inc. Photodynamic inactivation of viruses in blood cell-containing compositions
US5658722A (en) 1990-05-15 1997-08-19 New York Blood Center, Inc. Process for the sterilization of biological compositions using UVA1 irradiation
AU667530B2 (en) 1992-05-28 1996-03-28 New York Blood Center, Inc., The Removal of antibodies from blood-derived compositions while retaining coagulation factors
JPH07507717A (en) * 1992-06-10 1995-08-31 ポール・コーポレーション System for processing transition area materials
US5637451A (en) 1995-03-29 1997-06-10 New York Blood Center, Inc. Photodynamic treatment of red blood cells with phthalocyanines and red light at higher light fluence rates is protective of red blood cells
US5624794A (en) 1995-06-05 1997-04-29 The Regents Of The University Of California Method for extending the useful shelf-life of refrigerated red blood cells by flushing with inert gas
US5762791A (en) * 1995-08-09 1998-06-09 Baxter International Inc. Systems for separating high hematocrit red blood cell concentrations
US6136586A (en) 1995-08-29 2000-10-24 Vi Technologies, Inc. Methods for the selective modification of viral nucleic acids
EP0881874B1 (en) 1995-11-06 2003-04-02 New York Blood Center, Inc. Viral inactivation treatment of red blood cells using phthalocyanines and red light
EP0909128A1 (en) * 1997-03-17 1999-04-21 Baxter International Inc. Red blood cell compositions and methods for collecting and storing red blood cells
US6403124B1 (en) 1997-04-16 2002-06-11 Sigma-Tau Industrie Farmaceutiche Riunite S.P.A. Storage and maintenance of blood products including red blood cells and platelets
US6482585B2 (en) 1997-04-16 2002-11-19 Sigma-Tau Industrie Farmaceutiche Riunite S.P.A. Storage and maintenance of blood products including red blood cells and platelets
AUPP737298A0 (en) 1998-11-30 1998-12-24 University Of Queensland, The Combinatorial libraries
US7651474B2 (en) * 1999-10-01 2010-01-26 Caridianbct, Inc. Method and apparatus for leukoreduction of red blood cells
EP1386159A2 (en) 2001-01-16 2004-02-04 Biotransplant, Inc Use of high density microparticles for removal of pathogens
JP4050477B2 (en) * 2001-03-28 2008-02-20 テルモ株式会社 Blood component collection device
US7264608B2 (en) * 2001-12-05 2007-09-04 Fenwal, Inc. Manual processing systems and methods for providing blood components conditioned for pathogen inactivation
EP2128613A1 (en) 2008-05-28 2009-12-02 Institut Pasteur Method for screening compounds for their ability to increase rigidity of red blood cells infected by a protozoan parasite of the genus plasmodium and application thereof
US9199016B2 (en) * 2009-10-12 2015-12-01 New Health Sciences, Inc. System for extended storage of red blood cells and methods of use
US8920659B2 (en) 2010-11-08 2014-12-30 New York Blood Center, Inc. Component preparation system
CA2826969C (en) * 2010-11-29 2019-02-19 New York Blood Center, Inc. Method of blood pooling and storage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6447987B1 (en) * 1978-09-09 2002-09-10 The United States Of America As Represented By The Secretary Of The Army Prolonged storage of red blood cells
US20020192632A1 (en) * 1995-06-07 2002-12-19 Hei Derek J. Method and devices for the removal of psoralens from blood products

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Beutler et al, The definition of anemia: what is the lower limit of normal of the blood hemoglobin concentration? 2006, Blood 107: 1747-1750 *
Cardoso et al, Mini-pool screening by nucleic acid testing for hepatitis B virus, hepatitis C virus, and HIM preliminary results, 1998, Volume 38(10): 905–907 *
Fujihara et al, Prestorage Ieucofiltration prevents the accumulation of MM9 in red cell concentrates stored in MAP, 2005, Vox Sanguinis 89: 114-115 *
Zhang et al, CELL COUNTER, BLOOD, 2006, Encyclopedia of Medical Devices and Instrumentation, Second Edition,p. 81-90 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8968993B2 (en) 2010-11-29 2015-03-03 The New York Blood Center, Inc. Method of blood pooling and storage
US9394518B2 (en) 2010-11-29 2016-07-19 The New York Blood Center, Inc. Method of preparing red blood cell and platelet products
US9982230B2 (en) * 2010-11-29 2018-05-29 New York Blood Center, Inc. Uniform dose pooled blood products
US20180245043A1 (en) * 2010-11-29 2018-08-30 New York Blood Center, Inc. Method of blood pooling and storage
US10612000B2 (en) * 2010-11-29 2020-04-07 New York Blood Center, Inc. Method of blood pooling and storage
KR101426804B1 (en) 2012-10-09 2014-08-05 김홍승 Platelet preserving composition, and kit for preserving platelet, and method for preserving platelet using the same
US20210322479A1 (en) * 2014-07-23 2021-10-21 Cerus Corporation Methods for preparing platelet products
US20180289744A1 (en) * 2015-05-29 2018-10-11 Maco Pharma Method for sterilising a platelet lysate
US10946046B2 (en) * 2015-05-29 2021-03-16 Maco Pharma Method for sterilising a platelet lysate
US11690875B2 (en) 2015-05-29 2023-07-04 Maco Pharma Method for sterilising a platelet lysate
US20190344008A1 (en) * 2016-03-21 2019-11-14 Terumo Kabushiki Kaisha Blood component separation device and blood component separation method
US10940260B2 (en) * 2016-03-21 2021-03-09 Terumo Kabushiki Kaisha Blood component separation device and blood component separation method

Also Published As

Publication number Publication date
CA2826969C (en) 2019-02-19
US9394518B2 (en) 2016-07-19
US10385317B2 (en) 2019-08-20
US8512942B2 (en) 2013-08-20
US20160298083A1 (en) 2016-10-13
US9982230B2 (en) 2018-05-29
CA2826969A1 (en) 2012-06-07
WO2012075041A2 (en) 2012-06-07
EP2645854A4 (en) 2014-04-30
EP2645854A2 (en) 2013-10-09
US8968993B2 (en) 2015-03-03
US20120135391A1 (en) 2012-05-31
US20130302780A1 (en) 2013-11-14
US20150125847A1 (en) 2015-05-07
US20190338248A1 (en) 2019-11-07
WO2012075041A3 (en) 2013-01-10
US20180245043A1 (en) 2018-08-30
US10612000B2 (en) 2020-04-07
EP2645854B1 (en) 2017-10-18

Similar Documents

Publication Publication Date Title
US20190338248A1 (en) Method of blood pooling and storage
US11911471B2 (en) Anaerobic blood storage and pathogen inactivation method
US20230015525A1 (en) Anaerobic Blood Storage and Pathogen Inactivation Method
Larsson et al. Evaluation of a whole‐blood WBC‐reduction filter that saves platelets: in vitro studies
Quirolo Transfusion medicine for the pediatrician
Högman 2 Cellular blood components: preparation, preservation, leukodepletion and indication
Cardigan et al. Practical Transfusion Medicine 4th Ed.
CA2673825A1 (en) Orthogonal method for the removal of transmissible spongiform encephalopathy agents from biological fluids

Legal Events

Date Code Title Description
AS Assignment

Owner name: NEW YORK BLOOD CENTER, INC., NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHAZ, BETH;HILLYER, CHRISTOPHER D.;REEL/FRAME:028287/0307

Effective date: 20120524

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: AWAITING TC RESP, ISSUE FEE PAYMENT VERIFIED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 4