US20120237939A1 - Devices and processes for nucleic acid extraction - Google Patents
Devices and processes for nucleic acid extraction Download PDFInfo
- Publication number
- US20120237939A1 US20120237939A1 US13/452,689 US201213452689A US2012237939A1 US 20120237939 A1 US20120237939 A1 US 20120237939A1 US 201213452689 A US201213452689 A US 201213452689A US 2012237939 A1 US2012237939 A1 US 2012237939A1
- Authority
- US
- United States
- Prior art keywords
- dna
- channel
- binding
- nucleic acid
- port
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 150000007523 nucleic acids Chemical class 0.000 title claims abstract description 130
- 102000039446 nucleic acids Human genes 0.000 title claims abstract description 128
- 108020004707 nucleic acids Proteins 0.000 title claims abstract description 128
- 238000000034 method Methods 0.000 title claims abstract description 89
- 230000008569 process Effects 0.000 title claims abstract description 22
- 238000000605 extraction Methods 0.000 title abstract description 51
- 230000027455 binding Effects 0.000 claims abstract description 197
- 239000012530 fluid Substances 0.000 claims abstract description 108
- 238000004891 communication Methods 0.000 claims abstract description 43
- 230000037361 pathway Effects 0.000 claims abstract description 32
- 239000005357 flat glass Substances 0.000 claims abstract description 26
- 239000012472 biological sample Substances 0.000 claims abstract description 11
- 230000009870 specific binding Effects 0.000 claims abstract description 8
- 239000000523 sample Substances 0.000 claims description 102
- 239000011521 glass Substances 0.000 claims description 96
- 238000003556 assay Methods 0.000 claims description 68
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 59
- 239000007850 fluorescent dye Substances 0.000 claims description 42
- 239000000872 buffer Substances 0.000 claims description 35
- 238000009826 distribution Methods 0.000 claims description 35
- 238000005406 washing Methods 0.000 claims description 16
- 239000012149 elution buffer Substances 0.000 claims description 15
- 239000011534 wash buffer Substances 0.000 claims description 14
- 239000012139 lysis buffer Substances 0.000 claims description 11
- 239000000356 contaminant Substances 0.000 claims description 9
- 238000001035 drying Methods 0.000 claims description 9
- 230000002934 lysing effect Effects 0.000 claims description 7
- 230000008859 change Effects 0.000 claims description 6
- 108091005804 Peptidases Proteins 0.000 claims description 2
- 102000035195 Peptidases Human genes 0.000 claims 1
- 108020004414 DNA Proteins 0.000 description 253
- 102000053602 DNA Human genes 0.000 description 253
- 238000003752 polymerase chain reaction Methods 0.000 description 69
- 239000003153 chemical reaction reagent Substances 0.000 description 60
- 239000008280 blood Substances 0.000 description 50
- 238000012360 testing method Methods 0.000 description 50
- 210000004369 blood Anatomy 0.000 description 48
- 230000003321 amplification Effects 0.000 description 44
- 238000003199 nucleic acid amplification method Methods 0.000 description 44
- 239000010410 layer Substances 0.000 description 38
- 239000000975 dye Substances 0.000 description 37
- 238000010828 elution Methods 0.000 description 37
- 239000007788 liquid Substances 0.000 description 36
- 239000000463 material Substances 0.000 description 30
- 239000000047 product Substances 0.000 description 29
- 238000006243 chemical reaction Methods 0.000 description 28
- 238000013461 design Methods 0.000 description 27
- 238000001514 detection method Methods 0.000 description 25
- 210000002381 plasma Anatomy 0.000 description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 24
- 239000000243 solution Substances 0.000 description 23
- 238000002474 experimental method Methods 0.000 description 22
- 229920002477 rna polymer Polymers 0.000 description 22
- 239000000853 adhesive Substances 0.000 description 21
- 210000004027 cell Anatomy 0.000 description 21
- 230000001070 adhesive effect Effects 0.000 description 20
- -1 DNA and RNA Chemical class 0.000 description 19
- 238000005259 measurement Methods 0.000 description 19
- 150000003839 salts Chemical class 0.000 description 19
- 238000002360 preparation method Methods 0.000 description 18
- 238000003753 real-time PCR Methods 0.000 description 18
- PRDFBSVERLRRMY-UHFFFAOYSA-N 2'-(4-ethoxyphenyl)-5-(4-methylpiperazin-1-yl)-2,5'-bibenzimidazole Chemical class C1=CC(OCC)=CC=C1C1=NC2=CC=C(C=3NC4=CC(=CC=C4N=3)N3CCN(C)CC3)C=C2N1 PRDFBSVERLRRMY-UHFFFAOYSA-N 0.000 description 16
- 239000000203 mixture Substances 0.000 description 16
- 210000000265 leukocyte Anatomy 0.000 description 15
- 239000006166 lysate Substances 0.000 description 15
- 238000000746 purification Methods 0.000 description 15
- 238000007400 DNA extraction Methods 0.000 description 14
- 241000588724 Escherichia coli Species 0.000 description 14
- 230000009089 cytolysis Effects 0.000 description 14
- 238000005516 engineering process Methods 0.000 description 14
- VLEIUWBSEKKKFX-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetic acid Chemical compound OCC(N)(CO)CO.OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O VLEIUWBSEKKKFX-UHFFFAOYSA-N 0.000 description 11
- 238000004458 analytical method Methods 0.000 description 11
- 238000011088 calibration curve Methods 0.000 description 11
- 238000005086 pumping Methods 0.000 description 11
- 238000002617 apheresis Methods 0.000 description 10
- 230000006037 cell lysis Effects 0.000 description 10
- 239000003814 drug Substances 0.000 description 10
- 244000052769 pathogen Species 0.000 description 10
- 108090000623 proteins and genes Proteins 0.000 description 10
- 239000011541 reaction mixture Substances 0.000 description 10
- 230000003196 chaotropic effect Effects 0.000 description 9
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 9
- 229920003023 plastic Polymers 0.000 description 9
- 239000004033 plastic Substances 0.000 description 9
- 210000004623 platelet-rich plasma Anatomy 0.000 description 9
- 238000011002 quantification Methods 0.000 description 9
- 230000035945 sensitivity Effects 0.000 description 9
- 230000004568 DNA-binding Effects 0.000 description 8
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 8
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 8
- ZYFVNVRFVHJEIU-UHFFFAOYSA-N PicoGreen Chemical compound CN(C)CCCN(CCCN(C)C)C1=CC(=CC2=[N+](C3=CC=CC=C3S2)C)C2=CC=CC=C2N1C1=CC=CC=C1 ZYFVNVRFVHJEIU-UHFFFAOYSA-N 0.000 description 8
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 8
- 239000011543 agarose gel Substances 0.000 description 8
- 238000011109 contamination Methods 0.000 description 8
- 239000003480 eluent Substances 0.000 description 8
- PJJJBBJSCAKJQF-UHFFFAOYSA-N guanidinium chloride Chemical compound [Cl-].NC(N)=[NH2+] PJJJBBJSCAKJQF-UHFFFAOYSA-N 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 230000002572 peristaltic effect Effects 0.000 description 8
- 230000004044 response Effects 0.000 description 8
- 102000004190 Enzymes Human genes 0.000 description 7
- 108090000790 Enzymes Proteins 0.000 description 7
- 239000007984 Tris EDTA buffer Substances 0.000 description 7
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 7
- 230000001580 bacterial effect Effects 0.000 description 7
- 230000001419 dependent effect Effects 0.000 description 7
- 229940079593 drug Drugs 0.000 description 7
- 239000010408 film Substances 0.000 description 7
- 238000011160 research Methods 0.000 description 7
- 229920002379 silicone rubber Polymers 0.000 description 7
- 239000004945 silicone rubber Substances 0.000 description 7
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 6
- 101150112014 Gapdh gene Proteins 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000007983 Tris buffer Substances 0.000 description 6
- 239000011324 bead Substances 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 239000000306 component Substances 0.000 description 6
- 238000003745 diagnosis Methods 0.000 description 6
- 230000001605 fetal effect Effects 0.000 description 6
- 229960004198 guanidine Drugs 0.000 description 6
- 229960000789 guanidine hydrochloride Drugs 0.000 description 6
- 238000009396 hybridization Methods 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 239000013642 negative control Substances 0.000 description 6
- 238000012216 screening Methods 0.000 description 6
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical compound [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 6
- 230000003612 virological effect Effects 0.000 description 6
- 239000002699 waste material Substances 0.000 description 6
- 108020000946 Bacterial DNA Proteins 0.000 description 5
- 229920002799 BoPET Polymers 0.000 description 5
- 239000005041 Mylar™ Substances 0.000 description 5
- 206010028980 Neoplasm Diseases 0.000 description 5
- 238000012408 PCR amplification Methods 0.000 description 5
- 238000002944 PCR assay Methods 0.000 description 5
- 239000004698 Polyethylene Substances 0.000 description 5
- 229920001213 Polysorbate 20 Polymers 0.000 description 5
- 241000700605 Viruses Species 0.000 description 5
- 239000003522 acrylic cement Substances 0.000 description 5
- 230000009471 action Effects 0.000 description 5
- 239000003990 capacitor Substances 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- 238000005520 cutting process Methods 0.000 description 5
- 238000011143 downstream manufacturing Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000011068 loading method Methods 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 230000001717 pathogenic effect Effects 0.000 description 5
- 229920000573 polyethylene Polymers 0.000 description 5
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 5
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 5
- 238000011084 recovery Methods 0.000 description 5
- 210000002966 serum Anatomy 0.000 description 5
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 5
- 241000894006 Bacteria Species 0.000 description 4
- 241000606153 Chlamydia trachomatis Species 0.000 description 4
- 102100034343 Integrase Human genes 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- 108090000787 Subtilisin Proteins 0.000 description 4
- 101710137500 T7 RNA polymerase Proteins 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 239000012790 adhesive layer Substances 0.000 description 4
- 201000011510 cancer Diseases 0.000 description 4
- 229940038705 chlamydia trachomatis Drugs 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 239000003599 detergent Substances 0.000 description 4
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 238000003205 genotyping method Methods 0.000 description 4
- 238000011534 incubation Methods 0.000 description 4
- 239000003112 inhibitor Substances 0.000 description 4
- 238000011901 isothermal amplification Methods 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 102000054765 polymorphisms of proteins Human genes 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 229920001296 polysiloxane Polymers 0.000 description 4
- 239000001103 potassium chloride Substances 0.000 description 4
- 235000011164 potassium chloride Nutrition 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 239000012266 salt solution Substances 0.000 description 4
- 239000008223 sterile water Substances 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 238000009849 vacuum degassing Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 241000606161 Chlamydia Species 0.000 description 3
- 239000003298 DNA probe Substances 0.000 description 3
- 108010067770 Endopeptidase K Proteins 0.000 description 3
- 108091034117 Oligonucleotide Proteins 0.000 description 3
- 239000012807 PCR reagent Substances 0.000 description 3
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 239000012620 biological material Substances 0.000 description 3
- 239000013592 cell lysate Substances 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000001351 cycling effect Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000004925 denaturation Methods 0.000 description 3
- 230000036425 denaturation Effects 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 102000006602 glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 3
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- ZJYYHGLJYGJLLN-UHFFFAOYSA-N guanidinium thiocyanate Chemical compound SC#N.NC(N)=N ZJYYHGLJYGJLLN-UHFFFAOYSA-N 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 230000002452 interceptive effect Effects 0.000 description 3
- 238000007834 ligase chain reaction Methods 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 230000008774 maternal effect Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 244000045947 parasite Species 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 229920000915 polyvinyl chloride Polymers 0.000 description 3
- 239000004800 polyvinyl chloride Substances 0.000 description 3
- 239000005373 porous glass Substances 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 239000012088 reference solution Substances 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 238000012163 sequencing technique Methods 0.000 description 3
- 239000013464 silicone adhesive Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000003634 thrombocyte concentrate Substances 0.000 description 3
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 3
- 201000008827 tuberculosis Diseases 0.000 description 3
- 210000002700 urine Anatomy 0.000 description 3
- 238000012795 verification Methods 0.000 description 3
- 241000228405 Blastomyces dermatitidis Species 0.000 description 2
- 241001148604 Borreliella afzelii Species 0.000 description 2
- 241000589969 Borreliella burgdorferi Species 0.000 description 2
- 241001148605 Borreliella garinii Species 0.000 description 2
- 241000282472 Canis lupus familiaris Species 0.000 description 2
- 241001337994 Cryptococcus <scale insect> Species 0.000 description 2
- 206010059866 Drug resistance Diseases 0.000 description 2
- 241000194033 Enterococcus Species 0.000 description 2
- 241000283086 Equidae Species 0.000 description 2
- 241000283073 Equus caballus Species 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- 102100036243 HLA class II histocompatibility antigen, DQ alpha 1 chain Human genes 0.000 description 2
- 108010086786 HLA-DQA1 antigen Proteins 0.000 description 2
- 208000018565 Hemochromatosis Diseases 0.000 description 2
- 102000001554 Hemoglobins Human genes 0.000 description 2
- 108010033040 Histones Proteins 0.000 description 2
- 241000228404 Histoplasma capsulatum Species 0.000 description 2
- 241000589248 Legionella Species 0.000 description 2
- 208000007764 Legionnaires' Disease Diseases 0.000 description 2
- 201000009906 Meningitis Diseases 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- RJQXTJLFIWVMTO-TYNCELHUSA-N Methicillin Chemical compound COC1=CC=CC(OC)=C1C(=O)N[C@@H]1C(=O)N2[C@@H](C(O)=O)C(C)(C)S[C@@H]21 RJQXTJLFIWVMTO-TYNCELHUSA-N 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 208000001132 Osteoporosis Diseases 0.000 description 2
- 229930182555 Penicillin Natural products 0.000 description 2
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 2
- 206010036790 Productive cough Diseases 0.000 description 2
- 241000725643 Respiratory syncytial virus Species 0.000 description 2
- 241000219061 Rheum Species 0.000 description 2
- 108010071390 Serum Albumin Proteins 0.000 description 2
- 102000007562 Serum Albumin Human genes 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- 241000191967 Staphylococcus aureus Species 0.000 description 2
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 2
- 241000607479 Yersinia pestis Species 0.000 description 2
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 206010003246 arthritis Diseases 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000010836 blood and blood product Substances 0.000 description 2
- 210000000601 blood cell Anatomy 0.000 description 2
- 239000012503 blood component Substances 0.000 description 2
- 229940125691 blood product Drugs 0.000 description 2
- 239000008366 buffered solution Substances 0.000 description 2
- 239000006172 buffering agent Substances 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 229920002301 cellulose acetate Polymers 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 238000003271 compound fluorescence assay Methods 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 239000012468 concentrated sample Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000002537 cosmetic Substances 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 230000036267 drug metabolism Effects 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- AEUTYOVWOVBAKS-UWVGGRQHSA-N ethambutol Chemical compound CC[C@@H](CO)NCCN[C@@H](CC)CO AEUTYOVWOVBAKS-UWVGGRQHSA-N 0.000 description 2
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 2
- 229960005542 ethidium bromide Drugs 0.000 description 2
- 210000003608 fece Anatomy 0.000 description 2
- 210000004700 fetal blood Anatomy 0.000 description 2
- 238000002866 fluorescence resonance energy transfer Methods 0.000 description 2
- 229940124307 fluoroquinolone Drugs 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 238000010448 genetic screening Methods 0.000 description 2
- 206010022000 influenza Diseases 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 229960003085 meticillin Drugs 0.000 description 2
- 230000000116 mitigating effect Effects 0.000 description 2
- 229940049954 penicillin Drugs 0.000 description 2
- 239000002953 phosphate buffered saline Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- 230000000241 respiratory effect Effects 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 210000003296 saliva Anatomy 0.000 description 2
- 238000009738 saturating Methods 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 210000000582 semen Anatomy 0.000 description 2
- 239000005361 soda-lime glass Substances 0.000 description 2
- 239000001509 sodium citrate Substances 0.000 description 2
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical group O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 2
- 235000009518 sodium iodide Nutrition 0.000 description 2
- BAZAXWOYCMUHIX-UHFFFAOYSA-M sodium perchlorate Chemical compound [Na+].[O-]Cl(=O)(=O)=O BAZAXWOYCMUHIX-UHFFFAOYSA-M 0.000 description 2
- 229910001488 sodium perchlorate Inorganic materials 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 210000003802 sputum Anatomy 0.000 description 2
- 208000024794 sputum Diseases 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000000108 ultra-filtration Methods 0.000 description 2
- 241000712461 unidentified influenza virus Species 0.000 description 2
- PJVWKTKQMONHTI-UHFFFAOYSA-N warfarin Chemical compound OC=1C2=CC=CC=C2OC(=O)C=1C(CC(=O)C)C1=CC=CC=C1 PJVWKTKQMONHTI-UHFFFAOYSA-N 0.000 description 2
- 229960005080 warfarin Drugs 0.000 description 2
- 208000009825 warfarin sensitivity Diseases 0.000 description 2
- 239000006226 wash reagent Substances 0.000 description 2
- 108020004465 16S ribosomal RNA Proteins 0.000 description 1
- LBCZOTMMGHGTPH-UHFFFAOYSA-N 2-[2-[4-(2,4,4-trimethylpentan-2-yl)phenoxy]ethoxy]ethanol Chemical compound CC(C)(C)CC(C)(C)C1=CC=C(OCCOCCO)C=C1 LBCZOTMMGHGTPH-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- UMCMPZBLKLEWAF-BCTGSCMUSA-N 3-[(3-cholamidopropyl)dimethylammonio]propane-1-sulfonate Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCCC[N+](C)(C)CCCS([O-])(=O)=O)C)[C@@]2(C)[C@@H](O)C1 UMCMPZBLKLEWAF-BCTGSCMUSA-N 0.000 description 1
- QCPFFGGFHNZBEP-UHFFFAOYSA-N 4,5,6,7-tetrachloro-3',6'-dihydroxyspiro[2-benzofuran-3,9'-xanthene]-1-one Chemical group O1C(=O)C(C(=C(Cl)C(Cl)=C2Cl)Cl)=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 QCPFFGGFHNZBEP-UHFFFAOYSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 239000005541 ACE inhibitor Substances 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 108700028369 Alleles Proteins 0.000 description 1
- 241000228212 Aspergillus Species 0.000 description 1
- 102000036365 BRCA1 Human genes 0.000 description 1
- 108700020463 BRCA1 Proteins 0.000 description 1
- 101150072950 BRCA1 gene Proteins 0.000 description 1
- 241000223836 Babesia Species 0.000 description 1
- 241000193738 Bacillus anthracis Species 0.000 description 1
- 241001518086 Bartonella henselae Species 0.000 description 1
- 102100022548 Beta-hexosaminidase subunit alpha Human genes 0.000 description 1
- 241000588832 Bordetella pertussis Species 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 101100314454 Caenorhabditis elegans tra-1 gene Proteins 0.000 description 1
- 241000589876 Campylobacter Species 0.000 description 1
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 1
- 241001631457 Cannula Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 1
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 1
- 241001647372 Chlamydia pneumoniae Species 0.000 description 1
- 241000193163 Clostridioides difficile Species 0.000 description 1
- 241000223203 Coccidioides Species 0.000 description 1
- 241000223205 Coccidioides immitis Species 0.000 description 1
- 208000015943 Coeliac disease Diseases 0.000 description 1
- 102100033601 Collagen alpha-1(I) chain Human genes 0.000 description 1
- 241001480517 Conidiobolus Species 0.000 description 1
- 241000711573 Coronaviridae Species 0.000 description 1
- 241000223935 Cryptosporidium Species 0.000 description 1
- 201000003883 Cystic fibrosis Diseases 0.000 description 1
- 108010026925 Cytochrome P-450 CYP2C19 Proteins 0.000 description 1
- 108010001237 Cytochrome P-450 CYP2D6 Proteins 0.000 description 1
- 102100021704 Cytochrome P450 2D6 Human genes 0.000 description 1
- 241000701022 Cytomegalovirus Species 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 201000010374 Down Syndrome Diseases 0.000 description 1
- 241000605310 Ehrlichia chaffeensis Species 0.000 description 1
- 241000243234 Encephalitozoon Species 0.000 description 1
- 241000224431 Entamoeba Species 0.000 description 1
- 241000709661 Enterovirus Species 0.000 description 1
- 241000495778 Escherichia faecalis Species 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 206010065003 Factor II mutation Diseases 0.000 description 1
- 108010014172 Factor V Proteins 0.000 description 1
- 206010058279 Factor V Leiden mutation Diseases 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 241000207201 Gardnerella vaginalis Species 0.000 description 1
- 102000000393 Ghrelin Receptors Human genes 0.000 description 1
- 108010016122 Ghrelin Receptors Proteins 0.000 description 1
- 241000224466 Giardia Species 0.000 description 1
- 102000016354 Glucuronosyltransferase Human genes 0.000 description 1
- 108010092364 Glucuronosyltransferase Proteins 0.000 description 1
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 1
- 208000031886 HIV Infections Diseases 0.000 description 1
- 102000012153 HLA-B27 Antigen Human genes 0.000 description 1
- 108010061486 HLA-B27 Antigen Proteins 0.000 description 1
- 108010062347 HLA-DQ Antigens Proteins 0.000 description 1
- 241000606790 Haemophilus Species 0.000 description 1
- 241000711549 Hepacivirus C Species 0.000 description 1
- 241000700721 Hepatitis B virus Species 0.000 description 1
- 241000724675 Hepatitis E virus Species 0.000 description 1
- 208000037262 Hepatitis delta Diseases 0.000 description 1
- 241000724709 Hepatitis delta virus Species 0.000 description 1
- 241000709721 Hepatovirus A Species 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 102100039869 Histone H2B type F-S Human genes 0.000 description 1
- 102000006947 Histones Human genes 0.000 description 1
- 241000228402 Histoplasma Species 0.000 description 1
- 101100281953 Homo sapiens GAPDH gene Proteins 0.000 description 1
- 101001066129 Homo sapiens Glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 1
- 101001035372 Homo sapiens Histone H2B type F-S Proteins 0.000 description 1
- 241000701085 Human alphaherpesvirus 3 Species 0.000 description 1
- 206010020429 Human ehrlichiosis Diseases 0.000 description 1
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 1
- 241000713772 Human immunodeficiency virus 1 Species 0.000 description 1
- 241000713340 Human immunodeficiency virus 2 Species 0.000 description 1
- 241000701806 Human papillomavirus Species 0.000 description 1
- 241000702617 Human parvovirus B19 Species 0.000 description 1
- 241000829111 Human polyomavirus 1 Species 0.000 description 1
- 208000023105 Huntington disease Diseases 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 208000026350 Inborn Genetic disease Diseases 0.000 description 1
- 101710203526 Integrase Proteins 0.000 description 1
- 238000008577 Invader UGT1A1 Molecular Assay Methods 0.000 description 1
- 241000581650 Ivesia Species 0.000 description 1
- 241000701460 JC polyomavirus Species 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 238000007397 LAMP assay Methods 0.000 description 1
- 241000589242 Legionella pneumophila Species 0.000 description 1
- 241000222722 Leishmania <genus> Species 0.000 description 1
- 241000186779 Listeria monocytogenes Species 0.000 description 1
- 241000351643 Metapneumovirus Species 0.000 description 1
- 108060004795 Methyltransferase Proteins 0.000 description 1
- 241000186359 Mycobacterium Species 0.000 description 1
- 241000187479 Mycobacterium tuberculosis Species 0.000 description 1
- 241000204031 Mycoplasma Species 0.000 description 1
- 241000202934 Mycoplasma pneumoniae Species 0.000 description 1
- 241000588653 Neisseria Species 0.000 description 1
- 241000588652 Neisseria gonorrhoeae Species 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- 206010029719 Nonspecific reaction Diseases 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 208000008589 Obesity Diseases 0.000 description 1
- 241000700629 Orthopoxvirus Species 0.000 description 1
- 241001537205 Paracoccidioides Species 0.000 description 1
- 208000002606 Paramyxoviridae Infections Diseases 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 241000224016 Plasmodium Species 0.000 description 1
- 241000233870 Pneumocystis Species 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 1
- 108010059712 Pronase Proteins 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 108010094028 Prothrombin Proteins 0.000 description 1
- 208000010378 Pulmonary Embolism Diseases 0.000 description 1
- 108010066717 Q beta Replicase Proteins 0.000 description 1
- 108091036333 Rapid DNA Proteins 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 241000315672 SARS coronavirus Species 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 241000607768 Shigella Species 0.000 description 1
- 241000700584 Simplexvirus Species 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 241001279361 Stachybotrys Species 0.000 description 1
- 206010041925 Staphylococcal infections Diseases 0.000 description 1
- 241000193998 Streptococcus pneumoniae Species 0.000 description 1
- 241001505901 Streptococcus sp. 'group A' Species 0.000 description 1
- 241000193990 Streptococcus sp. 'group B' Species 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 108010006785 Taq Polymerase Proteins 0.000 description 1
- 208000022292 Tay-Sachs disease Diseases 0.000 description 1
- 241000223996 Toxoplasma Species 0.000 description 1
- 241000224526 Trichomonas Species 0.000 description 1
- 241000224527 Trichomonas vaginalis Species 0.000 description 1
- 206010044688 Trisomy 21 Diseases 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 241000203826 Tropheryma whipplei Species 0.000 description 1
- 241000223109 Trypanosoma cruzi Species 0.000 description 1
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 1
- 241000710886 West Nile virus Species 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000002313 adhesive film Substances 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 108010029483 alpha 1 Chain Collagen Type I Proteins 0.000 description 1
- 210000004381 amniotic fluid Anatomy 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- 229940044094 angiotensin-converting-enzyme inhibitor Drugs 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 229940041181 antineoplastic drug Drugs 0.000 description 1
- 201000008680 babesiosis Diseases 0.000 description 1
- 229940065181 bacillus anthracis Drugs 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 210000004666 bacterial spore Anatomy 0.000 description 1
- 229940092524 bartonella henselae Drugs 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000009640 blood culture Methods 0.000 description 1
- 244000078885 bloodborne pathogen Species 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 238000010322 bone marrow transplantation Methods 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 235000012206 bottled water Nutrition 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 235000010633 broth Nutrition 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 1
- 210000003763 chloroplast Anatomy 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- AGVAZMGAQJOSFJ-WZHZPDAFSA-M cobalt(2+);[(2r,3s,4r,5s)-5-(5,6-dimethylbenzimidazol-1-yl)-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl] [(2r)-1-[3-[(1r,2r,3r,4z,7s,9z,12s,13s,14z,17s,18s,19r)-2,13,18-tris(2-amino-2-oxoethyl)-7,12,17-tris(3-amino-3-oxopropyl)-3,5,8,8,13,15,18,19-octamethyl-2 Chemical compound [Co+2].N#[C-].[N-]([C@@H]1[C@H](CC(N)=O)[C@@]2(C)CCC(=O)NC[C@@H](C)OP(O)(=O)O[C@H]3[C@H]([C@H](O[C@@H]3CO)N3C4=CC(C)=C(C)C=C4N=C3)O)\C2=C(C)/C([C@H](C\2(C)C)CCC(N)=O)=N/C/2=C\C([C@H]([C@@]/2(CC(N)=O)C)CCC(N)=O)=N\C\2=C(C)/C2=N[C@]1(C)[C@@](C)(CC(N)=O)[C@@H]2CCC(N)=O AGVAZMGAQJOSFJ-WZHZPDAFSA-M 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 230000001332 colony forming effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000002153 concerted effect Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000012864 cross contamination Methods 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 239000012470 diluted sample Substances 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000007848 endpoint PCR Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 229960000285 ethambutol Drugs 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000013401 experimental design Methods 0.000 description 1
- 238000010195 expression analysis Methods 0.000 description 1
- 210000000416 exudates and transudate Anatomy 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- HJUFTIJOISQSKQ-UHFFFAOYSA-N fenoxycarb Chemical compound C1=CC(OCCNC(=O)OCC)=CC=C1OC1=CC=CC=C1 HJUFTIJOISQSKQ-UHFFFAOYSA-N 0.000 description 1
- 210000003754 fetus Anatomy 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000001917 fluorescence detection Methods 0.000 description 1
- 235000012041 food component Nutrition 0.000 description 1
- 239000005417 food ingredient Substances 0.000 description 1
- 244000053095 fungal pathogen Species 0.000 description 1
- 208000016361 genetic disease Diseases 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000001046 green dye Substances 0.000 description 1
- 150000003278 haem Chemical class 0.000 description 1
- 230000010370 hearing loss Effects 0.000 description 1
- 231100000888 hearing loss Toxicity 0.000 description 1
- 208000034737 hemoglobinopathy Diseases 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 238000013537 high throughput screening Methods 0.000 description 1
- 102000047486 human GAPDH Human genes 0.000 description 1
- 210000004251 human milk Anatomy 0.000 description 1
- 235000020256 human milk Nutrition 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000013095 identification testing Methods 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 239000012678 infectious agent Substances 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 238000013101 initial test Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000138 intercalating agent Substances 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- UWKQSNNFCGGAFS-XIFFEERXSA-N irinotecan Chemical compound C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 UWKQSNNFCGGAFS-XIFFEERXSA-N 0.000 description 1
- 229960004768 irinotecan Drugs 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229960003350 isoniazid Drugs 0.000 description 1
- QRXWMOHMRWLFEY-UHFFFAOYSA-N isoniazide Chemical compound NNC(=O)C1=CC=NC=C1 QRXWMOHMRWLFEY-UHFFFAOYSA-N 0.000 description 1
- 238000003367 kinetic assay Methods 0.000 description 1
- 239000002650 laminated plastic Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 238000003698 laser cutting Methods 0.000 description 1
- 229940115932 legionella pneumophila Drugs 0.000 description 1
- 238000013345 light-cycler PCR Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 210000003563 lymphoid tissue Anatomy 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000005499 meniscus Effects 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 208000015688 methicillin-resistant staphylococcus aureus infectious disease Diseases 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 238000002493 microarray Methods 0.000 description 1
- 238000012775 microarray technology Methods 0.000 description 1
- 239000012569 microbial contaminant Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000013048 microbiological method Methods 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000003097 mucus Anatomy 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 201000003631 narcolepsy Diseases 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 230000009871 nonspecific binding Effects 0.000 description 1
- 238000011330 nucleic acid test Methods 0.000 description 1
- 230000001293 nucleolytic effect Effects 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 235000020824 obesity Nutrition 0.000 description 1
- 229920002114 octoxynol-9 Polymers 0.000 description 1
- 238000010943 off-gassing Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000003534 oscillatory effect Effects 0.000 description 1
- 210000002741 palatine tonsil Anatomy 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 1
- 230000002974 pharmacogenomic effect Effects 0.000 description 1
- 210000003800 pharynx Anatomy 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 210000004910 pleural fluid Anatomy 0.000 description 1
- 201000000317 pneumocystosis Diseases 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 201000011461 pre-eclampsia Diseases 0.000 description 1
- 238000009609 prenatal screening Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 235000019419 proteases Nutrition 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 239000012521 purified sample Substances 0.000 description 1
- 238000012797 qualification Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 101150079601 recA gene Proteins 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- JQXXHWHPUNPDRT-WLSIYKJHSA-N rifampicin Chemical compound O([C@](C1=O)(C)O/C=C/[C@@H]([C@H]([C@@H](OC(C)=O)[C@H](C)[C@H](O)[C@H](C)[C@@H](O)[C@@H](C)\C=C\C=C(C)/C(=O)NC=2C(O)=C3C([O-])=C4C)C)OC)C4=C1C3=C(O)C=2\C=N\N1CC[NH+](C)CC1 JQXXHWHPUNPDRT-WLSIYKJHSA-N 0.000 description 1
- 229960001225 rifampicin Drugs 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 229940016590 sarkosyl Drugs 0.000 description 1
- 108700004121 sarkosyl Proteins 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 210000005005 sentinel lymph node Anatomy 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- KSAVQLQVUXSOCR-UHFFFAOYSA-M sodium lauroyl sarcosinate Chemical compound [Na+].CCCCCCCCCCCC(=O)N(C)CC([O-])=O KSAVQLQVUXSOCR-UHFFFAOYSA-M 0.000 description 1
- 238000002174 soft lithography Methods 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229940031000 streptococcus pneumoniae Drugs 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 1
- 229960001603 tamoxifen Drugs 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000027 toxicology Toxicity 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6834—Enzymatic or biochemical coupling of nucleic acids to a solid phase
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6806—Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/6851—Quantitative amplification
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/02—Adapting objects or devices to another
- B01L2200/026—Fluid interfacing between devices or objects, e.g. connectors, inlet details
- B01L2200/027—Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/10—Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/06—Auxiliary integrated devices, integrated components
- B01L2300/0627—Sensor or part of a sensor is integrated
- B01L2300/0645—Electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0809—Geometry, shape and general structure rectangular shaped
- B01L2300/0816—Cards, e.g. flat sample carriers usually with flow in two horizontal directions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0861—Configuration of multiple channels and/or chambers in a single devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0861—Configuration of multiple channels and/or chambers in a single devices
- B01L2300/0864—Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0861—Configuration of multiple channels and/or chambers in a single devices
- B01L2300/087—Multiple sequential chambers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0887—Laminated structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/18—Means for temperature control
- B01L2300/1805—Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
- B01L2300/1827—Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks using resistive heater
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/0406—Moving fluids with specific forces or mechanical means specific forces capillary forces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/0457—Moving fluids with specific forces or mechanical means specific forces passive flow or gravitation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0475—Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
- B01L2400/0487—Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/06—Valves, specific forms thereof
- B01L2400/0622—Valves, specific forms thereof distribution valves, valves having multiple inlets and/or outlets, e.g. metering valves, multi-way valves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/06—Valves, specific forms thereof
- B01L2400/0688—Valves, specific forms thereof surface tension valves, capillary stop, capillary break
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/08—Regulating or influencing the flow resistance
- B01L2400/084—Passive control of flow resistance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502715—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L7/00—Heating or cooling apparatus; Heat insulating devices
- B01L7/52—Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
- B01L7/525—Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples with physical movement of samples between temperature zones
Definitions
- sequence listing associated with this application is provided in text format in lieu of a paper copy and is hereby incorporated by reference into the specification.
- the name of the text file containing the sequence listing is 39125_Seq_Final — 2012-04-20.txt.
- the text file is 2.04 KB; was created on Apr. 20, 2012; and is submitted via EFS-Web with the filing of the specification.
- Rapid analysis of nucleic acids from biological samples has been advanced by the development of microfluidic technologies capable of extracting nucleic acids from cell lysates and other sources. Rapid extraction methodologies can be combined with amplification techniques such as polymerase chain reaction (PCR) to provide useful quantities of nucleic acids from minute samples of blood, tissue, cultured cells, or other biological materials.
- PCR polymerase chain reaction
- the present invention provides devices, processes and kits that are useful for the extraction of nucleic acids, including DNA and RNA, from liquid samples.
- One aspect of the invention provides a device comprising (i) a body member having a plurality of external surfaces and fabricated to contain a continuous fluid pathway therethrough, the pathway comprising a first port, a second port, and a binding channel intermediate and in fluid communication with the first port and the second port, wherein the binding channel is open to one of the external surfaces of the body member; and (ii) a glass member affixed to the one of the external surfaces of the body member to provide a first unmodified flat glass surface in fluid communication with the binding channel.
- the binding channel and glass member define a binding chamber effective for binding a heterogeneous population of nucleic acids, and the fluid pathway is essentially free of nucleic acid-specific binding sites.
- the fluid pathway further comprises a first channel connecting the first port with the binding chamber and a second channel connecting the second port with the binding chamber.
- the binding channel is open to a second of the external surfaces of the body member, and the device further comprises a second glass member affixed to the second external surface of the body member to provide a second unmodified flat glass surface in fluid communication with the binding channel.
- the first port or the second port comprises a Luer-lock fitting, an O-ring, a gasket, a tubing stub, or an elastomeric septum.
- each of the first port and the second port comprises a Luer-lock fitting, an O-ring, a gasket, a tubing stub, or an elastomeric septum.
- the binding chamber comprises a serpentine channel, such as a planar serpentine channel or a circumferentially flattened helical channel.
- the binding chamber comprises two circumferentially flattened helical channels, which in certain embodiments are coaxial.
- the binding chamber may further comprise a viewing window.
- the binding chamber is rectangular in cross-section.
- the device also comprises a pump in fluid communication with one of the ports.
- the device further comprises fluid distribution control means in fluid communication with the pump.
- the fluid distribution control means comprises a programmable computer.
- the fluid pathway further comprises a distribution channel in fluid communication with the binding channel and a plurality of capillary channels in fluid communication with the distribution channel distal to the binding channel.
- the device further comprises a plurality of assay wells, wherein each of the assay wells is in fluid communication with one of the capillary channels.
- a device comprising (i) a body member having a plurality of external surfaces and fabricated to contain a continuous fluid pathway therethrough, the pathway comprising a first port; a second port; a binding channel intermediate and in fluid communication with the first port and the second port, wherein the binding channel is open to one of the external surfaces of the body member; a distribution channel in fluid communication with the binding channel; and a plurality of capillary channels in fluid communication with the distribution channel distal to the binding channel; and (ii) a glass member affixed to the one of the external surfaces of the body member to provide a first unmodified flat glass surface in fluid communication with the binding channel.
