US20120240609A1 - Cooling device with controllable evaporation temperature - Google Patents

Cooling device with controllable evaporation temperature Download PDF

Info

Publication number
US20120240609A1
US20120240609A1 US13/413,680 US201213413680A US2012240609A1 US 20120240609 A1 US20120240609 A1 US 20120240609A1 US 201213413680 A US201213413680 A US 201213413680A US 2012240609 A1 US2012240609 A1 US 2012240609A1
Authority
US
United States
Prior art keywords
cooling
cooling device
evaporator
throttle
cascade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/413,680
Inventor
Markus Mayer
Franco Sestito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bruker Biospin SAS
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to BRUKER BIOSPIN AG reassignment BRUKER BIOSPIN AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MAYER, MARKUS, SESTITO, FRANCO
Publication of US20120240609A1 publication Critical patent/US20120240609A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/22Disposition of valves, e.g. of on-off valves or flow control valves between evaporator and compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof

Definitions

  • the invention concerns a cooling device for cooling a test sample, comprising at least two cascade cooling stages, each comprising at least one coolant line, one compressor, one relief throttle, one evaporator and one liquefier.
  • Devices having such properties are e.g. the device NMR90 of the company Millrock Technology, guitarist, N.Y., USA, the device ULSP90 of the company ULSP by, Ede, NL and the device FTS XR Air Jet of the company RototecSpintec GmbH, Biebesheim, Germany.
  • cooling of the samples to be analyzed In specific cases, such as nuclear magnetic resonance spectroscopy or X-ray crystallography, this is often achieved by introducing the sample into a cold gas flow (cooling gas), advantageously nitrogen or helium.
  • a cold gas flow advantageously nitrogen or helium.
  • This cold gas flow may be realized e.g. through evaporation of liquid gases or cooling a warm gas using heat exchangers that are immersed into liquefied gas. Provision or generation and storage of these liquefied gases requires complex logistics.
  • the warm gas may alternatively also be cooled using a coolant cycle process.
  • a suitable coolant is compressed in a compressor to a higher pressure and is thereby heated, then cooled (desuperheated) in a heat exchanger to a temperature below the liquefaction temperature that prevails at the obtained pressure, thereby dissipating heat, is further liquefied, thereby dissipating further heat, is relieved by a suitable throttle to a lower pressure, and evaporated again in a second heat exchanger, thereby absorbing heat from the gas to be cooled at the low evaporation temperature.
  • This object is achieved in a surprisingly simple and yet effective fashion in that an additional relief throttle is arranged between the evaporator of the last cascade cooling stage and the compressor of the last cascade cooling stage.
  • the evaporated coolant is relieved once more downstream of the second heat exchanger (evaporator). For this reason, the overall decompression between the high-pressure and low-pressure side of the evaporator is divided into two partial decompressions, wherein the pressure that is generated inbetween in the evaporator is influenced by the adjustable throttle of the second partial decompression.
  • the coolant is evaporated in the second heat exchanger, which is disposed between the two throttles, thereby providing the desired cooling power at the evaporation temperature of the coolant at this adjustable pressure, and for this reason, the cooling temperature can also be influenced.
  • the throttle does not need to be adjustable itself, which could be realized only with great technical expense in a cascade of cycle processes of a cycle process to be varied with a very low liquefying temperature and therefore low throttle temperature.
  • One further advantage of this invention results from the fact that, when a higher temperature and therefore higher evaporation pressure in the second heat exchanger is desired, the suction pressure in the compressor is lower due to the necessary increased decompression at the second throttle, which decreases the power input of the compressor.
  • a throttle which is adjusted at a low temperature between the first and the second heat exchanger would entail a higher suction pressure and therefore higher power input of the compressor when adjusting a higher evaporation temperature with consequently reduced cooling power requirements.
  • One particularly advantageous embodiment is characterized in that the additional relief throttle is designed in two stages in the form of a parallel arrangement of a bypass valve and an invariable relief throttle. This provides a variable relief throttle with simple and inexpensive means.
  • the additional relief throttle is designed in the form of a variable adjustable relief throttle.
  • One further advantageous embodiment is characterized in that the evaporator of the last cascade cooling stage is designed as a heat exchanger, a cooling gas enters the heat exchanger through a gas inlet, dissipates heat and exits the heat exchanger again through a gas outlet, and the cooled cooling gas is guided to the test sample for cooling it.
  • the heat exchanger is simultaneously the transfer line for the cooling gas and the device can be designed in a simple and space-saving fashion.
  • the invention is particularly advantageous when the cooling device is part of a nuclear magnetic resonance spectroscopy apparatus, in which the cooled gas flow is heated to the desired temperature and higher temperatures can be achieved with less cooling and therefore also less heating, which simplifies control.
  • the inventive cooling device may alternatively also be part of an X-ray spectroscopy apparatus.
  • X-ray crystallography often requires cooling of the test samples.
  • the inventive cooling device is alternatively also advantageously part of an EPR apparatus.
  • FIG. 1 shows a schematic view of an embodiment of the inventive cooling device.
  • the cooling device shown by way of example in FIG. 1 includes a first cascade cooling stage with compressor 1 . 1 , safety pressure switch 1 . 2 , filter 1 . 3 , relief throttle 1 . 4 , and pressure compensating vessel 1 . 5 as well as a second cascade cooling stage with compressor 2 . 1 , safety pressure switch 2 . 2 , filter 2 . 3 , relief throttle 2 . 4 , and pressure compensating vessel 2 . 5 .
  • a combined air heat exchanger with fan 5 is e.g. used as liquefier 3 for the first cascade cooling stage and as desuperheater 4 for the second cascade cooling stage.
  • a heat exchanger 6 is used as evaporator for the first cascade cooling stage and as liquefier for the second cascade cooling stage.
  • An evaporator (heat exchanger) 7 illustrated by way of example as transfer line of the cooling gas, is used as evaporator for the second cascade cooling stage to provide the desired cooling power in that the gas to be cooled is guided from the inlet 7 . 1 to the outlet 7 . 2 .
  • the desired temperature is adjusted by changing the evaporation pressure of the coolant in the second stage of a cooling cascade, illustrated herein by way of example, via a variable throttle on the return path of the coolant from the evaporator 7 to the entry into the compressor 2 . 1 .
  • This variable throttle is illustrated in FIG. 1 by way of example by an invariable relief throttle 2 . 6 and a bypass valve 2 . 7 for bypassing this throttle. This results in a lower relief pressure when the bypass valve 2 . 7 is open and in a higher relief pressure in the evaporator 7 when the bypass valve is closed, and therefore in a lower or higher evaporation temperature.
  • a variable throttle in the form of an adjustable needle valve.
  • bypass valve for bypassing the relief throttle 2 . 6 for adjusting a lower evaporation pressure of the second cascade cooling stage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

A cooling device for cooling a test sample has at least two cascade cooling stages, each with at least one coolant line, one compressor (1.1, 2.1), one relief throttle (1.4, 2.4), one evaporator (6, 7) and one liquefier (3, 6). The cooling device has an additional relief throttle disposed between the evaporator (7) of the last cascade cooling stage and the compressor (2.1) of the last cascade cooling stage. This represents a simple possibility of adjusting the cooling temperature, thereby avoiding the use of valves that can be adjusted at low temperatures, since these are complex and expensive.

Description

  • This application claims Paris Convention priority of DE 10 2011 006 165.7 filed Mar. 25, 2011 the complete disclosure of which is hereby incorporated by reference.
  • BACKGROUND OF THE INVENTION
  • The invention concerns a cooling device for cooling a test sample, comprising at least two cascade cooling stages, each comprising at least one coolant line, one compressor, one relief throttle, one evaporator and one liquefier.
  • Devices having such properties are e.g. the device NMR90 of the company Millrock Technology, Kingston, N.Y., USA, the device ULSP90 of the company ULSP by, Ede, NL and the device FTS XR Air Jet of the company RototecSpintec GmbH, Biebesheim, Germany.
  • Various analysis methods require cooling of the samples to be analyzed. In specific cases, such as nuclear magnetic resonance spectroscopy or X-ray crystallography, this is often achieved by introducing the sample into a cold gas flow (cooling gas), advantageously nitrogen or helium.
  • This cold gas flow may be realized e.g. through evaporation of liquid gases or cooling a warm gas using heat exchangers that are immersed into liquefied gas. Provision or generation and storage of these liquefied gases requires complex logistics.
  • The warm gas may alternatively also be cooled using a coolant cycle process. In a cycle process, a suitable coolant is compressed in a compressor to a higher pressure and is thereby heated, then cooled (desuperheated) in a heat exchanger to a temperature below the liquefaction temperature that prevails at the obtained pressure, thereby dissipating heat, is further liquefied, thereby dissipating further heat, is relieved by a suitable throttle to a lower pressure, and evaporated again in a second heat exchanger, thereby absorbing heat from the gas to be cooled at the low evaporation temperature.
  • There are conventional configurations of coolant cycle processes with adjustable evaporation pressure and adjustable throttle between the first heat exchanger (coolant liquefier) and second heat exchanger (coolant evaporator) in order to adjust the desired cooling temperature. Such a configuration is technically complex when the cycle process to be varied is already operated in a cascade of cycle processes at a very low liquefaction temperature and the adjustable throttle consequently also becomes very cold.
  • For this reason, it is current practice to largely do without adjustment of the desired coolant temperature. This applies to the devices of the companies Bruker (type “BCU-X”), ULSP type “90 Immersion Probe Cooler”, and Milrock type “NMR90 sample cooler”. In an alternative fashion, the gas flow that has been cooled to a predetermined temperature is heated to a desired higher temperature by means of an installed heating device. One example therefore are the devices of the company RototecSpintec FTS “XR Air-Jet Cooler”.
  • It is the underlying purpose of the present invention to provide a simple way of adjusting the cooling temperature, thereby avoiding the use of valves that can be adjusted at low temperatures, since these are complex and expensive.
  • SUMMARY OF THE INVENTION
  • This object is achieved in a surprisingly simple and yet effective fashion in that an additional relief throttle is arranged between the evaporator of the last cascade cooling stage and the compressor of the last cascade cooling stage.
  • In the inventive cooling device, the evaporated coolant is relieved once more downstream of the second heat exchanger (evaporator). For this reason, the overall decompression between the high-pressure and low-pressure side of the evaporator is divided into two partial decompressions, wherein the pressure that is generated inbetween in the evaporator is influenced by the adjustable throttle of the second partial decompression. The coolant is evaporated in the second heat exchanger, which is disposed between the two throttles, thereby providing the desired cooling power at the evaporation temperature of the coolant at this adjustable pressure, and for this reason, the cooling temperature can also be influenced.
  • In contrast to the methods that are normally used, the throttle does not need to be adjustable itself, which could be realized only with great technical expense in a cascade of cycle processes of a cycle process to be varied with a very low liquefying temperature and therefore low throttle temperature.
  • One further advantage of this invention results from the fact that, when a higher temperature and therefore higher evaporation pressure in the second heat exchanger is desired, the suction pressure in the compressor is lower due to the necessary increased decompression at the second throttle, which decreases the power input of the compressor. In contrast thereto, a throttle which is adjusted at a low temperature between the first and the second heat exchanger would entail a higher suction pressure and therefore higher power input of the compressor when adjusting a higher evaporation temperature with consequently reduced cooling power requirements.
  • One particularly advantageous embodiment is characterized in that the additional relief throttle is designed in two stages in the form of a parallel arrangement of a bypass valve and an invariable relief throttle. This provides a variable relief throttle with simple and inexpensive means.
  • In an alternative variant, the additional relief throttle is designed in the form of a variable adjustable relief throttle.
  • One further advantageous embodiment is characterized in that the evaporator of the last cascade cooling stage is designed as a heat exchanger, a cooling gas enters the heat exchanger through a gas inlet, dissipates heat and exits the heat exchanger again through a gas outlet, and the cooled cooling gas is guided to the test sample for cooling it. With this design, the heat exchanger is simultaneously the transfer line for the cooling gas and the device can be designed in a simple and space-saving fashion.
  • The invention is particularly advantageous when the cooling device is part of a nuclear magnetic resonance spectroscopy apparatus, in which the cooled gas flow is heated to the desired temperature and higher temperatures can be achieved with less cooling and therefore also less heating, which simplifies control.
  • The inventive cooling device may alternatively also be part of an X-ray spectroscopy apparatus. In particular, X-ray crystallography often requires cooling of the test samples.
  • The inventive cooling device is alternatively also advantageously part of an EPR apparatus.
  • Further advantages of the invention can be extracted from the description and the drawing. The features mentioned above and below may be used individually or collectively in arbitrary combination. The embodiments shown and described are not to be understood as exhaustive enumeration but have exemplary character for describing the invention.
  • BRIEF DESCRIPTION OF THE DRAWING
  • FIG. 1 shows a schematic view of an embodiment of the inventive cooling device.
  • DESCRIPTION OF THE PREFERRED EMBODIMENT
  • The cooling device shown by way of example in FIG. 1 includes a first cascade cooling stage with compressor 1.1, safety pressure switch 1.2, filter 1.3, relief throttle 1.4, and pressure compensating vessel 1.5 as well as a second cascade cooling stage with compressor 2.1, safety pressure switch 2.2, filter 2.3, relief throttle 2.4, and pressure compensating vessel 2.5.
  • A combined air heat exchanger with fan 5 is e.g. used as liquefier 3 for the first cascade cooling stage and as desuperheater 4 for the second cascade cooling stage.
  • A heat exchanger 6 is used as evaporator for the first cascade cooling stage and as liquefier for the second cascade cooling stage.
  • An evaporator (heat exchanger) 7, illustrated by way of example as transfer line of the cooling gas, is used as evaporator for the second cascade cooling stage to provide the desired cooling power in that the gas to be cooled is guided from the inlet 7.1 to the outlet 7.2.
  • In accordance with the invention, the desired temperature is adjusted by changing the evaporation pressure of the coolant in the second stage of a cooling cascade, illustrated herein by way of example, via a variable throttle on the return path of the coolant from the evaporator 7 to the entry into the compressor 2.1. This variable throttle is illustrated in FIG. 1 by way of example by an invariable relief throttle 2.6 and a bypass valve 2.7 for bypassing this throttle. This results in a lower relief pressure when the bypass valve 2.7 is open and in a higher relief pressure in the evaporator 7 when the bypass valve is closed, and therefore in a lower or higher evaporation temperature. Instead of the invariable relief throttle 2.6 and the bypass valve 2.7, it is also possible as an alternative for the illustrated example to use a variable throttle in the form of an adjustable needle valve.
  • Although the invention is illustrated above by means of a cooling device in accordance with the principle of a compression cooling machine with two-stage cooling cascade, adjustment of the evaporation temperature by means of a variable throttle between the coolant evaporator and the compressor inlet is also possible with one-stage cooling devices according to this principle as well as with cooling cascades with more than two stages.
  • LIST OF REFERENCE NUMERALS
  • 1.1 compressor of the first cascade cooling stage
  • 1.2 safety pressure switch thereof
  • 1.3 filter thereof
  • 1.4 relief throttle thereof
  • 1.5 compensating vessel thereof
  • 2.1 compressor of the second cascade cooling stage
  • 2.2 safety pressure switch thereof
  • 2.3 filter thereof
  • 2.4 relief throttle thereof
  • 2.5 compensating vessel thereof
  • 2.6 relief throttle for adjusting a higher evaporation pressure of the second cascade cooling stage
  • 2.7 bypass valve for bypassing the relief throttle 2.6 for adjusting a lower evaporation pressure of the second cascade cooling stage
  • 3 liquefier of the first cascade cooling stage
  • 4 desuperheater of the second cascade cooling stage
  • 5 fan for liquefier 3 and desuperheater 4
  • 6 heat exchanger as evaporator of the first cascade cooling stage and liquefier of the second cascade cooling stage
  • 7 heat exchanger as evaporator of the second cascade cooling stage for providing the cooling power by cooling a gas
  • 7.1 entry of the gas to be cooled
  • 7.2 exit of the cooled gas

Claims (7)

1. A cooling device for cooling a test sample, the cooling device comprising:
at least one first cascade non-final cooling stage, said first non-final cooling stage having at least one first coolant line, a first compressor, a first relief throttle, a first evaporator and a first liquefier; and
a second final cascade cooling stage, said second final cascade cooling stage having at least one second coolant line, a second compressor, a second relief throttle, a second evaporator, a second liquefier and an additional relief throttle disposed between said second evaporator and said second compressor.
2. The cooling device of claim 1, wherein said additional relief throttle is designed in two stages as a parallel arrangement of a bypass valve and an invariable relief throttle.
3. The cooling device of claim 1, wherein said additional relief throttle is designed as a variable adjustable relief throttle.
4. The cooling device of claim 1, wherein said second evaporator is designed as a heat exchanger, wherein a cooling gas enters said heat exchanger through a gas inlet, dissipates heat, exits said heat exchanger again through a gas outlet and is guided to the test sample for cooling thereof.
5. The cooling device of claim 1, wherein the cooling device is structured for use in a nuclear magnetic resonance spectroscopy apparatus.
6. The cooling device of claim 1, wherein the cooling device is structured for use in an X-ray spectroscopy apparatus.
7. The cooling device of claim 1, wherein the cooling device is structured for use in an EPR apparatus.
US13/413,680 2011-03-25 2012-03-07 Cooling device with controllable evaporation temperature Abandoned US20120240609A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011006165.7 2011-03-25
DE102011006165.7A DE102011006165B4 (en) 2011-03-25 2011-03-25 Cooling device with adjustable evaporation temperature

Publications (1)

Publication Number Publication Date
US20120240609A1 true US20120240609A1 (en) 2012-09-27

Family

ID=46052098

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/413,680 Abandoned US20120240609A1 (en) 2011-03-25 2012-03-07 Cooling device with controllable evaporation temperature

Country Status (3)

Country Link
US (1) US20120240609A1 (en)
DE (1) DE102011006165B4 (en)
GB (1) GB2489564B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104110840A (en) * 2014-07-29 2014-10-22 唐玉敏 Solar heterogenic-aggregation heat utilization system with throttle control device and operating method of system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5182920A (en) * 1991-07-15 1993-02-02 Mitsubishi Denki Kabushiki Kaisha Refrigeration cycle system
US6311512B1 (en) * 2000-05-18 2001-11-06 Carrier Corporation Refrigerated merchandiser system
US20020011073A1 (en) * 2000-06-27 2002-01-31 Kevin Flynn Very low temperature flow switch apparatus
US6438974B1 (en) * 1995-06-07 2002-08-27 Copeland Corporation Adaptive control for a refrigeration system using pulse width modulated duty cycle scroll compressor
US20030024262A1 (en) * 2001-08-03 2003-02-06 Dieter Mosemann Arrangement for cascade refrigeration system
US6993918B1 (en) * 2004-02-12 2006-02-07 Advanced Thermal Sciences Thermal control systems for process tools requiring operation over wide temperature ranges

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4850199A (en) * 1988-03-21 1989-07-25 Guild Associates, Inc. Cryo-refrigeration system
US5669234A (en) * 1996-07-16 1997-09-23 Phillips Petroleum Company Efficiency improvement of open-cycle cascaded refrigeration process
JP4075129B2 (en) * 1998-04-16 2008-04-16 株式会社豊田自動織機 Control method of cooling device
DK1996877T3 (en) * 2006-03-10 2014-10-13 Carrier Corp COOLING SYSTEM WITH FLOOD COMPRESSOR CONTROL OPERATION
WO2008076121A1 (en) * 2006-12-21 2008-06-26 Carrier Corporation Suction modulation valve for refrigerant system with adjustable opening for pulse width modulation control
US10072884B2 (en) * 2010-03-08 2018-09-11 Carrier Corporation Defrost operations and apparatus for a transport refrigeration system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5182920A (en) * 1991-07-15 1993-02-02 Mitsubishi Denki Kabushiki Kaisha Refrigeration cycle system
US6438974B1 (en) * 1995-06-07 2002-08-27 Copeland Corporation Adaptive control for a refrigeration system using pulse width modulated duty cycle scroll compressor
US6311512B1 (en) * 2000-05-18 2001-11-06 Carrier Corporation Refrigerated merchandiser system
US20020011073A1 (en) * 2000-06-27 2002-01-31 Kevin Flynn Very low temperature flow switch apparatus
US20030024262A1 (en) * 2001-08-03 2003-02-06 Dieter Mosemann Arrangement for cascade refrigeration system
US6993918B1 (en) * 2004-02-12 2006-02-07 Advanced Thermal Sciences Thermal control systems for process tools requiring operation over wide temperature ranges

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104110840A (en) * 2014-07-29 2014-10-22 唐玉敏 Solar heterogenic-aggregation heat utilization system with throttle control device and operating method of system

Also Published As

Publication number Publication date
GB201204718D0 (en) 2012-05-02
GB2489564A (en) 2012-10-03
DE102011006165B4 (en) 2014-10-09
GB2489564B (en) 2017-08-02
DE102011006165A1 (en) 2012-09-27

Similar Documents

Publication Publication Date Title
CN102918336B (en) System and method for sub-cooled
AU2008313765B2 (en) Method and apparatus for controlling a refrigerant compressor, and use thereof in a method of cooling a hydrocarbon stream
JP2013087911A (en) Pressure rise suppression device for storage tank, pressure rise suppression system provided therewith, suppression method therefor, liquefied gas carrying vessel provided therewith, and liquefied gas storage facility provided therewith
CN107949756B (en) Apparatus and method for performing a vapor refrigeration process
RU2018108055A (en) Improved method and system for cooling a hydrocarbon stream.
US20190085854A1 (en) Compressor system with a gas temperature control at the inlet of the anti-surge line and relevant method
US20120240609A1 (en) Cooling device with controllable evaporation temperature
US10816576B2 (en) Cooling device for semiconductor inspection apparatus to adjust temperature of inspection apparatus of semiconductor wafer
RU2017127006A (en) METHOD AND DEVICE FOR COOLING A CRYOGENIC HEAT EXCHANGER AND METHOD FOR LIQUIDING A HYDROCARBON FLOW
JP2014085048A (en) Turbo refrigerator
CN111855191B (en) Low-temperature safety valve performance test system and test method
KR20130111898A (en) Cooling system for test of heat exchange by both cooling air and liquid
JP2014194313A (en) Refrigeration cycle device
US20120240610A1 (en) Cooling device with controllable evaporation temperature
US20090188277A1 (en) Method and apparatus for controlling a refrigerant compressor, and method for cooling a hydrocarbon stream
US10677523B2 (en) Method for cooling a process flow
CN109826781B (en) Carbon dioxide compressor performance test system with trans/subcritical test function
JPH08128745A (en) Supercritical helium cooling system and method for operating the same
US20210341182A1 (en) High temperature superconductor refrigeration system
KR101916092B1 (en) Chilling System And Chilling Method of the Same
EP3187797B1 (en) Adsorption refrigerator and adsorption refrigeration method
US20240102728A1 (en) Installation and process for production of a cryogenic fluid
Caillaud et al. Evolution of the Standard Helium Liquefier and Refrigerator Range Designed by Air Liquide DTA, France.
RU2796457C1 (en) Method for lowering temperature of a cooled object using helium refrigerator with an excess reverse flow
CN107202445B (en) Self-cascade refrigeration system with cooling and dephlegmation heat exchanger

Legal Events

Date Code Title Description
AS Assignment

Owner name: BRUKER BIOSPIN AG, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MAYER, MARKUS;SESTITO, FRANCO;REEL/FRAME:028253/0830

Effective date: 20120228

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION