US20120237417A1 - Process for recovery of noble metals from functionalised, noble metal-containing adsorption materials - Google Patents

Process for recovery of noble metals from functionalised, noble metal-containing adsorption materials Download PDF

Info

Publication number
US20120237417A1
US20120237417A1 US13/421,441 US201213421441A US2012237417A1 US 20120237417 A1 US20120237417 A1 US 20120237417A1 US 201213421441 A US201213421441 A US 201213421441A US 2012237417 A1 US2012237417 A1 US 2012237417A1
Authority
US
United States
Prior art keywords
noble metal
procedural step
acid
weight
noble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US13/421,441
Other versions
US8475749B2 (en
Inventor
Joachim Kralik
Martin Stettner
Stefanie Fuchs Alameda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Deutschland GmbH and Co KG
Original Assignee
Heraeus Precious Metals GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Precious Metals GmbH and Co KG filed Critical Heraeus Precious Metals GmbH and Co KG
Assigned to HERAEUS PRECIOUS METALS GMBH & CO. KG reassignment HERAEUS PRECIOUS METALS GMBH & CO. KG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: STETTNER, MARTIN, ALAMEDA, STEFANIE FUCHS, KRALIK, JOACHIM, DR.
Publication of US20120237417A1 publication Critical patent/US20120237417A1/en
Application granted granted Critical
Publication of US8475749B2 publication Critical patent/US8475749B2/en
Assigned to Heraeus Deutschland GmbH & Co. KG reassignment Heraeus Deutschland GmbH & Co. KG CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: HERAEUS PRECIOUS METALS GMBH & CO. KG
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • C22B11/042Recovery of noble metals from waste materials
    • C22B11/044Recovery of noble metals from waste materials from pyrometallurgical residues, e.g. from ashes, dross, flue dust, mud, skim, slag, sludge
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G7/00Compounds of gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G55/00Compounds of ruthenium, rhodium, palladium, osmium, iridium, or platinum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to a method for recovery of noble metals from noble metal-containing compositions.
  • noble metal-containing residues are obtained, whose noble metal content is sufficiently high to warrant recovery in an economically reasonable manner.
  • Said residues are, for example, slurries, skimmings, polishing dusts, production residues from industrial plants containing noble metal-containing catalyst residues, and the like.
  • cyanide leaching which is used, in particular, in the recovery of gold.
  • sodium or potassium cyanide leach is added to gold-containing compositions, whereby the gold and, to some extent, other noble metals contained therein are dissolved in the leach.
  • the gold is bound in a complex in ionic form in aqueous solution.
  • the gold can then be electrolytically deposited from the solution. Said method works very well from a technical point of view, but is associated with a crucial disadvantage in that large quantities of highly poisonous cyanides need to be handled which is extremely problematic for reasons of environmental protection and health protection of the persons tasked with this work.
  • silica gel- or aluminium oxide gel-based inorganic materials are used that are functionalised by organic complex-forming agents and adsorb the noble metals upon being contacted with noble metal-containing solutions. The adsorbed noble metals are then isolated further from the recyclable goods thus obtained. The first step of the isolation of noble metals from said recyclable goods is the dissolution thereof.
  • silica gel-based scavenger materials direct leaching through treatment with oxidising acids, such as is described, for example, in EP-A-1 576 200 or U.S. Pat. No.
  • the present invention was based on the object to overcome the disadvantages resulting from the prior art regarding the separation of noble metals from scavenger materials functionalised by organic groups, in particular from silica gel- or aluminium oxide gel-based inorganic materials functionalised by complex-forming agents.
  • the present invention was based on the object to specify a method for separation of noble metals from said scavenger materials enabling more efficient separation of the noble metals as compared to the methods known according to the prior art.
  • a contribution to meeting the afore-mentioned objects is made by a method for recovering noble metals from noble metal-containing compositions that includes the procedural steps:
  • a noble metal-containing composition containing an adsorption agent that is based on an inorganic material and is functionalised by organic groups and has at least one noble metal adsorbed to it;
  • Procedural step i) of the method according to the invention involves initially providing a noble metal-containing composition containing an adsorption agent that is based on an inorganic material and is functionalised by organic groups and which has at least one noble metal adsorbed to it.
  • Conceivable as functionalised adsorption agents that are based on an inorganic material are all materials known to the person skilled in the art that are customarily used as scavenger materials in the recovery of noble metals from industrial residues.
  • said materials are inorganic gels, which preferably are based on silicon oxides or aluminium oxides.
  • Particularly preferred adsorption agents are those that are based on a silica gel or an aluminium oxide gel, whereby the use of an adsorption agent based on a silica gel is particularly preferred.
  • silica gels functionalised by sulphur- and/or nitrogen-containing organic groups are particularly preferred, with silica gels that are functionalised by thiol or sulfide groups being particularly preferred in this context.
  • silica gels that are functionalised by organic groups are, for example, the functionalised silica gels that are commercially available from Biotage AG, Sweden, by the trade name of ISOLUTE®.
  • Said silica gels are, for example, a silica gel functionalised by 2,4,6-trimercaptotriazine groups (ISOLUTE® SI-TMT), a silica gel functionalised by carbonate groups (ISOLUTE® SI-Carbonate), a silica gel functionalised by thiol groups, for example with 1-propanethiol groups (ISOLUTE® SI-Thiol), a silica gel functionalised by triamine groups, for example with 3 -(diethylenetriamine)propyl groups (ISOLUTE® SI-Triamine) or a silica gel functionalised by sulfonic acid groups, for example a silica gel functionalised by ethylbenzenesulfonylhydrazine groups (ISOLUTE® SI-Tosyl Hydr
  • silica gels that are commercially available, for example, by the trade name of SilicaBond®, PhosphonicSTM or QuadraSilTM.
  • the silica gels functionalised by N-acetyl-L-cysteine groups article number 16-0200
  • the silica gels functionalised by 2-aminoethylsulfide-ethyl groups article number 16-0215
  • the silica gels functionalised by 2-mercaptoethylethylsulfide groups article number 16-0650
  • silica gels functionalised by 3-mercaptopropylethylsulfide groups article number 16-1700, 16-1706, 16-1702, and 16-1704
  • the silica gels functionalised by pentaerythritol-2-mercaptoacetate-ethylsulfide groups article number 16
  • Functionalised silica gel materials of this type are usually available as a particulate solid that is based on at least 50% by weight, particularly preferably on at least 75% by weight, even more preferably on at least 90% by weight, and most preferably on 100% by weight, each relative to the functionalised silica gel material that is used, on particles having a particle size in a range from 100 to 1,000 ⁇ m, particularly preferably 200 to 800 ⁇ m, and most preferably 300 to 600 ⁇ m.
  • said adsorption agents that are based on an inorganic material, in particular such adsorption agents based on silica gel, to be functionalised by 0.1 to 10 mmol/g, particularly preferably by 0.25 to 5 mmol/g, and most preferably by 0.5 to 1.5 mmol/g organic groups.
  • noble metal-containing compositions containing up to 10% by weight or more of the noble metal can be used in the method according to the invention.
  • the noble metal-containing composition provided in procedural step i) contains at least 25% by weight, particularly preferably at least 30% by weight, and most preferably at least 35% by weight of SiO 2 , each relative to the total weight of the noble metal-containing composition provided in procedural step i).
  • the noble metal-containing composition provided in procedural step i) can be obtained by contacting a noble metal-containing residue, from which the noble metal is to be recovered, and an adsorption agent that is functionalised by organic groups and based on an inorganic material, preferably by contacting a noble metal-containing residue and a silica gel functionalised by organic groups.
  • Conceivable noble metals are, for example, gold, platinum, iridium, palladium, osmium, silver, mercury, polonium, ruthenium, rhodium, copper, bismuth, technetium, rhenium, and antimony, whereby gold, platinum, iridium, palladium, osmium, silver, ruthenium, rhodium, copper, bismuth, technetium, rhenium are particularly preferred and platinum and rhodium are most preferred.
  • the noble metal-containing residue from which the noble metal is to be recovered can, for example, be an effluent water from a mine or from an electroplating or metallurgical operation. Also conceivable are production residues of organic synthesis processes, in which noble metal-containing catalysts are used and in which at least part of the catalyst material reaches the product phase during the course of the organic synthesis.
  • the usually particulate materials are contacted with the noble metal-containing residues, which are preferably present in the form of a liquid phase, whereby said contacting preferably proceeds at a temperature in a range from 60 to 120° C., particularly preferably at a temperature in a range from 80 to 100° C.
  • the noble metal-containing composition provided in procedural step i) contains, aside from the noble metal-loaded adsorption agent, organic materials from the afore-mentioned residues, whereby the quantity of said organic materials can be in a range from 10 to 50 % by weight, in particular in a range from 20 to 40% by weight, each relative to the total weight of the noble metal-containing composition provided in procedural step i).
  • the noble metal-containing composition provided in procedural step i) is ashed in order to obtain an ashed composition in order to adjust a residual carbon content of at most 10% by weight, particularly preferably of at most 5% by weight, even more preferably of at most 3.5% by weight, and most preferably of at most 2.0% by weight, each relative to the total weight of the noble metal-containing composition after ashing.
  • the loss on ignition attained preferably is at least 40% by weight, particularly preferably is at least 45% by weight, and most preferably is at least 50% by weight.
  • the ashing in procedural step ii) preferably proceeds at a temperature of at least 500° C., particularly preferably of more than 700° C., and most preferably of at least 800° C. for a period of preferably at least 2 hours, more preferably of at least 4 hours, even more preferably of at least 6 hours, and particularly preferably of at least 10 hours. It is customary to carry out the ashing in an air atmosphere. Preferably, a temperature of 1,200° C., particularly preferably of 1,100° C., and most preferably of 1,000° C., is not exceeded in the ashing.
  • Ashing the noble metal-containing composition in procedural step ii) can just as well include two or more steps, if applicable, such as is described, for example, in WO 2007/036334.
  • the noble metal-containing composition can, for example, be heated in a first step in a nitrogen atmosphere or an air atmosphere under the afore-mentioned temperature conditions and for the afore-mentioned period of time in order to remove a first part of the functional groups of the adsorption agent and a first part of the further organic materials that may also be present in the composition.
  • further heating possibly after re-mixing the partially ashed material, if applicable, preferably further heating under the afore-mentioned temperature conditions and for the afore-mentioned period of time, can be effected in order to further reduce the carbon content.
  • Said further heating preferably proceeds in the presence of oxygen, particularly preferably in an air atmosphere. Said two-step procedure allows the ashing to be implemented in a particularly efficient manner.
  • the ashed composition obtained in procedural step ii) is dissolved, at least in part, in an alkaline aqueous solution to obtain a noble metal-containing residue.
  • the inorganic materials, on which the inorganic material provided in procedural step i) was based i.e. preferably the silica gel, are dissolved, at least in part.
  • said dissolution proceeds in that the ashed composition is mixed with the aqueous alkaline solution, preferably with an aqueous NaOH or KOH solution, particularly preferably with an aqueous NaOH solution, and the resulting mixture is then heated, under pressure if applicable, to a temperature in a range from 50 to 300° C., particularly preferably 70 to 200° C., for a period of time in a range from 30 minutes to 10 hours, particularly preferably in a range from 1.5 to 8.5 hours.
  • the concentration of the aqueous alkaline solution that is used is preferably at least 10% by weight, even more preferably at least 15% by weight, and most preferably at least 20% by weight, whereby the concentration usually is in a range from 20 to 55% by weight, each relative to the total weight of the alkaline aqueous solution used in procedural step iii).
  • the at least partial dissolution of the ashed composition obtained in procedural step ii) in the alkaline aqueous solution proceeds in the presence of a reducing agent in procedural step iii). Adding a reducing agent during dissolution can prevent the noble metal from becoming dissolved at this early point in time.
  • the reducing agent preferably is an organic reducing agent, hydrazine or hydrogen gas, whereby preferred organic reducing agents are selected from the group consisting of formic acid or a formic acid salt, formaldehyde, alcohols (for example methanol or ethanol), ascorbic acid, glucose, gluconic acid, ascorbic acid, and oxalic acid.
  • the quantity of reducing agent used in procedural step iii) can be in a range from 1 mg to 2,500 mg per gram of ashed adsorption agent, particularly preferably in a range from 5 mg to 1,000 mg per gram of ashed adsorption agent, and most preferably in a range from 10 mg to 100 mg per gram of ashed composition.
  • the reducing agent concentration in the alkaline aqueous solution used in procedural step iii) can be in a range from 0.1 to 10% by weight, particularly preferably in a range from 0.5 to 5% by weight, each relative to the total weight of the alkaline aqueous solution used in procedural step iii).
  • the noble metal-containing residue thus obtained can be separated from the solution, for example, through filtration, sedimentation or centrifugation, but preferably through sedimentation, and fed to the next procedural step iv) after washing with water or aqueous solution, if applicable. If the noble metal-containing is to be separated through filtration through the use of filter paper, it can prove to be advantageous to provide for an additional procedural step, in order to remove the filter paper, prior to carrying out procedural step iv).
  • the noble metal-containing residue is then dissolved (“leached”), at least in part, in an oxidising aqueous acid, preferably in an aqueous solution of the chloride salt of the noble metal, and an aqueous salt solution of the noble metal is obtained.
  • an oxidising aqueous acid preferably in an aqueous solution of the chloride salt of the noble metal
  • an aqueous salt solution of the noble metal is obtained.
  • rhodium being the noble metal to be recovered
  • the reduction in a hydrogen stream preferably proceeds at temperatures in a range from 200 to 600° C., particularly preferably in a range from 300 to 500° C., for a period of time of 1 to 24 hours, particularly preferably 4 to 10 hours.
  • the at least partial dissolution of the noble metal-containing residue obtained in procedural step iii) in an oxidising aqueous acid to obtain an aqueous salt solution of the noble metal in procedural step iv) preferably proceeds in nitric acid, in a mixture containing hydrochloric acid and nitric acid, for example in aqua regia, or in hydrochloric acid containing an oxidant, for example in hydrochloric acid containing chlorine gas or in hydrochloric acid containing chlorate.
  • the dissolution of the noble metal-containing residue in the oxidising acid preferably proceeds at a temperature in a range from 30 to 200° C., particularly preferably in a range from 60 to 100° C.
  • the acid concentration of the acid employed in procedural step iv) preferably is at least 10% by weight, particularly preferably at least 20% by weight, and most preferably at least 30% by weight, each relative to the total weight of the oxidising aqueous acid employed in procedural step iv).
  • the noble metal can then be recovered in procedural step v) of the method according to the invention from the noble metal salt obtained in procedural step iv). Said recovery can proceed in a manner known to the person skilled in the art, for example through reduction of the noble metal salt obtained in procedural step iv), for example through electrolysis.
  • the noble metals are obtained at a purity of at least 90%, particularly preferably at least 95%, and most preferably at least 99% in this context.
  • step iii) If, e.g., the amount of water or the amount of sodium hydroxide solution, in grams, in step iii) is approximately ten- to fifteen-fold the mass of the residue that is to be treated and contains, e.g., 1 to 5% by weight of the noble metal, it is generally feasible to obtain a solution over the noble metal-containing residue with very low noble metal concentrations of ⁇ 5 mg/l or even ⁇ 1 mg/l. This is evident, e.g., from the examples 2 to 4 below. Further processing of said solutions is usually not economical and they may be discarded.
  • the total mass of the loaded scavenger that is employed is observed to be reduced by more than 90%, in particular more than 95%, after step iii), which means that the noble metal content of the residue can be increased by up to 20-fold.
  • a pressurised autoclave 25 g of a rhodium-containing ash obtained analogous to example 1 were heated to 180° C. for 4 h in the presence of 250 ml 45% sodium hydroxide solution and 1 g sodium formate. The sample was then allowed to cool down and the supernatant solution was decanted. The supernatant solution contained ⁇ 1 mg/l Rh. The residue on the Nutsch filter was washed with water and dried. The concentrated residue was analysed to weigh 0.5 g.
  • the residue from example 4 was reduced for 7 h at 400° C. in a stream of hydrogen and then leached in an apparatus for 15 hours at 60° C. in 32% hydrochloric acid by introducing chlorine gas. During this period, the rhodium-containing hydrochloric acid was replaced once by fresh 32% hydrochloric acid.
  • the Rh content of the combined hydrochloric acid solution was determined by ICP to be 0.91 g Rh.
  • a total of 20.1 g of a platinum-containing ash obtained analogous to example 6 were heated to 80° C. for 4 h in an open container in the presence of 270 ml 31% NaOH solution and 4 ml formic acid. Subsequently, the suspension was cooled to 60° C. and filtered. After washing with water, 1.35 g of residue were obtained. No platinum was detected in the alkaline filtrate by means of ICP.

Abstract

A method recovers noble metals from noble metal-containing compositions and includes steps of (i) providing a noble metal-containing composition containing an adsorption agent that is based on an inorganic material and is functionalized by organic groups and has at least one noble metal adsorbed to it, and (ii) ashing of the noble metal-containing composition provided in step (i) in order to adjust a residual carbon content of at most 10% by weight, relative to the total weight of the noble metal-containing composition after ashing, to obtain an ashed composition.

Description

  • The invention relates to a method for recovery of noble metals from noble metal-containing compositions.
  • In numerous industrial processes, noble metal-containing residues are obtained, whose noble metal content is sufficiently high to warrant recovery in an economically reasonable manner. Said residues are, for example, slurries, skimmings, polishing dusts, production residues from industrial plants containing noble metal-containing catalyst residues, and the like.
  • Numerous methods are known for recovering the noble metal contained in compositions. One method that is used very commonly and also features very high efficiency, is the so-called cyanide leaching, which is used, in particular, in the recovery of gold. In this context, sodium or potassium cyanide leach is added to gold-containing compositions, whereby the gold and, to some extent, other noble metals contained therein are dissolved in the leach. In the case of gold, the gold is bound in a complex in ionic form in aqueous solution. In a second procedural step, the gold can then be electrolytically deposited from the solution. Said method works very well from a technical point of view, but is associated with a crucial disadvantage in that large quantities of highly poisonous cyanides need to be handled which is extremely problematic for reasons of environmental protection and health protection of the persons tasked with this work.
  • In order to circumvent this problem, attempts have been made to side-step this by using other complex-forming agents, such as, for example, thiourea. However, doing so is associated, in particular, with a problem in that the surfaces of the metal particles to be dissolved are passivated rapidly through the formation of colloidal sulphur which reduces the efficiency of the method drastically. Methods involving the use of thiourea as complex-forming agent have therefore thus far failed to attain economic significance in industrial metal recycling methods.
  • Another approach to the recovery of noble metals, which has been described, for example, in WO-A-2006/013060, is the use of so-called scavenger materials. Frequently, silica gel- or aluminium oxide gel-based inorganic materials are used that are functionalised by organic complex-forming agents and adsorb the noble metals upon being contacted with noble metal-containing solutions. The adsorbed noble metals are then isolated further from the recyclable goods thus obtained. The first step of the isolation of noble metals from said recyclable goods is the dissolution thereof. Referring to the use of silica gel-based scavenger materials, direct leaching through treatment with oxidising acids, such as is described, for example, in EP-A-1 576 200 or U.S. Pat. No. 4,360,380, is not sufficiently effective for quantitative removal of the adsorbed noble metals owing to the high silica gel content. Substantial quantities of noble metal remain on the carrier and cannot be dissolved easily. Treatment of the recyclable goods with complex-forming agents, such as thiourea, also leads to only partial elution of the noble metals adsorbed to silica gel (cf. “Recovery of rhodium-containing catalysts by silica-based chelating ion exchangers containing N and S donor atoms”, Kramer et al., Inorganica Chimica Acta (2001), vol. 315(2), pages 183-190).
  • The present invention was based on the object to overcome the disadvantages resulting from the prior art regarding the separation of noble metals from scavenger materials functionalised by organic groups, in particular from silica gel- or aluminium oxide gel-based inorganic materials functionalised by complex-forming agents.
  • In particular, the present invention was based on the object to specify a method for separation of noble metals from said scavenger materials enabling more efficient separation of the noble metals as compared to the methods known according to the prior art.
  • A contribution to meeting the afore-mentioned objects is made by a method for recovering noble metals from noble metal-containing compositions that includes the procedural steps:
  • i) providing a noble metal-containing composition containing an adsorption agent that is based on an inorganic material and is functionalised by organic groups and has at least one noble metal adsorbed to it;
  • ii) ashing of the noble metal-containing composition provided in procedural step i) in order to adjust a residual carbon content of at most 10% by weight, particularly preferably of at most 5% by weight, even more preferably of at most 3.5% by weight, and most preferably of at most 2.0% by weight, each relative to the total weight of the noble metal-containing composition after ashing, to obtain an ashed composition;
  • iii) at least partial dissolution of the ashed composition obtained in procedural step ii) in an alkaline aqueous solution to obtain a noble metal-containing residue;
  • iv) at least partial dissolution of the noble metal-containing residue obtained in procedural step iii) in an oxidising aqueous acid to obtain an aqueous salt solution of the noble metal;
  • v) recovering, if applicable, the noble metal through reduction of the noble metal salt obtained in procedural step iv).
  • Procedural step i) of the method according to the invention involves initially providing a noble metal-containing composition containing an adsorption agent that is based on an inorganic material and is functionalised by organic groups and which has at least one noble metal adsorbed to it.
  • Conceivable as functionalised adsorption agents that are based on an inorganic material are all materials known to the person skilled in the art that are customarily used as scavenger materials in the recovery of noble metals from industrial residues. Preferably, said materials are inorganic gels, which preferably are based on silicon oxides or aluminium oxides. Particularly preferred adsorption agents are those that are based on a silica gel or an aluminium oxide gel, whereby the use of an adsorption agent based on a silica gel is particularly preferred. In this context, silica gels functionalised by sulphur- and/or nitrogen-containing organic groups are particularly preferred, with silica gels that are functionalised by thiol or sulfide groups being particularly preferred in this context.
  • Examples for suitable silica gels that are functionalised by organic groups are, for example, the functionalised silica gels that are commercially available from Biotage AG, Sweden, by the trade name of ISOLUTE®. Said silica gels are, for example, a silica gel functionalised by 2,4,6-trimercaptotriazine groups (ISOLUTE® SI-TMT), a silica gel functionalised by carbonate groups (ISOLUTE® SI-Carbonate), a silica gel functionalised by thiol groups, for example with 1-propanethiol groups (ISOLUTE® SI-Thiol), a silica gel functionalised by triamine groups, for example with 3-(diethylenetriamine)propyl groups (ISOLUTE® SI-Triamine) or a silica gel functionalised by sulfonic acid groups, for example a silica gel functionalised by ethylbenzenesulfonylhydrazine groups (ISOLUTE® SI-Tosyl Hydrazine), with methylbenzenesulfonic acid groups (ISOLUTE® SI-TsOH) or with propylsulfonic acid groups (ISOLUTE® SI-Propylsulfonic acid). Also to be mentioned are those functionalised silica gels that are commercially available, for example, by the trade name of SilicaBond®, PhosphonicS™ or QuadraSil™. Of the scavenger materials that are commercially available by the trade name of PhosphonicS™, in particular the silica gels functionalised by N-acetyl-L-cysteine groups (article number 16-0200), the silica gels functionalised by 2-aminoethylsulfide-ethyl groups (article number 16-0215), the silica gels functionalised by 2-mercaptoethylethylsulfide groups (article number 16-0650), the silica gels functionalised by 3-mercaptopropylethylsulfide groups (article number 16-1700, 16-1706, 16-1702, and 16-1704), the silica gels functionalised by pentaerythritol-2-mercaptoacetate-ethylsulfide groups (article number 16-1540), and the silica gels functionalised by triamine-ethylsulfideamide groups (article number 16-0210) are preferred.
  • Functionalised silica gel materials of this type are usually available as a particulate solid that is based on at least 50% by weight, particularly preferably on at least 75% by weight, even more preferably on at least 90% by weight, and most preferably on 100% by weight, each relative to the functionalised silica gel material that is used, on particles having a particle size in a range from 100 to 1,000 μm, particularly preferably 200 to 800 μm, and most preferably 300 to 600 μm.
  • It is customary for said adsorption agents that are based on an inorganic material, in particular such adsorption agents based on silica gel, to be functionalised by 0.1 to 10 mmol/g, particularly preferably by 0.25 to 5 mmol/g, and most preferably by 0.5 to 1.5 mmol/g organic groups.
  • The adsorption agent that is contained in the composition provided in procedural step i) and is based on an inorganic material and is functionalised by organic groups, preferably the silica gels described above that are functionalised by organic groups, have at least one noble metal adsorbed to them, whereby it is preferred that the noble metal-containing composition provided in procedural step i) contains at least 0.5% by weight, particularly preferably at least 1.0% by weight, and most preferably at least 1.5% by weight of the noble metal, each relative to the total weight of the noble metal-containing composition provided in procedural step i). As a matter of principle, noble metal-containing compositions containing up to 10% by weight or more of the noble metal can be used in the method according to the invention. In this context, it is also preferred that the noble metal-containing composition provided in procedural step i) contains at least 25% by weight, particularly preferably at least 30% by weight, and most preferably at least 35% by weight of SiO2, each relative to the total weight of the noble metal-containing composition provided in procedural step i).
  • Preferably, the noble metal-containing composition provided in procedural step i) can be obtained by contacting a noble metal-containing residue, from which the noble metal is to be recovered, and an adsorption agent that is functionalised by organic groups and based on an inorganic material, preferably by contacting a noble metal-containing residue and a silica gel functionalised by organic groups. Conceivable noble metals are, for example, gold, platinum, iridium, palladium, osmium, silver, mercury, polonium, ruthenium, rhodium, copper, bismuth, technetium, rhenium, and antimony, whereby gold, platinum, iridium, palladium, osmium, silver, ruthenium, rhodium, copper, bismuth, technetium, rhenium are particularly preferred and platinum and rhodium are most preferred.
  • The noble metal-containing residue from which the noble metal is to be recovered can, for example, be an effluent water from a mine or from an electroplating or metallurgical operation. Also conceivable are production residues of organic synthesis processes, in which noble metal-containing catalysts are used and in which at least part of the catalyst material reaches the product phase during the course of the organic synthesis. In order to adsorb the noble metals through scavenger materials from noble metal-containing residues of this type, the usually particulate materials are contacted with the noble metal-containing residues, which are preferably present in the form of a liquid phase, whereby said contacting preferably proceeds at a temperature in a range from 60 to 120° C., particularly preferably at a temperature in a range from 80 to 100° C. This can be effected, for example, by adding the scavenger materials to the residues while stirring and separating them from the residue after a certain contacting time, which usually is in a range from 5 minutes to 5 hours, particularly preferably in a range from 30 minutes to 2.5 hours, and during which the mixture of the noble metal-containing residue and the scavenger material is being stirred. Separating the scavenger material, which is now noble metal-loaded, from the residue can proceed, for example, through filtration, sedimentation or centrifugation processes. Moreover, it is conceivable and preferred according to the invention to provide the scavenger material in a column and run the noble metal-containing residue through the column. This is another means of loading the noble metals onto the scavenger material.
  • Usually, the noble metal-containing composition provided in procedural step i) contains, aside from the noble metal-loaded adsorption agent, organic materials from the afore-mentioned residues, whereby the quantity of said organic materials can be in a range from 10 to 50% by weight, in particular in a range from 20 to 40% by weight, each relative to the total weight of the noble metal-containing composition provided in procedural step i).
  • In procedural step ii) of the method according to the invention, the noble metal-containing composition provided in procedural step i) is ashed in order to obtain an ashed composition in order to adjust a residual carbon content of at most 10% by weight, particularly preferably of at most 5% by weight, even more preferably of at most 3.5% by weight, and most preferably of at most 2.0% by weight, each relative to the total weight of the noble metal-containing composition after ashing. In this ashing process, in the course of which at least part of the functional groups of the adsorption agent and part of the other organic material that may be present in the composition are removed, the loss on ignition attained preferably is at least 40% by weight, particularly preferably is at least 45% by weight, and most preferably is at least 50% by weight.
  • The ashing in procedural step ii) preferably proceeds at a temperature of at least 500° C., particularly preferably of more than 700° C., and most preferably of at least 800° C. for a period of preferably at least 2 hours, more preferably of at least 4 hours, even more preferably of at least 6 hours, and particularly preferably of at least 10 hours. It is customary to carry out the ashing in an air atmosphere. Preferably, a temperature of 1,200° C., particularly preferably of 1,100° C., and most preferably of 1,000° C., is not exceeded in the ashing.
  • Ashing the noble metal-containing composition in procedural step ii) can just as well include two or more steps, if applicable, such as is described, for example, in WO 2007/036334. In this context, the noble metal-containing composition can, for example, be heated in a first step in a nitrogen atmosphere or an air atmosphere under the afore-mentioned temperature conditions and for the afore-mentioned period of time in order to remove a first part of the functional groups of the adsorption agent and a first part of the further organic materials that may also be present in the composition. Subsequently, further heating, possibly after re-mixing the partially ashed material, if applicable, preferably further heating under the afore-mentioned temperature conditions and for the afore-mentioned period of time, can be effected in order to further reduce the carbon content. Said further heating preferably proceeds in the presence of oxygen, particularly preferably in an air atmosphere. Said two-step procedure allows the ashing to be implemented in a particularly efficient manner.
  • Then, in procedural step iii) of the method according to the invention, the ashed composition obtained in procedural step ii) is dissolved, at least in part, in an alkaline aqueous solution to obtain a noble metal-containing residue. In this procedural step, mainly the inorganic materials, on which the inorganic material provided in procedural step i) was based, i.e. preferably the silica gel, are dissolved, at least in part. Preferably, said dissolution proceeds in that the ashed composition is mixed with the aqueous alkaline solution, preferably with an aqueous NaOH or KOH solution, particularly preferably with an aqueous NaOH solution, and the resulting mixture is then heated, under pressure if applicable, to a temperature in a range from 50 to 300° C., particularly preferably 70 to 200° C., for a period of time in a range from 30 minutes to 10 hours, particularly preferably in a range from 1.5 to 8.5 hours.
  • The concentration of the aqueous alkaline solution that is used is preferably at least 10% by weight, even more preferably at least 15% by weight, and most preferably at least 20% by weight, whereby the concentration usually is in a range from 20 to 55% by weight, each relative to the total weight of the alkaline aqueous solution used in procedural step iii).
  • In this context, it is particularly preferred that the at least partial dissolution of the ashed composition obtained in procedural step ii) in the alkaline aqueous solution proceeds in the presence of a reducing agent in procedural step iii). Adding a reducing agent during dissolution can prevent the noble metal from becoming dissolved at this early point in time.
  • The reducing agent preferably is an organic reducing agent, hydrazine or hydrogen gas, whereby preferred organic reducing agents are selected from the group consisting of formic acid or a formic acid salt, formaldehyde, alcohols (for example methanol or ethanol), ascorbic acid, glucose, gluconic acid, ascorbic acid, and oxalic acid.
  • The quantity of reducing agent used in procedural step iii) can be in a range from 1 mg to 2,500 mg per gram of ashed adsorption agent, particularly preferably in a range from 5 mg to 1,000 mg per gram of ashed adsorption agent, and most preferably in a range from 10 mg to 100 mg per gram of ashed composition. The reducing agent concentration in the alkaline aqueous solution used in procedural step iii) can be in a range from 0.1 to 10% by weight, particularly preferably in a range from 0.5 to 5% by weight, each relative to the total weight of the alkaline aqueous solution used in procedural step iii).
  • Further additives can be added to the alkaline aqueous solution aside from the reducing agent, whereby in particular the addition of settling agents is preferred provided the separation of the noble metal-containing residue is intended to be effected through sedimentation, during which the alkaline aqueous solution is separated by decanting from the noble metal-containing residue.
  • After dissolution of the ashed adsorption agent in the manner described above, the noble metal-containing residue thus obtained can be separated from the solution, for example, through filtration, sedimentation or centrifugation, but preferably through sedimentation, and fed to the next procedural step iv) after washing with water or aqueous solution, if applicable. If the noble metal-containing is to be separated through filtration through the use of filter paper, it can prove to be advantageous to provide for an additional procedural step, in order to remove the filter paper, prior to carrying out procedural step iv).
  • In procedural step iv), the noble metal-containing residue is then dissolved (“leached”), at least in part, in an oxidising aqueous acid, preferably in an aqueous solution of the chloride salt of the noble metal, and an aqueous salt solution of the noble metal is obtained. In particular in the case of rhodium being the noble metal to be recovered, it can also prove to be advantageous to further reduce the noble metal-containing residue obtained in procedural step iii) prior to procedural step iv), whereby said reduction preferably proceeds in a hydrogen stream. The reduction in a hydrogen stream preferably proceeds at temperatures in a range from 200 to 600° C., particularly preferably in a range from 300 to 500° C., for a period of time of 1 to 24 hours, particularly preferably 4 to 10 hours.
  • The at least partial dissolution of the noble metal-containing residue obtained in procedural step iii) in an oxidising aqueous acid to obtain an aqueous salt solution of the noble metal in procedural step iv) preferably proceeds in nitric acid, in a mixture containing hydrochloric acid and nitric acid, for example in aqua regia, or in hydrochloric acid containing an oxidant, for example in hydrochloric acid containing chlorine gas or in hydrochloric acid containing chlorate. The dissolution of the noble metal-containing residue in the oxidising acid preferably proceeds at a temperature in a range from 30 to 200° C., particularly preferably in a range from 60 to 100° C. The acid concentration of the acid employed in procedural step iv) preferably is at least 10% by weight, particularly preferably at least 20% by weight, and most preferably at least 30% by weight, each relative to the total weight of the oxidising aqueous acid employed in procedural step iv).
  • If applicable, the noble metal can then be recovered in procedural step v) of the method according to the invention from the noble metal salt obtained in procedural step iv). Said recovery can proceed in a manner known to the person skilled in the art, for example through reduction of the noble metal salt obtained in procedural step iv), for example through electrolysis. Preferably, the noble metals are obtained at a purity of at least 90%, particularly preferably at least 95%, and most preferably at least 99% in this context.
  • Usually, a person skilled in the art will attempt to obtain low liquid volumes with the lowest possible noble metal concentrations.
  • If, e.g., the amount of water or the amount of sodium hydroxide solution, in grams, in step iii) is approximately ten- to fifteen-fold the mass of the residue that is to be treated and contains, e.g., 1 to 5% by weight of the noble metal, it is generally feasible to obtain a solution over the noble metal-containing residue with very low noble metal concentrations of <5 mg/l or even <1 mg/l. This is evident, e.g., from the examples 2 to 4 below. Further processing of said solutions is usually not economical and they may be discarded.
  • Generally, the total mass of the loaded scavenger that is employed is observed to be reduced by more than 90%, in particular more than 95%, after step iii), which means that the noble metal content of the residue can be increased by up to 20-fold.
  • The invention shall be illustrated in more detail in the following based on non-limiting examples.
  • EXAMPLES Example 1
  • 56.9 g scavenger (the PhosphonicS™ 16-0650 product made by Strem Chemicals, Inc., USA, was used) loaded with 1.60% by weight rhodium and unspecified left-over residues of an organic process residue from a homogeneous catalytic process were ignited at 800° C. in an air atmosphere for 8 h in order to remove all organic components. A total of 25.5 g of the silica gel-containing ash were obtained, which corresponds to a loss on ignition of 55%. The residual carbon content was 1.6%, the Rh content was analysed to be 3.56% (0.91 g).
  • Example 2
  • Using a pressurised autoclave, 25 g of a rhodium-containing ash obtained analogous to example 1 were heated to 180° C. for 4 h in the presence of 250 ml 45% sodium hydroxide solution and 1 g sodium formate. The sample was then allowed to cool down and the supernatant solution was decanted. The supernatant solution contained <1 mg/l Rh. The residue on the Nutsch filter was washed with water and dried. The concentrated residue was analysed to weigh 0.5 g.
  • Example 3
  • Using a pressurised autoclave, 18.5 g of a rhodium-containing ash obtained analogous to example 1 were heated to 180° C. for 8 h in the presence of 185 ml 45% NaOH solution and 1 g sodium formate. The sample was then allowed to cool down and the supernatant solution was decanted. The supernatant solution contained <1 mg/l Rh. The residue on the Nutsch filter was washed with water and dried. The concentrated residue was analysed to weigh 3.8 g.
  • Example 4
  • A total of 25.5 g of a rhodium-containing ash obtained analogous to example 1 were added to 350 ml 31% NaOH solution and, after adding 14 ml 22% hydrazine solution in the form of individual drops, the sample was heated in an open container to 80° C. for 3 h. Then, 50 to 100 ml water and 20 ml settling agent (Praestol®, acrylic acid and acrylamide copolymer, Ashland Deutschland GmbH) were added, the sample was allowed to settle and then decanted off the residue. The residue was filtered and washed with water; its mass was 2 g after drying. The decanted solution contained 3 mg/l rhodium and was therefore discarded.
  • Example 5
  • The residue from example 4 was reduced for 7 h at 400° C. in a stream of hydrogen and then leached in an apparatus for 15 hours at 60° C. in 32% hydrochloric acid by introducing chlorine gas. During this period, the rhodium-containing hydrochloric acid was replaced once by fresh 32% hydrochloric acid. The Rh content of the combined hydrochloric acid solution was determined by ICP to be 0.91 g Rh.
  • Example 6
  • 94.9 g scavenger (the PhosphonicS™ 16-1700 product made by Strem Chemicals, Inc., USA, was used) loaded with platinum and unspecified left-overs of an organic process residue from a homogeneous catalytic silicone production process were ignited at 800° C. in an air atmosphere for 8 h in order to remove all organic components. A total of 48.0 g of the silica gel-containing ash were obtained, which corresponds to a loss on ignition of 49%. The residual carbon content was 200 ppm, the Pt content was analysed to be 1.10% (0.528 g).
  • Example 7
  • A total of 20.1 g of a platinum-containing ash obtained analogous to example 6 were heated to 80° C. for 4 h in an open container in the presence of 270 ml 31% NaOH solution and 4 ml formic acid. Subsequently, the suspension was cooled to 60° C. and filtered. After washing with water, 1.35 g of residue were obtained. No platinum was detected in the alkaline filtrate by means of ICP.
  • Example 8
  • The residue from example 7 was leached at 80 to 100° C. in 600 ml aqua regia and the Pt content was determined by means of ICP: 0.22 g.
  • Example 9
  • A total of 20.2 g of a platinum-containing ash obtained analogous to example 6 were heated to 80° C. for 3 h in an open container in the presence of 270 ml 31% NaOH solution and 9 ml 22% hydrazine. Subsequently, the suspension was cooled to 60° C. and filtered. After washing with water, 1.41 g of residue were obtained. No platinum was detected in the alkaline filtrate by means of ICP.
  • Example 10
  • The residue from example 7 was leached at 80 to 100° C. in 600 ml aqua regia and the Pt content was determined by means of ICP: 0.22 g.

Claims (14)

1. A method for recovery of noble metals from noble metal-containing compositions, the method comprising the steps of:
i) providing a noble metal-containing composition containing an adsorption agent that is based on an inorganic material and is functionalized by organic groups and has at least one noble metal adsorbed to it;
ii) ashing of the noble metal-containing composition provided in procedural step i) in order to adjust a residual carbon content of at most 10% by weight, relative to the total weight of the noble metal-containing composition after ashing, to obtain an ashed composition;
iii) at least partial dissolution of the ashed composition obtained in procedural step ii) in an alkaline aqueous solution to obtain a noble metal-containing residue;
iv) at least partial dissolution of the noble metal-containing residue obtained in procedural step iii) in an oxidizing aqueous acid to obtain an aqueous salt solution of the noble metal; and
v) recovering, if applicable, the noble metal through reduction of the noble metal salt obtained in procedural step iv).
2. The method according to claim 1, wherein the adsorption agent that is based on an inorganic material is a silica gel- or an aluminium oxide gel-based adsorption agent.
3. The method according to claim 1, wherein the adsorption agent that is based on an inorganic material is functionalised by 0.1 to 1.5 mmol/g organic groups.
4. The method according to claim 1, wherein the noble metal-containing composition provided in procedural step i) contains at least 0.5% by weight of noble metal, relative to the total weight of the noble metal-containing composition provided in procedural step i).
5. The method according to claim 1, wherein the noble metal-containing composition provided in procedural step i) can be obtained by contacting a noble metal-containing residue and an adsorption agent that is functionalized by organic groups and based on an inorganic material.
6. The method according to claim 1, wherein the ashing of the noble metal-containing composition provided in procedural step i) proceeds at a temperature above 700° C. in procedural step ii).
7. The method according to claim 6, wherein the ashing of the noble metal-containing composition provided in procedural step i) proceeds for a period of time of at least two hours in procedural step ii).
8. The method according to claim 1, wherein the at least partial dissolution of the ashed composition obtained in procedural step ii) in an alkaline aqueous solution to obtain a noble metal-containing residue proceeds in the presence of a reducing agent in procedural step iii).
9. The method according to claim 8, wherein the reducing agent is an organic reducing agent, hydrazine or hydrogen gas.
10. The method according to claim 9, wherein the organic reducing agent is selected from the group consisting of formic acid or a formic acid salt, formaldehyde, alcohols, ascorbic acid, glucose, gluconic acid, ascorbic acid, and oxalic acid.
11. The method according to claim 1, wherein the noble metal-containing residue obtained in procedural step iii) is reduced in a hydrogen stream prior to procedural step iv).
12. The method according to claim 1, wherein the noble metal-containing residue obtained in procedural step iii) suffered a loss of total mass by more than 90% as compared to the material used in procedural step i).
13. The method according to claim 12, wherein the loss of total mass exceeds 95%.
14. The method according to claim 1, wherein the at least partial dissolution of the noble metal-containing residue obtained in procedural step iii) in an oxidising aqueous acid to obtain an aqueous salt solution of the noble metal in procedural step iv) proceeds in nitric acid, in a mixture containing hydrochloric acid and nitric acid, in hydrochloric acid containing chlorine gas or in hydrochloric acid containing chlorate.
US13/421,441 2011-03-18 2012-03-15 Process for recovery of noble metals from functionalised, noble metal-containing adsorption materials Expired - Fee Related US8475749B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102011014505 2011-03-18
DE102011014505.2 2011-03-18
DE201110014505 DE102011014505A1 (en) 2011-03-18 2011-03-18 Process for the recovery of precious metal from functionalized noble metal-containing adsorption materials

Publications (2)

Publication Number Publication Date
US20120237417A1 true US20120237417A1 (en) 2012-09-20
US8475749B2 US8475749B2 (en) 2013-07-02

Family

ID=45855448

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/421,441 Expired - Fee Related US8475749B2 (en) 2011-03-18 2012-03-15 Process for recovery of noble metals from functionalised, noble metal-containing adsorption materials

Country Status (9)

Country Link
US (1) US8475749B2 (en)
EP (1) EP2500442B1 (en)
JP (1) JP2012197512A (en)
KR (1) KR20120107046A (en)
CN (1) CN102676836B (en)
DE (1) DE102011014505A1 (en)
PL (1) PL2500442T3 (en)
TW (1) TW201245456A (en)
ZA (1) ZA201201938B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017143499A1 (en) * 2016-02-22 2017-08-31 Entegris, Inc. Recovery of palladium from palladium-containing components

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3064602A1 (en) * 2015-03-05 2016-09-07 Heraeus Deutschland GmbH & Co. KG Method for the production of elemental rhodium
CN105420511B (en) * 2015-11-18 2018-05-15 金川集团股份有限公司 A kind of method for reducing osmium absorbing liquid
CN111411240A (en) * 2020-04-23 2020-07-14 贺利氏贵金属技术(中国)有限公司 Method for recovering noble metal from waste catalyst containing noble metal
EP3985135A1 (en) * 2020-10-16 2022-04-20 Heraeus Deutschland GmbH & Co. KG Method for recovery of precious metals from precious metal-containing heterogeneous catalysts
CN114807622A (en) * 2022-03-10 2022-07-29 金川集团股份有限公司 Method for reducing osmium secondary absorption liquid

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6579504B1 (en) * 1998-05-19 2003-06-17 Keith Stuart Liddell Hydrometallurgical treatment process for extraction of platinum group metals obviating the matte smelting process

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3632336A (en) * 1969-07-25 1972-01-04 Battelle Development Corp Silver recovery process
US4360380A (en) 1980-09-09 1982-11-23 World Resources Company Process for recovery of metal values from sludges
GB8719840D0 (en) * 1987-08-21 1987-09-30 British Petroleum Co Plc Separation process
CN1024685C (en) * 1991-06-24 1994-05-25 中国有色金属工业总公司昆明贵金属研究所 Method for recovery of palladium from waste Pd-C catalyst and its incinerator system
JPH0649555A (en) * 1992-08-04 1994-02-22 N E Chemcat Corp Method for recovering rhodium
US6290747B1 (en) * 1999-12-08 2001-09-18 Eastman Kodak Company Conversion of impure silver halide to ultra-pure silver metal
GB0025502D0 (en) 2000-10-18 2000-11-29 Johnson Matthey Plc Metal scavenging
DE60209095T2 (en) * 2001-11-21 2006-08-17 Shipley Co., L.L.C., Marlborough Process for recovering catalytic metals
AU2002353279A1 (en) * 2002-12-02 2004-06-23 Council Of Scientific And Industrial Research A process for the recovery of adsorbed palladium from spent silica
JP4916305B2 (en) * 2003-04-11 2012-04-11 ロンミン・パブリック・リミテッド・カンパニー Recovery of platinum group metals
DE602005011308D1 (en) 2004-08-04 2009-01-08 Phosphonics Ltd SUBSTITUTED ORGANOPOLYSILOXANES AND THEIR USE
DE502006007286D1 (en) 2005-09-27 2010-08-05 Heraeus Gmbh W C METHOD AND DEVICE FOR PREPARING PRECIO-METAL MATERIALS
US20070072740A1 (en) 2005-09-28 2007-03-29 Leonard Kaufman, Ltd. Hand therapy device
GB0720579D0 (en) * 2007-10-20 2007-11-28 Phosphonics Ltd Functionalised materials and uses thereof
CN101280363A (en) * 2008-05-15 2008-10-08 金川集团有限公司 Method for recovery of palladium from waste palladium-carbon catalyst

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6579504B1 (en) * 1998-05-19 2003-06-17 Keith Stuart Liddell Hydrometallurgical treatment process for extraction of platinum group metals obviating the matte smelting process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017143499A1 (en) * 2016-02-22 2017-08-31 Entegris, Inc. Recovery of palladium from palladium-containing components

Also Published As

Publication number Publication date
ZA201201938B (en) 2012-11-28
JP2012197512A (en) 2012-10-18
EP2500442B1 (en) 2016-11-09
CN102676836B (en) 2015-07-29
US8475749B2 (en) 2013-07-02
EP2500442A1 (en) 2012-09-19
PL2500442T3 (en) 2017-05-31
TW201245456A (en) 2012-11-16
CN102676836A (en) 2012-09-19
KR20120107046A (en) 2012-09-28
DE102011014505A1 (en) 2012-09-20

Similar Documents

Publication Publication Date Title
US8475749B2 (en) Process for recovery of noble metals from functionalised, noble metal-containing adsorption materials
US4094668A (en) Treatment of copper refinery slimes
Grosse et al. Leaching and recovery of gold using ammoniacal thiosulfate leach liquors (a review)
US10457999B2 (en) Method for platinum group metals recovery from spent catalysts
RU2386709C1 (en) Separation and exrtaction method of precious metals
CN103343224A (en) Method for quickly extracting gold from gold-containing material
WO2005035804A9 (en) Recovery of precious metals from waste catalysts
CN108906137B (en) Method for directly preparing catalyst from noble metal waste
CN116171190A (en) Method for leaching and recovering platinum group metals in organic solvents
JP5840761B2 (en) Method for recovering gold adsorbed on activated carbon and method for producing gold using the same
CN113151693B (en) Method for recovering palladium from tetrakis (triphenylphosphine) palladium waste liquid
KR20180135627A (en) Method for recovering precious metal from noble metal-containing adsorbent residue
AU2010274628A1 (en) Aqueous leaching process for recovery of precious metals with addition of dithiooxamide ligand
CN111334663B (en) Method for recovering precious metal from spent automobile exhaust catalyst
KR0145346B1 (en) Extraction of precious metals from and other precious metals containing materials using halogen salts
US11473168B2 (en) Method for platinum group metals recovery from spent catalysts
US11427887B2 (en) Extraction of selected platinum-group metals from supported catalyst
CN1200407A (en) Process for extracting and recovering silver
JPS6116326B2 (en)
JP2004035968A (en) Method for separating platinum group element
KR20090132672A (en) Technology of reuse on platinum metal from waste catalyst of automobile
WO2011140593A1 (en) Recovery of platinum group metals from platinum group metal-containing materials
JP2004035969A (en) Method for refining selenium or the like
CN112680601B (en) Method for recovering silver and gold from silver and gold-containing anode slime
KR100367708B1 (en) Recovery method of platinum group metals from spent catalyst

Legal Events

Date Code Title Description
AS Assignment

Owner name: HERAEUS PRECIOUS METALS GMBH & CO. KG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KRALIK, JOACHIM, DR.;STETTNER, MARTIN;ALAMEDA, STEFANIE FUCHS;SIGNING DATES FROM 20120402 TO 20120416;REEL/FRAME:028220/0755

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: HERAEUS DEUTSCHLAND GMBH & CO. KG, GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:HERAEUS PRECIOUS METALS GMBH & CO. KG;REEL/FRAME:037056/0430

Effective date: 20150424

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20210702