- the binding channel and glass member define a binding chamber effective for binding a heterogeneous population of nucleic acids.
- the device further comprises a plurality of assay wells, wherein each of the assay wells is in fluid communication with one of the capillary channels.
- a device comprising (i) a body member having a plurality of external surfaces and fabricated to contain a single continuous fluid pathway therethrough, the pathway consisting essentially of a first channel; a second channel; a binding channel between the first channel and the second channel, wherein the binding channel is open to one of the external surfaces of the body member; and a plurality of ports, wherein at least one of the ports is in fluid communication with the first channel distal to the binding channel, and wherein at least another of the ports is in fluid communication with the second channel distal to the binding channel; and (ii) a glass member affixed to the one of the external surfaces of the body member to provide a first unmodified flat glass surface in fluid communication with the binding channel, wherein the binding channel and glass member define a binding chamber effective for binding a heterogeneous population of nucleic acids and wherein the fluid pathway is essentially free of nucleic acid-specific binding sites.
- the binding channel is open to a second of the external surfaces of the body member and the device further comprises a second glass member affixed to the second external surface of the body member to provide a second unmodified flat glass surface in fluid communication with the binding channel.
- the body member comprises a plurality of layered sheets of solid material selected from the group consisting of organic polymeric materials and glass.
- the solid material is selected from the group consisting of polyethylene terephthalate, cellulose acetate, acrylic, polycarbonate, polypropylene, and polyvinylchloride.
- the binding channel is a serpentine channel.
- the serpentine channel is planar.
- the serpentine channel is a circumferentially flattened helix.
- the binding chamber comprises two circumferentially flattened helical channels, which channels are optionally coaxial.
- the binding chamber is rectangular in cross-section.
- the device also comprises a pump in fluid communication with one of the ports, and may further comprise fluid distribution control means in fluid communication with the pump.
- the fluid distribution control means comprises a programmable computer.
- the device consists essentially of (i) a body member having a plurality of external surfaces and fabricated to contain a single continuous fluid pathway therethrough, the pathway consisting essentially of a first channel; a second channel; a binding channel between the first channel and the second channel, wherein the binding channel is open to first and second external surfaces of the body member; and a plurality of ports, wherein at least one of the ports is in fluid communication with the first channel distal to the binding channel, and wherein at least another of the ports is in fluid communication with the second channel distal to the binding channel; (ii) a first glass member affixed to the first external surface of the body member to provide a first unmodified flat glass surface in fluid communication with the binding channel; and (iii) a second glass member affixed to the second external surface of the body member to provide a second unmodified flat glass surface in fluid communication with the binding channel, wherein the binding channel, the first
- a process for extracting nucleic acid from a biological sample comprises the steps of (a) introducing a nucleic acid-containing sample into the binding chamber of a device as disclosed above via one of the ports, (b) allowing nucleic acid in the sample to bind to the unmodified flat glass surface, (c) washing the binding chamber to remove contaminants, and (d) eluting bound nucleic acid from the unmodified flat glass surface.
- the process comprises the additional step of lysing a cell sample to prepare the nucleic acid-containing sample.
- the nucleic acid-containing sample contains human nucleic acid.
- the nucleic acid-containing sample contains non-human nucleic acid.
- the nucleic acid is DNA.
- the nucleic acid is genomic DNA.
- the bound nucleic acid is eluted with a buffer containing a fluorescent compound that exhibits a change in fluorescence intensity in the presence of nucleic acids.
- flow of liquid through the binding chamber is laminar.
- the process comprises the additional step of amplifying the eluted nucleic acid.
- the amplifying step comprises isothermal amplification.
- a kit comprising a device as disclosed above and a buffer in a sealed container.
- the buffer may be a lysis buffer, a wash buffer, or an elution buffer.
- the buffer is an elution buffer.
- the buffer is an elution buffer that comprises a fluorescent compound that exhibits a change in fluorescence intensity in the presence of nucleic acids, such as a bis-benzimide compound.
- the kit further comprises a second buffer in a second sealed container, wherein the buffer is a lysis buffer or a wash buffer.
- the kit further comprises an instruction document.
- FIGS. 1A and 1B illustrate the assembly of a multi-layer device of the invention.
- FIGS. 2A and 2B illustrate alternative embodiments of the binding chamber of the device of the invention.
- FIGS. 3A and 3B illustrate the assembly of a device of the invention.
- FIGS. 4A and 4B illustrate a device having a circumferentially flattened, helical binding chamber.
- FIG. 5 illustrates a device of the invention comprising a planar serpentine binding chamber.
- FIGS. 6A and 6B illustrate the recovery of DNA from glass slides ( ⁇ - ⁇ ) as compared to commercially available spin columns ( ⁇ - ⁇ ). DNA was isolated from platelet-rich plasma ( FIG. 6A ) or whole blood ( FIG. 6B ).
- FIG. 7 illustrates the results of polymerase chain reaction amplification of DNA prepared using devices of the invention and a control extraction process.
- FIGS. 8A and 8B illustrate a device of the invention comprising a serpentine binding chamber with extended linear segments.
- FIG. 9 is a schematic illustration of a representative device of the invention.
- FIGS. 10A and 10B illustrate a device comprising a distribution channel and a plurality of capillary channels and assay wells.
- the present invention provides for the extraction of nucleic acids, including deoxyribonucleic acids (DNA) and ribonucleic acids (RNA), from biological samples.
- biological sample means a sample containing cells or cell components and includes any sample, liquid or solid, that contains nucleic acids.
- suitable biological samples include, without limitation, cell cultures, culture broths, cell suspensions, tissue samples, cell lysates, whole blood, serum, buffy coat, urine, feces, cerebrospinal fluid, semen, saliva, wound exudate, viruses, mitochondria, and chloroplasts.
- the sample is blood or a blood product (e.g., platelets) and the nucleic acids that are extracted are those from contaminant bacterial pathogens in the blood or blood product.
- a blood product e.g., platelets
- the present invention provides for the extraction of nucleic acids in soluble form from complex mixtures.
- DNA produced through the present invention has been found to be of high quality for downstream applications.
- the flat glass surfaces used in the invention are easy to wash free of enzymes, metals (heme), and other protein contaminants that can interfere with PCR-based assays.
- the flat glass-based method works with dilute samples such a platelet-rich plasma to give improved yield and quality of DNA as compared to porous-bead “spin columns.” PCR yields were improved and variability decreased.
- the devices of the invention also allow the extracted nucleic acids to be concentrated. For example, DNA captured in a 0.5-mL binding chamber can be concentrated in 0.1 mL of elution buffer by sweeping the buffer through the chamber.
- the invention therefore provides advantages over previously known extraction systems when working with samples that are dilute with respect to nucleic acid content (e.g., platelet concentrates, plasma, serum, urine, environmental samples, or forensic samples), or for pathogen detection with improved sensitivity.
- the devices of the present invention are designed for ease of use and construction. Within certain embodiments, movement of fluids through the devices does not require internal valving. However, the design of the devices allows the addition of further channels, wells, and valves to allow more extensive manipulation and analysis to be carried out within the device. In addition, the devices are designed to be resistant to contamination, in contrast to standard spin columns.
- the flow-through design is flexible with regard to sample and reagent volumes, allowing dilute nucleic acid samples to be concentrated in the extraction process, and further allows quick drying of the internal channels using filtered air circulation.
- the glass walls of the binding chamber permit quantification of nucleic acids within the device, such as through the use of a fluorimeter. Multiple washing and drying steps can be automated, eliminating the need for manual manipulation of the device after sample loading and allowing more controlled timing of steps.
- Devices of the present invention comprise a plurality of ports and a binding chamber intermediate and in fluid communication with at least two of said plurality of ports. These ports provide for the introduction of a nucleic acid-containing sample into the binding chamber, for the introduction of reagents, and for the removal of waste products and extracted nucleic acid.
- a first port can be used for introducing fluids into the binding chamber and a second port used for removing fluids from the binding chamber, although alternative operations are within the scope of the invention.
- ports are designated herein by ordinal numbers (e.g., “first port,” “second port,” etc.). These designations are not intended to limit the use of any particular port.
- 1A and 1B and comprises a body fabricated from a plurality of layers, including outer glass layers 40 and 50 , and internal plastic layers 120 , 130 , and 140 .
- a continuous fluid pathway passes through the body, providing a first channel 11 , a binding chamber 30 , and a second channel 12 .
- First port 10 and second port 20 provide access to the first channel and second channel, respectively.
- a plurality of alignment holes 15 are provided to facilitate assembly of the layers.
- Internal layers 120 , 130 , and 140 are cut to provide the desired shape and the various openings.
- the illustrated U-shaped openings 16 , 17 , and 18 create, upon assembly, binding chamber 30 in fluid communication with first channel 11 , first port 10 , second channel 12 , and second port 20 .
- Adhesive layers used to bond the glass and plastic layers are not shown.
- the binding chamber is formed by the combination of a binding channel disposed within the body of the device and at least one glass member.
- the binding channel is open to at least one external surface of the body, and the glass member is affixed to that external surface, thereby providing an unmodified flat glass surface in fluid communication with the binding channel.
- the binding channel is open to two external surfaces of the body, and a second glass member is affixed to the second of the external surfaces, thereby providing a binding chamber with two glass surfaces.
- the shape and proportions of the binding chamber are selected to provide for laminar flow of liquids passing therethrough. Whether flow is turbulent or laminar can be characterized by its Reynolds number (Re).
- the Reynolds number can be described as the ratio of inertial forces over viscous forces, where viscous forces can be thought of as a resistance to velocity and inertial forces can be thought of as a resistance to change in velocity.
- fluid channel including first channel, second channel, and binding chamber cross-section dimensions are ordinarily within the range of 0.15 mm ⁇ 1 mm to 0.5 mm ⁇ 6 mm, or circular channels having diameters providing similar volumes.
- Flow rates will generally not exceed 600 ⁇ L/second, and will typically be approximately 60 ⁇ L/second.
- Vs 0.4 m/s (small channel) to 0.02 m/s (large channel)
- the serpentine design also allows this combination of high surface area (glass-liquid interface) and small cross-section to exist within a compact footprint.
- FIGS. 2A and 2B illustrate two embodiments of binding chamber 30 .
- the chamber comprises a serpentine channel in a planar configuration.
- the chamber shown in FIG. 2A termed an “S-channel,” comprises a series of linear segments 31 of equal dimension connected by 180° bends 32 having a narrower cross-section.
- the binding chamber of FIG. 2B termed a “W-channel,” comprises alternating narrow 33 and wide 34 linear segments connected by bends 35 of approximately 90°.
- the W-channel provides a relatively smaller chamber volume and a varied cross-section, which has been found to reduce the likelihood of air bubbles passing the leading edge of the liquid bolus in certain orientations of the device.
- the binding chamber it is preferred to configure the binding chamber so that its contents can be “read” using a standard 96-well plate reader.
- the size and shape of the binding chamber are preferably selected so that it overlays at least a portion of a 96-well plate with portions of the chamber overlying wells of the plate. If the device is undersized relative to a 96-well plate, the device can be fitted to an adapter or carrier that shares the footprint with a 96-well plate and aligns the device such that the binding chamber or other target area is in an appropriate location.
- the devices of the present invention comprise, within the binding chamber, an unmodified flat glass surface effective for binding a heterogeneous population of nucleic acids.
- unmodified flat glass surface means a glass surface having a flatness corresponding to that of a standard microscope slide, wherein the surface has not been etched or otherwise altered to increase its surface area, and wherein it has not been modified to specifically bind nucleic acids as disclosed below.
- Suitable glass materials in this regard include flat soda lime glass (e.g., Erie Electroverre Glass; Erie Scientific Company, Portsmouth, N.H.) or borosilicate glass (e.g., Corning 0211; Corning Incorporated, Corning, N.Y.).
- the binding chamber is essentially free of nucleic acid-specific binding sites, such as charged surfaces or binding sites provided by immobilized oligonucleotides, minor groove binding agents, intercalating agents, or the like.
- a binding chamber that is “essentially free of nucleic acid-specific binding sites” is one that does not contain an amount of such sites sufficient to give a statistically significant increase in nucleic acid binding as compared to glass.
- the remainder of the body of the device is preferably made from materials that exhibit low auto-fluorescence and very low binding of nucleic acids.
- the materials should also be impervious to ethanol.
- Rigid or semi-rigid, organic polymeric materials are preferred. Representative such materials include acrylic (a high molecular weight rigid material), polycarbonate, polypropylene, cellulose acetate, polyethylene terephthalate (PET), and polyvinylchloride, but not polystyrene. Other materials, including poly(dimethylsiloxane) and silicone rubber, can also be employed. These layers are cut using methods known in the art, including die-cutting, photolithography, soft lithography, micromachining, laser ablation, and plasma etching.
- individual layers can be molded. These layers may be bonded together using adhesives, such as pressure-sensitive or thermally-activated adhesives.
- suitable adhesive materials for bonding layers include, without limitation, acrylic adhesive films (e.g., 300LSE adhesive film, 467 acrylic adhesive film, and 8141 acrylic adhesive film; 3M Company, St. Paul, Minn.) and silicone adhesives (e.g., TRANSIL silicone adhesive film).
- acrylic adhesive films e.g., 300LSE adhesive film, 467 acrylic adhesive film, and 8141 acrylic adhesive film; 3M Company, St. Paul, Minn.
- silicone adhesives e.g., TRANSIL silicone adhesive film
- the device further comprises a plurality of ports through which liquids can be introduced into or removed from the binding chamber.
- the ports provide openings through the surface of the device and are in fluid communication with the binding chamber, which is positioned between at least two of the ports.
- first and second ports are provided as openings in a flat surface of the device.
- Such openings are conveniently circular in shape, although shape is a matter of routine design choice.
- the ports can further comprise additional components, allowing the sample and various wash buffers to be introduced into the device by various means. For example, Peek tubing stubs can be attached to the device to allow manual input. Manual addition allows the various buffers to be optimized for volume, incubation time, and flow rate.
- the ports are provided by small diameter holes sized to accept a needle (e.g., a blunt tip, 22 G needle) inserted into the hole. Connections to the needles are made using Luer-lock fittings.
- one or more of the ports comprises an elastomeric septum that can be pierced with a needle or cannula, thus providing a device that is sealed until the time of use.
- the device is provided with flat ports on its surface. This arrangement permits a connection manifold to be clamped over the ports.
- the connections can be further sealed against leaks by the inclusion of O-rings, gaskets, or the like in the ports.
- the device comprises separate ports for sample input and reagent input.
- the sample input port can be fitted with a Luer-lock fitting, an elastomeric septum, or a fitting adapted to receive a pipette tip. This arrangement allows the sample to be introduced without contaminating the port used for reagent input. Ports lacking sealable openings can be sealed with adhesive tape when desired.
- First and second ports can be positioned on the upper surface of the device, facilitating the simultaneous operation of a plurality of devices.
- Such devices can be aligned in a rack, and a multi-slot manifold equipped with a single cammed lever can be attached to the devices, sealing against each device in the system simultaneously.
- this arrangement can then be connected to a valve mechanism connected to a microprocessor-controlled, multi-channel peristaltic pump as disclosed in more detail below.
- a “continuous fluid pathway” is a pathway that allows fluid to travel continuously through the device from the first port, through the binding channel, to the second port. Additional ports and/or channels may be connected to the pathway.
- a “single continuous fluid pathway” denotes a continuous fluid pathway that is unbranched. Within certain embodiments of the invention the fluid pathway is essentially free of nucleic acid-specific binding sites.
- FIGS. 3A and 3B illustrate a device constructed using a compression seal.
- Compression sealed construction utilizes a single, die-cut body member 90 of compliant material. Suitable materials include silicone rubber, Neoprene, urethane, natural rubber, Buna-N, and the like.
- Serpentine binding channel 36 is cut entirely through body member 90 , making it open to the upper and lower surfaces of the body member.
- First and second glass members (e.g., slides) 40 and 50 are clamped in place on each side of silicone rubber body member 90 , creating a sealed binding chamber.
- the device further comprises outer layers of rigid or semi-rigid plastic 100 and 110 . Clamping is conveniently achieved through the use of U-shaped channels 120 of sufficient rigidity to provide a leak-proof assembly.
- FIGS. 4A and 4B illustrate a further embodiment of the device of the invention, referred to as an “X-channel” device.
- Device 200 comprises first port 10 , second port 20 , first channel 11 , second channel 12 , and binding chamber 30 .
- Binding chamber 30 comprises two circumferentially flattened helical channels, and further comprises viewing window 19 between the two circumferentially flattened helical channels.
- the viewing window is an open channel through all internal layers of the device, allowing optical readings to be taken without interference of plastic layers. It is preferred that viewing window 19 be configured to span a region corresponding to 2 holes of a standard 96-well assay plate, thereby facilitating the analysis of nucleic acid extraction using conventional plate reading equipment.
- FIG. 4B illustrates component layers 210 , 220 , 230 , 240 , 250 , 260 , and 270 that, upon assembly, combine to provide the various channels and ports. Openings are cut in the layers using conventional methods.
- glass members 40 are added to front and back surfaces of the assembled body adjacent layers 210 and 270 and on top of layers 220 and 260 to define binding chamber 30 .
- the layers are assembled using adhesive layers (not shown) as disclosed above. The adhesive seals well and the device does not leak under moderate operating pressure.
- the device can be constructed to fit a standard 96-well plate reader, either alone or in combination with a carrier plate. Such a carrier will position the device to align chosen areas (e.g., binding chamber, viewing window, calibration wells) to the standard well locations.
- chosen areas e.g., binding chamber, viewing window, calibration wells
- the illustrated device has glass walls formed by two glass microscope slides. Fluorescence can be measured in the X-channel or in the viewing window.
- the design of the device shown in FIGS. 4A and 4B provides advantages over devices with planar serpentine binding chambers, such as that shown in FIGS. 1A and 1B .
- This design better excludes bubbles from the fluid bolus in multiple orientations of the device, while maintaining a high glass contact area in the binding chamber.
- the glass surface exposed to fluid flow is approximately 712 mm 2 on each side of the device, for a total exposed glass surface of 1424 mm 2 .
- a sample can be introduced through third port 13 , such as by use of a micropipette, syringe, or the like.
- the device is then connected to a manifold (not shown), and wash reagents are introduced through second port 20 and second channel 12 , and are removed through first port 10 and first channel 11 .
- This arrangement ensures that the wash reagents are introduced through a clean channel, avoiding potential contamination from third port 13 .
- Holes 360 serve to register the device to the manifold.
- third port 13 is fitted with an elastomeric septum (not shown) that seals around the pipette tip or other instrument used to introduce the sample, and further seals the port after the instrument is removed.
- FIGS. 8A and 8B An additional device of the present invention is illustrated in FIGS. 8A and 8B .
- Device 400 (referred to as “version 4” or “v4”) comprises a larger glass surface area for nucleic acid binding and is also adapted for use with a manifold that can connect to a plurality of such devices.
- first and second channels in device 400 are not dedicated.
- Device 400 comprises S-shaped binding chamber 30 , in which linear segments 31 are wider than bends 32 .
- This device further comprises first and second channels 11 and 12 , through which fluids are introduced into and removed from the device.
- First channel 11 is accessed via first port 10 and third port 13 .
- Second channel 12 is accessed via second port 20 and fourth port 14 .
- a plurality of additional channels 490 pass through the device, which channels may be joined to additional device elements (not shown) as disclosed in further detail below.
- Additional features of device 400 include tabs 402 , which protect the corners of the glass slides 460 ; slots 404 , which can mate with guide pins in an external manifold (not shown); first notch 406 , which identifies the device type and can be “read” by an instrument or manifold to which the device is connected; and second notch 408 , which can be can be used to align an optical detector.
- third port 13 of device 400 comprises a pipette interface for manual sample input through first channel 11 .
- second channel 12 is used for reagent input through second port 20 and product withdrawal through fourth port 14 .
- Waste products e.g., washes
- This arrangement eliminates the risk of contaminating subsequent inputs or the final product when introducing the initial sample, since the pipette or other input device is connected to what becomes the outlet of the device.
- the 2′′ ⁇ 3′′ glass slides 460 used in device 400 provide a larger exposed glass surface area in binding chamber 30 .
- linear segments 31 are 6 mm wide, and bends 32 are approximately 3 mm wide.
- Binding chamber 30 spans approximately 44.5 mm of the total 51.4 mm width of glass slides 460 .
- Lysing the cells can also comprise sonicating or mechanically disrupting the cells in the sample in first chamber 610 .
- Liquid can then be transferred from first chamber 610 into binding chamber 30 by rotating the device so that the liquid is transferred by gravity. Transferring the liquid may also include pumping. For example, after cell lysis and incubation device 600 is rotated clockwise 90 degrees and liquid is transported through intermediate channel 620 into binding chamber 30 . Nucleic acids are captured on the glass surface of binding chamber 30 , and wash solution is introduced into device 600 through second port 20 . After washing, device 600 is tipped again to transport waste reagents back to first chamber 610 , where they are stored for disposal.
- Devices of the invention can further comprise a distribution channel in fluid communication with the binding channel and a plurality of capillary channels in fluid communication with the distribution channel distal to the binding channel.
- the distribution channel and capillary channels provide a means for distributing fluid from the binding channel to assay wells either incorporated into the device or in a separate device.
- FIGS. 10A and 10B illustrate an example of a device comprising an integrated distribution channel and assay wells.
- the illustrated device 700 provides for distribution of extracted nucleic acid to multiple wells located on the device. Referring to FIG. 10A , device 700 comprises first chamber 610 , binding chamber 30 , two calibration wells 280 and 290 , distribution channel 710 , and a plurality of assay wells 720 .
- the illustrated device includes sixteen assay wells, devices containing more or fewer than sixteen wells can be constructed and are within the scope of the present invention.
- nucleic acid After nucleic acid is captured in binding chamber 30 , washed, and eluted, it then flows in response to an applied pressure gradient to distribution channel 710 that is in fluid communication with assay wells 720 .
- Each assay well is connected to distribution channel 710 by capillary channel 730 and further comprises a vent 740 as shown in FIG. 10B .
- Distribution channel 710 terminates in port 790 . When port 790 is blocked, and if the surface energy of the capillary channels is sufficiently high, the eluent flows into and fills each capillary channel 730 .
- Each capillary channel connects to an assay well through outlet via 750 cut through the plastic film layer separating capillary channel 730 from assay well 720 . Due to a balance between the pressure forces causing fluid flow and the surface tension forces of the liquid meniscus, the liquid front in each capillary channel stops at its outlet via, instead of continuing to flow into its respective well. Once all the capillary channels are filled, any excess eluent is pushed from the distribution channel into first chamber 610 by applying air pressure to port 790 while port 20 is sealed (e.g., by covering them with tape). This ensures that each well will get the same volume of eluent.
- the channel wall material should have a critical surface energy that is higher than the surface energy of the eluent.
- Critical surface energy critical surface tension
- the critical surface energy can be determined by consulting material properties tables. Surface energy of the eluent is determined by measurement. See, Fox and Zisman, J. Colloid. Science 5:514, 1950; Zisman, “Relation of Equilibrium Contact Angle to Liquid and Solid Constitution”, Chapter 1 in Contact Angle, Wettability, and Adhesion, R. F. Gould, ed., American Chemical Society, Washington D.C., 1964.
- FIGS. 10A and 10B can be readily incorporated into devices of alternative design.
- other such designs may omit first chamber 610 or calibration wells 280 and 290 , may substitute a different binding chamber design, or may dispense the eluent to an external wellplate instead of to assay wells in the device.
- the basic concept of droplet distribution of the purified nucleic eluent remains the same.
- Device 400 is provided with additional channels 490 in the form of vias that pass completely through the device.
- channels 490 can provide for passage of fluids between additional modules attached to the top and bottom surfaces of device 400 .
- each capillary is terminated by a capillary pore that is smaller in cross-section than the capillary itself and that serves to stop the fluid flow by surface tension at the end of the capillary.
- the small amount of liquid remaining at the end of the main channel wets a hydrophobic porous membrane and effectively seals the end of the channel, since liquid cannot pass through the membrane until forced by the air pressure.
- Micronozzles of this design can a predetermined quantity of liquid, typically 4-5 ⁇ L.
- Devices of the present invention can further comprise one or more particles (beads) within the lysis chamber to facilitate disruption of cellular material.
- beads in cell disruption
- the use of beads in cell disruption is known in the art.
- U.S. Pat. No. 6,235,501 discloses methods of disrupting biological material to release nucleic acids wherein rapidly oscillating reciprocal mechanical energy is applied to the material.
- the biological material is suspended in a liquid medium with one or more particles, typically a spherical bead having a volume of about 5% to 80% of the liquid volume.
- Beads can be made from a variety of materials, including polytetrafluoroethylene, polypropylene, polyvinylchloride, ceramic, and stainless steel. In general, beads are selected for an appropriate size and hardness to disrupt the particular target cells.
- Controlled oscillatory mechanical energy can be applied to the sample in the lysis chamber through an attached piezobuzzer.
- Piezobuzzers in the form of piezoceramic disks are known in the art and are available from commercial suppliers (e.g., Piezo Systems Inc., Woburn, Mass.). Such energy is applied to the sample for short periods of time (typically 5-60 seconds) to lyse the sample and release the DNA. Energy transfer and lysis are enhanced by including one or more particles as disclosed above.
- a piezobuzzer also facilitates mixing of liquids within the lysis chamber, such as mixing of blood and buffers.
- a sonicator probe or other device capable of introducing high frequency resonant vibrations through a wall of the device can be employed.
- the devices can also be provided with one or more features to facilitate tracking of the device and nucleic acid products.
- Such features include bar coding and RF tracking elements.
- Heating elements can be incorporated into the device in the form of electrical resistance heaters.
- Flexible heating elements constructed from a variety of materials, including silicone rubber, polyimide, mica, and polytetrafluoroethylene, are known in the art and are available from commercial suppliers (e.g., Minco, Minneapolis, Minn.) by attaching the heater directly to the outer surface of the device.
- separate, external heating elements can be pressed against the device to provide physical contact between the heating element and the device.
- the device includes a pumping means effective for transporting fluids between the first port and the second port through the binding chamber.
- the pump is selected for its ability to meet the following criteria: (1) ability to dispense in the volumes in the range of 5 ⁇ l-1000 ⁇ l; (2) a low or zero dead volume to minimize cross contamination of fluids; (3) wetted surfaces made of materials compatible with the various reagents used (e.g., chaotropic salts and ethanol); (4) ability to effectively pump air as well as liquids; and (5) ability to operate in reverse.
- Peristaltic pumps offer a good working combination of all of these traits, but do not offer the most accurate volume dispensing of all pump options.
- syringe pumps can be used to deliver measured volumes of fluid into the device, but an additional means of pressurizing the system is required to move the fluid within the binding chamber and associated channels.
- computer-controlled multi-channel peristaltic pumps e.g., ISMATEC 12-channel pumps; Ismatec SA, Glattbrugg, Switzerland
- the pump is connected to the device port selected as the reagent inlet, and the port selected as the outlet is connected to a waste container, although other configurations are within the scope of the invention.
- the programmable computer is a desktop or laptop personal computer. In other embodiments, the programmable computer is a dedicated microprocessor device.
- control of fluid distribution is achieved using the above-disclosed selector valve in combination with a multi-channel peristaltic pump using an application written in Visual Basic for Microsoft Excel and running on a personal computer. Both the valve mechanism and the pump feature RS232 communication. These components are addressed using Excel through the USB port of the computer and a USB-to-Serial converter. As will be understood by those skilled in the art, custom firmware software may also be employed.
- the device can be configured with high volume, low pressure air pump downstream of the pumping means disclosed above.
- This air pump is connected to the device by a two-position selector valve and is used to dry the interior of the device by evaporation.
- Liquid reagents are conveniently stored in septum-sealed vials equipped with a sterile filter vent.
- the vials may be connected to the fluid distribution control means using a standard Luer-type needle inserted through the septum and connected to manifold inputs via microbore tubing.
- liquid adhesives such as screen printing
- the several layers are registered to each other and pressed together.
- Features to assist in registration such as alignment holes 15 shown in FIG. 1A , are advantageously incorporated into the final design. Pressure and temperature during the cure cycle are adhesive-dependent; selection of suitable conditions is within the level of ordinary skill in the art.
- the device can be assembled through the use of a compression seal as illustrated in FIGS. 3A and 3B .
- the device is optionally treated with ethylene oxide or gamma sterilization to remove pathogens.
- Reagents for use with the device preferably pass a 0.2-micron cellulose filter on entry to remove bacterial and viral contaminants. Trace nucleic acid contaminants can be removed from reagents by ultrafiltration. For some applications, such as when isolating RNA or trace quantities of nucleic acids, it is beneficial to use nuclease-free reagents
- the reagent ports on the device may provide an interface to yellow (0.2 mL maximum) and blue (1.0 mL) pipette tips. A needle-septum interface can be provided.
- Liquid samples are ordinarily introduced into the device at flow rate of approximately 0.1 mL/minute to approximately 5.0 mL/minute, although, as disclosed above, considerably higher flow rates can be used without disrupting laminar flow.
- the actual flow rate is design-dependent, taking into consideration the total volume of the fluid pathway and the shape of the binding chamber. As disclosed above, it is preferred to maintain laminar flow within the binding chamber. For devices comprising the larger volume S-Channel ( FIG. 2A ), a flow rate of approximately 2.5 mL/minute has been found to be satisfactory.
- the flow rate can be slowed to 0.5 mL/minute to 2.0 mL/minute, more preferably 1-1.5 mL/minute.
- Dilute or concentrated samples can be prepared for input into the device. Lysis and digestion of intact cells releases DNA or RNA from residual proteins (for example histones).
- solid samples e.g., bacterial spores or dried blood on cloth
- semisolid samples e.g., mouse tails or sputum/stool
- Nucleic acids are bound to the glass surface(s) of the device in the presence of a salt (e.g., KCl) at a concentration of at least 0.5 M to about 2 M or more depending on solubility, or a chaotrope (e.g., guanidine HCl or guanidine thiocyanate) at a concentration of at least 1 M to about 6 M or the limit of solubility.
- a salt e.g., KCl
- a chaotrope e.g., guanidine HCl or guanidine thiocyanate
- ethanol is added to the wash solution to retain the nucleic acid on the glass and to remove contaminants that may interfere with downstream processes such as nucleic acid amplification. Washing is carried out at pH 6-9, commonly pH 6-8. Nucleic acids are eluted from the device with a low-salt solution at basic pH, commonly pH 8-9.
- Suitable chaotropic salts include guanidinium thiocyanate, guanidine hydrochloride, sodium iodide, and sodium perchlorate.
- Guanidine hydrochloride which is preferred for lysing blood cells, is used at concentrations of 1M to 10M, commonly 1M to 5M, usually 1M to 3M. Higher concentrations of sodium iodide are required, approaching the saturation point of the salt (12M).
- Sodium perchlorate can be used at intermediate concentrations, commonly around 5M.
- Neutral salts such as potassium chloride and sodium acetate can also be used to obtain binding of DNA to glass surfaces, and may be used in place of chaotropic salts when cell lysis is not required or is achieved by other means (e.g., in the case of bacterial cell lysis).
- the ionic strength of the buffer should be at least 0.25M.
- An exemplary lysis buffer is a 2M solution of guanidinium thiocyanate (GuSCN) buffer at pH 6.4. Lysis in a chaotropic salt solution also removes histone proteins from the genomic DNA and inactivates nucleases. Lysis buffers will generally also contain one or more buffering agents to maintain a near-neutral to slightly acidic pH.
- a suitable buffering agent is sodium citrate.
- One or more detergents may also be included. Suitable detergents include, for example, polyoxyethylenesorbitan monolaurate (TWEEN 20), t-octylphenoxypolyethoxyethanol (TRITON X-100), sodium dodecyl sulfate (SDS), NP-40, CTAB, CHAPS, and sarkosyl. Alcohol, commonly ethanol, is included in the lysis and wash solutions, with the actual concentration selected to compensate for the lowered salt concentration in the washes. In the absence of salt, alcohol is included at a concentration of at least 50%, with 70% alcohol preferred in the final wash.
- the nucleic acid-containing sample is introduced into the device via an one of the ports.
- Nucleic acid is captured on the flat glass surface(s) in the presence of a salt or chaotropic salt as disclosed above. Satisfactory binding of nucleic acids to glass is achieved at room temperature (15° C.-30° C., commonly about 20° C.), although the extraction process can be run at higher temperatures, such as up to 37-42° C. or up to 56° C., although higher temperatures may reduce recover of nucleic acids.
- the sample may be allowed to stand in the device for a period of time, and the sample solution may be pumped back and forth through the binding chamber.
- wash buffers are then pumped into one port, such as by use of a peristaltic pump, a syringe, or a pipettor. Selection of wash buffers will depend in part on the composition of the sample loading solution. In general, salt concentration will be reduced during the washing process, and pH will be increased slightly. If the lysis buffer contains a chaotropic salt, the initial wash will commonly also contain that salt at the same or somewhat lower concentration (e.g., 1-3M GuSCN). The final wash should reduce the ethanol concentration to below 50%, preferably to about 10%-20%, to minimize inhibition of PCR amplification in downstream processing. The alcohol content of wash solutions will ordinarily range between 20% and 80%.
- wash solutions containing at least 50% ethanol, preferably about 70% ethanol, have been found to improve nucleic acid capture.
- Complete removal of the final wash from the binding chamber is also needed in certain embodiments. Methods for this removal of the final wash include drying by passaging air over the surfaces of the chamber utilizing an air pump for one to three minutes.
- the nucleic acid is eluted from the binding chamber with a low salt buffer at higher pH than the final wash.
- Elution buffers are typically low ionic strength, buffered solutions at pH ⁇ 8.0, although nucleic acid can be eluted from the device with water. Elution can be carried out at ambient temperature up to about 56° C.
- the design of the device permits buffers to be pumped back and forth through the binding chamber to increase washing and elution efficiency, and air to be pumped through between washes to remove residual buffer. Buffers are ordinarily pumped through the binding chamber and out through the port selected as the device outlet.
- nucleic acids are contacted with a fluorescent compound having a fluorescence intensity dependent on the concentration of nucleic acids, and the fluorescence of the fluorescent compound is measured.
- fluorescent compounds having a fluorescence intensity dependent on the concentration of nucleic acids are fluorescent compounds that exhibit a conformation-dependent change in fluorescence intensity in the presence of nucleic acids.
- Useful fluorescent compounds include those compounds whose intensity increases in the presence of nucleic acids.
- any fluorogenic DNA-binding dye can be used in the invention, it is preferred to use a dye that is compatible with downstream processes such as PCR.
- a preferred dye is a bis-benzimide (BB) dye disclosed by Reed et al., US Patent Application Publication 20060166223 A1, which gives a strong fluorescent signal (detection at 460 nm, 40 nm filter slit width) when excited at 360 nm (40 nm slit width).
- the BB dye is selective for dsDNA but can also detect RNA.
- a popular green fluorescent dye, SYBR green (Invitrogen Corp.) is often used in so called “real time” PCR or quantitative PCR.
- SYBR green can be used to both quantitate the extracted DNA before amplification and monitor the gene-specific increase during PCR.
- fluorogenic DNA dyes or DNA probes in isothermal nucleic acid tests such as NASBA is also known.
- the preferred bis-benzimide dye although not as sensitive as some DNA-binding dyes, has been found to be well suited for measuring genomic DNA content of a sample after extraction from DNA-rich whole blood.
- the minor groove-binding BB dye emits blue fluorescence in the presence of double stranded DNA, and can be added directly to PCR amplification buffer.
- DNA dyes with a higher binding affinity such as PICOGREEN (Invitrogen), may inhibit PCR.
- BB dye can be used in existing PCR assays if the PCR primer extension is carried out at higher annealing temperature (61.5° C. vs. 60° C.). Inclusion of the BB dye directly in the elution buffer therefore allows DNA to be measured before, during, and after gene-specific amplification.
- the higher primer extension temperature required with addition of BB dye may be advantageous in PCR assays (acting as a PCR enhancer).
- MGB TaqMan system U.S. Pat. No. 6,727,356
- A/T rich primer/target interactions are stabilized by the BB in the PCR mix, and increased duplex stability allows shorter (more specific) DNA probes to be used.
- the blue emitting MGB dye will likely not interfere with the green to red fluorescence wavelengths that are widely used with 2-color fluorogenic DNA probes.
- RNA-selective dyes such as Ribogreen (see Molecular Probes Handbook of Fluorescent Probes and Research Products, 9th edition, Chapter 8) can also be used in the device or elution buffer. RNA-selective dyes may have advantages for real time RNA assays such as NASBA. The caveats disclosed above about inhibition of the gene-specific DNA or RNA tests also apply to RNA detecting fluorogenic dyes.
- the device can be re-used following removal of residual nucleic acids and/or reagents by washing. In many cases, satisfactory washing can be achieved by running several (typically 5-10) channel volumes of distilled sterile water through the binding chamber. In a preferred method, the device is first washed with 5-10 channel volumes of distilled sterile water, followed by a wash with 2-3 channel volumes of 70% EtOH, which is followed by another 2-3 channel volume wash with distilled sterile water. Wash solutions can be pumped through the device using a pump (e.g., a peristaltic pump), syringe, or the like. The cleaning protocol can be carried out in through a manifold using an automated pump. Following washing, the device is fully dried, such as in a vacuum dessicator for 5-30 minutes.
- a pump e.g., a peristaltic pump
- the cleaning protocol can be carried out in through a manifold using an automated pump. Following washing, the device is fully dried, such as in a vacuum dessicator for 5
- Bound nucleic acid can be stored in the device and used in later testing, including confirmation of test results.
- the device is rinsed with an ethanol-rich rinse and dried. Storage is at room temperature for up to several days or in a freezer for longer periods.
- the present invention has multiple applications in laboratory research, human and veterinary medicine, public health and sanitation, forensics, anthropological studies, environmental monitoring, and industry.
- Such applications include, without limitation, bacterial and viral detection and typing, microbial drug resistance screening, viral load assays, genotyping, infection control and pathogen screening (of, e.g., blood, tissue, food, cosmetics, water, soil, and air), pharmacogenomics, detection of cell-free DNA in plasma, white cell counting, and other fields where preparation and analysis of DNA from biological samples is of interest.
- nucleic acids extracted using the devices and methods of the invention are readily used in a variety of downstream processes, including amplification, hybridization, blotting, and combinations thereof.
- the devices and methods of the invention can be employed within point-of-care diagnostic assays to identify disease pathogens, and can be utilized in genetic screening. These devices and methods can also be used within veterinary medicine for the diagnosis and treatment of animals, including livestock and companion animals such as dogs, cats, horses, cattle, sheep, goats, pigs, etc.
- Nucleic acids can be extracted from a wide variety of sources.
- suitable sources include, without limitation, sputum, saliva, throat swabs, oral rinses, nasopharyngeal swabs, nasopharyngeal aspirates, nasal swabs, nasal washes, mucus, bronchial aspirations, bronchoalveolar lavage fluid, pleural fluid, endotracheal aspirates, cerbrospinal fluid, feces, urine, blood, plasma, serum, cord blood, blood components (e.g., platelet concentrates), blood cultures, peripheral blood mononuclear cells, peripheral blood leukocytes, plasma lysates, leukocyte lysates, buffy coat leukocytes, anal swabs, rectal swabs, vaginal swabs, endocervical swabs, semen, biopsy samples, lymphoid tissue (e.g., tonsil, lymph node), bone fibroblasts
- Nucleic acids prepared according to the present invention can be amplified by methods known in the art, including polymerase chain reaction (PCR) (see, e.g., Mullis, U.S. Pat. No. 4,683,202) and isothermal amplification methods.
- PCR polymerase chain reaction
- RT-PCR Real-time polymerase chain reaction
- Instruments include thermal cyclers (e.g., ABI7000, 7300, 7500, 7700, and 7900, Applied Biosystems, Foster City, Calif.; LIGHTCYCLER, Roche Applied Science, Indianapolis, Ind.; SMARTCYCLER, Cepheid, Sunnyvale, Calif.; ICYCLER, Bio-Rad Laboratories, Inc., Hercules, Calif.; ROBOCYCLER and MX3000P, Stratagene, La Jolla, Calif.), detection systems for use with fluorescent probes (e.g., MYIQ and CHROMO4, Bio-Rad Laboratories, Inc.), nucleic acid analyzers (e.g., Rotor-Gene 6000, Corbett Life Science, Concorde, NSW, Australia), and
- PCR technologies include fluorescent dyes for quantitative PCR (e.g., SYBR, Invitrogen Corp.) and fluorogenic probes, including FRET (fluorescent resonance energy transfer) hybridization probes (Walker, Science 296:557-559, 2002), TAQMAN probes (Applied Biosystems, Foster City, Calif.; see, Kutyavin et al., Nucl. Acids. Res. 28:655-661, 2000), ECLIPSE probes (Nanogen, Bothell Wash.), and molecular beacons (U.S. Pat. Nos. 5,925,517 and 6,150,097.
- FRET fluorescent resonance energy transfer
- NASBA nucleic acid sequence-based amplification
- branched DNA Alter et al., J. Viral Hepat. 2:121-132, 1995; Erice et al., J. Clin. Microbiol. 38:2837-2845, 2000
- transcription mediated amplification Hill, Expert. Rev. Mol. Diagn.
- NASBA depends on the concerted action of three enzymes to amplify target nucleic acid sequences. While able to amplify double-stranded DNA, NASBA is particularly suited for amplification of RNA.
- Target RNA enters the cycle by binding to a first primer, which is then extended by reverse transcriptase to form a DNA/RNA hybrid. The RNA strand is removed by the action of RNase H to yield a single-stranded cDNA.
- This cDNA can bind to a second primer (which includes a T7 RNA polymerase promoter sequence) and then form a double-stranded intermediate by the action of the reverse transcriptase activity.
- the intermediate is then copied by the action of T7 RNA polymerase into multiple single-stranded RNA copies (10-1000 copies per copy of template). These RNA copies can then enter the cycle and continue generating more copies in a self-sustained manner. Based on the NASBA mechanism, two products can be detected: a double-stranded DNA intermediate and a single-stranded RNA product.
- NASBA is conveniently used with the devices of the present invention since it is isothermal (i.e. temperature cycling is not required). A denaturation step is not necessary except when a DNA target is chosen.
- Two considerations when running NASBA in the devices of the present invention are heat transfer and protein adsorption.
- the reaction temperature should be within the range of 30° C. to 50° C., usually at least 37° C., and preferably 42° C. where primer binding is more specific. Room temperature does not support NASBA, so the channel temperature must be raised efficiently or the reaction will not work.
- proteins such as the NASBA enzymes readily stick to glass and some organic polymeric materials, inactivating them and stopping the NASBA cycle. Two methods to address this are (1) to preadsorb the glass with a carrier such as serum albumin, or (2) to add enough serum albumin to the NASBA reaction mixture to minimize loss of enzymes.
- nucleic acid amplification Additional methods of nucleic acid amplification are known in the art and can be applied to DNA prepared according to the present invention. Examples of such methods include ligase chain reaction (Wu and Wallace, Genomics 4:560-569, 1989; Barany, Proc. Natl. Acad. Sci. USA 88:189-193, 1991), polymerase ligase chain reaction (Garany, PCR Methods and Applic. 1:5-16, 1991), gap ligase chain reaction (Segev, WO 90/01069), repair chain reaction (Backman et al., U.S. Pat. No. 5,792,607), and rolling circle amplification (RCA) (Lisby, Mol. Biotechnol. 12:75-99, 1999).
- ligase chain reaction Wang and Wallace, Genomics 4:560-569, 1989; Barany, Proc. Natl. Acad. Sci. USA 88:189-193, 1991
- polymerase ligase chain reaction Garany, PCR
- nucleic acids prepared according to the present invention can also be detected and/or analyzed without amplification using methods known in the art. Suitable methods include, without limitation, hybridization, which can be coupled to fluorescence or immunoassay, including hybridization to oligonucleotide-nanoparticle conjugates (Park et al., U.S. Pat. No. 7,169,556) and DNA barcodes (Mirkin et al., US 2006/0040286 A1); microarray technology, which can be used for expression profiling by hybridization, diagnostics, gene identification, polymorphism analysis, and nucleic acid sequencing; hybridization protection assay (Arnold et al., Clin. Chem.
- detecting polymorphisms include massively parallel shotgun sequencing (Nature 437:326-327, 2005), which can detect previously unknown features of cell-free nucleic acids such as plasma mRNA distributions and/or methylation and histone modification of plasma DNA (Fan et al., Proc. Natl. Acad. Sci. USA 105:16266-16271, 2005) Those of ordinary skill in the art will further recognize that these and other methods can be used in combination with nucleic acid amplification.
- extracted nucleic acids can be used within methods for detecting pathogens, including bacteria, viruses, fungi, and parasites.
- extracted nucleic acids can be analyzed to characterize drug resistance and drug sensitivity of infectious agents (e.g., methicillin or other antibiotic resistance in Staphylocccus aureus ).
- infectious agents e.g., methicillin or other antibiotic resistance in Staphylocccus aureus .
- Many such methods are known in the art, and a number of such tests have been approved by the US Food and Drug Administration for human diagnostic use and are commercially available.
- Table 2 is a list of FDA-approved tests for Chlamydia . Additional tests are listed in Table 3.
- pathogens of interest for which nucleic acid-based tests are known include bloodborne pathogens, Coccidioides immitis, Cryptococcus, Gardnerella vaginalis, Haemophilus spp., Histoplasma capsulatum , influenza virus, Mycoplasma spp., Salmonella spp., Shigella spp., and Trichomonas vaginalis.
- Methods for the detection of microbial contaminants, including bacteria, viruses, fungi, and parasites, in samples of foods and other products using PCR are disclosed by, for example, Romick et al., U.S. Pat. No. 6,468,743 Bl.
- the use of PCR in testing water samples for Enterococcus species is disclosed by Frahm and Obst, J. Microbiol. Methods 52:123-131, 2003.
- Tests for detection and diagnosis of viruses are also known in the art. Examples of such tests are shown in Table 4.
- Respiratory Syncytial Virus Borg et al. Eur. Respir. J. 21: 944-951, 2003; Gueudin et al., J. Virol. Methods 109: 39-45, 2003; Mentel et al., J. Med. Microbiol. 52: 893-896, 2003; Boivan et al., J. Clin. Microbiol. 42: 45-51, 2004.
- DNA prepared according to the present invention can also be used in genotyping, such as in prenatal screening, prediction of disease predisposition (e.g., hypertension, osteoporosis, early onset Alzheimer's, type I diabetes, and cardiovascular disease), toxicology, drug efficacy studies, and metabolic studies. Examples include tests for celiac disease, cystic fibrosis, HLA-B27, narcolepsy, and Tay-Sachs disease (Kimball Genetics Inc., Denver, Colo.).
- Tests to predict drug efficacy or dosing include, for example, ACE inhibitor responder assays, screening for DNA polymorphisms in CYP2D6 & CYP2C19 genes affecting rates of drug metabolism, screening for genes affecting tamoxifen metabolism, and genetic screening for irinotecan dosing.
- Genotyping of single nucleotide polymorphisms (SNPs) is disclosed by Hsu et al., Clin. Chem. 47:1373-1377, 2001 using a PCR-based assay and by Bao et al., Nucl. Acids Res. 33(2):e15, 2005 using a microarray platform. SNPs may be diagnostic of complex genetic disorders, drug responses, and other genetic traits.
- Tests used to guide cancer treatment include tests for BRCA-1, BRCA-2, and Her-2/Neu, including expression levels thereof.
- Min et al. ( Cancer Research 58:4581-4584, 1998) disclose methods of screening sentinel lymph nodes for expression of tumor markers by RT-PCR. Identification of other cancer markers using nucleic acid technology is under investigation. Additional genetic tests are shown in Table 7.
- the present invention can also be used to detect cell-free DNA in plasma. Increased concentrations of cell-free genomic DNA are symptomatic of systemic lupus erythematosus, pulmonary embolism, and malignancy. Fetal DNA in maternal plasma or serum may be used for determination of gender and rhesus status, detection of certain haemoglobinopathies, and determination of fetal HLA status for potential cord blood donation. See, for example, Reed et al., Bone Marrow Transplantation 29:527-529, 2002. Abnormally high concentrations of circulating fetal DNA have been associated with trisomy 21 in the fetus (Lo et al., Clin. Chem.
- DNA prepared according to the present invention can also be used for quantitation of residual white blood cells or WBC fragments in platelet concentrates by RT-PCR. See, for example, Lee et al., Transfusion 42:87-93, 2002; Mohammadi et al., Transfusion 44:1314-1318, 2004; and Dijkstra-Tiekstra et al., Vox Sanguinis 87:250-256, 2004.
- the present invention is also applicable to veterinary medicine, including disease screening and diagnosis.
- horses imported into Australia must be tested for equine influenza by PCR.
- Equine influenza can be transmitted to dogs (Crawford et al., Science 310:482-485, 2005).
- a compression-sealed device was constructed as shown in FIGS. 3A and 3B .
- a silicone rubber block was die cut to create a serpentine channel (S-channel) that fit within the area of a standard glass slide.
- the channel had an overall footprint width of 25.3 mm and length of 75.5 mm.
- the device was assembled with glass microscope slides on both sides of the S-channel. Acrylic U-Channel was used to provide sufficient clamping pressure to prevent leaks between the glass and the silicone rubber.
- the area covered by the S-channel was 910 mm 2 .
- the total glass area exposed to liquids 1820 mm 2 , which is approximately equivalent to the area of one surface of a single glass slide (1910 mm 2 ).
- the exterior dimensions of the device without added fittings were approximately 76 mm by 30 mm by 10 mm (thickness).
- Fluid is ported directly in and out of the S-channel using blunt-ended hypodermic needles inserted between the glass slides as shown in FIGS. 3A and 3B .
- 20-gauge thinwall tubing is inserted through pre-cored holes in the silicone rubber block to provide a leak proof seal (not shown).
- Subtilisin protease (10 mg/mL stock; obtained from Sigma-Aldrich) is mixed with 200 ⁇ L whole blood.
- 200 ⁇ L lysis reagent (6M guanidine hydrochloride, 50 mM citric acid pH 6.0, 20 mM EDTA, 10% Tween-20, 3% TRITON X-100) is added.
- the solution is mixed well using a pipettor, incubated at room temperature for 15 minutes, and 200 ⁇ L pure ethanol is added. The contents of the tube are mixed well.
- the entire sample is slowly loaded in to extraction device through one port.
- the sample is allowed to remain in contact with the glass surfaces for at least 1 minute and up to 20 minutes (most binding occurs in the first minute).
- the sample then is removed from the device.
- the binding chamber is filled with wash buffer 1 (lysis buffer without detergents diluted with equal volumes of water and 100% ethanol).
- the buffer is removed, and the wash is repeated two more times for a total of 3 washes.
- the binding chamber is then filled with wash buffer 2 (20 mM Tris-Cl pH7.0, 70% EtOH), then the buffer is removed.
- the wash 2 step is repeated 5 more times for a total of 6 washes.
- TE 10 mM Tris pH 8.0, 1 mM EDTA
- GAPDH Glyceraldehyde-3-Phosphate Dehydrogenase
- a 10 ⁇ PCR buffer is first prepared by mixing 0.1 mL 1 M Tris-Cl pH8.0, 0.03 mL 1 M MgCl 2 , 0.5 mL 1M KCl, and 0.37 mL water.
- Each PCR reaction contains 5 ⁇ L 10 ⁇ buffer, 1 ⁇ L 10 mM dNTP mix (obtained from New England Biolabs, Ipswich, Mass.), 0.5 ⁇ L G3001 primer (SEQ ID NO:6), 0.5 ⁇ L G3002 primer (SEQ ID NO:7), 0.2 ⁇ L (5 units/ ⁇ L) Taq polymerase (New England Biolabs), and water to 45 ⁇ L.
- a 5-1 ⁇ L sample of each eluate from the device being used is generally tested in each PCR reaction.
- each sample may be used by adjusting the amount of water added to the PCR reaction mix so that the final total volume of each reaction mix is 50 ⁇ L.
- PCR amplification is carried out in 0.2-mL thin-walled tubes.
- the temperature cycling profile consists of 1 minute at 94° C. (initial denaturation); 35 cycles of 1 minute 94° C., 1 minute 54° C., 1 minute 72° C.; with a final 2 minute 72° C. step.
- 7.5 ⁇ L of each sample is electrophoresed on a 2% agarose gel in 1 ⁇ TAE (0.04M Tris, 0.02M Acetic Acid, 0.001M EDTA pH8.0) containing 0.2 ⁇ g/mL ethidium bromide.
- a 50-bp DNA ladder (New England Biolabs) is also run on the gel together with the PCR samples as a mobility marker.
- the GAPDH PCR appears as a band that is 267 by in length.
- the glass slide technology was evaluated in comparison to the commercially available kit for performance in purification of DNA from blood samples, yield of purified DNA, and the ability to amplify the purified DNA by PCR. As shown in FIGS. 6A and 6B , flat glass slides gave a better yield from platelet-rich plasma, while porous glass gave a better yield from whole blood. Neither system extracted DNA in a purely linear fashion to the amount of input whole blood (i.e., 200 ⁇ L of blood did not yield twice as much DNA as 100 ⁇ L of blood).
- the glass slide technology worked very successfully and reproducibly with platelet-rich plasma, with yields up to four times as high as those obtained with the spin column system ( FIG. 6A ). While not wishing to be bound by theory, it is believed that (despite their smaller surface area) the glass slides bind leukocyte DNA efficiently. Recovery from the flat surfaces may be improved in comparison to the thick porous substrate of the spin column. These results suggest that the glass slide system may actually be a more effective DNA purification tool when dealing with samples extracted from less complex blood fractions such as platelet-rich plasma.
- DNA from both purification methods could be amplified by PCR using the HLA-DQ model system of Mohammadi et al. ( J. Clin. Microbiol. 41:4796-4798, 2003).
- the intensity of the gel bands obtained from the glass slide purification were darker than those of the spin column system, with the difference becoming more apparent at the higher volumes of eluate added to the PCR reaction. While 30 ⁇ L of the spin column eluate virtually completely inhibited PCR, an amplification product could still be obtained from the glass slide technology.
- PCR inhibitors from blood have been identified that may or may not be efficiently removed from blood by both methods.
- both methodologies use guanidine-based reagents for cell lysis.
- Guanidine is a potent inhibitor of PCR, and the level of inhibition seen may be a reflection of the contamination of the purified samples with guanidine.
- Samples of DNA from the flat glass surfaces were less contaminated than samples from column purification. Columns may trap lysis reagents which may be difficult to remove efficiently during the wash steps. In contrast, the flat glass surfaces do not trap lysis reagents. Washes can be done quickly and efficiently by flowing wash solutions over the entire surface of the slide.
- the entire lysate as prepared above was slowly loaded into the device using a pipette tip (Rainin) sized to fit snugly into the first port.
- the first port was then covered with tape, and the sample was run through the device using an automated pumping protocol enabled by a peristaltic pump (Ismatec SA, Glattbrugg, Switzerland), a switching valve connected to the wash and elution reagents, and a computer program to control these devices.
- the binding chamber was then filled with wash buffer 1 (lysis reagent without detergents diluted with equal volumes of water and 100% ethanol). The buffer was removed, and the wash was repeated.
- wash buffer 2 prepared by mixing 50 parts wash 2 concentrate (10 mL 1M Tris, 5 mL 0.5M EDTA, and 2.93 g NaCl adjusted to pH 7.4 with 5N HCl) with 30 parts water and 20 parts 100% ethanol, and emptied thereafter. This wash was repeated four times. The channel was then subjected to air pumping over it as it was incubated at a slightly elevated temperature (37° C. or 42° C.) for up to 10 minutes to evaporate remaining wash 2 solution.
- wash buffer 2 prepared by mixing 50 parts wash 2 concentrate (10 mL 1M Tris, 5 mL 0.5M EDTA, and 2.93 g NaCl adjusted to pH 7.4 with 5N HCl
- the DNA samples extracted above were used to amplify a portion of the HLA-DQA locus.
- As a control for DNA not purified on an X-channel device another DNA sample extracted from 200 ⁇ L of whole blood using a commercially available kit (QIAMP Blood DNA Purification Kit; Qiagen, Inc.) according to the manufacturer's instructions was tested.
- the amplification was carried out using 1 to 2 ng of human genomic template DNA purified using the two different extraction methods (X-Channel and QIAGEN reagents and columns).
- the amplification protocol used was a standard published method, and the temperature cycles were 95° C. 15 seconds, 61.5° C. 1 minute for 35 cycles after an initial 2-minute, 95° C. denaturation cycle.
- Results of the amplification reactions are shown in FIG. 7 .
- All visible PCR products represent amplified regions of the HLA-DQA locus.
- Lanes 7 and 8 are size markers (1 Kb and 50 by ladders respectively).
- Lane 6 is a negative (no template) control lane where there should be no product.
- Template DNA used was as follows: Lane 1, 1 ng of DNA purified from an S-channel device; lanes 2 and 3, 2 ng and 1 ng of X-Channel purified DNA, respectively; lanes 4 and 5, 1 ng and 2 ng of QIAGEN column DNA, respectively.
- the X-channel and S-channel devices purified DNA of sufficient quality to carry out PCR using standard methods and performed equivalently with respect to DNA amplification of DNA extracted using the commercial system.
- the six test devices (designated “R2,” “R4,” and “R6”) were subsequently used to extract DNA from a single (larger volume) whole blood lysate in a side-by-side test with a device as shown in FIG. 5 (“v3.2”) as disclosed below.
- the six test devices were vacuum degassed for approximately ten hours to explore the possibility of removing fouling material from the inside of each device.
- This vacuum degassing procedure had no effect on the performance of the v3.2 device, which was manufactured with an acrylic adhesive (8141; 3M Company), indicating that this adhesive may be viewed as a neutral variable.
- post-manufacturing treatment of at least 8 hours vacuum degassing increased the yield of recovered DNA in devices manufactured using a different acrylic adhesive (467; 3M Company). Later studies showed that longer (>8 hours or so) vacuum degassing produced improved performance of the test devices with respect of DNA yield from whole blood DNA extractions.
- the v3.2 device ( FIG. 5 ) was compared to a commercially available spin column DNA extraction system (obtained from Qiagen, Inc.) for extracting DNA from apheresis platelets and plasma.
- a commercially available spin column DNA extraction system obtained from Qiagen, Inc.
- Commercially available reagents (Qiagen, Inc.) were used throughout, and washes were carried out with 550- ⁇ L volumes two times for Assay Wash 1 and four times 550- ⁇ L volumes for Assay Wash 2 using an automated pumping system.
- lysates were prepared essentially as disclosed in Example 15, each using 400 microliters of apheresis platelets. Each lysate was split, and half was applied to a spin column and half to a v3.2 device. Elutions were carried out with 200 ⁇ L Tris EDTA (10 mM/1 mM), and 0.1 ⁇ g/mL bisbenzimide dye was subsequently used to carry out DNA concentration measurements within the v3.2 device. Calibration curves were successfully defined by using the device as a cuvette to hold DNA standards with fluorescent bisbenzimide dye added.
- lysates were prepared as disclosed above, each using 400 microliters of plasma. Each lysate was split, and half was applied to a spin column and half to a v3.2 device. Elutions were carried out with 200 ⁇ L Tris EDTA (TE; 10 mM/1 mM). A fluorescent dye (1 ⁇ SYBR Green; Invitrogen Corporation) was then added to six of the samples to carry out on-the-device DNA concentration measurements. A second elution was also carried out for the v3.2 devices in the same manner as the first except no dye was added to any of the elution buffer. Calibration curves were successfully defined by using the device as a cuvette to hold DNA standards with fluorescent dye (SYBR Green) added. On-device DNA measurements did not work in this study and had to be carried out off the device using a commercially available dye (PICOGREEN, Invitrogen Corporation) according to the manufacturer's instructions.
- PICOGREEN fluorescent dye
- Device v3.2 is illustrated in FIG. 5 .
- Device B22 was of similar design but had a 6-mm wide binding channel with seven 180-degree bends and a volume of 0.712 mL.
- the samples were 0.2 mL of whole blood in the first study.
- the samples were either 0.2 mL whole blood or 500 ng of purified human DNA in phosphate buffered saline (PBS, pH 7.4).
- PBS phosphate buffered saline
- Cell lysis and DNA capture were performed essentially as disclosed in Example 8, except commercially available reagents (obtained from Qiagen Inc.) and in-house reagents (essentially as disclosed in Example 5 using a 70% EtOH Assay Wash 2) were used. Prior to DNA purification some devices had been used as cuvettes (in an earlier study) to generate calibration curves specific for each device design. Fluorescence blank reads were carried out using fluorescent dye (SYBR Green; Invitrogen Corp.) and Tris-EDTA buffer with the devices used for on-device quantification. Commercially available spin columns (obtained from Qiagen Inc.) were used as a control with both reagent sets. Elution conditions are shown in Table 9.
- DNA yields were quantified using 100 ⁇ L of each preparation and a commercially available quantitation kit (PICOGREEN dsDNA quantitation kit; Invitrogen Corp.) according to the manufacturer's instructions. This constituted the off-device quantification part of the experiment.
- the reagent type used did not seem to affect yields when used with either the B22 or the v3.2 device, however yields were better with the spin column when the QIAGEN reagents were used (Table 9).
- the following correlations could be obtained between the on-device reads and the off-device reads (Table 10). It can be noted that using a “typical” calibration curve may not be a good approach towards calibrating the on-device reads since the reads for devices 342 and 344 were close to those obtained off-device but those for devices 338 and 340 were not as close.
- FIGS. 8A and 8B An S-channel device constructed as shown in FIGS. 8A and 8B for device 400 and further comprising calibration wells (not shown) (designated “v4.0”) was compared to commercially available spin column DNA extraction systems (QIAMP DNA Blood Mini Kit from Qiagen, Inc; NUCLEOSPIN Plasma XS from Macherey-Nagel GmbH & Co. KG) for extracting DNA from apheresis platelets and plasma.
- Commercially available reagents obtained from Qiagen, Inc. and Macherey-Nagel
- Reagents and extraction conditions disclosed in Example 12 were used for the v4.0 devices.
- Device washes were carried out with 1000 ⁇ l volumes three times for Assay Wash 1 and six times 1000 ⁇ l volumes for Assay Wash 2 using an automated pumping system. Drying times were 3 to 4 minutes for each device, and elution volumes were 100 ⁇ L for the spin column systems and 200 ⁇ L for the v4.0 devices, respectively. Only one elution was collected and subsequently analyzed for each extraction system.
- lysates were prepared, sixteen using 400 microliters of apheresis platelets for extraction on the v4.0 devices and the Qiagen columns, and six using 240 microliters for extraction on the Machery-Nagel columns. All samples were lysed using subtilisin. V4.0 device elutions were carried out with 200 ⁇ L Tris EDTA (10 mM/1 mM), and fluorescent dye (1 ⁇ SYBR Green) which was subsequently used to carry out DNA concentration measurements within the channel of the v4.0 device.
- the 6 Qiagen spin column preps extracted DNA from the apheresis platelets with an average yield of 1.2 ⁇ 0.4 ng DNA, or approximatively 171 white blood cell genome equivalents, assuming that one mammalian DNA genome equivalent equals 7 picograms (Wen et al., Anal. Chem. 80(17):6472-6479, 2008.
- the 6 Macherey-Nagel spin column preps extracted DNA from the apheresis platelets with an average yield of 0.3 ⁇ 0.3 ng DNA or approximatively 43 white blood cell genome equivalents.
- the 10 v4.0 device preps extracted DNA from the apheresis platelets with an average yield of 21.2 ⁇ 8.7 ng DNA or approximatively 3029 white blood cell genome equivalents.
- V4.0 device elutions were carried out with 200 ⁇ L Tris EDTA (10 mM/1 mM), and fluorescent dye (1 ⁇ SYBR Green). which was subsequently used to carry out DNA concentration measurements within the channel of the v4.0 device.
- Calibration wells built onto the v4.0 devices were successfully used to measure fluorescence from reference solutions of Tris EDTA (10 mM/1 mM) with dye (1 ⁇ SYBR Green) containing 0 and 100 ng/mL of purified human DNA by using the device as a cuvette to hold the DNA standards with fluorescent dye added.
- Measurement of DNA concentration in samples of the eluted nucleic acid for all three extraction systems were also carried out following extraction using the same fluorescent dye and human DNA for the standard curve. Subsequent amplification by PCR for the v4.0 device samples was carried out in the presence of the fluorescent dye, albeit at lower than 1 ⁇ concentration.
- the 7 Qiagen spin column preps extracted DNA from the plasma with an average yield of 3.9 ⁇ 0.4 ng DNA or approximatively 553 white blood cell genome equivalents.
- the 3 Macherey-Nagel spin column preps extracted DNA from the plasma with an average yield of 2.3 ⁇ 0.25 ng DNA or approximatively 333 white blood cell genome equivalents.
- the 9 v4.0 device preps extracted DNA from the plasma with an average yield of 17.3 ⁇ 5.8 ng DNA or approximatively 2472 white blood cell genome equivalents.
- PCR results reported here are based on amplification of total extracted DNA from the plasma and were carried out using primers specific for the GAPDH gene as disclosed in Example 2.
- concentration of DNA amplified in the PCR reaction the higher the purity of the extracted DNA with respect to the presence of PCR inhibitors.
- the number of white blood cell genome equivalent DNA concentrations tested by PCR for the v4.0 device and Qiagen columns respectively that amplified successfully are shown in Table 14. High values shown for two of the v4.0 devices resulted from a pump malfunction that caused improper accumulation and subsequent drying of guanidine-containing wash buffers within the binding chambers of the devices. The remaining devices produced DNA of higher quality for amplification than the comparative spin columns.
- the sample was 0.4 mL of apheresis platelets in the first study. In the second study the sample was 0.4 mL plasma. In the third study 1000 ng of purified human DNA or no DNA (negative control) were offered for binding in Tris-EDTA buffer.
- V4.0 device elutions were carried out with 200 ⁇ L Tris EDTA (10 mM/1 mM), and fluorescent dye (1 ⁇ SYBR Green) which was subsequently used to carry out DNA concentration measurements within the channel of the v4.0 device. Measurement of DNA concentration in samples of the eluted nucleic acid for all three extraction systems were also carried out following extraction using the same fluorescent dye and human DNA for the standard curve. Fluorescence reads on the v4.0 devices were carried out using fluorescent dye and Tris-EDTA buffer in a bench top fluorimeter (SYNERGY HT Microplate Reader; BioTek Instruments, Inc., Winooski, Vt.). The v4.0 devices were fitted within a specially fabricated microtiter plate such that the top surface of the glass plate of the device was positioned evenly across the top of the microtiter plate. This arrangement allowed the binding chamber and calibration wells to align with plate reader.
- v4.0 devices Prior to carrying out actual DNA purifications, other v4.0 devices had been used as cuvettes (in an earlier study) to generate calibration curves specific for this device design.
- Two calibration wells built into the v4.0 devices were successfully used to measure fluorescence from reference solutions of Tris EDTA (10 mM/1 mM) with fluorescent dye (1 ⁇ SYBR Green) containing 0, 50, 100, 200, 400, 600, 800, and 1000 ng/mL of purified human DNA by using the device as a cuvette to hold the DNA standards with fluorescent dye added.
- One calibration well always contained 0 ng/mL of DNA (blank), while the second calibration well usually contained a DNA solution of 100 ng/mL, except for the pilot calibration study where several DNA concentrations were studied as mentioned above.
- DNA yields for extracted DNA from the three studies as outlined above were quantified using 25 ⁇ L of each preparation and fluorescent dye essentially as described in Example 8, but with the substitution of 1 ⁇ SYBR Green dye for PICOGREEN dye. This constituted the off-device quantification part of the experiment.
- the devices containing the 200 ⁇ L of Tris-EDTA elution buffer with fluorescent dye were read in a bench top fluorimeter (SYNERGY HT Microplate Reader; BioTek Instruments, Inc., Winooski, Vt.).
- the calibrator wells containing 100 ng/mL of DNA and a 0 ng/mL (blank) solution in the same Tris-EDTA elution buffer with fluorescent dye were used to calculate the DNA concentration of the elution buffer following extraction.
- the apheresis platelet extraction experiment yielded the values shown in Table 16 on and off the device.
- Platinum Read a 25-microliter aliquot was removed from the device, put into a microtiter plate well, and read with fluorescent dye (1 ⁇ SYBR Green) as previously disclosed.
- the pure DNA extraction or re-purification experiment and negative control (mock) extraction experiment yielded values of 177 ng/mL and 147 ng/mL on and off the device, respectively.
- the mock extraction experiment yielded a fluorescence value of 318 units when measured off the device versus the blank value of 259 units obtained from the standard curve in the standard microtiter plate-based fluorescence assay.
- On-device reads with the mock extraction experiment yielded a fluorescence value of 1790 units versus a blank value of 1819 units obtained from the calibration well with a 0 ng/mL DNA solution.
- E. coli bacterial DNA from strain ATCC11303 type B was obtained from MP Biomedicals, Solon, Ohio, catalog number 101503, with original concentration of 1 mg/mL in water.
- the E. coli DNA was diluted directly with DEPC-treated water (FLUKA: Sigma-Aldrich, St. Louis, Mo.). Ten-fold serial dilutions were prepared ranging from 1 mg/mL to 1 pg/mL prior to amplification.
- DNA was extracted on a v4.0 device essentially as disclosed in Example 12 with the omission of protease.
- Primers and probes were obtained from Integrated DNA Technologies, Coralville, Iowa. Tm shown for primers 784F and 866R were specified by the manufacturer. For probe EC87, Tm was determined experimentally using a complementary oligonucleotide to the probe sequence.
- probes and primers were used at the following concentrations: 784F (SEQ ID NO:1), 900 nM; 866R (SEQ ID NO:2), 300 nM; and EC807 probe (SEQ ID NO:3), 200 nM.
- the primers were used as follows: 784F (SEQ ID NO:1), 900 nM; 866R (SEQ ID NO:2), 900 nM with the fluorescent dye used at a 0.5 ⁇ concentration.
- PCR reactions comprised primers and templates as disclosed above.
- PCR reagent mixes were obtained from commercial suppliers. Reactions were run with a denaturing step at 95° C. for 10 minutes, followed by 40 cycles of 95° C. for 15 seconds and 60° C. for 1 minute.
- PCR products were detected by measuring the value of the relative amount of the reporter's (probe or dye) fluorescence, caused by template-dependent nucleolytic degradation of the internally quenched probes.
- a threshold cycle Ct was defined for each PCR reaction as the amplification cycle where the increasing fluorescence signal first exceeded the background fluorescence (baseline); or as the fluorescent signals in the standard quantitation curve were closer to a straight line.
- Different amplification profiles for given DNA concentrations were then compared by their respective Ct, and the value of the relative DNA amount input into the PCR reaction was thereby determined. Verification of endpoint PCR results was also performed by electrophoresis on agarose gels (REDTRACK Precast Agarose Gels obtained from Biomoles, Seattle, Wash.). The agarose concentration used was usually 3% or 2%.
- the specificity of the probe-based detection assay and dye-based assay was determined by using a 10-fold series dilution of pure E. coli DNA with concentrations ranging from 1 pg/mL-1 mg/mL.
- the sensitivity of the assay when using probe EC807 (SEQ ID NO:3) was 10 pg/mL.
- the Ct values detected were mostly ranging from 13-33.
- the Ct value of the negative control sample was usually more than 33 and could be affected by contaminating E. coli DNA levels in the various commercially obtained PCR reagent mixtures (TAQ SUPERMIX; obtained from Bio-Rad Laboratories, Hercules, Calif. or Quanta Biosciences, Inc., Gaithersburg, Md.) used.
- carrier nucleic acid in detection of low levels of DNA was examined in the real-time PCR reaction.
- Fish DNA, human DNA, yeast tRNA (obtained from Sigma-Aldrich), and synthetic dA/dT (obtained from Sigma-Aldrich) were used at final concentrations ranging from 1 ng/mL to 1 mg/mL.
- the appropriate dA/dT concentration to be used in this assay was determined to be 30 ng/ml, and for tRNA, 10 ng/ml.
- the use of the carrier DNA was expected to normalize fluorescence signals during probe-based detection reactions where various quantities of DNA are amplified and to allow for direct, in-process quantification of the extracted nucleic acids on the device.
- Different carrier molecules were tested at set concentrations by titrating in carrier DNA along with the template, and a standard curve (dilution series) of E. coli DNA was run with the probe for each of the individual concentrations.
- the carrier concentration that least affected the standard curve was chosen as the preferred concentration with the understanding that as much as 50-100 ng/ml concentrations of carrier coming out of the extractions would simplify the on-device measurements from a signal-to-noise perspective.
- the dA/dT and tRNA carrier molecules were used at concentrations of 10 ng/ml and 30 ng/ml. The higher concentration used here allowed on-device quantitation of the extracted (carrier) DNA as shown in examples above. Genomic DNA was found to interfere with the PCR assays, probably due to non-specific binding of the primers resulting in greatly reduced sensitivity to E. coli DNA.
- the assays described above point to the feasibility of using a synthetic carrier DNA molecule to track the DNA extraction process using fluorescent dye followed by direct downstream processing by real-time PCR for pathogen detection in the extracted water samples. Since the pathogen DNA would only be present in trace amounts, the carrier DNA helps validate the successful extraction of nucleic acids on the v4.0 device.
- Nucleic acid sequence-based amplification was run on an S-channel device using a PCR fragment of the human GAPDH gene as a template.
- the template was generated using primers G3 Amp004 (AATTTAATACGACTCACTATAGGGATCATGAGTCCTTCCACGATACC; SEQ ID NO:4) and G3003 (AGCGAGATCCCTCCAAAATC; SEQ ID NO:5).
- Primer G3 Amp004 includes a T7 RNA polymerase promoter.
- Oligonucleotides were purified by HPLC and dissolved in TE at a concentration of 100 ⁇ M.
- a primer stock was prepared by mixing 5 ⁇ A, or each primer solution, 375 ⁇ L of DMSO, and 115 ⁇ L or 50 mM Tris, pH 8.0.
- a first set of experiments were run to determine if an S-channel device could be used as a reaction vessel for a NASBA reaction. All reagents were loaded onto and removed from the device with a 1-mL pipettor. An S-channel was filled with a bovine serum albumin (BSA; molecular biology grade obtained from Sigma-Aldrich, St. Louis, Mo.) solution at 1 mg/ml in TE to block the glass surface. After sitting for 30 minutes at room temperature, the blocking solution was removed and the channel was dried in a vacuum dessicator for 30 minutes at room temperature. After the drying period, no residual reagents were visible.
- BSA bovine serum albumin
- a NASBA reaction mix (40 mM Tris-HCl pH 8.0, 12 mM MgCl 2 , 70 mM KCl, 15% v/v DMSO, 5 mM DTT, 75 mM Sorbitol, 0.2 ⁇ M G3 Amp004 primer (SEQ ID NO:4), 0.2 uM G3003 primer (SEQ ID NO:5), 2 mM ribonucleotide mix, 1 mM deoxyribonucleotide mix, 80 ⁇ g/mL BSA (obtained from Sigma-Aldrich), 0.16 units E.
- coli RNaseH obtained from New England Biolabs
- 11 units AMV reverse transcriptase obtained from Invitrogen Corp.
- 60 units T7 RNA polymerase obtained from New England Biolabs
- the reaction mix was carefully loaded into an S-channel device.
- the device was clamped into a heating block consisting of two heating elements mounted on a clamp and attached to a temperature controller, with the blocks positioned over the reaction mix in the channel. Internal channel temperature equilibrated to the set temperature in about 16 seconds.
- the reaction mix was incubated for 30 minutes at 42° C.
- NASBA reactions were run in standard 0.2-mL PCR tubes. When done, 7.5 ⁇ L of each reaction mix was run on a 2% agarose gel. Controls (no enzymes or no template) produced no visible reaction products. Complete reactions run in a tube or an S-channel device produced clearly visible reaction products (data not shown).
- the PCR template was first bound to the glass surface of the S-channel device. All reagents were loaded onto and removed from the device with a 1-mL pipettor. A NASBA reaction mix was then loaded into the channel to elute the bound template and amplify it. Controls included (1) a standard NASBA reaction without added template run in a standard 0.2-mL PCR tube in a total volume of 50 ⁇ L, (2) a standard NASBA reaction run in the presence of template run in a standard 0.2-mL PCR tube in a total volume of 50 ⁇ L, and (3) an S-channel device run as in the first set of experiments, above. Tube controls were incubated in a standard thermocycler set at 42° C. for 45 minutes.
- PCR template was mixed with 0.2 mL of a binding mix prepared by mixing 0.5 mL lysis buffer (6M Guanidine hydrochloride, 50 mM Citric acid pH6.0, 20 mM EDTA, 33% ethanol, 10% Tween-20, 3% Triton X-100), 0.5 mL water, and 0.5 mL ethanol.
- the template in the binding mix was loaded into the S-channel, and the template was allowed to bind to glass for 30 minutes at room temperature.
- the binding mix was removed, and a post-binding block was carried out by loading on a solution of the binding mix with BSA at 1 mg/mL. A second reaction was run under the same conditions but without added BSA.
- the post-block was allowed to sit for 15 minutes at room temperature and removed.
- the channel was then washed three times with Wash 1 (2M Guanidine HCl, 16 mM Citric Acid pH6.0, 6 mM EDTA, and 33% ethanol) and six times with Wash 2 (20 mM Tris pH7.0 and 70% ethanol).
- Wash 1 (2M Guanidine HCl, 16 mM Citric Acid pH6.0, 6 mM EDTA, and 33% ethanol
- Wash 2 (20 mM Tris pH7.0 and 70% ethanol.
- the channel was then dried under vacuum.
- a complete NASBA reaction mix (as above, but containing an additional 800 ⁇ g/mL BSA) without any added DNA and in a total volume of 50 ⁇ L was then loaded onto the device. The device was then incubated at 42° C. for 45 minutes. From each reaction, 7.5 ⁇ L was run on a gel. Control 1 (negative control, no template) produced no visible reaction products.
- Control 2 positive control
- Control 3 S-channel with added BSA
- the NASBA reaction run on captured template without added BSA produced no amplification signal.
- the complete NASBA reaction run on captured template in the presence of 800 ⁇ g/mL BSA showed amplification, although at a lower intensity than the positive control.
- Lysis and wash buffers were as disclosed in Example 11. Samples were prepared by combining 400 ⁇ L of lysis buffer with 400 ⁇ L of water, 400 ⁇ L pure ethanol, and various amounts of purified human DNA (SIGMA; Sigma-Aldrich, St. Louis, Mo.). The samples were loaded with a pipette into v4.0 devices and incubated at room temperature for 30 minutes. The devices were then attached to an automated pumping system and washed three times with 1 mL each of wash 1, and six times with 1 mL each of wash 2. The devices were then dried under vacuum in a vacuum dessicator to remove residual ethanol.
- SIGMA purified human DNA
- Bound DNA was eluted with three successive 200-1 ⁇ L washes with TE buffer. DNA in each sample was quantitated using a commercially available assay (PICOGREEN assay; Invitrogen Corp.) with minor modification. Reference DNA for quantitation was human DNA (SIGMA). Ten ⁇ L of each sample was analyzed.
- Total elution yields are the sum of the amount of recovered DNA in three successive 200-1 ⁇ L elutions of each device. The difference between the first elution volume and the total yield indicates that a significant amount of DNA was left on the device after the first elution step. Further, the total yield of DNA was linear over a wide input DNA concentration range (100 to 2000 ng). However, the first elution samples did not show a linear response in yield. The reason for this is unclear. The data further show that percent recovery may be higher at lower DNA concentrations, suggesting that dilute DNA concentrations may be more effectively purified than more highly concentrated samples.
- DNA from whole blood was isolated using the v4.0 device and buffers disclosed in Example 12.
- Various amount of whole blood were mixed with water to a total volume of 400 ⁇ L.
- 40 ⁇ L of 10 mg/mL Subtilisin (SIGMA) in TE was added, followed by 400 ⁇ L of lysis buffer.
- the mixture was incubated at room temperature for 15 minutes, then 400 ⁇ L of pure ethanol was added.
- the samples were then loaded into v4.0 devices by pipette.
- the devices were incubated for 10 minutes at room temperature to allow DNA binding.
- the devices were attached to an automated pumping system and washed three times with 1 mL each of wash 1, and six times with 1 mL each of wash 2. The devices were then dried under vacuum.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Genetics & Genomics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- Dispersion Chemistry (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Devices, processes, and kits for the extraction of nucleic acids from biological samples are disclosed. The devices comprise a first port, a second port, and a binding chamber intermediate and in fluid communication with the first port and the second port. The binding chamber comprises an unmodified flat glass surface effective for binding a heterogeneous population of nucleic acids. The first port, second port, and binding chamber define a continuous fluid pathway that is essentially free of nucleic acid-specific binding sites.
Description
- This application is a continuation of U.S. patent application Ser. No. 12/348,244, filed Jan. 2, 2009, which is a continuation-in-part of U.S. patent application Ser. No. 11/768,076, filed Jun. 25, 2007, now U.S. Pat. No. 7,608,399, which claims the benefit of U.S. Provisional Application No. 60/816,577, filed Jun. 26, 2006, and U.S. Provisional Application No. 60/910,609, filed Apr. 6, 2007, each of which is incorporated herein by reference in its entirety. This application claims the benefit of U.S. Provisional Application No. 61/018,621, filed Jan. 2, 2008, U.S. Provisional Application No. 61/052,089, filed May 9, 2008, U.S. Provisional Application No. 61/093,648, filed Sep. 2, 2008, and U.S. Provisional Application No. 61/111,079, filed Nov. 4, 2008, each of which is incorporated herein by reference in its entirety.
- The sequence listing associated with this application is provided in text format in lieu of a paper copy and is hereby incorporated by reference into the specification. The name of the text file containing the sequence listing is 39125_Seq_Final—2012-04-20.txt. The text file is 2.04 KB; was created on Apr. 20, 2012; and is submitted via EFS-Web with the filing of the specification.
- Rapid analysis of nucleic acids from biological samples has been advanced by the development of microfluidic technologies capable of extracting nucleic acids from cell lysates and other sources. Rapid extraction methodologies can be combined with amplification techniques such as polymerase chain reaction (PCR) to provide useful quantities of nucleic acids from minute samples of blood, tissue, cultured cells, or other biological materials. These microfluidic technologies have been widely adopted in biomedical research laboratories, permitting, for example, high-throughput screening of cloned DNA “libraries” from cultured bacteria or other host cells.
- Commonly used methods for extracting DNA on such a small scale exploit the tendency for DNA to bind to materials such as silica gel, silica membranes, porous glass, or diatomaceous earth. One such system provides a microcentrifuge tube containing the DNA-binding media (known as a “spin column”). The sample is loaded into the tube and spun in a centrifuge, whereby the DNA is captured and the liquid phase containing contaminants passes through to the bottom of the tube. Such a procedure is disclosed in, for example, U.S. Pat. No. 6,821,757 to Sauer et al. Although spin column technology has been widely adopted by the research community, the resulting DNA is often of low quality for use in downstream applications such as PCR, and the need to pipette multiple samples into open tubes results in a significant risk of sample contamination. Moreover, such methods are time consuming when performed manually and very expensive to automate.
- The successful use of rapid DNA extraction techniques in research has led to an interest in developing devices and processes through which this technology can be used in medical applications such as point-of-care diagnosis or testing of blood components. Recent progress toward more simple and compact devices has been reviewed by Malic et al., Recent Patents on Engineering 1:71-88, 2007. Despite these recent advances, there remains a need in the art for devices and processes by which high-quality DNA and RNA can be rapidly and economically extracted from biological samples.
- The present invention provides devices, processes and kits that are useful for the extraction of nucleic acids, including DNA and RNA, from liquid samples.
- One aspect of the invention provides a device comprising (i) a body member having a plurality of external surfaces and fabricated to contain a continuous fluid pathway therethrough, the pathway comprising a first port, a second port, and a binding channel intermediate and in fluid communication with the first port and the second port, wherein the binding channel is open to one of the external surfaces of the body member; and (ii) a glass member affixed to the one of the external surfaces of the body member to provide a first unmodified flat glass surface in fluid communication with the binding channel. The binding channel and glass member define a binding chamber effective for binding a heterogeneous population of nucleic acids, and the fluid pathway is essentially free of nucleic acid-specific binding sites. Within one embodiment, the fluid pathway further comprises a first channel connecting the first port with the binding chamber and a second channel connecting the second port with the binding chamber. Within another embodiment, the binding channel is open to a second of the external surfaces of the body member, and the device further comprises a second glass member affixed to the second external surface of the body member to provide a second unmodified flat glass surface in fluid communication with the binding channel. Within another embodiment, the first port or the second port comprises a Luer-lock fitting, an O-ring, a gasket, a tubing stub, or an elastomeric septum. Within a further embodiment, each of the first port and the second port comprises a Luer-lock fitting, an O-ring, a gasket, a tubing stub, or an elastomeric septum. Within a further embodiment, the binding chamber comprises a serpentine channel, such as a planar serpentine channel or a circumferentially flattened helical channel. In related embodiments, the binding chamber comprises two circumferentially flattened helical channels, which in certain embodiments are coaxial. The binding chamber may further comprise a viewing window. Within additional embodiments, the binding chamber is rectangular in cross-section. In other embodiments, the device also comprises a pump in fluid communication with one of the ports. In related embodiments, the device further comprises fluid distribution control means in fluid communication with the pump. Within certain related embodiments, the fluid distribution control means comprises a programmable computer. Within additional embodiments, the fluid pathway further comprises a distribution channel in fluid communication with the binding channel and a plurality of capillary channels in fluid communication with the distribution channel distal to the binding channel. Within a related embodiment, the device further comprises a plurality of assay wells, wherein each of the assay wells is in fluid communication with one of the capillary channels.
- Within a second aspect of the invention there is provided a device comprising (i) a body member having a plurality of external surfaces and fabricated to contain a continuous fluid pathway therethrough, the pathway comprising a first port; a second port; a binding channel intermediate and in fluid communication with the first port and the second port, wherein the binding channel is open to one of the external surfaces of the body member; a distribution channel in fluid communication with the binding channel; and a plurality of capillary channels in fluid communication with the distribution channel distal to the binding channel; and (ii) a glass member affixed to the one of the external surfaces of the body member to provide a first unmodified flat glass surface in fluid communication with the binding channel. The binding channel and glass member define a binding chamber effective for binding a heterogeneous population of nucleic acids. Within one embodiment, the device further comprises a plurality of assay wells, wherein each of the assay wells is in fluid communication with one of the capillary channels.
- Within a third aspect of the invention there is provided a device comprising (i) a body member having a plurality of external surfaces and fabricated to contain a single continuous fluid pathway therethrough, the pathway consisting essentially of a first channel; a second channel; a binding channel between the first channel and the second channel, wherein the binding channel is open to one of the external surfaces of the body member; and a plurality of ports, wherein at least one of the ports is in fluid communication with the first channel distal to the binding channel, and wherein at least another of the ports is in fluid communication with the second channel distal to the binding channel; and (ii) a glass member affixed to the one of the external surfaces of the body member to provide a first unmodified flat glass surface in fluid communication with the binding channel, wherein the binding channel and glass member define a binding chamber effective for binding a heterogeneous population of nucleic acids and wherein the fluid pathway is essentially free of nucleic acid-specific binding sites. Within one embodiment, the binding channel is open to a second of the external surfaces of the body member and the device further comprises a second glass member affixed to the second external surface of the body member to provide a second unmodified flat glass surface in fluid communication with the binding channel. Within another embodiment, the body member comprises a plurality of layered sheets of solid material selected from the group consisting of organic polymeric materials and glass. Within related embodiments, the solid material is selected from the group consisting of polyethylene terephthalate, cellulose acetate, acrylic, polycarbonate, polypropylene, and polyvinylchloride. Within other embodiments, at least one of the ports comprises a Luer-lock fitting, an O-ring, a gasket, a tubing stub, or an elastomeric septum. Within another embodiment, the binding channel is a serpentine channel. Within an additional embodiment, the serpentine channel is planar. Within other embodiments, the serpentine channel is a circumferentially flattened helix. Within related embodiments, the binding chamber comprises two circumferentially flattened helical channels, which channels are optionally coaxial. Within other embodiments, the binding chamber is rectangular in cross-section. Within further embodiments, the device also comprises a pump in fluid communication with one of the ports, and may further comprise fluid distribution control means in fluid communication with the pump. In a related embodiment, the fluid distribution control means comprises a programmable computer. In yet another embodiment, the device consists essentially of (i) a body member having a plurality of external surfaces and fabricated to contain a single continuous fluid pathway therethrough, the pathway consisting essentially of a first channel; a second channel; a binding channel between the first channel and the second channel, wherein the binding channel is open to first and second external surfaces of the body member; and a plurality of ports, wherein at least one of the ports is in fluid communication with the first channel distal to the binding channel, and wherein at least another of the ports is in fluid communication with the second channel distal to the binding channel; (ii) a first glass member affixed to the first external surface of the body member to provide a first unmodified flat glass surface in fluid communication with the binding channel; and (iii) a second glass member affixed to the second external surface of the body member to provide a second unmodified flat glass surface in fluid communication with the binding channel, wherein the binding channel, the first glass member, and the second glass member define a binding chamber effective for binding a heterogeneous population of nucleic acids and wherein the fluid pathway is essentially free of nucleic acid-specific binding sites.
- Within a fourth aspect of the invention there is provided a process for extracting nucleic acid from a biological sample. The process comprises the steps of (a) introducing a nucleic acid-containing sample into the binding chamber of a device as disclosed above via one of the ports, (b) allowing nucleic acid in the sample to bind to the unmodified flat glass surface, (c) washing the binding chamber to remove contaminants, and (d) eluting bound nucleic acid from the unmodified flat glass surface. Within certain embodiments the process comprises the additional step of lysing a cell sample to prepare the nucleic acid-containing sample. Within another embodiment, the nucleic acid-containing sample contains human nucleic acid. Within a further embodiment, the nucleic acid-containing sample contains non-human nucleic acid. Within an additional embodiment, the nucleic acid is DNA. Within a related embodiment, the nucleic acid is genomic DNA. Within an additional embodiment, the bound nucleic acid is eluted with a buffer containing a fluorescent compound that exhibits a change in fluorescence intensity in the presence of nucleic acids. Within a further embodiment, flow of liquid through the binding chamber is laminar. Within an additional embodiment, the process comprises the additional step of amplifying the eluted nucleic acid. Within a related embodiment the amplifying step comprises isothermal amplification.
- Within a fifth aspect of the invention there is provided a kit comprising a device as disclosed above and a buffer in a sealed container. The buffer may be a lysis buffer, a wash buffer, or an elution buffer. Within one embodiment, the buffer is an elution buffer. Within a related embodiment, the buffer is an elution buffer that comprises a fluorescent compound that exhibits a change in fluorescence intensity in the presence of nucleic acids, such as a bis-benzimide compound. Within another embodiment, the kit further comprises a second buffer in a second sealed container, wherein the buffer is a lysis buffer or a wash buffer. Within a further embodiment, the kit further comprises an instruction document.
- These and other aspects of the invention will become evident upon reference to the following detailed description of the invention and the attached drawings.
- All references cited herein are incorporated by reference in their entirety. Numeric ranges recited herein include the endpoints.
-
FIGS. 1A and 1B illustrate the assembly of a multi-layer device of the invention. -
FIGS. 2A and 2B illustrate alternative embodiments of the binding chamber of the device of the invention. -
FIGS. 3A and 3B illustrate the assembly of a device of the invention. -
FIGS. 4A and 4B illustrate a device having a circumferentially flattened, helical binding chamber. -
FIG. 5 illustrates a device of the invention comprising a planar serpentine binding chamber. -
FIGS. 6A and 6B illustrate the recovery of DNA from glass slides (▴-▴) as compared to commercially available spin columns (▪-▪). DNA was isolated from platelet-rich plasma (FIG. 6A ) or whole blood (FIG. 6B ). -
FIG. 7 illustrates the results of polymerase chain reaction amplification of DNA prepared using devices of the invention and a control extraction process. -
FIGS. 8A and 8B illustrate a device of the invention comprising a serpentine binding chamber with extended linear segments. -
FIG. 9 is a schematic illustration of a representative device of the invention. -
FIGS. 10A and 10B illustrate a device comprising a distribution channel and a plurality of capillary channels and assay wells. - The present invention provides for the extraction of nucleic acids, including deoxyribonucleic acids (DNA) and ribonucleic acids (RNA), from biological samples. As used herein, the term “biological sample” means a sample containing cells or cell components and includes any sample, liquid or solid, that contains nucleic acids. Suitable biological samples that can be used within the invention include, without limitation, cell cultures, culture broths, cell suspensions, tissue samples, cell lysates, whole blood, serum, buffy coat, urine, feces, cerebrospinal fluid, semen, saliva, wound exudate, viruses, mitochondria, and chloroplasts. In one embodiment, the sample is blood or a blood product (e.g., platelets) and the nucleic acids that are extracted are those from contaminant bacterial pathogens in the blood or blood product. Thus, the present invention provides for the extraction of nucleic acids in soluble form from complex mixtures.
- DNA produced through the present invention has been found to be of high quality for downstream applications. In comparison to porous glass surfaces, the flat glass surfaces used in the invention are easy to wash free of enzymes, metals (heme), and other protein contaminants that can interfere with PCR-based assays. The flat glass-based method works with dilute samples such a platelet-rich plasma to give improved yield and quality of DNA as compared to porous-bead “spin columns.” PCR yields were improved and variability decreased. The devices of the invention also allow the extracted nucleic acids to be concentrated. For example, DNA captured in a 0.5-mL binding chamber can be concentrated in 0.1 mL of elution buffer by sweeping the buffer through the chamber. The invention therefore provides advantages over previously known extraction systems when working with samples that are dilute with respect to nucleic acid content (e.g., platelet concentrates, plasma, serum, urine, environmental samples, or forensic samples), or for pathogen detection with improved sensitivity.
- The devices of the present invention are designed for ease of use and construction. Within certain embodiments, movement of fluids through the devices does not require internal valving. However, the design of the devices allows the addition of further channels, wells, and valves to allow more extensive manipulation and analysis to be carried out within the device. In addition, the devices are designed to be resistant to contamination, in contrast to standard spin columns. The flow-through design is flexible with regard to sample and reagent volumes, allowing dilute nucleic acid samples to be concentrated in the extraction process, and further allows quick drying of the internal channels using filtered air circulation. The glass walls of the binding chamber permit quantification of nucleic acids within the device, such as through the use of a fluorimeter. Multiple washing and drying steps can be automated, eliminating the need for manual manipulation of the device after sample loading and allowing more controlled timing of steps.
- Devices of the present invention comprise a plurality of ports and a binding chamber intermediate and in fluid communication with at least two of said plurality of ports. These ports provide for the introduction of a nucleic acid-containing sample into the binding chamber, for the introduction of reagents, and for the removal of waste products and extracted nucleic acid. For example, a first port can be used for introducing fluids into the binding chamber and a second port used for removing fluids from the binding chamber, although alternative operations are within the scope of the invention. For convenience, ports are designated herein by ordinal numbers (e.g., “first port,” “second port,” etc.). These designations are not intended to limit the use of any particular port. One such device is illustrated in
FIGS. 1A and 1B and comprises a body fabricated from a plurality of layers, including outer glass layers 40 and 50, and internalplastic layers FIG. 1B , a continuous fluid pathway passes through the body, providing afirst channel 11, a bindingchamber 30, and asecond channel 12.First port 10 andsecond port 20 provide access to the first channel and second channel, respectively. As shown inFIG. 1A , a plurality of alignment holes 15 are provided to facilitate assembly of the layers.Internal layers U-shaped openings chamber 30 in fluid communication withfirst channel 11,first port 10,second channel 12, andsecond port 20. Adhesive layers used to bond the glass and plastic layers are not shown. - The binding chamber is configured to optimize device performance, including nucleic acid extraction efficiency and quality. In addition, the device is designed to enable a bolus of liquid to move through the device without an air bubble penetrating the leading edge and becoming entrained in the bolus. Parameters to be considered in optimizing performance include: (1) the ratio of total volume to exposed flat glass surface area; (2) the ratio of non-glass surface area to glass surface area; (3) the number of layers used to create the binding chamber (the more layers, the more irregular the chamber walls will be); and (4) the amount and type of adhesive exposed to the fluids.
- The binding chamber is formed by the combination of a binding channel disposed within the body of the device and at least one glass member. The binding channel is open to at least one external surface of the body, and the glass member is affixed to that external surface, thereby providing an unmodified flat glass surface in fluid communication with the binding channel. Within some embodiments, the binding channel is open to two external surfaces of the body, and a second glass member is affixed to the second of the external surfaces, thereby providing a binding chamber with two glass surfaces.
- In certain embodiments of the invention the binding chamber is rectangular in cross-section. Those skilled in the art will recognize that, in view of the fabrication methods involved, the walls of the binding chamber may exhibit irregularities in shape. Such irregularities may arise, for example, as artifacts of the cutting process (e.g., tolerance variations) or from slight mis-alignment of bonded layers. It is generally desirable to minimize such irregularities to the extent practicable.
- In one embodiment, the shape and proportions of the binding chamber are selected to provide for laminar flow of liquids passing therethrough. Whether flow is turbulent or laminar can be characterized by its Reynolds number (Re). The Reynolds number can be described as the ratio of inertial forces over viscous forces, where viscous forces can be thought of as a resistance to velocity and inertial forces can be thought of as a resistance to change in velocity.
-
Re=(p×Vs×L)/(u), where: -
- p=fluid density (kg/m3)
- Vs=mean fluid velocity (m/s)
- L=characteristic length (m), which for pipes is Dh=hydraulic diameter (m) Dh=(4×Area)/(perimeter), i.e., area and perimeter of pipe cross section.
- u=absolute viscosity (s N/m2)
When Re is below 2300 the flow is considered laminar, and when Re is above 4000 the flow is considered turbulent. Anything between the two is considered a transition region and preferably avoided to improve predictability. Within the present invention it preferred that Re be less than 1000, more preferably less than 100.
- Within the present invention, fluid channel (including first channel, second channel, and binding chamber) cross-section dimensions are ordinarily within the range of 0.15 mm×1 mm to 0.5 mm×6 mm, or circular channels having diameters providing similar volumes. Flow rates will generally not exceed 600 μL/second, and will typically be approximately 60 μL/second. Using the above equation and the values:
- L=0.00026 m (small channel) or 0.0009 m (large channel)
- Vs=0.4 m/s (small channel) to 0.02 m/s (large channel)
- p(water)=1000 kg/m3
- u(water)=1/1000 sN/m2
- Re=1000×0.4×0.00026×1000=104, at a
flow rate 60 μL/second in a small channel; and Re=1000×0.02×0.0009×1000=18, at a flow rate of 60 μL/second in a large channel. At a flow rate of 600 μL/second, Re=1040 in the small channel and Re=180 in the large channel. Thus, devices having the above-disclosed dimensions can accommodate flow rates in excess of 1300 μL/second before Re approaches the transition region. - Within one embodiment of the invention, the binding chamber is serpentine in shape. As used herein, “serpentine” chambers include planar chambers that bend in two dimensions as well as three-dimensional pathways having the form of a helix and variants thereof. Such three-dimensional structures will ordinarily be circumferentially flattened along at least one side to provide extended binding area in contact with the glass surface. Typically, the helix will be circumferentially flattened along two opposite sides and the binding chamber will comprise glass surfaces on both flattened sides. A serpentine shape allows for exposure of the sample to a large surface area of glass, while keeping the cross-section dimensions of the binding chamber small. Limiting the cross-section dimensions contributes to the prevention of air bubbles slipping past the leading edge of a liquid bolus within the chamber. The serpentine design also allows this combination of high surface area (glass-liquid interface) and small cross-section to exist within a compact footprint.
-
FIGS. 2A and 2B illustrate two embodiments of bindingchamber 30. Within these embodiments the chamber comprises a serpentine channel in a planar configuration. The chamber shown inFIG. 2A , termed an “S-channel,” comprises a series oflinear segments 31 of equal dimension connected by 180° bends 32 having a narrower cross-section. The binding chamber ofFIG. 2B , termed a “W-channel,” comprises alternating narrow 33 and wide 34 linear segments connected bybends 35 of approximately 90°. The W-channel provides a relatively smaller chamber volume and a varied cross-section, which has been found to reduce the likelihood of air bubbles passing the leading edge of the liquid bolus in certain orientations of the device. In particular, devices comprising a W-channel can be operated in a vertical orientation and utilize gravity to drive fluid flow. Thus, the W-channel design facilitates manual operation of the device. In contrast, the S-channel device can be operated with bindingchamber 30 in a horizontal orientation wherein fluid flow is driven by external pressure, such as from a pump. The S-channel design thus facilitates automated operation. - It is preferred to configure the binding chamber so that its contents can be “read” using a standard 96-well plate reader. Thus, the size and shape of the binding chamber are preferably selected so that it overlays at least a portion of a 96-well plate with portions of the chamber overlying wells of the plate. If the device is undersized relative to a 96-well plate, the device can be fitted to an adapter or carrier that shares the footprint with a 96-well plate and aligns the device such that the binding chamber or other target area is in an appropriate location.
- The devices of the present invention comprise, within the binding chamber, an unmodified flat glass surface effective for binding a heterogeneous population of nucleic acids. As used herein, and “unmodified flat glass surface” means a glass surface having a flatness corresponding to that of a standard microscope slide, wherein the surface has not been etched or otherwise altered to increase its surface area, and wherein it has not been modified to specifically bind nucleic acids as disclosed below. Suitable glass materials in this regard include flat soda lime glass (e.g., Erie Electroverre Glass; Erie Scientific Company, Portsmouth, N.H.) or borosilicate glass (e.g., Corning 0211; Corning Incorporated, Corning, N.Y.). Of particular interest for use within the present invention is soda lime glass available in standard slide (25×75 mm or 50×75 mm) and cover slip (20 mm or 25 mm squares) forms. Slides and cover slips are available from commercial suppliers. Standard microscope slides can be readily incorporated into the device. Slides are available in a variety of thicknesses, from approximately 0.6 mm to 5.0 mm or more. Slides that are approximately 1 mm thick are conveniently employed. The binding chamber is essentially free of nucleic acid-specific binding sites, such as charged surfaces or binding sites provided by immobilized oligonucleotides, minor groove binding agents, intercalating agents, or the like. A binding chamber that is “essentially free of nucleic acid-specific binding sites” is one that does not contain an amount of such sites sufficient to give a statistically significant increase in nucleic acid binding as compared to glass.
- The remainder of the body of the device is preferably made from materials that exhibit low auto-fluorescence and very low binding of nucleic acids. The materials should also be impervious to ethanol. Rigid or semi-rigid, organic polymeric materials are preferred. Representative such materials include acrylic (a high molecular weight rigid material), polycarbonate, polypropylene, cellulose acetate, polyethylene terephthalate (PET), and polyvinylchloride, but not polystyrene. Other materials, including poly(dimethylsiloxane) and silicone rubber, can also be employed. These layers are cut using methods known in the art, including die-cutting, photolithography, soft lithography, micromachining, laser ablation, and plasma etching. See, Fiorini and Chu, BioTechniques 38:429-446, 2005. In the alternative, individual layers can be molded. These layers may be bonded together using adhesives, such as pressure-sensitive or thermally-activated adhesives. Suitable adhesive materials for bonding layers include, without limitation, acrylic adhesive films (e.g., 300LSE adhesive film, 467 acrylic adhesive film, and 8141 acrylic adhesive film; 3M Company, St. Paul, Minn.) and silicone adhesives (e.g., TRANSIL silicone adhesive film). As disclosed in more detail below, outgassing of certain adhesives after device manufacture may reduce DNA yield; vacuum degassing of the device prior to use can be used to alleviate this issue.
- As disclosed above, the device further comprises a plurality of ports through which liquids can be introduced into or removed from the binding chamber. Thus, the ports provide openings through the surface of the device and are in fluid communication with the binding chamber, which is positioned between at least two of the ports. In the simplest configuration, first and second ports are provided as openings in a flat surface of the device. Such openings are conveniently circular in shape, although shape is a matter of routine design choice. The ports can further comprise additional components, allowing the sample and various wash buffers to be introduced into the device by various means. For example, Peek tubing stubs can be attached to the device to allow manual input. Manual addition allows the various buffers to be optimized for volume, incubation time, and flow rate. In the alternative, standard 1-mL polypropylene syringes or a programmable peristaltic pump can be used with tubing and Luer-lock adaptors. Within another embodiment, the ports are provided by small diameter holes sized to accept a needle (e.g., a blunt tip, 22 G needle) inserted into the hole. Connections to the needles are made using Luer-lock fittings. In another embodiment, one or more of the ports comprises an elastomeric septum that can be pierced with a needle or cannula, thus providing a device that is sealed until the time of use. In an alternative embodiment, the device is provided with flat ports on its surface. This arrangement permits a connection manifold to be clamped over the ports. The connections can be further sealed against leaks by the inclusion of O-rings, gaskets, or the like in the ports. In another embodiment, the device comprises separate ports for sample input and reagent input. The sample input port can be fitted with a Luer-lock fitting, an elastomeric septum, or a fitting adapted to receive a pipette tip. This arrangement allows the sample to be introduced without contaminating the port used for reagent input. Ports lacking sealable openings can be sealed with adhesive tape when desired.
- First and second ports can be positioned on the upper surface of the device, facilitating the simultaneous operation of a plurality of devices. Such devices can be aligned in a rack, and a multi-slot manifold equipped with a single cammed lever can be attached to the devices, sealing against each device in the system simultaneously. To automate the system, this arrangement can then be connected to a valve mechanism connected to a microprocessor-controlled, multi-channel peristaltic pump as disclosed in more detail below.
- Within some embodiments of the invention, first and second channels connect the binding chamber to the first and second ports, respectively. As with the ports, channels are designated herein for convenience by ordinal numbers, which numbers are not intended to denote the use or purpose of any particular channel. These channels are typically of small diameter so as to prevent air bubbles from entering the liquid bolus under normal operating conditions of pressure and flow rate. In some embodiments, the fluid pathway within the device consists essentially of first and second channels in direct fluid communication with the binding chamber and a plurality of ports. In this configuration, the fluid pathway does not include other functional elements such as viewing windows, additional channels, or valves.
- Together, the ports, binding channel, and (if present) first and second channels provide a continuous fluid pathway through the body of the device. A “continuous fluid pathway” is a pathway that allows fluid to travel continuously through the device from the first port, through the binding channel, to the second port. Additional ports and/or channels may be connected to the pathway. A “single continuous fluid pathway” denotes a continuous fluid pathway that is unbranched. Within certain embodiments of the invention the fluid pathway is essentially free of nucleic acid-specific binding sites.
-
FIGS. 3A and 3B illustrate a device constructed using a compression seal. Compression sealed construction utilizes a single, die-cutbody member 90 of compliant material. Suitable materials include silicone rubber, Neoprene, urethane, natural rubber, Buna-N, and the like.Serpentine binding channel 36 is cut entirely throughbody member 90, making it open to the upper and lower surfaces of the body member. First and second glass members (e.g., slides) 40 and 50 are clamped in place on each side of siliconerubber body member 90, creating a sealed binding chamber. In the illustrated embodiment, the device further comprises outer layers of rigid orsemi-rigid plastic U-shaped channels 120 of sufficient rigidity to provide a leak-proof assembly. Conventional plastic U-channel stock cut to length can be used for this purpose. First and second ports (not shown) are then constructed, such as by boring through the rubber layer. In one embodiment, holes are bored in the rubber and blunt-tip needles 37 are inserted into the holes to provide first and second ports. In another embodiment, tubing is inserted into bored holes. In an alternative embodiment, sharp needles, cannulas, or the like are inserted through the edge of the rubber layer and into the binding chamber to form the ports. -
FIGS. 4A and 4B illustrate a further embodiment of the device of the invention, referred to as an “X-channel” device.Device 200 comprisesfirst port 10,second port 20,first channel 11,second channel 12, and bindingchamber 30. Bindingchamber 30 comprises two circumferentially flattened helical channels, and further comprisesviewing window 19 between the two circumferentially flattened helical channels. The viewing window is an open channel through all internal layers of the device, allowing optical readings to be taken without interference of plastic layers. It is preferred that viewingwindow 19 be configured to span a region corresponding to 2 holes of a standard 96-well assay plate, thereby facilitating the analysis of nucleic acid extraction using conventional plate reading equipment. In addition,device 200 comprises athird port 13 adapted to receive a pipette tip. A sample may be introduced into the device throughthird port 13 without risking contamination offirst port 10 andfirst channel 11. This design thus provides the option of introducing the sample into the binding chamber via either the first channel or the second channel. Other fluids, including wash buffers and elution buffer, are introduced throughfirst port 10 andfirst channel 11, and waste products are removed viasecond channel 12 andsecond port 20. Alignment holes 15 facilitate proper registration of the component layers during assembly. The illustrated device further comprises a pair ofcalibration wells Wells FIG. 4B illustrates component layers 210, 220, 230, 240, 250, 260, and 270 that, upon assembly, combine to provide the various channels and ports. Openings are cut in the layers using conventional methods. Following assembly of the plastic components,glass members 40 are added to front and back surfaces of the assembled bodyadjacent layers layers chamber 30. The layers are assembled using adhesive layers (not shown) as disclosed above. The adhesive seals well and the device does not leak under moderate operating pressure. - A more detailed description of a representative X-channel device and its features is as follows:
-
- ⅛ inch thick, clear walled, laminated construction.
- First and second channel widths=1.0 mm.
- Port diameter for first and second ports=1.0 mm.
- Port diameter for pipette port (third port)=1.0-2.0 mm, sized to fit desired pipette tip.
- X-channel fits within the area of a standard glass slide, width=25.3 mm, length=75.5 mm.
- Glass slide separation distance (binding chamber thickness)=38 mils (965.2 μm).
- X-channel volume (binding chamber volume)=488 μl; area of exposed glass surface is 1266 mm2.
- Exterior dimensions of the device without added fittings are approximately 66.3 mm by 76.0 mm by 2.97 mm (thickness).
- As discussed above, the device can be constructed to fit a standard 96-well plate reader, either alone or in combination with a carrier plate. Such a carrier will position the device to align chosen areas (e.g., binding chamber, viewing window, calibration wells) to the standard well locations. The illustrated device has glass walls formed by two glass microscope slides. Fluorescence can be measured in the X-channel or in the viewing window.
- The design of the device shown in
FIGS. 4A and 4B provides advantages over devices with planar serpentine binding chambers, such as that shown inFIGS. 1A and 1B . This design better excludes bubbles from the fluid bolus in multiple orientations of the device, while maintaining a high glass contact area in the binding chamber. When the device is fabricated with a binding chamber width of 2 mm, a helix pitch of 2 mm, and a standard microscope slide as the glass member, the glass surface exposed to fluid flow is approximately 712 mm2 on each side of the device, for a total exposed glass surface of 1424 mm2. -
FIG. 5 illustrates an alternative embodiment of the device of the invention. The design ofdevice 300 facilitates its use with a manifold that can connect to a plurality of such devices. Such an arrangement allows for the simultaneous extraction of nucleic acid from multiple samples.Device 300 comprises S-shaped bindingchamber 30, the dimensions of which are held essentially constant throughout most of its length. The terminal segment of bindingchamber 30 is expanded to provideviewing window 19. In an exemplary embodiment, viewingwindow 19 has a volume of 50 μL. This device further comprisesfirst channel 11 andsecond channel 12, through which fluids are introduced into and removed from the device. Within this embodiment, inlet and outlet channels are not dedicated. Thus, a sample can be introduced throughthird port 13, such as by use of a micropipette, syringe, or the like. The device is then connected to a manifold (not shown), and wash reagents are introduced throughsecond port 20 andsecond channel 12, and are removed throughfirst port 10 andfirst channel 11. This arrangement ensures that the wash reagents are introduced through a clean channel, avoiding potential contamination fromthird port 13.Holes 360 serve to register the device to the manifold. Within one embodiment ofdevice 300,third port 13 is fitted with an elastomeric septum (not shown) that seals around the pipette tip or other instrument used to introduce the sample, and further seals the port after the instrument is removed. - An additional device of the present invention is illustrated in
FIGS. 8A and 8B . Device 400 (referred to as “version 4” or “v4”) comprises a larger glass surface area for nucleic acid binding and is also adapted for use with a manifold that can connect to a plurality of such devices. As indevice 300, first and second channels indevice 400 are not dedicated.Device 400 comprises S-shaped bindingchamber 30, in whichlinear segments 31 are wider than bends 32. This device further comprises first andsecond channels First channel 11 is accessed viafirst port 10 andthird port 13.Second channel 12 is accessed viasecond port 20 and fourth port 14. A plurality ofadditional channels 490 pass through the device, which channels may be joined to additional device elements (not shown) as disclosed in further detail below. Additional features ofdevice 400 includetabs 402, which protect the corners of the glass slides 460;slots 404, which can mate with guide pins in an external manifold (not shown);first notch 406, which identifies the device type and can be “read” by an instrument or manifold to which the device is connected; andsecond notch 408, which can be can be used to align an optical detector. - Within one embodiment,
third port 13 ofdevice 400 comprises a pipette interface for manual sample input throughfirst channel 11. In this embodiment,second channel 12 is used for reagent input throughsecond port 20 and product withdrawal through fourth port 14. Waste products (e.g., washes) are removed from the device throughfirst channel 11 andfirst port 10. This arrangement eliminates the risk of contaminating subsequent inputs or the final product when introducing the initial sample, since the pipette or other input device is connected to what becomes the outlet of the device. -
Device 400 is constructed by laminating a plurality of individual elements as shown inFIG. 8B . Table 1 provides detailed descriptions ofelements element -
TABLE 1 Manufacturer's Layer Element Description Material Thickness Manufacturer Part No. 1a 410 Die Cut Polyethylene 10 mil Mellinex — Laminate Terephthalate (MYLAR) 1b 460 2″ × 3″ Soda Lime 1 mm Erie 2957F Microscope Glass Scientific Slide 2 N/A Die Cut Silicone 2 mil Avery FT 3002 Adhesive Adhesive Dennison 3 420 Die Cut Polyethylene 5 mil Mellinex — Laminate Terephthalate (MYLAR) 4 N/A Die Cut Silicone 2 mil Avery FT 3002 Adhesive Adhesive Dennison 5 430 Die Cut Polyethylene 10 mil Mellinex — Laminate Terephthalate (MYLAR) 6 N/A Die Cut Silicone 2 mil Avery FT 3002 Adhesive Adhesive Dennison 7 440 Die Cut Polyethylene 5 mil Mellinex — Laminate Terephthalate (MYLAR) 8 N/A Die Cut Silicone 2 mil Avery FT 3002 Adhesive Adhesive Dennison 9a 450 Die Cut Polyethylene 10 mil Mellinex — Laminate Terephthalate (MYLAR) 9b 460 2″ × 3″ Soda Lime 1 mm Erie 2957F Microscope Glass Scientific Slide - The 2″×3″ glass slides 460 used in
device 400 provide a larger exposed glass surface area in bindingchamber 30. In a representative device,linear segments 31 are 6 mm wide, and bends 32 are approximately 3 mm wide. Bindingchamber 30 spans approximately 44.5 mm of the total 51.4 mm width of glass slides 460. - Devices of the present invention may further comprise additional chambers and channels. For example,
device 600 shown inFIG. 9 includesfirst port 10,first channel 11,first chamber 610,intermediate channel 620, bindingchamber 30,second channel 12, andsecond port 20.Glass slide 40 defines at least one surface of bindingchamber 30. In certain embodiments, bindingchamber 30 is defined by two glass slides (i.e., floor and ceiling of chamber 30).First chamber 610 is used for cell lysis and/or waste collection. Withindevice 600, cells from the sample can be lysed in the same vessel in which nucleic acid extraction and analysis is performed. In one embodiment, lysing the cells of the sample comprises contacting the cells with a chaotropic salt solution. Lysing the cells can also comprise sonicating or mechanically disrupting the cells in the sample infirst chamber 610. Liquid can then be transferred fromfirst chamber 610 into bindingchamber 30 by rotating the device so that the liquid is transferred by gravity. Transferring the liquid may also include pumping. For example, after cell lysis andincubation device 600 is rotated clockwise 90 degrees and liquid is transported throughintermediate channel 620 into bindingchamber 30. Nucleic acids are captured on the glass surface of bindingchamber 30, and wash solution is introduced intodevice 600 throughsecond port 20. After washing,device 600 is tipped again to transport waste reagents back tofirst chamber 610, where they are stored for disposal. - Devices of the invention can further comprise a distribution channel in fluid communication with the binding channel and a plurality of capillary channels in fluid communication with the distribution channel distal to the binding channel. The distribution channel and capillary channels provide a means for distributing fluid from the binding channel to assay wells either incorporated into the device or in a separate device.
FIGS. 10A and 10B illustrate an example of a device comprising an integrated distribution channel and assay wells. The illustrateddevice 700 provides for distribution of extracted nucleic acid to multiple wells located on the device. Referring toFIG. 10A ,device 700 comprisesfirst chamber 610, bindingchamber 30, twocalibration wells distribution channel 710, and a plurality ofassay wells 720. Although the illustrated device includes sixteen assay wells, devices containing more or fewer than sixteen wells can be constructed and are within the scope of the present invention. After nucleic acid is captured in bindingchamber 30, washed, and eluted, it then flows in response to an applied pressure gradient todistribution channel 710 that is in fluid communication withassay wells 720. Each assay well is connected todistribution channel 710 bycapillary channel 730 and further comprises avent 740 as shown inFIG. 10B .Distribution channel 710 terminates inport 790. Whenport 790 is blocked, and if the surface energy of the capillary channels is sufficiently high, the eluent flows into and fills eachcapillary channel 730. Each capillary channel connects to an assay well through outlet via 750 cut through the plastic film layer separatingcapillary channel 730 from assay well 720. Due to a balance between the pressure forces causing fluid flow and the surface tension forces of the liquid meniscus, the liquid front in each capillary channel stops at its outlet via, instead of continuing to flow into its respective well. Once all the capillary channels are filled, any excess eluent is pushed from the distribution channel intofirst chamber 610 by applying air pressure to port 790 whileport 20 is sealed (e.g., by covering them with tape). This ensures that each well will get the same volume of eluent. Then, an air pressure pulse is applied todistribution channel 710 viaport 790 whileports Chapter 1 in Contact Angle, Wettability, and Adhesion, R. F. Gould, ed., American Chemical Society, Washington D.C., 1964. - Elements illustrated in
FIGS. 10A and 10B can be readily incorporated into devices of alternative design. For example, other such designs may omitfirst chamber 610 orcalibration wells - Functions can be added to the devices of the present invention through attachment of additional modules. Such additional functions include, for example, cell lysis and automated distribution of purified DNA to a standard well plate or to multiple wells located on the device. An example of such device enhancement is disclosed with reference to
FIG. 8A , although those skilled in the art will recognize that other device designs can be readily adapted to this system of functional modules. As shown therein,device 400 is provided withadditional channels 490 in the form of vias that pass completely through the device. Thus,channels 490 can provide for passage of fluids between additional modules attached to the top and bottom surfaces ofdevice 400. Use of these vias for expansion of device functionality allows continued use of existing layer patterns, thereby minimizing tooling costs and providing a modular assembly system. Additional modules are added during device fabrication by replacing individual layers or adding extra layers to the top and/or bottom surfaces. Typically, these additional layers are bonded to areas of the device containing ports to be used as manifold and pipette interfaces, and connect tofirst channel 11 and/orsecond channel 12 through other of the ports. Additional layers may further overlap glass slides 460. It is preferred that the overlapping material be clear to allow viewing through the device. Windows can be cut out of the overlapping material to facilitate use an optical reader. Additional modules introduce additional fluid pathways to the device. Control of fluid flow to choose the appropriate device function can be provided by valves. - High-throughput analysis outside the device may be facilitated via a microtiter plate format adapter. The adapter is of laminated construction with die-cut channels, and is preferably of the same or similar dimensions as the device of the invention. The channels include a main distribution channel and a series of capillary channels in fluid communication with the main channel in an arrangement similar to that illustrated in
FIGS. 10A and 10B . This adapter is attached to the device of the invention through aligned ports to distribute a liquid solution (e.g., purified DNA elution or a common reagent) in equal amounts to each of the wells in a standard microtiter plate. The solution to be dispensed is moved through the main channel of the adapter as a bolus of liquid by a pump or by gravity. As the liquid bolus moves down the main channel it fills each capillary by capillary action. The liquid is then dispensed to the wells using a burst of air pressure as disclosed above. In an alternative configuration, each capillary is terminated by a capillary pore that is smaller in cross-section than the capillary itself and that serves to stop the fluid flow by surface tension at the end of the capillary. The small amount of liquid remaining at the end of the main channel wets a hydrophobic porous membrane and effectively seals the end of the channel, since liquid cannot pass through the membrane until forced by the air pressure. Micronozzles of this design can a predetermined quantity of liquid, typically 4-5 μL. - Devices of the present invention can further comprise one or more particles (beads) within the lysis chamber to facilitate disruption of cellular material. The use of beads in cell disruption is known in the art. For example, U.S. Pat. No. 6,235,501 discloses methods of disrupting biological material to release nucleic acids wherein rapidly oscillating reciprocal mechanical energy is applied to the material. The biological material is suspended in a liquid medium with one or more particles, typically a spherical bead having a volume of about 5% to 80% of the liquid volume. Beads can be made from a variety of materials, including polytetrafluoroethylene, polypropylene, polyvinylchloride, ceramic, and stainless steel. In general, beads are selected for an appropriate size and hardness to disrupt the particular target cells.
- Controlled oscillatory mechanical energy can be applied to the sample in the lysis chamber through an attached piezobuzzer. Piezobuzzers in the form of piezoceramic disks are known in the art and are available from commercial suppliers (e.g., Piezo Systems Inc., Woburn, Mass.). Such energy is applied to the sample for short periods of time (typically 5-60 seconds) to lyse the sample and release the DNA. Energy transfer and lysis are enhanced by including one or more particles as disclosed above. A piezobuzzer also facilitates mixing of liquids within the lysis chamber, such as mixing of blood and buffers. In the alternative, a sonicator probe or other device capable of introducing high frequency resonant vibrations through a wall of the device can be employed.
- The devices can also be provided with one or more features to facilitate tracking of the device and nucleic acid products. Such features include bar coding and RF tracking elements.
- Heating elements can be incorporated into the device in the form of electrical resistance heaters. Flexible heating elements constructed from a variety of materials, including silicone rubber, polyimide, mica, and polytetrafluoroethylene, are known in the art and are available from commercial suppliers (e.g., Minco, Minneapolis, Minn.) by attaching the heater directly to the outer surface of the device. In the alternative, separate, external heating elements can be pressed against the device to provide physical contact between the heating element and the device.
- Liquid sensors in the form of electrical capacitance sensors can also be incorporated into the device. When two electrical conductors are separated by a dielectric material they form an electrical capacitor. By placing conductive films onto opposite outer surfaces of the device, one can form an electrical capacitor where the body of the device provides the dielectric material separating the two conductive films, and the overlapping areas of the two conductive films define the outer perimeter of the capacitor. Changes in dielectric properties due to liquids entering or leaving the region defined by the capacitor can be used to indicate the presence or absence of liquid. Electrical conductors can be imprinted onto the device surface by screen printing or other methods known in the art. In the alternative, electrical conductors can be provided by an external mechanism that is attached to the device to provide the electrical conductor portions of the capacitor.
- In one embodiment, the device includes a pumping means effective for transporting fluids between the first port and the second port through the binding chamber. The pump is selected for its ability to meet the following criteria: (1) ability to dispense in the volumes in the range of 5 μl-1000 μl; (2) a low or zero dead volume to minimize cross contamination of fluids; (3) wetted surfaces made of materials compatible with the various reagents used (e.g., chaotropic salts and ethanol); (4) ability to effectively pump air as well as liquids; and (5) ability to operate in reverse. Peristaltic pumps offer a good working combination of all of these traits, but do not offer the most accurate volume dispensing of all pump options. When employing other pump styles, multiple pumps may be required for particular functions, thereby complicating the overall fluid management system. For example, syringe pumps can be used to deliver measured volumes of fluid into the device, but an additional means of pressurizing the system is required to move the fluid within the binding chamber and associated channels. In contrast, computer-controlled multi-channel peristaltic pumps (e.g., ISMATEC 12-channel pumps; Ismatec SA, Glattbrugg, Switzerland) will accommodate multiple devices simultaneously and can be programmed to start/stop/change flow rate or reverse direction of flow. Ordinarily, the pump is connected to the device port selected as the reagent inlet, and the port selected as the outlet is connected to a waste container, although other configurations are within the scope of the invention.
- The device may further include fluid distribution control means in fluid communication with the pumping means. The fluid distribution control means comprises one or more valves that allow for a plurality of fluids to be sequentially pumped through the device, typically in the form of a valve-manifold block. It is preferred that manifold inputs and the exit pass through sterile filters to protect the valve-manifold assembly from contamination, and that the exit line have a check valve to prevent backflow from the pump tubing into the manifold. An exemplary fluid distribution control means is a model V-1241-DC 6-way selector valve manufactured by Upchurch Scientific, Oak Harbor, Wash. The fluid distribution control means may further comprise a programmable computer, either external to the valve mechanism or fully integrated therewith. In certain embodiments of the invention, the programmable computer is a desktop or laptop personal computer. In other embodiments, the programmable computer is a dedicated microprocessor device. In an exemplary system, control of fluid distribution is achieved using the above-disclosed selector valve in combination with a multi-channel peristaltic pump using an application written in Visual Basic for Microsoft Excel and running on a personal computer. Both the valve mechanism and the pump feature RS232 communication. These components are addressed using Excel through the USB port of the computer and a USB-to-Serial converter. As will be understood by those skilled in the art, custom firmware software may also be employed.
- In addition, the device can be configured with high volume, low pressure air pump downstream of the pumping means disclosed above. This air pump is connected to the device by a two-position selector valve and is used to dry the interior of the device by evaporation.
- Liquid reagents are conveniently stored in septum-sealed vials equipped with a sterile filter vent. The vials may be connected to the fluid distribution control means using a standard Luer-type needle inserted through the septum and connected to manifold inputs via microbore tubing.
- The devices of the present invention can be constructed from the above-disclosed materials by conventional methods. For example, laminated plastic construction can be employed (e.g., as shown in
FIG. 1A andFIG. 4B ). For laminated assembly, individual layers are cut to shape. Methods for cutting polymeric materials (plastic) are known in the art and include, without limitation, laser cutting, CNC drag knife cutting, and die cutting. Adhesive layers are prepared to go between the layers of dry plastic. The adhesive layer will ordinarily be a pressure-sensitive adhesive available in a thin film that can be cut using the same method used for the plastic. Adhesives may be used in an Adhesive-Carrier-Adhesive (ACA) format where the carrier is preferred to be the same material as used in the other layers of the device. Other methods of applying liquid adhesives, such as screen printing, may also be employed. The several layers are registered to each other and pressed together. Features to assist in registration, such as alignment holes 15 shown inFIG. 1A , are advantageously incorporated into the final design. Pressure and temperature during the cure cycle are adhesive-dependent; selection of suitable conditions is within the level of ordinary skill in the art. In the alternative, the device can be assembled through the use of a compression seal as illustrated inFIGS. 3A and 3B . - After fabrication, the device is optionally treated with ethylene oxide or gamma sterilization to remove pathogens. Reagents for use with the device preferably pass a 0.2-micron cellulose filter on entry to remove bacterial and viral contaminants. Trace nucleic acid contaminants can be removed from reagents by ultrafiltration. For some applications, such as when isolating RNA or trace quantities of nucleic acids, it is beneficial to use nuclease-free reagents The reagent ports on the device may provide an interface to yellow (0.2 mL maximum) and blue (1.0 mL) pipette tips. A needle-septum interface can be provided.
- Liquid samples are ordinarily introduced into the device at flow rate of approximately 0.1 mL/minute to approximately 5.0 mL/minute, although, as disclosed above, considerably higher flow rates can be used without disrupting laminar flow. The actual flow rate is design-dependent, taking into consideration the total volume of the fluid pathway and the shape of the binding chamber. As disclosed above, it is preferred to maintain laminar flow within the binding chamber. For devices comprising the larger volume S-Channel (
FIG. 2A ), a flow rate of approximately 2.5 mL/minute has been found to be satisfactory. For the smaller volume W-channel (FIG. 2B ), the flow rate can be slowed to 0.5 mL/minute to 2.0 mL/minute, more preferably 1-1.5 mL/minute. - Dilute or concentrated samples can be prepared for input into the device. Lysis and digestion of intact cells releases DNA or RNA from residual proteins (for example histones). In the alternative, solid samples (e.g., bacterial spores or dried blood on cloth) or semisolid samples (e.g., mouse tails or sputum/stool) can be homogenized and lysed before input to the device to provide a homogeneous and non-viscous sample that will flow through the channels in the device.
- Nucleic acids are bound to the glass surface(s) of the device in the presence of a salt (e.g., KCl) at a concentration of at least 0.5 M to about 2 M or more depending on solubility, or a chaotrope (e.g., guanidine HCl or guanidine thiocyanate) at a concentration of at least 1 M to about 6 M or the limit of solubility. Binding of nucleic acids is ordinarily done at a pH of approximately 5 to 8, preferably about 6. The binding chamber is then washed using buffered solutions of decreasing salt concentration. As salt concentration decreases, ethanol is added to the wash solution to retain the nucleic acid on the glass and to remove contaminants that may interfere with downstream processes such as nucleic acid amplification. Washing is carried out at pH 6-9, commonly pH 6-8. Nucleic acids are eluted from the device with a low-salt solution at basic pH, commonly pH 8-9.
- In general, cells within the biological sample are lysed to provide a cell lysate from which the nucleic acids are extracted. A variety of methods of cell lysis are known in the art and are suitable for use within the invention. Examples of cell lysis methods include enzymatic treatment (using, for example, proteinase K, pronase, or subtilisin), mechanical disruption (e.g., by sonication, application of high pressure, or use of a piezobuzzer device), or chemical treatment. Lysing the cells of the sample by treating them with a chaotropic salt solution is particularly advantageous. Methods and reagents for lysing cells using chaotropic salts are known in the art, and reagents can be purchased from commercial suppliers. Specific reagent compositions and reaction conditions will be determined in part by the type of cell to be lysed, and such determination is within the level of ordinary skill in the art. Suitable chaotropic salts include guanidinium thiocyanate, guanidine hydrochloride, sodium iodide, and sodium perchlorate. Guanidine hydrochloride, which is preferred for lysing blood cells, is used at concentrations of 1M to 10M, commonly 1M to 5M, usually 1M to 3M. Higher concentrations of sodium iodide are required, approaching the saturation point of the salt (12M). Sodium perchlorate can be used at intermediate concentrations, commonly around 5M. Neutral salts such as potassium chloride and sodium acetate can also be used to obtain binding of DNA to glass surfaces, and may be used in place of chaotropic salts when cell lysis is not required or is achieved by other means (e.g., in the case of bacterial cell lysis). When using neutral salts, the ionic strength of the buffer should be at least 0.25M. An exemplary lysis buffer is a 2M solution of guanidinium thiocyanate (GuSCN) buffer at pH 6.4. Lysis in a chaotropic salt solution also removes histone proteins from the genomic DNA and inactivates nucleases. Lysis buffers will generally also contain one or more buffering agents to maintain a near-neutral to slightly acidic pH. A suitable buffering agent is sodium citrate. One or more detergents may also be included. Suitable detergents include, for example, polyoxyethylenesorbitan monolaurate (TWEEN 20), t-octylphenoxypolyethoxyethanol (TRITON X-100), sodium dodecyl sulfate (SDS), NP-40, CTAB, CHAPS, and sarkosyl. Alcohol, commonly ethanol, is included in the lysis and wash solutions, with the actual concentration selected to compensate for the lowered salt concentration in the washes. In the absence of salt, alcohol is included at a concentration of at least 50%, with 70% alcohol preferred in the final wash. If salt is included in the reagents, alcohol concentration will ordinarily range between 10% and 80%, often between 10% and 60%, usually between 20% and 50%. Optimization of buffers is within the level of ordinary skill in the art. Lysis is generally carried out between room temperature and about 95° C., depending on the cell type. Blood cells are conveniently lysed at room temperature. It is generally preferred that the use of silica particles in cell lysis be avoided, since silica particles may bind nucleic acids and reduce the efficiency of the extraction process. Although not necessary, DNA may be sheared prior to loading the lysate into the extraction device. Methods for shearing DNA are known in the art.
- The nucleic acid-containing sample is introduced into the device via an one of the ports. Nucleic acid is captured on the flat glass surface(s) in the presence of a salt or chaotropic salt as disclosed above. Satisfactory binding of nucleic acids to glass is achieved at room temperature (15° C.-30° C., commonly about 20° C.), although the extraction process can be run at higher temperatures, such as up to 37-42° C. or up to 56° C., although higher temperatures may reduce recover of nucleic acids. The sample may be allowed to stand in the device for a period of time, and the sample solution may be pumped back and forth through the binding chamber. Wash buffers are then pumped into one port, such as by use of a peristaltic pump, a syringe, or a pipettor. Selection of wash buffers will depend in part on the composition of the sample loading solution. In general, salt concentration will be reduced during the washing process, and pH will be increased slightly. If the lysis buffer contains a chaotropic salt, the initial wash will commonly also contain that salt at the same or somewhat lower concentration (e.g., 1-3M GuSCN). The final wash should reduce the ethanol concentration to below 50%, preferably to about 10%-20%, to minimize inhibition of PCR amplification in downstream processing. The alcohol content of wash solutions will ordinarily range between 20% and 80%. Wash solutions containing at least 50% ethanol, preferably about 70% ethanol, have been found to improve nucleic acid capture. Complete removal of the final wash from the binding chamber is also needed in certain embodiments. Methods for this removal of the final wash include drying by passaging air over the surfaces of the chamber utilizing an air pump for one to three minutes. After washing, the nucleic acid is eluted from the binding chamber with a low salt buffer at higher pH than the final wash. Elution buffers are typically low ionic strength, buffered solutions at pH≧8.0, although nucleic acid can be eluted from the device with water. Elution can be carried out at ambient temperature up to about 56° C. The design of the device permits buffers to be pumped back and forth through the binding chamber to increase washing and elution efficiency, and air to be pumped through between washes to remove residual buffer. Buffers are ordinarily pumped through the binding chamber and out through the port selected as the device outlet.
- As will be understood by those skilled in the art, actual working volumes will be determined by the size of the device, including binding chamber volume, as well as routine experimental design. For small-volume devices employing glass slides as the nucleic acid binding surface, volumes will ordinarily range from about 20 μl to 500 μl Samples can be concentrated by reducing the volume of the elution volume buffer.
- Quantitation of extracted nucleic acids is facilitated by the inclusion of a fluorescent compound within the elution buffer, thereby providing a rapid quality check on the extraction process while the extracted nucleic acids are still within the device. Thus, within one embodiment of the invention the nucleic acids are contacted with a fluorescent compound having a fluorescence intensity dependent on the concentration of nucleic acids, and the fluorescence of the fluorescent compound is measured. Fluorescent compounds having a fluorescence intensity dependent on the concentration of nucleic acids are fluorescent compounds that exhibit a conformation-dependent change in fluorescence intensity in the presence of nucleic acids. Useful fluorescent compounds include those compounds whose intensity increases in the presence of nucleic acids. Representative fluorescent compounds include fluorogenic minor groove binder agents such as bis-benzimide compounds, intercalating fluorogenic agents such as ethidium bromide, and commercially available fluorescent dyes (e.g., SYBR Green; Invitrogen Corp.). Fluorescent compounds can be introduced into the device in the elution buffer. Methods for immobilizing the fluorescent compound in the binding chamber and useful fluorescent compounds are described below and in Reed et al., US 2006/0166223 A1. The device of the invention allows for the interrogation of the binding chamber by fluorescence by having at least a portion of the chamber suitable for transmitting excitation energy to the fluorescent compounds in the binding chamber and for transmitting fluorescence emission intensity from the compounds in the binding chamber.
- Although in principal any fluorogenic DNA-binding dye can be used in the invention, it is preferred to use a dye that is compatible with downstream processes such as PCR. A preferred dye is a bis-benzimide (BB) dye disclosed by Reed et al., US Patent Application Publication 20060166223 A1, which gives a strong fluorescent signal (detection at 460 nm, 40 nm filter slit width) when excited at 360 nm (40 nm slit width). The BB dye is selective for dsDNA but can also detect RNA. A popular green fluorescent dye, SYBR green (Invitrogen Corp.) is often used in so called “real time” PCR or quantitative PCR. Much like the BB dye, SYBR green can be used to both quantitate the extracted DNA before amplification and monitor the gene-specific increase during PCR. The use of fluorogenic DNA dyes or DNA probes in isothermal nucleic acid tests such as NASBA is also known.
- The preferred bis-benzimide dye, although not as sensitive as some DNA-binding dyes, has been found to be well suited for measuring genomic DNA content of a sample after extraction from DNA-rich whole blood. The minor groove-binding BB dye emits blue fluorescence in the presence of double stranded DNA, and can be added directly to PCR amplification buffer. In contrast, DNA dyes with a higher binding affinity, such as PICOGREEN (Invitrogen), may inhibit PCR.
- Preliminary evidence indicates that the BB dye can be used in existing PCR assays if the PCR primer extension is carried out at higher annealing temperature (61.5° C. vs. 60° C.). Inclusion of the BB dye directly in the elution buffer therefore allows DNA to be measured before, during, and after gene-specific amplification. The higher primer extension temperature required with addition of BB dye may be advantageous in PCR assays (acting as a PCR enhancer). Much like the MGB TaqMan system (U.S. Pat. No. 6,727,356), A/T rich primer/target interactions are stabilized by the BB in the PCR mix, and increased duplex stability allows shorter (more specific) DNA probes to be used. The blue emitting MGB dye will likely not interfere with the green to red fluorescence wavelengths that are widely used with 2-color fluorogenic DNA probes.
- RNA-selective dyes such as Ribogreen (see Molecular Probes Handbook of Fluorescent Probes and Research Products, 9th edition, Chapter 8) can also be used in the device or elution buffer. RNA-selective dyes may have advantages for real time RNA assays such as NASBA. The caveats disclosed above about inhibition of the gene-specific DNA or RNA tests also apply to RNA detecting fluorogenic dyes.
- If desired, the device can be re-used following removal of residual nucleic acids and/or reagents by washing. In many cases, satisfactory washing can be achieved by running several (typically 5-10) channel volumes of distilled sterile water through the binding chamber. In a preferred method, the device is first washed with 5-10 channel volumes of distilled sterile water, followed by a wash with 2-3 channel volumes of 70% EtOH, which is followed by another 2-3 channel volume wash with distilled sterile water. Wash solutions can be pumped through the device using a pump (e.g., a peristaltic pump), syringe, or the like. The cleaning protocol can be carried out in through a manifold using an automated pump. Following washing, the device is fully dried, such as in a vacuum dessicator for 5-30 minutes.
- Bound nucleic acid can be stored in the device and used in later testing, including confirmation of test results. The device is rinsed with an ethanol-rich rinse and dried. Storage is at room temperature for up to several days or in a freezer for longer periods.
- The present invention has multiple applications in laboratory research, human and veterinary medicine, public health and sanitation, forensics, anthropological studies, environmental monitoring, and industry. Such applications include, without limitation, bacterial and viral detection and typing, microbial drug resistance screening, viral load assays, genotyping, infection control and pathogen screening (of, e.g., blood, tissue, food, cosmetics, water, soil, and air), pharmacogenomics, detection of cell-free DNA in plasma, white cell counting, and other fields where preparation and analysis of DNA from biological samples is of interest. As disclosed above, nucleic acids extracted using the devices and methods of the invention are readily used in a variety of downstream processes, including amplification, hybridization, blotting, and combinations thereof. The devices and methods of the invention can be employed within point-of-care diagnostic assays to identify disease pathogens, and can be utilized in genetic screening. These devices and methods can also be used within veterinary medicine for the diagnosis and treatment of animals, including livestock and companion animals such as dogs, cats, horses, cattle, sheep, goats, pigs, etc.
- Nucleic acids can be extracted from a wide variety of sources. For research and medical applications, suitable sources include, without limitation, sputum, saliva, throat swabs, oral rinses, nasopharyngeal swabs, nasopharyngeal aspirates, nasal swabs, nasal washes, mucus, bronchial aspirations, bronchoalveolar lavage fluid, pleural fluid, endotracheal aspirates, cerbrospinal fluid, feces, urine, blood, plasma, serum, cord blood, blood components (e.g., platelet concentrates), blood cultures, peripheral blood mononuclear cells, peripheral blood leukocytes, plasma lysates, leukocyte lysates, buffy coat leukocytes, anal swabs, rectal swabs, vaginal swabs, endocervical swabs, semen, biopsy samples, lymphoid tissue (e.g., tonsil, lymph node), bone marrow, other tissue samples, bacterial isolates, vitreous fluid, amniotic fluid, breast milk, and cell culture supernatants. Other starting materials for extraction of nucleic acids include water samples, air samples, soil samples, cosmetics, foods and food ingredients, medical supplies and equipment, and the like.
- Nucleic acids prepared according to the present invention can be amplified by methods known in the art, including polymerase chain reaction (PCR) (see, e.g., Mullis, U.S. Pat. No. 4,683,202) and isothermal amplification methods. Real-time polymerase chain reaction (RT-PCR) is commonly used. See, for example, Cockerill, Arch. Pathol. Lab. Med. 127:1112-1120, 2002; and Cockerill and Uhl, “Applications and Challenges of Real-Time Pcr for the Clinical Microbiology Laboratory,” pp. 3-27 in Reischl et al, eds., Rapid cycle real-time PCR methods and applications, Springer-Verlag, Berlin, 2002. For a review of the use of RT-PCR in clinical microbiology, see Espy et al., Clin. Microbiol. Rev. 19:165-256, 2006. Instrumentation and chemistry for carrying out PCR are commercially available. Instruments include thermal cyclers (e.g., ABI7000, 7300, 7500, 7700, and 7900, Applied Biosystems, Foster City, Calif.; LIGHTCYCLER, Roche Applied Science, Indianapolis, Ind.; SMARTCYCLER, Cepheid, Sunnyvale, Calif.; ICYCLER, Bio-Rad Laboratories, Inc., Hercules, Calif.; ROBOCYCLER and MX3000P, Stratagene, La Jolla, Calif.), detection systems for use with fluorescent probes (e.g., MYIQ and CHROMO4, Bio-Rad Laboratories, Inc.), nucleic acid analyzers (e.g., Rotor-Gene 6000, Corbett Life Science, Concorde, NSW, Australia), and amplification and detection systems (e.g., BD PROBETEC ET, Becton Dickinson, Franklin Lakes, N.J.). Other PCR technologies include fluorescent dyes for quantitative PCR (e.g., SYBR, Invitrogen Corp.) and fluorogenic probes, including FRET (fluorescent resonance energy transfer) hybridization probes (Walker, Science 296:557-559, 2002), TAQMAN probes (Applied Biosystems, Foster City, Calif.; see, Kutyavin et al., Nucl. Acids. Res. 28:655-661, 2000), ECLIPSE probes (Nanogen, Bothell Wash.), and molecular beacons (U.S. Pat. Nos. 5,925,517 and 6,150,097. Isothermal amplification methods known in the art include nucleic acid sequence-based amplification (NASBA) (Malek et al., U.S. Pat. No. 5,130,238; Compton, Nature 350:91-92, 1991; Deiman et al., Mol. Biotechnol. 20:163-179, 2002), branched DNA (Alter et al., J. Viral Hepat. 2:121-132, 1995; Erice et al., J. Clin. Microbiol. 38:2837-2845, 2000), transcription mediated amplification (Hill, Expert. Rev. Mol. Diagn. 1:445-455, 2001), strand displacement amplification (Walker, PCR Methods and Applications 3:1-6, 1993; Spargo et al., Mol. Cell Probes 10:247-256, 1996), helicase-dependent amplification (Vincent et al., EMBO Rep. 5:795-800, 2004), loop-mediated isothermal amplification (Notomi et al., Nucl. Acids Res. 28:E63, 2000), INVADER assay (Olivier et al., Nucl. Acids Res. 30:e53, 2002; Ledford et al., J. Mol. Diagn. 2:97-104, 2000), cycling probe technology (Duck et al., BioTechniques 9:142-148, 1990; Cloney et al., Mol. Cell Probes 13:191-197, 1999), rolling circle amplification (Fire and Xu, Proc. Nat. Acad. Sci. USA 92:4641-4645, 1995; Liu et al., J. Am. Chem. Soc. 118:1587-1594, 1996), and Q-beta replicase (Shah et al., J. Clin. Microbiol. 32:2718-2724, 1994; Shah et al., J. Clin. Microbiol. 33:1435-1441, 1995). For a review of isothermal amplification methods, see Gill and Ghaemi, Nucleosides Nucleotides Nucleic Acids 27:224-243, 2008.
- NASBA depends on the concerted action of three enzymes to amplify target nucleic acid sequences. While able to amplify double-stranded DNA, NASBA is particularly suited for amplification of RNA. Target RNA enters the cycle by binding to a first primer, which is then extended by reverse transcriptase to form a DNA/RNA hybrid. The RNA strand is removed by the action of RNase H to yield a single-stranded cDNA. This cDNA can bind to a second primer (which includes a T7 RNA polymerase promoter sequence) and then form a double-stranded intermediate by the action of the reverse transcriptase activity. The intermediate is then copied by the action of T7 RNA polymerase into multiple single-stranded RNA copies (10-1000 copies per copy of template). These RNA copies can then enter the cycle and continue generating more copies in a self-sustained manner. Based on the NASBA mechanism, two products can be detected: a double-stranded DNA intermediate and a single-stranded RNA product.
- NASBA is conveniently used with the devices of the present invention since it is isothermal (i.e. temperature cycling is not required). A denaturation step is not necessary except when a DNA target is chosen. Two considerations when running NASBA in the devices of the present invention are heat transfer and protein adsorption. The reaction temperature should be within the range of 30° C. to 50° C., usually at least 37° C., and preferably 42° C. where primer binding is more specific. Room temperature does not support NASBA, so the channel temperature must be raised efficiently or the reaction will not work. In addition, proteins such as the NASBA enzymes readily stick to glass and some organic polymeric materials, inactivating them and stopping the NASBA cycle. Two methods to address this are (1) to preadsorb the glass with a carrier such as serum albumin, or (2) to add enough serum albumin to the NASBA reaction mixture to minimize loss of enzymes.
- Additional methods of nucleic acid amplification are known in the art and can be applied to DNA prepared according to the present invention. Examples of such methods include ligase chain reaction (Wu and Wallace, Genomics 4:560-569, 1989; Barany, Proc. Natl. Acad. Sci. USA 88:189-193, 1991), polymerase ligase chain reaction (Garany, PCR Methods and Applic. 1:5-16, 1991), gap ligase chain reaction (Segev, WO 90/01069), repair chain reaction (Backman et al., U.S. Pat. No. 5,792,607), and rolling circle amplification (RCA) (Lisby, Mol. Biotechnol. 12:75-99, 1999).
- As will be understood by those of ordinary skill in the art, nucleic acids prepared according to the present invention can also be detected and/or analyzed without amplification using methods known in the art. Suitable methods include, without limitation, hybridization, which can be coupled to fluorescence or immunoassay, including hybridization to oligonucleotide-nanoparticle conjugates (Park et al., U.S. Pat. No. 7,169,556) and DNA barcodes (Mirkin et al., US 2006/0040286 A1); microarray technology, which can be used for expression profiling by hybridization, diagnostics, gene identification, polymorphism analysis, and nucleic acid sequencing; hybridization protection assay (Arnold et al., Clin. Chem. 35:1588-1594, 1989); dual kinetic assay (e.g.,
APTIMA COMBO 2 assay, Gen-Probe Incorporated); and sequencing, including microsequencing (e.g., MICROSEQ 500 16s rDNA bacterial identification kit, Applied Biosystems). Methods of detecting polymorphisms include massively parallel shotgun sequencing (Nature 437:326-327, 2005), which can detect previously unknown features of cell-free nucleic acids such as plasma mRNA distributions and/or methylation and histone modification of plasma DNA (Fan et al., Proc. Natl. Acad. Sci. USA 105:16266-16271, 2005) Those of ordinary skill in the art will further recognize that these and other methods can be used in combination with nucleic acid amplification. - As noted above, extracted nucleic acids can be used within methods for detecting pathogens, including bacteria, viruses, fungi, and parasites. In addition, extracted nucleic acids can be analyzed to characterize drug resistance and drug sensitivity of infectious agents (e.g., methicillin or other antibiotic resistance in Staphylocccus aureus). Many such methods are known in the art, and a number of such tests have been approved by the US Food and Drug Administration for human diagnostic use and are commercially available. For example, Table 2 is a list of FDA-approved tests for Chlamydia. Additional tests are listed in Table 3. Other pathogens of interest for which nucleic acid-based tests are known include bloodborne pathogens, Coccidioides immitis, Cryptococcus, Gardnerella vaginalis, Haemophilus spp., Histoplasma capsulatum, influenza virus, Mycoplasma spp., Salmonella spp., Shigella spp., and Trichomonas vaginalis. Methods for the detection of microbial contaminants, including bacteria, viruses, fungi, and parasites, in samples of foods and other products using PCR are disclosed by, for example, Romick et al., U.S. Pat. No. 6,468,743 Bl. The use of PCR in testing water samples for Enterococcus species is disclosed by Frahm and Obst, J. Microbiol. Methods 52:123-131, 2003.
-
TABLE 2 APPROVAL PRODUCT COMPANY DATE DESCRIPTION AMPLICOR CT/NG TEST FOR ROCHE DIAGNOSTICS Apr. 16, 2007 http://www.fda.gov/cdrh/pdf7/k070174.pdf CHLAMYDIA TRACHOMATIS CORPORATION GEN-PROBE APTIMA ASSAY FOR GEN-PROBE INC. Jan. 22, 2007 http://www.fda.gov/cdrh/pdf6/k063451.pdf CHLAMYDIA TRACHOMATIS APTIMA CT ASSAY ON THE TIGRIS DTS GEN-PROBE INC. Oct. 13, 2006 http://www.fda.gov/cdrh/pdf6/k061413.pdf SYSTEM COBAS AMPLICOR CT/NG TEST ROCHE DIAGNOSTICS Aug. 10, 2006 http://www.fda.gov/cdrh/pdf5/k053287.pdf CORP. GEN-PROBE APTIMA ASSAY GEN-PROBE INC. Jul. 25, 2006 http://www.fda.gov/cdrh/pdf5/k053446.pdf GEN-PROBE APTIMA ASSAY GEN-PROBE INC. Jan. 27, 2005 http://www.fda.gov/cdrh/pdf4/k043072.pdf ROCHE AMPLICOR CT/NG TEST ROCHE MOLECULAR Aug. 4, 1999 http://www.fda.gov/cdrh/pdf/k973707.pdf SYSTEMS INC. ROCHE COBAS AMPLICOR CT/NG TEST ROCHE MOLECULAR Dec. 15, 1998 http://www.fda.gov/cdrh/pdf/k973718.pdf SYSTEMS INC. ROCHE COBAS AMPLICOR ROCHE MOLECULAR Jun. 13, 1997 http://www.fda.gov/cdrh/pdf/k964507.pdf CHLAMYDIA TRACHOMATIS TEST SYSTEMS INC. GEN-PROBE AMPLIFIED CHLAMYDIA GEN-PROBE INC. Nov. 27, 1996 http://www.fda.gov/cdrh/pdf/k962217.pdf TRACHOMATIS ASSAY K LCX CHLAMYDIA TRACHOMATIS ABBOTT Dec. 8, 1995 Description for K934622 available from the ASSAY LABORATORIES Company -
TABLE 3 Test References/Products General bacterial Dreier et al., J. Clin. Microbiol. 42: 4759-4764, 2004. contamination of platelet Mohammadi et al., J. Clin. Microbiol. 41: 4796-4798, 2003 concentrates Bacillus anthracis Bell et al., J. Clin. Microbiol. 40: 2897-2902, 2002; Oggioni et al. J. Clin. Microbiol. 40: 3956-3963, 2002; Ellerbrok et al., FEMS Microbiol. Lett. 214: 51-59, 2002. Bartonella henselae Zeaiter et al. J. Clin Microbiol. 41: 919-925, 2003. Bordetella pertussis Reischl et al., J. Clin. Microbiol. 39: 1963-1966, 2001; Anderson et al., Clin. Microbiol. Infect. 9: 746-749, 2003. Borrelia burgdorferi Makinen et al., “Genospecies-specific melting temperature of the recA PCR product for the detection of Borellia burgdorferi sensu lato and differentiation of Borrelia garinii from Borrelia afzelii and Borrelia burgdorferi sensu stricto,” pp. 139-147 in Reischl et al., eds., Rapid cycle real-time PCR methods and applications, Springer-Verlag, Berlin, 2002 Borrelia garinii Pietila et al., J. Clin. Microbiol. 38: 2756-2759, 2000. Borrelia afzelii Pietila et al., J. Clin. Microbiol. 38: 2756-2759, 2000. Campylobacter Popovic-Uroic et al., Lab Medicine 22: 533-539, 1991; Tenover, J. Clin. Microbiol. 28: 1284-1287, 1990. Chlamydia Gaydos et al., J. Clin. Microbiol. 41: 304-309, 2003; Ikeda-Dantsuji et al., J. Med. Microbiol. 54: 357-360, 2005 Chlamydophila pneumoniae Apfalter et al., J. Clin Microbiol. 41: 592-600, 2003; Tondella et al., .J. Clin Microbiol. 40: 575-583, 2002. Clostridium difficile Belanger et al., J. Clin. Microbiol. 41: 730-734, 2003. Ehrlichia chaffeensis Loftis et al., J. Clin. Microbiol. 41: 3870-3872, 2003. Enterococcus Species E. faecalis/OE PNA FISH assay, AdvanDx, Inc., Woburn, MA; see, Sloan et al., J. Clin. Microbiol. 42: 2636-2643, 2004. Escherichia coli Frahm and Obst, J. Microbiol. Methods 52: 123-131, 2003 Histoplasma capsulatum Hall et al., J. Clin. Microbiol. 30: 3003-3004, 1992. Legionella pneumophila Wellinghausen et al., “Rapid detection and simultaneous differentiation of Legionella spp. and L. pheumophila in potable water samples and respiratory specimens by LightCycler PCR,” pp. 45-57 in Reischl et al. eds., Rapid cycle real-time PCR methods and applications, Springer- Verlag, Berlin, 2002; Welti et al., Diagn. Microbiol. Infect. Dis. 45: 85-95, 2003. Legionella spp. Herpers et al., J. Clin. Microbiol. 41: 4815-4816, 2003; Reischl et al., J. Clin. Microbiol. 40: 3814-3817, 2002. Listeria monocytogenes Okwumabua et al., Res. Microbiol. 143: 183-189, 1992. Mycobacterium Spp. Hall et al., J. Clin. Microbiol. 41: 1447-1453, 2003; Lumb et al., Pathology 25: 313-315, 1993 Mycobacterium tuberculosis e.g., AMPLICOR MTB, Roche Molecular Diagnostics, Pleasanton, CA. See, e.g., Stevens et al., J. Clin. Microbiol. 40: 3986-3992, 2002; Garcia-Quintanilla et al., J. Clin. Microbiol. 40: 4646-4651, 2002; Bruijnesteijn et al., J. Clin. Microbiol. 42: 2644-2650, 2004; Sedlacek et al., J. Clin. Microbiol. 42: 3284-3287, 2004. Ethambutol resistance in M. tuberculosis Wada et al., J. Clin. Microbiol. 42: 5277-5285, 2004. Isoniazid resistance in M. tuberculosis van Doorn et al., J. Clin. Microbiol. 41: 4630-4635, 2003; Rifampin resistance in M. tuberculosis Edwards et al., J. Clin Microbiol. 39: 3350-3352, 2001; Piatek et al., Nat. Biotechnol. 16: 359-363, 1998. Mycobacterum ulcerans Rondini et al., J. Clin. Microbiol. 41: 4231-4237, 2003. Mycoplasma pneumoniae Welti et al., Diagn. Microbiol. Infect. Dis. 45: 85-95, 2003; Ursi et al., J. Microbiol. Methods 55: 149-153, 2003. Neisseria gonorrhoeae BD PROBETEC ET, Becton Dickinson, Franklin Lakes, NJ; APTIMA COMBO 2 assay, Gen-Probe Incorporated, SanDiego, CA. Gaydos et al., ibid. Neisseria meningitides Guiver et al., FEMS Immunol. Med. Microbiol. 28: 173-179, 2000; Corless et al., J. Clin. Microbiol. 39: 1553-1558, 2001. Penicillin resistance in N. meningitides Stefanelli et al. J. Clin. Microbiol. 41: 4666-4670, 2003. Staphylococcus aureus S. aureus PNA FISH assay, Advandx, Inc., Woburn, MA Fluoroquinolone resistance in Lapierre et al., J. Clin. Microbiol. 41: 3246-3251, 2003. S. aureus Methicillin Resistant e.g., XPERT MRSA (Cepheid, Sunnyvale, CA); See, Staphylococcus aureus e.g., Reischl et al., J. Clin. Microbiol. 38: 2429-2433, 2000; Tan et al., J. Clin. Microbiol. 39: 4529-4531, 2002; Fang and Hedin, J. Clin. Microbiol. 41: 2894-2899, 2003; Francois et al., J. Clin. Microbiol. 41: 254-260, 2003; Ramakrishnan et al., US 20060057613 A1). Streptococcus pneumoniae Greiner et al., J. Clin. Microbiol. 39: 3129-3134, 2001. Penicillin resistance in S. pneumoniae Kearns et al. J. Clin. Microbiol. 40: 682-684, 2002. Group A Streptococcus Uhl et al., J. Clin. Microbiol. 41: 242-249, 2003. Group B Streptococcus CEPHEID SMART GBS ASSAY (Cepheid, Sunnyvale, CA); Bergeron et al., N. Engl. J. Med. 343: 175-179, 2000; Ke et al., “Rapid detection of group B streptococci using the LightCycler instrument,” pp. 107-114 in Reischl et al, eds., Rapid cycle Real-time PCR methods and applications, Springer-Verlag, Berlin, 2002. Tropheryma whipplei Fenollar et al. J. Clin. Microbiol. 40: 1119-1120, 2002. Yersinia pestis Tomaso et al., FEMS Immunol. Med. Microbiol. 38: 117-126, 2003. Fluoroquinolone resistance in Lindler et al., J. Clin. Microbiol. 39: 3649-3655, 2001. Y. pestis - Tests for detection and diagnosis of viruses are also known in the art. Examples of such tests are shown in Table 4.
-
TABLE 4 Test References/Products Adenovirus Houng et al., Diagn. Microbiol. Infect. Dis. 42: 227-236, 2002; Heim et al., J. Med. Virol. 70: 228-239, 2003; Faix et al., Clin. Infect. Dis. 38: 391-397, 2004; Lankester et al., Clin. Infect. Dis. 38: 1521-1525, 2004. B19 virus Koppelman et al., Transfusion 44: 97-103, 2004. BK virus Whiley et al., J. Clin. Microbiol. 39: 4357-4361, 2001. Cytomegalovirus Machida et al., J. Clin. Microbiol. 38: 2536-2542, 2000; Nitsche et al., J. Clin. Microbiol. 38: 2734-2737, 2000; Tanaka et al., J. Med. Virol. 60: 455-462, 2000; Gault et al., J Clin. Microbiol. 39: 772-775, 2001; Ando et al., Jpn. J. Ophthalmol. 46: 254-260, 2002; Aberle et al., J. Clin. Virol. 25 (Suppl. 1): S79-S85; Cortez et al., J. Infect. Dis. 188: 967-972, 2003; Hermann et al., J. Clin. Microbiol. 42: 1909-1914, 2004; Hall, U.S. Pat. No. 7,354,708. Enterovirus Read et al., J. Clin. Microbiol. 39: 3056-3059, 2001; Corless et al., J. Med. Virol. 67: 555-562, 2002; Kares et al., J. Clin. Virol. 29: 99-104, 2004. Epstein-Barr Virus Lo et al., Clin. Cancer Res. 7: 1856-1859, 2001; van Esser et al., Br. J. Haematol. 113: 814-821, 2001; Patel et al., J. Virol. Methods 109: 227-233, 2003; Balandraud et al., Arthritis Rheum. 48: 1223-1228, 2003; Jebbink et al., J. Mol. Diagn. 5: 15-20, 2003. Hepatitis A virus Costa-Mattioli et al., J. Viral Hepat. 9: 101-106, 2002; Rezende et al., Hepatology 38: 613-618, 2003. Hepatitis B Virus Abe et al., J. Clin. Microbiol. 37: 2899-2903, 1999; Ide et al., Am. J. Gastroenterol. 98: 2048-2051, 2003; Aliyu et al., J. Clin. Virol. 30: 191-195, 2004; Candotti et al., J. Virol. Methods 118: 39-47, 2004; Hepatitis C Virus VERSANT HCV RNA 3.0 Assay (Bayer Healthcare, Tarrytown NY), COBAS AMPLICOR HCV TEST (Roche Molecular Diagnostics); Enomoto et al., J. Gastroenterol. Hepatol. 16: 904-909, 2001; Schroter et al., J. Clin. Microbiol. 39: 765-768, 2001; Bullock et al., Clin. Chem. 48: 2147-2154, 2002; Candotti et al., ibid.; Law et al., US 2007/0207455. Hepatitis D Virus Yamashiro et al., J. Infect. Dis. 189: 1151-1157, 2004 Hepatitis E Virus Orru et al., J. Virol. Methods 118: 77-82, 2004 Herpes simplex virus Espy et al., J. Clin. Microbiol. 38: 3116-3118, 2000; Kessler et al., J. Clin, Microbiol. 38: 2638-2642, 2000; Aberle and Puchhammer-Stockl, J. Clin. Virol. 25(Suppl. 1): S79-S85, 2002; Kimura et al., J. Med. Virol. 67: 349-353, 2002. Human herpes virus subtypes Aslanukov et al., US 2006/0252032 A1. HIV-1 Ito et al., J. Clin. Microbiol. 41: 2126-2131, 2003; Palmer et al., J. Clin. Microbiol. 41: 4531-4536, 2003; Candotti et al., ibid.; Gibellini et al., J. Virol. Methods 115: 183-189, 2004; HIV-2 Schutten et al., J. Virol. Methods 88: 81-87, 2000; Ruelle et al., J. Virol. Methods 117: 67-74, 2004 Human Papillomavirus King, US 2008/0187919 A1; Hudson et al., US 2007/0111200 A1. JC virus Whiley et al., ibid. Influenza Virus van Elden et al., J. Clin. Microbiol. 39: 196-200, 2001; Smith et al., J. Clin. Virol. 28: 51-58, 2003; Boivan et al., J. Infect. Dis. 188: 578-580, 2003; Ward et al., J. Clin. Virol. 29: 179-188, 2004. Metapneumovirus Cote et al., J. Clin. Microbiol. 41: 3631-3635, 2003; Maertzdorf et al., J. Clin. Microbiol. 42: 981-986, 2004. Orthopoxvirus Espy et al., J. Clin. Microbiol. 40: 1985-1988, 2002; Sofi Ibrahim et al., J. Clin. Microbiol. 41: 3835-3839, 2003; Nitsche et al., J. Clin. Microbiol. 42: 1207-1213, 2004. Parainfluenza Virus Templeton et al., J. Clin. Microbiol. 42: 1564-1569, 2004; Templeton et al., J. Clin. Virol. 29: 320-322, 2004. Respiratory Syncytial Virus Borg et al., Eur. Respir. J. 21: 944-951, 2003; Gueudin et al., J. Virol. Methods 109: 39-45, 2003; Mentel et al., J. Med. Microbiol. 52: 893-896, 2003; Boivan et al., J. Clin. Microbiol. 42: 45-51, 2004. Respiratory syncytial virus Guedin et al., J. Virol. Methods 109: 39-45, 2003. Severe acute respiratory Poon et al., Clin. Chem. 50: 67-72, 2004; Drosten et al., syndrome coronavirus J. Clin. Microbiol. 42: 2043-2047, 2004. (SARS-CoV) Varicella zoster virus Espy et al., J. Clin. Microbiol. 38: 3187-3189, 2000; Furuta et al., J. Clin. Microbiol. 39: 2856-2859, 2001; Weidmann et al., J. Clin. Microbiol. 41: 1565-1568, 2003; Tipples et al., J. Virol. Methods 113: 113-116, 2003. West Nile virus Lanciotti et al., J. Clin. Microbiol. 38: 4066-4071, 2000 - Examples of tests for detection and diagnosis of fungal pathogens are shown in Table 5.
-
TABLE 5 Test References/Products Aspergillus Loeffler et al., J. Clin. Microbiol. 40: 2240-2243, 2002; Kawazu et al., J. Clin. Microbiol. 42: 2733-2741, 2004 Blastomyces dermatitidis ACCUPROBE Blastomyces Dermatitidis Culture Identification Test, Gen-Probe Incorporated, San Diego, CA Candida Hsu et al., J. Med. Microbiol. 52: 1071-1076, 2003; Maaroufi et al., J. Clin. Microbiol. 42: 3159-3163, 2004 Coccidioides Bialek et al., J. Clin. Microbiol. 42: 778-783, 2004 Conidiobolus Imhof et al., Eur. U. Clin. Microbiol. Infect. Dis. 22: 558-560, 2003 Cryptococcus Bialek et al., Clin. Diagn. Lab. Innumol. 9: 461-469, 2002; Hsu et al., ibid. Histoplasma Imhof et al., ibid.; Martagon-Villamil et al., J. Clin. Microbiol. 41: 1295-1298, 2003 Paracoccidioides Marques et al., Mol. Genet. Genomics 271: 667-677, 2004 Pneumocystis Larsen et al., J. Clin. Microbiol. 40: 490-494, 2002; Meliani et al., J. Eukaryot. Microbiol. 50(Suppl): 651, 2003 Stachybotrys Cruz-Perez et al., Mol. Cell. Probes 15: 129-138, 2001 - Examples of known tests for detection and diagnosis of parasites are shown in Table 6.
-
TABLE 6 Test References Babesia Krause et al., J. Clin. Microbiol. 34: 2791-2794, 1996 Cryptosporidium Jiang et al., Appl. Environ. Microbiol. 71: 1135-1141, 2005 Encephalitozoon Wolk et al., J. Clin. Microbiol. 40: 3922-3928, 2002 Entamoeba Blessmann et al., J. Clin. Microbiol. 40: 4413-4417, 2002 Enterocyozoon Menotti et al., J. Infect. Dis. 187: 1469-1474, 2003 Giardia Verweij et al., J. Clin. Microbiol 42: 1220-1223, 2004 Leishmania Bossolasco et al., J. Clin. Microbiol. 41: 5080-5084, 2003 Schulz et al., J. Clin. Microbiol. 41: 1529-1535, 2003. Plasmodium Lee et al., J. Clin. Microbiol. 40: 4343-4345, 2002; Farcas et al., J. Clin. Microbiol. 42: 636-638, 2004 Toxoplasma Costa et al., J. Clin. Microbiol. 38: 2929-2932, 2000; Menotti et al. J. Clin. Microbiol. 41: 5313-5316, 2003 Trichomonas Hardick et al., J. Clin. Microbiol. 41: 5619-5622, 2003 Trypanosoma cruzi Cummings and Tarleton, Mol. Biochem. Parasitol. 129: 53-59, 2003 - DNA prepared according to the present invention can also be used in genotyping, such as in prenatal screening, prediction of disease predisposition (e.g., hypertension, osteoporosis, early onset Alzheimer's, type I diabetes, and cardiovascular disease), toxicology, drug efficacy studies, and metabolic studies. Examples include tests for celiac disease, cystic fibrosis, HLA-B27, narcolepsy, and Tay-Sachs disease (Kimball Genetics Inc., Denver, Colo.). Tests to predict drug efficacy or dosing include, for example, ACE inhibitor responder assays, screening for DNA polymorphisms in CYP2D6 & CYP2C19 genes affecting rates of drug metabolism, screening for genes affecting tamoxifen metabolism, and genetic screening for irinotecan dosing. Genotyping of single nucleotide polymorphisms (SNPs) is disclosed by Hsu et al., Clin. Chem. 47:1373-1377, 2001 using a PCR-based assay and by Bao et al., Nucl. Acids Res. 33(2):e15, 2005 using a microarray platform. SNPs may be diagnostic of complex genetic disorders, drug responses, and other genetic traits. Tests used to guide cancer treatment include tests for BRCA-1, BRCA-2, and Her-2/Neu, including expression levels thereof. Min et al. (Cancer Research 58:4581-4584, 1998) disclose methods of screening sentinel lymph nodes for expression of tumor markers by RT-PCR. Identification of other cancer markers using nucleic acid technology is under investigation. Additional genetic tests are shown in Table 7.
-
TABLE 7 Test References/Products Alpha hemoglobin University of Washington Medical Center, Seattle, WA (www.labmed.washington.edu) α-thalassemia University of Washington Medical Center, Seattle, WA (www.labmed.washington.edu) Beta hemoglobin University of Washington Medical Center, Seattle, WA (www.labmed.washington.edu) BRCA1 & 2 Abbaszadegan et al., Genet. Test. 1: 171-180, 1997-98; Neuhausen and Ostrander, Genet. Test. 1: 75-83, 1997 COL1A1 (osteoporosis risk) Ralston et al., PLoS Med. 3: e90, 2006. Cystic fibrosis University of Washington Medical Center, Seattle, WA (www.labmed.washington.edu); INPLEX CF test, Third Wave Technologies, Inc., Madison, WI; Accola, U.S. Pat. No. 7,312,033 Factor V Leiden Mutations Roche Molecular Diagnostics, Pleasanton, CA; Nauck et al., Clin. Biochem. 33: 213-216, 2000. INFINITI System Assay for Factor V, AutoGenomics, Inc., Carlsbad, CA Factor II Mutations Roche Molecular Diagnostics, Pleasanton, CA; Nauck et al., Clin. Biochem. 33: 213-216, 2000. INFINITI Factor II assay, AutoGenomics, Inc., Carlsbad, CA Fragile X University of Washington Medical Center, Seattle, WA (www.labmed.washington.edu) Friedreich ataxia University of Washington Medical Center, Seattle, WA (www.labmed.washington.edu) Growth hormone secretagogue receptor Kwitek et al., WO 2006/124664 polymorphisms (obesity risk) hemochromatosis Hemochromatosis DNA Test, Kimball Genetics Inc., Denver, CO. Hereditary hearing loss University of Washington Medical Center, Seattle, WA (www.labmed.washington.edu) Huntington disease screen University of Washington Medical Center, Seattle, WA (www.labmed.washington.edu) Myotonic dystrophy University of Washington Medical Center, Seattle, WA (www.labmed.washington.edu) Spinla dn bulbar muscular atrophy University of Washington Medical Center, Seattle, WA (www.labmed.washington.edu) Spinal cerebellar ataxia University of Washington Medical Center, Seattle, WA (www.labmed.washington.edu) Drug metabolism genes, e.g., UDP INVADER UGT1A1 molecular assay (Third Wave glucuronosyltransferase 1A1 alleles Technologies, Inc.); Dorn, US 2008/0032305 A1. p53 mutations see U.S. Pat. No. 5,843,654 rheumatoid arthritis: prediction of drug Black et al. Ann. Intern. Med. 129: 716-718, 1998; van response & toxicity Ede et al., Arthritis Rheum. 44: 2525-2530, 2001 Warfarin sensitivity INFINITI Warfarin Assay and INFINITI Warfarin XP Assay (AutoGenomics, Inc., Carlsbad, CA); ESENSOR Warfarin Sensitivity Test (Osmetech Molecular Diagnostics, Pasadena, CA) Prediction of anti-cancer drug Hayden et al., US 20080160533 A1; Muray et al., sensitivity WO 2008/082643; Semizarov et al., WO 2008/082673 - The present invention can also be used to detect cell-free DNA in plasma. Increased concentrations of cell-free genomic DNA are symptomatic of systemic lupus erythematosus, pulmonary embolism, and malignancy. Fetal DNA in maternal plasma or serum may be used for determination of gender and rhesus status, detection of certain haemoglobinopathies, and determination of fetal HLA status for potential cord blood donation. See, for example, Reed et al., Bone Marrow Transplantation 29:527-529, 2002. Abnormally high concentrations of circulating fetal DNA have been associated with trisomy 21 in the fetus (Lo et al., Clin. Chem. 45:1747-1751, 1999) and preeclampsia (Levine et al., Am. J. Obstet. Gynecol. 190:707-713, 2004). Methods for measuring fetal DNA in maternal plasma and serum are known in the art. See, for example, Lo et al., Lancet 350:485-487, 1997 and Lo et al., Am. J. Hum. Genet. 62:768-775, 1998. A particularly valuable application is the use of fetal DNA genotyping to determine fetal Rhesus D status using maternal plasma (Muller et al. Transfusion 48: 2292-2301, 2008).
- DNA prepared according to the present invention can also be used for quantitation of residual white blood cells or WBC fragments in platelet concentrates by RT-PCR. See, for example, Lee et al., Transfusion 42:87-93, 2002; Mohammadi et al., Transfusion 44:1314-1318, 2004; and Dijkstra-Tiekstra et al., Vox Sanguinis 87:250-256, 2004.
- The present invention is also applicable to veterinary medicine, including disease screening and diagnosis. For example, horses imported into Australia must be tested for equine influenza by PCR. Equine influenza can be transmitted to dogs (Crawford et al., Science 310:482-485, 2005).
- The invention is further illustrated by the following non-limiting examples.
- A compression-sealed device was constructed as shown in
FIGS. 3A and 3B . A silicone rubber block was die cut to create a serpentine channel (S-channel) that fit within the area of a standard glass slide. The channel had an overall footprint width of 25.3 mm and length of 75.5 mm. The device was assembled with glass microscope slides on both sides of the S-channel. Acrylic U-Channel was used to provide sufficient clamping pressure to prevent leaks between the glass and the silicone rubber. The two glass slides were separated by a distance of 62.5 mils (1587.5 μm), resulting in an S-channel volume (binding chamber volume)=1444 μL. The area covered by the S-channel was 910 mm2. With two glass surfaces, the total glass area exposed to liquids=1820 mm2, which is approximately equivalent to the area of one surface of a single glass slide (1910 mm2). The exterior dimensions of the device without added fittings were approximately 76 mm by 30 mm by 10 mm (thickness). - Fluid is ported directly in and out of the S-channel using blunt-ended hypodermic needles inserted between the glass slides as shown in
FIGS. 3A and 3B . In the alternative, 20-gauge thinwall tubing is inserted through pre-cored holes in the silicone rubber block to provide a leak proof seal (not shown). - Twenty μL Subtilisin protease (10 mg/mL stock; obtained from Sigma-Aldrich) is mixed with 200 μL whole blood. 200 μL lysis reagent (6M guanidine hydrochloride, 50 mM citric acid pH 6.0, 20 mM EDTA, 10% Tween-20, 3% TRITON X-100) is added. The solution is mixed well using a pipettor, incubated at room temperature for 15 minutes, and 200 μL pure ethanol is added. The contents of the tube are mixed well.
- Using a pipette, the entire sample is slowly loaded in to extraction device through one port. The sample is allowed to remain in contact with the glass surfaces for at least 1 minute and up to 20 minutes (most binding occurs in the first minute). The sample then is removed from the device. The binding chamber is filled with wash buffer 1 (lysis buffer without detergents diluted with equal volumes of water and 100% ethanol). The buffer is removed, and the wash is repeated two more times for a total of 3 washes. The binding chamber is then filled with wash buffer 2 (20 mM Tris-Cl pH7.0, 70% EtOH), then the buffer is removed. The
wash 2 step is repeated 5 more times for a total of 6 washes. - To elute the bound DNA, 75-400 μL of TE (10 mM Tris pH 8.0, 1 mM EDTA) is loaded into the device and slowly swept through the binding chamber to its distal end, then back, and is then collected. The elution step may be repeated up to two times to recover additional nucleic acid. Multiple eluates can be combined or used separately.
- Extracted DNA is functionally tested using a human GAPDH (Glyceraldehyde-3-Phosphate Dehydrogenase) PCR assay. A 10×PCR buffer is first prepared by mixing 0.1 mL 1 M Tris-Cl pH8.0, 0.03 mL 1 M MgCl2, 0.5 mL 1M KCl, and 0.37 mL water. Primers (unpurified) G3001 (GAGATCCCTCCAAAATCAAG; SEQ ID NO:6) and G3002 (CAAAGTTGTCATGGATGACC: SEQ ID NO:7) (obtained from Operon Biotechnologies, Inc., Huntsville, Ala. as dry powders) are resuspended in TE buffer to a concentration of 100 μM. Each PCR reaction contains 5 μL 10× buffer, 1 μL 10 mM dNTP mix (obtained from New England Biolabs, Ipswich, Mass.), 0.5 μL G3001 primer (SEQ ID NO:6), 0.5 μL G3002 primer (SEQ ID NO:7), 0.2 μL (5 units/μL) Taq polymerase (New England Biolabs), and water to 45 μL. A 5-1 μL sample of each eluate from the device being used is generally tested in each PCR reaction. More or less of each sample may be used by adjusting the amount of water added to the PCR reaction mix so that the final total volume of each reaction mix is 50 μL. PCR amplification is carried out in 0.2-mL thin-walled tubes. The temperature cycling profile consists of 1 minute at 94° C. (initial denaturation); 35 cycles of 1 minute 94° C., 1 minute 54° C., 1 minute 72° C.; with a final 2 minute 72° C. step. 7.5 μL of each sample is electrophoresed on a 2% agarose gel in 1×TAE (0.04M Tris, 0.02M Acetic Acid, 0.001M EDTA pH8.0) containing 0.2 μg/mL ethidium bromide. A 50-bp DNA ladder (New England Biolabs) is also run on the gel together with the PCR samples as a mobility marker. The GAPDH PCR appears as a band that is 267 by in length.
- DNA extraction from whole blood and platelet-rich plasma were compared using glass slides (Nanassy et al., Anal. Biochem. 365:240-245, 2007) and a commercially available spin column kit comprising a glass fiber binding matrix mounted in a small column that fits in a microfuge tube (obtained from Qiagen). Commercially available buffers (Qiagen) were used in most of these studies except as noted for the platelet-rich plasma samples. Platelet rich plasma was prepared from whole blood by the Puget Sound Blood Center (PSBC) according to routine blood center protocols, and the whole blood was also drawn at the PSBC.
- To isolate DNA on glass slides, 200-1 μL samples of whole blood or platelet-rich plasma were mixed with 400 μg of Proteinase K and 200 μL Buffer AL (which contains guanidine hydrochloride) and incubated at 55° C. for 15 minutes. After the incubation, 200 μL of 100% ethanol was added resulting in a total lysate volume of 600 μl. For some experiments the proportions of the input sample and of all other reagents were changed equally (e.g., if 400 μL of blood were being extracted instead of 200 μL, twice as much of all the other reagents was used in those preparations as well). For glass slide binding, 300 μL was layered onto a glass slide and incubated for 5 to 30 minutes at room temperature. For the higher volume lysates the incubation was repeated with 300 μL portions of the remaining lysate until all the lysate had been incubated onto the glass slides. The slides were then rinsed 2× with 0.5 mL Buffer AW1, and 2× with 0.5 mL Buffer AW2 (whole blood) or wash
buffers 1 and 2 (PRP). After a brief centrifugation, the bound nucleic acid was eluted with 200 μL AE buffer (whole blood) or TE (PRP). All DNA concentrations were determined using the commercial PICOGREEN assay (Invitrogen Corp.) as per the manufacturer's instructions. - The glass slide technology was evaluated in comparison to the commercially available kit for performance in purification of DNA from blood samples, yield of purified DNA, and the ability to amplify the purified DNA by PCR. As shown in
FIGS. 6A and 6B , flat glass slides gave a better yield from platelet-rich plasma, while porous glass gave a better yield from whole blood. Neither system extracted DNA in a purely linear fashion to the amount of input whole blood (i.e., 200 μL of blood did not yield twice as much DNA as 100 μL of blood). - The glass slide technology worked very successfully and reproducibly with platelet-rich plasma, with yields up to four times as high as those obtained with the spin column system (
FIG. 6A ). While not wishing to be bound by theory, it is believed that (despite their smaller surface area) the glass slides bind leukocyte DNA efficiently. Recovery from the flat surfaces may be improved in comparison to the thick porous substrate of the spin column. These results suggest that the glass slide system may actually be a more effective DNA purification tool when dealing with samples extracted from less complex blood fractions such as platelet-rich plasma. - DNA from both purification methods could be amplified by PCR using the HLA-DQ model system of Mohammadi et al. (J. Clin. Microbiol. 41:4796-4798, 2003). In general, the intensity of the gel bands obtained from the glass slide purification were darker than those of the spin column system, with the difference becoming more apparent at the higher volumes of eluate added to the PCR reaction. While 30 μL of the spin column eluate virtually completely inhibited PCR, an amplification product could still be obtained from the glass slide technology.
- A number of PCR inhibitors from blood have been identified that may or may not be efficiently removed from blood by both methods. However, both methodologies use guanidine-based reagents for cell lysis. Guanidine is a potent inhibitor of PCR, and the level of inhibition seen may be a reflection of the contamination of the purified samples with guanidine. Samples of DNA from the flat glass surfaces were less contaminated than samples from column purification. Columns may trap lysis reagents which may be difficult to remove efficiently during the wash steps. In contrast, the flat glass surfaces do not trap lysis reagents. Washes can be done quickly and efficiently by flowing wash solutions over the entire surface of the slide.
- To characterize the X-channel device functionality, 20 μL Proteinase K was first mixed with 200 μL whole blood. 200 μL lysis reagent (28.7 g guanidine hydrochloride, 25 mL 0.1M sodium citrate pH 6.5, 2.5 mL 0.2M EDTA, 1 mL TRITON X-100, 3 mL TWEEN-20) was added. The solution was mixed well and incubated at 56° C. for 15 minutes. The solution was then cooled, and 200 μL ethanol was added. The contents of the tube were mixed, and the tube was centrifuged to spin down the condensate. A control extraction was also carried out essentially as described below except with commercially available reagents (obtained from Qiagen, Inc.). A third extraction was carried out using an S-channel device and QIAGEN reagents.
- Starting with the X-channel device connected to a manifold assembly, the entire lysate as prepared above was slowly loaded into the device using a pipette tip (Rainin) sized to fit snugly into the first port. The first port was then covered with tape, and the sample was run through the device using an automated pumping protocol enabled by a peristaltic pump (Ismatec SA, Glattbrugg, Switzerland), a switching valve connected to the wash and elution reagents, and a computer program to control these devices. The binding chamber was then filled with wash buffer 1 (lysis reagent without detergents diluted with equal volumes of water and 100% ethanol). The buffer was removed, and the wash was repeated. The binding chamber was then filled with wash buffer 2 (prepared by mixing 50 parts wash 2 concentrate (10 mL 1M Tris, 5 mL 0.5M EDTA, and 2.93 g NaCl adjusted to pH 7.4 with 5N HCl) with 30 parts water and 20
parts 100% ethanol), and emptied thereafter. This wash was repeated four times. The channel was then subjected to air pumping over it as it was incubated at a slightly elevated temperature (37° C. or 42° C.) for up to 10 minutes to evaporate remainingwash 2 solution. - To elute the bound DNA, 75-200 μL of TE (10 mM Tris pH 8.0, 1 mM EDTA) was loaded into the device and slowly swept through the chamber to its distal end, then back. This eluate was collected for quantitation. Two initial studies with one X-channel device were performed on subsequent days, the first as described above except utilizing QIAGEN commercial reagents, and the second using the reagents disclosed above. The two preparations yielded quantities of 45 and 21 ng of DNA, respectively. The preparation with the S-channel device and the QIAGEN reagents yielded 24 ng of DNA.
- To determine whether the DNA samples obtained from the X-channel device were of sufficient quantity and quality to be amplified by PCR, the DNA samples extracted above were used to amplify a portion of the HLA-DQA locus. As a control for DNA not purified on an X-channel device, another DNA sample extracted from 200 μL of whole blood using a commercially available kit (QIAMP Blood DNA Purification Kit; Qiagen, Inc.) according to the manufacturer's instructions was tested. The amplification was carried out using 1 to 2 ng of human genomic template DNA purified using the two different extraction methods (X-Channel and QIAGEN reagents and columns). The amplification protocol used was a standard published method, and the temperature cycles were 95° C. 15 seconds, 61.5° C. 1 minute for 35 cycles after an initial 2-minute, 95° C. denaturation cycle.
- Results of the amplification reactions are shown in
FIG. 7 . All visible PCR products represent amplified regions of the HLA-DQA locus.Lanes Lane 6 is a negative (no template) control lane where there should be no product. Template DNA used was as follows:Lane lanes lanes - In conclusion, the X-channel and S-channel devices purified DNA of sufficient quality to carry out PCR using standard methods and performed equivalently with respect to DNA amplification of DNA extracted using the commercial system.
- Experiments were carried out to optimize binding chamber width. In an initial study, six DNA capture devices were fabricated to test the effect of binding chamber width on yield. Each design consisted of a single, straight DNA binding chamber, rectangular in cross-section and of fixed width (2, 4, and 6 mm), and each design differed from the others only in the chamber width. During manufacturing and prior to addition of the glass slides, the devices were either left to cure at room temperature or heat treated at 42° C. on a hot plate for approximately 2-4 hours to test the effect of pre-heating the adhesive.
- The six test devices (designated “R2,” “R4,” and “R6”) were subsequently used to extract DNA from a single (larger volume) whole blood lysate in a side-by-side test with a device as shown in
FIG. 5 (“v3.2”) as disclosed below. The six test devices were vacuum degassed for approximately ten hours to explore the possibility of removing fouling material from the inside of each device. This vacuum degassing procedure had no effect on the performance of the v3.2 device, which was manufactured with an acrylic adhesive (8141; 3M Company), indicating that this adhesive may be viewed as a neutral variable. In contrast, post-manufacturing treatment of at least 8 hours vacuum degassing increased the yield of recovered DNA in devices manufactured using a different acrylic adhesive (467; 3M Company). Later studies showed that longer (>8 hours or so) vacuum degassing produced improved performance of the test devices with respect of DNA yield from whole blood DNA extractions. - In an initial test, the six vacuum-degassed test devices recovered between 8- and 35-fold more ng of DNA per mm2 glass area compared to v3.2 design tested in parallel (Table 8). DNA recovered from the test devices ranged between 11 ng (narrow chamber) and 136 ng (wide chamber), values that represented a much better DNA yield per mm2 glass area, at least for the latter. Both wider chambers also performed better than all the narrower ones. DNA purified from all of these devices was of good quality for PCR and homogeneous in amplification efficiency as tested using 2.5% of the first elution from each device (data not shown). Heat treatment of the adhesive during manufacturing did not appear to significantly affect recovery.
-
TABLE 8 Post- ng manufacturing ng DNA glass area recovered/ Volume Device treatment Number recovered mm2 glass area (mL) untreated 2 mm vacuum degas 1 22 302 0.074 0.092 untreated 4 mm vacuum degas 1 36 550 0.066 0.168 untreated 6 mm vacuum degas 1 125 798 0.156 0.243 heat treated 2 mm vacuum degas 1 11 302 0.037 0.092 heat treated 4 mm vacuum degas 1 38 550 0.068 0.168 heat treated 6 mm vacuum degas 1 136 798 0.170 0.243 AC 08111 v3.2 vacuum degas 2 8 1256 0.006 0.526 AC 08111 v3.2 untreated 4 7 1256 0.007 0.526 - While not wishing to be bound by theory, although the volume of the devices was different, the DNA in the lysed blood was likely saturating the glass surfaces. If the DNA concentration to surface area was not saturating, then the larger volume devices would have been expected to extract more DNA. It was encouraging that these straight-channel designs gave purified DNA from whole blood that was suitable for use in PCR.
- The v3.2 device (
FIG. 5 ) was compared to a commercially available spin column DNA extraction system (obtained from Qiagen, Inc.) for extracting DNA from apheresis platelets and plasma. Commercially available reagents (Qiagen, Inc.) were used throughout, and washes were carried out with 550-μL volumes two times forAssay Wash 1 and four times 550-μL volumes forAssay Wash 2 using an automated pumping system. - For extraction of DNA from apherisis platelets, 24 lysates were prepared essentially as disclosed in Example 15, each using 400 microliters of apheresis platelets. Each lysate was split, and half was applied to a spin column and half to a v3.2 device. Elutions were carried out with 200 μL Tris EDTA (10 mM/1 mM), and 0.1 μg/mL bisbenzimide dye was subsequently used to carry out DNA concentration measurements within the v3.2 device. Calibration curves were successfully defined by using the device as a cuvette to hold DNA standards with fluorescent bisbenzimide dye added. On-the-device DNA measurements did not work in this study after the extraction due to the presence of a substance that interfered with bisbenzimide dye fluorescence. Instead, measurement was carried out off the device using a commercially available dye (PICOGREEN, Invitrogen Corporation) according to the manufacturer's instructions. Fluorescence was determined using a bench top fluorimeter (SYNERGY HT Microplate Reader; BioTek Instruments, Inc., Winooski, Vt.). Subsequent amplification by PCR was carried out in the presence of the bisbenzimide dye, and amplification products were examined directly on agarose gels.
- Twenty-two of twenty-four spin column preps extracted DNA with an average yield of 2.05±1.0 ng. Twenty-one of 24 v3.2 device preps extracted DNA with an average yield of 2.75±2.2 ng. PCR results reported below are based on amplification of 1% and 0.1% of total extracted DNA and were carried out using primers specific for the GAPDH gene as disclosed in Example 2. 22 of 24 spin column preparations successfully amplified based on endpoint agarose gel electrophoresis. Twenty-one of twenty-four v3.2 preparations successfully amplified.
- For extraction of DNA from plasma, 14 lysates were prepared as disclosed above, each using 400 microliters of plasma. Each lysate was split, and half was applied to a spin column and half to a v3.2 device. Elutions were carried out with 200 μL Tris EDTA (TE; 10 mM/1 mM). A fluorescent dye (1× SYBR Green; Invitrogen Corporation) was then added to six of the samples to carry out on-the-device DNA concentration measurements. A second elution was also carried out for the v3.2 devices in the same manner as the first except no dye was added to any of the elution buffer. Calibration curves were successfully defined by using the device as a cuvette to hold DNA standards with fluorescent dye (SYBR Green) added. On-device DNA measurements did not work in this study and had to be carried out off the device using a commercially available dye (PICOGREEN, Invitrogen Corporation) according to the manufacturer's instructions.
- Thirteen of the fourteen spin column preps extracted DNA with an average yield of 0.2±0.3 ng. Twelve of the fourteen v3.2 device preps extracted DNA with an average yield of 3.6±1.4 ng DNA. PCR results reported below are based on amplification of 2.5% of the total extracted DNA in either the first or second elutions and were carried out using primers specific for the GAPDH gene. For the spin column preparations, 13 out of 14 preparations successfully amplified based on amplification of 2.5% of the total extracted DNA carried out using primers specific for the GAPDH gene. For the v3.2 preparations, 12 out of 14 preparations successfully amplified based on amplification of 2.5% of the total extracted DNA in either the first or second elutions carried out using primers specific for the GAPDH gene. In this experiment, there was greater variability in amplification efficiency for the v3.2 device compared to spin columns. The PCR product bands if compared between the v3.2 devices and the spin columns qualitatively seemed less bright, and the failure rate of the PCR also seemed greater for these v3.2 preparations. Another observable trend when analyzing the two elutions using the same DNA concentration indicated poorer PCR performance in the second elution compared to the first elution for PCR amplification reactions with DNA extracted using the v3.2 devices.
- Two studies were carried out to compare side-by-side the DNA extraction capacity of two different device designs. Device v3.2 is illustrated in
FIG. 5 . Device B22 was of similar design but had a 6-mm wide binding channel with seven 180-degree bends and a volume of 0.712 mL. Second, it was important to test the ability to carry out on-device measurements of DNA concentration following DNA extraction. The samples were 0.2 mL of whole blood in the first study. In the second study the samples were either 0.2 mL whole blood or 500 ng of purified human DNA in phosphate buffered saline (PBS, pH 7.4). - Cell lysis and DNA capture were performed essentially as disclosed in Example 8, except commercially available reagents (obtained from Qiagen Inc.) and in-house reagents (essentially as disclosed in Example 5 using a 70% EtOH Assay Wash 2) were used. Prior to DNA purification some devices had been used as cuvettes (in an earlier study) to generate calibration curves specific for each device design. Fluorescence blank reads were carried out using fluorescent dye (SYBR Green; Invitrogen Corp.) and Tris-EDTA buffer with the devices used for on-device quantification. Commercially available spin columns (obtained from Qiagen Inc.) were used as a control with both reagent sets. Elution conditions are shown in Table 9.
- DNA yields were quantified using 100 μL of each preparation and a commercially available quantitation kit (PICOGREEN dsDNA quantitation kit; Invitrogen Corp.) according to the manufacturer's instructions. This constituted the off-device quantification part of the experiment. The reagent type used did not seem to affect yields when used with either the B22 or the v3.2 device, however yields were better with the spin column when the QIAGEN reagents were used (Table 9).
-
TABLE 9 Elution DNA Recovered Prep # Device Volume Elution Conditions (ng) 338b v3.2 200 μl SYBR Green 12 QIAGEN Reagents 339b v3.2 200 μl no dye 15 340 B22 200 μl SYBR Green 15 341 B22 200 μl no dye 15 342 v3.2 200 μl SYBR Green In- house 11 Reagents 343 v3.2 200 μl no dye 16 344 v3.2 200 μl SYBR Green 21 345 B22 200 μl no dye 20 346 Spin 200 μl no dye QIAGEN 519 Column Reagents 347 Spin 200 μl no dye In-house 372 Column Reagents - In order to carry out on-device quantitation of the DNA samples, four devices from the same build lots (used in earlier preparations 330, 331, 336, and 337 as described below) were initially used as cuvettes and read in a bench top fluorimeter (SYNERGY HT Microplate Reader; BioTek Instruments, Inc., Winooski, Vt.). In order to generate standard curves specific to each device type, various DNA standards were quantified in the presence of 1× concentration fluorescent dye (SYBR Green) on-device using the fluorimeter by simply loading each device with the particular DNA standard or blank buffer sample (data not shown). By choosing one of the DNA calibration curves (device 336), the following correlations could be obtained between the on-device reads and the off-device reads (Table 10). It can be noted that using a “typical” calibration curve may not be a good approach towards calibrating the on-device reads since the reads for devices 342 and 344 were close to those obtained off-device but those for devices 338 and 340 were not as close.
-
TABLE 10 Blank Eluted Off-device On-device Reading Sample Quantitation Quantitation Prep. No. Device (RFU) (RFU) (ng DNA) (ng DNA) 338 v3.2 8559 16672 12 38 340 B22 7641 17432 15 43 342 v3.2 8855 12218 11 12 344 v3.2 7343 13102 21 17 - A second study was conducted to compare in side-by-side studies the capacity of the v3.2 and B22 devices with the same chamber height. Commercially available reagents (Qiagen Inc.) were used throughout. Prior to DNA purification some of the devices were used as cuvettes to generate DNA concentration fluorescence standard curves using fluorescent dye (either SYBR Green or BB dye).
- Prior to DNA purification some devices had been used as cuvettes as disclosed above to generate calibration curves specific for each device design. Also, fluorescence blank reads were carried out using fluorescent dye (SYBR Green) and Tris-EDTA buffer with the devices used for on-device quantification. Spin columns (Qiagen Inc.) were used as a control with both reagent sets. The samples were read off-device on a 96-well black plate (COSTAR). A control set that was never input onto a device was included. There seemed to be no significant differences from the samples that were kept off the device to those that were read on-device for generation of calibration curve data (data not shown).
- DNA yields were quantified using 100 μl of each preparation and a DNA binding fluorescent dye (SYBR Green). This constituted the off-device quantification part of the experiment. The yields obtained with the B22 devices may have been slightly higher for whole blood compared to the v3.2 devices (Table 11).
-
TABLE 11 ng/mL DNA per Recovered Prep. No. Device Analyte RFU 200 μL analyzed DNA (ng) 330 v. 3.2 human DNA 2016 416 83 331 B22 human DNA 2482 533 107 336 v. 3.2 whole blood 628 68 14 337 B22 whole blood 906 138 28 - By using the DNA calibration curves specific to each device, the following correlations could be obtained between the on-device reads (SYBR Green) and the off-device reads (Table 12).
-
TABLE 12 DNA Off-device plate Post-extraction, concentration recovered reads, DNA Device on-device read (ng/mL) (ng) recovered (ng) Re-purification of Human DNA 330 43417 260 52 69 331 52902 362 72 91 Extraction of DNA from blood 336 19083 53 11 14 337 20840 103 21 28 - By comparing the DNA concentration values obtained on and off the devices, the greatest difference measured in this experiment was about 2-fold. It is believed that there may be some degree of interference with fluorescence readings carried out following DNA extractions and that the accuracy of the on-device measurements can be increased by eliminating the interfering substance(s). Nonetheless, the object of obtaining an accurate measurement following DNA extraction was achieved by carrying out on-device readings with and without prior generation of calibration curves after elution of the DNA with buffer containing the DNA binding fluorescent dye (SYBR Green).
- An S-channel device constructed as shown in
FIGS. 8A and 8B fordevice 400 and further comprising calibration wells (not shown) (designated “v4.0”) was compared to commercially available spin column DNA extraction systems (QIAMP DNA Blood Mini Kit from Qiagen, Inc; NUCLEOSPIN Plasma XS from Macherey-Nagel GmbH & Co. KG) for extracting DNA from apheresis platelets and plasma. Commercially available reagents (obtained from Qiagen, Inc. and Macherey-Nagel) were used for each spin column system, and extractions were carried out according to the manufacturer's instructions. Reagents and extraction conditions disclosed in Example 12 were used for the v4.0 devices. Device washes were carried out with 1000 μl volumes three times forAssay Wash 1 and six times 1000 μl volumes forAssay Wash 2 using an automated pumping system. Drying times were 3 to 4 minutes for each device, and elution volumes were 100 μL for the spin column systems and 200 μL for the v4.0 devices, respectively. Only one elution was collected and subsequently analyzed for each extraction system. - For extraction of DNA from apheresis platelets, 22 lysates were prepared, sixteen using 400 microliters of apheresis platelets for extraction on the v4.0 devices and the Qiagen columns, and six using 240 microliters for extraction on the Machery-Nagel columns. All samples were lysed using subtilisin. V4.0 device elutions were carried out with 200 μL Tris EDTA (10 mM/1 mM), and fluorescent dye (1× SYBR Green) which was subsequently used to carry out DNA concentration measurements within the channel of the v4.0 device. Calibration wells built onto the v4.0 devices were successfully used to measure fluorescence from reference solutions of Tris EDTA (10 mM/1 mM) with fluorescent dye (1× SYBR Green) containing 0 and 100 ng/mL of purified human DNA by using the device as a cuvette to hold the DNA standards with fluorescent dye added. Measurements of DNA concentration in samples of the eluted nucleic acid for all three extraction systems were also carried out following extraction using the same fluorescent dye and human DNA for the standard curve. Subsequent amplification by PCR for the v4.0 device sample was carried out in the presence of the fluorescent dye, albeit at lower than 1× concentration, for the v4.0 device DNA samples.
- The 6 Qiagen spin column preps extracted DNA from the apheresis platelets with an average yield of 1.2±0.4 ng DNA, or approximatively 171 white blood cell genome equivalents, assuming that one mammalian DNA genome equivalent equals 7 picograms (Wen et al., Anal. Chem. 80(17):6472-6479, 2008. The 6 Macherey-Nagel spin column preps extracted DNA from the apheresis platelets with an average yield of 0.3±0.3 ng DNA or approximatively 43 white blood cell genome equivalents. The 10 v4.0 device preps extracted DNA from the apheresis platelets with an average yield of 21.2±8.7 ng DNA or approximatively 3029 white blood cell genome equivalents.
- PCR results reported here are based on amplification of described quantities of extracted DNA and were carried out using primers specific for the GAPDH gene as disclosed in Example 2. As disclosed above, an assumption was made for the calculation of genome equivalent values that one white blood cell has a DNA content of 7 picograms. We deduce that the lower the concentration of DNA amplified in the PCR reaction, the higher the purity of the extracted DNA with respect to the presence of PCR inhibitors. The number of white blood cell genome equivalent DNA concentrations tested by PCR for the v4.0 devices and Qiagen columns that amplified successfully are shown in Table 13.
-
TABLE 13 v4.0 Device Spin Column 148 7 27 7 7 7 7 7 7 27 106 - For extraction of DNA from plasma, 19 lysates were prepared, each using 400 microliters of plasma. Nine preparations were carried out using the v4.0 device, 7 preparations were carried out using the Qiagen column system, and 3 preparations were carried out using the Macherey-Nagel column system. Commercially available reagents (obtained from Qiagen, Inc. and Macherey-Nagel) were used for each spin column system according to the respective manufacturer's instructions, and reagents disclosed in Example 12 were used for the v4.0 devices. Device washes were carried out with 1000 μl volumes three times for
Assay Wash 1 and six times 1000 μl volumes forAssay Wash 2 using an automated pumping system. Drying times were 3 to 4 minutes for each device, and elution volumes were 200 μL Tris EDTA (10 mM/1 mM) for each spin column system or as described below for the v4.0 devices. Only one elution was collected and subsequently analyzed for each extraction system. - V4.0 device elutions were carried out with 200 μL Tris EDTA (10 mM/1 mM), and fluorescent dye (1× SYBR Green). which was subsequently used to carry out DNA concentration measurements within the channel of the v4.0 device. Calibration wells built onto the v4.0 devices were successfully used to measure fluorescence from reference solutions of Tris EDTA (10 mM/1 mM) with dye (1× SYBR Green) containing 0 and 100 ng/mL of purified human DNA by using the device as a cuvette to hold the DNA standards with fluorescent dye added. Measurement of DNA concentration in samples of the eluted nucleic acid for all three extraction systems were also carried out following extraction using the same fluorescent dye and human DNA for the standard curve. Subsequent amplification by PCR for the v4.0 device samples was carried out in the presence of the fluorescent dye, albeit at lower than 1× concentration.
- The 7 Qiagen spin column preps extracted DNA from the plasma with an average yield of 3.9±0.4 ng DNA or approximatively 553 white blood cell genome equivalents. The 3 Macherey-Nagel spin column preps extracted DNA from the plasma with an average yield of 2.3±0.25 ng DNA or approximatively 333 white blood cell genome equivalents. The 9 v4.0 device preps extracted DNA from the plasma with an average yield of 17.3±5.8 ng DNA or approximatively 2472 white blood cell genome equivalents.
- PCR results reported here are based on amplification of total extracted DNA from the plasma and were carried out using primers specific for the GAPDH gene as disclosed in Example 2. We deduce that the lower the concentration of DNA amplified in the PCR reaction, the higher the purity of the extracted DNA with respect to the presence of PCR inhibitors. The number of white blood cell genome equivalent DNA concentrations tested by PCR for the v4.0 device and Qiagen columns respectively that amplified successfully are shown in Table 14. High values shown for two of the v4.0 devices resulted from a pump malfunction that caused improper accumulation and subsequent drying of guanidine-containing wash buffers within the binding chambers of the devices. The remaining devices produced DNA of higher quality for amplification than the comparative spin columns.
-
TABLE 14 v4.0 Spin Column 675 230 658 213 27 214 27 203 27 7 7 - Three studies were carried out to demonstrate the quantification of extracted DNA directly on the v4.0 devices. It was important to test the ability to carry out on-device measurements of DNA concentration following DNA extraction. The sample was 0.4 mL of apheresis platelets in the first study. In the second study the sample was 0.4 mL plasma. In the third study 1000 ng of purified human DNA or no DNA (negative control) were offered for binding in Tris-EDTA buffer.
- In-house reagents were used to carry out the purification on these devices essentially as described in Example 8, above. V4.0 device elutions were carried out with 200 μL Tris EDTA (10 mM/1 mM), and fluorescent dye (1× SYBR Green) which was subsequently used to carry out DNA concentration measurements within the channel of the v4.0 device. Measurement of DNA concentration in samples of the eluted nucleic acid for all three extraction systems were also carried out following extraction using the same fluorescent dye and human DNA for the standard curve. Fluorescence reads on the v4.0 devices were carried out using fluorescent dye and Tris-EDTA buffer in a bench top fluorimeter (SYNERGY HT Microplate Reader; BioTek Instruments, Inc., Winooski, Vt.). The v4.0 devices were fitted within a specially fabricated microtiter plate such that the top surface of the glass plate of the device was positioned evenly across the top of the microtiter plate. This arrangement allowed the binding chamber and calibration wells to align with plate reader.
- Prior to carrying out actual DNA purifications, other v4.0 devices had been used as cuvettes (in an earlier study) to generate calibration curves specific for this device design. Two calibration wells built into the v4.0 devices were successfully used to measure fluorescence from reference solutions of Tris EDTA (10 mM/1 mM) with fluorescent dye (1× SYBR Green) containing 0, 50, 100, 200, 400, 600, 800, and 1000 ng/mL of purified human DNA by using the device as a cuvette to hold the DNA standards with fluorescent dye added. One calibration well always contained 0 ng/mL of DNA (blank), while the second calibration well usually contained a DNA solution of 100 ng/mL, except for the pilot calibration study where several DNA concentrations were studied as mentioned above. Each reading of the devices and the calibration wells was also performed at the same time as three independent positions within the binding chamber were read containing the same DNA solution and concentration as tested in the second calibration well. The DNA samples were also read off-device on a 96-well black plate (COSTAR). A control set that was never input onto a device was included for that measurement. The data shown below (Table 15; values are relative fluorescence units) indicate that the fluorescence values obtained on the devices within the calibration wells or at three independent positions within the binding chamber corresponded closely to the fluorescence values obtained off the devices. Moreover, the calibration blank reported a low background fluorescence value throughout the experiment as a negative control. These results demonstrate that device can be used as optical cuvette for quantitating nucleic acids.
-
TABLE 15 Calibration Blank Analytical Wells Off-device Well Well Average (+/− SD; n = 3) Readings 1298 1356 1195 +/− 1.4 243 4411 2776 3506 +/− 22.1 2280 6243 2808 5105 +/− 38.8 3723 10686 2939 9174 +/− 198.0 7306 15804 3072 14337 +/− 362.4 9047 20976 3225 19434 +/− 471.6 16082 30254 3275 28851 +/− 425.2 25185 - DNA yields for extracted DNA from the three studies as outlined above were quantified using 25 μL of each preparation and fluorescent dye essentially as described in Example 8, but with the substitution of 1× SYBR Green dye for PICOGREEN dye. This constituted the off-device quantification part of the experiment. Immediately following each extraction the devices containing the 200 μL of Tris-EDTA elution buffer with fluorescent dye were read in a bench top fluorimeter (SYNERGY HT Microplate Reader; BioTek Instruments, Inc., Winooski, Vt.). The calibrator wells containing 100 ng/mL of DNA and a 0 ng/mL (blank) solution in the same Tris-EDTA elution buffer with fluorescent dye were used to calculate the DNA concentration of the elution buffer following extraction.
- The apheresis platelet extraction experiment yielded the values shown in Table 16 on and off the device. For off-device quantitation (“Plate Read”), a 25-microliter aliquot was removed from the device, put into a microtiter plate well, and read with fluorescent dye (1×SYBR Green) as previously disclosed.
-
TABLE 16 On-device Calculated Plate Read Concentration (ng/ml) Concentration (ng/ml) 223 131 331 162 179 90 269 148 87 27 332 207 139 276 231 265 219 157 193 124 - As shown in Table 17, the plasma extraction experiment yielded the following values on and off the device:
-
TABLE 17 On-device Calculated Plate Read Concentration (ng/ml) Concentration (ng/ml) 263 126 182 86 119 71 106 73 97 57 159 74 111 44 276 124 - The pure DNA extraction or re-purification experiment and negative control (mock) extraction experiment yielded values of 177 ng/mL and 147 ng/mL on and off the device, respectively. The mock extraction experiment yielded a fluorescence value of 318 units when measured off the device versus the blank value of 259 units obtained from the standard curve in the standard microtiter plate-based fluorescence assay. On-device reads with the mock extraction experiment yielded a fluorescence value of 1790 units versus a blank value of 1819 units obtained from the calibration well with a 0 ng/mL DNA solution. These values do not rule out that these eluates may contain an interfering substance that could be affecting the dye solution. However, the expected error from any such interfering substance is low as the data above indicate.
- By comparing the DNA concentration values obtained on and off the devices, the greatest difference measured in this experiment was about 2-fold. The object of obtaining a quantitative measurement following DNA extraction is achieved by carrying out on-device reads, without prior generation of calibration curves, after elution of the DNA with buffer containing the fluorescent dye.
- Experiments were conducted to develop methods for detecting the presence of pathogens (whether bacterial, viral, or other) in samples wherein only trace amounts of pathogen nucleic acids are present. A model assay for detecting E. coli DNA in water was based on a published (Frahm and Obst, Journal of Microbiological Methods 52:125, 2003) real-time PCR assay for the detection of E. coli DNA. The assays utilized probe-based (using dual labeled probes (TAQMAN probes; obtained from Applied Biosystems, Foster City, Calif.) or real-time fluorescence-based (using SYBR Green; Invitrogen) detection of amplification. This assay was modified to test the lower limit of detection when an S-channel device was used to re-purify bacterial DNA.
- E. coli bacterial DNA from strain ATCC11303 type B was obtained from MP Biomedicals, Solon, Ohio, catalog number 101503, with original concentration of 1 mg/mL in water. The E. coli DNA was diluted directly with DEPC-treated water (FLUKA: Sigma-Aldrich, St. Louis, Mo.). Ten-fold serial dilutions were prepared ranging from 1 mg/mL to 1 pg/mL prior to amplification.
- DNA was extracted on a v4.0 device essentially as disclosed in Example 12 with the omission of protease.
- Primers and probes (Table 18) were obtained from Integrated DNA Technologies, Coralville, Iowa. Tm shown for primers 784F and 866R were specified by the manufacturer. For probe EC87, Tm was determined experimentally using a complementary oligonucleotide to the probe sequence.
-
TABLE 18 Conc. Tm Function Name Sequence (5′-3′) and Labels (nM) (° C.) Forward Primer 784F GTG TGA TAT CTA CCC GCT TCG various 61.7 C (SEQ ID NO: 1) Reverse Primer 866R AGA ACG GTT TGT GGT TAA TCA various 61.7 GGA (SEQ ID NO: 2) Fam probe EC807 TCG GCA TCC GGT CAG TGG CAG 200 73.8 T (SEQ ID NO: 3)* *Probe EC807 (SEQ ID NO: 3) was labeled at the 5′-end with FAM, a tetrachlorofluorescein moiety, and at the 3′-end with a non-fluorescent quencher (BLACK HOLE QUENCHER from Biosearch Technologies, Novato, CA) to quench the FAM moiety. See, Frahm and Obst, ibid. - For the probe-based quantification, probes and primers were used at the following concentrations: 784F (SEQ ID NO:1), 900 nM; 866R (SEQ ID NO:2), 300 nM; and EC807 probe (SEQ ID NO:3), 200 nM. For fluorescent dye-based detection of amplification, the primers were used as follows: 784F (SEQ ID NO:1), 900 nM; 866R (SEQ ID NO:2), 900 nM with the fluorescent dye used at a 0.5× concentration.
- PCR reactions comprised primers and templates as disclosed above. PCR reagent mixes were obtained from commercial suppliers. Reactions were run with a denaturing step at 95° C. for 10 minutes, followed by 40 cycles of 95° C. for 15 seconds and 60° C. for 1 minute.
- PCR products were detected by measuring the value of the relative amount of the reporter's (probe or dye) fluorescence, caused by template-dependent nucleolytic degradation of the internally quenched probes. A threshold cycle Ct was defined for each PCR reaction as the amplification cycle where the increasing fluorescence signal first exceeded the background fluorescence (baseline); or as the fluorescent signals in the standard quantitation curve were closer to a straight line. Different amplification profiles for given DNA concentrations were then compared by their respective Ct, and the value of the relative DNA amount input into the PCR reaction was thereby determined. Verification of endpoint PCR results was also performed by electrophoresis on agarose gels (REDTRACK Precast Agarose Gels obtained from Biomoles, Seattle, Wash.). The agarose concentration used was usually 3% or 2%.
- The specificity of the probe-based detection assay and dye-based assay was determined by using a 10-fold series dilution of pure E. coli DNA with concentrations ranging from 1 pg/mL-1 mg/mL. The sensitivity of the assay when using probe EC807 (SEQ ID NO:3) was 10 pg/mL.
- The Ct values detected were mostly ranging from 13-33. The Ct value of the negative control sample was usually more than 33 and could be affected by contaminating E. coli DNA levels in the various commercially obtained PCR reagent mixtures (TAQ SUPERMIX; obtained from Bio-Rad Laboratories, Hercules, Calif. or Quanta Biosciences, Inc., Gaithersburg, Md.) used.
- Initial realtime PCR results testing for bacterial DNA using a PCR reagent mix obtained from Dr. John Meschke, University of Washington, showed the lower limit of detection of the assay to be 10 pg/mL. A separate test with a commercially obtained reagent mix (Bio-Rad Laboratories) showed lesser sensitivity of the assay at 100 pg/mL, presumably due to contaminating E. coli DNA present in the commercial reagents. Supporting data for this presumption is that the Ct value of the negative control sample is zero in realtime PCR and negative in agarose gel analysis when a cleaner reagent mix (obtained from Dr. Meschke and confirmed as being DNA-free) was used. A verification test was performed by filtering commercial Taq Supermix (Bio-Rad Laboratories) through a cellulose membrane filter (MICROCON YM-100 centrifugal filter unit; Millipore, Billerica, Mass.) according to the manufacturer's instructions followed by agarose gel qualification analysis. This verification test of resultant no-template-control (NTC) PCR product bands showed qualitatively less PCR product DNA and significantly reduced non-specific reaction. The NTC controls obtained from two commercial reagent mixes (obtained from Bio-Rad Laboratories and Quanta Biosciences) both exhibited nonspecific reactions with Ct≦33 and product bands by agarose gel analysis.
- The use of carrier nucleic acid in detection of low levels of DNA was examined in the real-time PCR reaction. Fish DNA, human DNA, yeast tRNA (obtained from Sigma-Aldrich), and synthetic dA/dT (obtained from Sigma-Aldrich) were used at final concentrations ranging from 1 ng/mL to 1 mg/mL. The appropriate dA/dT concentration to be used in this assay was determined to be 30 ng/ml, and for tRNA, 10 ng/ml. The use of the carrier DNA was expected to normalize fluorescence signals during probe-based detection reactions where various quantities of DNA are amplified and to allow for direct, in-process quantification of the extracted nucleic acids on the device. Different carrier molecules were tested at set concentrations by titrating in carrier DNA along with the template, and a standard curve (dilution series) of E. coli DNA was run with the probe for each of the individual concentrations. The carrier concentration that least affected the standard curve was chosen as the preferred concentration with the understanding that as much as 50-100 ng/ml concentrations of carrier coming out of the extractions would simplify the on-device measurements from a signal-to-noise perspective. The dA/dT and tRNA carrier molecules were used at concentrations of 10 ng/ml and 30 ng/ml. The higher concentration used here allowed on-device quantitation of the extracted (carrier) DNA as shown in examples above. Genomic DNA was found to interfere with the PCR assays, probably due to non-specific binding of the primers resulting in greatly reduced sensitivity to E. coli DNA.
- A protocol for washing the v4.0 device was implemented prior to using the device to re-purify bacterial DNA. The device was washed with 2-3 channel volumes of 70% EtOH, followed by another 2-3 channel volume wash with distilled sterile water. After washing, the device was dried for 5-10 minutes in a vacuum dessicator pumped with a standard oil lab vacuum pump.
- The E. coli DNA standard curve generated using probe EC897 (SEQ ID NO:3) showed the lower limit of detection of the assay to be as low as 18 pg/mL. (The analysis of Ct value in this example was based primarily on locating the threshold slightly above the noise signals.) DNA isolated from the v4.0 device after washing as described previously was tested. The lower limit of detection of the assay was very similar to that of the DNA before purification on the v 4.0 device, and was as low as 18 pg/mL.
- The assays described above point to the feasibility of using a synthetic carrier DNA molecule to track the DNA extraction process using fluorescent dye followed by direct downstream processing by real-time PCR for pathogen detection in the extracted water samples. Since the pathogen DNA would only be present in trace amounts, the carrier DNA helps validate the successful extraction of nucleic acids on the v4.0 device.
- These experiments also showed that the E. coli DNA contamination commonly found in commercial reagents affected the sensitivity of the assay. Simple mitigation methods were used, which enabled the researchers to achieve the desired sensitivity in this type of test. These mitigation methods included the use of RT-PCR grade water and purification of all reagents by ultrafiltration as disclosed by Reed et al., WO 2008/002882. The best results obtained over the course of these studies resulted in the sensitivity of the assay being measured down to 10 E. coli genome equivalents, which would translate to 10 colony forming units of bacteria if the bacterial DNA extraction protocols lyse and capture nucleic acid from every cell in that range.
- Nucleic acid sequence-based amplification was run on an S-channel device using a PCR fragment of the human GAPDH gene as a template. The template was generated using primers G3 Amp004 (AATTTAATACGACTCACTATAGGGATCATGAGTCCTTCCACGATACC; SEQ ID NO:4) and G3003 (AGCGAGATCCCTCCAAAATC; SEQ ID NO:5). Primer G3 Amp004 (SEQ ID NO:4) includes a T7 RNA polymerase promoter. Oligonucleotides were purified by HPLC and dissolved in TE at a concentration of 100 μM. A primer stock was prepared by mixing 5 μA, or each primer solution, 375 μL of DMSO, and 115 μL or 50 mM Tris, pH 8.0.
- A first set of experiments were run to determine if an S-channel device could be used as a reaction vessel for a NASBA reaction. All reagents were loaded onto and removed from the device with a 1-mL pipettor. An S-channel was filled with a bovine serum albumin (BSA; molecular biology grade obtained from Sigma-Aldrich, St. Louis, Mo.) solution at 1 mg/ml in TE to block the glass surface. After sitting for 30 minutes at room temperature, the blocking solution was removed and the channel was dried in a vacuum dessicator for 30 minutes at room temperature. After the drying period, no residual reagents were visible. A NASBA reaction mix (40 mM Tris-HCl pH 8.0, 12 mM MgCl2, 70 mM KCl, 15% v/v DMSO, 5 mM DTT, 75 mM Sorbitol, 0.2 μM G3 Amp004 primer (SEQ ID NO:4), 0.2 uM G3003 primer (SEQ ID NO:5), 2 mM ribonucleotide mix, 1 mM deoxyribonucleotide mix, 80 μg/mL BSA (obtained from Sigma-Aldrich), 0.16 units E. coli RNaseH (obtained from New England Biolabs), 11 units AMV reverse transcriptase (obtained from Invitrogen Corp.), 60 units T7 RNA polymerase (obtained from New England Biolabs)) was then prepared that contained all of the NASBA components with or without the addition of 80 ng of the PCR fragment template, in a total volume of 50 μL. The reaction mix was carefully loaded into an S-channel device. The device was clamped into a heating block consisting of two heating elements mounted on a clamp and attached to a temperature controller, with the blocks positioned over the reaction mix in the channel. Internal channel temperature equilibrated to the set temperature in about 16 seconds. The reaction mix was incubated for 30 minutes at 42° C. As controls, equivalent NASBA reactions were run in standard 0.2-mL PCR tubes. When done, 7.5 μL of each reaction mix was run on a 2% agarose gel. Controls (no enzymes or no template) produced no visible reaction products. Complete reactions run in a tube or an S-channel device produced clearly visible reaction products (data not shown). The expected size double-stranded amplification product of 320 by was obtained along with a faster migrating single-stranded RNA product that ran at around 200 bases. The RNA product ran somewhat anomalously in this gel system as its expected size was approximately 150 bases.
- In a second set of experiments, the PCR template was first bound to the glass surface of the S-channel device. All reagents were loaded onto and removed from the device with a 1-mL pipettor. A NASBA reaction mix was then loaded into the channel to elute the bound template and amplify it. Controls included (1) a standard NASBA reaction without added template run in a standard 0.2-mL PCR tube in a total volume of 50 μL, (2) a standard NASBA reaction run in the presence of template run in a standard 0.2-mL PCR tube in a total volume of 50 μL, and (3) an S-channel device run as in the first set of experiments, above. Tube controls were incubated in a standard thermocycler set at 42° C. for 45 minutes.
- To bind the template to the glass surface, 200 ng PCR template was mixed with 0.2 mL of a binding mix prepared by mixing 0.5 mL lysis buffer (6M Guanidine hydrochloride, 50 mM Citric acid pH6.0, 20 mM EDTA, 33% ethanol, 10% Tween-20, 3% Triton X-100), 0.5 mL water, and 0.5 mL ethanol. The template in the binding mix was loaded into the S-channel, and the template was allowed to bind to glass for 30 minutes at room temperature. The binding mix was removed, and a post-binding block was carried out by loading on a solution of the binding mix with BSA at 1 mg/mL. A second reaction was run under the same conditions but without added BSA. The post-block was allowed to sit for 15 minutes at room temperature and removed. The channel was then washed three times with Wash 1 (2M Guanidine HCl, 16 mM Citric Acid pH6.0, 6 mM EDTA, and 33% ethanol) and six times with Wash 2 (20 mM Tris pH7.0 and 70% ethanol). The channel was then dried under vacuum. A complete NASBA reaction mix (as above, but containing an additional 800 μg/mL BSA) without any added DNA and in a total volume of 50 μL was then loaded onto the device. The device was then incubated at 42° C. for 45 minutes. From each reaction, 7.5 μL was run on a gel. Control 1 (negative control, no template) produced no visible reaction products. Control 2 (positive control) showed a positive amplification reaction with the expected distribution of products. Control 3 (S-channel with added BSA) showed amplification. The NASBA reaction run on captured template without added BSA produced no amplification signal. The complete NASBA reaction run on captured template in the presence of 800 μg/mL BSA showed amplification, although at a lower intensity than the positive control. These results suggest that some loss of enzyme was still occurring and that a higher concentration of BSA is required to fully block enzyme adsorption to the glass.
- The binding capacity of the v4.0 device was studied. Lysis and wash buffers were as disclosed in Example 11. Samples were prepared by combining 400 μL of lysis buffer with 400 μL of water, 400 μL pure ethanol, and various amounts of purified human DNA (SIGMA; Sigma-Aldrich, St. Louis, Mo.). The samples were loaded with a pipette into v4.0 devices and incubated at room temperature for 30 minutes. The devices were then attached to an automated pumping system and washed three times with 1 mL each of
wash 1, and six times with 1 mL each ofwash 2. The devices were then dried under vacuum in a vacuum dessicator to remove residual ethanol. Bound DNA was eluted with three successive 200-1 μL washes with TE buffer. DNA in each sample was quantitated using a commercially available assay (PICOGREEN assay; Invitrogen Corp.) with minor modification. Reference DNA for quantitation was human DNA (SIGMA). Ten μL of each sample was analyzed. - Results are shown in Table 19. Total elution yields are the sum of the amount of recovered DNA in three successive 200-1 μL elutions of each device. The difference between the first elution volume and the total yield indicates that a significant amount of DNA was left on the device after the first elution step. Further, the total yield of DNA was linear over a wide input DNA concentration range (100 to 2000 ng). However, the first elution samples did not show a linear response in yield. The reason for this is unclear. The data further show that percent recovery may be higher at lower DNA concentrations, suggesting that dilute DNA concentrations may be more effectively purified than more highly concentrated samples.
-
TABLE 19 DNA Recovered (ng) Input DNA (ng) First Elution Total % Recovery 100 14 34 34 250 48 86 34 500 93 148 30 1000 183 259 26 2000 294 497 25 - A similar experiment was performed using S-channel devices fabricated with 1″×3″ glass slides. The experiment was carried out as above, except half the sample volume was used. Results are shown in Table 20. As opposed to the longer channel v4.0 devices, the shorter channel devices have a relatively flat response to input DNA. The reason for this is not known. However, this response may provide an advantage in situations where the amount of DNA needed for a downstream application may need to be limited.
-
TABLE 20 Input DNA Yield in Each Elution (ng) (ng) First Second Third Total (ng) 50 8.7 3.5 0.8 13.0 125 8.3 2.9 1.3 12.6 250 7.3 4.0 0.8 12.1 500 8.6 1.8 1.4 11.8 1000 6.6 1.6 1.0 9.2 - DNA from whole blood was isolated using the v4.0 device and buffers disclosed in Example 12. Various amount of whole blood were mixed with water to a total volume of 400 μL. Then, 40 μL of 10 mg/mL Subtilisin (SIGMA) in TE was added, followed by 400 μL of lysis buffer. The mixture was incubated at room temperature for 15 minutes, then 400 μL of pure ethanol was added. The samples were then loaded into v4.0 devices by pipette. The devices were incubated for 10 minutes at room temperature to allow DNA binding. The devices were attached to an automated pumping system and washed three times with 1 mL each of
wash 1, and six times with 1 mL each ofwash 2. The devices were then dried under vacuum. Bound DNA was eluted with three successive 200-μL elutions using TE buffer. Ten μL of each eluate was quantitated using a commercially available assay (PICOGREEN assay; Invitrogen Corp.). Results are summarized in Table 21. -
TABLE 21 Input Amount of Yield in Each Elution (ng) Total Blood (μL) First Second Third (ng) 200 167 100 62 329 100 98 74 51 223 50 100 58 31 189 20 57 32 20 109 - The data show that, as expected, lower amounts of input led to lower total yields. In order to gain some insight into the relative efficiency of capture, the total DNA yields were normalized to the input amount of blood. Table 22 summarizes the data.
-
TABLE 22 Input Amount of Yield/ml of Whole Blood (μL) Total Yield (ng) Blood (ng) 400 243 607 200 329 1644 100 223 2228 50 189 3771 20 110 5495 - The normalized values increased with decreasing input amounts of blood. These data strongly suggest that the
version 4 devices isolate DNA more efficiently at lower blood concentrations. The data suggest that an approximate linear response of yield is obtained in response to amount of blood input. The data in this example show that the v4.0 device efficiently isolated DNA from blood. As can be seen from Table 21, the second and third elutions contained significant amounts of DNA, making the total yield of DNA even more significant. - An undiluted 5-1 μL portion of each sample was tested in a GAPDH PCR assay, and all samples yielded the correct 267-bp PCR product.
- From the foregoing, it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.
Claims (25)
1. A device comprising:
(i) a body member having a plurality of external surfaces and fabricated to contain a continuous fluid pathway therethrough, the pathway comprising:
a first port;
a second port; and
a binding channel intermediate and in fluid communication with the first port and the second port, wherein the binding channel is open to one of the external surfaces of the body member; and
(ii) a glass member affixed to said one of the external surfaces of the body member to provide a first unmodified flat glass surface in fluid communication with the binding channel, wherein the binding channel and glass member define a binding chamber effective for binding a heterogeneous population of nucleic acids and wherein the fluid pathway is essentially free of nucleic acid-specific binding sites.
2. The device of claim 1 , wherein the fluid pathway further comprises:
a first channel connecting the first port with the binding chamber; and
a second channel connecting the second port with the binding chamber.
3. The device of claim 1 wherein the binding channel is open to a second of the external surfaces of the body member and wherein the device further comprises a second glass member affixed to the second external surface of the body member to provide a second unmodified flat glass surface in fluid communication with the binding channel.
4. The device of claim 1 wherein the first port or the second port comprises a Luer-lock fitting, an O-ring, a gasket, a tubing stub, or an elastomeric septum.
5. The device of claim 1 wherein the binding chamber comprises a serpentine channel.
6. The device of claim 5 wherein the serpentine channel is planar.
7. The device of claim 1 wherein the binding chamber is rectangular in cross-section.
8. The device of claim 1 further comprising a pump in fluid communication with one of the ports.
9. The device of claim 8 further comprising fluid distribution control means in fluid communication with the pump.
10. The device of claim 9 wherein the fluid distribution control means comprises a programmable computer.
11. The device of claim 1 wherein the fluid pathway further comprises:
a distribution channel in fluid communication with the binding channel; and
a plurality of capillary channels in fluid communication with the distribution channel distal to the binding channel.
12. The device of claim 11 further comprising a plurality of assay wells, wherein each of the assay wells is in fluid communication with one of the capillary channels.
13. A process for extracting nucleic acid from a biological sample comprising:
introducing a nucleic acid-containing sample into the binding chamber of the device of claim 1 via one of the ports;
allowing nucleic acid in the sample to bind to the unmodified flat glass surface;
washing the binding chamber to remove contaminants; and
eluting bound nucleic acid from the unmodified flat glass surface.
14. The process of claim 13 further comprising lysing a cell sample to prepare the nucleic acid-containing sample.
15. The process of claim 13 wherein the nucleic acid is DNA.
16. The process of claim 13 wherein bound nucleic acid is eluted with a buffer containing a fluorescent compound that exhibits a change in fluorescence intensity in the presence of nucleic acids.
17. The process of claim 13 comprising the additional step of amplifying the eluted nucleic acid.
18. The process of claim 13 further comprising drying the washed binding chamber prior to eluting the bound nucleic acid.
19. A process for extracting nucleic acid from a biological sample comprising:
introducing a nucleic acid-containing sample into the binding chamber of the device of claim 1 via one of the ports;
allowing nucleic acid in the sample to bind to the unmodified flat glass surface;
washing the binding chamber to remove contaminants; and
drying the washed binding chamber.
20. The process of claim 19 wherein the nucleic acid is RNA.
21. The process of claim 19 wherein the nucleic acid-containing sample comprises ethanol at a concentration of 10% to 60%.
22. The process of claim 21 wherein the ethanol concentration is 20% to 50%.
23. The process of claim 19 wherein the nucleic acid-containing sample comprises a proteolytic enzyme.
24. The process of claim 19 wherein the nucleic acid is allowed to bind to the unmodified flat glass surface for a period of from five minutes to thirty minutes.
25. A kit comprising:
the device of claim 1 ; and
a buffer in a sealed container, wherein the buffer is a lysis buffer, a wash buffer, or an elution buffer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/452,689 US20120237939A1 (en) | 2006-06-26 | 2012-04-20 | Devices and processes for nucleic acid extraction |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US81657706P | 2006-06-26 | 2006-06-26 | |
US91060907P | 2007-04-06 | 2007-04-06 | |
US11/768,076 US7608399B2 (en) | 2006-06-26 | 2007-06-25 | Device and method for extraction and analysis of nucleic acids from biological samples |
US1862108P | 2008-01-02 | 2008-01-02 | |
US11107908P | 2008-11-04 | 2008-11-04 | |
US12/348,244 US8163535B2 (en) | 2006-06-26 | 2009-01-02 | Devices and processes for nucleic acid extraction |
US13/452,689 US20120237939A1 (en) | 2006-06-26 | 2012-04-20 | Devices and processes for nucleic acid extraction |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/348,244 Continuation US8163535B2 (en) | 2006-06-26 | 2009-01-02 | Devices and processes for nucleic acid extraction |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120237939A1 true US20120237939A1 (en) | 2012-09-20 |
Family
ID=41091211
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/348,244 Expired - Fee Related US8163535B2 (en) | 2006-06-26 | 2009-01-02 | Devices and processes for nucleic acid extraction |
US13/452,689 Abandoned US20120237939A1 (en) | 2006-06-26 | 2012-04-20 | Devices and processes for nucleic acid extraction |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/348,244 Expired - Fee Related US8163535B2 (en) | 2006-06-26 | 2009-01-02 | Devices and processes for nucleic acid extraction |
Country Status (2)
Country | Link |
---|---|
US (2) | US8163535B2 (en) |
WO (1) | WO2009117167A1 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140272968A1 (en) * | 2013-03-13 | 2014-09-18 | Abbott Molecular Inc. | Systems and methods for isolating nucleic acids |
WO2015054259A1 (en) * | 2013-10-07 | 2015-04-16 | Rutgers, The State University Of New Jersey | Systems and methods for determining an unknown characteristic of a sample |
US9040675B2 (en) | 2012-04-30 | 2015-05-26 | General Electric Company | Formulations for nucleic acid stabilization on solid substrates |
US9040679B2 (en) | 2012-04-30 | 2015-05-26 | General Electric Company | Methods and compositions for extraction and storage of nucleic acids |
US9044738B2 (en) | 2012-04-30 | 2015-06-02 | General Electric Company | Methods and compositions for extraction and storage of nucleic acids |
WO2015138343A1 (en) * | 2014-03-10 | 2015-09-17 | Click Diagnostics, Inc. | Cartridge-based thermocycler |
US9480966B2 (en) | 2012-04-30 | 2016-11-01 | General Electric Company | Substrates and methods for collection, stabilization and elution of biomolecules |
US9623415B2 (en) | 2014-12-31 | 2017-04-18 | Click Diagnostics, Inc. | Devices and methods for molecular diagnostic testing |
US10638963B2 (en) | 2017-01-10 | 2020-05-05 | Drawbridge Health, Inc. | Devices, systems, and methods for sample collection |
EP3671311A1 (en) * | 2018-12-18 | 2020-06-24 | Forschungszentrum Jülich GmbH | Bracket for object holder and cover plate for receiving objects for examination using microscopy |
US11193119B2 (en) | 2016-05-11 | 2021-12-07 | Visby Medical, Inc. | Devices and methods for nucleic acid extraction |
US11266337B2 (en) | 2015-09-09 | 2022-03-08 | Drawbridge Health, Inc. | Systems, methods, and devices for sample collection, stabilization and preservation |
WO2022271895A1 (en) * | 2021-06-25 | 2022-12-29 | University Of Rochester | Devices and methods for isolating and detecting viral nucleic acids |
Families Citing this family (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060166223A1 (en) * | 2005-01-26 | 2006-07-27 | Reed Michael W | DNA purification and analysis on nanoengineered surfaces |
US8163535B2 (en) * | 2006-06-26 | 2012-04-24 | Blood Cell Storage, Inc. | Devices and processes for nucleic acid extraction |
JP2012508015A (en) * | 2008-11-04 | 2012-04-05 | ブラッド・セル・ストレイジ,インコーポレイテッド | Nucleic acid extraction on curved glass surfaces |
DE102009043226B4 (en) | 2009-09-28 | 2012-09-27 | Siemens Aktiengesellschaft | Flat body in the manner of a chip card for biochemical analysis and method for its use |
CA2802563C (en) * | 2010-07-29 | 2018-08-28 | F. Hoffmann-La Roche Ag | Preparation of nucleic acids from different types of biological fluid samples |
US9725754B2 (en) | 2010-07-29 | 2017-08-08 | Sean F. Boyle | Generic sample preparation |
EP2646564A4 (en) * | 2010-12-03 | 2014-05-07 | Blood Cell Storage Inc | Processes for isolating microorganisms |
DE12722942T1 (en) | 2011-03-31 | 2021-09-30 | Modernatx, Inc. | RELEASE AND FORMULATION OF MANIPULATED NUCLEIC ACIDS |
JP6084370B2 (en) * | 2011-05-10 | 2017-02-22 | 国立大学法人 東京大学 | Automatic reaction equipment for histochemistry |
DE102011075762A1 (en) * | 2011-05-12 | 2012-11-15 | Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG | Analyzer for the automated determination of a measured variable of a measuring liquid |
US8629264B2 (en) * | 2011-05-19 | 2014-01-14 | Blood Cell Storage, Inc. | Gravity flow fluidic device for nucleic acid extraction |
US20130122496A1 (en) * | 2011-09-30 | 2013-05-16 | Blood Cell Storage, Inc. | Storage of nucleic acid |
US11485968B2 (en) | 2012-02-13 | 2022-11-01 | Neumodx Molecular, Inc. | Microfluidic cartridge for processing and detecting nucleic acids |
US9637775B2 (en) | 2012-02-13 | 2017-05-02 | Neumodx Molecular, Inc. | System and method for processing biological samples |
US9604213B2 (en) | 2012-02-13 | 2017-03-28 | Neumodx Molecular, Inc. | System and method for processing and detecting nucleic acids |
US11931740B2 (en) | 2012-02-13 | 2024-03-19 | Neumodx Molecular, Inc. | System and method for processing and detecting nucleic acids |
CN114134029A (en) * | 2012-02-13 | 2022-03-04 | 纽莫德克斯莫勒库拉尔公司 | Microfluidic cartridge for processing and detecting nucleic acids |
EP2912174B1 (en) | 2012-10-25 | 2019-06-19 | Neumodx Molecular, Inc. | Method and materials for isolation of nucleic acid materials |
AU2013344674A1 (en) * | 2012-11-14 | 2015-05-14 | Ams Research, Llc | Cell delivery device and system with anti-clumping feature and methods for pelvic tissue treatment |
US9272277B2 (en) * | 2013-02-15 | 2016-03-01 | Honeywell International Inc. | Capillary groove for isobaric waste entry |
EP2983804A4 (en) * | 2013-03-15 | 2017-03-01 | Moderna Therapeutics, Inc. | Ion exchange purification of mrna |
EP4279610A3 (en) | 2013-03-15 | 2024-01-03 | ModernaTX, Inc. | Ribonucleic acid purification |
EP2969140B1 (en) * | 2013-03-15 | 2021-02-17 | Abbott Molecular Inc. | One-step procedure for the purification of nucleic acids |
EP2971033B8 (en) | 2013-03-15 | 2019-07-10 | ModernaTX, Inc. | Manufacturing methods for production of rna transcripts |
US10077439B2 (en) | 2013-03-15 | 2018-09-18 | Modernatx, Inc. | Removal of DNA fragments in mRNA production process |
JP7019233B2 (en) | 2013-07-11 | 2022-02-15 | モデルナティエックス インコーポレイテッド | Compositions and Methods of Use Containing Synthetic polynucleotides and Synthetic sgRNAs Encoding CRISPR-Related Proteins |
WO2015050998A2 (en) * | 2013-10-01 | 2015-04-09 | The Broad Institute, Inc. | Sieve valves, microfluidic circuits, microfluidic devices, kits, and methods for isolating an analyte |
EP3052511A4 (en) | 2013-10-02 | 2017-05-31 | Moderna Therapeutics, Inc. | Polynucleotide molecules and uses thereof |
WO2015196128A2 (en) | 2014-06-19 | 2015-12-23 | Moderna Therapeutics, Inc. | Alternative nucleic acid molecules and uses thereof |
US10407683B2 (en) | 2014-07-16 | 2019-09-10 | Modernatx, Inc. | Circular polynucleotides |
AU2016324463B2 (en) | 2015-09-17 | 2022-10-27 | Modernatx, Inc. | Polynucleotides containing a stabilizing tail region |
WO2017185067A1 (en) | 2016-04-22 | 2017-10-26 | Click Diagnostics, Inc. | Printed circuit board heater for an amplification module |
MX2018015889A (en) | 2016-06-29 | 2019-05-27 | Click Diagnostics Inc | Devices and methods for the detection of molecules using a flow cell. |
USD800331S1 (en) | 2016-06-29 | 2017-10-17 | Click Diagnostics, Inc. | Molecular diagnostic device |
USD800913S1 (en) | 2016-06-30 | 2017-10-24 | Click Diagnostics, Inc. | Detection window for molecular diagnostic device |
USD800914S1 (en) | 2016-06-30 | 2017-10-24 | Click Diagnostics, Inc. | Status indicator for molecular diagnostic device |
EP3485012A4 (en) * | 2016-07-15 | 2020-03-25 | Northwestern University | Compositions and methods for detecting nucleic acids in sputum |
US10906035B2 (en) * | 2017-05-30 | 2021-02-02 | Roche Molecular Systems, Inc. | Modified sample processing device |
AR109877A1 (en) * | 2017-10-24 | 2019-01-30 | Jorge Ernesto Odon | FABRIC EXTRACTION KIT |
CA3078976A1 (en) | 2017-11-09 | 2019-05-16 | Visby Medical, Inc. | Portable molecular diagnostic device and methods for the detection of target viruses |
CN112088023B (en) | 2018-01-05 | 2024-05-14 | 帕斯艾克斯公司 | Device for capturing and removing disease substances in a fluid |
KR102136695B1 (en) * | 2018-08-22 | 2020-07-22 | 주식회사 인퓨전텍 | Method for pathogen enrichment and nucleic acid extract using device for point of care testing |
US11725202B2 (en) * | 2018-10-19 | 2023-08-15 | WinField Solutions. LLC | Soil-based DNA extraction |
EP3870969A4 (en) * | 2018-10-24 | 2022-07-27 | Path Ex, Inc. | Method for the capture and isolation of disease material from flowing matter |
GB2604481A (en) | 2019-10-10 | 2022-09-07 | 1859 Inc | Methods and systems for microfluidic screening |
WO2021138544A1 (en) | 2020-01-03 | 2021-07-08 | Visby Medical, Inc. | Devices and methods for antibiotic susceptibility testing |
WO2023141612A2 (en) * | 2022-01-24 | 2023-07-27 | University Of Florida Research Foundation, Incorporated | Point of care testing system for antithrombin iii |
CN219930089U (en) * | 2022-03-10 | 2023-10-31 | 广东和信健康科技有限公司 | Detecting consumable and detecting device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020081619A1 (en) * | 1994-02-11 | 2002-06-27 | Qiagen Gmbh | Process for the separation of double-stranded/single-stranded nucleic acid structures |
US20050059054A1 (en) * | 2003-07-25 | 2005-03-17 | Richard Conrad | Methods and compositions for preparing RNA from a fixed sample |
US20110203688A1 (en) * | 2008-11-04 | 2011-08-25 | Blood Cell Storage, Inc. | Nucleic acid extraction on curved glass surfaces |
US8163535B2 (en) * | 2006-06-26 | 2012-04-24 | Blood Cell Storage, Inc. | Devices and processes for nucleic acid extraction |
US20120296075A1 (en) * | 2011-05-19 | 2012-11-22 | Blood Cell Storage, Inc. | Gravity flow fluidic device for nucleic acid extraction |
Family Cites Families (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4883867A (en) * | 1985-11-01 | 1989-11-28 | Becton, Dickinson And Company | Detection of reticulocytes, RNA or DNA |
US6150089A (en) * | 1988-09-15 | 2000-11-21 | New York University | Method and characterizing polymer molecules or the like |
US6147198A (en) * | 1988-09-15 | 2000-11-14 | New York University | Methods and compositions for the manipulation and characterization of individual nucleic acid molecules |
JPH02176457A (en) * | 1988-09-15 | 1990-07-09 | Carnegie Inst Of Washington | Pulse oriented electrophoresis |
US5720928A (en) * | 1988-09-15 | 1998-02-24 | New York University | Image processing and analysis of individual nucleic acid molecules |
US5998135A (en) * | 1989-02-24 | 1999-12-07 | Enzo Diagnostics, Inc. | Energy transfer hybridization assay using intercalators and lanthanide metals |
US5234809A (en) * | 1989-03-23 | 1993-08-10 | Akzo N.V. | Process for isolating nucleic acid |
DE69025969T2 (en) * | 1989-04-05 | 1996-08-08 | New York University, New York, N.Y. | Particle characterization method |
US6610256B2 (en) * | 1989-04-05 | 2003-08-26 | Wisconsin Alumni Research Foundation | Image processing and analysis of individual nucleic acid molecules |
AU642444B2 (en) | 1989-11-30 | 1993-10-21 | Mochida Pharmaceutical Co., Ltd. | Reaction vessel |
US5994056A (en) * | 1991-05-02 | 1999-11-30 | Roche Molecular Systems, Inc. | Homogeneous methods for nucleic acid amplification and detection |
US5155018A (en) * | 1991-07-10 | 1992-10-13 | Hahnemann University | Process and kit for isolating and purifying RNA from biological sources |
US5587128A (en) * | 1992-05-01 | 1996-12-24 | The Trustees Of The University Of Pennsylvania | Mesoscale polynucleotide amplification devices |
DE4321904B4 (en) * | 1993-07-01 | 2013-05-16 | Qiagen Gmbh | Method for chromatographic purification and separation of nucleic acid mixtures |
EP0723549B1 (en) * | 1993-08-30 | 2003-12-17 | Promega Corporation | Nucleic acid purification compositions and methods |
US6403367B1 (en) * | 1994-07-07 | 2002-06-11 | Nanogen, Inc. | Integrated portable biological detection system |
GB9425138D0 (en) * | 1994-12-12 | 1995-02-08 | Dynal As | Isolation of nucleic acid |
US6168948B1 (en) * | 1995-06-29 | 2001-01-02 | Affymetrix, Inc. | Miniaturized genetic analysis systems and methods |
US6153425A (en) * | 1995-07-13 | 2000-11-28 | Xtrana, Inc. | Self-contained device integrating nucleic acid extraction, amplification and detection |
AU723900B2 (en) * | 1996-02-14 | 2000-09-07 | Akzo Nobel N.V. | Isolation and amplification of nucleic acid materials |
US6027945A (en) * | 1997-01-21 | 2000-02-22 | Promega Corporation | Methods of isolating biological target materials using silica magnetic particles |
DE19702907A1 (en) * | 1997-01-28 | 1998-07-30 | Boehringer Mannheim Gmbh | Method and device for the purification of nucleic acids |
GB9709728D0 (en) * | 1997-05-13 | 1997-07-02 | Dynal As | Single step method |
CA2293820A1 (en) * | 1997-06-25 | 1998-12-30 | Promega Corporation | Method of isolating rna |
US6174671B1 (en) * | 1997-07-02 | 2001-01-16 | Wisconsin Alumni Res Found | Genomics via optical mapping ordered restriction maps |
CA2301309A1 (en) | 1997-08-13 | 1999-02-25 | Cepheid | Microstructures for the manipulation of fluid samples |
EP1027145A4 (en) * | 1997-09-17 | 2004-08-25 | Gentra Systems Inc | Apparatuses and methods for isolating nucleic acid |
CA2318306A1 (en) | 1997-12-06 | 1999-06-17 | Dna Research Instruments Limited | Isolation of nucleic acids |
US6210910B1 (en) * | 1998-03-02 | 2001-04-03 | Trustees Of Tufts College | Optical fiber biosensor array comprising cell populations confined to microcavities |
US6194562B1 (en) * | 1998-04-22 | 2001-02-27 | Promega Corporation | Endotoxin reduction in nucleic acid purification |
US6979728B2 (en) * | 1998-05-04 | 2005-12-27 | Baylor College Of Medicine | Articles of manufacture and methods for array based analysis of biological molecules |
EP0969090A1 (en) * | 1998-05-27 | 2000-01-05 | QIAGEN GmbH | Rapid and simple process for isolation of circular nucleic acids |
EP1141234A4 (en) | 1999-01-06 | 2004-05-19 | Invitrogen Corp | Methods and compositions for isolation of nucleic acid molecules |
US6942771B1 (en) * | 1999-04-21 | 2005-09-13 | Clinical Micro Sensors, Inc. | Microfluidic systems in the electrochemical detection of target analytes |
US6818395B1 (en) * | 1999-06-28 | 2004-11-16 | California Institute Of Technology | Methods and apparatus for analyzing polynucleotide sequences |
US6423536B1 (en) * | 1999-08-02 | 2002-07-23 | Molecular Dynamics, Inc. | Low volume chemical and biochemical reaction system |
AU2001286945A1 (en) * | 2000-08-30 | 2002-03-13 | John Hopkins University School Of Medicine | Identification of activated receptors and ion channels |
GB2368809B (en) | 2000-09-15 | 2004-09-29 | Norchip As | Microfabricated reaction chamber system |
WO2002078847A1 (en) * | 2001-03-28 | 2002-10-10 | Hitachi, Ltd. | Instrument and method for recovering nucleic acid |
US20020164816A1 (en) * | 2001-04-06 | 2002-11-07 | California Institute Of Technology | Microfluidic sample separation device |
US7338760B2 (en) * | 2001-10-26 | 2008-03-04 | Ntu Ventures Private Limited | Sample preparation integrated chip |
DE60316660T3 (en) * | 2002-01-08 | 2016-01-28 | Roche Diagnostics Gmbh | USE OF A SILICA MATERIAL IN AMPLIFICATION |
GB0207975D0 (en) * | 2002-04-05 | 2002-05-15 | Genovision As | Isolating nucleic acid |
DE10222133A1 (en) * | 2002-05-17 | 2003-12-04 | Gl Biotech Gmbh | Process for nucleic acid extraction and nucleic acid purification |
US20040029166A1 (en) | 2002-07-29 | 2004-02-12 | Jsr Corporation | Nucleic acid-separating method and nucleic acid-extracting reagent |
US8871446B2 (en) | 2002-10-02 | 2014-10-28 | California Institute Of Technology | Microfluidic nucleic acid analysis |
EP2404676A1 (en) | 2002-12-30 | 2012-01-11 | The Regents of the University of California | Microfluidic Control Structures |
JP2006520190A (en) * | 2003-01-21 | 2006-09-07 | マイクロニクス, インコーポレイテッド | Methods and systems for microfluidic manipulation, amplification, and analysis of fluids (eg, bacterial assays and antiglobulin tests) |
US20040152085A1 (en) * | 2003-02-04 | 2004-08-05 | Veridian Systems Division | Surface for collection and/or purification of nucleic acids |
GB0303524D0 (en) * | 2003-02-15 | 2003-03-19 | Sec Dep For The Home Departmen | Improvements in and relating to the handling of dna |
KR20050111785A (en) | 2003-03-24 | 2005-11-28 | 소니 가부시끼 가이샤 | Microchip, nucleic acid extracting kit, and nucleic acid extracting method |
US20050009036A1 (en) | 2003-07-11 | 2005-01-13 | Applera Corporation | Methods and kits for obtaining nucleic acid from biological samples |
JP3714940B2 (en) | 2003-11-07 | 2005-11-09 | 株式会社日立ハイテクノロジーズ | RNA extraction method and biomaterial analysis method |
US20050142565A1 (en) * | 2003-12-30 | 2005-06-30 | Agency For Science, Technology And Research | Nucleic acid purification chip |
GB2416030B (en) | 2004-01-28 | 2008-07-23 | Norchip As | A diagnostic system for carrying out a nucleic acid sequence amplification and detection process |
US20060166223A1 (en) * | 2005-01-26 | 2006-07-27 | Reed Michael W | DNA purification and analysis on nanoengineered surfaces |
US7462446B2 (en) * | 2005-03-18 | 2008-12-09 | University Of Washington | Magnetic nanoparticle compositions and methods |
-
2009
- 2009-01-02 US US12/348,244 patent/US8163535B2/en not_active Expired - Fee Related
- 2009-01-02 WO PCT/US2009/030051 patent/WO2009117167A1/en active Application Filing
-
2012
- 2012-04-20 US US13/452,689 patent/US20120237939A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020081619A1 (en) * | 1994-02-11 | 2002-06-27 | Qiagen Gmbh | Process for the separation of double-stranded/single-stranded nucleic acid structures |
US20050059054A1 (en) * | 2003-07-25 | 2005-03-17 | Richard Conrad | Methods and compositions for preparing RNA from a fixed sample |
US8163535B2 (en) * | 2006-06-26 | 2012-04-24 | Blood Cell Storage, Inc. | Devices and processes for nucleic acid extraction |
US20110203688A1 (en) * | 2008-11-04 | 2011-08-25 | Blood Cell Storage, Inc. | Nucleic acid extraction on curved glass surfaces |
US20120296075A1 (en) * | 2011-05-19 | 2012-11-22 | Blood Cell Storage, Inc. | Gravity flow fluidic device for nucleic acid extraction |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9040675B2 (en) | 2012-04-30 | 2015-05-26 | General Electric Company | Formulations for nucleic acid stabilization on solid substrates |
US9040679B2 (en) | 2012-04-30 | 2015-05-26 | General Electric Company | Methods and compositions for extraction and storage of nucleic acids |
US9044738B2 (en) | 2012-04-30 | 2015-06-02 | General Electric Company | Methods and compositions for extraction and storage of nucleic acids |
US9480966B2 (en) | 2012-04-30 | 2016-11-01 | General Electric Company | Substrates and methods for collection, stabilization and elution of biomolecules |
US10625242B2 (en) | 2012-04-30 | 2020-04-21 | General Electric Company | Substrates and methods for collection, stabilization and elution of biomolecules |
WO2014160233A1 (en) * | 2013-03-13 | 2014-10-02 | Abbott Molecular Inc. | Systems and methods for isolating nucleic acids |
US20140272968A1 (en) * | 2013-03-13 | 2014-09-18 | Abbott Molecular Inc. | Systems and methods for isolating nucleic acids |
CN105378108A (en) * | 2013-03-13 | 2016-03-02 | 雅培分子公司 | Systems and methods for isolating nucleic acids |
EP2971169A4 (en) * | 2013-03-13 | 2016-10-26 | Abbott Molecular Inc | Systems and methods for isolating nucleic acids |
US10640808B2 (en) * | 2013-03-13 | 2020-05-05 | Abbott Molecular Inc. | Systems and methods for isolating nucleic acids |
US10504614B2 (en) | 2013-10-07 | 2019-12-10 | Rutgers, The State University Of New Jersey | Systems and methods for determining an unknown characteristic of a sample |
WO2015054259A1 (en) * | 2013-10-07 | 2015-04-16 | Rutgers, The State University Of New Jersey | Systems and methods for determining an unknown characteristic of a sample |
WO2015138343A1 (en) * | 2014-03-10 | 2015-09-17 | Click Diagnostics, Inc. | Cartridge-based thermocycler |
US10195610B2 (en) | 2014-03-10 | 2019-02-05 | Click Diagnostics, Inc. | Cartridge-based thermocycler |
US10960399B2 (en) | 2014-03-10 | 2021-03-30 | Visby Medical, Inc. | Cartridge-based thermocycler |
US9623415B2 (en) | 2014-12-31 | 2017-04-18 | Click Diagnostics, Inc. | Devices and methods for molecular diagnostic testing |
US11266337B2 (en) | 2015-09-09 | 2022-03-08 | Drawbridge Health, Inc. | Systems, methods, and devices for sample collection, stabilization and preservation |
US11193119B2 (en) | 2016-05-11 | 2021-12-07 | Visby Medical, Inc. | Devices and methods for nucleic acid extraction |
US10638963B2 (en) | 2017-01-10 | 2020-05-05 | Drawbridge Health, Inc. | Devices, systems, and methods for sample collection |
US10888259B2 (en) | 2017-01-10 | 2021-01-12 | Drawbridge Health, Inc. | Cartridge assemblies for storing biological samples |
US10932710B2 (en) | 2017-01-10 | 2021-03-02 | Drawbridge Health, Inc. | Carriers for storage and transport of biological samples |
US11298060B2 (en) | 2017-01-10 | 2022-04-12 | Drawbridge Health, Inc. | Devices for collecting biological samples |
EP3671311A1 (en) * | 2018-12-18 | 2020-06-24 | Forschungszentrum Jülich GmbH | Bracket for object holder and cover plate for receiving objects for examination using microscopy |
WO2022271895A1 (en) * | 2021-06-25 | 2022-12-29 | University Of Rochester | Devices and methods for isolating and detecting viral nucleic acids |
Also Published As
Publication number | Publication date |
---|---|
US20090215125A1 (en) | 2009-08-27 |
US8163535B2 (en) | 2012-04-24 |
WO2009117167A1 (en) | 2009-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8163535B2 (en) | Devices and processes for nucleic acid extraction | |
US20110203688A1 (en) | Nucleic acid extraction on curved glass surfaces | |
Yin et al. | Integrated microfluidic systems with sample preparation and nucleic acid amplification | |
US7608399B2 (en) | Device and method for extraction and analysis of nucleic acids from biological samples | |
Christel et al. | Rapid, automated nucleic acid probe assays using silicon microstructures for nucleic acid concentration | |
US20170100719A1 (en) | Cartridge, system and method for automated medical diagnostics | |
US7867713B2 (en) | Polymerase chain reaction system using magnetic beads for analyzing a sample that includes nucleic acid | |
US20090211908A1 (en) | Devices and methods for detecting and quantitating nucleic acids using size-separation of amplicons | |
JP5871600B2 (en) | General matrix for control nucleic acids | |
WO2011020011A2 (en) | Droplet actuator and droplet-based techniques | |
EP2917344B1 (en) | Methods for one step nucleic acid amplification of non-eluted samples | |
JP2011523345A (en) | Microfluidic high-speed thermal cycler for nucleic acid amplification | |
Brenan et al. | High throughput, nanoliter quantitative PCR | |
Kim et al. | A PCR reactor with an integrated alumina membrane for nucleic acid isolation | |
WO2009120183A2 (en) | System for the detection of a biological pathogen and use thereof | |
US20110251084A1 (en) | System for the Detection of a Biological Pathogen and Use Thereof | |
JP2024529860A (en) | Analyte detection cartridge and method of use thereof | |
De Olazarra et al. | Advances in point-of-care genetic testing for personalized medicine applications | |
US20060257907A1 (en) | Packed bed for nucleic acid capture and amplification | |
Prakash et al. | Identification of respiratory pathogen Bordetella Pertussis using integrated microfluidic chip technology | |
Batule et al. | based molecular diagnostics | |
Prajapati et al. | Digital PCR: A Partitioning-Based Application for Detection and Surveillance of SARS-CoV-2 from Sewage Samples | |
Hsu et al. | Hybrid Integrated Microfluidic Device for Sample Preparation and qPCR on an EWD Platform | |
Lim et al. | Microfluidic approach to genotyping human platelet antigens | |
Glass et al. | In-Line Microbial Monitor for the Analysis of Recycled Water Aboard the ISS: Issues and Prospects |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BEVIS, IN HIS CAPACITY AS COLLATERAL AGENT, DOUGLA Free format text: SECURITY INTEREST;ASSIGNOR:BLOOD CELL STORAGE, INC.;REEL/FRAME:032418/0372 Effective date: 20140107 |
|
AS | Assignment |
Owner name: DOUGLAS A. BEVIS, IN HIS CAPACITY AS COLLATERAL AG Free format text: SECURITY INTEREST;ASSIGNOR:BLOOD CELL STORAGE, INC.;REEL/FRAME:033062/0390 Effective date: 20140519 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |