US20120244133A1 - Methods of growing tumor infiltrating lymphocytes in gas-permeable containers - Google Patents

Methods of growing tumor infiltrating lymphocytes in gas-permeable containers Download PDF

Info

Publication number
US20120244133A1
US20120244133A1 US13/424,646 US201213424646A US2012244133A1 US 20120244133 A1 US20120244133 A1 US 20120244133A1 US 201213424646 A US201213424646 A US 201213424646A US 2012244133 A1 US2012244133 A1 US 2012244133A1
Authority
US
United States
Prior art keywords
til
cells
gas permeable
tumor tissue
tissue sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/424,646
Inventor
Steven A. Rosenberg
Mark E. Dudley
David Stroncek
Marianna Sabatino
Jianjian Jin
Robert Somerville
John R. Wilson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Health and Human Services
Wilson Wolf Manufacturing Corp
Original Assignee
US Department of Health and Human Services
Wilson Wolf Manufacturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Health and Human Services, Wilson Wolf Manufacturing Corp filed Critical US Department of Health and Human Services
Priority to US13/424,646 priority Critical patent/US20120244133A1/en
Assigned to THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES, WILSON WOLF MANUFACTURING CORPORATION reassignment THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SABATINO, Marianna, JIN, JIANJIAN, STRONCEK, David, DUDLEY, MARK E., SOMERVILLE, ROBERT, WILSON, JOHN R., ROSENBERG, STEVEN A.
Publication of US20120244133A1 publication Critical patent/US20120244133A1/en
Priority to US15/375,289 priority patent/US20170152478A1/en
Priority to US16/211,859 priority patent/US11401503B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • C12N5/0638Cytotoxic T lymphocytes [CTL] or lymphokine activated killer cells [LAK]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K2035/124Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells the cells being hematopoietic, bone marrow derived or blood cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/515Animal cells
    • A61K2039/5158Antigen-pulsed cells, e.g. T-cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/46Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the cancer treated
    • A61K2239/57Skin; melanoma
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • C12N2501/2302Interleukin-2 (IL-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • C12N2501/2315Interleukin-15 (IL-15)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/50Cell markers; Cell surface determinants
    • C12N2501/515CD3, T-cell receptor complex
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/11Coculture with; Conditioned medium produced by blood or immune system cells

Definitions

  • TIL tumor infiltrating lymphocytes
  • An embodiment of the invention provides a method of promoting regression of cancer in a mammal comprising obtaining a tumor tissue sample from the mammal; culturing the tumor tissue sample in a first gas permeable container containing cell medium therein; obtaining tumor infiltrating lymphocytes (TIL) from the tumor tissue sample; expanding the number of TIL in a second gas permeable container containing cell medium therein using irradiated allogeneic feeder cells and/or irradiated autologous feeder cells; and administering the expanded number of TIL to the mammal.
  • TIL tumor infiltrating lymphocytes
  • Another embodiment of the invention provides a method of obtaining an expanded number of TIL from a mammal for adoptive cell immunotherapy comprising obtaining a tumor tissue sample from the mammal; culturing the tumor tissue sample in a first gas permeable container containing cell medium therein; obtaining TIL from the tumor tissue sample; expanding the number of TIL in a second gas permeable container containing cell medium therein using irradiated allogeneic feeder cells and/or irradiated autologous feeder cells.
  • Still another embodiment of the invention provides a method of obtaining an expanded number of TIL from a mammal for adoptive cell immunotherapy comprising obtaining a tumor tissue sample from the mammal; obtaining TIL from the tumor tissue sample; expanding the number of TIL in a gas permeable container containing cell medium therein using irradiated allogeneic feeder cells and/or irradiated autologous feeder cells.
  • Another embodiment of the invention provides a method of promoting regression of cancer in a mammal comprising obtaining a tumor tissue sample from the mammal; obtaining TIL from the tumor tissue sample; expanding the number of TIL in a gas permeable container containing cell medium therein using irradiated allogeneic feeder cells and/or irradiated autologous feeder cells; and administering the expanded number of TIL to the mammal.
  • FIG. 1A is a graph showing the numbers of TIL produced by 10 tumor fragments from eight tumor samples in 24-well plates (diamonds) and G-Rex10 flasks (squares). For each individual tumor sample, 10 fragments were seeded into a 24-well plate at 1 piece per well and 10 fragments were seeded into a single G-Rex 10 flask. Cells were harvested by 7 to 23 days of culture, pooled if collected from 24-well plate, and counted. A total of 8 samples were tested.
  • FIG. 1C is a graph showing the total number of TIL produced by 7 to 23 days of culture of 5, 10, 20 and 30 tumor fragments in G-Rex10 flasks.
  • the data were normalized using the number of cells produced in G-Rex10 flasks with 10 fragments.
  • the total number TIL produced in each G-Rex10 flask was divided by the number of TIL produced by each G-Rex10 flask seeded with 10 tumor fragments from the same patient.
  • An embodiment of the invention provides a method of promoting regression of cancer in a mammal comprising obtaining a tumor tissue sample from the mammal; culturing the tumor tissue sample in a first gas permeable container containing cell medium therein; obtaining tumor infiltrating lymphocytes (TIL) from the tumor tissue sample; expanding the number of TIL in a second gas permeable container containing cell medium therein using irradiated allogeneic feeder cells and/or irradiated autologous feeder cells; and administering the expanded number of TIL to the mammal.
  • TIL tumor infiltrating lymphocytes
  • inventive methods provide numerous advantages. For example, methods of promoting regression of cancer and obtaining an expanded number of TIL using gas permeable containers are simpler, less labor-intensive, use less reagents, and can be performed using simpler equipment than procedures using non-gas permeable containers (e.g., T-flasks (e.g., T-175 flasks), bags, and multi-well plates).
  • non-gas permeable containers e.g., T-flasks (e.g., T-175 flasks), bags, and multi-well plates.
  • gas permeable containers may advantageously protect the cells from microbial contamination more effectively than non-gas permeable containers which may be “open” systems.
  • methods using gas permeable containers may advantageously reduce the number of containers that are used compared to methods using non-gas permeable containers, thereby reducing the amount of labor necessary to carry out the methods and also reducing the risk of microbial contamination.
  • producing cells in gas permeable containers may be more suitable for compliance with the current manufacturing practice (cGMP) conditions that are required for, e.g., Phase III clinical trials.
  • cGMP current manufacturing practice
  • methods using gas-permeable containers advantageously reduce the final culture volume to lower than that obtained with non-gas permeable containers, which advantageously lowers the incubator capacity required to grow the cells, reduces the amount of reagents (e.g., cell culture medium and additives) necessary to grow the cells, and simplifies the equipment and/or procedures for concentrating and washing the cells.
  • the inventive methods is that the cells may be fed less frequently in gas-permeable containers (e.g., about every three to four days) than in non-gas permeable containers (e.g., every other day), particularly when the cells and/or tumor tissue sample are cultured submerged under at least about 1.3 cm of cell culture medium in a gas permeable container.
  • cells in gas permeable containers may be handled less frequently than cells in non-gas permeable containers (e.g., bags), which may minimize disturbance of the tumor fragment and provide more reproducible TIL growth.
  • one or more aspects (e.g., but not limited to, culturing and/or expanding) of the inventive methods may be automatable.
  • the development of a simpler, less expensive, and less labor-intensive method to generate clinically effective TIL is believed to advantageously aid in the more widespread use of adoptive cell therapy and permit the delivery of therapeutically effective TIL to more patients in a shorter time period.
  • Faster and more efficient adoptive cell therapy may allow patients to be treated more quickly when the disease is at an earlier, less progressive stage, which increases the likelihood that more patients will respond positively to treatment.
  • inventive methods may also make it possible to treat certain patients who previously may not have been successfully treated because sufficient numbers of TIL were not generated due to the technical and logistical complexities of methods that do not use gas permeable flasks. Accordingly, the inventive methods advantageously may make it possible to treat or prevent a wider variety of cancers and, therefore, treat a larger number of patients.
  • the method comprises obtaining a tumor tissue sample from the mammal.
  • the tumor tissue sample can be obtained from numerous sources, including but not limited to tumor biopsy or necropsy.
  • the tumor tissue sample may be obtained from any cancer, including but not limited to any of the cancers described herein.
  • the cancer is melanoma.
  • the tumor tissue sample may be obtained from any mammal.
  • the tumor tissue sample is obtained from a human.
  • the tumor tissue sample may be a tumor tissue fragment.
  • the tumor tissue sample may be fragmented, e.g., by dissection, to provide a tumor tissue fragment.
  • the tumor tissue sample may, optionally, be enzymatically or mechanically digested.
  • Suitable enzymes for fragmenting the tumor tissue sample include, but are not limited to, collagenase.
  • the tumor tissue sample is fragmented without digestion.
  • the tumor tissue fragment may be any suitable size.
  • the tumor tissue fragment has a size of about 1 mm 3 or less to about 8 mm 3 or larger, about 1 mm 3 to about 4 mm 3 , about 1 mm 3 to about 2 mm 3 , or about 1 mm 3 .
  • the method further comprises culturing the tumor tissue sample in a first gas permeable container containing cell medium therein.
  • the tumor tissue sample is cultured directly on the gas permeable material in the gas permeable container without digestion.
  • an enzymatically or mechanically digested tumor tissue sample may be cultured directly on the gas permeable material.
  • Any suitable cell medium may be used.
  • the cell culture medium may further comprise any suitable T-cell growth factor such as, e.g., interleukin (IL)-2.
  • the cell culture medium may optionally further comprise human AB serum.
  • the tumor tissue sample may contain TIL that are autologous to the patient. Culturing the tumor tissue sample may include culturing the TIL present in the tumor sample.
  • the method also comprises obtaining TIL from the tumor tissue sample.
  • the tumor tissue sample comprises TIL.
  • TIL present in the tumor tissue sample also begin to grow in the gas permeable container, e.g., on the gas permeable material.
  • TIL may be obtained from the tumor tissue sample in any suitable manner.
  • the first gas permeable container may be any suitable gas permeable container.
  • the first gas permeable container comprises a base, sides, and a cap.
  • the container preferably the base, may comprise a gas permeable support and a gas permeable material, e.g., a gas permeable membrane.
  • the gas permeable material may be positioned inside the container directly on the gas permeable support which comprises openings (e.g., channels) in fluid communication with ambient gas in order to facilitate gas exchange between the interior of the container and the ambient gas.
  • the cap may comprise a vent and/or a port (e.g., an access port).
  • the access port may have an opening greater than about 1 mm to about 1 cm (e.g., greater than about 1 mm or greater than about 1 cm).
  • An access port with an opening greater than about 1 mm to about 1 cm may advantageously eliminate or reduce disturbance of the TIL.
  • the gas permeable container may comprise a vent or a vented port, which may be advantageous in the event that the temperature in the container drops during handling.
  • the first gas permeable container is a gas permeable container as described in U.S. Patent Application Publication No. 2005/0106717, which is incorporated herein by reference, and commercially available from Wilson Wolf Manufacturing Corporation (e.g., G-Rex10, GP200, G-Rex100, GP2000 containers) (New Brighton, Minn.).
  • the first gas permeable container may have any suitable cell medium volume capacity.
  • the first gas permeable container may have a medium volume capacity of about 40 mL or more; about 200 mL or more; about 500 mL or more; about 2,000 mL or more; or about 5,000 mL or more.
  • the tumor tissue sample and/or TIL may be cultured in any suitable volume of medium.
  • the tumor tissue sample and/or TIL are cultured submerged under a height of at least about 1.3 cm of cell culture medium. More preferably, the tumor tissue sample and/or TIL are cultured submerged under a height of at least about 2.0 cm of cell culture medium. Tumor tissue samples and/or TIL cultured on a gas permeable material submerged under a height of at least about 1.3 cm or a height of at least about 2.0 cm of medium may, advantageously, be handled and fed less frequently.
  • the first gas permeable container may provide any suitable surface area for the growth of the TIL.
  • the gas permeable container may have a surface area for growth of the TIL of about 10 cm 2 or more; about 100 cm 2 or more; or about 650 cm 2 or more.
  • the tumor tissue sample and/or TIL are cultured inside the first gas permeable container in contact with the gas permeable material and submerged under a suitable volume of culture medium. Culturing the tumor tissue sample and/or TIL in contact with the gas permeable material facilitates gas exchange between the cells and the ambient air. Facilitating gas exchange between the cells and the ambient air facilitates the respiration, growth, and viability of the cells. Moreover, the gas exchange across the gas permeable material can facilitate circulation of the medium (e.g., by convection and diffusion) within the container, which facilitates feeding of the TIL.
  • the medium e.g., by convection and diffusion
  • the method further comprises expanding the number of TIL in a second gas permeable container containing cell medium therein using irradiated allogeneic feeder cells and/or irradiated autologous feeder cells.
  • the number of TIL is expanded using a ratio of about 1 TIL to at least about 20 feeder cells, about 1 TIL to at least about 25 feeder cells, about 1 TIL to at least about 50 feeder cells, about 1 TIL to at least about 100 feeder cells, about 1 TIL to at least about 200 feeder cells, e.g., a TIL-to-feeder cell ratio of about 1 to about 20, about 1 to about 25, about 1 to about 50, about 1 to about 100, or about 1 to about 200.
  • the second gas permeable container may be as described for the first container.
  • the cultured TIL are expanded, preferably, rapidly expanded.
  • Rapid expansion provides an increase in the number of TIL of at least about 50-fold (or 60-, 70-, 80-, 90-, or 100-fold, or greater) over a period of about 10 to about 14 days, preferably about 14 days. More preferably, rapid expansion provides an increase of at least about 200-fold (or 300-, 400-, 500-, 600-, 700-, 800-, 900-, or greater) over a period of about 10 to about 14 days, preferably about 14 days. Most preferably, rapid expansion provides an increase of at least about 1000-fold over a period of about 10 to about 14 days, preferably about 14 days. Preferably, rapid expansion provides an increase of about 1000-fold to about 2000-fold, e.g., about 1000-fold, about 1500-fold, or about 2.000-fold over a period of about 14 days.
  • TIL can be rapidly expanded using non-specific T-cell receptor stimulation in the presence of feeder cells (e.g., irradiated allogeneic feeder cells, irradiated autologous feeder cells, and/or artificial antigen presenting cells (e.g., K562 leukemia cells transduced with nucleic acids encoding CD3 and/or CD8)) and either interleukin-2 (IL-2) or interleukin-15 (IL-15), with IL-2 being preferred.
  • feeder cells e.g., irradiated allogeneic feeder cells, irradiated autologous feeder cells, and/or artificial antigen presenting cells (e.g., K562 leukemia cells transduced with nucleic acids encoding CD3 and/or CD8)
  • IL-2 interleukin-2
  • IL-15 interleukin-15
  • expanding the number of TIL uses about 1 ⁇ 10 9 to about 4 ⁇ 10 9 allogeneic feeder cells and/or autologous feeder cells, preferably about 2 ⁇ 10 9 to about 3 ⁇ 10 9 allogeneic feeder cells and/or autologous feeder cells.
  • the non-specific T-cell receptor stimulus can include, for example, about 30 ng/ml of OKT3, a mouse monoclonal anti-CD3 antibody (available from ORTHO-MCNEIL, Raritan, N.J. or MILTENYI BIOTECH, Auburn, Calif.).
  • TIL can be rapidly expanded by, for example, stimulation of the TIL in vitro with an antigen (one or more, including antigenic portions thereof, such as epitope(s), or a cell) of the cancer, which can be optionally expressed from a vector, such as an human leukocyte antigen A2 (HLA-A2) binding peptide, e.g., 0.3 ⁇ M MART-1:26-35 (27L) or gp100:209-217 (210M), in the presence of a T-cell growth factor, such as 300 IU/ml IL-2 or IL-15, with IL-2 being preferred.
  • HLA-A2 human leukocyte antigen A2
  • TIL tyrosinase cancer antigen
  • MAGE-A3, SSX-2 tyrosinase cancer antigen
  • VEGFR2 tyrosinase cancer antigen
  • the in vitro-induced TIL are rapidly expanded by re-stimulation with the same antigen(s) of the cancer pulsed onto HLA-A2-expressing antigen-presenting cells.
  • the TIL can be re-stimulated with, for example, irradiated, autologous lymphocytes or with irradiated HLA-A2+ allogeneic lymphocytes and IL-2, for example.
  • expanding the number of TIL may comprise using about 5,000 mL to about 10,000 mL of cell medium, preferably about 5,800 mL to about 8,700 mL of cell medium.
  • expanding the number of TIL uses no more than one type of cell culture medium.
  • Any suitable cell culture medium may be used, e.g., AIM-V cell medium (L-glutamine, 50 ⁇ g/ml streptomycin sulfate, and 10 ⁇ g/ml gentamicin sulfate) cell culture medium (Invitrogen, Carlsbad Calif.).
  • AIM-V cell medium L-glutamine, 50 ⁇ g/ml streptomycin sulfate, and 10 ⁇ g/ml gentamicin sulfate
  • the inventive methods advantageously reduce the amount of medium and the number of types of medium required to expand the number of TIL.
  • expanding the number of TIL may comprise feeding the cells no more frequently than every third or fourth day. Expanding the number of cells in a gas permeable container advantageously simplifies the procedures necessary to expand the number of cells by reducing the feeding frequency necessary to expand the cells.
  • the cell medium in the first and/or second gas permeable container is unfiltered.
  • particulate serum components present in some cell medium supplements e.g., AB serum
  • the use of unfiltered cell medium may, advantageously, simplify the procedures necessary to expand the number of cells.
  • the cell medium in the first and/or second gas permeable container lacks beta-mercaptoethanol (BME).
  • BME beta-mercaptoethanol
  • the duration of the method comprising obtaining a tumor tissue sample from the mammal; culturing the tumor tissue sample in a first gas permeable container containing cell medium therein; obtaining TIL from the tumor tissue sample; expanding the number of TIL in a second gas permeable container containing cell medium therein using irradiated allogeneic feeder cells and/or irradiated autologous feeder cells may be about 28 to about 42 days, e.g., about 28 days.
  • the method comprises administering the expanded TIL to the mammal.
  • the TIL can be administered by any suitable route as known in the art.
  • the TIL are administered as an intra-arterial or intravenous infusion, which preferably lasts about 30 to about 60 minutes.
  • routes of administration include intraperitoneal, intrathecal and intralymphatic.
  • any suitable dose of TIL can be administered.
  • from about 1.2 ⁇ 10 10 to about 4.3 ⁇ 10 10 TIL are administered.
  • macrophages, monocytes, and natural killer (NK) cells may also be obtained from the tumor tissue sample, cultured, and expanded as described herein for TIL. Accordingly, the method may also comprise administering macrophages, monocytes, and natural killer (NK) cells to the mammal.
  • the inventive methods may also be effective for expanding NK cells.
  • a T-cell growth factor that promotes the growth and activation of the TIL is administered to the mammal either concomitantly with the TIL or subsequently to the TIL.
  • the T-cell growth factor can be any suitable growth factor that promotes the growth and activation of the TIL.
  • suitable T-cell growth factors include interleukin (IL)-2, IL-7, IL-15, and IL-12, which can be used alone or in various combinations, such as IL-2 and IL-7, IL-2 and IL-15, IL-7 and IL-15, IL-2, IL-7 and IL-15, IL-12 and IL-7, IL-12 and IL-15, or IL-12 and IL-2.
  • IL-2 is a preferred T-cell growth factor.
  • the TIL are modified to express a T-cell growth factor that promotes the growth and activation of the TIL.
  • Suitable T-cell growth factors include, for example, any of those described above. Suitable methods of modification are known in the art. See, for instance, Sambrook et al., Molecular Cloning: A Laboratory Manual, 3 rd ed., Cold Spring Harbor Press, Cold Spring Harbor, N.Y. 2001; and Ausubel et al., Current Protocols in Molecular Biology , Greene Publishing Associates and John Wiley & Sons, NY, 1994. Desirably, modified TIL express the T-cell growth factor at high levels.
  • T-cell growth factor coding sequences such as that of IL-12, are readily available in the art, as are promoters, the operable linkage of which to a T-cell growth factor coding sequence promote high-level expression.
  • the TIL may be modified to express IL-12 as described in World Intellectual Property Organization Patent Application Publication No. WO 2010/126766, which is incorporated herein by reference.
  • two cytokines are more effective than a single cytokine, and three cytokines, e.g., IL-2, IL-7 and IL-15, are more effective than any two cytokines.
  • IL-15 enhances a tumor-specific CD8 + T-cell response.
  • the administration of IL-15-cultured cells with IL-2 can be particularly efficacious.
  • TIL modified to express IL-12 may be administered with IL-2 as a bolus injection.
  • the T-cell growth factor can be administered by any suitable route. If more than one T-cell growth factor is administered, they can be administered simultaneously or sequentially, in any order, and by the same route or different routes.
  • the T-cell growth factor, such as IL-2 is administered intravenously as a bolus injection.
  • the dosage of the T-cell growth factor, such as IL-2 is what is considered by those of ordinary skill in the art to be high.
  • a dose of about 720,000 IU/kg of IL-2 is administered three times daily until tolerance, particularly when the cancer is melanoma.
  • about 5 to about 15 doses of IL-2 are administered, with an average of around 8 doses.
  • TIL can recognize any of the unique antigens produced as a result of the estimated 10,000 genetic mutations encoded by each tumor cell genome.
  • the antigen need not be unique.
  • TIL can recognize one or more antigens of a cancer, including an antigenic portion of one or more antigens, such as an epitope, or a cell of the cancer.
  • An “antigen of a cancer” and an “antigen of the cancer” are intended to encompass all of the aforementioned antigens.
  • the cancer is melanoma, such as metastatic melanoma
  • the TIL recognize MART-1 (such as MART-1:26-35 (27L)), gp100 (such as gp100:209-217 (210M)), or a “unique” or patient-specific antigen derived from a tumor-encoded mutation.
  • MART-1 such as MART-1:26-35 (27L)
  • gp100 such as gp100:209-217 (210M)
  • a “unique” or patient-specific antigen derived from a tumor-encoded mutation can include, but are not limited to, tyrosinase, tyrosinase related protein (TRP)1, TRP2, and MAGE.
  • TIL can also recognize antigens such as, for example, NY-ESO-1, telomerase, p53, HER2/neu, carcinoembryonic antigen, or prostate-specific antigen, for treatment of lung carcinoma, breast cancer, colon cancer, prostate cancer, and the like.
  • antigens such as, for example, NY-ESO-1, telomerase, p53, HER2/neu, carcinoembryonic antigen, or prostate-specific antigen, for treatment of lung carcinoma, breast cancer, colon cancer, prostate cancer, and the like.
  • the TIL are modified to express a T cell receptor (TCR) having antigenic specificity for a cancer antigen, e.g., any of the cancer antigens described herein.
  • TCRs include, for example, those with antigenic specificity for a melanoma antigen, e.g., gp100 or MART-1. Suitable methods of modification are known in the art. See, for instance, Sambrook and Ausubel, supra.
  • the TIL may be transduced to express a T cell receptor (TCR) having antigenic specificity for a cancer antigen using transduction techniques described in Morgan et al., Science 314(5796):126-9 (2006) and Johnson et al. Blood 114:535-46 (2009).
  • the cancer can be any cancer, including any of acute lymphocytic cancer, acute myeloid leukemia, alveolar rhabdomyosarcoma, bone cancer, brain cancer, breast cancer, cancer of the anus, anal canal, or anorectum, cancer of the eye, cancer of the intrahepatic bile duct, cancer of the joints, cancer of the neck, gallbladder, or pleura, cancer of the nose, nasal cavity, or middle ear, cancer of the oral cavity, cancer of the vulva, chronic lymphocytic leukemia, chronic myeloid cancer, colon cancer, esophageal cancer, cervical cancer, gastrointestinal carcinoid tumor, glioma, Hodgkin lymphoma, hypopharynx cancer, kidney cancer, larynx cancer, liver cancer, lung cancer, malignant mesothelioma, melanoma, multiple myeloma, nasopharynx cancer, non-Hodgkin lymphoma, ovarian cancer
  • the term “mammal” refers to any mammal, including, but not limited to, mammals of the order Rodentia, such as mice and hamsters, and mammals of the order Logomorpha, such as rabbits. It is preferred that the mammals are from the order Carnivora, including Felines (cats) and Canines (dogs). It is more preferred that the mammals are from the order Artiodactyla, including Bovines (cows) and Swines (pigs) or of the order Perssodactyla, including Equines (horses). It is most preferred that the mammals are of the order Primates, Ceboids, or Simoids (monkeys) or of the order Anthropoids (humans and apes). An especially preferred mammal is the human.
  • Promoting regression of cancer in a mammal may comprise treating or preventing cancer in the mammal.
  • the terms “treat,” “prevent,” and “regression,” as well as words stemming therefrom, as used herein, does not necessarily imply 100% or complete regression. Rather, there are varying degrees of treatment, prevention, and regression of which one of ordinary skill in the art recognizes as having a potential benefit or therapeutic effect.
  • the inventive methods can provide any amount of any level of treatment, prevention, or regression of cancer in a mammal.
  • the treatment, prevention, or regression provided by the inventive method can include treatment, prevention, or regression of one or more conditions or symptoms of the disease, e.g., cancer.
  • “treatment,” “prevention,” and “regression” can encompass delaying the onset of the disease, or a symptom or condition thereof.
  • Another embodiment provides a method of obtaining an expanded number of TIL from a mammal for adoptive cell immunotherapy comprising obtaining a tumor tissue sample from the mammal; culturing the tumor tissue sample in a first gas permeable container containing cell medium therein; obtaining TIL from the tumor tissue sample; expanding the number of TIL in a second gas permeable container containing cell medium therein using irradiated allogeneic feeder cells and/or irradiated autologous feeder cells.
  • the method comprises obtaining a tumor tissue sample from the mammal.
  • the tumor tissue sample may be obtained as described herein with respect to any embodiments of the invention.
  • the method comprises culturing the tumor tissue sample in a first gas permeable container containing cell medium therein.
  • the tumor tissue sample may be cultured in a first gas permeable container as described herein with respect to any embodiments of the invention.
  • the method comprises obtaining TIL from the tumor tissue sample.
  • the TIL may be obtained from the tumor tissue sample as described herein with respect to any embodiments of the invention.
  • the method comprises expanding the number of TIL in a second gas permeable container containing cell medium therein using irradiated allogeneic feeder cells and/or irradiated autologous feeder cells.
  • the number of TIL may be expanded as described herein with respect to any embodiments of the invention.
  • Still another embodiment of the invention provides a method of obtaining an expanded number of TIL from a mammal for adoptive cell immunotherapy comprising obtaining a tumor tissue sample from the mammal; obtaining TIL from the tumor tissue sample; expanding the number of TIL in a gas permeable container containing cell medium therein using irradiated allogeneic feeder cells and/or irradiated autologous feeder cells.
  • Obtaining a tumor tissue sample from the mammal, obtaining TIL from the tumor tissue sample, and expanding the number of TIL in a second gas permeable container containing cell medium therein using irradiated allogeneic feeder cells and/or irradiated autologous feeder cells may be carried out as described herein with respect to any embodiments of the invention.
  • the method may further comprise culturing the tumor tissue by any suitable method that facilitates the obtaining of TIL from the tumor tissue sample.
  • culturing the tumor tissue may comprise establishing multiple independent cultures, e.g., microcultures.
  • culturing the tumor tissue may comprise culturing tumor fragments in plates, e.g., 24-well plates.
  • the tumor tissue is cultured without a gas permeable container.
  • the method further comprises selecting TIL capable of lysing cancer cells while in other embodiments, the method does not include selecting TIL capable of lysing cancer cells.
  • TIL capable of lysing cancer cells may be selected by identifying TILs having any suitable trait associated with the lysis of cancer cells and/or the regression of cancer.
  • Exemplary suitable TIL traits that may serve as the basis for selecting TILs may include any one or more of IFN- ⁇ release upon co-culture with autologous tumor cells; cell surface expression of one or more of CD8, CD27, and CD28; and telomere length.
  • telomere lengths are associated with positive objective clinical responses in patients and persistence of the cells in vivo.
  • the trait is IFN- ⁇ release upon co-culture with autologous tumor cells.
  • selected TIL release about 200 pg/ml or more of IFN- ⁇ upon co-culture with tumor cells.
  • selecting TIL capable of lysing cancer cells comprises testing individual cultures for presence of the trait and identifying TIL possessing the trait. Methods of testing cultures for the presence of any one or more of IFN- ⁇ release upon co-culture with autologous tumor cells; cell surface expression of one or more of CD8, CD27, and CD28; and telomere length (longer telomeres being associated with regression of cancer) are known in the art.
  • any number of cultures may be selected. For example, one, two, three, four, five, or more cultures may be selected. In embodiments in which two or more cultures are selected, the selected cultures may be combined and the number of TIL expanded in one (or more) gas permeable containers. Preferably, however, in embodiments in which two or more cultures are selected, each selected culture is separately expanded in separate gas permeable containers. Without being bound to a particular theory, it is believed that expanding multiple selected cultures separately advantageously increases lymphocyte diversity for patient treatment.
  • the method may further comprise expanding the number of TIL in an identified culture in a second gas permeable container containing cell medium therein using irradiated allogeneic feeder cells and/or irradiated autologous feeder cells as described herein with respect to any embodiments of the invention.
  • Another embodiment of the invention provides a method of promoting regression of cancer in a mammal comprising obtaining a tumor tissue sample from the mammal; obtaining TIL from the tumor tissue sample; expanding the number of TIL in a second gas permeable container containing cell medium therein using irradiated allogeneic feeder cells and/or irradiated autologous feeder cells; and administering the expanded number of TIL to the mammal.
  • Obtaining a tumor tissue sample from the mammal, obtaining TIL from the tumor tissue sample, expanding the number of TIL in a gas permeable container containing cell medium therein using irradiated allogeneic feeder cells and/or irradiated autologous feeder cells, and administering the expanded number of TIL to the mammal may be carried out as described herein with respect to any embodiments of the invention.
  • the method further comprises selecting TIL capable of lysing cancer cells. The TIL may be selected as described herein with respect to any embodiments of the invention.
  • TIL tumor fragments
  • RPMI Roswell Park Memorial Institute
  • the solution was then incubated for 30 minutes at 37° C. in 5% CO 2 and was then mechanically disrupted again approximately 1 minute. After being incubated again for 30 minutes at 37° C. in 5% CO 2 , the tumor was mechanically disrupted a third time for approximately one minute. If after the third mechanical disruption, large pieces of tissue were present, one or two additional mechanical dissociations were applied to the sample, with or without 30 additional minutes of incubation at 37° C. in 5% CO 2 . At the end of the final incubation, if the cell suspension contained a large number of red blood cells or dead cells, a density gradient separation using FICOLL branched hydrophilic polysaccharide (GE Healthcare, Smyrna, Ga.) was preformed to remove these cells.
  • FICOLL branched hydrophilic polysaccharide GE Healthcare, Smyrna, Ga.
  • TIL growth from digests and fragments were initiated in either gas permeable flasks with a 40 mL volume and a 10 cm 2 gas-permeable silicon bottom (G-Rex10, Wilson Wolf Manufacturing, New Brighton, Minn., USA) or 24-well plates (Corning Corning, N.Y.).
  • G-Rex10 Wilson Wolf Manufacturing, New Brighton, Minn., USA
  • 24-well plates Corning Corning, N.Y.
  • each well was seeded with 1 ⁇ 10 6 tumor digest cells or one tumor fragment approximately 1 to 8 mm 3 in size in 2 mL of CM with IL-2 (6000 IU/mL, Chiron Corp., Emeryville, Calif.).
  • CM included RPMI 1640 with glutamine, supplemented with 10% AB serum, 25 mM Hepes and 10 ⁇ g/ml gentamicin.
  • G-Rex10 flasks When cultures were initiated in G-Rex10 flasks, each flask was loaded with 10 to 40 ⁇ 10 6 viable tumor digest cells or 5 to 30 tumor fragments in 10 to 40 ml of CM with IL-2.
  • Both the G-Rex10 and 24-well plates were incubated in a humidified incubator at 37° C. in 5% CO 2 and five days after culture initiation, half the media was removed and replaced with fresh CM and IL-2 and after day 5, half the media was changed every 2 to 3 days.
  • TIL REP of TIL was performed using T-175 flasks and gas permeable bags as previously described (Tran et al., J. Immunother. 31(8):742-51 (2008); Dudley et al., J. Immunother. 26(4):332-42 (2003)) or gas permeable cultureware (G-Rex flasks).
  • TIL REP in T-175 flasks 1 ⁇ 10 6 TIL suspended in 150 ml of media was added to each T-175 flask.
  • the TIL were cultured with irradiated (50 Gy) allogeneic peripheral blood mononuclear cells (PBMC) as “feeder” cells at a ratio of 1 TIL to 100 feeder cells and the cells were cultured in a 1 to 1 mixture of CM and AIM-V medium, supplemented with 3000 IU per mL of IL-2 and 30 ng per ml of anti-CD3.
  • PBMC peripheral blood mononuclear cells
  • the T-175 flasks were incubated at 37° C. in 5% CO 2 . Half the media was exchanged on day 5 using 50/50 medium with 3000 IU per mL of IL-2.
  • TIL REP for TIL REP in 500 mL capacity gas permeable flasks with 100 cm 2 gas-permeable silicon bottoms (G-Rex100, commercially available from Wilson Wolf Manufacturing Corporation, New Brighton, Minn., USA), 5 ⁇ 10 6 or 10 ⁇ 10 6 TIL were cultured with irradiated allogeneic PBMC at a ratio of 1 to 100 in 400 mL of 50/50 medium, supplemented with 5% human AB serum, 3000 IU per mL of IL-2 and 30 ng per ml of anti-CD3. The G-Rex100 flasks were incubated at 37° C. in 5% CO 2 .
  • CD3, CD4, CD8 and CD56 were measured by flow cytometry with antibodies from BD Biosciences (BD Biosciences, San Jose, Calif.) using a FACSCantoTM flow cytometer (BD Biosciences). The cells were counted manually using a disposable hemacytometer and viability was assessed using trypan blue staining.
  • TIL were evaluated for interferon-gamma (IFN- ⁇ ) secretion in response to stimulation either with OKT3 antibody or co-culture with autologous tumor digest.
  • OKT3 stimulation TIL were washed extensively, and duplicate wells were prepared with 1 ⁇ 10 5 cells in 0.2 ml CM in 96 well flat-bottom plates pre-coated with 0.1 or 1.0 ⁇ g/mL of OKT-3 antibody diluted in PBS. After overnight incubation, the supernatants were harvested and IFN- ⁇ in the supernatant was measured by ELISA (Pierce/Endogen, Woburn, Mass.).
  • ELISA Westernce/Endogen, Woburn, Mass.
  • TIL cells were placed into a 96-well plate with autologous tumor cells. After a 24 hour incubation, supernatants were harvested and IFN- ⁇ release was quantified by ELISA.
  • TIL cultured in gas-permeable containers is better than, or at least comparable to, that in a 24-well plate.
  • TIL from tumors using gas permeable flasks with a 40 mL capacity and 10 cm 2 gas permeable silicone bottom (G-Rex10, Wilson Wolf Manufacturing Corporation, New Brighton, Minn., USA (providing about 10 cm 2 of surface area for growth of the TIL)) or 24-well plates (Corning Corning, N.Y.) was compared.
  • a total of 14 melanoma samples were tested, including 9 freshly prepared tumor digests (Table 1A) and 5 thawed samples from previously frozen tumor digests (Table 1B).
  • TIL from frozen tumor from patient 2653 were not able to be cultured in either the G-Rex10 or 24-well plates. Except for one fresh sample (#3522), the ratio of harvested TIL to initially seeded cells at day 17 to 29 was similar to or better in the G-Rex10 flasks than in the 24-well plate (Table 1A and 1B).
  • IFN- ⁇ production by TIL cultured in G-Rex10 flasks was also compared with that of TIL cultured in 24-well plates. IFN- ⁇ production following stimulation with autologous tumor by TIL from 4 patients cultured in both types of vessels was similar (Table 1C)
  • This example demonstrates that the culture of TIL from tumor fragments in gas permeable flasks produces a greater number of TIL as compared to culture in 24-well plates after 7 to 13 days.
  • TIL tumor fragments in G-Rex10 flasks or 24-well plates was next compared. For each tumor sample, fragments approximately 1 to 8 mm 3 in size were seeded into 24-well plates at 1 piece per well and into G-Rex10 flasks at 5, 10, 20, or 30 pieces per flask. The growth of TIL from 2 lymph nodes and 1 liver metastasis was assessed (Table 2). TIL could be grown from tumor fragments in both gas-permeable flasks and 24-well plates, but after 7 to 13 days greater quantities of TIL were obtained from the G-Rex10 flasks than the wells (Table 2).
  • TIL tumor fragments from all 11 samples in both the G-Rex10 flasks and 24-well plates, but after 7 to 23 days in culture greater quantities of TIL were obtained from the G-Rex10 flasks.
  • the head-to-head comparison of culturing 10 fragments in the two types of vessels showed that TIL yields from G-Rex10 flasks were consistently higher than those from 24-well plate ( FIG. 1A ).
  • TIL obtained per tumor fragment decreased as the number of pieces added to each G-Rex10 flask increased ( FIG. 1B ), however, total TIL yield was higher as more fragments were cultured in the G-Rex10 flasks until 20 or more tumor fragments were cultured in each G-Rex10 flask ( FIG. 1C ).
  • the viability of TIL obtained from G-Rex10 flasks was similar to that of TIL obtained from 24-well plates (96.6 ⁇ 0.6% vs 95.3 ⁇ 0.8%) as was the proportion of TIL expressing CD3 and CD8 (67.8 ⁇ 7.2% vs 63.3 ⁇ 7.7%).
  • TIL were also obtained from 3 of the 11 samples by the culture of mechanically dissociated samples in G-Rex10 flasks, but greater yields were obtained using tumor fragments as the starting material.
  • This example demonstrates the kinetics of TIL growth in gas-permeable flasks.
  • TIL from one patient were cultured in G-Rex100 flasks seeded at a density of 5 ⁇ 10 6 and 10 ⁇ 10 6 cells per flask. The cells were counted daily after day 6. On Day 6 the number of cells in the G-Rex100 flask seeded at 5 ⁇ 10 6 cells was 255 ⁇ 10 6 cells and at 10 ⁇ 10 6 cells was 300 ⁇ 10 6 cells. The quantity of TIL in G-Rex100 flasks seeded at each cell density increased steadily until day 9, but there was little increase in cell counts between days 9 and 10.
  • TIL After 10 days 906 ⁇ 10 6 cells were harvested from flasks seeded with 5 ⁇ 10 6 TIL and 1,050 ⁇ 10 6 cells from flasks seeded with 10 ⁇ 10 6 TIL. Although TIL expanded well for 9 days, in order to keep the G-Rex100 flask expansion process similar to REP in T-flasks and gas-permeable bags where TIL are transferred from T-flasks to bags on day 7, further studies focused on TIL expansion in the G-Rex100 flasks for 7 days.
  • This example demonstrates that a 7-day culture of TIL in a gas permeable container seeded with 10 ⁇ 10 6 cells does not produce a significantly greater number of cells than a gas permeable container seeded with 5 ⁇ 10 6 cells.
  • TIL rapid expansion protocol has traditionally been performed in T-175 flasks.
  • the expansion of TIL in T-175 flasks was compared to expansion in G-Rex100 flasks (providing about 100 cm 2 of surface area for growth of the TIL).
  • the expansion of TIL from 4 patients over 7 days in G-Rex100 flasks seeded with 5 ⁇ 10 6 and 10 ⁇ 10 6 cells was compared with TIL expansion in T-175 flasks (Table 3). T-175 flasks were seeded with 1 ⁇ 10 6 cells.
  • This example demonstrates that a similar number of cells can be produced in a 500 mL gas permeable container as compared to a 2000 mL gas permeable container.
  • TIL REP by serial culture was tested in G-Rex100L, another type of gas-permeable flask that is commercially available for large scale cell expansion (Wilson Wolf Manufacturing Corporation, New Brighton, Minn., USA).
  • G-Rex100L has the same gas permeable surface area on the silicone bottom of the flask as the G-Rex100 (providing about 100 cm 2 of surface area for growth of the TIL), but the G-Rex100L is taller.
  • the media capacity of the G-Rex100L flask is approximately 2000 ml compared to approximately 500 mL for the G-Rex100.
  • TIL expansion was compared in these two types of flasks.
  • TIL were initially seeded at a density of 5 ⁇ 10 6 cells for both the G-Rex100 and G-Rex100L flasks, and were cultured for 7 days as described in Example 3. After 7 days the cells from the G-Rex100 flask were split into 3 equal parts, and seeded into 3 G-Rex100L flasks. The cells from the G-Rex100L flask were split into two equal parts, seeded into 2 G-Rex100L flasks. The TIL were cultured for an additional 7 days in the G-Rex100 and G-Rex100L flasks.
  • TIL TIL-Rex100
  • G-Rex100L flasks The expansion of TIL from two patients was compared in the G-Rex100 and G-Rex100L flasks. Both patients' TIL growth slowed after 13 or 14 days.
  • This example demonstrates the consistency of serial TIL expansion using gas permeable containers and a “full scale” expansion of TIL using gas permeable containers.
  • TIL serial TIL expansion in G-Rex100 flasks using cells from 14 patients was tested. Initially, 5 ⁇ 10 6 TIL were seeded into a G-Rex100 flask and the cells were cultured for 7 days. They were then split into 3 equal parts, seeded into 3 G-Rex100 flasks. After 14 days in culture, 8.60 ⁇ 10 9 ⁇ 2.80 ⁇ 10 9 TIL with a range of 2.24 ⁇ 10 9 to 12.8 ⁇ 10 9 were produced. The number of TIL produced after 14 days was similar for 12 patients, but lower for two others. When the 2 patients with the lowest overall TIL expansion were excluded, the mean quantity of TIL produced was 9.55 ⁇ 10 9 cells per original G-Rex100 flask. The mean cell concentration in G-Rex100 flasks at the end of the culture was 7.95 ⁇ 10 6 cells per mL.
  • TIL produced by G-Rex100 REP and T-175 flask/bag REP was compared.
  • TIL samples produced by both REP methods using the same tumor samples from 4 patients were tested.
  • Following stimulation by anti-CD3 IFN- ⁇ production by TIL expanded in G-Rex100 flasks was similar to that of TIL expanded in T-175 flasks and bags (Table 4A).
  • G-Rex100 REP 15 ⁇ 10 6 TIL from one patient were divided among three G-Rex100 flasks, A, B and C. After 7 days in culture the TIL in each flask were split into 3 equal parts, seeded into 3 G-Rex100 flasks and cultured for an additional 7 days.
  • the mean number of TIL harvested from each of the 3 G-Rex100 flasks used for initial expansion was 875 ⁇ 10 6 ⁇ 30.8 ⁇ 10 6 and ranged from 849 ⁇ 10 6 to 909 ⁇ 10 6 TIL and the mean number harvested from each of the 9 G-Rex100 flasks used for the secondary expansion was 2.63 ⁇ 0.09 ⁇ 10 9 and ranged for 2.55 ⁇ 10 9 to 2.70 ⁇ 10 9 TIL (Table 5).
  • the total TIL yield was 23.6 ⁇ 10 9 and 21.0 ⁇ 10 9 remained after washing the cells.
  • the viability of the cells was 96% and 69% of the cells expressed CD3 and CD8.
  • IFN- ⁇ secretion was also tested using Enzyme-linked immunosorbent assay (ELISA).
  • ELISA Enzyme-linked immunosorbent assay
  • This example demonstrates the rapid expansion of TIL using one 5000 mL gas permeable container.
  • One method involved an initial 7-day expansion in 2 G-Rex100 flasks, each seeded with 5 ⁇ 10 6 TIL, followed by another expansion of the harvested TIL in a single GP5000 vessel.
  • the other method involved a single 14-day expansion of 10 ⁇ 10 6 TIL in a GP5000 vessel.
  • TIL yield of the two REP methods were similar for both donors. Approximately 25 ⁇ 10 9 TIL were harvested from patient 3524 and approximately 20 ⁇ 10 9 from patient 3560. The cell viability for all four REPs was >96% and >92% of patient 3524 cells expressed CD8 and >35% of patient 3560 cells expressed CD8.
  • This example demonstrates a clinical TIL production process.
  • TIL production using tumor fragments from 3 patients was next tested by initially culturing TIL in G-Rex10 flasks followed by REP in G-Rex100 flasks.
  • 6 G-Rex10 flasks were seeded with 5 tumor fragments and after 14 to 15 days 5 ⁇ 10 6 TIL from each G-Rex10 flask were seeded into one G-Rex100 flask.
  • 7 days TIL from each G-Rex100 flask were split into 3 G-Rex100 flasks and after an additional 7 days in culture TIL were harvested from the 18 G-Rex100 flasks.
  • TIL were harvested from the 18 G-Rex100 flasks.
  • 3613 and 3618 enough TIL could be harvested from each of the 6 G-Rex10 flasks for TIL REP in a G-Rex100 flask.
  • the quantity of TIL harvested from each of the G-Rex10 flasks ranged from 47.5 to 97.8 ⁇ 10 6 cells for patient 3613 and 24.6 to 64.2 ⁇ 10 6 for patient 3618 (Table 6A).
  • sufficient quantities of TIL were obtained from 4 of the 6 G-Rex10 flasks.
  • the quantity harvested from these 4 flasks ranged from 59.7 to 140 ⁇ 10 6 cells (Table 6A).
  • 5 ⁇ 10 6 TIL from each of the 6 G-Rex10 flasks was seeded into a G-Rex100 flask.
  • G-Rex100 flasks can produce sufficient quantities of TIL for clinical therapy using TIL initially cultured from tumor fragments in G-Rex10 flasks.
  • the same G-Rex100 REP protocol was also successful in expanding TIL that were initially cultured from tumor fragments in 24-well plates. There were no significant differences in fold expansion using either TIL initially cultured from tumor fragments in 24-well plates or G-Rex10 flasks.
  • This example demonstrates that expanding TIL in gas permeable containers uses a lower number of containers, lower number of feeder cells, and lower amount of medium as compared to methods in which the TIL are expanded in non-gas permeable containers.
  • TIL are expanded as described above using gas permeable containers (G-Rex100 and GP5000) and in non-gas permeable containers (bags and T 175 flask).
  • G-Rex100 and GP5000 gas permeable containers
  • bags and T 175 flask bags and T 175 flask
  • TIL 4 ⁇ 10 6 ) were cultured in filtered or unfiltered complete medium (CM) (50 mL) (RPMI 1640 with glutamine, supplemented with 10% AB serum, 25 mM Hepes and 10 ⁇ g/ml gentamicin) in four wells. On day 7/8, fold increase, viability, and % CD3+CD8+ were measured. The results are shown in Table 7.
  • This example demonstrates that culturing TIL in cell medium that lacks beta-mercaptoethanol (BME) has little or no detrimental effects on TIL growth or potency.
  • BME beta-mercaptoethanol
  • TIL were cultured in complete medium (CM) (50 mL) with or without BME. After 2-3 weeks, population increase, viability, and % CD3+CD8+ were measured. The results are shown in Table 8. ⁇ 10 7
  • the performance of the TIL cultured in the medium without BME was similar to that of the TIL cultured in the medium with BME.
  • TIL Effector
  • TIL Effector cells (1 ⁇ 10 5 ) are co-cultured with target (antigen-presenting tumor cells) cells (1 ⁇ 10 5 ), with AK1700 used as a negative control and DM5 A2 used as a positive control.
  • IFN-gamma secretion is measured by ELISA. There was no significant difference in IFN-gamma secretion for the TIL cultured in medium without BME as compared to TIL cultured in medium with BME. Thus, the absence of BME from the medium has little or no detrimental effects on TIL cell growth or potency.
  • This example demonstrates that feeding the TIL no more frequently than every third or fourth day during expansion of the number of TIL in a gas permeable container has little or no detrimental effects on TIL growth.
  • TIL were rapidly expanded in a 500 mL gas permeable container (G-Rex100) as described above and fed as described in Table 9. At the end of 14 days, fold expansion, viability, and composition were measured.
  • TIL potency of the TIL is measured and compared for TIL cultured and fed every third or fourth day as compared to TIL fed every other day. Effector cells (1 ⁇ 10 5 ) are co-cultured with target cells (1 ⁇ 10 5 ), with AK1700 used as a negative control and DM5 A2 used as a positive control. IFN-gamma secretion is measured by ELISA. There was no significant difference in IFN-gamma secretion for the TIL fed every third or fourth day as compared to TIL fed every other day. Thus, the reduction in feeding frequency has little or no detrimental effects on TIL potency.
  • This example demonstrates that using no more than one type of cell culture medium for expanding the number of TIL has little or no detrimental effects on TIL growth.
  • TIL were rapidly expanded as described above using no more than one type of cell culture medium or two types of cell culture medium as set forth in Table 11.
  • TIL Potency of the TIL is measured and compared for TIL expanded using no more than one type of medium and TIL expanded using two types of medium. Effector cells (1 ⁇ 10 5 ) are co-cultured with target cells (1 ⁇ 10 5 ), with AK1700 used as a negative control and DM5 A2 used as a positive control. IFN-gamma secretion is measured by ELISA. There was no significant difference in IFN-gamma secretion for TIL expanded using no more than one type of cell medium as compared to TIL expanded using two types of cell medium.
  • This example demonstrates that expanding the number of TIL using a higher ratio of feeders provides a higher number of TIL.
  • TIL 5 ⁇ 10 6 ) from two tumor samples were expanded as described above using allogeneic feeder cells at a TIL:Feeder cell ratio of 1:100, 1:50, or 1:25. Cells were counted on days 7, 11, and 14. Viability and cellular composition were evaluated on day 14.
  • TIL cultured in a gas permeable container have the same or better potency as compared to TIL cultured in non-gas permeable, 24 well plates.
  • TIL are cultured in a gas permeable container (40 mL, G-Rex10) or in a non-gas permeable, 24-well plate. Effector cells (1 ⁇ 10 5 ) are co-cultured with target cells (1 ⁇ 10 5 ), with AK1700 used as a negative control and DM5 A2 used as a positive control. IFN-gamma secretion is measured by ELISA. The results are shown in Table 13.
  • This example demonstrates the treatment of melanoma using TIL prepared by initially culturing the TIL in gas permeable flasks and then rapidly expanding the number of TIL in gas permeable flasks.
  • Tumor tissue samples were obtained from seven melanoma patients. The tumor tissue samples were cultured in G-Rex10 flasks. TIL were obtained from the cultured tumor tissue samples. The numbers of TIL were expanded in G-Rex100 flasks. The expanded cells were administered to the patients.
  • This example demonstrates the treatment of melanoma using TIL prepared by expanding the number of selected TIL in gas permeable flasks.
  • Compete medium (2 ml) (supplemented with 6000 IU/ml IL-2) was added to the wells in the top row of each 24-well plate. A single fragment of tumor was added to each media-containing well.
  • TIL were obtained from the tumor tissue samples and cultured as follows. Fragments were incubated in multiwell plates in a humidified incubator at 37° C., with 5% CO 2 in air for 5 days without disturbance. After 5 days, the TIL cultures in plates were monitored for growth by viewing with an inverted light microscope. At this point TIL and other cell types have extravasated from the fragment and/or propagated in the wells. Half of the CM in plates was replaced with fresh CM containing IL-2 (6000 IU/ml). Media (1 ml) was aspirated, taking care not to disturb the cells on the bottom of the well, and replaced with 1 ml of fresh medium containing IL-2 (6000 CU/ml).
  • the plates were monitored for TIL growth. When TIL expansion was evident, a sample from the well was counted to quantify cell concentration. When the culture exceeded 1 ⁇ 10 6 lymphocytes/ml or became nearly confluent then the well was split 1:2. Splitting was accomplished by mixing gently with a transfer pipette and transferring 1 ml of culture to a new well, then adding 1 ml of CM containing IL-2 (6000 IU/ml) to each daughter well. Fragment cultures that showed growth, up to 24 in total, were split in to 2 wells. The first 12 fragment cultures that required a second split in to 4 wells were maintained. The remaining fragment cultures were frozen as a pool 1 (PF1).
  • PF1 pool 1
  • the cultures were screened for specificity by co-culturing 100 ⁇ l of TIL with media only, autologous fresh tumor cells, or autologous fresh tumor cells and MHC Class I antibody, and IFN- ⁇ release was measured. Reactive cultures were selected for expansion.
  • TIL from the selected cultures that released 200 pg/ml or more of IFN- ⁇
  • the expanded cells were administered to the patients.

Abstract

An embodiment of the invention provides a method of promoting regression of cancer in a mammal comprising obtaining a tumor tissue sample from the mammal; culturing the tumor tissue sample in a first gas permeable container containing cell medium therein; obtaining tumor infiltrating lymphocytes (TIL) from the tumor tissue sample; expanding the number of TIL in a second gas permeable container containing cell medium therein using irradiated allogeneic feeder cells and/or irradiated autologous feeder cells; and administering the expanded number of TIL to the mammal. Methods of obtaining an expanded number of TIL from a mammal for adoptive cell immunotherapy are also provided.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This patent application claims the benefit of U.S. Provisional Patent Application No. 61/466,200, filed Mar. 22, 2011, which is incorporated by reference in its entirety herein.
  • BACKGROUND OF THE INVENTION
  • Adoptive cell therapy (ACT) using tumor infiltrating lymphocytes (TIL) can lead to positive, objective, and durable responses in cancer patients. However, this therapy can involve sophisticated cell processing techniques and equipment. These procedures have introduced technical, regulatory, and logistic challenges to the successful use of TIL as a biological therapy. Accordingly, there is a need in the art for improved methods for growing TIL for use in adoptive cell therapy.
  • BRIEF SUMMARY OF THE INVENTION
  • An embodiment of the invention provides a method of promoting regression of cancer in a mammal comprising obtaining a tumor tissue sample from the mammal; culturing the tumor tissue sample in a first gas permeable container containing cell medium therein; obtaining tumor infiltrating lymphocytes (TIL) from the tumor tissue sample; expanding the number of TIL in a second gas permeable container containing cell medium therein using irradiated allogeneic feeder cells and/or irradiated autologous feeder cells; and administering the expanded number of TIL to the mammal.
  • Another embodiment of the invention provides a method of obtaining an expanded number of TIL from a mammal for adoptive cell immunotherapy comprising obtaining a tumor tissue sample from the mammal; culturing the tumor tissue sample in a first gas permeable container containing cell medium therein; obtaining TIL from the tumor tissue sample; expanding the number of TIL in a second gas permeable container containing cell medium therein using irradiated allogeneic feeder cells and/or irradiated autologous feeder cells.
  • Still another embodiment of the invention provides a method of obtaining an expanded number of TIL from a mammal for adoptive cell immunotherapy comprising obtaining a tumor tissue sample from the mammal; obtaining TIL from the tumor tissue sample; expanding the number of TIL in a gas permeable container containing cell medium therein using irradiated allogeneic feeder cells and/or irradiated autologous feeder cells.
  • Another embodiment of the invention provides a method of promoting regression of cancer in a mammal comprising obtaining a tumor tissue sample from the mammal; obtaining TIL from the tumor tissue sample; expanding the number of TIL in a gas permeable container containing cell medium therein using irradiated allogeneic feeder cells and/or irradiated autologous feeder cells; and administering the expanded number of TIL to the mammal.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
  • FIG. 1A is a graph showing the numbers of TIL produced by 10 tumor fragments from eight tumor samples in 24-well plates (diamonds) and G-Rex10 flasks (squares). For each individual tumor sample, 10 fragments were seeded into a 24-well plate at 1 piece per well and 10 fragments were seeded into a single G-Rex 10 flask. Cells were harvested by 7 to 23 days of culture, pooled if collected from 24-well plate, and counted. A total of 8 samples were tested.
  • FIG. 1B is a graph showing the number of TIL produced per each tumor fragment by 7 to 23 days of culture of 5, 10, 20 and 30 tumor fragments in G-Rex10 flasks. Because only G-Rex10 flasks with 10 fragments were used in all experiments, the data were normalized using the number of cells produced in G-Rex10 flasks with 10 fragments. The number of TIL produced in each flask was divided by the number of fragments in the flask and this value was divided by the number of TIL produced in G-Rex10 flasks with 10 fragments from the same patient divided by 10. The average number of TIL produced by each tumor fragment in G-Rex 10 flasks seeded with 10 fragments was 7.51×106 cells per fragment (n=11).
  • FIG. 1C is a graph showing the total number of TIL produced by 7 to 23 days of culture of 5, 10, 20 and 30 tumor fragments in G-Rex10 flasks. The data were normalized using the number of cells produced in G-Rex10 flasks with 10 fragments. The total number TIL produced in each G-Rex10 flask was divided by the number of TIL produced by each G-Rex10 flask seeded with 10 tumor fragments from the same patient. The average number of TIL produced by G-Rex10 flasks seeded with 10 tumor fragments was 75.1×106 (n=11).
  • DETAILED DESCRIPTION OF THE INVENTION
  • An embodiment of the invention provides a method of promoting regression of cancer in a mammal comprising obtaining a tumor tissue sample from the mammal; culturing the tumor tissue sample in a first gas permeable container containing cell medium therein; obtaining tumor infiltrating lymphocytes (TIL) from the tumor tissue sample; expanding the number of TIL in a second gas permeable container containing cell medium therein using irradiated allogeneic feeder cells and/or irradiated autologous feeder cells; and administering the expanded number of TIL to the mammal.
  • The inventive methods provide numerous advantages. For example, methods of promoting regression of cancer and obtaining an expanded number of TIL using gas permeable containers are simpler, less labor-intensive, use less reagents, and can be performed using simpler equipment than procedures using non-gas permeable containers (e.g., T-flasks (e.g., T-175 flasks), bags, and multi-well plates). In addition, gas permeable containers may advantageously protect the cells from microbial contamination more effectively than non-gas permeable containers which may be “open” systems. In addition, methods using gas permeable containers may advantageously reduce the number of containers that are used compared to methods using non-gas permeable containers, thereby reducing the amount of labor necessary to carry out the methods and also reducing the risk of microbial contamination. Thus, producing cells in gas permeable containers may be more suitable for compliance with the current manufacturing practice (cGMP) conditions that are required for, e.g., Phase III clinical trials. Moreover, methods using gas-permeable containers advantageously reduce the final culture volume to lower than that obtained with non-gas permeable containers, which advantageously lowers the incubator capacity required to grow the cells, reduces the amount of reagents (e.g., cell culture medium and additives) necessary to grow the cells, and simplifies the equipment and/or procedures for concentrating and washing the cells. Another advantage of the inventive methods is that the cells may be fed less frequently in gas-permeable containers (e.g., about every three to four days) than in non-gas permeable containers (e.g., every other day), particularly when the cells and/or tumor tissue sample are cultured submerged under at least about 1.3 cm of cell culture medium in a gas permeable container. Moreover, cells in gas permeable containers may be handled less frequently than cells in non-gas permeable containers (e.g., bags), which may minimize disturbance of the tumor fragment and provide more reproducible TIL growth. In addition, one or more aspects (e.g., but not limited to, culturing and/or expanding) of the inventive methods may be automatable. The development of a simpler, less expensive, and less labor-intensive method to generate clinically effective TIL is believed to advantageously aid in the more widespread use of adoptive cell therapy and permit the delivery of therapeutically effective TIL to more patients in a shorter time period. Faster and more efficient adoptive cell therapy may allow patients to be treated more quickly when the disease is at an earlier, less progressive stage, which increases the likelihood that more patients will respond positively to treatment. The inventive methods may also make it possible to treat certain patients who previously may not have been successfully treated because sufficient numbers of TIL were not generated due to the technical and logistical complexities of methods that do not use gas permeable flasks. Accordingly, the inventive methods advantageously may make it possible to treat or prevent a wider variety of cancers and, therefore, treat a larger number of patients.
  • The method comprises obtaining a tumor tissue sample from the mammal. The tumor tissue sample can be obtained from numerous sources, including but not limited to tumor biopsy or necropsy. The tumor tissue sample may be obtained from any cancer, including but not limited to any of the cancers described herein. Preferably, the cancer is melanoma. The tumor tissue sample may be obtained from any mammal. Preferably, the tumor tissue sample is obtained from a human. In an embodiment, the tumor tissue sample may be a tumor tissue fragment. The tumor tissue sample may be fragmented, e.g., by dissection, to provide a tumor tissue fragment. Alternatively or additionally, the tumor tissue sample may, optionally, be enzymatically or mechanically digested. Suitable enzymes for fragmenting the tumor tissue sample include, but are not limited to, collagenase. In an embodiment, the tumor tissue sample is fragmented without digestion. The tumor tissue fragment may be any suitable size. Preferably, the tumor tissue fragment has a size of about 1 mm3 or less to about 8 mm3 or larger, about 1 mm3 to about 4 mm3, about 1 mm3 to about 2 mm3, or about 1 mm3.
  • The method further comprises culturing the tumor tissue sample in a first gas permeable container containing cell medium therein. In an embodiment, the tumor tissue sample is cultured directly on the gas permeable material in the gas permeable container without digestion. In another embodiment, an enzymatically or mechanically digested tumor tissue sample may be cultured directly on the gas permeable material. Any suitable cell medium may be used. The cell culture medium may further comprise any suitable T-cell growth factor such as, e.g., interleukin (IL)-2. The cell culture medium may optionally further comprise human AB serum. The tumor tissue sample may contain TIL that are autologous to the patient. Culturing the tumor tissue sample may include culturing the TIL present in the tumor sample.
  • The method also comprises obtaining TIL from the tumor tissue sample. The tumor tissue sample comprises TIL. As the tumor tissue sample is cultured in the gas permeable container, e.g., on gas permeable material in the container, TIL present in the tumor tissue sample also begin to grow in the gas permeable container, e.g., on the gas permeable material. TIL may be obtained from the tumor tissue sample in any suitable manner.
  • The first gas permeable container may be any suitable gas permeable container. In an embodiment of the invention, the first gas permeable container comprises a base, sides, and a cap. The container, preferably the base, may comprise a gas permeable support and a gas permeable material, e.g., a gas permeable membrane. The gas permeable material may be positioned inside the container directly on the gas permeable support which comprises openings (e.g., channels) in fluid communication with ambient gas in order to facilitate gas exchange between the interior of the container and the ambient gas. The cap may comprise a vent and/or a port (e.g., an access port). In a preferred embodiment, the access port may have an opening greater than about 1 mm to about 1 cm (e.g., greater than about 1 mm or greater than about 1 cm). An access port with an opening greater than about 1 mm to about 1 cm may advantageously eliminate or reduce disturbance of the TIL. In an embodiment, the gas permeable container may comprise a vent or a vented port, which may be advantageous in the event that the temperature in the container drops during handling. Preferably the first gas permeable container is a gas permeable container as described in U.S. Patent Application Publication No. 2005/0106717, which is incorporated herein by reference, and commercially available from Wilson Wolf Manufacturing Corporation (e.g., G-Rex10, GP200, G-Rex100, GP2000 containers) (New Brighton, Minn.).
  • The first gas permeable container may have any suitable cell medium volume capacity. For example, the first gas permeable container may have a medium volume capacity of about 40 mL or more; about 200 mL or more; about 500 mL or more; about 2,000 mL or more; or about 5,000 mL or more. Although the first gas permeable container may have any suitable medium volume capacity, the tumor tissue sample and/or TIL may be cultured in any suitable volume of medium. Preferably, the tumor tissue sample and/or TIL are cultured submerged under a height of at least about 1.3 cm of cell culture medium. More preferably, the tumor tissue sample and/or TIL are cultured submerged under a height of at least about 2.0 cm of cell culture medium. Tumor tissue samples and/or TIL cultured on a gas permeable material submerged under a height of at least about 1.3 cm or a height of at least about 2.0 cm of medium may, advantageously, be handled and fed less frequently.
  • In addition, the first gas permeable container may provide any suitable surface area for the growth of the TIL. For example, the gas permeable container may have a surface area for growth of the TIL of about 10 cm2 or more; about 100 cm2 or more; or about 650 cm2 or more.
  • In use, the tumor tissue sample and/or TIL are cultured inside the first gas permeable container in contact with the gas permeable material and submerged under a suitable volume of culture medium. Culturing the tumor tissue sample and/or TIL in contact with the gas permeable material facilitates gas exchange between the cells and the ambient air. Facilitating gas exchange between the cells and the ambient air facilitates the respiration, growth, and viability of the cells. Moreover, the gas exchange across the gas permeable material can facilitate circulation of the medium (e.g., by convection and diffusion) within the container, which facilitates feeding of the TIL.
  • The method further comprises expanding the number of TIL in a second gas permeable container containing cell medium therein using irradiated allogeneic feeder cells and/or irradiated autologous feeder cells. In an embodiment, the number of TIL is expanded using a ratio of about 1 TIL to at least about 20 feeder cells, about 1 TIL to at least about 25 feeder cells, about 1 TIL to at least about 50 feeder cells, about 1 TIL to at least about 100 feeder cells, about 1 TIL to at least about 200 feeder cells, e.g., a TIL-to-feeder cell ratio of about 1 to about 20, about 1 to about 25, about 1 to about 50, about 1 to about 100, or about 1 to about 200. The second gas permeable container may be as described for the first container.
  • The cultured TIL are expanded, preferably, rapidly expanded. Rapid expansion provides an increase in the number of TIL of at least about 50-fold (or 60-, 70-, 80-, 90-, or 100-fold, or greater) over a period of about 10 to about 14 days, preferably about 14 days. More preferably, rapid expansion provides an increase of at least about 200-fold (or 300-, 400-, 500-, 600-, 700-, 800-, 900-, or greater) over a period of about 10 to about 14 days, preferably about 14 days. Most preferably, rapid expansion provides an increase of at least about 1000-fold over a period of about 10 to about 14 days, preferably about 14 days. Preferably, rapid expansion provides an increase of about 1000-fold to about 2000-fold, e.g., about 1000-fold, about 1500-fold, or about 2.000-fold over a period of about 14 days.
  • Expansion can be accomplished in the gas permeable container by any suitable method. For example, TIL can be rapidly expanded using non-specific T-cell receptor stimulation in the presence of feeder cells (e.g., irradiated allogeneic feeder cells, irradiated autologous feeder cells, and/or artificial antigen presenting cells (e.g., K562 leukemia cells transduced with nucleic acids encoding CD3 and/or CD8)) and either interleukin-2 (IL-2) or interleukin-15 (IL-15), with IL-2 being preferred. In an embodiment of the method, expanding the number of TIL uses about 1×109 to about 4×109 allogeneic feeder cells and/or autologous feeder cells, preferably about 2×109 to about 3×109 allogeneic feeder cells and/or autologous feeder cells. The non-specific T-cell receptor stimulus can include, for example, about 30 ng/ml of OKT3, a mouse monoclonal anti-CD3 antibody (available from ORTHO-MCNEIL, Raritan, N.J. or MILTENYI BIOTECH, Auburn, Calif.). Alternatively, TIL can be rapidly expanded by, for example, stimulation of the TIL in vitro with an antigen (one or more, including antigenic portions thereof, such as epitope(s), or a cell) of the cancer, which can be optionally expressed from a vector, such as an human leukocyte antigen A2 (HLA-A2) binding peptide, e.g., 0.3 μM MART-1:26-35 (27L) or gp100:209-217 (210M), in the presence of a T-cell growth factor, such as 300 IU/ml IL-2 or IL-15, with IL-2 being preferred. Other suitable antigens may include, e.g., NY-ESO-1, TRP-1, TRP-2, tyrosinase cancer antigen, MAGE-A3, SSX-2, and VEGFR2, or antigenic portions thereof. The in vitro-induced TIL are rapidly expanded by re-stimulation with the same antigen(s) of the cancer pulsed onto HLA-A2-expressing antigen-presenting cells. Alternatively, the TIL can be re-stimulated with, for example, irradiated, autologous lymphocytes or with irradiated HLA-A2+ allogeneic lymphocytes and IL-2, for example.
  • In an embodiment, expanding the number of TIL may comprise using about 5,000 mL to about 10,000 mL of cell medium, preferably about 5,800 mL to about 8,700 mL of cell medium. In an embodiment, expanding the number of TIL uses no more than one type of cell culture medium. Any suitable cell culture medium may be used, e.g., AIM-V cell medium (L-glutamine, 50 μg/ml streptomycin sulfate, and 10 μg/ml gentamicin sulfate) cell culture medium (Invitrogen, Carlsbad Calif.). In this regard, the inventive methods advantageously reduce the amount of medium and the number of types of medium required to expand the number of TIL.
  • In an embodiment, expanding the number of TIL may comprise feeding the cells no more frequently than every third or fourth day. Expanding the number of cells in a gas permeable container advantageously simplifies the procedures necessary to expand the number of cells by reducing the feeding frequency necessary to expand the cells.
  • In an embodiment, the cell medium in the first and/or second gas permeable container is unfiltered. Without being bound to a particular theory, it is believed that particulate serum components present in some cell medium supplements (e.g., AB serum) have little or no detrimental effects on TIL growth. The use of unfiltered cell medium may, advantageously, simplify the procedures necessary to expand the number of cells.
  • In an embodiment, the cell medium in the first and/or second gas permeable container lacks beta-mercaptoethanol (BME). The absence of BME from the cell medium may be advantageously more compliant with cGMP and, thus, may advantageously make it easier to gain regulatory approval.
  • In an embodiment, the duration of the method comprising obtaining a tumor tissue sample from the mammal; culturing the tumor tissue sample in a first gas permeable container containing cell medium therein; obtaining TIL from the tumor tissue sample; expanding the number of TIL in a second gas permeable container containing cell medium therein using irradiated allogeneic feeder cells and/or irradiated autologous feeder cells may be about 28 to about 42 days, e.g., about 28 days.
  • The method comprises administering the expanded TIL to the mammal. The TIL can be administered by any suitable route as known in the art. Preferably, the TIL are administered as an intra-arterial or intravenous infusion, which preferably lasts about 30 to about 60 minutes. Other examples of routes of administration include intraperitoneal, intrathecal and intralymphatic.
  • Likewise, any suitable dose of TIL can be administered. Preferably, from about 1.0×1010 TIL to about 13.7×1010 TIL are administered, with an average of around 5.0×1010 TIL, particularly if the cancer is melanoma. Alternatively, from about 1.2×1010 to about 4.3×1010 TIL are administered.
  • In addition to TIL, macrophages, monocytes, and natural killer (NK) cells may also be obtained from the tumor tissue sample, cultured, and expanded as described herein for TIL. Accordingly, the method may also comprise administering macrophages, monocytes, and natural killer (NK) cells to the mammal. The inventive methods may also be effective for expanding NK cells.
  • In an embodiment of the method, a T-cell growth factor that promotes the growth and activation of the TIL is administered to the mammal either concomitantly with the TIL or subsequently to the TIL. The T-cell growth factor can be any suitable growth factor that promotes the growth and activation of the TIL. Examples of suitable T-cell growth factors include interleukin (IL)-2, IL-7, IL-15, and IL-12, which can be used alone or in various combinations, such as IL-2 and IL-7, IL-2 and IL-15, IL-7 and IL-15, IL-2, IL-7 and IL-15, IL-12 and IL-7, IL-12 and IL-15, or IL-12 and IL-2. IL-2 is a preferred T-cell growth factor.
  • In an embodiment of the method, the TIL are modified to express a T-cell growth factor that promotes the growth and activation of the TIL. Suitable T-cell growth factors include, for example, any of those described above. Suitable methods of modification are known in the art. See, for instance, Sambrook et al., Molecular Cloning: A Laboratory Manual, 3rd ed., Cold Spring Harbor Press, Cold Spring Harbor, N.Y. 2001; and Ausubel et al., Current Protocols in Molecular Biology, Greene Publishing Associates and John Wiley & Sons, NY, 1994. Desirably, modified TIL express the T-cell growth factor at high levels. T-cell growth factor coding sequences, such as that of IL-12, are readily available in the art, as are promoters, the operable linkage of which to a T-cell growth factor coding sequence promote high-level expression. In an embodiment, the TIL may be modified to express IL-12 as described in World Intellectual Property Organization Patent Application Publication No. WO 2010/126766, which is incorporated herein by reference.
  • In some embodiments, it is believed, two cytokines are more effective than a single cytokine, and three cytokines, e.g., IL-2, IL-7 and IL-15, are more effective than any two cytokines. It is believed that IL-15 enhances a tumor-specific CD8+ T-cell response. In this regard, the administration of IL-15-cultured cells with IL-2 (such as a bolus injection) can be particularly efficacious. In another embodiment, TIL modified to express IL-12 may be administered with IL-2 as a bolus injection.
  • The T-cell growth factor can be administered by any suitable route. If more than one T-cell growth factor is administered, they can be administered simultaneously or sequentially, in any order, and by the same route or different routes. Preferably, the T-cell growth factor, such as IL-2, is administered intravenously as a bolus injection. Desirably, the dosage of the T-cell growth factor, such as IL-2, is what is considered by those of ordinary skill in the art to be high. Preferably, a dose of about 720,000 IU/kg of IL-2 is administered three times daily until tolerance, particularly when the cancer is melanoma. Preferably, about 5 to about 15 doses of IL-2 are administered, with an average of around 8 doses.
  • TIL can recognize any of the unique antigens produced as a result of the estimated 10,000 genetic mutations encoded by each tumor cell genome. The antigen, however, need not be unique. TIL can recognize one or more antigens of a cancer, including an antigenic portion of one or more antigens, such as an epitope, or a cell of the cancer. An “antigen of a cancer” and an “antigen of the cancer” are intended to encompass all of the aforementioned antigens. If the cancer is melanoma, such as metastatic melanoma, preferably the TIL recognize MART-1 (such as MART-1:26-35 (27L)), gp100 (such as gp100:209-217 (210M)), or a “unique” or patient-specific antigen derived from a tumor-encoded mutation. Other suitable melanoma antigens which may be recognized by TIL can include, but are not limited to, tyrosinase, tyrosinase related protein (TRP)1, TRP2, and MAGE. TIL can also recognize antigens such as, for example, NY-ESO-1, telomerase, p53, HER2/neu, carcinoembryonic antigen, or prostate-specific antigen, for treatment of lung carcinoma, breast cancer, colon cancer, prostate cancer, and the like.
  • In an embodiment of the method, the TIL are modified to express a T cell receptor (TCR) having antigenic specificity for a cancer antigen, e.g., any of the cancer antigens described herein. Suitable TCRs include, for example, those with antigenic specificity for a melanoma antigen, e.g., gp100 or MART-1. Suitable methods of modification are known in the art. See, for instance, Sambrook and Ausubel, supra. For example, the TIL may be transduced to express a T cell receptor (TCR) having antigenic specificity for a cancer antigen using transduction techniques described in Morgan et al., Science 314(5796):126-9 (2006) and Johnson et al. Blood 114:535-46 (2009).
  • The cancer can be any cancer, including any of acute lymphocytic cancer, acute myeloid leukemia, alveolar rhabdomyosarcoma, bone cancer, brain cancer, breast cancer, cancer of the anus, anal canal, or anorectum, cancer of the eye, cancer of the intrahepatic bile duct, cancer of the joints, cancer of the neck, gallbladder, or pleura, cancer of the nose, nasal cavity, or middle ear, cancer of the oral cavity, cancer of the vulva, chronic lymphocytic leukemia, chronic myeloid cancer, colon cancer, esophageal cancer, cervical cancer, gastrointestinal carcinoid tumor, glioma, Hodgkin lymphoma, hypopharynx cancer, kidney cancer, larynx cancer, liver cancer, lung cancer, malignant mesothelioma, melanoma, multiple myeloma, nasopharynx cancer, non-Hodgkin lymphoma, ovarian cancer, pancreatic cancer, peritoneum, omentum, and mesentery cancer, pharynx cancer, prostate cancer, rectal cancer, renal cancer, skin cancer, small intestine cancer, soft tissue cancer, stomach cancer, testicular cancer, thyroid cancer, ureter cancer, and urinary bladder cancer. A preferred cancer is melanoma. A particularly preferred cancer is metastatic melanoma.
  • As used herein, the term “mammal” refers to any mammal, including, but not limited to, mammals of the order Rodentia, such as mice and hamsters, and mammals of the order Logomorpha, such as rabbits. It is preferred that the mammals are from the order Carnivora, including Felines (cats) and Canines (dogs). It is more preferred that the mammals are from the order Artiodactyla, including Bovines (cows) and Swines (pigs) or of the order Perssodactyla, including Equines (horses). It is most preferred that the mammals are of the order Primates, Ceboids, or Simoids (monkeys) or of the order Anthropoids (humans and apes). An especially preferred mammal is the human.
  • Promoting regression of cancer in a mammal may comprise treating or preventing cancer in the mammal. The terms “treat,” “prevent,” and “regression,” as well as words stemming therefrom, as used herein, does not necessarily imply 100% or complete regression. Rather, there are varying degrees of treatment, prevention, and regression of which one of ordinary skill in the art recognizes as having a potential benefit or therapeutic effect. In this respect, the inventive methods can provide any amount of any level of treatment, prevention, or regression of cancer in a mammal. Furthermore, the treatment, prevention, or regression provided by the inventive method can include treatment, prevention, or regression of one or more conditions or symptoms of the disease, e.g., cancer. Also, for purposes herein, “treatment,” “prevention,” and “regression” can encompass delaying the onset of the disease, or a symptom or condition thereof.
  • Another embodiment provides a method of obtaining an expanded number of TIL from a mammal for adoptive cell immunotherapy comprising obtaining a tumor tissue sample from the mammal; culturing the tumor tissue sample in a first gas permeable container containing cell medium therein; obtaining TIL from the tumor tissue sample; expanding the number of TIL in a second gas permeable container containing cell medium therein using irradiated allogeneic feeder cells and/or irradiated autologous feeder cells.
  • The method comprises obtaining a tumor tissue sample from the mammal. The tumor tissue sample may be obtained as described herein with respect to any embodiments of the invention.
  • The method comprises culturing the tumor tissue sample in a first gas permeable container containing cell medium therein. The tumor tissue sample may be cultured in a first gas permeable container as described herein with respect to any embodiments of the invention.
  • The method comprises obtaining TIL from the tumor tissue sample. The TIL may be obtained from the tumor tissue sample as described herein with respect to any embodiments of the invention.
  • The method comprises expanding the number of TIL in a second gas permeable container containing cell medium therein using irradiated allogeneic feeder cells and/or irradiated autologous feeder cells. The number of TIL may be expanded as described herein with respect to any embodiments of the invention.
  • Still another embodiment of the invention provides a method of obtaining an expanded number of TIL from a mammal for adoptive cell immunotherapy comprising obtaining a tumor tissue sample from the mammal; obtaining TIL from the tumor tissue sample; expanding the number of TIL in a gas permeable container containing cell medium therein using irradiated allogeneic feeder cells and/or irradiated autologous feeder cells. Obtaining a tumor tissue sample from the mammal, obtaining TIL from the tumor tissue sample, and expanding the number of TIL in a second gas permeable container containing cell medium therein using irradiated allogeneic feeder cells and/or irradiated autologous feeder cells may be carried out as described herein with respect to any embodiments of the invention.
  • The method may further comprise culturing the tumor tissue by any suitable method that facilitates the obtaining of TIL from the tumor tissue sample. In this regard, culturing the tumor tissue may comprise establishing multiple independent cultures, e.g., microcultures. For example, culturing the tumor tissue may comprise culturing tumor fragments in plates, e.g., 24-well plates. In an embodiment, the tumor tissue is cultured without a gas permeable container.
  • In some embodiments, the method further comprises selecting TIL capable of lysing cancer cells while in other embodiments, the method does not include selecting TIL capable of lysing cancer cells. TIL capable of lysing cancer cells may be selected by identifying TILs having any suitable trait associated with the lysis of cancer cells and/or the regression of cancer. Exemplary suitable TIL traits that may serve as the basis for selecting TILs may include any one or more of IFN-γ release upon co-culture with autologous tumor cells; cell surface expression of one or more of CD8, CD27, and CD28; and telomere length. Without being bound to a particular theory, it is believed that cell surface expression of one or more of CD8, CD27, and CD28 and longer telomere lengths are associated with positive objective clinical responses in patients and persistence of the cells in vivo. Preferably the trait is IFN-γ release upon co-culture with autologous tumor cells. In an embodiment of the invention, selected TIL release about 200 pg/ml or more of IFN-γ upon co-culture with tumor cells.
  • In some embodiments, selecting TIL capable of lysing cancer cells comprises testing individual cultures for presence of the trait and identifying TIL possessing the trait. Methods of testing cultures for the presence of any one or more of IFN-γ release upon co-culture with autologous tumor cells; cell surface expression of one or more of CD8, CD27, and CD28; and telomere length (longer telomeres being associated with regression of cancer) are known in the art.
  • Any number of cultures may be selected. For example, one, two, three, four, five, or more cultures may be selected. In embodiments in which two or more cultures are selected, the selected cultures may be combined and the number of TIL expanded in one (or more) gas permeable containers. Preferably, however, in embodiments in which two or more cultures are selected, each selected culture is separately expanded in separate gas permeable containers. Without being bound to a particular theory, it is believed that expanding multiple selected cultures separately advantageously increases lymphocyte diversity for patient treatment.
  • The method may further comprise expanding the number of TIL in an identified culture in a second gas permeable container containing cell medium therein using irradiated allogeneic feeder cells and/or irradiated autologous feeder cells as described herein with respect to any embodiments of the invention.
  • Another embodiment of the invention provides a method of promoting regression of cancer in a mammal comprising obtaining a tumor tissue sample from the mammal; obtaining TIL from the tumor tissue sample; expanding the number of TIL in a second gas permeable container containing cell medium therein using irradiated allogeneic feeder cells and/or irradiated autologous feeder cells; and administering the expanded number of TIL to the mammal. Obtaining a tumor tissue sample from the mammal, obtaining TIL from the tumor tissue sample, expanding the number of TIL in a gas permeable container containing cell medium therein using irradiated allogeneic feeder cells and/or irradiated autologous feeder cells, and administering the expanded number of TIL to the mammal may be carried out as described herein with respect to any embodiments of the invention. In some embodiments, the method further comprises selecting TIL capable of lysing cancer cells. The TIL may be selected as described herein with respect to any embodiments of the invention.
  • The following examples further illustrate the invention but, of course, should not be construed as in any way limiting its scope.
  • EXAMPLES Initial TIL Culture
  • Patients were entered into clinical protocols and signed informed consents that were approved by the Institutional Review Board of the National Cancer Institute prior to tumor resection. TIL were initially cultured from enzymatic tumor digests and tumor fragments (about 1 to about 8 mm3) produced by sharp dissection. Tumor digests were generated by incubation in enzyme media (Roswell Park Memorial Institute (RPMI) 1640, 2 mM glutamate, 10 mcg/mL gentamicine, 30 units/mL of DNase and 1.0 mg/mL of collagenase) followed by mechanical dissociation (GentleMACS™ dissociator, Miltenyi Biotec, Auburn, Calif.). In brief, immediately after placing the tumor in enzyme media the tumor was mechanically dissociated for approximately 1 minute. The solution was then incubated for 30 minutes at 37° C. in 5% CO2 and was then mechanically disrupted again approximately 1 minute. After being incubated again for 30 minutes at 37° C. in 5% CO2, the tumor was mechanically disrupted a third time for approximately one minute. If after the third mechanical disruption, large pieces of tissue were present, one or two additional mechanical dissociations were applied to the sample, with or without 30 additional minutes of incubation at 37° C. in 5% CO2. At the end of the final incubation, if the cell suspension contained a large number of red blood cells or dead cells, a density gradient separation using FICOLL branched hydrophilic polysaccharide (GE Healthcare, Smyrna, Ga.) was preformed to remove these cells.
  • TIL growth from digests and fragments were initiated in either gas permeable flasks with a 40 mL volume and a 10 cm2 gas-permeable silicon bottom (G-Rex10, Wilson Wolf Manufacturing, New Brighton, Minn., USA) or 24-well plates (Corning Corning, N.Y.). When TIL cultures were initiated in 24-well plates (COSTAR 24-well cell culture cluster, flat bottom, Corning Incorporated, Corning, N.Y.), each well was seeded with 1×106 tumor digest cells or one tumor fragment approximately 1 to 8 mm3 in size in 2 mL of CM with IL-2 (6000 IU/mL, Chiron Corp., Emeryville, Calif.). CM included RPMI 1640 with glutamine, supplemented with 10% AB serum, 25 mM Hepes and 10 μg/ml gentamicin. When cultures were initiated in G-Rex10 flasks, each flask was loaded with 10 to 40×106 viable tumor digest cells or 5 to 30 tumor fragments in 10 to 40 ml of CM with IL-2. Both the G-Rex10 and 24-well plates were incubated in a humidified incubator at 37° C. in 5% CO2 and five days after culture initiation, half the media was removed and replaced with fresh CM and IL-2 and after day 5, half the media was changed every 2 to 3 days.
  • TIL Rapid Expansion Protocol (REP)
  • REP of TIL was performed using T-175 flasks and gas permeable bags as previously described (Tran et al., J. Immunother. 31(8):742-51 (2008); Dudley et al., J. Immunother. 26(4):332-42 (2003)) or gas permeable cultureware (G-Rex flasks). For TIL REP in T-175 flasks, 1×106 TIL suspended in 150 ml of media was added to each T-175 flask. The TIL were cultured with irradiated (50 Gy) allogeneic peripheral blood mononuclear cells (PBMC) as “feeder” cells at a ratio of 1 TIL to 100 feeder cells and the cells were cultured in a 1 to 1 mixture of CM and AIM-V medium, supplemented with 3000 IU per mL of IL-2 and 30 ng per ml of anti-CD3. The T-175 flasks were incubated at 37° C. in 5% CO2. Half the media was exchanged on day 5 using 50/50 medium with 3000 IU per mL of IL-2. On day 7 cells from two T-175 flasks were combined in a 3 liter bag and 300 mL of AIM V with 5% human AB serum and 3000 IU per mL of IL-2 was added to the 300 ml of TIL suspension. The number of cells in each bag was counted every day or two and fresh media was added to keep the cell count between 0.5 and 2.0×106 cells/mL.
  • For TIL REP in 500 mL capacity gas permeable flasks with 100 cm2 gas-permeable silicon bottoms (G-Rex100, commercially available from Wilson Wolf Manufacturing Corporation, New Brighton, Minn., USA), 5×106 or 10×106 TIL were cultured with irradiated allogeneic PBMC at a ratio of 1 to 100 in 400 mL of 50/50 medium, supplemented with 5% human AB serum, 3000 IU per mL of IL-2 and 30 ng per ml of anti-CD3. The G-Rex100 flasks were incubated at 37° C. in 5% CO2. On day 5,250 mL of supernatant was removed and placed into centrifuge bottles and centrifuged at 1500 rpm (491×g) for 10 minutes. The TIL pellets were re-suspended with 150 mL of fresh medium with 5% human AB serum, 3000 IU per mL of IL-2, and added back to the original G-Rex100 flasks. When TIL were expanded serially in G-Rex100 flasks, on day 7 the TIL in each G-Rex100 were suspended in the 300 mL of media present in each flask and the cell suspension was divided into 3 100 mL aliquots that were used to seed 3 G-Rex100 flasks. Then 150 mL of AIM-V with 5% human AB serum and 3000 IU per mL of IL-2 was added to each flask. The G-Rex100 flasks were incubated at 37° C. in 5% CO2 and after 4 days 150 mL of AIM-V with 3000 IU per mL of IL-2 was added to each G-Rex100 flask. The cells were harvested on day 14 of culture.
  • Cell Counts, Viability, Flow Cytometery
  • The expression of CD3, CD4, CD8 and CD56 was measured by flow cytometry with antibodies from BD Biosciences (BD Biosciences, San Jose, Calif.) using a FACSCanto™ flow cytometer (BD Biosciences). The cells were counted manually using a disposable hemacytometer and viability was assessed using trypan blue staining.
  • Cyokine Release Assays
  • TIL were evaluated for interferon-gamma (IFN-γ) secretion in response to stimulation either with OKT3 antibody or co-culture with autologous tumor digest. For OKT3 stimulation, TIL were washed extensively, and duplicate wells were prepared with 1×105 cells in 0.2 ml CM in 96 well flat-bottom plates pre-coated with 0.1 or 1.0 μg/mL of OKT-3 antibody diluted in PBS. After overnight incubation, the supernatants were harvested and IFN-γ in the supernatant was measured by ELISA (Pierce/Endogen, Woburn, Mass.). For the co-culture assay, TIL cells were placed into a 96-well plate with autologous tumor cells. After a 24 hour incubation, supernatants were harvested and IFN-γ release was quantified by ELISA.
  • Statistical Analysis
  • Values are mean one± standard error of the mean (SEM) unless otherwise indicated. Groups were compared using paired T tests.
  • Example 1
  • This example demonstrates that TIL cultured in gas-permeable containers is better than, or at least comparable to, that in a 24-well plate.
  • The growth of TIL from tumors using gas permeable flasks with a 40 mL capacity and 10 cm2 gas permeable silicone bottom (G-Rex10, Wilson Wolf Manufacturing Corporation, New Brighton, Minn., USA (providing about 10 cm2 of surface area for growth of the TIL)) or 24-well plates (Corning Corning, N.Y.) was compared. A total of 14 melanoma samples were tested, including 9 freshly prepared tumor digests (Table 1A) and 5 thawed samples from previously frozen tumor digests (Table 1B). TIL from frozen tumor from patient 2653 were not able to be cultured in either the G-Rex10 or 24-well plates. Except for one fresh sample (#3522), the ratio of harvested TIL to initially seeded cells at day 17 to 29 was similar to or better in the G-Rex10 flasks than in the 24-well plate (Table 1A and 1B).
  • TABLE 1A
    Comparison of initial TIL culture in G-Rex10flasks with 24-well plates using fresh tumor digests
    Ratio of # TIL
    harvested/# cell TIL Phenotype (%
    seeded TIL Viability (%) expressing CD3+CD8+)
    Sample 24-well 24-well 24-well
    Type Patient # plate G-Rex10 plate G-Rex10 plate G-Rex10
    Fresh 3520 1.28 1.17 92.80 93.30 26.50 31.60
    Tumor 3522 2.14 1.46 92.10 95.10 39.80 48.70
    Digest 3523 2.34 2.30 94.50 93.60 15.00 37.60
    3524 1.27 6.22 80.20 95.00 76.70 86.60
    3546 5.86 7.60 90.40 93.80 44.60 37.30
    3552 3.20 5.83 94.90 97.10 43.10 72.40
    3556 3.60 4.15 96.20 96.20 35.40 31.20
    3560 6.06 6.25 95.80 97.20 32.30 38.60
    3561 4.76 6.38 94.70 93.90 65.80 83.40
    Average ± SEM 3.39 ± 0.61 4.60 ± 0.80 92.40 ± 1.65 95.02 ± 0.50 42.13 ± 6.33 51.93 ± 7.51
  • TABLE 1B
    Comparison of initial TIL culture in G-Rex10flasks with 24-well plates using frozen tumor digests
    Ratio of # TIL
    harvested/# cell TIL Phenotype (%
    seeded TIL Viability (%) expressing CD3+CD8+)
    Sample 24-well 24-well 24-well
    Type Patient # plate G-Rex10 plate G-Rex10 plate G-Rex10
    Frozen 2653 0.16 0.19 87.70 90.60 N.T. N.T.
    Tumor 3289 2.43 5.30 95.10 98.00 70.40 73.60
    Digest 2976 7.26 7.50 99.00 99.00 66.30 70.00
    3071 1.79 6.05 88.40 97.70 37.50 29.10
    2998 3.36 5.00 96.30 97.00 64.40 75.80
    Average ± SEM 3.00 ± 1.18 4.81 ± 1.23 93.30 ± 2.24 96.46 ± 1.50 59.65 ± 6.70 62.12 ± 9.91
    N.T. = Not tested.
  • The viability and percentage of cells expressing CD3 and CD8 between these two types of vessels were similar (Tables 1A and 1B). TIL were obtained from 13 of the 14 samples. These results suggest that TIL growth in G-Rex10 is better than, or at least comparable to, that in a 24-well plate.
  • IFN-γ production by TIL cultured in G-Rex10 flasks was also compared with that of TIL cultured in 24-well plates. IFN-γ production following stimulation with autologous tumor by TIL from 4 patients cultured in both types of vessels was similar (Table 1C)
  • TABLE 1C
    Interferon-γ release (pg/ml) by unstimulated and tumor-stimulated TIL
    Tumor Target1
    Patient Growth Method None Allogeneic Autologous
    3552 plate 114 157 >1541
    G-Rex10 81 338 >1577
    3556 plate 90 184 139
    G-Rex10 87 363 282
    3560 plate 135 175 318
    G-Rex10 104 212 572
    3561 plate 70 97 207
    G-Rex10 84 128 253
    1Cryopreserved enzymatically digested single cell tumor suspension was thawed and 1 × 105 viable tumor cells were cocultured with TIL (1:1 ratio) overnight before quantifying interferon-γ in the supernatant by ELISA. Values in bold are more than two times background and >200 pg/ml.
  • Example 2
  • This example demonstrates that the culture of TIL from tumor fragments in gas permeable flasks produces a greater number of TIL as compared to culture in 24-well plates after 7 to 13 days.
  • The growth of TIL from tumor fragments in G-Rex10 flasks or 24-well plates was next compared. For each tumor sample, fragments approximately 1 to 8 mm3 in size were seeded into 24-well plates at 1 piece per well and into G-Rex10 flasks at 5, 10, 20, or 30 pieces per flask. The growth of TIL from 2 lymph nodes and 1 liver metastasis was assessed (Table 2). TIL could be grown from tumor fragments in both gas-permeable flasks and 24-well plates, but after 7 to 13 days greater quantities of TIL were obtained from the G-Rex10 flasks than the wells (Table 2).
  • TABLE 2
    Initial TIL culture using tumor fragments in G-Rex10 flasks and 24-well plates.
    Patient Number of Cells
    Number and # of TIL TIL TIL Phenotype
    Tumor Culture Tumor TIL# per Viability (% TIL expressing each antigen)
    Source Vessel Fragments* (Day 7-13) fragment (%) CD3+ CD3+CD4+ CD3+CD8+ CD56+
    3581 (Lymph Wells 1 per well, 5 total 2.71 × 107 5.42 × 106 93.2% 53.4% 40.2% 10.3% 11.6% 
    node) G- 5 fragments 4.29 × 107 8.58 × 106 97.0% 61.0% 44.0% 14.3% 7.9%
    Rex10
    G- 10 fragments 8.02 × 107 8.02 × 106 95.4% 58.5% 42.2% 13.7% 9.3%
    Rex10
    G- Dissociated tumor 4.82 × 107 2.41 × 106 96.4% 60.3% 40.1% 16.3% 8.9%
    Rex10
    3584 (Liver) Wells 1 per well, 5 total 1.52 × 107 3.04 × 106 92.7% 89.2% 19.8% 68.8% 5.3%
    G- 5 fragments 4.38 × 107 8.76 × 106 95.7% 92.0% 10.6% 81.1% 2.1%
    Rex10
    G- 10 fragments 8.13 × 108 8.13 × 106 94.4% 91.4% 9.8% 81.2% 2.3%
    Rex10
    G- Dissociated tumor 4.94 × 107 2.60 × 106 95.8% 87.7% 11.7% 75.6% 3.3%
    Rex10
    3585 (Lymph Wells 1 per well, 5 total 2.34 × 107 4.68 × 106 95.8% 85.5% 14.4% 68.6% 4.20% 
    node) G- 5 fragments 6.41 × 107 12.8 × 106 95.0% 92.1% 20.6% 70.7% 1.10% 
    Rex10
    G- 10 fragments 1.12 × 108 11.2 × 106 97.2% 93.4% 18.6% 73.9% 1.30% 
    Rex10
    G- Dissociated tumor 3.33 × 107 1.23 × 106 90.0% 90.4% 24.0% 65.7% 2.60% 
    Rex10
    *Each tumor fragment was approximately 1 mm3.
  • A total of 11 tumor samples collected from 9 patients were tested; 3 samples were from 1 patient, but they were from different metastatic tumors. TIL could be grown from tumor fragments from all 11 samples in both the G-Rex10 flasks and 24-well plates, but after 7 to 23 days in culture greater quantities of TIL were obtained from the G-Rex10 flasks. The head-to-head comparison of culturing 10 fragments in the two types of vessels showed that TIL yields from G-Rex10 flasks were consistently higher than those from 24-well plate (FIG. 1A). The optimal numbers of fragments seeded into each G-Rex10 flasks was further assessed. The quantities of TIL obtained per tumor fragment decreased as the number of pieces added to each G-Rex10 flask increased (FIG. 1B), however, total TIL yield was higher as more fragments were cultured in the G-Rex10 flasks until 20 or more tumor fragments were cultured in each G-Rex10 flask (FIG. 1C). The viability of TIL obtained from G-Rex10 flasks was similar to that of TIL obtained from 24-well plates (96.6±0.6% vs 95.3±0.8%) as was the proportion of TIL expressing CD3 and CD8 (67.8±7.2% vs 63.3±7.7%). TIL were also obtained from 3 of the 11 samples by the culture of mechanically dissociated samples in G-Rex10 flasks, but greater yields were obtained using tumor fragments as the starting material.
  • Example 3
  • This example demonstrates the kinetics of TIL growth in gas-permeable flasks.
  • In order to assess the kinetics of TIL growth in gas-permeable cultureware, TIL from one patient were cultured in G-Rex100 flasks seeded at a density of 5×106 and 10×106 cells per flask. The cells were counted daily after day 6. On Day 6 the number of cells in the G-Rex100 flask seeded at 5×106 cells was 255×106 cells and at 10×106 cells was 300×106 cells. The quantity of TIL in G-Rex100 flasks seeded at each cell density increased steadily until day 9, but there was little increase in cell counts between days 9 and 10. After 10 days 906×106 cells were harvested from flasks seeded with 5×106 TIL and 1,050×106 cells from flasks seeded with 10×106 TIL. Although TIL expanded well for 9 days, in order to keep the G-Rex100 flask expansion process similar to REP in T-flasks and gas-permeable bags where TIL are transferred from T-flasks to bags on day 7, further studies focused on TIL expansion in the G-Rex100 flasks for 7 days.
  • Example 4
  • This example demonstrates that a 7-day culture of TIL in a gas permeable container seeded with 10×106 cells does not produce a significantly greater number of cells than a gas permeable container seeded with 5×106 cells.
  • The first step in TIL rapid expansion protocol (REP) has traditionally been performed in T-175 flasks. The expansion of TIL in T-175 flasks was compared to expansion in G-Rex100 flasks (providing about 100 cm2 of surface area for growth of the TIL). The expansion of TIL from 4 patients over 7 days in G-Rex100 flasks seeded with 5×106 and 10×106 cells was compared with TIL expansion in T-175 flasks (Table 3). T-175 flasks were seeded with 1×106 cells.
  • TABLE 3
    Comparison of TIL rapid expansion process (REP) over 7 days in T-175 flasks* and G-Rex100 flasks seeded
    with 5 × 106 or 10 × 106 TIL.
    Fold Increase Viability (%) Phenotype (% CD3+CD8+)
    G-Rex100 G-Rex100 G-Rex100 G-Rex100 G-Rex100 G-Rex100
    Patient T-175 5 × 106 10 × 106 T-175 5 × 106 10 × 106 T-175 5 × 106 10 × 106
    2812  74  88  57 95.8 96.6 94.7 66.4 64.6 60.5
    3289 183 218 139 96.4 94.8 95.1 79.7 83.7 84.1
    2976 254 250 ND 94.1 96.1 ND 55.2 59.9 ND
    3071 156 146 ND 87.4 90.3 ND 44.6 41.6 ND
    Mean 167 ± 74 176 ± 73 98 ± 58 93.5 ± 2.9 94.5 ± 2.9 94.9 ± 0.3 61.5 ± 15.0 62.5 ± 17.3 72.3 ± 16.7
    *T-175 flasks were seeded with 1 × 106 TIL.
  • After 7 days of culture of TIL from 4 patients, the number of cells in T-175 flasks increased to 206±103×106 cells which represented an expansion of 167±74 fold (Table 3). The culture of TIL from the same 4 patients in G-Rex100 flask seeded with 5×106 cells resulted in the production of 877±365×106 cells which represented an expansion of 176±73 fold. The culture of TIL from 2 of the 4 patients in G-Rex100 flask seeded with 10×106 cells resulted in the production of 980±580×106 cells which represented an expansion of 98±58 fold. The viability and proportion of cells that expressed CD3 and CD8 were similar among those produced by the three different conditions (Table 3). These results suggest that the performance of G-Rex100 flasks seeded at the lower seeding density was comparable to that of the T-175 flasks. Since the 7-day culture of TIL in G-Rex100 flasks seeded with 10×106 cells did not produce a significantly greater number of cells than the G-Rex 100 flask seeded with 5×106 cells, the lower seeding density was chosen for future experiments.
  • Example 5
  • This example demonstrates that a similar number of cells can be produced in a 500 mL gas permeable container as compared to a 2000 mL gas permeable container.
  • Since the maximum cell yield from one G-Rex100 flask reached a plateau after approximately 9 days, the production of adequate quantities of TIL for clinical therapy requires the splitting of cells during. REP and transferring the cells into multiple gas-permeable flasks for further culture. TIL REP by serial culture was tested in G-Rex100L, another type of gas-permeable flask that is commercially available for large scale cell expansion (Wilson Wolf Manufacturing Corporation, New Brighton, Minn., USA). The G-Rex100L has the same gas permeable surface area on the silicone bottom of the flask as the G-Rex100 (providing about 100 cm2 of surface area for growth of the TIL), but the G-Rex100L is taller. As a result, the media capacity of the G-Rex100L flask is approximately 2000 ml compared to approximately 500 mL for the G-Rex100.
  • TIL expansion was compared in these two types of flasks. TIL were initially seeded at a density of 5×106 cells for both the G-Rex100 and G-Rex100L flasks, and were cultured for 7 days as described in Example 3. After 7 days the cells from the G-Rex100 flask were split into 3 equal parts, and seeded into 3 G-Rex100L flasks. The cells from the G-Rex100L flask were split into two equal parts, seeded into 2 G-Rex100L flasks. The TIL were cultured for an additional 7 days in the G-Rex100 and G-Rex100L flasks.
  • The expansion of TIL from two patients was compared in the G-Rex100 and G-Rex100L flasks. Both patients' TIL growth slowed after 13 or 14 days. The total number of cells produced after 14 days by culture in the 3 G-Rex100 flasks and the 2 G-Rex100L flasks was similar for one patient (about 9×109 cells in G-Rex100 and G-Rex100L after 14 days) but was greater in the G-Rex100 flask for the second (about 12×109 cells in G-Rex100 and 8.4×109 cells in G-Rex100L after 14 days)). Since a similar volume of media is required to produce a similar number of cells in the G-Rex100 and in the G-Rex100L flasks and since the G-Rex100 flasks are easier to handle, initial expansion of TIL in one G-Rex100 flask followed by expansion in 3 G-Rex100 flasks was chosen for future experiments.
  • Example 6
  • This example demonstrates the consistency of serial TIL expansion using gas permeable containers and a “full scale” expansion of TIL using gas permeable containers.
  • The consistency of serial TIL expansion in G-Rex100 flasks using cells from 14 patients was tested. Initially, 5×106 TIL were seeded into a G-Rex100 flask and the cells were cultured for 7 days. They were then split into 3 equal parts, seeded into 3 G-Rex100 flasks. After 14 days in culture, 8.60×109±2.80×109 TIL with a range of 2.24×109 to 12.8×109 were produced. The number of TIL produced after 14 days was similar for 12 patients, but lower for two others. When the 2 patients with the lowest overall TIL expansion were excluded, the mean quantity of TIL produced was 9.55×109 cells per original G-Rex100 flask. The mean cell concentration in G-Rex100 flasks at the end of the culture was 7.95×106 cells per mL.
  • The IFN-γ release from TIL produced by G-Rex100 REP and T-175 flask/bag REP was compared. TIL samples produced by both REP methods using the same tumor samples from 4 patients were tested. Following stimulation by anti-CD3 IFN-γ production by TIL expanded in G-Rex100 flasks was similar to that of TIL expanded in T-175 flasks and bags (Table 4A).
  • TABLE 4A
    IFN-γ release (pg/ml)2
    Patient1 Sample OKT3 1.0 μg/ml OKT3 1.0 μg/ml None
    3536 Flask/Bag 631, 672 457, 390 0, 0
    G-Rex100 579, 553 243, 277 0, 0
    3539 Flask/Bag 12272, 14350 10553, 11039 179, 176
    G-Rex100 29792, 29550 26670, 23835 73, 80
    3135 Flask/Bag  831, 1124 704, 643 0, 0
    G-Rex100 581, 635 151, 74  2, 1
    3533 Flask/Bag 6870, 6370 4280, 500  114, 146
    G-Rex100 5100, 4510 1513, 1407 136, 150
    1TIL cells were stimulated by overnight incubation on plate bound OKT3 (anti-CD3 antibody) coated at the concentration indicated.
    2Values are IFN-γ (pg/ml) detected in duplicate wells measured by ELISA.
  • These results suggested that 20 to 30×109 TIL could be produced by the initial culture of 15×106 TIL in 3 G-Rex100 flasks for 7 days followed by a second 7 day culture in 9 G-Rex100 flasks (Table 4B).
  • TABLE 4B
    Day 5 Day 11
    Day 0 Medium Day 7 Media Day 14
    Seeding Change Split (1:3) Addition Harvest/Wash
    Containers 3 G-Rex100 3 G-Rex100 9 G-Rex100 9 G-Rex100
    Final 400 mL/ 300 mL 250 mL 400 mL
    Volume of container
    Medium
    Steps 5 × 106 cells Remove 250 mL 300 mL for 250 mL in TIL are
    TIL are of each G- each flask harvested,
    seeded in 400 mL media; spin Rex100 is and 150 mL pooled and
    in each down and split into 3 new media washed
    of 3 G- resuspend 100 mL
    Rex100 TIL in 150 mL aliquots; 100 mL
    flasks and add added to
    to remaining 3 G-Rex100
    150 mL flasks; an
    additional
    150 mL of
    media is
    added
  • To test this “full scale” G-Rex100 REP, 15×106 TIL from one patient were divided among three G-Rex100 flasks, A, B and C. After 7 days in culture the TIL in each flask were split into 3 equal parts, seeded into 3 G-Rex100 flasks and cultured for an additional 7 days. The mean number of TIL harvested from each of the 3 G-Rex100 flasks used for initial expansion was 875×106±30.8×106 and ranged from 849×106 to 909×106 TIL and the mean number harvested from each of the 9 G-Rex100 flasks used for the secondary expansion was 2.63±0.09×109 and ranged for 2.55×109 to 2.70×109 TIL (Table 5).
  • TABLE 5
    Number of cells produced by a two-step G-Rex100 TIL rapid expansion
    protocol (REP); the first step involved growth in 3 G-Rex100 flasks and
    the second growth in 9 G-Rex100 flasks
    First G-
    Rex100 Second G-
    Flask Day 0 Day 7 Rex100 Flask Day 11 Day 14 Post Wash
    A 5 × 106 849 × 106 A1 1.44 × 109 2.67 × 109
    A2 N.T. 2.43 × 109
    A3 N.T. 2.66 × 109
    B 5 × 106 867 × 106 B1 1.55 × 109 2.70 × 109
    B2 N.T. 2.66 × 109
    B3 N.T. 2.76 × 109
    C 5 × 106 909 × 106 C1 1.44 × 109 2.62 × 109
    C2 N.T. 2.60 × 109
    C3 N.T. 2.55 × 109
    Total 15 × 106 2.63 × 109   14 × 109 23.6 × 109 21.0 × 109
  • The total TIL yield was 23.6×109 and 21.0×109 remained after washing the cells. The viability of the cells was 96% and 69% of the cells expressed CD3 and CD8.
  • Cell potency, in terms of interferon (IFN)-γ secretion was also tested using Enzyme-linked immunosorbent assay (ELISA). The cells grown using the gas-permeable G-Rex100 containers and the cells grown using non-gas permeable containers produced a comparable amount of IFN-γ.
  • Example 7
  • This example demonstrates the rapid expansion of TIL using one 5000 mL gas permeable container.
  • While serial expansion of TIL in G-Rex100 flasks required far less regents, less incubator space, less labor and less specialized equipment than REP in T-flasks and gas-permeable bags, it was hypothesized that the gas-permeable cultureware REP process could be further improved by using one large vessel rather than 9 G-Rex100 flasks. Therefore, a larger vessel with a gas-permeable membrane with approximately 6.5 times the gas permeable surface area and 10 times the volume of the G-Rex100 flasks was tested. This vessel was the GP5000 (providing about 650 cm2 of surface area for growth of the TIL). Two different REP methods using GP5000 gas-permeable vessels were tested. One method involved an initial 7-day expansion in 2 G-Rex100 flasks, each seeded with 5×106 TIL, followed by another expansion of the harvested TIL in a single GP5000 vessel. The other method involved a single 14-day expansion of 10×106 TIL in a GP5000 vessel.
  • Cells from 2 patients were tested and the TIL yield of the two REP methods were similar for both donors. Approximately 25×109 TIL were harvested from patient 3524 and approximately 20×109 from patient 3560. The cell viability for all four REPs was >96% and >92% of patient 3524 cells expressed CD8 and >35% of patient 3560 cells expressed CD8.
  • Example 8
  • This example demonstrates a clinical TIL production process.
  • Clinical scale TIL production using tumor fragments from 3 patients was next tested by initially culturing TIL in G-Rex10 flasks followed by REP in G-Rex100 flasks. For each patient, 6 G-Rex10 flasks were seeded with 5 tumor fragments and after 14 to 15 days 5×106 TIL from each G-Rex10 flask were seeded into one G-Rex100 flask. After 7 days TIL from each G-Rex100 flask were split into 3 G-Rex100 flasks and after an additional 7 days in culture TIL were harvested from the 18 G-Rex100 flasks. For two patients, 3613 and 3618, enough TIL could be harvested from each of the 6 G-Rex10 flasks for TIL REP in a G-Rex100 flask.
  • The quantity of TIL harvested from each of the G-Rex10 flasks ranged from 47.5 to 97.8×106 cells for patient 3613 and 24.6 to 64.2×106 for patient 3618 (Table 6A). For patient 3625 sufficient quantities of TIL were obtained from 4 of the 6 G-Rex10 flasks. The quantity harvested from these 4 flasks ranged from 59.7 to 140×106 cells (Table 6A). For patients 3613 and 3618, 5×106 TIL from each of the 6 G-Rex10 flasks was seeded into a G-Rex100 flask. For patient 3625, 5×106 TIL from 2 G-Rex10 flasks were each seeded into one G-Rex100 flask and 10×106 TIL from the other 2 G-Rex10 flasks were split and used to seed 4 G-Rex100 each with 5×106 TIL. At the completion of REP using patient 3613 cells 22.4×109 TIL were harvested, while REP using patient 3618 cells yielded 52.7×109 TIL and patient 3625 cells yielded 61.0×109 TIL. The number of TIL produced by each of the 6 sets of 3 G-Rex100 flasks was similar for each patient. These results show that G-Rex100 flasks can produce sufficient quantities of TIL for clinical therapy using TIL initially cultured from tumor fragments in G-Rex10 flasks. The same G-Rex100 REP protocol was also successful in expanding TIL that were initially cultured from tumor fragments in 24-well plates. There were no significant differences in fold expansion using either TIL initially cultured from tumor fragments in 24-well plates or G-Rex10 flasks.
  • TABLE 6A
    TIL
    # of Phenotype
    Culture Fragments Day TIL # TIL Viability (% CD3+
    Patient # Vessel Seeded Harvested Harvested #TIL/Fragment (%) CD8+)
    3613 1 5 14 47.5 × 106 9.50 × 106 N.T. 70
    2 5 14 94.5 × 106 18.9 × 106 N.T. 74
    3 5 14 57.5 × 106 11.5 × 106 N.T. 74
    4 5 14 97.8 × 106 19.6 × 106 N.T. 73
    5 5 14 55.0 × 106 11.0 × 106 N.T. 67
    6 5 14 67.0 × 106 13.4 × 106 N.T. 67
    3618 1 5 14 61.0 × 106 12.2 × 106 99.0 77
    2 5 14 64.2 × 106 12.8 × 107 97.0 84
    3 5 14 24.6 × 106 4.92 × 106 99.2 N.T.
    4 5 14 64.2 × 106 12.8 × 106 96.4 86
    5 5 14 40.2 × 106 8.04 × 106 97.1 77
    6 5 14 57.0 × 106 11.4 × 106 99.3 85
    3625 1 5 15 86.0 × 106 17.2 × 106 96.8 73
    2 5 15 59.4 × 106 11.9 × 106 98.7 91
    3 5 15 71.8 × 106 14.4 × 106 98.6 73
    4 5 15 1.80 × 106** 0.36 × 106 64.3 N.T.
    5 5 15 2.20 × 106** 0.440 × 106 78.6 N.T.
    6 5 15  140 × 106 28.0 × 106 100.0 74
    N.T. = Not Tested
    **Insufficient number of cells for clinical REP
  • Example 9
  • This example demonstrates that expanding TIL in gas permeable containers uses a lower number of containers, lower number of feeder cells, and lower amount of medium as compared to methods in which the TIL are expanded in non-gas permeable containers.
  • TIL are expanded as described above using gas permeable containers (G-Rex100 and GP5000) and in non-gas permeable containers (bags and T 175 flask). A comparison of the numbers of containers and amounts reagents used is set forth in Table 6B.
  • TABLE 6B
    No. of
    No. of No. of TIL Feeder Volume of
    Containers seeded Cells Medium
    T 175 Flask 20-40 Flasks 20 × 106- 4 × 109- ~30,000 ml
    40 × 106 8 × 109 (requires 2
    different types
    of REP medium)
    LIFECELL 10-20 Bags 20 × 106- 4 × 109- ~30,000 ml
    flasks (Baxter) 40 × 106 8 × 109
    500 mL gas 12-18 20 × 106- 2 × 109- 5800 ml-8700 ml
    permeable 30 × 106 2 × 109 (only 1 REP
    container (G- medium is
    Rex100) necessary)
    5000 mL gas 2 20 × 106- 2 × 109- 5800 ml-8700 ml
    permeable 130 × 06 2 × 109 (only 1 REP
    container medium is
    (GP5000) necessary)
  • Example 10
  • This example demonstrates that culturing TIL in unfiltered cell medium has little or no detrimental effects on TIL growth.
  • TIL (4×106) were cultured in filtered or unfiltered complete medium (CM) (50 mL) (RPMI 1640 with glutamine, supplemented with 10% AB serum, 25 mM Hepes and 10 μg/ml gentamicin) in four wells. On day 7/8, fold increase, viability, and % CD3+CD8+ were measured. The results are shown in Table 7.
  • TABLE 7
    Fold Increase Viability % CD3+CD8+
    Group #2812 #3289 #2812 #3289 #2812 #3289
    Filtered 2.02 9.62   97% 95.2%   59% 90%
    Medium
    Unfiltered 2.13 9.40 96.5% 95.9% 60.2% 89%
    Medium
  • The performance of the TIL cultured in the non-filtered medium was similar to that of the TIL cultured in the filtered medium. The results suggest that particulate serum components have little or no detrimental effects on TIL cell growth.
  • Example 11
  • This example demonstrates that culturing TIL in cell medium that lacks beta-mercaptoethanol (BME) has little or no detrimental effects on TIL growth or potency.
  • TIL were cultured in complete medium (CM) (50 mL) with or without BME. After 2-3 weeks, population increase, viability, and % CD3+CD8+ were measured. The results are shown in Table 8.×107
  • TABLE 8
    TIL#
    Harvest Viability CD3CD8
    Tumor # of Cells Day; (Harvest (Harvest
    # Group Seeded D17-29) Ratio Day) Day)
    3520 +BME 1.80 × 107 2.72 × 107 1.51 93.40% 59.60%
    −BME 1.80 × 107 2.11 × 107 1.17 93.30% 31.60%
    3522 +BME 3.00 × 107 4.18 × 107 1.39 94.80% 51.40%
    −BME 3.00 × 107 4.39 × 107 1.46 95.10% 48.70%
    3523 +BME 3.00 × 107 6.75 × 107 2.25 95.50% 33.90%
    −BME 3.00 × 107 6.90 × 107 2.30 93.60% 37.60%
    3524 +BME 1.80 × 107 1.17 × 108 6.52 94.50% 91.10%
    −BME 1.80 × 107 1.12 × 108 6.23 95.00% 86.50%
  • The performance of the TIL cultured in the medium without BME was similar to that of the TIL cultured in the medium with BME.
  • Potency of the TIL is measured and compared for TIL cultured in medium with or without BME. Effector (TIL) cells (1×105) are co-cultured with target (antigen-presenting tumor cells) cells (1×105), with AK1700 used as a negative control and DM5 A2 used as a positive control. IFN-gamma secretion is measured by ELISA. There was no significant difference in IFN-gamma secretion for the TIL cultured in medium without BME as compared to TIL cultured in medium with BME. Thus, the absence of BME from the medium has little or no detrimental effects on TIL cell growth or potency.
  • Example 12
  • This example demonstrates that feeding the TIL no more frequently than every third or fourth day during expansion of the number of TIL in a gas permeable container has little or no detrimental effects on TIL growth.
  • TIL were rapidly expanded in a 500 mL gas permeable container (G-Rex100) as described above and fed as described in Table 9. At the end of 14 days, fold expansion, viability, and composition were measured.
  • TABLE 9
    Day 14
    Original Day 7 Day 9 Day 11 Day 13 (total)
    Standard 100 ml +100 ml +50 ml +100 ml +50 ml 400 ml
    (Fed every
    other day)
    Modified 100 ml +150 ml +150 ml 400 ml
    (Fed every
    third or
    fourth Day
  • There was no difference in the fold expansion observed for TIL fed every third or fourth day as compared to TIL fed every other day. Viability and cell composition are set forth in Table 10.
  • TABLE 10
    Viability Phenotyping (%)
    Sample Group (%) CD3 CD3CD4 CD3CD8 CD56
    #2761 Standard 98.1 98.4 40.4 49.3 0.6
    Modified 97.7 98.6 39.9 51.8 0.5
    #3522 Standard 98.9 96.8 29.9 59.9 1.6
    Modified 98.4 97.0 28.8 60.2 1.5
    #3523 Standard 96.1 98.3 20.0 72.3 0.2
    Modified 95.7 98.4 20.2 72.1 0.2
    #3524 Standard 92.7 99.1 1.5 95.5 0.1
    Modified 90.2 99.3 1.4 95.2 0.1
  • Potency of the TIL is measured and compared for TIL cultured and fed every third or fourth day as compared to TIL fed every other day. Effector cells (1×105) are co-cultured with target cells (1×105), with AK1700 used as a negative control and DM5 A2 used as a positive control. IFN-gamma secretion is measured by ELISA. There was no significant difference in IFN-gamma secretion for the TIL fed every third or fourth day as compared to TIL fed every other day. Thus, the reduction in feeding frequency has little or no detrimental effects on TIL potency.
  • There was no difference in viability or cell composition observed for TIL fed every third of fourth day as compared to TIL fed every other day.
  • Example 13
  • This example demonstrates that using no more than one type of cell culture medium for expanding the number of TIL has little or no detrimental effects on TIL growth.
  • TIL were rapidly expanded as described above using no more than one type of cell culture medium or two types of cell culture medium as set forth in Table 11.
  • TABLE 11
    Day 0 Day 5 Day 7 Day 11
    Standard (2 50% RPMI 50% RPMI 100% 100%
    medium types) 50% AIM-V 50% AIM-V AIM-V AIM-V +
    5% Serum + 5% Serum + 5% Serum + GlutaMAX +
    Hepes + Hepes + GlutaMAX + IL-2
    IL-2 + IL-2 IL-2
    OKT3
    Modified (No 100% 100% 100% 100%
    more than 1 AIM-V AIM-V AIM-V AIM-V +
    medium type) 5% Serum + 5% Serum + 5% Serum + GlutaMAX +
    GlutaMAX + GlutaMAX + GlutaMAX + IL-2
    IL-2 + IL-2 IL-2
    OKT3
  • There was no difference in the fold expansion observed for TIL expanded using no more than one type of cell culture medium as compared to TIL expanded using two types of cell culture medium. Viability and cell composition are set forth in Table 12.
  • TABLE 12
    Phenotyping
    NT (not tested)
    Sample Group Viability CD3 CD3CD4 CD3CD8 CD56
    3524 50/50 96.5% 98.40%  1.80% 94.20% 0.30%
    AIM-V 97.0% 98.10%  1.70% 92.00% 0.30%
    3546 50/50 97.7% NT NT NT NT
    AIM-V 96.8% NT NT NT NT
    3552 50/50 96.2% 95.60% 21.30% 70.50% 0.20%
    AIM-V 97.3% 94.80% 24.80% 65.80% 0.20%
  • There was no difference in the viability or cell composition observed for TIL expanded using no more than one type of cell culture medium as compared to TIL expanded using two types of cell culture medium.
  • Potency of the TIL is measured and compared for TIL expanded using no more than one type of medium and TIL expanded using two types of medium. Effector cells (1×105) are co-cultured with target cells (1×105), with AK1700 used as a negative control and DM5 A2 used as a positive control. IFN-gamma secretion is measured by ELISA. There was no significant difference in IFN-gamma secretion for TIL expanded using no more than one type of cell medium as compared to TIL expanded using two types of cell medium.
  • Example 14
  • This example demonstrates that expanding the number of TIL using a higher ratio of feeders provides a higher number of TIL.
  • TIL (5×106) from two tumor samples were expanded as described above using allogeneic feeder cells at a TIL:Feeder cell ratio of 1:100, 1:50, or 1:25. Cells were counted on days 7, 11, and 14. Viability and cellular composition were evaluated on day 14.
  • There was no difference in cell number between the three groups at Day 7. At Days 11 and 14, however, expansion using a higher ratio of feeder cells corresponds with a better expansion of the number of TIL (9.9×109 TIL at 1:100 ratio; 8×109 at 1:50 ratio, and 5.8×109 at a 1:25 ratio at Day 14 for Sample 1 and 1.0×1010 TIL at 1:100 ratio; 1.0×1010 at 1:50 ratio, and 8.0×109 at a 1:25 ratio at Day 14 for Sample 2).
  • Example 15
  • This example demonstrates that TIL cultured in a gas permeable container have the same or better potency as compared to TIL cultured in non-gas permeable, 24 well plates.
  • TIL are cultured in a gas permeable container (40 mL, G-Rex10) or in a non-gas permeable, 24-well plate. Effector cells (1×105) are co-cultured with target cells (1×105), with AK1700 used as a negative control and DM5 A2 used as a positive control. IFN-gamma secretion is measured by ELISA. The results are shown in Table 13.
  • TABLE 13
    Melanoma Cell Line
    A2− A2+ Tumor Samples
    888 938 526 624 2976-1,2 2998 3524 3552 3560 3561 3556
    None A1, 24 A1, 24 A2, 3 A2, 3 A3, 31 A2 A2, 25 A1, 2 A2, 23 A1, 24 A1, 66
    None 0 0 0 0 0 12 10 0 0 0 0 0
    AK1700-3 1 0 0 89 249 85 >2495 177 45 113 1 239
    DM5 22 10 11 >1903 >2527 66 >1207 1275 161 118 3 73
    3556 24 90 294 93 149 100 525 >1811 409 157 310 NT >1541
    well plate
    3556 G- 87 230 88 129 110 308 >1494 340 338 388 NT >1577
    Rex10
    3552 24 114 70 142 >1295 >1763 184 621 627 139 149 NT 212
    well plate
    3552 G- 81 388 >1699 >2239 >2470 363 >1773 >1452 282 307 NT 256
    Rex10
    3560 24 135 94 110 196 372 173 346 484 175 318 NT >1008
    well plate
    3560 G- 104 168 141 483 624 240 870 453 212 572 NT >1004
    Rex10
    3561 24 70 539 305 166 327 456 402 205 97 264 207 252
    well plate
    3561 G- 84 1215 419 113 216 515 323 265 128 329 253 290
    Rex10
  • There was no significant difference in IFN-gamma secretion for TIL cultured in gas permeable containers as compared to TIL cultured in non-gas permeable 24 well plates.
  • Example 16
  • This example demonstrates the treatment of melanoma using TIL prepared by initially culturing the TIL in gas permeable flasks and then rapidly expanding the number of TIL in gas permeable flasks. Tumor tissue samples were obtained from seven melanoma patients. The tumor tissue samples were cultured in G-Rex10 flasks. TIL were obtained from the cultured tumor tissue samples. The numbers of TIL were expanded in G-Rex100 flasks. The expanded cells were administered to the patients.
  • Seven patients were treated. One patient (1) had an objective response (OR) by Response Evaluation Criteria In Solid Tumors (RECIST) standards. Six patients (6) were non-responders (NR).
  • Example 17
  • This example demonstrates the treatment of melanoma using TIL prepared by expanding the number of selected TIL in gas permeable flasks.
  • Tumor tissue samples were obtained from 55 melanoma patients. Compete medium (2 ml) (supplemented with 6000 IU/ml IL-2) was added to the wells in the top row of each 24-well plate. A single fragment of tumor was added to each media-containing well.
  • TIL were obtained from the tumor tissue samples and cultured as follows. Fragments were incubated in multiwell plates in a humidified incubator at 37° C., with 5% CO2 in air for 5 days without disturbance. After 5 days, the TIL cultures in plates were monitored for growth by viewing with an inverted light microscope. At this point TIL and other cell types have extravasated from the fragment and/or propagated in the wells. Half of the CM in plates was replaced with fresh CM containing IL-2 (6000 IU/ml). Media (1 ml) was aspirated, taking care not to disturb the cells on the bottom of the well, and replaced with 1 ml of fresh medium containing IL-2 (6000 CU/ml). Every 2-3 days, or approximately 3 times per week, the plates were monitored for TIL growth. When TIL expansion was evident, a sample from the well was counted to quantify cell concentration. When the culture exceeded 1×106 lymphocytes/ml or became nearly confluent then the well was split 1:2. Splitting was accomplished by mixing gently with a transfer pipette and transferring 1 ml of culture to a new well, then adding 1 ml of CM containing IL-2 (6000 IU/ml) to each daughter well. Fragment cultures that showed growth, up to 24 in total, were split in to 2 wells. The first 12 fragment cultures that required a second split in to 4 wells were maintained. The remaining fragment cultures were frozen as a pool 1 (PF1). Typically, 8 fragment cultures were carried through to an 8 well split and maintained for therapy. The remaining cultures were frozen as pool 2 (PF2). The fragments that were being maintained for therapy were analyzed by FACS for CD3, CD4, CD8 and CD56 content as close to the date of REP as possible.
  • The cultures were screened for specificity by co-culturing 100 μl of TIL with media only, autologous fresh tumor cells, or autologous fresh tumor cells and MHC Class I antibody, and IFN-γ release was measured. Reactive cultures were selected for expansion.
  • The numbers of TIL (from the selected cultures that released 200 pg/ml or more of IFN-γ) were expanded in G-Rex100 flasks. The expanded cells were administered to the patients.
  • Out of fifty-five patients treated, 18 experienced tumor regression of greater than 30% and 24 did not experience tumor regression of at least 30%. The treatment outcome of the remaining 13 patients has not yet been evaluated.
  • All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.
  • The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
  • Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.

Claims (24)

1. A method of obtaining an expanded number of TIL from a mammal for adoptive cell immunotherapy comprising:
obtaining a tumor tissue sample from the mammal;
culturing the tumor tissue sample in a first gas permeable container containing cell medium therein;
obtaining tumor infiltrating lymphocytes (TIL) from the tumor tissue sample;
expanding the number of TIL in a second gas permeable container containing cell medium therein using irradiated allogeneic feeder cells and/or irradiated autologous feeder cells.
2. A method of promoting regression of cancer in a mammal comprising:
obtaining a tumor tissue sample from the mammal;
culturing the tumor tissue sample in a first gas permeable container containing cell medium therein;
obtaining TIL from the tumor tissue sample;
expanding the number of TIL in a second gas permeable container containing cell medium therein using irradiated allogeneic feeder cells and/or irradiated autologous feeder cells; and
administering the expanded number of TIL to the mammal.
3. A method of obtaining an expanded number of TIL from a mammal for adoptive cell immunotherapy comprising:
obtaining a tumor tissue sample from the mammal;
obtaining TIL from the tumor tissue sample;
expanding the number of TIL in a gas permeable container containing cell medium therein using irradiated allogeneic feeder cells and/or irradiated autologous feeder cells.
4. A method of promoting regression of cancer in a mammal comprising:
obtaining a tumor tissue sample from the mammal;
obtaining TIL from the tumor tissue sample;
expanding the number of TIL in a gas permeable container containing cell medium therein using irradiated allogeneic feeder cells and/or irradiated autologous feeder cells; and
administering the expanded number of TIL to the mammal.
5. The method of claim 3, further comprising selecting TIL capable of lysing cancer cells.
6. The method of claim 1, wherein culturing the tumor tissue sample comprises culturing the tumor tissue sample submerged under a height of at least about 1.3 cm of cell culture medium in the first gas permeable container.
7. The method of claim 1, wherein culturing the tumor tissue sample comprises culturing the tumor tissue sample submerged under a height of at least about 2.0 cm of cell culture medium in the first gas permeable container.
8. The method of claim 1, wherein culturing the tumor tissue sample comprises culturing the tumor tissue sample in a gas permeable container having at least about 650 cm2 of cell culture surface area.
9. The method of claim 1, wherein the cancer is melanoma.
10. The method of claim 1, wherein expanding the number of TIL comprises culturing the TIL submerged under a height of at least about 1.3 cm of cell culture medium in the second gas permeable container.
11. The method of claim 1, wherein expanding the number of TIL comprises culturing the TIL submerged under a height of at least about 2.0 cm of cell culture medium in the second gas permeable container.
12. The method of claim 1, wherein expanding the number of TIL comprises culturing the TIL in a gas permeable container having at least about 650 cm2 of cell culture surface area.
13. The method of claim 1, wherein expanding the number of TIL comprises increasing the number of TIL by at least about 1000-fold.
14. The method of claim 1, comprising expanding the number of TIL in about 5,000 mL to about 10,000 mL of cell medium.
15. The method of claim 1, wherein expanding the number of TIL uses about 1×109 to about 4×109 allogeneic feeder cells and/or irradiated autologous feeder cells.
16. The method of claim 1, wherein the cell medium in the first and/or second gas permeable container is unfiltered.
17. The method of claim 1, wherein the cell medium in the first and/or second gas permeable container lacks beta-mercaptoethanol (BME).
18. The method of claim 1, wherein expanding the number of TIL comprises feeding the cells every no more frequently than every third or fourth day.
19. The method of claim 1, wherein the tumor tissue sample is a melanoma tumor tissue sample.
20. The method of claim 1, wherein expanding the number of TIL uses no more than one type of cell culture medium.
21. The method of claim 1, wherein the mammal is a human.
22. The method of claim 1, wherein expanding the number of TIL uses irradiated allogeneic feeder cells and/or irradiated autologous feeder cells at a ratio of about 1 TIL to at least about 20 feeder cells.
23. The method of claim 1, wherein expanding the number of TIL uses irradiated allogeneic feeder cells and/or irradiated autologous feeder cells at a ratio of about 1 TIL to at least about 50 feeder cells.
24. The method of claim 1, wherein expanding the number of TIL uses irradiated allogeneic feeder cells and/or irradiated autologous feeder cells at a ratio of about 1 TIL to at least about 100 feeder cells.
US13/424,646 2011-03-22 2012-03-20 Methods of growing tumor infiltrating lymphocytes in gas-permeable containers Abandoned US20120244133A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/424,646 US20120244133A1 (en) 2011-03-22 2012-03-20 Methods of growing tumor infiltrating lymphocytes in gas-permeable containers
US15/375,289 US20170152478A1 (en) 2011-03-22 2016-12-12 Methods of growing tumor infiltrating lymphocytes in gas-permeable containers
US16/211,859 US11401503B2 (en) 2011-03-22 2018-12-06 Methods of growing tumor infiltrating lymphocytes in gas-permeable containers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161466200P 2011-03-22 2011-03-22
US13/424,646 US20120244133A1 (en) 2011-03-22 2012-03-20 Methods of growing tumor infiltrating lymphocytes in gas-permeable containers

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/375,289 Continuation US20170152478A1 (en) 2011-03-22 2016-12-12 Methods of growing tumor infiltrating lymphocytes in gas-permeable containers

Publications (1)

Publication Number Publication Date
US20120244133A1 true US20120244133A1 (en) 2012-09-27

Family

ID=45937598

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/424,646 Abandoned US20120244133A1 (en) 2011-03-22 2012-03-20 Methods of growing tumor infiltrating lymphocytes in gas-permeable containers
US15/375,289 Abandoned US20170152478A1 (en) 2011-03-22 2016-12-12 Methods of growing tumor infiltrating lymphocytes in gas-permeable containers
US16/211,859 Active 2032-04-19 US11401503B2 (en) 2011-03-22 2018-12-06 Methods of growing tumor infiltrating lymphocytes in gas-permeable containers

Family Applications After (2)

Application Number Title Priority Date Filing Date
US15/375,289 Abandoned US20170152478A1 (en) 2011-03-22 2016-12-12 Methods of growing tumor infiltrating lymphocytes in gas-permeable containers
US16/211,859 Active 2032-04-19 US11401503B2 (en) 2011-03-22 2018-12-06 Methods of growing tumor infiltrating lymphocytes in gas-permeable containers

Country Status (2)

Country Link
US (3) US20120244133A1 (en)
WO (1) WO2012129201A1 (en)

Cited By (182)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014133567A1 (en) 2013-03-01 2014-09-04 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of producing enriched populations of tumor-reactive t cells from tumor
WO2014133568A1 (en) 2013-03-01 2014-09-04 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of producing enriched populations of tumor reactive t cells from peripheral blood
WO2015009606A1 (en) 2013-07-15 2015-01-22 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-human papillomavirus 16 e6 t cell receptors
WO2015009604A1 (en) 2013-07-15 2015-01-22 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of preparing anti-human papillomavirus antigen t cells
WO2015184228A1 (en) 2014-05-29 2015-12-03 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-human papillomavirus 16 e7 t cell receptors
WO2016053338A1 (en) 2014-10-02 2016-04-07 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of isolating t cell receptors having antigenic specificity for a cancer-specific mutation
WO2016053339A1 (en) 2014-10-02 2016-04-07 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of isolating t cells having antigenic specificity for a cancer-specific mutation
WO2016077525A2 (en) 2014-11-14 2016-05-19 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-human thyroglobulin t cell receptors
WO2016085904A1 (en) 2014-11-26 2016-06-02 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-mutated kras t cell receptors
WO2016100977A1 (en) 2014-12-19 2016-06-23 The Broad Institute Inc. Methods for profiling the t-cel- receptor repertoire
WO2016138182A1 (en) * 2015-02-24 2016-09-01 Nodality, Inc. Methods and compositions for immunomodulation
WO2016179006A1 (en) 2015-05-01 2016-11-10 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of isolating t cells and t cell receptors having antigenic specificity for a cancer-specific mutation from peripheral blood
WO2017035251A1 (en) 2015-08-25 2017-03-02 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services T cells modified to overexpress c-myb
WO2017048593A1 (en) 2015-09-15 2017-03-23 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services T cell receptors recognizing hla-cw8 restricted mutated kras
WO2017066122A1 (en) 2015-10-15 2017-04-20 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-cd30 chimeric antigen receptors
WO2017069958A2 (en) 2015-10-09 2017-04-27 The Brigham And Women's Hospital, Inc. Modulation of novel immune checkpoint targets
WO2017070042A1 (en) 2015-10-20 2017-04-27 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of producing t cell populations using akt inhibitors
WO2017075465A1 (en) 2015-10-28 2017-05-04 The Broad Institute Inc. Compositions and methods for evaluating and modulating immune responses by detecting and targeting gata3
WO2017075478A2 (en) 2015-10-28 2017-05-04 The Broad Institute Inc. Compositions and methods for evaluating and modulating immune responses by use of immune cell gene signatures
WO2017075451A1 (en) 2015-10-28 2017-05-04 The Broad Institute Inc. Compositions and methods for evaluating and modulating immune responses by detecting and targeting pou2af1
WO2017079113A1 (en) 2015-11-02 2017-05-11 The United States Of America, As Represented By The Secretary, Department Of Healh And Human Services Methods of producing t cell populations using prolyl hydroxylase domain-containing protein inhibitors
WO2017087708A1 (en) 2015-11-19 2017-05-26 The Brigham And Women's Hospital, Inc. Lymphocyte antigen cd5-like (cd5l)-interleukin 12b (p40) heterodimers in immunity
WO2017139199A1 (en) 2016-02-10 2017-08-17 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Inducible arginase
WO2017178572A1 (en) 2016-04-13 2017-10-19 Vivia Biotech, S.L Ex vivo bite-activated t cells
WO2017189254A1 (en) 2016-04-26 2017-11-02 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-kk-lc-1 t cell receptors
CN107502589A (en) * 2017-08-04 2017-12-22 北京世纪劲得生物技术有限公司 A kind of tumor infiltrating lymphocyte and mononuclearcell co-culture method
WO2018026691A1 (en) 2016-08-02 2018-02-08 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-kras-g12d t cell receptors
WO2018049025A2 (en) 2016-09-07 2018-03-15 The Broad Institute Inc. Compositions and methods for evaluating and modulating immune responses
WO2018057769A1 (en) 2016-09-22 2018-03-29 Corning Incorporated Gravity flow cell culture devices, systems and methods of use thereof
WO2018067991A1 (en) 2016-10-07 2018-04-12 The Brigham And Women's Hospital, Inc. Modulation of novel immune checkpoint targets
WO2018081473A1 (en) 2016-10-26 2018-05-03 Iovance Biotherapeutics, Inc. Restimulation of cryopreserved tumor infiltrating lymphocytes
WO2018081789A1 (en) 2016-10-31 2018-05-03 Iovance Biotherapeutics, Inc. Engineered artificial antigen presenting cells for tumor infiltrating lymphocyte expansion
WO2018094167A1 (en) 2016-11-17 2018-05-24 Iovance Biotherapeutics, Inc. Remnant tumor infiltrating lymphocytes and methods of preparing and using the same
WO2018111981A1 (en) 2016-12-13 2018-06-21 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of preparing an isolated or purified population of thymic emigrant cells and methods of treatment using same
WO2018129336A1 (en) 2017-01-06 2018-07-12 Iovance Biotherapeutics, Inc. Expansion of tumor infiltrating lymphocytes with potassium channel agonists and therapeutic uses thereof
WO2018129332A1 (en) 2017-01-06 2018-07-12 Iovance Biotherapeutics, Inc. Expansion of tumor infiltrating lymphocytes (tils) with tumor necrosis factor receptor superfamily (tnfrsf) agonists and therapeutic combinations of tils and tnfrsf agonists
WO2018182817A1 (en) 2017-03-29 2018-10-04 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
WO2018183485A1 (en) 2017-03-31 2018-10-04 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of isolating neoantigen-specific t cell receptor sequences
WO2018191553A1 (en) 2017-04-12 2018-10-18 Massachusetts Eye And Ear Infirmary Tumor signature for metastasis, compositions of matter methods of use thereof
WO2018195019A1 (en) 2017-04-18 2018-10-25 The Broad Institute Inc. Compositions for detecting secretion and methods of use
WO2018204761A1 (en) * 2017-05-05 2018-11-08 H. Lee Moffitt Cancer Center And Research Institute, Inc. Rapid method for the culture of tumor infiltrating lymphocytes
WO2018209115A1 (en) 2017-05-10 2018-11-15 Iovance Biotherapeutics, Inc. Expansion of tumor infiltrating lymphocytes from liquid tumors and therapeutic uses thereof
US10149898B2 (en) 2017-08-03 2018-12-11 Taiga Biotechnologies, Inc. Methods and compositions for the treatment of melanoma
WO2018226714A1 (en) 2017-06-05 2018-12-13 Iovance Biotherapeutics, Inc. Methods of using tumor infiltrating lymphocytes in double-refractory melanoma
WO2019027465A1 (en) 2017-08-03 2019-02-07 Taiga Biotechnologies, Inc. Methods and compositions for the treatment of melanoma
WO2019060349A1 (en) 2017-09-20 2019-03-28 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Hla class ii–restricted t cell receptors against mutated ras
WO2019060336A1 (en) 2017-09-20 2019-03-28 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services In vitro generation of thymic organoid from human pluripotent stem cells
WO2019067242A1 (en) 2017-09-29 2019-04-04 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of isolating t cells having antigenic specificity for a p53 cancer-specific mutation
WO2019067243A1 (en) 2017-09-29 2019-04-04 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services T cell receptors recognizing mutated p53
WO2019070435A1 (en) 2017-10-05 2019-04-11 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods for selectively expanding cells expressing a tcr with a murine constant region
WO2019075055A1 (en) 2017-10-11 2019-04-18 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of producing t cell populations using p38 mapk inhibitors
WO2019077062A1 (en) 2017-10-18 2019-04-25 Vivia Biotech, S.L. Bite-activated car-t cells
WO2019094983A1 (en) 2017-11-13 2019-05-16 The Broad Institute, Inc. Methods and compositions for treating cancer by targeting the clec2d-klrb1 pathway
WO2019100023A1 (en) 2017-11-17 2019-05-23 Iovance Biotherapeutics, Inc. Til expansion from fine needle aspirates and small biopsies
WO2019103857A1 (en) 2017-11-22 2019-05-31 Iovance Biotherapeutics, Inc. Expansion of peripheral blood lymphocytes (pbls) from peripheral blood
US10316289B2 (en) 2012-09-06 2019-06-11 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of producing T memory stem cell populations
WO2019112941A1 (en) 2017-12-04 2019-06-13 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Hla class i-restricted t cell receptors against mutated ras
WO2019112932A1 (en) 2017-12-04 2019-06-13 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of enriching cell populations for cancer-specific t cells using in vitro stimulation of memory t cells
WO2019118873A2 (en) 2017-12-15 2019-06-20 Iovance Biotherapeutics, Inc. Systems and methods for determining the beneficial administration of tumor infiltrating lymphocytes, and methods of use thereof and beneficial administration of tumor infiltrating lymphocytes, and methods of use thereof
US10344073B2 (en) * 2014-01-09 2019-07-09 Hadasit Medical Research Services And Development Ltd. Cell compositions and methods for cancer therapy
WO2019136456A1 (en) 2018-01-08 2019-07-11 Iovance Biotherapeutics, Inc. Processes for generating til products enriched for tumor antigen-specific t-cells
WO2019136459A1 (en) 2018-01-08 2019-07-11 Iovance Biotherapeutics, Inc. Processes for generating til products enriched for tumor antigen-specific t-cells
WO2019160829A1 (en) 2018-02-13 2019-08-22 Iovance Biotherapeutics, Inc. Expansion of tumor infiltrating lymphocytes (tils) with adenosine a2a receptor antagonists and therapeutic combinations of tils and adenosine a2a receptor antagonists
WO2019173441A1 (en) 2018-03-06 2019-09-12 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of preparing populations of cells and retroviral reagents for adoptive cell immunotherapy
WO2019190579A1 (en) 2018-03-29 2019-10-03 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
WO2019210131A1 (en) 2018-04-27 2019-10-31 Iovance Biotherapeutics, Inc. Closed process for expansion and gene editing of tumor infiltrating lymphocytes and uses of same in immunotherapy
WO2019209715A1 (en) 2018-04-24 2019-10-31 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of producing t cell populations using hydroxycitric acid and/or a salt thereof
WO2019213195A1 (en) 2018-05-01 2019-11-07 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services T cell receptors which recognize mutated egfr
WO2019217753A1 (en) 2018-05-10 2019-11-14 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
WO2019232542A2 (en) 2018-06-01 2019-12-05 Massachusetts Institute Of Technology Methods and compositions for detecting and modulating microenvironment gene signatures from the csf of metastasis patients
EP3597663A1 (en) 2014-12-08 2020-01-22 The U.S.A. as represented by the Secretary, Department of Health and Human Services Anti-cd70 chimeric antigen receptors
US10562952B2 (en) 2015-09-10 2020-02-18 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-CD276 chimeric antigen receptors
WO2020061429A1 (en) 2018-09-20 2020-03-26 Iovance Biotherapeutics, Inc. Expansion of tils from cryopreserved tumor samples
WO2020068816A1 (en) * 2018-09-24 2020-04-02 H. Lee Moffitt Cancer Center And Research Institute, Inc. Culture of tumor infiltrating lymphocytes from tumor digest
WO2020072700A1 (en) 2018-10-02 2020-04-09 Dana-Farber Cancer Institute, Inc. Hla single allele lines
WO2020081730A2 (en) 2018-10-16 2020-04-23 Massachusetts Institute Of Technology Methods and compositions for modulating microenvironment
WO2020086827A1 (en) 2018-10-24 2020-04-30 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Hla-a3–restricted t cell receptors against mutated ras
WO2020096986A2 (en) 2018-11-05 2020-05-14 Iovance Biotherapeutics, Inc. Selection of improved tumor reactive t-cells
WO2020096989A1 (en) 2018-11-05 2020-05-14 Iovance Biotherapeutics, Inc. Treatment of nsclc patients refractory for anti-pd-1 antibody
WO2020096927A1 (en) 2018-11-05 2020-05-14 Iovance Biotherapeutics, Inc. Expansion of tils utilizing akt pathway inhibitors
WO2020096682A2 (en) 2018-08-31 2020-05-14 Iovance Biotherapeutics, Inc. Treatment of nsclc patients refractory for anti-pd-1 antibody
WO2020096988A2 (en) 2018-11-05 2020-05-14 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of the same in immunotherapy
WO2020131547A1 (en) 2018-12-19 2020-06-25 Iovance Biotherapeutics, Inc. Methods of expanding tumor infiltrating lymphocytes using engineered cytokine receptor pairs and uses thereof
WO2020131586A2 (en) 2018-12-17 2020-06-25 The Broad Institute, Inc. Methods for identifying neoantigens
WO2020154275A1 (en) 2019-01-22 2020-07-30 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Hla class ii-restricted t cell receptors against ras with g12r mutation
WO2020172202A1 (en) 2019-02-19 2020-08-27 Myst Therapeutics, Inc. Methods for producing autologous t cells useful to treat cancers and compositions thereof
US10760055B2 (en) 2005-10-18 2020-09-01 National Jewish Health Conditionally immortalized long-term stem cells and methods of making and using such cells
WO2020186101A1 (en) 2019-03-12 2020-09-17 The Broad Institute, Inc. Detection means, compositions and methods for modulating synovial sarcoma cells
WO2020191079A1 (en) 2019-03-18 2020-09-24 The Broad Institute, Inc. Compositions and methods for modulating metabolic regulators of t cell pathogenicity
US10786534B2 (en) 2013-03-11 2020-09-29 Taiga Biotechnologies, Inc. Production and use of red blood cells
WO2020205662A1 (en) 2019-03-29 2020-10-08 Myst Therapeutics, Inc. Ex vivo methods for producing a t cell therapeutic and related compositions and methods
US10801070B2 (en) 2013-11-25 2020-10-13 The Broad Institute, Inc. Compositions and methods for diagnosing, evaluating and treating cancer
US10835585B2 (en) 2015-05-20 2020-11-17 The Broad Institute, Inc. Shared neoantigens
WO2020232029A1 (en) 2019-05-13 2020-11-19 Iovance Biotherapeutics, Inc. Methods and compositions for selecting tumor infiltrating lymphocytes and uses of the same in immunotherapy
WO2020236967A1 (en) 2019-05-20 2020-11-26 The Broad Institute, Inc. Random crispr-cas deletion mutant
WO2020243371A1 (en) 2019-05-28 2020-12-03 Massachusetts Institute Of Technology Methods and compositions for modulating immune responses
WO2020264269A1 (en) 2019-06-27 2020-12-30 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services T cell receptors recognizing r175h or y220c mutation in p53
WO2021030627A1 (en) 2019-08-13 2021-02-18 The General Hospital Corporation Methods for predicting outcomes of checkpoint inhibition and treatment thereof
WO2021041922A1 (en) 2019-08-30 2021-03-04 The Broad Institute, Inc. Crispr-associated mu transposase systems
US10953048B2 (en) 2012-07-20 2021-03-23 Taiga Biotechnologies, Inc. Enhanced reconstitution and autoreconstitution of the hematopoietic compartment
WO2021055787A1 (en) 2019-09-18 2021-03-25 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of isolating t cell populations
US10975442B2 (en) 2014-12-19 2021-04-13 Massachusetts Institute Of Technology Molecular biomarkers for cancer immunotherapy
WO2021081378A1 (en) 2019-10-25 2021-04-29 Iovance Biotherapeutics, Inc. Gene editing of tumor infiltrating lymphocytes and uses of same in immunotherapy
WO2021092555A2 (en) 2019-11-08 2021-05-14 Kiyatec, Inc. Methods of screening to determine effective dosing of cancer therapeutics
WO2021108727A1 (en) 2019-11-27 2021-06-03 Myst Therapeutics, Inc. Method of producing tumor-reactive t cell composition using modulatory agents
WO2021118990A1 (en) 2019-12-11 2021-06-17 Iovance Biotherapeutics, Inc. Processes for the production of tumor infiltrating lymphocytes (tils) and methods of using the same
CN113005085A (en) * 2021-03-18 2021-06-22 南方医科大学南方医院 Novel method for culturing and in-vitro amplifying primary liver cancer tumor infiltrating lymphocytes
WO2021142081A1 (en) 2020-01-07 2021-07-15 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of producing t cell populations using induced pluripotent stem cells
WO2021163477A1 (en) 2020-02-14 2021-08-19 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Hla class i-restricted t cell receptors against ras with g12v mutation
WO2021163434A1 (en) 2020-02-12 2021-08-19 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Hla class i-restricted t cell receptors against ras with g12d mutation
WO2021174208A1 (en) 2020-02-27 2021-09-02 Myst Therapeutics, Llc Methods for ex vivo enrichment and expansion of tumor reactive t cells and related compositions thereof
WO2021173902A1 (en) 2020-02-26 2021-09-02 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Hla class ii-restricted t cell receptors against ras with g12v mutation
US11116796B2 (en) 2016-12-02 2021-09-14 Taiga Biotechnologies, Inc. Nanoparticle formulations
WO2021188954A1 (en) 2020-03-20 2021-09-23 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of isolating t-cells and t-cell receptors from tumor by single-cell analysis for immunotherapy
WO2021188941A1 (en) 2020-03-20 2021-09-23 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of isolating t cells and t-cell receptors from peripheral blood by single-cell analysis for immunotherapy
US11141434B2 (en) 2016-07-07 2021-10-12 Iovance Biotherapeutics, Inc. Programmed death 1 ligand 1 (PD-L1) binding proteins and methods of use thereof
WO2021211455A1 (en) 2020-04-13 2021-10-21 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Hla class i-restricted t cell receptors against lmp2
WO2021216920A1 (en) 2020-04-22 2021-10-28 Iovance Biotherapeutics, Inc. Systems and methods for coordinating manufacturing of cells for patient-specific immunotherapy
WO2021226085A1 (en) 2020-05-04 2021-11-11 Iovance Biotherapeutics, Inc. Selection of improved tumor reactive t-cells
WO2021226061A1 (en) 2020-05-04 2021-11-11 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of the same in immunotherapy
WO2021262829A2 (en) 2020-06-24 2021-12-30 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Hla class i-restricted t cell receptors against cd20
WO2022015922A1 (en) 2020-07-16 2022-01-20 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Hla class ii-restricted drb t cell receptors against ras with g12v mutation
WO2022015694A1 (en) 2020-07-13 2022-01-20 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Hla class ii–restricted drb t cell receptors against ras with g12d mutation
US11254913B1 (en) 2017-03-29 2022-02-22 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
WO2022051449A2 (en) 2020-09-04 2022-03-10 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services T cell receptors recognizing r273c or y220c mutations in p53
WO2022055946A1 (en) 2020-09-08 2022-03-17 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services T cell phenotypes associated with response to adoptive cell therapy
WO2022072760A1 (en) 2020-10-02 2022-04-07 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Hla class ii-restricted dq t cell receptors against ras with g13d mutation
WO2022076606A1 (en) 2020-10-06 2022-04-14 Iovance Biotherapeutics, Inc. Treatment of nsclc patients with tumor infiltrating lymphocyte therapies
WO2022076952A1 (en) 2020-10-06 2022-04-14 Iovance Biotherapeutics, Inc. Treatment of nsclc patients with tumor infiltrating lymphocyte therapies
WO2022104035A2 (en) 2020-11-13 2022-05-19 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Enhanced antigen reactivity of immune cells expressing a mutant non-signaling cd3 zeta chain
WO2022105816A1 (en) * 2020-11-19 2022-05-27 苏州沙砾生物科技有限公司 Method for culturing tumor infiltrating lymphocytes and use thereof
WO2022125941A1 (en) 2020-12-11 2022-06-16 Iovance Biotherapeutics, Inc. Treatment of cancer patients with tumor infiltrating lymphocyte therapies in combination with braf inhibitors and/or mek inhibitors
WO2022133140A1 (en) 2020-12-17 2022-06-23 Iovance Biotherapeutics, Inc. Treatment with tumor infiltrating lymphocyte therapies in combination with ctla-4 and pd-1 inhibitors
WO2022133149A1 (en) 2020-12-17 2022-06-23 Iovance Biotherapeutics, Inc. Treatment of cancers with tumor infiltrating lymphocytes
US11369678B2 (en) 2008-08-28 2022-06-28 Taiga Biotechnologies, Inc. Compositions and methods for modulating immune cells
WO2022147196A2 (en) 2020-12-31 2022-07-07 Iovance Biotherapeutics, Inc. Devices and processes for automated production of tumor infiltrating lymphocytes
CN114763530A (en) * 2021-01-15 2022-07-19 上海细胞治疗集团有限公司 Method for inducing and preparing TIL cells
US11401506B2 (en) 2014-04-10 2022-08-02 H. Lee Moffitt Cancer Center And Research Institute, Inc. Enhanced expansion of tumor-infiltrating lymphocytes for adoptive cell therapy
WO2022170219A1 (en) 2021-02-05 2022-08-11 Iovance Biotherapeutics, Inc. Adjuvant therapy for cancer
WO2022177961A1 (en) 2021-02-16 2022-08-25 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Hla class i–restricted t cell receptors against cd22
WO2022187741A2 (en) 2021-03-05 2022-09-09 Iovance Biotherapeutics, Inc. Tumor storage and cell culture compositions
WO2022198141A1 (en) 2021-03-19 2022-09-22 Iovance Biotherapeutics, Inc. Methods for tumor infiltrating lymphocyte (til) expansion related to cd39/cd69 selection and gene knockout in tils
US11452768B2 (en) 2013-12-20 2022-09-27 The Broad Institute, Inc. Combination therapy with neoantigen vaccine
WO2022204155A1 (en) 2021-03-23 2022-09-29 Iovance Biotherapeutics, Inc. Cish gene editing of tumor infiltrating lymphocytes and uses of same in immunotherapy
WO2022204564A2 (en) 2021-03-25 2022-09-29 Iovance Biotherapeutics, Inc. Methods and compositions for t-cell coculture potency assays and use with cell therapy products
WO2022225836A1 (en) 2021-04-21 2022-10-27 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Hla class i-restricted t cell receptors against ras with q61k mutation
WO2022225981A2 (en) 2021-04-19 2022-10-27 Iovance Biotherapeutics, Inc. Chimeric costimulatory receptors, chemokine receptors, and the use of same in cellular immunotherapies
WO2022236050A1 (en) 2021-05-07 2022-11-10 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services T cell receptors recognizing c135y, r175h, or m237i mutation in p53
WO2022245754A1 (en) 2021-05-17 2022-11-24 Iovance Biotherapeutics, Inc. Pd-1 gene-edited tumor infiltrating lymphocytes and uses of same in immunotherapy
US11530386B2 (en) 2015-12-15 2022-12-20 Instil Bio (Uk) Limited Cells expressing recombinant growth factor receptors
US11549149B2 (en) 2017-01-24 2023-01-10 The Broad Institute, Inc. Compositions and methods for detecting a mutant variant of a polynucleotide
WO2023009716A1 (en) 2021-07-28 2023-02-02 Iovance Biotherapeutics, Inc. Treatment of cancer patients with tumor infiltrating lymphocyte therapies in combination with kras inhibitors
WO2023039488A1 (en) 2021-09-09 2023-03-16 Iovance Biotherapeutics, Inc. Processes for generating til products using pd-1 talen knockdown
WO2023049862A1 (en) 2021-09-24 2023-03-30 Iovance Biotherapeutics, Inc. Expansion processes and agents for tumor infiltrating lymphocytes
US11618877B2 (en) 2017-01-13 2023-04-04 Instil Bio (Uk) Limited Aseptic tissue processing method, kit and device
WO2023077015A2 (en) 2021-10-27 2023-05-04 Iovance Biotherapeutics, Inc. Systems and methods for coordinating manufacturing of cells for patient-specific immunotherapy
WO2023086803A1 (en) 2021-11-10 2023-05-19 Iovance Biotherapeutics, Inc. Methods of expansion treatment utilizing cd8 tumor infiltrating lymphocytes
US11667695B2 (en) 2008-05-16 2023-06-06 Taiga Biotechnologies, Inc. Antibodies and processes for preparing the same
WO2023102418A1 (en) 2021-12-01 2023-06-08 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Hla-a3-restricted t cell receptors against ras with g12v mutation
WO2023137472A2 (en) 2022-01-14 2023-07-20 Tune Therapeutics, Inc. Compositions, systems, and methods for programming t cell phenotypes through targeted gene repression
WO2023137471A1 (en) 2022-01-14 2023-07-20 Tune Therapeutics, Inc. Compositions, systems, and methods for programming t cell phenotypes through targeted gene activation
US11713446B2 (en) 2018-01-08 2023-08-01 Iovance Biotherapeutics, Inc. Processes for generating TIL products enriched for tumor antigen-specific T-cells
WO2023147486A1 (en) 2022-01-28 2023-08-03 Iovance Biotherapeutics, Inc. Tumor infiltrating lymphocytes engineered to express payloads
US11725237B2 (en) 2013-12-05 2023-08-15 The Broad Institute Inc. Polymorphic gene typing and somatic change detection using sequencing data
US11732257B2 (en) 2017-10-23 2023-08-22 Massachusetts Institute Of Technology Single cell sequencing libraries of genomic transcript regions of interest in proximity to barcodes, and genotyping of said libraries
US11739156B2 (en) 2019-01-06 2023-08-29 The Broad Institute, Inc. Massachusetts Institute of Technology Methods and compositions for overcoming immunosuppression
US11767510B2 (en) 2019-12-20 2023-09-26 Instil Bio (Uk) Limited Devices and methods for isolating tumor infiltrating lymphocytes and uses thereof
WO2023196877A1 (en) 2022-04-06 2023-10-12 Iovance Biotherapeutics, Inc. Treatment of nsclc patients with tumor infiltrating lymphocyte therapies
WO2023201369A1 (en) 2022-04-15 2023-10-19 Iovance Biotherapeutics, Inc. Til expansion processes using specific cytokine combinations and/or akti treatment
US11793787B2 (en) 2019-10-07 2023-10-24 The Broad Institute, Inc. Methods and compositions for enhancing anti-tumor immunity by targeting steroidogenesis
WO2023220608A1 (en) 2022-05-10 2023-11-16 Iovance Biotherapeutics, Inc. Treatment of cancer patients with tumor infiltrating lymphocyte therapies in combination with an il-15r agonist
US11834487B2 (en) 2018-02-12 2023-12-05 Hadasit Medical Research Services & Development Ltd. Modulation of SLAMF6 splice variants for cancer therapy
US11865168B2 (en) 2019-12-30 2024-01-09 Massachusetts Institute Of Technology Compositions and methods for treating bacterial infections
WO2024011114A1 (en) 2022-07-06 2024-01-11 Iovance Biotherapeutics, Inc. Devices and processes for automated production of tumor infiltrating lymphocytes
WO2024030758A1 (en) 2022-08-01 2024-02-08 Iovance Biotherapeutics, Inc. Chimeric costimulatory receptors, chemokine receptors, and the use of same in cellular immunotherapies
US11897953B2 (en) 2017-06-14 2024-02-13 The Broad Institute, Inc. Compositions and methods targeting complement component 3 for inhibiting tumor growth
US11913075B2 (en) 2017-04-01 2024-02-27 The Broad Institute, Inc. Methods and compositions for detecting and modulating an immunotherapy resistance gene signature in cancer
WO2024055017A1 (en) 2022-09-09 2024-03-14 Iovance Biotherapeutics, Inc. Processes for generating til products using pd-1/tigit talen double knockdown
WO2024055018A1 (en) 2022-09-09 2024-03-14 Iovance Biotherapeutics, Inc. Processes for generating til products using pd-1/tigit talen double knockdown
WO2024064642A2 (en) 2022-09-19 2024-03-28 Tune Therapeutics, Inc. Compositions, systems, and methods for modulating t cell function
US11957695B2 (en) 2018-04-26 2024-04-16 The Broad Institute, Inc. Methods and compositions targeting glucocorticoid signaling for modulating immune responses
US11963966B2 (en) 2018-03-30 2024-04-23 Dana-Farber Cancer Institute, Inc. Compositions and methods for treating ovarian tumors

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013167136A1 (en) * 2012-05-08 2013-11-14 Herlev Hospital Improving adoptive cell therapy with interferon gamma
RU2739770C2 (en) 2014-06-11 2020-12-28 полибайосепт ГмбХ Expansion of lymphocyte with a cytokine composition for active cellular immunotherapy
US11332713B2 (en) 2016-11-16 2022-05-17 KSQ Therapeutics, Inc. Gene-regulating compositions and methods for improved immunotherapy
US11261428B2 (en) 2018-03-15 2022-03-01 KSQ Therapeutics, Inc. Gene-regulating compositions and methods for improved immunotherapy
BR112020018658A2 (en) 2018-03-15 2020-12-29 KSQ Therapeutics, Inc. GENE REGULATION COMPOSITIONS AND METHODS FOR IMPROVED IMU-NOTERAPY
JP2024512978A (en) * 2021-03-30 2024-03-21 ネオジェント コーポレーション Method for producing immune cell compositions
TW202310857A (en) * 2021-06-24 2023-03-16 美商英斯特生物科技股份有限公司 Processing of tumor infiltrating lymphocytes
WO2023130040A2 (en) 2021-12-31 2023-07-06 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services T cell therapy with vaccination as a combination immunotherapy against cancer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050233451A1 (en) * 2002-10-15 2005-10-20 Government Of The United States Of America, Represented By The Sec. Dept. Of Health And Humans Methods of preparing lymphocytes that express interleukin-2 and their use in the treatment of cancer
US20130102075A1 (en) * 2009-12-08 2013-04-25 Juan F. Vera Methods of cell culture for adoptive cell therapy

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4435508A (en) 1981-11-20 1984-03-06 Gabridge Michael G Tissue culture vessel
EP0471947A1 (en) 1990-06-29 1992-02-26 Sekisui Chemical Co., Ltd. Culture bag
CA2348493C (en) 1998-10-28 2010-08-24 Ashby Scientific Limited Textured and porous silicone rubber
US6455310B1 (en) 1999-03-23 2002-09-24 Biocrystal Ltd. Cell culture apparatus and method for culturing cells
US6410309B1 (en) 1999-03-23 2002-06-25 Biocrystal Ltd Cell culture apparatus and methods of use
JP2007511205A (en) 2003-10-08 2007-05-10 ウィルソン ウォルフ マニュファクチャリング コーポレイション Method and apparatus for culturing cells using gas permeable substances
US7820174B2 (en) 2006-02-24 2010-10-26 The United States Of America As Represented By The Department Of Health And Human Services T cell receptors and related materials and methods of use
WO2010126766A1 (en) 2009-04-30 2010-11-04 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Inducible interleukin-12
SG181559A1 (en) * 2009-12-08 2012-07-30 Wolf Wilson Mfg Corp Improved methods of cell culture for adoptive cell therapy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050233451A1 (en) * 2002-10-15 2005-10-20 Government Of The United States Of America, Represented By The Sec. Dept. Of Health And Humans Methods of preparing lymphocytes that express interleukin-2 and their use in the treatment of cancer
US20130102075A1 (en) * 2009-12-08 2013-04-25 Juan F. Vera Methods of cell culture for adoptive cell therapy

Cited By (346)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10760055B2 (en) 2005-10-18 2020-09-01 National Jewish Health Conditionally immortalized long-term stem cells and methods of making and using such cells
US11667695B2 (en) 2008-05-16 2023-06-06 Taiga Biotechnologies, Inc. Antibodies and processes for preparing the same
US11369678B2 (en) 2008-08-28 2022-06-28 Taiga Biotechnologies, Inc. Compositions and methods for modulating immune cells
US10953048B2 (en) 2012-07-20 2021-03-23 Taiga Biotechnologies, Inc. Enhanced reconstitution and autoreconstitution of the hematopoietic compartment
US11111478B2 (en) 2012-09-06 2021-09-07 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of producing T memory stem cell populations
US10316289B2 (en) 2012-09-06 2019-06-11 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of producing T memory stem cell populations
US11679128B2 (en) 2013-03-01 2023-06-20 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of producing enriched populations of tumor reactive T cells from peripheral blood
EP3821898A1 (en) 2013-03-01 2021-05-19 The United States of America, as represented by The Secretary, Department of Health and Human Services Methods of producing enriched populations of tumor-reactive t cells from tumor
EP3628322A1 (en) 2013-03-01 2020-04-01 The United States of America, as represented by the Secretary, Department of Health and Human Services Cd8+ t cells that also express pd-1 and/or tim-3 for the treatment of cancer
US9844569B2 (en) 2013-03-01 2017-12-19 The United State Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of producing enriched populations of tumor reactive T cells from peripheral blood
WO2014133568A1 (en) 2013-03-01 2014-09-04 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of producing enriched populations of tumor reactive t cells from peripheral blood
WO2014133567A1 (en) 2013-03-01 2014-09-04 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of producing enriched populations of tumor-reactive t cells from tumor
US10716809B2 (en) 2013-03-01 2020-07-21 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of producing enriched populations of tumor reactive T cells from peripheral blood
CN111643524A (en) * 2013-03-01 2020-09-11 美国卫生和人力服务部 Method for generating enriched populations of tumor-reactive T cells from peripheral blood
US10786534B2 (en) 2013-03-11 2020-09-29 Taiga Biotechnologies, Inc. Production and use of red blood cells
EP3626817A1 (en) 2013-07-15 2020-03-25 The United States of America, as represented by the Secretary, Department of Health and Human Services Methods of preparing anti-human papillomavirus antigen t cells
EP3572423A1 (en) 2013-07-15 2019-11-27 The U.S.A. as represented by the Secretary, Department of Health and Human Services Anti-human papillomavirus 16 e6 t cell receptors
US11338032B2 (en) 2013-07-15 2022-05-24 The United States of Americans represented by the Secretary, Department of Health and Human Services Methods of preparing anti-human papillomavirus antigen T cells
US11077182B2 (en) 2013-07-15 2021-08-03 The United States of Americans represented by the Secretary, Department of Health and Human Services Methods of preparing anti-human papillomavirus antigen T cells
CN111733131A (en) * 2013-07-15 2020-10-02 美国卫生和人力服务部 Method for preparing anti-human papilloma virus antigen T cell
WO2015009606A1 (en) 2013-07-15 2015-01-22 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-human papillomavirus 16 e6 t cell receptors
EP4137564A1 (en) 2013-07-15 2023-02-22 The United States of America, as represented by the Secretary, Department of Health and Human Services Methods of preparing anti-human papillomavirus antigen t cells
US10913785B2 (en) 2013-07-15 2021-02-09 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-human papillomavirus 16 E6 T cell receptors
US11918640B2 (en) 2013-07-15 2024-03-05 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of preparing anti-human papillomavirus antigen T cells
US11376318B2 (en) 2013-07-15 2022-07-05 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of preparing anti-human papillomavirus antigen t cells
US9822162B2 (en) 2013-07-15 2017-11-21 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-human papillomavirus 16 E6 T cell receptors
WO2015009604A1 (en) 2013-07-15 2015-01-22 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of preparing anti-human papillomavirus antigen t cells
US10329339B2 (en) 2013-07-15 2019-06-25 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-human papillomavirus 16 E6 T cell receptors
US11697676B2 (en) 2013-07-15 2023-07-11 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-human papillomavirus 16 E6 T cell receptors
US11331385B2 (en) 2013-07-15 2022-05-17 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of preparing anti-human papillomavirus antigen T cells
US11834718B2 (en) 2013-11-25 2023-12-05 The Broad Institute, Inc. Compositions and methods for diagnosing, evaluating and treating cancer by means of the DNA methylation status
US10801070B2 (en) 2013-11-25 2020-10-13 The Broad Institute, Inc. Compositions and methods for diagnosing, evaluating and treating cancer
US11725237B2 (en) 2013-12-05 2023-08-15 The Broad Institute Inc. Polymorphic gene typing and somatic change detection using sequencing data
US11452768B2 (en) 2013-12-20 2022-09-27 The Broad Institute, Inc. Combination therapy with neoantigen vaccine
US10344073B2 (en) * 2014-01-09 2019-07-09 Hadasit Medical Research Services And Development Ltd. Cell compositions and methods for cancer therapy
US11530251B2 (en) 2014-01-09 2022-12-20 Hadasit Medical Research Services And Development Ltd. Methods for cancer therapy using isolated NTB-A ectodomain polypeptides
US11401506B2 (en) 2014-04-10 2022-08-02 H. Lee Moffitt Cancer Center And Research Institute, Inc. Enhanced expansion of tumor-infiltrating lymphocytes for adoptive cell therapy
EP3689900A1 (en) 2014-05-29 2020-08-05 The United States of America, as represented by The Secretary, Department of Health and Human Services Expression vectors for anti-human papillomavirus 16 e7 t cell receptors
US10870687B2 (en) 2014-05-29 2020-12-22 The United States Of America, As Represented By The Secretary, Department Of Health And Human Service Anti-human papillomavirus 16 E7 T cell receptors
US10174098B2 (en) 2014-05-29 2019-01-08 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-human papillomavirus 16 E7 T cell receptors
WO2015184228A1 (en) 2014-05-29 2015-12-03 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-human papillomavirus 16 e7 t cell receptors
US11434272B2 (en) 2014-05-29 2022-09-06 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-human papillomavirus 16 E7 T cell receptors
WO2016053338A1 (en) 2014-10-02 2016-04-07 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of isolating t cell receptors having antigenic specificity for a cancer-specific mutation
US10973894B2 (en) 2014-10-02 2021-04-13 The United States Of America, As Represented By The Secretary, Department Of Health And Human Methods of isolating T cells having antigenic specificity for a cancer-specific mutation
WO2016053339A1 (en) 2014-10-02 2016-04-07 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of isolating t cells having antigenic specificity for a cancer-specific mutation
EP3848456A1 (en) 2014-10-02 2021-07-14 The United States of America, as represented by The Secretary, Department of Health and Human Services Methods of isolating t cells having antigenic specificity for a cancer-specific mutation
EP4074333A1 (en) 2014-10-02 2022-10-19 The United States of America, as represented by the Secretary, Department of Health and Human Services Methods of isolating t cell receptors having antigenic specificity for a cancer-specific mutation
EP3808770A1 (en) 2014-11-14 2021-04-21 The U.S.A. as represented by the Secretary, Department of Health and Human Services Human anti-thyroglobulin t cell receptors
WO2016077525A2 (en) 2014-11-14 2016-05-19 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-human thyroglobulin t cell receptors
US10450372B2 (en) 2014-11-14 2019-10-22 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-thyroglobulin T cell receptors
US11440956B2 (en) 2014-11-14 2022-09-13 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-thyroglobulin T cell receptors
EP3666288A1 (en) 2014-11-26 2020-06-17 The United States of America, as represented by The Secretary, Department of Health and Human Services Anti-mutated kras t cell receptors
WO2016085904A1 (en) 2014-11-26 2016-06-02 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-mutated kras t cell receptors
EP4286407A2 (en) 2014-11-26 2023-12-06 The United States of America, as represented by The Secretary, Department of Health and Human Services Anti-mutated kras t cell receptors
US11207394B2 (en) 2014-11-26 2021-12-28 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-mutated KRAS T cell receptors
EP3597663A1 (en) 2014-12-08 2020-01-22 The U.S.A. as represented by the Secretary, Department of Health and Human Services Anti-cd70 chimeric antigen receptors
US10689456B2 (en) 2014-12-08 2020-06-23 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-CD70 chimeric antigen receptors
EP4043487A1 (en) 2014-12-08 2022-08-17 The United States of America, as represented by The Secretary, Department of Health and Human Services Anti-cd70 chimeric antigen receptors
US11939637B2 (en) 2014-12-19 2024-03-26 Massachusetts Institute Of Technology Molecular biomarkers for cancer immunotherapy
US10975442B2 (en) 2014-12-19 2021-04-13 Massachusetts Institute Of Technology Molecular biomarkers for cancer immunotherapy
EP3757211A1 (en) 2014-12-19 2020-12-30 The Broad Institute, Inc. Methods for profiling the t-cell-receptor repertoire
US10993997B2 (en) 2014-12-19 2021-05-04 The Broad Institute, Inc. Methods for profiling the t cell repertoire
WO2016100977A1 (en) 2014-12-19 2016-06-23 The Broad Institute Inc. Methods for profiling the t-cel- receptor repertoire
WO2016138182A1 (en) * 2015-02-24 2016-09-01 Nodality, Inc. Methods and compositions for immunomodulation
US11629334B2 (en) 2015-05-01 2023-04-18 The United States of Americans represented by the Secretary, Department of Health and Human Services Methods of isolating T cells and T cell receptors having antigenic specificity for a cancer-specific mutation from peripheral blood
WO2016179006A1 (en) 2015-05-01 2016-11-10 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of isolating t cells and t cell receptors having antigenic specificity for a cancer-specific mutation from peripheral blood
US10544392B2 (en) 2015-05-01 2020-01-28 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of isolating T cells and T cell receptors having antigenic specificity for a cancer-specific mutation from peripheral blood
US10835585B2 (en) 2015-05-20 2020-11-17 The Broad Institute, Inc. Shared neoantigens
US11098283B2 (en) 2015-08-25 2021-08-24 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services T cells modified to overexpress c-Myb
WO2017035251A1 (en) 2015-08-25 2017-03-02 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services T cells modified to overexpress c-myb
US10562952B2 (en) 2015-09-10 2020-02-18 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-CD276 chimeric antigen receptors
US10556940B2 (en) 2015-09-15 2020-02-11 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services T cell receptors recognizing HLA-Cw8 restricted mutated KRAS
EP3901169A1 (en) 2015-09-15 2021-10-27 The United States of America, as represented by the Secretary, Department of Health and Human Services T cell receptors recognizing hla-cw8 restricted mutated kras
WO2017048593A1 (en) 2015-09-15 2017-03-23 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services T cell receptors recognizing hla-cw8 restricted mutated kras
US11667692B2 (en) 2015-09-15 2023-06-06 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services T cell receptors recognizing HLA-CW8 restricted mutated KRAS
WO2017069958A2 (en) 2015-10-09 2017-04-27 The Brigham And Women's Hospital, Inc. Modulation of novel immune checkpoint targets
WO2017066122A1 (en) 2015-10-15 2017-04-20 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-cd30 chimeric antigen receptors
US10815301B2 (en) 2015-10-15 2020-10-27 The United States Of America, As Represented By The Secretary, Department Of Health And Human Service Anti-CD30 chimeric antigen receptors
WO2017070042A1 (en) 2015-10-20 2017-04-27 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of producing t cell populations using akt inhibitors
WO2017075478A2 (en) 2015-10-28 2017-05-04 The Broad Institute Inc. Compositions and methods for evaluating and modulating immune responses by use of immune cell gene signatures
WO2017075465A1 (en) 2015-10-28 2017-05-04 The Broad Institute Inc. Compositions and methods for evaluating and modulating immune responses by detecting and targeting gata3
WO2017075451A1 (en) 2015-10-28 2017-05-04 The Broad Institute Inc. Compositions and methods for evaluating and modulating immune responses by detecting and targeting pou2af1
US11186825B2 (en) 2015-10-28 2021-11-30 The Broad Institute, Inc. Compositions and methods for evaluating and modulating immune responses by detecting and targeting POU2AF1
US11180730B2 (en) 2015-10-28 2021-11-23 The Broad Institute, Inc. Compositions and methods for evaluating and modulating immune responses by detecting and targeting GATA3
WO2017079113A1 (en) 2015-11-02 2017-05-11 The United States Of America, As Represented By The Secretary, Department Of Healh And Human Services Methods of producing t cell populations using prolyl hydroxylase domain-containing protein inhibitors
US11001622B2 (en) 2015-11-19 2021-05-11 The Brigham And Women's Hospital, Inc. Method of treating autoimmune disease with lymphocyte antigen CD5-like (CD5L) protein
WO2017087708A1 (en) 2015-11-19 2017-05-26 The Brigham And Women's Hospital, Inc. Lymphocyte antigen cd5-like (cd5l)-interleukin 12b (p40) heterodimers in immunity
US11884717B2 (en) 2015-11-19 2024-01-30 The Brigham And Women's Hospital, Inc. Method of treating autoimmune disease with lymphocyte antigen CD5-like (CD5L) protein
US11530386B2 (en) 2015-12-15 2022-12-20 Instil Bio (Uk) Limited Cells expressing recombinant growth factor receptors
WO2017139199A1 (en) 2016-02-10 2017-08-17 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Inducible arginase
WO2017178572A1 (en) 2016-04-13 2017-10-19 Vivia Biotech, S.L Ex vivo bite-activated t cells
WO2017189254A1 (en) 2016-04-26 2017-11-02 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-kk-lc-1 t cell receptors
US11352410B2 (en) 2016-04-26 2022-06-07 The United States of American, as represented by the Secretary, Department of Health and Human Service Anti-KK-LC-1 T cell receptors
US11141434B2 (en) 2016-07-07 2021-10-12 Iovance Biotherapeutics, Inc. Programmed death 1 ligand 1 (PD-L1) binding proteins and methods of use thereof
EP4159751A1 (en) 2016-08-02 2023-04-05 The United States of America, as represented by the Secretary, Department of Health and Human Services Anti-kras-g12d t cell receptors
US11208456B2 (en) 2016-08-02 2021-12-28 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-KRAS-G12D T cell receptors
WO2018026691A1 (en) 2016-08-02 2018-02-08 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-kras-g12d t cell receptors
US11840561B2 (en) 2016-08-02 2023-12-12 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-KRAS-G12D T cell receptors
US11897933B2 (en) 2016-08-02 2024-02-13 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-KRAS-G12D T cell receptors
US10611816B2 (en) 2016-08-02 2020-04-07 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-KRAS-G12D T cell receptors
WO2018049025A2 (en) 2016-09-07 2018-03-15 The Broad Institute Inc. Compositions and methods for evaluating and modulating immune responses
WO2018057769A1 (en) 2016-09-22 2018-03-29 Corning Incorporated Gravity flow cell culture devices, systems and methods of use thereof
WO2018067991A1 (en) 2016-10-07 2018-04-12 The Brigham And Women's Hospital, Inc. Modulation of novel immune checkpoint targets
EP4180520A1 (en) 2016-10-26 2023-05-17 Iovance Biotherapeutics, Inc. Restimulation of cryopreserved tumor infiltrating lymphocytes
US11344581B2 (en) 2016-10-26 2022-05-31 Iovance Biotherapeutics, Inc. Restimulation of cryopreserved tumor infiltrating lymphocytes
US11865140B2 (en) 2016-10-26 2024-01-09 Iovance Biotherapeutics, Inc. Restimulation of cryopreserved tumor infiltrating lymphocytes
US10517894B2 (en) 2016-10-26 2019-12-31 Iovance Biotherapeutics, Inc. Restimulation of cryopreserved tumor infiltrating lymphocytes
US11141438B2 (en) 2016-10-26 2021-10-12 Iovance Biotherapeutics, Inc. Restimulation of cryopreserved tumor infiltrating lymphocytes
WO2018081473A1 (en) 2016-10-26 2018-05-03 Iovance Biotherapeutics, Inc. Restimulation of cryopreserved tumor infiltrating lymphocytes
US11123371B2 (en) 2016-10-26 2021-09-21 Iovance Biotherapeutics, Inc. Restimulation of cryopreserved tumor infiltrating lymphocytes
US11857573B2 (en) 2016-10-26 2024-01-02 Iovance Biotherapeutics, Inc. Restimulation of cryopreserved tumor infiltrating lymphocytes
US11351198B2 (en) 2016-10-26 2022-06-07 Iovance Biotherapeutics, Inc. Restimulation of cryopreserved tumor infiltrating lymphocytes
US11179419B2 (en) 2016-10-26 2021-11-23 Iovance Biotherapeutics, Inc. Restimulation of cryopreserved tumor infiltrating lymphocytes
US11026974B2 (en) 2016-10-26 2021-06-08 Iovance Biotherapeutics, Inc. Restimulation of cryopreserved tumor infiltrating lymphocytes
US11058728B1 (en) 2016-10-26 2021-07-13 Iovance Biotherapeutics, Inc. Restimulation of cryopreserved tumor infiltrating lymphocytes
US11344580B2 (en) 2016-10-26 2022-05-31 Iovance Biotherapeutics, Inc. Restimulation of cryopreserved tumor infiltrating lymphocytes
US11369637B2 (en) 2016-10-26 2022-06-28 Iovance Biotherapeutics, Inc. Restimulation of cryopreserved tumor infiltrating lymphocytes
US11364266B2 (en) 2016-10-26 2022-06-21 Iovance Biotherapeutics, Inc. Restimulation of cryopreserved tumor infiltrating lymphocytes
US11266694B2 (en) 2016-10-26 2022-03-08 Iovance Biotherapeutics, Inc. Restimulation of cryopreserved tumor infiltrating lymphocytes
US11304980B2 (en) 2016-10-26 2022-04-19 Iovance Biotherapeutics, Inc. Restimulation of cryopreserved tumor infiltrating lymphocytes
US11311578B2 (en) 2016-10-26 2022-04-26 Iovance Biotherapeutics, Inc. Restimulation of cryopreserved tumor infiltrating lymphocytes
US11351197B2 (en) 2016-10-26 2022-06-07 Iovante Biotherapeutics, Inc. Restimulation of cryopreserved tumor infiltrating lymphocytes
US11351199B2 (en) 2016-10-26 2022-06-07 Iovance Biotherapeutics, Inc. Restimulation of cryopreserved tumor infiltrating lymphocytes
US10415015B2 (en) 2016-10-31 2019-09-17 Iovance Biotherapeutics, Inc. Engineered artificial antigen presenting cells for tumor infiltrating lymphocyte expansion
US11667890B2 (en) 2016-10-31 2023-06-06 Iovance Biotherapeutics, Inc. Engineered artificial antigen presenting cells for tumor infiltrating lymphocyte expansion
WO2018081789A1 (en) 2016-10-31 2018-05-03 Iovance Biotherapeutics, Inc. Engineered artificial antigen presenting cells for tumor infiltrating lymphocyte expansion
US11401507B2 (en) 2016-11-17 2022-08-02 Iovance Biotherapeutics, Inc. Remnant tumor infiltrating lymphocytes and methods of preparing and using the same
US11293009B2 (en) * 2016-11-17 2022-04-05 Iovance Biotherapeutics, Inc. Remnant tumor infiltrating lymphocytes and methods of preparing and using the same
US11220670B2 (en) 2016-11-17 2022-01-11 Iovance Biotherapeutics, Inc. Remnant tumor infiltrating lymphocytes and methods of preparing and using the same
JP2019534030A (en) * 2016-11-17 2019-11-28 アイオバンス バイオセラピューティクス,インコーポレイテッド Remnant tumor infiltrating lymphocytes and methods of preparing and using the same
CN110199016A (en) * 2016-11-17 2019-09-03 艾欧凡斯生物治疗公司 Tumors remaining lymphocyte infiltration and its preparation and application
KR20190084101A (en) * 2016-11-17 2019-07-15 이오반스 바이오테라퓨틱스, 인크. Residual tumor invading lymphocytes and methods of making and using the same
JP7125392B2 (en) 2016-11-17 2022-08-24 アイオバンス バイオセラピューティクス,インコーポレイテッド Remnant tumor-infiltrating lymphocytes and methods of preparing and using the same
WO2018094167A1 (en) 2016-11-17 2018-05-24 Iovance Biotherapeutics, Inc. Remnant tumor infiltrating lymphocytes and methods of preparing and using the same
TWI826360B (en) * 2016-11-17 2023-12-21 美商艾歐凡斯生物治療公司 Remnant tumor infiltrating lymphocytes and methods of preparing and using the same
KR102618948B1 (en) 2016-11-17 2023-12-27 이오반스 바이오테라퓨틱스, 인크. Residual tumor infiltrating lymphocytes and methods of making and using the same
US11116796B2 (en) 2016-12-02 2021-09-14 Taiga Biotechnologies, Inc. Nanoparticle formulations
WO2018111981A1 (en) 2016-12-13 2018-06-21 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of preparing an isolated or purified population of thymic emigrant cells and methods of treatment using same
US11357841B2 (en) 2017-01-06 2022-06-14 Iovance Biotherapeutics, Inc. Expansion of tumor infiltrating lymphocytes with potassium channel agonists and therapeutic uses thereof
WO2018129332A1 (en) 2017-01-06 2018-07-12 Iovance Biotherapeutics, Inc. Expansion of tumor infiltrating lymphocytes (tils) with tumor necrosis factor receptor superfamily (tnfrsf) agonists and therapeutic combinations of tils and tnfrsf agonists
WO2018129336A1 (en) 2017-01-06 2018-07-12 Iovance Biotherapeutics, Inc. Expansion of tumor infiltrating lymphocytes with potassium channel agonists and therapeutic uses thereof
US11618877B2 (en) 2017-01-13 2023-04-04 Instil Bio (Uk) Limited Aseptic tissue processing method, kit and device
US11618878B2 (en) 2017-01-13 2023-04-04 Instil Bio (Uk) Limited Aseptic tissue processing method, kit and device
US11549149B2 (en) 2017-01-24 2023-01-10 The Broad Institute, Inc. Compositions and methods for detecting a mutant variant of a polynucleotide
US20200246384A1 (en) * 2017-03-29 2020-08-06 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
US11168304B2 (en) 2017-03-29 2021-11-09 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
WO2018182817A1 (en) 2017-03-29 2018-10-04 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
US10918666B2 (en) 2017-03-29 2021-02-16 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
US11254913B1 (en) 2017-03-29 2022-02-22 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
US10925900B2 (en) 2017-03-29 2021-02-23 lovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
US11241456B2 (en) 2017-03-29 2022-02-08 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
US10933094B2 (en) 2017-03-29 2021-03-02 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
US11273180B2 (en) 2017-03-29 2022-03-15 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
US10639330B2 (en) 2017-03-29 2020-05-05 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
US10946044B2 (en) 2017-03-29 2021-03-16 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
US10946045B2 (en) 2017-03-29 2021-03-16 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
US10953047B2 (en) 2017-03-29 2021-03-23 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
EP4279574A3 (en) * 2017-03-29 2024-04-10 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
US10953046B2 (en) 2017-03-29 2021-03-23 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
US11939596B2 (en) 2017-03-29 2024-03-26 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
JP2020515257A (en) * 2017-03-29 2020-05-28 アイオバンス バイオセラピューティクス,インコーポレイテッド Method of producing tumor infiltrating lymphocytes and their use in immunotherapy
US10653723B1 (en) 2017-03-29 2020-05-19 Iovance, Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of the same in immunotherapy
EP4279574A2 (en) 2017-03-29 2023-11-22 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
US11304979B2 (en) 2017-03-29 2022-04-19 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
US10463697B2 (en) 2017-03-29 2019-11-05 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
US10420799B2 (en) 2017-03-29 2019-09-24 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
US11202803B1 (en) 2017-03-29 2021-12-21 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
US11007226B2 (en) 2017-03-29 2021-05-18 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
US11007225B1 (en) 2017-03-29 2021-05-18 lovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
US10130659B2 (en) * 2017-03-29 2018-11-20 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
US11202804B2 (en) 2017-03-29 2021-12-21 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
US11013770B1 (en) 2017-03-29 2021-05-25 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
US11337998B2 (en) 2017-03-29 2022-05-24 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
US10166257B2 (en) * 2017-03-29 2019-01-01 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
US11344579B2 (en) 2017-03-29 2022-05-31 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
TWI799402B (en) * 2017-03-29 2023-04-21 美商艾歐凡斯生物治療公司 Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
US11040070B2 (en) 2017-03-29 2021-06-22 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
US11052115B2 (en) 2017-03-29 2021-07-06 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
US11052116B2 (en) 2017-03-29 2021-07-06 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
US10646517B2 (en) 2017-03-29 2020-05-12 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
EP3766964A1 (en) 2017-03-29 2021-01-20 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
US11291687B2 (en) 2017-03-29 2022-04-05 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
US10363273B2 (en) 2017-03-29 2019-07-30 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
US11083752B2 (en) 2017-03-29 2021-08-10 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
EP3910055A1 (en) 2017-03-29 2021-11-17 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
US11541077B2 (en) 2017-03-29 2023-01-03 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
US11529372B1 (en) 2017-03-29 2022-12-20 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
US11517592B1 (en) 2017-03-29 2022-12-06 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
JP7169291B2 (en) 2017-03-29 2022-11-10 アイオバンス バイオセラピューティクス,インコーポレイテッド Method for producing tumor-infiltrating lymphocytes and method for their use in immunotherapy
US10272113B2 (en) 2017-03-29 2019-04-30 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
US10398734B2 (en) 2017-03-29 2019-09-03 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
EP3722415A1 (en) 2017-03-29 2020-10-14 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
EP3730608A1 (en) 2017-03-29 2020-10-28 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
US11168303B2 (en) 2017-03-29 2021-11-09 Iovance Biotherapeutics Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
US11273181B2 (en) 2017-03-29 2022-03-15 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
CN110785486A (en) * 2017-03-29 2020-02-11 艾欧凡斯生物治疗公司 Method for producing tumor infiltrating lymphocytes and application thereof in immunotherapy
US10695372B2 (en) 2017-03-29 2020-06-30 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
US10537595B2 (en) 2017-03-29 2020-01-21 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
US10894063B2 (en) 2017-03-29 2021-01-19 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
US10905718B2 (en) 2017-03-29 2021-02-02 lovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
US11898207B2 (en) 2017-03-31 2024-02-13 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of isolating neoantigen-specific T cell receptor sequences
WO2018183485A1 (en) 2017-03-31 2018-10-04 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of isolating neoantigen-specific t cell receptor sequences
EP4234576A2 (en) 2017-03-31 2023-08-30 The United States of America, as represented by the Secretary, Department of Health and Human Services Methods of isolating neoantigen-specific t cell receptor sequences
US11913075B2 (en) 2017-04-01 2024-02-27 The Broad Institute, Inc. Methods and compositions for detecting and modulating an immunotherapy resistance gene signature in cancer
WO2018191553A1 (en) 2017-04-12 2018-10-18 Massachusetts Eye And Ear Infirmary Tumor signature for metastasis, compositions of matter methods of use thereof
WO2018195019A1 (en) 2017-04-18 2018-10-25 The Broad Institute Inc. Compositions for detecting secretion and methods of use
WO2018204761A1 (en) * 2017-05-05 2018-11-08 H. Lee Moffitt Cancer Center And Research Institute, Inc. Rapid method for the culture of tumor infiltrating lymphocytes
WO2018209115A1 (en) 2017-05-10 2018-11-15 Iovance Biotherapeutics, Inc. Expansion of tumor infiltrating lymphocytes from liquid tumors and therapeutic uses thereof
WO2018226714A1 (en) 2017-06-05 2018-12-13 Iovance Biotherapeutics, Inc. Methods of using tumor infiltrating lymphocytes in double-refractory melanoma
US11433097B2 (en) * 2017-06-05 2022-09-06 Iovance Biotherapeutics, Inc. Methods of using tumor infiltrating lymphocytes in double-refractory melanoma
WO2020117233A1 (en) 2017-06-05 2020-06-11 Iovance Biotherapeutics, Inc. Methods of using tumor infiltrating lymphocytes in double-refractory melanoma
US11819517B2 (en) 2017-06-05 2023-11-21 Iovance Biotherapeutics, Inc. Methods of using tumor infiltrating lymphocytes in double-refractory melanoma
US11897953B2 (en) 2017-06-14 2024-02-13 The Broad Institute, Inc. Compositions and methods targeting complement component 3 for inhibiting tumor growth
EP4026554A1 (en) 2017-08-03 2022-07-13 Taiga Biotechnologies, Inc. Methods and compositions for the treatment of melanoma
WO2019027465A1 (en) 2017-08-03 2019-02-07 Taiga Biotechnologies, Inc. Methods and compositions for the treatment of melanoma
US10864259B2 (en) 2017-08-03 2020-12-15 Taiga Biotechnologies, Inc. Methods and compositions for the treatment of melanoma
US10149898B2 (en) 2017-08-03 2018-12-11 Taiga Biotechnologies, Inc. Methods and compositions for the treatment of melanoma
CN107502589A (en) * 2017-08-04 2017-12-22 北京世纪劲得生物技术有限公司 A kind of tumor infiltrating lymphocyte and mononuclearcell co-culture method
WO2019060336A1 (en) 2017-09-20 2019-03-28 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services In vitro generation of thymic organoid from human pluripotent stem cells
WO2019060349A1 (en) 2017-09-20 2019-03-28 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Hla class ii–restricted t cell receptors against mutated ras
US11898166B2 (en) 2017-09-20 2024-02-13 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services In vitro generation of thymic organoid from human pluripotent stem cells
US11306132B2 (en) 2017-09-20 2022-04-19 The United States Of America, As Represented By The Secretary Department Of Health And Human Services HLA class II-restricted T cell receptors against mutated RAS
WO2019067242A1 (en) 2017-09-29 2019-04-04 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of isolating t cells having antigenic specificity for a p53 cancer-specific mutation
WO2019067243A1 (en) 2017-09-29 2019-04-04 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services T cell receptors recognizing mutated p53
US11939365B2 (en) 2017-09-29 2024-03-26 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services T cell receptors recognizing mutated P53
EP4269595A2 (en) 2017-10-05 2023-11-01 The United States of America, as represented by the Secretary, Department of Health and Human Services Methods for selectively expanding cells expressing a tcr with a murine constant region
WO2019070435A1 (en) 2017-10-05 2019-04-11 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods for selectively expanding cells expressing a tcr with a murine constant region
WO2019075055A1 (en) 2017-10-11 2019-04-18 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of producing t cell populations using p38 mapk inhibitors
WO2019077062A1 (en) 2017-10-18 2019-04-25 Vivia Biotech, S.L. Bite-activated car-t cells
US11732257B2 (en) 2017-10-23 2023-08-22 Massachusetts Institute Of Technology Single cell sequencing libraries of genomic transcript regions of interest in proximity to barcodes, and genotyping of said libraries
WO2019094983A1 (en) 2017-11-13 2019-05-16 The Broad Institute, Inc. Methods and compositions for treating cancer by targeting the clec2d-klrb1 pathway
WO2019100023A1 (en) 2017-11-17 2019-05-23 Iovance Biotherapeutics, Inc. Til expansion from fine needle aspirates and small biopsies
WO2019103857A1 (en) 2017-11-22 2019-05-31 Iovance Biotherapeutics, Inc. Expansion of peripheral blood lymphocytes (pbls) from peripheral blood
WO2019112932A1 (en) 2017-12-04 2019-06-13 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of enriching cell populations for cancer-specific t cells using in vitro stimulation of memory t cells
US11466071B2 (en) 2017-12-04 2022-10-11 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services HLA class I-restricted t cell receptors against mutated RAS
WO2019112941A1 (en) 2017-12-04 2019-06-13 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Hla class i-restricted t cell receptors against mutated ras
WO2019118873A3 (en) * 2017-12-15 2019-10-24 Iovance Biotherapeutics, Inc. Systems and methods for determining the beneficial administration of tumor infiltrating lymphocytes, and methods of use thereof and beneficial administration of tumor infiltrating lymphocytes, and methods of use thereof
JP2021508104A (en) * 2017-12-15 2021-02-25 アイオバンス バイオセラピューティクス,インコーポレイテッド Systems and methods for determining beneficial administration of tumor-infiltrating lymphocytes and their use, as well as beneficial administration of tumor-infiltrating lymphocytes and their use.
WO2019118873A2 (en) 2017-12-15 2019-06-20 Iovance Biotherapeutics, Inc. Systems and methods for determining the beneficial administration of tumor infiltrating lymphocytes, and methods of use thereof and beneficial administration of tumor infiltrating lymphocytes, and methods of use thereof
US11713446B2 (en) 2018-01-08 2023-08-01 Iovance Biotherapeutics, Inc. Processes for generating TIL products enriched for tumor antigen-specific T-cells
WO2019136456A1 (en) 2018-01-08 2019-07-11 Iovance Biotherapeutics, Inc. Processes for generating til products enriched for tumor antigen-specific t-cells
WO2019136459A1 (en) 2018-01-08 2019-07-11 Iovance Biotherapeutics, Inc. Processes for generating til products enriched for tumor antigen-specific t-cells
US11834487B2 (en) 2018-02-12 2023-12-05 Hadasit Medical Research Services & Development Ltd. Modulation of SLAMF6 splice variants for cancer therapy
WO2019160829A1 (en) 2018-02-13 2019-08-22 Iovance Biotherapeutics, Inc. Expansion of tumor infiltrating lymphocytes (tils) with adenosine a2a receptor antagonists and therapeutic combinations of tils and adenosine a2a receptor antagonists
JP2021512962A (en) * 2018-02-13 2021-05-20 アイオバンス バイオセラピューティクス,インコーポレイテッド Expansion culture of tumor-infiltrating lymphocytes (TIL) with adenosine A2A receptor antagonist and therapeutic combination of TIL and adenosine A2A receptor antagonist
WO2019173441A1 (en) 2018-03-06 2019-09-12 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of preparing populations of cells and retroviral reagents for adoptive cell immunotherapy
CN112513254A (en) * 2018-03-29 2021-03-16 艾欧凡斯生物治疗公司 Preparation method of tumor infiltrating lymphocytes and application of tumor infiltrating lymphocytes in immunotherapy
WO2019190579A1 (en) 2018-03-29 2019-10-03 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
US11963966B2 (en) 2018-03-30 2024-04-23 Dana-Farber Cancer Institute, Inc. Compositions and methods for treating ovarian tumors
WO2019209715A1 (en) 2018-04-24 2019-10-31 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of producing t cell populations using hydroxycitric acid and/or a salt thereof
US11957695B2 (en) 2018-04-26 2024-04-16 The Broad Institute, Inc. Methods and compositions targeting glucocorticoid signaling for modulating immune responses
CN112368003A (en) * 2018-04-27 2021-02-12 艾欧凡斯生物治疗公司 Gene editing of tumor infiltrating lymphocytes and use thereof in immunotherapy
WO2019210131A1 (en) 2018-04-27 2019-10-31 Iovance Biotherapeutics, Inc. Closed process for expansion and gene editing of tumor infiltrating lymphocytes and uses of same in immunotherapy
US11384337B2 (en) 2018-04-27 2022-07-12 Iovance Biotherapeutics, Inc. Closed process for expansion and gene editing of tumor infiltrating lymphocytes and uses of same in immunotherapy
US11866688B2 (en) 2018-04-27 2024-01-09 Iovance Biotherapeutics, Inc. Closed process for expansion and gene editing of tumor infiltrating lymphocytes and uses of same in immunotherapy
WO2019213195A1 (en) 2018-05-01 2019-11-07 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services T cell receptors which recognize mutated egfr
WO2019217753A1 (en) 2018-05-10 2019-11-14 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
WO2019232542A2 (en) 2018-06-01 2019-12-05 Massachusetts Institute Of Technology Methods and compositions for detecting and modulating microenvironment gene signatures from the csf of metastasis patients
WO2020096682A2 (en) 2018-08-31 2020-05-14 Iovance Biotherapeutics, Inc. Treatment of nsclc patients refractory for anti-pd-1 antibody
WO2020061429A1 (en) 2018-09-20 2020-03-26 Iovance Biotherapeutics, Inc. Expansion of tils from cryopreserved tumor samples
WO2020068816A1 (en) * 2018-09-24 2020-04-02 H. Lee Moffitt Cancer Center And Research Institute, Inc. Culture of tumor infiltrating lymphocytes from tumor digest
WO2020072700A1 (en) 2018-10-02 2020-04-09 Dana-Farber Cancer Institute, Inc. Hla single allele lines
WO2020081730A2 (en) 2018-10-16 2020-04-23 Massachusetts Institute Of Technology Methods and compositions for modulating microenvironment
WO2020086827A1 (en) 2018-10-24 2020-04-30 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Hla-a3–restricted t cell receptors against mutated ras
WO2020096989A1 (en) 2018-11-05 2020-05-14 Iovance Biotherapeutics, Inc. Treatment of nsclc patients refractory for anti-pd-1 antibody
WO2020096988A2 (en) 2018-11-05 2020-05-14 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of the same in immunotherapy
WO2020096927A1 (en) 2018-11-05 2020-05-14 Iovance Biotherapeutics, Inc. Expansion of tils utilizing akt pathway inhibitors
JP2022512915A (en) * 2018-11-05 2022-02-07 アイオバンス バイオセラピューティクス,インコーポレイテッド Selection of improved tumor-reactive T cells
WO2020096986A2 (en) 2018-11-05 2020-05-14 Iovance Biotherapeutics, Inc. Selection of improved tumor reactive t-cells
WO2020131586A2 (en) 2018-12-17 2020-06-25 The Broad Institute, Inc. Methods for identifying neoantigens
WO2020131547A1 (en) 2018-12-19 2020-06-25 Iovance Biotherapeutics, Inc. Methods of expanding tumor infiltrating lymphocytes using engineered cytokine receptor pairs and uses thereof
US11739156B2 (en) 2019-01-06 2023-08-29 The Broad Institute, Inc. Massachusetts Institute of Technology Methods and compositions for overcoming immunosuppression
WO2020154275A1 (en) 2019-01-22 2020-07-30 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Hla class ii-restricted t cell receptors against ras with g12r mutation
WO2020172202A1 (en) 2019-02-19 2020-08-27 Myst Therapeutics, Inc. Methods for producing autologous t cells useful to treat cancers and compositions thereof
WO2020186101A1 (en) 2019-03-12 2020-09-17 The Broad Institute, Inc. Detection means, compositions and methods for modulating synovial sarcoma cells
WO2020191079A1 (en) 2019-03-18 2020-09-24 The Broad Institute, Inc. Compositions and methods for modulating metabolic regulators of t cell pathogenicity
WO2020205662A1 (en) 2019-03-29 2020-10-08 Myst Therapeutics, Inc. Ex vivo methods for producing a t cell therapeutic and related compositions and methods
WO2020232029A1 (en) 2019-05-13 2020-11-19 Iovance Biotherapeutics, Inc. Methods and compositions for selecting tumor infiltrating lymphocytes and uses of the same in immunotherapy
WO2020236967A1 (en) 2019-05-20 2020-11-26 The Broad Institute, Inc. Random crispr-cas deletion mutant
WO2020243371A1 (en) 2019-05-28 2020-12-03 Massachusetts Institute Of Technology Methods and compositions for modulating immune responses
WO2020264269A1 (en) 2019-06-27 2020-12-30 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services T cell receptors recognizing r175h or y220c mutation in p53
WO2021030627A1 (en) 2019-08-13 2021-02-18 The General Hospital Corporation Methods for predicting outcomes of checkpoint inhibition and treatment thereof
WO2021041922A1 (en) 2019-08-30 2021-03-04 The Broad Institute, Inc. Crispr-associated mu transposase systems
WO2021055787A1 (en) 2019-09-18 2021-03-25 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of isolating t cell populations
US11793787B2 (en) 2019-10-07 2023-10-24 The Broad Institute, Inc. Methods and compositions for enhancing anti-tumor immunity by targeting steroidogenesis
WO2021081378A1 (en) 2019-10-25 2021-04-29 Iovance Biotherapeutics, Inc. Gene editing of tumor infiltrating lymphocytes and uses of same in immunotherapy
WO2021092555A2 (en) 2019-11-08 2021-05-14 Kiyatec, Inc. Methods of screening to determine effective dosing of cancer therapeutics
WO2021108727A1 (en) 2019-11-27 2021-06-03 Myst Therapeutics, Inc. Method of producing tumor-reactive t cell composition using modulatory agents
WO2021118990A1 (en) 2019-12-11 2021-06-17 Iovance Biotherapeutics, Inc. Processes for the production of tumor infiltrating lymphocytes (tils) and methods of using the same
US11767510B2 (en) 2019-12-20 2023-09-26 Instil Bio (Uk) Limited Devices and methods for isolating tumor infiltrating lymphocytes and uses thereof
US11865168B2 (en) 2019-12-30 2024-01-09 Massachusetts Institute Of Technology Compositions and methods for treating bacterial infections
WO2021142081A1 (en) 2020-01-07 2021-07-15 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of producing t cell populations using induced pluripotent stem cells
WO2021163434A1 (en) 2020-02-12 2021-08-19 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Hla class i-restricted t cell receptors against ras with g12d mutation
WO2021163477A1 (en) 2020-02-14 2021-08-19 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Hla class i-restricted t cell receptors against ras with g12v mutation
WO2021173902A1 (en) 2020-02-26 2021-09-02 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Hla class ii-restricted t cell receptors against ras with g12v mutation
WO2021174208A1 (en) 2020-02-27 2021-09-02 Myst Therapeutics, Llc Methods for ex vivo enrichment and expansion of tumor reactive t cells and related compositions thereof
WO2021188954A1 (en) 2020-03-20 2021-09-23 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of isolating t-cells and t-cell receptors from tumor by single-cell analysis for immunotherapy
WO2021188941A1 (en) 2020-03-20 2021-09-23 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of isolating t cells and t-cell receptors from peripheral blood by single-cell analysis for immunotherapy
WO2021211455A1 (en) 2020-04-13 2021-10-21 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Hla class i-restricted t cell receptors against lmp2
WO2021216920A1 (en) 2020-04-22 2021-10-28 Iovance Biotherapeutics, Inc. Systems and methods for coordinating manufacturing of cells for patient-specific immunotherapy
US11631483B2 (en) 2020-04-22 2023-04-18 Iovance Biotherapeutics, Inc. Systems and methods for coordinating manufacturing of cells for patient-specific immunotherapy
WO2021226085A1 (en) 2020-05-04 2021-11-11 Iovance Biotherapeutics, Inc. Selection of improved tumor reactive t-cells
WO2021226061A1 (en) 2020-05-04 2021-11-11 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of the same in immunotherapy
WO2021262829A2 (en) 2020-06-24 2021-12-30 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Hla class i-restricted t cell receptors against cd20
WO2022015694A1 (en) 2020-07-13 2022-01-20 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Hla class ii–restricted drb t cell receptors against ras with g12d mutation
WO2022015922A1 (en) 2020-07-16 2022-01-20 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Hla class ii-restricted drb t cell receptors against ras with g12v mutation
WO2022051449A2 (en) 2020-09-04 2022-03-10 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services T cell receptors recognizing r273c or y220c mutations in p53
WO2022055946A1 (en) 2020-09-08 2022-03-17 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services T cell phenotypes associated with response to adoptive cell therapy
WO2022072760A1 (en) 2020-10-02 2022-04-07 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Hla class ii-restricted dq t cell receptors against ras with g13d mutation
WO2022076606A1 (en) 2020-10-06 2022-04-14 Iovance Biotherapeutics, Inc. Treatment of nsclc patients with tumor infiltrating lymphocyte therapies
WO2022076952A1 (en) 2020-10-06 2022-04-14 Iovance Biotherapeutics, Inc. Treatment of nsclc patients with tumor infiltrating lymphocyte therapies
WO2022104035A2 (en) 2020-11-13 2022-05-19 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Enhanced antigen reactivity of immune cells expressing a mutant non-signaling cd3 zeta chain
WO2022105816A1 (en) * 2020-11-19 2022-05-27 苏州沙砾生物科技有限公司 Method for culturing tumor infiltrating lymphocytes and use thereof
WO2022125941A1 (en) 2020-12-11 2022-06-16 Iovance Biotherapeutics, Inc. Treatment of cancer patients with tumor infiltrating lymphocyte therapies in combination with braf inhibitors and/or mek inhibitors
WO2022133140A1 (en) 2020-12-17 2022-06-23 Iovance Biotherapeutics, Inc. Treatment with tumor infiltrating lymphocyte therapies in combination with ctla-4 and pd-1 inhibitors
WO2022133149A1 (en) 2020-12-17 2022-06-23 Iovance Biotherapeutics, Inc. Treatment of cancers with tumor infiltrating lymphocytes
WO2022147196A2 (en) 2020-12-31 2022-07-07 Iovance Biotherapeutics, Inc. Devices and processes for automated production of tumor infiltrating lymphocytes
CN114763530A (en) * 2021-01-15 2022-07-19 上海细胞治疗集团有限公司 Method for inducing and preparing TIL cells
WO2022170219A1 (en) 2021-02-05 2022-08-11 Iovance Biotherapeutics, Inc. Adjuvant therapy for cancer
WO2022177961A1 (en) 2021-02-16 2022-08-25 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Hla class i–restricted t cell receptors against cd22
WO2022187741A2 (en) 2021-03-05 2022-09-09 Iovance Biotherapeutics, Inc. Tumor storage and cell culture compositions
CN113005085A (en) * 2021-03-18 2021-06-22 南方医科大学南方医院 Novel method for culturing and in-vitro amplifying primary liver cancer tumor infiltrating lymphocytes
WO2022198141A1 (en) 2021-03-19 2022-09-22 Iovance Biotherapeutics, Inc. Methods for tumor infiltrating lymphocyte (til) expansion related to cd39/cd69 selection and gene knockout in tils
WO2022204155A1 (en) 2021-03-23 2022-09-29 Iovance Biotherapeutics, Inc. Cish gene editing of tumor infiltrating lymphocytes and uses of same in immunotherapy
WO2022204564A2 (en) 2021-03-25 2022-09-29 Iovance Biotherapeutics, Inc. Methods and compositions for t-cell coculture potency assays and use with cell therapy products
WO2022225981A2 (en) 2021-04-19 2022-10-27 Iovance Biotherapeutics, Inc. Chimeric costimulatory receptors, chemokine receptors, and the use of same in cellular immunotherapies
WO2022225836A1 (en) 2021-04-21 2022-10-27 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Hla class i-restricted t cell receptors against ras with q61k mutation
WO2022236050A1 (en) 2021-05-07 2022-11-10 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services T cell receptors recognizing c135y, r175h, or m237i mutation in p53
WO2022245754A1 (en) 2021-05-17 2022-11-24 Iovance Biotherapeutics, Inc. Pd-1 gene-edited tumor infiltrating lymphocytes and uses of same in immunotherapy
WO2023009716A1 (en) 2021-07-28 2023-02-02 Iovance Biotherapeutics, Inc. Treatment of cancer patients with tumor infiltrating lymphocyte therapies in combination with kras inhibitors
WO2023039488A1 (en) 2021-09-09 2023-03-16 Iovance Biotherapeutics, Inc. Processes for generating til products using pd-1 talen knockdown
WO2023049862A1 (en) 2021-09-24 2023-03-30 Iovance Biotherapeutics, Inc. Expansion processes and agents for tumor infiltrating lymphocytes
WO2023077015A2 (en) 2021-10-27 2023-05-04 Iovance Biotherapeutics, Inc. Systems and methods for coordinating manufacturing of cells for patient-specific immunotherapy
WO2023086803A1 (en) 2021-11-10 2023-05-19 Iovance Biotherapeutics, Inc. Methods of expansion treatment utilizing cd8 tumor infiltrating lymphocytes
WO2023102418A1 (en) 2021-12-01 2023-06-08 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Hla-a3-restricted t cell receptors against ras with g12v mutation
WO2023137471A1 (en) 2022-01-14 2023-07-20 Tune Therapeutics, Inc. Compositions, systems, and methods for programming t cell phenotypes through targeted gene activation
WO2023137472A2 (en) 2022-01-14 2023-07-20 Tune Therapeutics, Inc. Compositions, systems, and methods for programming t cell phenotypes through targeted gene repression
WO2023147486A1 (en) 2022-01-28 2023-08-03 Iovance Biotherapeutics, Inc. Tumor infiltrating lymphocytes engineered to express payloads
WO2023196877A1 (en) 2022-04-06 2023-10-12 Iovance Biotherapeutics, Inc. Treatment of nsclc patients with tumor infiltrating lymphocyte therapies
WO2023201369A1 (en) 2022-04-15 2023-10-19 Iovance Biotherapeutics, Inc. Til expansion processes using specific cytokine combinations and/or akti treatment
WO2023220608A1 (en) 2022-05-10 2023-11-16 Iovance Biotherapeutics, Inc. Treatment of cancer patients with tumor infiltrating lymphocyte therapies in combination with an il-15r agonist
WO2024011114A1 (en) 2022-07-06 2024-01-11 Iovance Biotherapeutics, Inc. Devices and processes for automated production of tumor infiltrating lymphocytes
WO2024030758A1 (en) 2022-08-01 2024-02-08 Iovance Biotherapeutics, Inc. Chimeric costimulatory receptors, chemokine receptors, and the use of same in cellular immunotherapies
WO2024055017A1 (en) 2022-09-09 2024-03-14 Iovance Biotherapeutics, Inc. Processes for generating til products using pd-1/tigit talen double knockdown
WO2024055018A1 (en) 2022-09-09 2024-03-14 Iovance Biotherapeutics, Inc. Processes for generating til products using pd-1/tigit talen double knockdown
WO2024064642A2 (en) 2022-09-19 2024-03-28 Tune Therapeutics, Inc. Compositions, systems, and methods for modulating t cell function

Also Published As

Publication number Publication date
WO2012129201A1 (en) 2012-09-27
US20190345444A1 (en) 2019-11-14
US11401503B2 (en) 2022-08-02
US20170152478A1 (en) 2017-06-01

Similar Documents

Publication Publication Date Title
US11401503B2 (en) Methods of growing tumor infiltrating lymphocytes in gas-permeable containers
US11905529B2 (en) Method of enhancing persistence of adoptively infused T cells
US11471486B2 (en) Selective and controlled expansion of educated NK cells
Jin et al. Simplified method of the growth of human tumor infiltrating lymphocytes in gas-permeable flasks to numbers needed for patient treatment
Prieto et al. Enrichment of CD8+ cells from melanoma tumor-infiltrating lymphocyte cultures reveals tumor reactivity for use in adoptive cell therapy
JP2023182601A (en) Expansion culture of tumor infiltrating lymphocytes from liquid tumors and therapeutic uses thereof
US20180223257A1 (en) Method for the induction and expansion of natural killer cells derived from peripheral blood mononuclear cells
AU2013379772B2 (en) Methods of producing enriched populations of tumor-reactive T cells from tumor
US20210052642A1 (en) Methods of enriching cell populations for cancer-specific t cells using in vitro stimulation of memory t cells
US20170073637A1 (en) Pooled nk cells from ombilical cord blood and their uses for the treatment of cancer and chronic infectious disease
CN107002029A (en) The inducing culture and method cultivated and treated for stem cell
Kerkar et al. Timing and intensity of exposure to interferon‐γ critically determines the function of monocyte‐derived dendritic cells
CN111902533A (en) Method for producing natural killer cells
US20200017831A1 (en) Methods of preparing an isolated population of dendritic cells and methods of treating cancer using same
KR20230150833A (en) Cell culture method
US20210290672A1 (en) Regulation of tumor-associated t cells
AU2021381496A1 (en) Methods for culturing immune cells
Montagna et al. Single-cell cloning of human, donor-derived antileukemia T-cell lines for in vitro separation of graft-versus-leukemia effect from graft-versus-host reaction
TWI837927B (en) Method for producing human chimeric antigen receptor t-cells enriched of stem cell-like memory t-cells
WO2023147505A2 (en) Method for enriching tumor infiltrating lymphocytes
US11753624B2 (en) Methods for generating functional therapeutic B cells ex-vivo
JP2023538418A (en) Preferential generation of iPSCs with antigen-specific TCRs from tumor-infiltrating lymphocytes

Legal Events

Date Code Title Description
AS Assignment

Owner name: THE UNITED STATES OF AMERICA, AS REPRESENTED BY TH

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ROSENBERG, STEVEN A.;DUDLEY, MARK E.;STRONCEK, DAVID;AND OTHERS;SIGNING DATES FROM 20120330 TO 20120405;REEL/FRAME:028011/0724

Owner name: WILSON WOLF MANUFACTURING CORPORATION, MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ROSENBERG, STEVEN A.;DUDLEY, MARK E.;STRONCEK, DAVID;AND OTHERS;SIGNING DATES FROM 20120330 TO 20120405;REEL/FRAME:028011/0724

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION