US20120245798A1 - Vehicle collision avoidance system - Google Patents

Vehicle collision avoidance system Download PDF

Info

Publication number
US20120245798A1
US20120245798A1 US13/430,567 US201213430567A US2012245798A1 US 20120245798 A1 US20120245798 A1 US 20120245798A1 US 201213430567 A US201213430567 A US 201213430567A US 2012245798 A1 US2012245798 A1 US 2012245798A1
Authority
US
United States
Prior art keywords
obstacle
controller
obstacle detection
camera
collision avoidance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/430,567
Inventor
Robert Martin Coats
David Robert Pavlik
Ramkumar Subramanian
David Edwards
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Caterpillar Inc
Original Assignee
Caterpillar Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Caterpillar Inc filed Critical Caterpillar Inc
Priority to US13/430,567 priority Critical patent/US20120245798A1/en
Publication of US20120245798A1 publication Critical patent/US20120245798A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/411Identification of targets based on measurements of radar reflectivity
    • G01S7/412Identification of targets based on measurements of radar reflectivity based on a comparison between measured values and known or stored values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • G01S13/867Combination of radar systems with cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/86Combinations of sonar systems with lidar systems; Combinations of sonar systems with systems not using wave reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/86Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9315Monitoring blind spots
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/932Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles using own vehicle data, e.g. ground speed, steering wheel direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9323Alternative operation using light waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9324Alternative operation using ultrasonic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93275Sensor installation details in the bumper area
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present disclosure relates generally to a collision avoidance system and, more particularly, to a system for avoiding vehicle collisions.
  • Machines such as, for example, wheel loaders, off-highway haul trucks, excavators, motor graders, and other types of earth-moving machines are used to perform a variety of tasks. Some of these tasks involve intermittently moving between and stopping at certain locations within a worksite and, because of the poor visibility provided to operators of the machines, these tasks can be difficult to complete safely and effectively. In fact, it is not uncommon for obstacles, such as light duty vehicles, to move and stop near the machine completely unnoticed by the operator. When an obstacle remains unnoticed, the machine may move toward and collide with the obstacle. This collision may necessitate an accident investigation. During this accident investigation, the machine may be taken out of service, thereby reducing the productivity and efficiency of the worksite.
  • obstacles such as light duty vehicles
  • the '015 patent describes a vehicle that includes multiple vision sensing systems.
  • the vision sensing systems have vision receivers and generate an object detection signal.
  • the '015 patent also describes a controller that includes a plurality of sensing system aid modules.
  • the sensing system aid modules correspond to each of the vision sensing systems.
  • the controller operates the sensing system aid modules in response to a vehicle parameter, and generates a safety system signal in response to the object detection signal.
  • the sensing system aid modules have associated operating modes and operate the vision sensing systems in the operating modes in response to the vehicle parameter. Operating modes include adaptive cruise control mode, parking-aid mode, reversing-aid mode, pre-collision sensing mode, lane departure aid mode, and lane-keeping aid mode.
  • the controller indicates the safety system signal via an indicator.
  • the system aid modules of the '015 patent may operate the vision sensing systems of the '015 patent to detect objects, the vision sensing systems may do little to detect objects when operated in certain operating modes, in response to a vehicle parameter.
  • the indicator of the '015 patent may fail to indicate relevant safety system signals. For example, when a reverse gear of the vehicle of the '015 patent is not engaged, the controller of the '015 patent does not operate a reversing-aid mode. When the reversing-aid mode is not operated, objects rearward and within approximately 2-5 meters of the vehicle are not detected or indicated. But, an operator may find these objects relevant to a possible collision situation.
  • the indicator may fail to indicate relevant safety system signals, it may indicate extraneous safety system signals.
  • the indicator may indicate safety system signals that are not relevant to certain vehicle movements.
  • the controller operates a forward vision system in pre-collision mode. When the forward vision system operates in pre-collision mode, objects forward of the vehicle are detected and indicated. But, these detections and indications may confuse or annoy the operator, thereby reducing the indicator's future effectiveness.
  • the disclosed system is directed to overcoming one or more of the problems set forth above.
  • the present disclosure is directed to a collision avoidance system for a machine.
  • the collision avoidance system includes a first obstacle detection system.
  • the first obstacle detection system is configured to detect a first obstacle and generate a corresponding first signal.
  • the collision avoidance system includes an operator interface.
  • the operator interface includes a display configured to communicate visual information to an operator.
  • the collision avoidance system includes an interface module configured to detect a status of the machine and generate a corresponding second signal.
  • the collision avoidance system also includes a controller.
  • the controller is in communication with the first obstacle detection system, the operator interface, and the interface module.
  • the controller is configured to control the display to indicate a dangerous obstacle detection to the operator, based on the first and second signals.
  • the controller is configured to control the display to provide a dangerous obstacle warning to the operator, based on the first and second signals.
  • the present disclosure is directed to a method of responding to a potential machine collision.
  • the method includes detecting a first obstacle. Additionally, the method includes detecting a status of the machine. The method also includes indicating a dangerous obstacle detection to an operator, based on the detection of the first obstacle and the detection of the status of the machine. In addition, the method includes providing a dangerous obstacle warning to the operator, based on the detection of the first obstacle and the detection of the status of the machine.
  • FIG. 1 is a pictorial illustration of an exemplary disclosed machine
  • FIG. 2 is a diagrammatic illustration of an exemplary disclosed control system for use with the machine of FIG. 1 ;
  • FIG. 3 is a pictorial illustration of an exemplary disclosed map for use with the control system of FIG. 2 ;
  • FIG. 4 is a diagrammatic illustration of exemplary disclosed obstacle detection systems for use with the control system of FIG. 2 ;
  • FIG. 5 is a pictorial illustration of exemplary disclosed medium range sensors, exemplary disclosed proximity sensors, and exemplary disclosed cameras for use with the obstacle detection systems of FIG. 4 ;
  • FIG. 6 is a pictorial illustration of exemplary disclosed downward facing sensors and exemplary disclosed cameras for use with the obstacle detection systems of FIG. 4 ;
  • FIG. 7 is a pictorial illustration of an exemplary disclosed operator interface operating in an exemplary disclosed mixed mode in an exemplary disclosed active color scheme, for use with the control system of FIG. 2 ;
  • FIG. 8 is a pictorial illustration of the operator interface of FIG. 7 operating in the mixed mode of FIG. 7 in an exemplary disclosed inactive color scheme
  • FIG. 9 is a pictorial illustration of the operator interface of FIG. 7 operating in an exemplary disclosed camera mode
  • FIG. 10 is a flow chart describing an exemplary method of operating the control system of FIG. 2 ;
  • FIG. 11 is a flow chart describing an exemplary method of checking a status of the machine of FIG. 1 .
  • FIG. 1 illustrates an exemplary machine 10 and an obstacle 12 of machine 10 , both located at a worksite 14 .
  • machine 10 is depicted as an off-highway haul truck, it is contemplated that machine 10 may embody another type of large machine, for example, a wheel loader, an excavator, or a motor grader.
  • Obstacle 12 is depicted as a service vehicle. But, it is contemplated that obstacle 12 may embody another type of obstacle, for example, a pick-up truck, or a passenger car. If obstacle 12 is at least a certain size, obstacle 12 may be classified as dangerous. For example, the certain size may be a length 22 .
  • obstacle 12 may be classified as dangerous. Alternatively, obstacle 12 may be classified as dangerous for another reason. For example, obstacle 12 may be classified as dangerous if it has a stable RADAR return (i.e. if it is detected at one range for more than a certain period of time).
  • Worksite 14 may be, for example, a mine site, a landfill, a quarry, a construction site, or another type of worksite known in the art.
  • Machine 10 may have an operator station 24 , which may be situated to minimize the effect of blind spots of machine 10 (i.e. maximize the unobstructed area viewable by an operator or operators of machine 10 (hereafter “operator”)). But, because of the size of some machines, these blind spots may still be large. For example, dangerous obstacle 12 may reside completely within a blind spot 28 , which may or may not be viewable by the operator. To avoid collisions with dangerous obstacle 12 , machine 10 may be equipped with a collision avoidance system 29 (referring to FIG. 2 ). Collision avoidance system 29 may include a controller 30 to gather information about obstacle 12 within blind spot 28 .
  • Controller 30 may be associated with operator station 24 , or another protected assembly of machine 10 . As illustrated in FIG. 2 , controller 30 may include a map 32 to store information about dangerous obstacle 12 detections within blind spot 28 . Controller 30 may update map 32 to reflect current dangerous obstacle 12 detections by communicating with an obstacle detection system 34 . Controller 30 may also communicate with an interface module 35 to detect a status of machine 10 . Additionally, controller 30 may communicate with a camera 36 to capture images of blind spot 28 . Controller 30 may communicate these images to the operator via an operator interface 38 , which may operate in one of a plurality of color schemes based on the machine status. In addition, controller 30 may use operator interface 38 to communicate a visual representation of map 32 to the operator, thereby indicating a dangerous obstacle 12 detection to the operator. Controller 30 may also use operator interface 38 to provide a dangerous obstacle 12 warning to the operator, and acknowledge the operator's recognition of this warning.
  • Controller 30 may include means for monitoring, recording, storing, indexing, processing, and/or communicating information. These means may include, for example, a memory, one or more data storage devices, a central processing unit, and/or another component that may be used to run the disclosed applications. Furthermore, although aspects of the present disclosure may be described generally as being stored in memory, one skilled in the art will appreciate that these aspects can be stored on or read from different types of computer program products or computer-readable media such as computer chips and secondary storage devices, including hard disks, floppy disks, optical media, CD-ROM, or other forms of RAM or ROM.
  • Interface module 35 may include a plurality of sensors 35 a - e distributed throughout machine 10 and configured to gather data from various components and subsystems of machine 10 .
  • Sensors 35 a - e may be associated with and/or monitor a power source, a transmission, a traction device, a steering device, and/or other components and subsystems of machine 10 .
  • Sensors 35 a - e may measure and/or detect a status of machine 10 based on the gathered data, such as, for example, a ground speed, a distance traveled, a gear selection of the transmission, a steering angle, or an ambient light level.
  • Interface module 35 may be configured to generate and communicate to controller 30 a signal corresponding to this status of machine 10 .
  • Map 32 may be electronic in form, and may be stored in the memory of controller 30 . As previously discussed, map 32 may be updated in real time to reflect current dangerous obstacle 12 detections. It is contemplated that map 32 may store a set of detection values representing dangerous obstacle 12 detections within one or more blind spots 28 . It is further contemplated that map 32 may be visually represented. For example, as illustrated in FIG. 3 , the set of detection values may represent dangerous obstacle 12 detections within each of blind spots 28 a , 28 b , 28 c , 28 d , 28 e , and 28 f . Blind spot 28 d may be located forward of machine 10 , while blind spot 28 c may be located rearward of machine 10 .
  • blind spot 28 f may be located leftward of machine 10
  • blind spot 28 e may be located rightward of machine 10
  • map 32 may store a set of criticality values representing how threatening dangerous obstacle 12 within each of blind spots 28 a , 28 b , 28 c , 28 d , 28 e , and 28 f may be.
  • dangerous obstacle 12 within blind spots 28 c , 28 d , 28 e , and 28 f may be more-threatening than dangerous obstacle 12 within blinds spots 28 a and 28 b because blind spots 28 c , 28 d , 28 e , and 28 f may be closer to machine 10 .
  • Table 1 represents a possible set of detection values and a possible set of criticality values as stored in controller 30 .
  • detection value 1 may correspond to a dangerous obstacle 12 detection (i.e. dangerous obstacle 12 presence), while detection value 0 may correspond to a dangerous obstacle 12 non-detection (i.e. dangerous obstacle 12 absence).
  • criticality value 1 may correspond to a blind spot 28 within which obstacle 12 is threatening, while criticality value 0 may correspond to a blind spot 28 within which obstacle 12 is not threatening.
  • detection value 1 is represented by horizontal solid-line crosshatching, while detection value 0 is represented by horizontal dotted-line crosshatching.
  • criticality value 1 is represented by diagonal solid-line crosshatching, while criticality value 0 is represented by the absence of diagonal crosshatching.
  • Each blind spot 28 may be associated with one obstacle detection system 34 , which may detect dangerous obstacle 12 and, through communication with controller 30 , update map 32 accordingly.
  • Each blind spot 28 may also be associated with one camera 36 , which may capture images of blind spot 28 and, via operator interface 38 , display these images to the operator.
  • Table 2 represents one possible set of associations between blind spots 28 , obstacle detection systems 34 , and cameras 36 .
  • Each row of Table 2 represents a 3-way association between one blind spot 28 , one obstacle detection system 34 , and one camera 36 .
  • each blind spot 28 may be associated with more than one obstacle detection system 34 and/or more than one camera 36 .
  • more than one blind spot 28 may share one camera 36 and/or one obstacle detection system 34 .
  • blind spots 28 a and 28 c may share one camera 36 .
  • This camera 36 may hereafter be referred to as camera 36 a or camera 36 c .
  • blind spots 28 b and 28 d may share one camera 36 .
  • This camera 36 may hereafter be referred to as camera 36 b or camera 36 d.
  • each obstacle detection system 34 may include an obstacle sensor 39 , or a plurality-thereof, to detect points on surfaces within its associated blind spot 28 .
  • obstacle detection system 34 may include a first obstacle sensor 39 - 1 and a second obstacle sensor 39 - 2 .
  • Obstacle sensor 39 - 1 may detect points that are on surfaces facing it (i.e. points within a line of sight of obstacle sensor 39 - 1 ).
  • obstacle sensor 39 - 2 may detect points that are on surfaces facing it (i.e. points within a line of sight of obstacle sensor 39 - 2 ). Detections of points by obstacle sensors 39 - 1 and 39 - 2 may be raw (i.e. not directly comparable).
  • each obstacle detection system 34 may also include a controller 40 , which may receive communications including the detections of points from obstacle sensors 39 - 1 and 39 - 2 (i.e. obstacle 12 detections), respectively, and then transform, filter, and/or unionize the detections. Each controller 40 may also generate and communicate to controller 30 a signal corresponding to these transformed, filtered, and/or unionized detections (i.e. dangerous obstacle 12 detections).
  • each obstacle detection system 34 may embody a single integrated component that may detect obstacles 12 , determine whether obstacles 12 are dangerous, and communicate dangerous obstacle 12 detections to controller 30 .
  • obstacle detection system 34 may embody a motion detector, an RFID detector, or a GPS tracking system.
  • each obstacle sensor 39 may vary in form.
  • each obstacle sensor 39 may embody a medium range sensor 42 , a proximity sensor 44 , a downward facing sensor 46 , or another sensor that may detect points on surfaces.
  • Table 3 represents exemplary configurations of each obstacle detection system 34 .
  • medium range sensors 42 b - 1 and 42 b - 2 may be attached to a bumper 48 of machine 10 , and situated to detect obstacle 12 within blind spot 28 b .
  • medium range sensors 42 a - 1 and 42 a - 2 may be attached to a rear support 50 of machine 10 , and situated to detect obstacle 12 within blind spot 28 a .
  • Each medium range sensor 42 may embody a device that detects and ranges (i.e. determines relative locations of) surface points.
  • each medium range sensor 42 may be a LIDAR (light detection and ranging) device, RADAR (radio detection and ranging) device, SONAR (sound navigation and ranging) device, vision based sensing device, or another type of device that may detect and range surface points.
  • Medium range sensors 42 may be configured to detect and range surface points that are between approximately 5 and 20 meters from machine 10 . And, medium range sensors 42 may also be configured to generate and communicate to controllers 40 signals corresponding to these detections.
  • downward facing sensors 46 e - 1 and 46 e - 2 may be attached to a quarter panel 52 of machine 10 , and situated to detect obstacle 12 within blind spot 28 e .
  • downward facing sensors 46 f - 1 and 46 f - 2 may be attached to a quarter panel 53 of machine 10 , and situated to detect obstacle 12 within blind spot 28 f .
  • Each downward facing sensor 46 may embody a device that detects and ranges (i.e. determines relative locations of) surface points.
  • each downward facing sensor 46 may be a LIDAR (light detection and ranging) device, RADAR (radio detection and ranging) device, SONAR (sound navigation and ranging) device, vision based sensing device, or another type of device that may detect and range surface points.
  • Downward facing sensors 46 may be configured to detect and range surface points that are within approximately 5 meters of machine 10 . These surface points may include ground surface points.
  • downward facing sensors 46 may also be configured to generate and communicate to controllers 40 signals corresponding to these detections.
  • Each controller 40 may include means for monitoring, recording, storing, indexing, processing, and/or communicating information. These means may include, for example, a memory, one or more data storage devices, a central processing unit, and/or another component that may receive surface point detections from obstacle sensors 39 , and then communicate a signal indicative of dangerous obstacle 12 detections to controller 30 .
  • each blind spot 28 may also be associated with one camera 36 , which may capture images of dangerous obstacle 12 .
  • each camera 36 may embody a video camera, or another device operable to capture, and communicate images.
  • camera 36 b (alternatively referred to as camera 36 d ) may be mounted on stairs 54 to view blind spots 28 b and 28 d
  • camera 36 a (alternatively referred to as camera 36 c ) may be mounted on rear support 50 to view blind spots 28 a and 28 c
  • camera 36 e may be mounted on quarter panel 52 to view blind spot 28 e .
  • camera 36 f may be mounted on railing 55 to view blind spot 28 f .
  • Each camera 36 may generate and communicate to controller 30 a signal corresponding to captured images. It is contemplated that controller 30 may communicate with operator interface 38 to display these captured images to the operator.
  • Operator interface 38 may be situated within operator station 24 (referring to FIG. 1 ) and may be viewable, and operable by the operator.
  • operator interface 38 may be mounted to a dashboard (not shown) of machine 10 within reach of the operator.
  • operator interface 38 may include a display 56 to display the captured images.
  • Display 56 may also display a visual representation of map 32 .
  • Controller 30 may use this visual representation of map 32 to provide a dangerous obstacle 12 warning to the operator.
  • operator interface 38 may include a warning device 58 to provide a dangerous obstacle 12 warning to the operator.
  • Warning device 58 may embody, for example, an alarm; a horn; an odorant or tissue-irritating substance dispenser; or another device operable to provide a warning to the operator.
  • Display 56 may embody, for example, a monitor, an LCD screen, a plasma screen, a screen of a handheld device, or another device capable of communicating visual information to the Operator. It is contemplated that controller 30 may operate display 56 in one or more modes corresponding to varied machine 10 operations. For example, a mixed mode may be utilized during normal operations to provide to the operator a wide breadth of information. When dangerous obstacle 12 is detected within a certain blind spot 28 , a camera mode may be utilized to provide to the operator focused information regarding that certain blind spot 28 . The operator may activate camera mode in response to a provided dangerous obstacle 12 warning, thereby acknowledging the dangerous obstacle 12 warning.
  • FIG. 7 illustrates display 56 operating in mixed mode.
  • controller 30 may devote a first portion 62 of display 56 to the visual representation of map 32 .
  • Controller 30 may devote a second portion 64 of display 56 to images captured by one camera 36 (hereafter “camera 36 images”).
  • controller 30 may devote a third portion 66 of display 56 to collision avoidance system 29 status information.
  • Portion 62 may operate in one of a plurality of color schemes based upon the status communicated by interface module 35 . For example, portion 62 may operate in one of a night, a day, and a sleep color scheme based on the statuses defined by Table 4.
  • these color schemes may highlight or suppress dangerous obstacle 12 detections.
  • the night and day color schemes hereafter an “active” color scheme
  • the sleep color scheme hereafter an “inactive” color scheme
  • portion 62 may include icons 68 a , 68 b , 68 c , 68 d , 68 e , and 68 f , arranged and sized to represent blind spots 28 a ; 28 b , 28 c , 28 d , 28 e , and 28 f , respectively.
  • Controller 30 may vary the appearance of each icon 68 to indicate dangerous obstacle 12 detections within an associated blind spot 28 , thereby highlighting these dangerous obstacle 12 detections.
  • controller 30 may change the color of icons 68 . It is contemplated that controller 30 may also vary this color depending on the criticality of blind spot 28 .
  • controller 30 may alter the appearance of each icon 68 to provide a dangerous obstacle 12 warning to the operator.
  • controller 30 may cause icons 68 to flash intermittently between two different colors.
  • the appearance of each icon 68 may be defined by Table 5.
  • portion 62 may in no way communicate dangerous obstacle 12 detections to the operator, thereby suppressing these dangerous obstacle 12 detections.
  • portion 62 may include diagonal lines 69 , but controller 30 may not vary the appearance of diagonal lines 69 in response to dangerous obstacle 12 detections.
  • portion 64 may be devoted to camera 36 images. Specifically, portion 64 may communicate camera 36 images. It is contemplated that controller 30 may automatically select which camera 36 images are communicated (i.e. controller 30 may automatically determine which camera 36 captures the images that are displayed). This automatic selection may be based on the status communicated by interface module 35 . For example, controller 30 may select which camera 36 images are displayed based on which blind spot 28 machine 10 may be capable of moving toward. Table 6 defines one possible set of relations between statuses and selected cameras.
  • the automatic selection may be based on dangerous obstacle 12 detections. For example, if dangerous obstacle 12 is detected within blind spot 28 a , controller 30 may select camera 36 a . In yet another alternative, it is contemplated that the operator may indirectly via input device 60 and controller 30 select which camera 36 images are displayed.
  • Portion 66 may include an indicator 70 and a text box 72 , each configured to communicate a status of collision avoidance system 29 .
  • controller 30 may vary the appearance of indicator 70 to indicate whether the color scheme of portion 62 is active or inactive. For example, controller 30 may change the color of indicator 70 . Controller 30 may display indicator 70 as red when the color scheme of portion 62 is inactive, and as green when the color scheme of portion 62 is active. Controller 30 may also communicate information to the operator via text box 72 . For example, controller 30 may communicate text regarding which camera 36 images are selected.
  • FIG. 9 illustrates display 56 operating in camera mode.
  • controller 30 may increase a relative size of portion 64 . It is contemplated that camera 36 images may thereby be displayed at a higher resolution, allowing the operator to view dangerous obstacle 12 details, for example, license plate numbers.
  • FIG. 10 illustrates an exemplary method of operating collision avoidance system 29 .
  • FIG. 10 will be discussed in the following section to further illustrate collision avoidance system 29 and its operation.
  • FIG. 11 illustrates an exemplary method of checking a status of machine 10 .
  • FIG. 11 will be discussed in the following section to further illustrate collision avoidance system 29 and its operation.
  • the disclosed collision avoidance system may be applicable to machines, which may intermittently move between and stop at certain locations within a worksite.
  • the system may detect information about an obstacle within a blind spot of the machine, and report this information to an operator of the machine.
  • the disclosed system may detect a presence of a dangerous obstacle within the blind spot, and warn the operator of this presence. Operation of the system will now be described.
  • operation of collision avoidance system 29 may commence at a step 100 , which may include initialization of controller 30 . Controller 30 may then check a status of machine 10 , and adjust the communications of display 56 , based on this status (step 110 ). Next, controller 30 may communicate with obstacle detection system 34 (step 120 ), which may determine whether dangerous obstacle 12 is detected within blind spot 28 (step 130 ). If dangerous obstacle 12 is not detected within blind spot 28 , controller 30 may return to step 110 and again check the status of machine 10 .
  • the initialization of step 100 may involve populating default values. It is contemplated that this initialization may be performed during installation of collision avoidance system 29 . In particular, the criticality values associated with each blind spot 28 may be defined.
  • the camera 36 images which are communicated via display 56 at machine startup, may also be selected. It is contemplated that after machine startup, the operator may via input device 60 select other camera 36 images for communication via display 56 . For example, if display 56 and input device 60 together embody a touch screen, the operator may touch one icon 68 . Controller 30 may determine that this icon 68 represents a certain blind spot 28 . Controller 30 may then select camera 36 images associated with this certain blind spot 28 .
  • the operator may via input device 60 activate camera mode to obtain focused information regarding one blind spot 28 .
  • the color scheme of portion 62 may also be selected. This color scheme may be altered after machine startup, based upon the status of machine 10 . For example, when ambient light levels decrease below a certain level, controller 30 may switch the color scheme of portion 62 from day to night. Alternatively, the initialization may be performed at a service interval of machine 10 , or during operation of collision avoidance system 29 .
  • checking the status of machine 10 may include checking a plurality of statuses of machine 10 .
  • This checking of the plurality of statuses of machine 10 may occur simultaneously or serially, and each status of machine 10 may be stored in the memory of controller 30 for later use.
  • the plurality of statuses of machine 10 may be divided into one or more groups of statuses. Each group of statuses may serve as the basis for a specific adjustment of the communications of display 56 .
  • one group of statuses may include the distance traveled by machine 10 , the ground speed of machine 10 , and the ambient light level within operator station 24 .
  • controller 30 may first check one group of statuses (step 310 ). Specifically, controller 30 may communicate with interface module 35 to determine the distance traveled by machine 10 (step 330 ), the ground speed of machine 10 (step 340 ), and the ambient light level within operator station 24 (step 350 ). It is contemplated that these determinations may include calculations by controller 30 . For example, the distance traveled by machine 10 may be calculated based on the ground speed of machine 10 and an elapsed time. Next, controller 30 may select the color scheme of portion 62 , based on these determinations (step 360 ). Controller 30 may select the color scheme of portion 62 in accordance with Table 4.
  • controller 30 may select the day color scheme. But, if machine 10 has traveled more than 20 meters since its last full stop and the ground speed of machine 10 is not zero miles per hour, controller 30 may select the sleep color scheme. Simultaneously with or after steps 310 and 360 , controller 30 may check another group of statuses (step 320 ). Specifically, controller 30 may communicate with interface module 35 to determine the steering angle of machine 10 (step 370 ) and the gear selection of the transmission of machine 10 (step 380 ). Controller 30 may then select the camera 36 images, which are communicated via display 56 (step 390 ). Controller 30 may select the camera 36 images in accordance with Table 6. For example, if the steering angle of machine 10 is leftward and the gear selected is a forward gear, controller 30 may select camera 36 f images. After the adjustments of steps 360 and 390 , controller 30 may proceed to step 120 as illustrated in FIG. 10 .
  • step 120 may involve one or more obstacle detection systems 34 .
  • controller 30 may communicate with one obstacle detection system 34 at a time.
  • controller 30 may communicate with obstacle detection system 34 a .
  • Controller 30 may then complete steps 130 - 250 based on this communication with obstacle detection system 34 a .
  • controller 30 may communicate with obstacle detection, system 34 b.
  • Controller 30 may then complete steps 130 - 250 based on this communication with obstacle detection system 34 b .
  • controller 30 may then again communicate with obstacle detection system 34 a or another obstacle detection system 34 .
  • controller 30 may simultaneously communicate with a plurality of obstacle detection systems 34 .
  • controller 30 may simultaneously communicate with obstacle detection systems 34 a and 34 b .
  • Controller 30 may then complete steps 130 - 250 based on these communications with obstacle detections systems 34 a and 34 b . Specifically, controller 30 may complete steps 130 - 250 based on the communication with obstacle detection system 34 a . Simultaneously, controller 30 may also complete steps 130 - 250 based on the communications with obstacle detection system 34 b.
  • the communications of step 120 may include detection values determined by each obstacle detection system 34 during step 130 .
  • detection value 1 may correspond to a dangerous obstacle 12 detection
  • detection value 0 may correspond to a dangerous obstacle 12 non-detection.
  • the determination of step 130 may include sub-steps.
  • each obstacle detection system 34 and more specifically, each obstacle sensor 39 may scan (i.e. detect points within) blind spot 28 ..
  • Each obstacle sensor 39 may then communicate data regarding these scans (i.e. the raw locations of the points) to controller 40 .
  • Controller 40 may aggregate the raw locations of the points and then determine an attribute of at least one obstacle 12 . In particular, controller 40 may apply a height filter to the points, thereby removing ground surfaces.
  • controller 40 may filter out the points on surfaces of obstacles 12 that are not dangerous. Specifically, controller 40 may filter out the points that represent transient (unstable) RADAR returns. For example, the points that are detected for not more than a sustained period of five-hundred milliseconds may be filtered out. The points that remain may be classified as dangerous obstacles 12 . Alternatively, controller 40 may filter out obstacles 12 that are not a certain size. Controller 40 may convert the height filtered points into obstacles 12 through blob extraction, which is known in the art of computer graphics. Controller 40 may then apply a size filter to obstacles 12 . Specifically, controller 40 may filter out obstacles 12 that have height 16 not longer than length 22 , width 18 not longer than length 22 , and depth 20 not longer than length 22 (referring to FIG.
  • the filtering may be accomplished by first calculating height 16 , width 18 , and depth 20 .. The longest of height 16 , width 18 , and depth 20 may then be compared to length 22 . If the longest of height 16 , width 18 , and depth 20 is not longer than length 22 , obstacle 12 may be filtered out. But, if the longest of height 16 , width 18 , and depth 20 is longer than length 22 , obstacle 12 may be retained and classified as dangerous.
  • each controller 40 may then generate and communicate to controller 30 a signal corresponding to detection value 0 or 1 .
  • controller 40 may generate and communicate to controller 30 a signal corresponding to detection value 1 . Otherwise, controller 40 may generate and communicate to controller 30 a signal corresponding to detection value 0 .
  • controller 30 may return to step 110 and again check the status of machine 10 . But, if controller 30 receives a signal corresponding to detection value 1 (i.e. dangerous obstacle 12 is detected within blind spot 28 ), controller 30 may update map 32 , based on the detection (step 140 ). If the color scheme of portion 62 is active, controller 30 may then inform the operator of the detection by updating the visual representation of map 32 communicated via display 56 (step 150 ). Simultaneously with or after step 150 , and regardless of the color scheme of portion 62 , controller 30 may determine whether to warn the operator of the dangerous obstacle 12 detection (step 160 ).
  • controller 30 may again communicate with obstacle detection system 34 (step 170 ), which may again determine whether dangerous obstacle 12 is detected within blind spot 28 (step 180 ). Steps 170 and 180 may be equivalent to steps 120 and 130 , respectively. If at step 180 dangerous obstacle 12 is not detected within blind spot 28 , controller 30 may update map 32 , based on the non-detection (step 190 ). If the color scheme of portion 62 is active, controller 30 may then inform the operator of the non-detection by updating the visual representation of map 32 communicated via display 56 (step 200 ). Regardless of the color scheme of portion 62 , controller 30 may then return to step 110 and again check the status of machine 10 .
  • controller 30 may activate mixed mode (referring to FIG. 7 ), if display 56 is operating in camera mode.
  • controller 30 may vary the appearance of one icon 68 to indicate the detection of dangerous obstacle 12 within blind spot 28 .
  • controller 30 may vary the appearance of icon 68 in accordance with the selected color scheme and Table 5. For example, if the day color scheme is selected, icon 68 may be shown as red or yellow. Icon 68 may be shown as red if blind spot 28 has a criticality value of 1 (i.e. dangerous obstacle 12 is threatening), while icon 68 may be shown as yellow if blind spot 28 has a criticality value of 0 (i.e. dangerous obstacle 12 is not threatening).
  • controller 30 may select which camera 36 images are communicated via portion 64 of display 56 , based on the dangerous obstacle 12 detection. For example, if dangerous obstacle 12 is detected within blind spot 28 a , controller 30 may select camera 36 a . Alternatively, the selection by controller 30 of which camera 36 images are communicated may be included in step 220 , discussed below.
  • the determination of whether to warn the operator of the dangerous obstacle 12 detection may be based upon the criticality value of blind spot 28 and/or the status of machine 10 . For example, a warning may be required if blind spot 28 has a criticality value of 1. Alternatively or additionally, a warning may only be required if the steering angle of machine 10 and the gear selection of the transmission of machine 10 are such that machine 10 may move toward obstacle 12 . For example, if obstacle 12 is detected within blind spot 28 f , blind spot 28 f has a criticality value of 1, the steering angle of machine 10 is leftward, and the gear selected is a forward gear, a warning may be required.
  • blind spot 28 f has a criticality value of 1
  • the steering angle of machine 10 is leftward
  • the gear selected is a reverse gear
  • a warning may not be required.
  • a warning may only be required when the selected color scheme of portion 62 is active. For example, if obstacle 12 is detected within blind spot 28 f , the steering value of machine 10 is leftward, the gear selected is a forward gear, and the selected color scheme of portion 62 is inactive, a warning may not be required.
  • Controller 30 may activate mixed mode (referring to FIG. 7 ), if display 56 is operating in camera mode.
  • controller 30 may vary the appearance of one icon 68 to indicate the non-detection of dangerous obstacle 12 within blind spot 28 .
  • controller 30 may vary the appearance of icon 68 in accordance with the selected color scheme and Table 5. For example, if the day color scheme is selected, icon 68 may be shown as black.
  • controller 30 may determine whether at step 160 controller 30 determined that a warning was required (step 210 ). If at step 160 controller' 30 determined a warning was not required, controller 30 may again check the status of machine 10 , and adjust the communications of display 56 based on this status (step 230 ). Step 230 may be equivalent to step 110 (referring to FIG. 11 ). Controller 30 may then again determine whether to warn the operator of the dangerous obstacle 12 detection (step 160 ).
  • controller 30 may provide a dangerous obstacle 12 warning to the operator (step 220 ). This warning may be provided via display 56 . Specifically, controller 30 may alter the appearance of one icon 68 to warn the operator of the detection of dangerous obstacle 12 within blind spot 28 . In particular, controller 30 may alter the appearance of icon 68 in accordance with the selected color scheme of Table 5. For example, if the day color scheme is selected, icon 68 may flash intermittently between black and red. Additionally or alternatively, controller 30 may activate warning device 58 to provide the dangerous obstacle 12 warning to the operator. Controller 30 may also select which camera 36 images are communicated via portion 64 of display 56 , based on the dangerous obstacle 12 detection.
  • controller 30 may select camera 36 a . Controller 30 may then again communicate with obstacle detection system 34 (step 170 ), which may again determine whether dangerous obstacle 12 is detected within blind spot 28 (step 180 ). If dangerous obstacle 12 is not detected within blind spot 28 , controller 30 may update map 32 based on the non-detection, as previously discussed (step 190 ).
  • controller 30 may determine whether the operator has acknowledged the dangerous obstacle 12 warning provided at step 220 (hereafter the “first dangerous obstacle 12 warning”) (step 240 ). It is contemplated that the operator may acknowledge the first dangerous obstacle 12 warning by making a selection via input device 60 . Therefore, if the operator has not made a selection via input device 60 , the operator may not have acknowledged the first dangerous obstacle 12 warning. If the operator has not acknowledged the first dangerous obstacle 12 warning, controller 30 may again check the status of machine 10 , and adjust the communications of display 56 , based on this status (step 230 ).
  • controller 30 may respond to the operator's selection. For example, controller 30 may activate camera mode (step 250 ). Controller 30 may also deactivate warning device 58 . Controller 30 may then return to step 170 and again communicate with obstacle detection system 34 .
  • collision avoidance system 29 may reduce the effect of dangerous obstacle 12 by indicating dangerous obstacle 12 detections to the operator. It is further contemplated that the color schemes of portion 62 may prevent these indications from confusing or annoying the operator. Specifically, the color schemes may highlight some dangerous obstacle 12 detections, while suppressing others. For example, if machine 10 has a ground speed of zero miles per hour, dangerous obstacle 12 may move and stop near machine 10 completely unnoticed by the operator, raising the importance of dangerous obstacle 12 detections. Therefore, an active color scheme such as the day color scheme may be used to highlight these dangerous obstacle 12 detections.
  • an inactive color scheme such as the sleep color scheme may be used to suppress these dangerous obstacle 12 detections, which may confuse or annoy the operator.
  • collision avoidance system 29 may maximize the effectiveness of dangerous obstacle 12 warnings by restricting their use.
  • dangerous obstacle 12 warnings may not reduce the effect of dangerous obstacle 12 in all cases. For example, if machine 10 may not move toward dangerous obstacle 12 , a dangerous obstacle 12 warning may not reduce the effect of dangerous obstacle 12 . Therefore, dangerous obstacle 12 warnings may only be provided when machine 10 may'move toward dangerous obstacle 12 . Restricting the number of dangerous obstacle 12 warnings may maximize their effectiveness because the operator of machine 10 may not become annoyed or confused by extraneous dangerous obstacle 12 warnings.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Traffic Control Systems (AREA)

Abstract

A collision avoidance system for a machine is disclosed including an obstacle detection system configured to detect an obstacle. The collision avoidance system also includes a display configured to provide information to an operator. The collision avoidance system further includes a controller in communication with the obstacle detection system and the display. The controller is configured to control the display to indicate an obstacle detection based on information received from the obstacle detection system and determine a ground speed of the machine. The controller is also configured to determine a distance since the ground speed of the machine was last at a threshold speed and suppress the indication of the obstacle detection based on the distance since the ground speed of the machine was last at the threshold speed.

Description

    TECHNICAL FIELD
  • The present disclosure relates generally to a collision avoidance system and, more particularly, to a system for avoiding vehicle collisions.
  • BACKGROUND
  • Large machines such as, for example, wheel loaders, off-highway haul trucks, excavators, motor graders, and other types of earth-moving machines are used to perform a variety of tasks. Some of these tasks involve intermittently moving between and stopping at certain locations within a worksite and, because of the poor visibility provided to operators of the machines, these tasks can be difficult to complete safely and effectively. In fact, it is not uncommon for obstacles, such as light duty vehicles, to move and stop near the machine completely unnoticed by the operator. When an obstacle remains unnoticed, the machine may move toward and collide with the obstacle. This collision may necessitate an accident investigation. During this accident investigation, the machine may be taken out of service, thereby reducing the productivity and efficiency of the worksite.
  • One way to minimize the effect of obstacles near a machine is described in U.S. Pat. No. 7,158,015 (the '015 patent) issued to Rao et al. on Jan. 2, 2007. The '015 patent describes a vehicle that includes multiple vision sensing systems. The vision sensing systems have vision receivers and generate an object detection signal. The '015 patent also describes a controller that includes a plurality of sensing system aid modules. The sensing system aid modules correspond to each of the vision sensing systems. The controller operates the sensing system aid modules in response to a vehicle parameter, and generates a safety system signal in response to the object detection signal. The sensing system aid modules have associated operating modes and operate the vision sensing systems in the operating modes in response to the vehicle parameter. Operating modes include adaptive cruise control mode, parking-aid mode, reversing-aid mode, pre-collision sensing mode, lane departure aid mode, and lane-keeping aid mode. The controller indicates the safety system signal via an indicator.
  • Although the system aid modules of the '015 patent may operate the vision sensing systems of the '015 patent to detect objects, the vision sensing systems may do little to detect objects when operated in certain operating modes, in response to a vehicle parameter. As a result of these non-detections, the indicator of the '015 patent may fail to indicate relevant safety system signals. For example, when a reverse gear of the vehicle of the '015 patent is not engaged, the controller of the '015 patent does not operate a reversing-aid mode. When the reversing-aid mode is not operated, objects rearward and within approximately 2-5 meters of the vehicle are not detected or indicated. But, an operator may find these objects relevant to a possible collision situation. For example, when the reverse gear is not engaged, a neutral gear may be engaged. When the neutral gear is engaged, the vehicle may roll in the rearward direction and collide with obstacles within approximately 2-5 meters of the vehicle. Moreover, though the indicator may fail to indicate relevant safety system signals, it may indicate extraneous safety system signals. In particular, the indicator may indicate safety system signals that are not relevant to certain vehicle movements. For example, when the reverse gear of the vehicle is engaged, the controller operates a forward vision system in pre-collision mode. When the forward vision system operates in pre-collision mode, objects forward of the vehicle are detected and indicated. But, these detections and indications may confuse or annoy the operator, thereby reducing the indicator's future effectiveness.
  • The disclosed system is directed to overcoming one or more of the problems set forth above.
  • SUMMARY
  • In one aspect, the present disclosure is directed to a collision avoidance system for a machine. The collision avoidance system includes a first obstacle detection system. The first obstacle detection system is configured to detect a first obstacle and generate a corresponding first signal. Additionally, the collision avoidance system includes an operator interface. The operator interface includes a display configured to communicate visual information to an operator. In addition, the collision avoidance system includes an interface module configured to detect a status of the machine and generate a corresponding second signal. The collision avoidance system also includes a controller. The controller is in communication with the first obstacle detection system, the operator interface, and the interface module. The controller is configured to control the display to indicate a dangerous obstacle detection to the operator, based on the first and second signals. Additionally, the controller is configured to control the display to provide a dangerous obstacle warning to the operator, based on the first and second signals.
  • In another aspect, the present disclosure is directed to a method of responding to a potential machine collision. The method includes detecting a first obstacle. Additionally, the method includes detecting a status of the machine. The method also includes indicating a dangerous obstacle detection to an operator, based on the detection of the first obstacle and the detection of the status of the machine. In addition, the method includes providing a dangerous obstacle warning to the operator, based on the detection of the first obstacle and the detection of the status of the machine.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a pictorial illustration of an exemplary disclosed machine;
  • FIG. 2 is a diagrammatic illustration of an exemplary disclosed control system for use with the machine of FIG. 1;
  • FIG. 3 is a pictorial illustration of an exemplary disclosed map for use with the control system of FIG. 2;
  • FIG. 4 is a diagrammatic illustration of exemplary disclosed obstacle detection systems for use with the control system of FIG. 2;
  • FIG. 5 is a pictorial illustration of exemplary disclosed medium range sensors, exemplary disclosed proximity sensors, and exemplary disclosed cameras for use with the obstacle detection systems of FIG. 4;
  • FIG. 6 is a pictorial illustration of exemplary disclosed downward facing sensors and exemplary disclosed cameras for use with the obstacle detection systems of FIG. 4;
  • FIG. 7 is a pictorial illustration of an exemplary disclosed operator interface operating in an exemplary disclosed mixed mode in an exemplary disclosed active color scheme, for use with the control system of FIG. 2;
  • FIG. 8 is a pictorial illustration of the operator interface of FIG. 7 operating in the mixed mode of FIG. 7 in an exemplary disclosed inactive color scheme;
  • FIG. 9 is a pictorial illustration of the operator interface of FIG. 7 operating in an exemplary disclosed camera mode;
  • FIG. 10 is a flow chart describing an exemplary method of operating the control system of FIG. 2; and
  • FIG. 11 is a flow chart describing an exemplary method of checking a status of the machine of FIG. 1.
  • DETAILED DESCRIPTION
  • FIG. 1 illustrates an exemplary machine 10 and an obstacle 12 of machine 10, both located at a worksite 14. Although machine 10 is depicted as an off-highway haul truck, it is contemplated that machine 10 may embody another type of large machine, for example, a wheel loader, an excavator, or a motor grader. Obstacle 12 is depicted as a service vehicle. But, it is contemplated that obstacle 12 may embody another type of obstacle, for example, a pick-up truck, or a passenger car. If obstacle 12 is at least a certain size, obstacle 12 may be classified as dangerous. For example, the certain size may be a length 22. If obstacle 12 has a height 16 longer than a length 22, a width 18 longer than length 22, or a depth 20 longer than length 22, obstacle 12 may be classified as dangerous. Alternatively, obstacle 12 may be classified as dangerous for another reason. For example, obstacle 12 may be classified as dangerous if it has a stable RADAR return (i.e. if it is detected at one range for more than a certain period of time). Worksite 14 may be, for example, a mine site, a landfill, a quarry, a construction site, or another type of worksite known in the art.
  • Machine 10 may have an operator station 24, which may be situated to minimize the effect of blind spots of machine 10 (i.e. maximize the unobstructed area viewable by an operator or operators of machine 10 (hereafter “operator”)). But, because of the size of some machines, these blind spots may still be large. For example, dangerous obstacle 12 may reside completely within a blind spot 28, which may or may not be viewable by the operator. To avoid collisions with dangerous obstacle 12, machine 10 may be equipped with a collision avoidance system 29 (referring to FIG. 2). Collision avoidance system 29 may include a controller 30 to gather information about obstacle 12 within blind spot 28.
  • Controller 30 may be associated with operator station 24, or another protected assembly of machine 10. As illustrated in FIG. 2, controller 30 may include a map 32 to store information about dangerous obstacle 12 detections within blind spot 28. Controller 30 may update map 32 to reflect current dangerous obstacle 12 detections by communicating with an obstacle detection system 34. Controller 30 may also communicate with an interface module 35 to detect a status of machine 10. Additionally, controller 30 may communicate with a camera 36 to capture images of blind spot 28. Controller 30 may communicate these images to the operator via an operator interface 38, which may operate in one of a plurality of color schemes based on the machine status. In addition, controller 30 may use operator interface 38 to communicate a visual representation of map 32 to the operator, thereby indicating a dangerous obstacle 12 detection to the operator. Controller 30 may also use operator interface 38 to provide a dangerous obstacle 12 warning to the operator, and acknowledge the operator's recognition of this warning.
  • Controller 30 may include means for monitoring, recording, storing, indexing, processing, and/or communicating information. These means may include, for example, a memory, one or more data storage devices, a central processing unit, and/or another component that may be used to run the disclosed applications. Furthermore, although aspects of the present disclosure may be described generally as being stored in memory, one skilled in the art will appreciate that these aspects can be stored on or read from different types of computer program products or computer-readable media such as computer chips and secondary storage devices, including hard disks, floppy disks, optical media, CD-ROM, or other forms of RAM or ROM.
  • Interface module 35 may include a plurality of sensors 35 a-e distributed throughout machine 10 and configured to gather data from various components and subsystems of machine 10. Sensors 35 a-e may be associated with and/or monitor a power source, a transmission, a traction device, a steering device, and/or other components and subsystems of machine 10. Sensors 35 a-e may measure and/or detect a status of machine 10 based on the gathered data, such as, for example, a ground speed, a distance traveled, a gear selection of the transmission, a steering angle, or an ambient light level. Interface module 35 may be configured to generate and communicate to controller 30 a signal corresponding to this status of machine 10.
  • Map 32 may be electronic in form, and may be stored in the memory of controller 30. As previously discussed, map 32 may be updated in real time to reflect current dangerous obstacle 12 detections. It is contemplated that map 32 may store a set of detection values representing dangerous obstacle 12 detections within one or more blind spots 28. It is further contemplated that map 32 may be visually represented. For example, as illustrated in FIG. 3, the set of detection values may represent dangerous obstacle 12 detections within each of blind spots 28 a, 28 b, 28 c, 28 d, 28 e, and 28 f. Blind spot 28 d may be located forward of machine 10, while blind spot 28 c may be located rearward of machine 10. And, blind spot 28 f may be located leftward of machine 10, while blind spot 28 e may be located rightward of machine 10. It is also contemplated that map 32 may store a set of criticality values representing how threatening dangerous obstacle 12 within each of blind spots 28 a, 28 b, 28 c, 28 d, 28 e, and 28 f may be. For example, dangerous obstacle 12 within blind spots 28 c, 28 d, 28 e, and 28 f may be more-threatening than dangerous obstacle 12 within blinds spots 28 a and 28 b because blind spots 28 c, 28 d, 28 e, and 28 f may be closer to machine 10. Table 1 represents a possible set of detection values and a possible set of criticality values as stored in controller 30.
  • TABLE 1
    Detection Criticality
    Blind Spot Value Value
    28a
    1 0
    28b 0 0
    28c 0 1
    28d 0 1
    28e 0 1
    28f 0 1
  • Both detection values and criticality values may be binary. For example, detection value 1 may correspond to a dangerous obstacle 12 detection (i.e. dangerous obstacle 12 presence), while detection value 0 may correspond to a dangerous obstacle 12 non-detection (i.e. dangerous obstacle 12 absence). And, criticality value 1 may correspond to a blind spot 28 within which obstacle 12 is threatening, while criticality value 0 may correspond to a blind spot 28 within which obstacle 12 is not threatening. In FIG. 3, detection value 1 is represented by horizontal solid-line crosshatching, while detection value 0 is represented by horizontal dotted-line crosshatching. And, criticality value 1 is represented by diagonal solid-line crosshatching, while criticality value 0 is represented by the absence of diagonal crosshatching.
  • Each blind spot 28 may be associated with one obstacle detection system 34, which may detect dangerous obstacle 12 and, through communication with controller 30, update map 32 accordingly. Each blind spot 28 may also be associated with one camera 36, which may capture images of blind spot 28 and, via operator interface 38, display these images to the operator. Table 2 represents one possible set of associations between blind spots 28, obstacle detection systems 34, and cameras 36. Each row of Table 2 represents a 3-way association between one blind spot 28, one obstacle detection system 34, and one camera 36.
  • TABLE 2
    Obstacle
    Detection
    Blind Spot System Camera
    28a 34a 36a
    28b 34b 36b
    28c 34c 36c
    28d
    34d 36d
    28e 34e 36e
    28f
    34f
    36f
  • Alternatively, each blind spot 28 may be associated with more than one obstacle detection system 34 and/or more than one camera 36. In yet another alternative, more than one blind spot 28 may share one camera 36 and/or one obstacle detection system 34. For example, blind spots 28 a and 28 c may share one camera 36. This camera 36 may hereafter be referred to as camera 36 a or camera 36 c. Additionally, blind spots 28 b and 28 d may share one camera 36. This camera 36 may hereafter be referred to as camera 36 b or camera 36 d.
  • Referring to FIG. 4, each obstacle detection system 34 may include an obstacle sensor 39, or a plurality-thereof, to detect points on surfaces within its associated blind spot 28. For example, obstacle detection system 34 may include a first obstacle sensor 39-1 and a second obstacle sensor 39-2. Obstacle sensor 39-1 may detect points that are on surfaces facing it (i.e. points within a line of sight of obstacle sensor 39-1). And, obstacle sensor 39-2 may detect points that are on surfaces facing it (i.e. points within a line of sight of obstacle sensor 39-2). Detections of points by obstacle sensors 39-1 and 39-2 may be raw (i.e. not directly comparable). Therefore, each obstacle detection system 34 may also include a controller 40, which may receive communications including the detections of points from obstacle sensors 39-1 and 39-2 (i.e. obstacle 12 detections), respectively, and then transform, filter, and/or unionize the detections. Each controller 40 may also generate and communicate to controller 30 a signal corresponding to these transformed, filtered, and/or unionized detections (i.e. dangerous obstacle 12 detections). Alternatively, it is contemplated that each obstacle detection system 34 may embody a single integrated component that may detect obstacles 12, determine whether obstacles 12 are dangerous, and communicate dangerous obstacle 12 detections to controller 30. For example, obstacle detection system 34 may embody a motion detector, an RFID detector, or a GPS tracking system.
  • It is contemplated that obstacle sensors 39 may vary in form. For example, each obstacle sensor 39 may embody a medium range sensor 42, a proximity sensor 44, a downward facing sensor 46, or another sensor that may detect points on surfaces. Table 3 represents exemplary configurations of each obstacle detection system 34.
  • TABLE 3
    Obstacle Medium Downward
    Detection Range Proximity Facing
    System Controller Sensor(s) Sensor(s) Sensor(s)
    34a 40a 42a-1 and None None
    42a-2
    34b 40b 42b-1 and None None
    42b-2
    34c 40c None 44c-1 and 44c-2 None
    34d 40d None
    44d-1 and 44d-2 None
    34e
    40e None None 46e-1 and
    46e-2
    34f 40f None None 46f-1 and
    46f-2
  • As illustrated in FIG. 5, medium range sensors 42 b-1 and 42 b-2 may be attached to a bumper 48 of machine 10, and situated to detect obstacle 12 within blind spot 28 b. And, medium range sensors 42 a-1 and 42 a-2 may be attached to a rear support 50 of machine 10, and situated to detect obstacle 12 within blind spot 28 a. Each medium range sensor 42 may embody a device that detects and ranges (i.e. determines relative locations of) surface points. For example, each medium range sensor 42 may be a LIDAR (light detection and ranging) device, RADAR (radio detection and ranging) device, SONAR (sound navigation and ranging) device, vision based sensing device, or another type of device that may detect and range surface points. Medium range sensors 42 may be configured to detect and range surface points that are between approximately 5 and 20 meters from machine 10. And, medium range sensors 42 may also be configured to generate and communicate to controllers 40 signals corresponding to these detections.
  • Also illustrated in FIG. 5, proximity sensors 44 c-1 and 44 c-2 may be attached to rear support 50 of machine 10, and situated to detect obstacle 12 within blind spot 28 c. And, proximity sensors 44 d-1 and 44 d-2 may be attached to bumper 48 of machine 10, and situated to detect obstacle 12 within blind spot 28 d. Each proximity sensor 44 may embody a device that detects and ranges (i.e. determines relative locations of) surface points. For example, each proximity sensor 44 may be a LIDAR (light detection and ranging) device, RADAR (radio detection and ranging) device, SONAR (sound navigation and ranging) device, vision based sensing device, or another type of device that may detect and range surface points. Proximity sensors 44 may be configured to detect and range surface points that are within approximately 5 meters of machine 10. And, proximity sensors 44 may also be configured to generate and communicate to controllers 40 signals corresponding to these detections.
  • As illustrated in FIG. 6, downward facing sensors 46 e-1 and 46 e-2 may be attached to a quarter panel 52 of machine 10, and situated to detect obstacle 12 within blind spot 28 e. And, downward facing sensors 46 f-1 and 46 f-2 may be attached to a quarter panel 53 of machine 10, and situated to detect obstacle 12 within blind spot 28 f. Each downward facing sensor 46 may embody a device that detects and ranges (i.e. determines relative locations of) surface points. For example, each downward facing sensor 46 may be a LIDAR (light detection and ranging) device, RADAR (radio detection and ranging) device, SONAR (sound navigation and ranging) device, vision based sensing device, or another type of device that may detect and range surface points. Downward facing sensors 46 may be configured to detect and range surface points that are within approximately 5 meters of machine 10. These surface points may include ground surface points. And, downward facing sensors 46 may also be configured to generate and communicate to controllers 40 signals corresponding to these detections.
  • Each controller 40 may include means for monitoring, recording, storing, indexing, processing, and/or communicating information. These means may include, for example, a memory, one or more data storage devices, a central processing unit, and/or another component that may receive surface point detections from obstacle sensors 39, and then communicate a signal indicative of dangerous obstacle 12 detections to controller 30.
  • As previously discussed, each blind spot 28 may also be associated with one camera 36, which may capture images of dangerous obstacle 12. For example, each camera 36 may embody a video camera, or another device operable to capture, and communicate images. Referring to FIG. 5, camera 36 b (alternatively referred to as camera 36 d) may be mounted on stairs 54 to view blind spots 28 b and 28 d, and camera 36 a (alternatively referred to as camera 36 c) may be mounted on rear support 50 to view blind spots 28 a and 28 c. Additionally, referring to FIG. 6, camera 36 e may be mounted on quarter panel 52 to view blind spot 28 e. And, camera 36 f may be mounted on railing 55 to view blind spot 28 f. Each camera 36 may generate and communicate to controller 30 a signal corresponding to captured images. It is contemplated that controller 30 may communicate with operator interface 38 to display these captured images to the operator.
  • Operator interface 38 may be situated within operator station 24 (referring to FIG. 1) and may be viewable, and operable by the operator. For example, operator interface 38 may be mounted to a dashboard (not shown) of machine 10 within reach of the operator. As illustrated in FIG. 7, operator interface 38 may include a display 56 to display the captured images. Display 56 may also display a visual representation of map 32. Controller 30 may use this visual representation of map 32 to provide a dangerous obstacle 12 warning to the operator. Alternatively or additionally, operator interface 38 may include a warning device 58 to provide a dangerous obstacle 12 warning to the operator. Warning device 58 may embody, for example, an alarm; a horn; an odorant or tissue-irritating substance dispenser; or another device operable to provide a warning to the operator. Operator interface 38 may also include an input device.60 to receive a selection from the operator. This selection may serve to acknowledge the operator's recognition of a provided dangerous obstacle 12 warning. Input device 60 may embody, for example a rocker switch, a hat switch, a joystick, a button, and/or another device capable of receiving a selection from the operator and generating a corresponding signal. Alternatively, display 56 and input device 60 may together embody a single integral component such as, for example, a touch-screen.
  • Display 56 may embody, for example, a monitor, an LCD screen, a plasma screen, a screen of a handheld device, or another device capable of communicating visual information to the Operator. It is contemplated that controller 30 may operate display 56 in one or more modes corresponding to varied machine 10 operations. For example, a mixed mode may be utilized during normal operations to provide to the operator a wide breadth of information. When dangerous obstacle 12 is detected within a certain blind spot 28, a camera mode may be utilized to provide to the operator focused information regarding that certain blind spot 28. The operator may activate camera mode in response to a provided dangerous obstacle 12 warning, thereby acknowledging the dangerous obstacle 12 warning.
  • FIG. 7 illustrates display 56 operating in mixed mode. In mixed mode, controller 30 may devote a first portion 62 of display 56 to the visual representation of map 32. Controller 30 may devote a second portion 64 of display 56 to images captured by one camera 36 (hereafter “camera 36 images”). And, controller 30 may devote a third portion 66 of display 56 to collision avoidance system 29 status information.
  • Portion 62 may operate in one of a plurality of color schemes based upon the status communicated by interface module 35. For example, portion 62 may operate in one of a night, a day, and a sleep color scheme based on the statuses defined by Table 4.
  • TABLE 4
    Distance Ambient
    Traveled Since Light Color
    Last Full Stop Ground Speed Level Scheme
    More than 20 Any Speed Any Sleep
    Meters Except 0 MPH
    More than 20 0 MPH Low Night
    Meters
    More than 20 0 MPH High Day
    Meters
    Less than 20 Any Speed Low Night
    Meters
    Less than 20 Any Speed High Day
    Meters
  • It is contemplated that these color schemes may highlight or suppress dangerous obstacle 12 detections. Specifically, the night and day color schemes (hereafter an “active” color scheme) may highlight dangerous obstacle 12 detections, while the sleep color scheme (hereafter an “inactive” color scheme) may suppress dangerous obstacle 12 detections.
  • When the color scheme of portion 62 is active, portion 62 may include icons 68 a, 68 b, 68 c, 68 d, 68 e, and 68 f, arranged and sized to represent blind spots 28 a ;28 b, 28 c, 28 d, 28 e, and 28 f, respectively. Controller 30 may vary the appearance of each icon 68 to indicate dangerous obstacle 12 detections within an associated blind spot 28, thereby highlighting these dangerous obstacle 12 detections. For example, controller 30 may change the color of icons 68. It is contemplated that controller 30 may also vary this color depending on the criticality of blind spot 28. Additionally, controller 30 may alter the appearance of each icon 68 to provide a dangerous obstacle 12 warning to the operator. For example, controller 30 may cause icons 68 to flash intermittently between two different colors. The appearance of each icon 68 may be defined by Table 5.
  • TABLE 5
    Dangerous
    Obstacle Dangerous
    not Obstacle Detected
    Detected within Blind Spot
    within No
    Blind Spot Warning Warning
    Night Color Threatening Black Black/Blue Blue
    Scheme Non-Threatening Black Not Applicable Green
    Day Color Threatening Black Black/Red Red
    Scheme Non-Threatening Black Not Applicable Yellow
  • When the color scheme of portion 62 is inactive, as illustrated in FIG. 8, portion 62 may in no way communicate dangerous obstacle 12 detections to the operator, thereby suppressing these dangerous obstacle 12 detections. For example, portion 62 may include diagonal lines 69, but controller 30 may not vary the appearance of diagonal lines 69 in response to dangerous obstacle 12 detections.
  • As previously discussed, portion 64 may be devoted to camera 36 images. Specifically, portion 64 may communicate camera 36 images. It is contemplated that controller 30 may automatically select which camera 36 images are communicated (i.e. controller 30 may automatically determine which camera 36 captures the images that are displayed). This automatic selection may be based on the status communicated by interface module 35. For example, controller 30 may select which camera 36 images are displayed based on which blind spot 28 machine 10 may be capable of moving toward. Table 6 defines one possible set of relations between statuses and selected cameras.
  • TABLE 6
    Steering Angle Gear Selected Camera
    Leftward Forward
    36f
    Leftward Reverse
    36e
    Rightward Forward
    36e
    Rightward Reverse
    36f
    Neutral (i.e., neither Rightward nor Leftward) Forward 36d
    Neutral Reverse
    36c
  • Alternatively, it is contemplated that the automatic selection may be based on dangerous obstacle 12 detections. For example, if dangerous obstacle 12 is detected within blind spot 28 a, controller 30 may select camera 36 a. In yet another alternative, it is contemplated that the operator may indirectly via input device 60 and controller 30 select which camera 36 images are displayed.
  • Portion 66 may include an indicator 70 and a text box 72, each configured to communicate a status of collision avoidance system 29. In particular, controller 30 may vary the appearance of indicator 70 to indicate whether the color scheme of portion 62 is active or inactive. For example, controller 30 may change the color of indicator 70. Controller 30 may display indicator 70 as red when the color scheme of portion 62 is inactive, and as green when the color scheme of portion 62 is active. Controller 30 may also communicate information to the operator via text box 72. For example, controller 30 may communicate text regarding which camera 36 images are selected.
  • As previously discussed, when obstacle 12 is detected within a certain blind spot 28, camera mode may be utilized to provide to the operator focused information regarding that certain blind spot 28. FIG. 9 illustrates display 56 operating in camera mode. In camera mode, controller 30 may increase a relative size of portion 64. It is contemplated that camera 36 images may thereby be displayed at a higher resolution, allowing the operator to view dangerous obstacle 12 details, for example, license plate numbers.
  • FIG. 10 illustrates an exemplary method of operating collision avoidance system 29. FIG. 10 will be discussed in the following section to further illustrate collision avoidance system 29 and its operation.
  • FIG. 11 illustrates an exemplary method of checking a status of machine 10. FIG. 11 will be discussed in the following section to further illustrate collision avoidance system 29 and its operation.
  • INDUSTRIAL APPLICABILITY
  • The disclosed collision avoidance system may be applicable to machines, which may intermittently move between and stop at certain locations within a worksite. The system may detect information about an obstacle within a blind spot of the machine, and report this information to an operator of the machine. In particular, the disclosed system may detect a presence of a dangerous obstacle within the blind spot, and warn the operator of this presence. Operation of the system will now be described.
  • As illustrated in FIG. 10, operation of collision avoidance system 29 may commence at a step 100, which may include initialization of controller 30. Controller 30 may then check a status of machine 10, and adjust the communications of display 56, based on this status (step 110). Next, controller 30 may communicate with obstacle detection system 34 (step 120), which may determine whether dangerous obstacle 12 is detected within blind spot 28 (step 130). If dangerous obstacle 12 is not detected within blind spot 28, controller 30 may return to step 110 and again check the status of machine 10.
  • The initialization of step 100 may involve populating default values. It is contemplated that this initialization may be performed during installation of collision avoidance system 29. In particular, the criticality values associated with each blind spot 28 may be defined. The camera 36 images, which are communicated via display 56 at machine startup, may also be selected. It is contemplated that after machine startup, the operator may via input device 60 select other camera 36 images for communication via display 56. For example, if display 56 and input device 60 together embody a touch screen, the operator may touch one icon 68. Controller 30 may determine that this icon 68 represents a certain blind spot 28. Controller 30 may then select camera 36 images associated with this certain blind spot 28. Moreover, after machine startup, the operator may via input device 60 activate camera mode to obtain focused information regarding one blind spot 28. During the initialization, the color scheme of portion 62 may also be selected. This color scheme may be altered after machine startup, based upon the status of machine 10. For example, when ambient light levels decrease below a certain level, controller 30 may switch the color scheme of portion 62 from day to night. Alternatively, the initialization may be performed at a service interval of machine 10, or during operation of collision avoidance system 29.
  • As illustrated in FIG. 11, it is contemplated that checking the status of machine 10 (step 110), may include checking a plurality of statuses of machine 10. This checking of the plurality of statuses of machine 10 may occur simultaneously or serially, and each status of machine 10 may be stored in the memory of controller 30 for later use. Moreover, the plurality of statuses of machine 10 may be divided into one or more groups of statuses. Each group of statuses may serve as the basis for a specific adjustment of the communications of display 56. For example, one group of statuses may include the distance traveled by machine 10, the ground speed of machine 10, and the ambient light level within operator station 24. Another group of statuses may include the steering angle of machine 10 and the gear selection of the transmission of machine 10. It is contemplated that controller 30 may first check one group of statuses (step 310). Specifically, controller 30 may communicate with interface module 35 to determine the distance traveled by machine 10 (step 330), the ground speed of machine 10 (step 340), and the ambient light level within operator station 24 (step 350). It is contemplated that these determinations may include calculations by controller 30. For example, the distance traveled by machine 10 may be calculated based on the ground speed of machine 10 and an elapsed time. Next, controller 30 may select the color scheme of portion 62, based on these determinations (step 360). Controller 30 may select the color scheme of portion 62 in accordance with Table 4. For example, if machine 10 has traveled less than 20 meters since its last full stop and the ambient light level is high, controller 30 may select the day color scheme. But, if machine 10 has traveled more than 20 meters since its last full stop and the ground speed of machine 10 is not zero miles per hour, controller 30 may select the sleep color scheme. Simultaneously with or after steps 310 and 360, controller 30 may check another group of statuses (step 320). Specifically, controller 30 may communicate with interface module 35 to determine the steering angle of machine 10 (step 370) and the gear selection of the transmission of machine 10 (step 380). Controller 30 may then select the camera 36 images, which are communicated via display 56 (step 390). Controller 30 may select the camera 36 images in accordance with Table 6. For example, if the steering angle of machine 10 is leftward and the gear selected is a forward gear, controller 30 may select camera 36 f images. After the adjustments of steps 360 and 390, controller 30 may proceed to step 120 as illustrated in FIG. 10.
  • The communication of step 120 may involve one or more obstacle detection systems 34. It is contemplated that controller 30 may communicate with one obstacle detection system 34 at a time. For example, controller 30 may communicate with obstacle detection system 34 a. Controller 30 may then complete steps 130-250 based on this communication with obstacle detection system 34 a. Next, controller 30 may communicate with obstacle detection, system 34 b. Controller 30 may then complete steps 130-250 based on this communication with obstacle detection system 34 b. It is contemplated that controller 30 may then again communicate with obstacle detection system 34 a or another obstacle detection system 34. Alternatively, controller 30 may simultaneously communicate with a plurality of obstacle detection systems 34. For example, controller 30 may simultaneously communicate with obstacle detection systems 34 a and 34 b. Controller 30 may then complete steps 130-250 based on these communications with obstacle detections systems 34 a and 34 b. Specifically, controller 30 may complete steps 130-250 based on the communication with obstacle detection system 34 a. Simultaneously, controller 30 may also complete steps 130-250 based on the communications with obstacle detection system 34 b.
  • The communications of step 120 may include detection values determined by each obstacle detection system 34 during step 130. As previously discussed, detection value 1 may correspond to a dangerous obstacle 12 detection, while detection value 0 may correspond to a dangerous obstacle 12 non-detection. The determination of step 130 may include sub-steps. For example, each obstacle detection system 34, and more specifically, each obstacle sensor 39 may scan (i.e. detect points within) blind spot 28.. Each obstacle sensor 39 may then communicate data regarding these scans (i.e. the raw locations of the points) to controller 40. Controller 40 may aggregate the raw locations of the points and then determine an attribute of at least one obstacle 12. In particular, controller 40 may apply a height filter to the points, thereby removing ground surfaces. Next, controller 40 may filter out the points on surfaces of obstacles 12 that are not dangerous. Specifically, controller 40 may filter out the points that represent transient (unstable) RADAR returns. For example, the points that are detected for not more than a sustained period of five-hundred milliseconds may be filtered out. The points that remain may be classified as dangerous obstacles 12. Alternatively, controller 40 may filter out obstacles 12 that are not a certain size. Controller 40 may convert the height filtered points into obstacles 12 through blob extraction, which is known in the art of computer graphics. Controller 40 may then apply a size filter to obstacles 12. Specifically, controller 40 may filter out obstacles 12 that have height 16 not longer than length 22, width 18 not longer than length 22, and depth 20 not longer than length 22 (referring to FIG. 1). By filtering out these obstacles 12, only dangerous obstacles 12 may remain. The filtering may be accomplished by first calculating height 16, width 18, and depth 20.. The longest of height 16, width 18, and depth 20 may then be compared to length 22. If the longest of height 16, width 18, and depth 20 is not longer than length 22, obstacle 12 may be filtered out. But, if the longest of height 16, width 18, and depth 20 is longer than length 22, obstacle 12 may be retained and classified as dangerous.
  • Each obstacle detection system 34, and more specifically, each controller 40 may then generate and communicate to controller 30 a signal corresponding to detection value 0 or 1. In particular, if any points and/or obstacles 12 have been classified as dangerous obstacles 12, controller 40 may generate and communicate to controller 30 a signal corresponding to detection value 1. Otherwise, controller 40 may generate and communicate to controller 30 a signal corresponding to detection value 0.
  • If controller 30 receives a signal corresponding to detection value 0, controller 30 may return to step 110 and again check the status of machine 10. But, if controller 30 receives a signal corresponding to detection value 1 (i.e. dangerous obstacle 12 is detected within blind spot 28), controller 30 may update map 32, based on the detection (step 140). If the color scheme of portion 62 is active, controller 30 may then inform the operator of the detection by updating the visual representation of map 32 communicated via display 56 (step 150). Simultaneously with or after step 150, and regardless of the color scheme of portion 62, controller 30 may determine whether to warn the operator of the dangerous obstacle 12 detection (step 160). If a dangerous obstacle 12 warning is not required, controller 30 may again communicate with obstacle detection system 34 (step 170), which may again determine whether dangerous obstacle 12 is detected within blind spot 28 (step 180). Steps 170 and 180 may be equivalent to steps 120 and 130, respectively. If at step 180 dangerous obstacle 12 is not detected within blind spot 28, controller 30 may update map 32, based on the non-detection (step 190). If the color scheme of portion 62 is active, controller 30 may then inform the operator of the non-detection by updating the visual representation of map 32 communicated via display 56 (step 200). Regardless of the color scheme of portion 62, controller 30 may then return to step 110 and again check the status of machine 10.
  • The informing of step 150 may include sub-steps. Controller 30 may activate mixed mode (referring to FIG. 7), if display 56 is operating in camera mode. Next, controller 30 may vary the appearance of one icon 68 to indicate the detection of dangerous obstacle 12 within blind spot 28. In particular, controller 30 may vary the appearance of icon 68 in accordance with the selected color scheme and Table 5. For example, if the day color scheme is selected, icon 68 may be shown as red or yellow. Icon 68 may be shown as red if blind spot 28 has a criticality value of 1 (i.e. dangerous obstacle 12 is threatening), while icon 68 may be shown as yellow if blind spot 28 has a criticality value of 0 (i.e. dangerous obstacle 12 is not threatening). Additionally, controller 30 may select which camera 36 images are communicated via portion 64 of display 56, based on the dangerous obstacle 12 detection. For example, if dangerous obstacle 12 is detected within blind spot 28 a, controller 30 may select camera 36 a. Alternatively, the selection by controller 30 of which camera 36 images are communicated may be included in step 220, discussed below.
  • The determination of whether to warn the operator of the dangerous obstacle 12 detection (step 160) may be based upon the criticality value of blind spot 28 and/or the status of machine 10. For example, a warning may be required if blind spot 28 has a criticality value of 1. Alternatively or additionally, a warning may only be required if the steering angle of machine 10 and the gear selection of the transmission of machine 10 are such that machine 10 may move toward obstacle 12. For example, if obstacle 12 is detected within blind spot 28 f, blind spot 28 f has a criticality value of 1, the steering angle of machine 10 is leftward, and the gear selected is a forward gear, a warning may be required. But, if obstacle 12 is,detected within blind spot 28 f, blind spot 28 f has a criticality value of 1, the steering angle of machine 10 is leftward, and the gear selected is a reverse gear, a warning may not be required. In addition, a warning may only be required when the selected color scheme of portion 62 is active. For example, if obstacle 12 is detected within blind spot 28 f, the steering value of machine 10 is leftward, the gear selected is a forward gear, and the selected color scheme of portion 62 is inactive, a warning may not be required.
  • Similar to the informing of step 150, the informing of step 200 may also include sub-steps. Controller 30 may activate mixed mode (referring to FIG. 7), if display 56 is operating in camera mode. Next, controller 30 may vary the appearance of one icon 68 to indicate the non-detection of dangerous obstacle 12 within blind spot 28. In particular, controller 30 may vary the appearance of icon 68 in accordance with the selected color scheme and Table 5. For example, if the day color scheme is selected, icon 68 may be shown as black.
  • If at step 180 dangerous obstacle 12 is detected within blind spot 28; controller 30 may determine whether at step 160 controller 30 determined that a warning was required (step 210). If at step 160 controller'30 determined a warning was not required, controller 30 may again check the status of machine 10, and adjust the communications of display 56 based on this status (step 230). Step 230 may be equivalent to step 110 (referring to FIG. 11). Controller 30 may then again determine whether to warn the operator of the dangerous obstacle 12 detection (step 160).
  • If at step 160 controller 30 determines that a warning is required, controller 30 may provide a dangerous obstacle 12 warning to the operator (step 220). This warning may be provided via display 56. Specifically, controller 30 may alter the appearance of one icon 68 to warn the operator of the detection of dangerous obstacle 12 within blind spot 28. In particular, controller 30 may alter the appearance of icon 68 in accordance with the selected color scheme of Table 5. For example, if the day color scheme is selected, icon 68 may flash intermittently between black and red. Additionally or alternatively, controller 30 may activate warning device 58 to provide the dangerous obstacle 12 warning to the operator. Controller 30 may also select which camera 36 images are communicated via portion 64 of display 56, based on the dangerous obstacle 12 detection. For example, if dangerous obstacle 12 is detected within blind spot 28 a, controller 30 may select camera 36 a. Controller 30 may then again communicate with obstacle detection system 34 (step 170), which may again determine whether dangerous obstacle 12 is detected within blind spot 28 (step 180). If dangerous obstacle 12 is not detected within blind spot 28, controller 30 may update map 32 based on the non-detection, as previously discussed (step 190).
  • If at step 160 controller 30 determined that a warning was required and at step 180 dangerous obstacle 12 is detected, controller 30 may determine whether the operator has acknowledged the dangerous obstacle 12 warning provided at step 220 (hereafter the “first dangerous obstacle 12 warning”) (step 240). It is contemplated that the operator may acknowledge the first dangerous obstacle 12 warning by making a selection via input device 60. Therefore, if the operator has not made a selection via input device 60, the operator may not have acknowledged the first dangerous obstacle 12 warning. If the operator has not acknowledged the first dangerous obstacle 12 warning, controller 30 may again check the status of machine 10, and adjust the communications of display 56, based on this status (step 230).
  • If at step 240 controller 30 determines that the operator has acknowledged the first dangerous obstacle 12 warning, controller 30 may respond to the operator's selection. For example, controller 30 may activate camera mode (step 250). Controller 30 may also deactivate warning device 58. Controller 30 may then return to step 170 and again communicate with obstacle detection system 34.
  • It is contemplated that collision avoidance system 29 may reduce the effect of dangerous obstacle 12 by indicating dangerous obstacle 12 detections to the operator. It is further contemplated that the color schemes of portion 62 may prevent these indications from confusing or annoying the operator. Specifically, the color schemes may highlight some dangerous obstacle 12 detections, while suppressing others. For example, if machine 10 has a ground speed of zero miles per hour, dangerous obstacle 12 may move and stop near machine 10 completely unnoticed by the operator, raising the importance of dangerous obstacle 12 detections. Therefore, an active color scheme such as the day color scheme may be used to highlight these dangerous obstacle 12 detections. Alternatively, if machine 10 is moving and has moved more than 20 meters since its last full stop, it may be unlikely that obstacle 12 may move and stop near machine 10 completely unnoticed by the operator. Therefore, an inactive color scheme such as the sleep color scheme may be used to suppress these dangerous obstacle 12 detections, which may confuse or annoy the operator.
  • It is also contemplated that collision avoidance system 29 may maximize the effectiveness of dangerous obstacle 12 warnings by restricting their use. In particular, dangerous obstacle 12 warnings may not reduce the effect of dangerous obstacle 12 in all cases. For example, if machine 10 may not move toward dangerous obstacle 12, a dangerous obstacle 12 warning may not reduce the effect of dangerous obstacle 12. Therefore, dangerous obstacle 12 warnings may only be provided when machine 10 may'move toward dangerous obstacle 12. Restricting the number of dangerous obstacle 12 warnings may maximize their effectiveness because the operator of machine 10 may not become annoyed or confused by extraneous dangerous obstacle 12 warnings.
  • It will be apparent to those skilled in the art that various modifications and variations can be made to the method and system of the present disclosure. Other embodiments of the method and system will be apparent to those skilled in the art from consideration of the specification and practice of the method and system disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope of the disclosure being indicated by the following claims and their equivalents.

Claims (21)

1-20. (canceled)
21. A collision avoidance system for a machine, comprising:
an obstacle detection system configured to detect an obstacle;
a display configured to provide information to an operator;
a controller in communication with the obstacle detection system and the display, the controller configured to:
control the display to indicate an obstacle detection based on information received from the obstacle detection system;
determine a ground speed of the machine;
determine a distance since the ground speed of the machine was last at a threshold speed; and
suppress the indication of the obstacle detection based on the distance since the ground speed of the machine was last at the threshold speed.
22. The collision avoidance system of claim 21, wherein the obstacle detection system includes an obstacle sensor.
23. The collision avoidance system of claim 22, wherein the obstacle sensor is at least one of a light detection and ranging device, a sound navigation and ranging device, or a vision-based sensing device.
24. The collision avoidance system of claim 22, further including a camera associated with the obstacle detection system.
25. The collision avoidance system of claim 24, wherein controller is configured to cause the display to provide images from the camera and obstacle detections from the obstacle detection system.
26. The collision avoidance system of claim 25, wherein the controller is configured to cause the display to provide at least two different portions, a first of the at least two portions providing images from the camera, and a second of the at least two portions providing indications of obstacle detections.
27. The collision avoidance system of claim 26, wherein the camera is a first camera, and the obstacle detection system is a first obstacle detection system, and further including a second camera and a second obstacle detection system.
28. The collision avoidance system of claim 27, wherein the controller automatically selects whether to provide images from the first camera or the second camera with the display based on information received from the first obstacle detection system or the second obstacle detection system.
29. The collision avoidance system of claim 21, further including a ground speed sensor configured to sense the ground speed of the machine.
30. An off-highway vehicle, comprising:
an obstacle detection system configured to detect an obstacle;
a display configured to provide information to an operator;
a steering angle sensor configured to determine a steering angle of the off-highway vehicle;
a controller in communication with the obstacle detection system, the steering angle sensor, and the display, the controller configured to:
control the display to indicate an obstacle detection based on information received from the obstacle detection system and the steering angle sensor;
determine a ground speed of the off-highway vehicle;
determine a distance since the ground speed of the off-highway vehicle was last at a threshold speed; and
suppress the indication of the obstacle detection based on the distance since the ground speed of the off-highway vehicle was last at the threshold speed.
31. The collision avoidance system of claim 30, wherein the obstacle detection system includes an obstacle sensor.
32. The collision avoidance system of claim 31, wherein the obstacle sensor is at least one of a light detection and ranging device, a sound navigation and ranging device, or a vision-based sensing device.
33. The collision avoidance system of claim 31, further including a camera associated with the obstacle detection system.
34. The collision avoidance system of claim 33, wherein controller is configured to cause the display to provide images from the camera and obstacle detections from the obstacle detection system.
35. The collision avoidance system of claim 34, wherein the controller is configured to cause the display to provide at least two different portions, a first of the at least two portions providing images from the camera, and a second of the at least two portions providing indications of obstacle detections.
36. The collision avoidance system of claim 35, wherein the camera is a first camera, and the obstacle detection system is a first obstacle detection system, and further including a second camera and a second obstacle detection system.
37. The collision avoidance system of claim 36, wherein the controller automatically selects whether to provide images from the first camera or the second camera with the display based on information received from the first obstacle detection system or the second obstacle detection system.
38. A collision avoidance system for a machine, comprising:
an obstacle detection system configured to detect an obstacle;
a display configured to provide information to an operator;
a controller in communication with the obstacle detection system and the display, the controller configured to:
determine an obstacle detection based on information received from the obstacle detection system;
determine a criticality level associated with the obstacle detection;
control the display to indicate an obstacle detection, wherein a visual characteristic of the displayed obstacle detection is dependent on the criticality level;
determine a ground speed of the machine;
suppress the indication of the obstacle detection based on the ground speed of the machine.
39. The collision avoidance system of claim 38, wherein the obstacle detection system includes an obstacle sensor.
40. The collision avoidance system of claim 39, wherein the obstacle sensor is at least one of a light detection and ranging device, a sound navigation and ranging device, or a vision-based sensing device.
US13/430,567 2008-04-15 2012-03-26 Vehicle collision avoidance system Abandoned US20120245798A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/430,567 US20120245798A1 (en) 2008-04-15 2012-03-26 Vehicle collision avoidance system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/081,345 US8170787B2 (en) 2008-04-15 2008-04-15 Vehicle collision avoidance system
US13/430,567 US20120245798A1 (en) 2008-04-15 2012-03-26 Vehicle collision avoidance system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/081,345 Continuation US8170787B2 (en) 2008-04-15 2008-04-15 Vehicle collision avoidance system

Publications (1)

Publication Number Publication Date
US20120245798A1 true US20120245798A1 (en) 2012-09-27

Family

ID=41164676

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/081,345 Active 2029-07-31 US8170787B2 (en) 2008-04-15 2008-04-15 Vehicle collision avoidance system
US13/430,567 Abandoned US20120245798A1 (en) 2008-04-15 2012-03-26 Vehicle collision avoidance system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/081,345 Active 2029-07-31 US8170787B2 (en) 2008-04-15 2008-04-15 Vehicle collision avoidance system

Country Status (3)

Country Link
US (2) US8170787B2 (en)
AU (1) AU2009201164A1 (en)
CA (1) CA2660215A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120249342A1 (en) * 2011-03-31 2012-10-04 Koehrsen Craig L Machine display system
US20130261885A1 (en) * 2012-03-29 2013-10-03 Harnischfeger Technologies, Inc. Overhead view system for a shovel
US8649952B2 (en) * 2012-06-13 2014-02-11 Ford Global Technologies, Llc Control of a backing vehicle
US20150097660A1 (en) * 2013-10-09 2015-04-09 Joel Adell Blind view sensor assembly
US9349055B1 (en) * 2013-06-26 2016-05-24 Google Inc. Real-time image-based vehicle detection based on a multi-stage classification
US20160144847A1 (en) * 2014-11-24 2016-05-26 Ford Global Technologies, Llc Vehicle underside impact avoidance
US11630201B2 (en) * 2020-04-17 2023-04-18 Oshkosh Corporation Refuse vehicle with spatial awareness
US20230150763A1 (en) * 2021-11-18 2023-05-18 Oshkosh Corporation Refuse vehicle with advanced driver-assistance system

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9207673B2 (en) * 2008-12-04 2015-12-08 Crown Equipment Corporation Finger-mounted apparatus for remotely controlling a materials handling vehicle
US8970363B2 (en) 2006-09-14 2015-03-03 Crown Equipment Corporation Wrist/arm/hand mounted device for remotely controlling a materials handling vehicle
US9645968B2 (en) * 2006-09-14 2017-05-09 Crown Equipment Corporation Multiple zone sensing for materials handling vehicles
US9122276B2 (en) 2006-09-14 2015-09-01 Crown Equipment Corporation Wearable wireless remote control device for use with a materials handling vehicle
US8289170B2 (en) * 2008-04-29 2012-10-16 Alliance Coal, Llc System and method for proximity detection
US9522817B2 (en) 2008-12-04 2016-12-20 Crown Equipment Corporation Sensor configuration for a materials handling vehicle
WO2010142046A1 (en) 2009-06-12 2010-12-16 Safemine Ag Movable object proximity warning system
JP5031801B2 (en) * 2009-07-28 2012-09-26 日立オートモティブシステムズ株式会社 In-vehicle image display device
US8731777B2 (en) 2009-08-18 2014-05-20 Crown Equipment Corporation Object tracking and steer maneuvers for materials handling vehicles
US8577551B2 (en) * 2009-08-18 2013-11-05 Crown Equipment Corporation Steer control maneuvers for materials handling vehicles
WO2011069267A1 (en) 2009-12-11 2011-06-16 Safemine Ag Modular collision warning apparatus and method for operating the same
US8205570B1 (en) 2010-02-01 2012-06-26 Vehicle Control Technologies, Inc. Autonomous unmanned underwater vehicle with buoyancy engine
US9633563B2 (en) * 2010-04-19 2017-04-25 Caterpillar Inc. Integrated object detection and warning system
WO2011153652A2 (en) * 2010-06-10 2011-12-15 Safemine Ag Method and control unit for controlling a display
AU2010355231B2 (en) * 2010-06-10 2014-11-20 Safemine Ag Method and control unit for controlling a display of a proximity warning system
US9230419B2 (en) 2010-07-27 2016-01-05 Rite-Hite Holding Corporation Methods and apparatus to detect and warn proximate entities of interest
US20120050025A1 (en) * 2010-08-26 2012-03-01 Hoeffel James J Vehicle steering assist system and method of operation
US8477021B2 (en) 2010-10-25 2013-07-02 John Slack Worksite proximity warning and collision avoidance system
JP5722127B2 (en) * 2011-06-07 2015-05-20 株式会社小松製作所 Work vehicle perimeter monitoring device
JP2012252675A (en) 2011-06-07 2012-12-20 Komatsu Ltd Dump truck
AU2012268476B2 (en) 2011-06-07 2014-05-15 Komatsu Ltd. Perimeter monitoring device for work vehicle
JP5124672B2 (en) * 2011-06-07 2013-01-23 株式会社小松製作所 Work vehicle perimeter monitoring device
US8660791B2 (en) * 2011-06-30 2014-02-25 Caterpillar Inc. Fleet tracking method using unicast and multicast communication
US8548741B2 (en) * 2011-06-30 2013-10-01 Catepillar Inc. Fleet tracking system having unicast and multicast functionality
JP2013195086A (en) * 2012-03-15 2013-09-30 Komatsu Ltd Dump truck with obstacle detecting mechanism
JP5667594B2 (en) 2012-03-15 2015-02-12 株式会社小松製作所 Dump truck with obstacle detection mechanism and obstacle detection method thereof
US8493198B1 (en) 2012-07-11 2013-07-23 Google Inc. Vehicle and mobile device traffic hazard warning techniques
US9574326B2 (en) 2012-08-02 2017-02-21 Harnischfeger Technologies, Inc. Depth-related help functions for a shovel training simulator
AU2014202349A1 (en) 2012-08-02 2014-05-22 Harnischfeger Technologies, Inc. Depth-related help functions for a wheel loader training simulator
US8954241B2 (en) * 2012-08-10 2015-02-10 Caterpillar Inc. Mining truck spotting under a shovel
US9234618B1 (en) 2012-09-27 2016-01-12 Google Inc. Characterizing optically reflective features via hyper-spectral sensor
US9097800B1 (en) 2012-10-11 2015-08-04 Google Inc. Solid object detection system using laser and radar sensor fusion
GB2577796B (en) 2013-08-29 2020-09-23 Joy Global Underground Mining Llc Detecting sump depth of a miner
DE102013225778A1 (en) 2013-12-12 2015-06-18 Robert Bosch Gmbh Method and device for the transverse guidance of a motor vehicle, in particular for evasion support
JP5964353B2 (en) * 2014-06-04 2016-08-03 株式会社小松製作所 Dump truck
JP6012680B2 (en) * 2014-09-02 2016-10-25 株式会社小松製作所 Dump truck
JP6393123B2 (en) * 2014-09-04 2018-09-19 日立建機株式会社 Obstacle detection system and transport vehicle
US10558212B2 (en) * 2014-10-29 2020-02-11 Technological Resources Pty Ltd Method of operating a vehicle and a vehicle operating system
US9471060B2 (en) 2014-12-09 2016-10-18 General Electric Company Vehicular traffic guidance and coordination system and method
US9457718B2 (en) * 2014-12-19 2016-10-04 Caterpillar Inc. Obstacle detection system
JP6425622B2 (en) * 2015-06-12 2018-11-21 日立建機株式会社 In-vehicle device, vehicle collision prevention method
JP6583883B2 (en) * 2015-08-21 2019-10-02 キャタピラー エス エー アール エル Work machine
US10344450B2 (en) * 2015-12-01 2019-07-09 The Charles Machine Works, Inc. Object detection system and method
JP7171436B2 (en) * 2016-11-01 2022-11-15 住友建機株式会社 Perimeter monitoring system for work machine, display device
JP7507559B2 (en) * 2017-07-31 2024-06-28 住友重機械工業株式会社 Shovel and method for controlling shovel
JP7114950B2 (en) * 2018-03-09 2022-08-09 株式会社タダノ Remote control terminal and work vehicle
US11221399B2 (en) * 2018-12-12 2022-01-11 Waymo Llc Detecting spurious objects for autonomous vehicles
US11641121B2 (en) 2019-02-01 2023-05-02 Crown Equipment Corporation On-board charging station for a remote control device
EP4257406A3 (en) 2019-02-01 2023-12-20 Crown Equipment Corporation On-board charging station for a remote control device
US10793166B1 (en) 2019-03-14 2020-10-06 Caterpillar Inc. Method and system for providing object detection warning
CN110077402B (en) * 2019-05-13 2021-09-28 奇瑞汽车股份有限公司 Target object tracking method, target object tracking device and storage medium
CN110645985B (en) * 2019-09-26 2022-12-13 东北大学 Voice navigation system and method for strip mine truck
US11320830B2 (en) 2019-10-28 2022-05-03 Deere & Company Probabilistic decision support for obstacle detection and classification in a working area
EP4446840A3 (en) 2020-08-11 2024-10-23 Crown Equipment Corporation Remote control device
JP2024051730A (en) * 2022-09-30 2024-04-11 株式会社小松製作所 System and method for displaying periphery image of work vehicle, and work vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040073367A1 (en) * 2002-10-15 2004-04-15 Altan Osman D. Threat assessment algorithm for forward collision warning
US20060206243A1 (en) * 2002-05-03 2006-09-14 Donnelly Corporation, A Corporation Of The State Michigan Object detection system for vehicle
US20080266169A1 (en) * 2007-04-27 2008-10-30 Mitsubishi Electric Corporation Radar device
US8269652B2 (en) * 2009-04-02 2012-09-18 GM Global Technology Operations LLC Vehicle-to-vehicle communicator on full-windshield head-up display
US8280621B2 (en) * 2008-04-15 2012-10-02 Caterpillar Inc. Vehicle collision avoidance system

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5091726A (en) 1990-08-23 1992-02-25 Industrial Technology Resarch Institute Vehicle anti-collision system
JP3167752B2 (en) 1991-10-22 2001-05-21 富士重工業株式会社 Vehicle distance detection device
US5670935A (en) 1993-02-26 1997-09-23 Donnelly Corporation Rearview vision system for vehicle including panoramic view
US5983161A (en) 1993-08-11 1999-11-09 Lemelson; Jerome H. GPS vehicle collision avoidance warning and control system and method
ATE184414T1 (en) 1995-11-06 1999-09-15 Michel Cuvelier ROAD MONITORING DEVICE
JP3745484B2 (en) 1997-02-12 2006-02-15 株式会社小松製作所 Vehicle monitoring device
JP2000161915A (en) 1998-11-26 2000-06-16 Matsushita Electric Ind Co Ltd On-vehicle single-camera stereoscopic vision system
US6483429B1 (en) 1999-10-21 2002-11-19 Matsushita Electric Industrial Co., Ltd. Parking assistance system
DE60119431T3 (en) 2000-05-30 2013-11-07 Toyota Jidosha Kabushiki Kaisha parking aid
US6480789B2 (en) 2000-12-04 2002-11-12 American Gnc Corporation Positioning and proximity warning method and system thereof for vehicle
US20050065779A1 (en) * 2001-03-29 2005-03-24 Gilad Odinak Comprehensive multiple feature telematics system
DE10206764A1 (en) 2002-02-19 2003-08-28 Bosch Gmbh Robert Method for parking a motor vehicle in which a number of distance sensors are used to detect the positions of obstacles, and thus determine the width and length of a gap before checking minimum separations during final parking
US7110021B2 (en) 2002-05-31 2006-09-19 Matsushita Electric Industrial Co., Ltd. Vehicle surroundings monitoring device, and image production method/program
JP2004101366A (en) * 2002-09-10 2004-04-02 Hitachi Ltd Portable communication terminal and navigation system using the same
US7158015B2 (en) * 2003-07-25 2007-01-02 Ford Global Technologies, Llc Vision-based method and system for automotive parking aid, reversing aid, and pre-collision sensing application
US7057532B2 (en) 2003-10-15 2006-06-06 Yossef Shiri Road safety warning system and method
US7389171B2 (en) 2003-12-22 2008-06-17 Ford Global Technologies Llc Single vision sensor object detection system
JP2005268847A (en) * 2004-03-16 2005-09-29 Olympus Corp Image generating apparatus, image generating method, and image generating program
EP1736360A1 (en) * 2005-06-23 2006-12-27 Mazda Motor Corporation Blind-Spot detection system for vehicle
US7149648B1 (en) 2005-08-15 2006-12-12 The Boeing Company System and method for relative positioning of an autonomous vehicle
US7517300B2 (en) * 2005-10-31 2009-04-14 Caterpillar Inc. Retarding system implementing torque converter lockup
JP2007127525A (en) * 2005-11-04 2007-05-24 Aisin Aw Co Ltd Moving amount arithmetic unit
US20070181513A1 (en) * 2006-01-17 2007-08-09 Glen Ward Programmable automatic dispenser
US20090259399A1 (en) 2008-04-15 2009-10-15 Caterpillar Inc. Obstacle detection method and system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060206243A1 (en) * 2002-05-03 2006-09-14 Donnelly Corporation, A Corporation Of The State Michigan Object detection system for vehicle
US7679498B2 (en) * 2002-05-03 2010-03-16 Donnelly Corporation Object detection system for vehicle
US20040073367A1 (en) * 2002-10-15 2004-04-15 Altan Osman D. Threat assessment algorithm for forward collision warning
US6813562B2 (en) * 2002-10-15 2004-11-02 General Motors Corporation Threat assessment algorithm for forward collision warning
US20080266169A1 (en) * 2007-04-27 2008-10-30 Mitsubishi Electric Corporation Radar device
US8280621B2 (en) * 2008-04-15 2012-10-02 Caterpillar Inc. Vehicle collision avoidance system
US8423280B2 (en) * 2008-04-15 2013-04-16 Caterpillar Inc. Vehicle collision avoidance system
US8269652B2 (en) * 2009-04-02 2012-09-18 GM Global Technology Operations LLC Vehicle-to-vehicle communicator on full-windshield head-up display

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120249342A1 (en) * 2011-03-31 2012-10-04 Koehrsen Craig L Machine display system
US9598836B2 (en) * 2012-03-29 2017-03-21 Harnischfeger Technologies, Inc. Overhead view system for a shovel
US8768583B2 (en) 2012-03-29 2014-07-01 Harnischfeger Technologies, Inc. Collision detection and mitigation systems and methods for a shovel
US9115482B2 (en) 2012-03-29 2015-08-25 Harnischfeger Technologies, Inc. Collision detection and mitigation systems and methods for a shovel
US20130261885A1 (en) * 2012-03-29 2013-10-03 Harnischfeger Technologies, Inc. Overhead view system for a shovel
US8649952B2 (en) * 2012-06-13 2014-02-11 Ford Global Technologies, Llc Control of a backing vehicle
US20180101176A1 (en) * 2013-06-26 2018-04-12 Waymo Llc Real-Time Image-Based Vehicle Detection Based On A Multi-Stage Classification
US9349055B1 (en) * 2013-06-26 2016-05-24 Google Inc. Real-time image-based vehicle detection based on a multi-stage classification
US10203697B2 (en) * 2013-06-26 2019-02-12 Waymo Llc Real-time image-based vehicle detection based on a multi-stage classification
US20150097660A1 (en) * 2013-10-09 2015-04-09 Joel Adell Blind view sensor assembly
CN105620409A (en) * 2014-11-24 2016-06-01 福特全球技术公司 Vehicle underside impact avoidance
US10183659B2 (en) * 2014-11-24 2019-01-22 Ford Global Technologies, Llc Vehicle underside impact avoidance
US20160144847A1 (en) * 2014-11-24 2016-05-26 Ford Global Technologies, Llc Vehicle underside impact avoidance
US11630201B2 (en) * 2020-04-17 2023-04-18 Oshkosh Corporation Refuse vehicle with spatial awareness
US20230150763A1 (en) * 2021-11-18 2023-05-18 Oshkosh Corporation Refuse vehicle with advanced driver-assistance system

Also Published As

Publication number Publication date
US8170787B2 (en) 2012-05-01
CA2660215A1 (en) 2009-10-15
US20090259400A1 (en) 2009-10-15
AU2009201164A1 (en) 2009-10-29

Similar Documents

Publication Publication Date Title
US8170787B2 (en) Vehicle collision avoidance system
US8423280B2 (en) Vehicle collision avoidance system
US9633563B2 (en) Integrated object detection and warning system
AU2014213529B2 (en) Image display system
US9457718B2 (en) Obstacle detection system
JP7154362B2 (en) work vehicle
US20120287277A1 (en) Machine display system
US9725040B2 (en) Vehicle object detection system
US9335545B2 (en) Head mountable display system
US20040051659A1 (en) Vehicular situational awareness system
KR102247956B1 (en) Sensor device and method for detecting objects around the trailer of a vehicle
US10793166B1 (en) Method and system for providing object detection warning
AU2007201110A1 (en) Systems and methods for determining threshold warning distances for collision avoidance
US11421402B2 (en) Operation-based object detection for a work machine
AU2011244950A1 (en) Machine control system implementing intention mapping
US20160148421A1 (en) Integrated Bird's Eye View with Situational Awareness
Guenther et al. Collision avoidance and operator guidance innovating mine vehicle safety
US20120249342A1 (en) Machine display system
KR102682768B1 (en) Rear Safety System of Construction Equipment
CA2802122C (en) Method and control unit for controlling a display of a proximity warning system
US20220227366A1 (en) Vehicular sensing system with upper and lower sensors and with reconfigurable alert triggers
US10742494B2 (en) System and method for configuring at least one sensor system of a vehicle
CN109515321A (en) Travelling image interface switch system and travelling image switching method
Guenther et al. The application of laser sensing technology to proximity detection in the mining industry

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE