US20120232040A1 - Medication for clinical extensively-drug resistant acinetobacter baumannii - Google Patents

Medication for clinical extensively-drug resistant acinetobacter baumannii Download PDF

Info

Publication number
US20120232040A1
US20120232040A1 US13/042,065 US201113042065A US2012232040A1 US 20120232040 A1 US20120232040 A1 US 20120232040A1 US 201113042065 A US201113042065 A US 201113042065A US 2012232040 A1 US2012232040 A1 US 2012232040A1
Authority
US
United States
Prior art keywords
baumannii
medication
tetracycline
gingerol
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/042,065
Inventor
Yen-Hsu Chen
Hui-Min Wang
Chung-Yi Chen
Hsi-An Chen
Wei-Ru Lin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaohsiung Medical University
Original Assignee
Kaohsiung Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaohsiung Medical University filed Critical Kaohsiung Medical University
Priority to US13/042,065 priority Critical patent/US20120232040A1/en
Assigned to KAOHSIUNG MEDICAL UNIVERSITY reassignment KAOHSIUNG MEDICAL UNIVERSITY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHEN, CHUNG-YI, CHEN, HSI-AN, CHEN, YEN-HSU, LIN, WEI-RU, WANG, Hui-min
Publication of US20120232040A1 publication Critical patent/US20120232040A1/en
Priority to US14/028,960 priority patent/US8802737B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/12Ketones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/65Tetracyclines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents

Definitions

  • the present invention relates to a medication for bacterial infection particularly to a medication for extensively drug resistant Acinetobacter baumannii.
  • Acinetobacter baumannii as referred to a non-enteric gram-negative bacillus, is a common pathogenic bacterium generally leading to severe pneumonia, sepsis, and various infections on urinary tract and respiratory tract. Since 1980s, an increasing amount of antibiotics has been used on A. baumannii infection. The A. baumannii tends to show multiple drug-resistance to most commercial antibiotics, including penicillins, cephalosporins, monobactam, aminoglycosides, carbapenems, sulbactam and fluroroquinolones. Accordingly, drug resistant A. baumannii has becomes a major cause of nosocomal infection, and which always results in serious mortality, especially in intensive care units due to the lack of proper antimicrobials.
  • ginger has generally antimicrobial and anti-inflammatory effects, and which can be used as a general antimicrobial ingredient in various products.
  • the conventional invention only points out a general antimicrobial effect of the ginger rather than a specific antimicrobial function on particular pathogen.
  • Taiwan Published Patent No. 200918085 entitled with “USE OF A POTENT PRODUCT EXTRACTED FROM RHIZOMES OF ZINGIBER OFFICINALE IN TREATING A DISEASE ASSOCIATED WITH HELICOBACTER PYLORI” a new medical composition treated of Helicobacter pylori is provided and comprises a crude extract from rhizomes of Zingiber officinale . It is suggested that with a potent fraction obtained via fractionated steps disclosed in the TW Patent No. 200918085, a disease associated with H. pylori , such as gastritis, gastric ulcer and duodenal ulcer can be effectively treated.
  • the primary objective of this invention is to provide a medication for Acinetobacter baumannii infection, which can treat of clinical extensively drug-resistant Acinetobacter baumannii infection.
  • the secondary objective of this invention is to provide a medication for Acinetobacter baumannii infection, so as to prevent from nosocomial infection of Acinetobacter baumannii.
  • Another objective of this invention is to provide a method for improving tetracycline-resistance of Acinetobacter baumannii , which can improve serious drug-resistant issue in clinical medicine.
  • Another objective of this invention is to provide a method for improving tetracycline-resistance of Acinetobacter baumannii , so as to effectively inhibit clinical A. baumannii infection and prevent from nosocomial infection.
  • a medication for Acinetobacter baumannii infection comprises tetracycline; and a ginger compound, selecting from a group of [6]-dehydrogingerdione, [10]-gingerol, [6]-shogaol and [6]-gingerol.
  • a method for improving tetracycline-resistance of Acinetobacter baumannii by providing the ginger compound described above combined with tetracycline to against A. baumannii infection.
  • FIG. 1 is a diagram illustrating the structure of [6]-shogaol in the present invention
  • FIG. 2 is a diagram illustrating the structure of [6]-dehydrogingerdione in the present invention
  • FIG. 3 is a diagram illustrating the structure of [6]-gingerol in the present invention.
  • FIG. 4 is a diagram illustrating the structure of [10]-gingerol in the present invention.
  • the present invention relates to a medication for Acinetobacter baumannii infection comprising tetracycline and a ginger compound, such as [6]-shogaol, [6]-dehydrogingerdione, [6]-gingerol, and [10]-gingerol.
  • the medication for Acinetobacter baumannii infection can significantly suppress A. baumannii infection, especially to extensively drug-resistant Acinetobacter baumannii infection. With such medication, the severe nosocomial infection of Acinetobacter baumannii can be effectively reduced.
  • the ginger compound is prepared and mixed with 25 m/ml of tetracycline, wherein the ginger compound can be one of [6]-shogaol, [6]-dehydrogingerdione, [6]-gingerol, [10]-gingerol, and their composition.
  • the ginger compound is extracted from dried and chipped rhizomes of Zingiber officinale with a mixture of CHCl 3 -MeOH at room temperature, according to a method published by Chen et al. in 2009.
  • the obtained [6]-shogaol, [6]-dehydrogingerdione, [6]-gingerol, and [10]-gingerol are further analyzed by spectroscopy and stored in DMSO as a concentration of 10 mM till being used.
  • various strains of clinical A. baumannii are randomly isolated from numbers of patients suffered from severe nosocomal infections of A. baumannii for a medication test of the present invention.
  • five strains of clinical A. baumannii named AB1, AB2, AB4, AB5, AB6, are isolated from patients in Kaohsiung Medical University Hospital, 1600-bed tertiary referral medical center in Taiwan, wherein each of strains is from different clones by genotyping and collected from different samples, for example, sputum, wound pus, blood, pleural fluid, and bronchial washing. All of the five strains of A. baumannii are stored in trypticase soy broth (Difco Laboratories, Detroit, Mich.) with 20% glycerol at ⁇ 80° C. until the following use.
  • the susceptibility values of the five strains of A. baumannii to various commercial antibiotics are shown.
  • the minimal inhibitory concentration (MIC) of each commercial antibiotic is determined respectively on each strain of A. baumannii via a broth micro-dilution method with LB broth reported by Nariman et al. in 2004. Since the drug-resistance standards for A.
  • 10 5 cfu/mL of each strain of A. baumannii are prepared, and the medication test of the present invention is carried out by respectively providing the medication of the present invention and the ginger compound only to each strain of A. baumannii . In this way, the antimicrobial activities of the medication of the present invention and of the ginger compound only are monitored and recorded respectively.
  • the medication test of the present invention has 4 steps, including (a) [6]-shogaol step, (b) [6]-dehydrogingerdione step, (c) [6]-gingerol step, and (d) [10]-gingerol step, in order to separately analyze the antimicrobial activities of the medication with various formula of 25 ⁇ g/mL tetracycline and [6]-shogaol, 25 ⁇ g/mL tetracycline and [6]-dehydrogingerdione, 25 ⁇ g/mL tetracycline and [6]-gingerol, also 25 ⁇ g/mL tetracycline and [10]-gingerol individually.
  • the MIC values of the medication with 25 ⁇ g/mL tetracycline and [6]-shogaol against the five strains of A. baumannii are summarized. It is suggested that the medication of the present invention, consisting of 25 ⁇ g/mL tetracycline and [6]-shogaol, shows significant antimicrobial effect against to all of the five strains of A. baumannii . Furthermore, the [6]-shogaol itself also has dramatically antimicrobial ability to the five strains of A. baumannii , with diverse MIC values from 208.1 ⁇ M to 347.2 ⁇ M on different strains of A. baumannii .
  • the MIC values of the medication with 25 ⁇ g/mL tetracycline and [6]-dehydrogingerdione against the five strains of A. baumannii are summarized. It is suggested that the medication of the present invention, consisting of 25 ⁇ g/mL tetracycline and [6]-dehydrogingerdione, shows significant antimicrobial effect against to all of the five strains of A. baumannii . Furthermore, the [6]-dehydrogingerdione itself also has dramatically antimicrobial ability to the five strains of A. baumannii , with diverse MIC values from 137.6 ⁇ M to 207.1 ⁇ M on different strains of A. baumannii .
  • Medication [6]-dehydrogingerdion tetracycline + [6]-dehydrogingerdion
  • Medication [6]-dehydrogingerdion tetracycline + [6]-dehydrogingerdion
  • the MIC values of the medication with 25 ⁇ g/mL tetracycline and [6]-gingerol against the five strains of A. baumannii are summarized. It is suggested that the medication of the present invention, consisting of 25 ⁇ g/mL tetracycline and [6]-gingerol, shows significant antimicrobial effect against to all of the five strains of A. baumannii . Furthermore, the [6]-gingerol itself also has dramatically antimicrobial ability to the five strains of A. baumannii , with diverse MIC values from 226.4 ⁇ M to 277.3 ⁇ M on different strains of A. baumannii .
  • the MIC values of the medication with 25 ⁇ g/mL tetracycline and [10]-gingerol against the five strains of A. baumannii are summarized. It is suggested that the medication of the present invention, consisting of 25 ⁇ g/mL tetracycline and [10]-gingerol, shows significant antimicrobial effect against to all of the five strains of A. baumannii . Furthermore, the [10]-gingerol itself also has dramatically antimicrobial ability to the five strains of A. baumannii , with diverse MIC values from 196.0 ⁇ M to 207.5 ⁇ M on different strains of A. baumannii .
  • the ginger compound of the present invention shows dramatically inhibition on all of the five strains of A. baumannii , with diverse MIC values from 132 ⁇ M to 347 ⁇ M.
  • tetracycline-resistance of the five strains of A. baumannii as it is listed in TABLE 1 can be dramatically improved.
  • antimicrobial activities of ginger compound of the present invention with 25 ⁇ g/mL tetracycline are significantly effective against to A. baumannii infection.
  • the ginger compound is at a concentration of higher than 0 ⁇ M and lower than 10 ⁇ M.
  • a medication compromising 25 ⁇ g/ml tetracycline and the ginger compound of the present invention wherein the ginger compound is selected from a group of [6]-shogaol, [6]-dehydrogingerdione, [6]-gingerol and [10]-gingerol, with a MIC value of ⁇ 10 ⁇ M.
  • the medication of the present invention is sufficient to suppress A. baumannii clinical infection, even for extensively drug-resistant A. baumannii , so that the medication of the present invention can prevent from clinical nosocomial infection of A. baumannii .
  • the medication of the present invention can be manufactured into any form including a tablet, liquid powder or infection and preferable for the form of solution. In general, the medication of the present invention can be given individually or combined with other acceptable medicaments to patients suffered from severe A. baumannii infection, with the ginger compound at a preferable concentration of lower than 10 ⁇ M and higher than 0 ⁇ M.
  • ginger compound of the present invention can be one of [6]-shogaol, [6]-dehydrogingerdione, [6]-gingerol, [10]-gingerol and their composition.
  • the tetracycline is at a concentration of 25 ⁇ g/ml and combines with one of [6]-shogaol, [6]-dehydrogingerdione, [6]-gingerol, [10]-gingerol and their composition at a concentration of lower than 10 ⁇ M and higher than 0 ⁇ M.
  • [6]-shogaol, [6]-dehydrogingerdione, [6]-gingerol, [10]-gingerol and their composition at a concentration of lower than 10 ⁇ M and higher than 0 ⁇ M.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

A medication for Acinetobacter baumannii infection comprises tetracycline; and a ginger compound, selecting from a group of [6]-dehydrogingerdione, [10]-gingerol, [6]-shogaol and [6]-gingerol. Also, a method for improving tetracycline-resistance of A. baumannii, by providing the ginger compound described above combined with tetracycline to against A. baumannii infection.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a medication for bacterial infection particularly to a medication for extensively drug resistant Acinetobacter baumannii.
  • 2. Description of the Related Art
  • Acinetobacter baumannii, as referred to a non-enteric gram-negative bacillus, is a common pathogenic bacterium generally leading to severe pneumonia, sepsis, and various infections on urinary tract and respiratory tract. Since 1980s, an increasing amount of antibiotics has been used on A. baumannii infection. The A. baumannii tends to show multiple drug-resistance to most commercial antibiotics, including penicillins, cephalosporins, monobactam, aminoglycosides, carbapenems, sulbactam and fluroroquinolones. Accordingly, drug resistant A. baumannii has becomes a major cause of nosocomal infection, and which always results in serious mortality, especially in intensive care units due to the lack of proper antimicrobials.
  • In recent decades, since the drug-resistance getting controversial, natural components and plant extracts have reported to play an important role in antimicrobial approaches. Referring to U.S. Pat. No. 6,264,926, entitled with “FORMULATION USEFUL AS A NATURAL HERBAL TOOTH POWDER” a formulation of herbal toothpowder or toothpaste for gums and teeth is disclosed and comprises powder or paste of Zingiber officinale, Zanthoxylum armaatum, Santalum album, Spilanthes calva, Pistacia lentiseus, Quercus infectoria, Usnea longissima, roasted alum and common salt. It is suggested that ginger has generally antimicrobial and anti-inflammatory effects, and which can be used as a general antimicrobial ingredient in various products. However, the conventional invention only points out a general antimicrobial effect of the ginger rather than a specific antimicrobial function on particular pathogen.
  • With reference to Taiwan Published Patent No. 200918085, entitled with “USE OF A POTENT PRODUCT EXTRACTED FROM RHIZOMES OF ZINGIBER OFFICINALE IN TREATING A DISEASE ASSOCIATED WITH HELICOBACTER PYLORI” a new medical composition treated of Helicobacter pylori is provided and comprises a crude extract from rhizomes of Zingiber officinale. It is suggested that with a potent fraction obtained via fractionated steps disclosed in the TW Patent No. 200918085, a disease associated with H. pylori, such as gastritis, gastric ulcer and duodenal ulcer can be effectively treated. However, the conventional invention above is useless in clinical drug-resistant problem, also in severe nosocomial infection of Acinetobacter baumannii. Hence, there is a pressing need of providing a new medication, as well as a new therapeutic approach for the extensive drug-resistant Acinetobacter baumannii worldwide.
  • SUMMARY OF THE INVENTION
  • The primary objective of this invention is to provide a medication for Acinetobacter baumannii infection, which can treat of clinical extensively drug-resistant Acinetobacter baumannii infection.
  • The secondary objective of this invention is to provide a medication for Acinetobacter baumannii infection, so as to prevent from nosocomial infection of Acinetobacter baumannii.
  • Another objective of this invention is to provide a method for improving tetracycline-resistance of Acinetobacter baumannii, which can improve serious drug-resistant issue in clinical medicine.
  • Another objective of this invention is to provide a method for improving tetracycline-resistance of Acinetobacter baumannii, so as to effectively inhibit clinical A. baumannii infection and prevent from nosocomial infection.
  • A medication for Acinetobacter baumannii infection, comprises tetracycline; and a ginger compound, selecting from a group of [6]-dehydrogingerdione, [10]-gingerol, [6]-shogaol and [6]-gingerol.
  • A method for improving tetracycline-resistance of Acinetobacter baumannii, by providing the ginger compound described above combined with tetracycline to against A. baumannii infection.
  • Further scope of the applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferable embodiments of the invention, are given by way of illustration only, since various more will become apparent to those skilled in the art from this detailed description.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will become more fully understood from the detailed description given herein below and the accompanying drawings which are given by way of illustration only, and thus are not limitative of the present invention, and wherein:
  • FIG. 1 is a diagram illustrating the structure of [6]-shogaol in the present invention;
  • FIG. 2 is a diagram illustrating the structure of [6]-dehydrogingerdione in the present invention;
  • FIG. 3 is a diagram illustrating the structure of [6]-gingerol in the present invention;
  • FIG. 4 is a diagram illustrating the structure of [10]-gingerol in the present invention.
  • All figures are drawn for ease of explaining the basic teachings of the present invention only; the extensions of the figures with respect to number, position, relationship, and dimensions of the parts to form the preferred embodiment will be explained or will be within the skill of the art after the following teachings of the present invention have been read and understood. Further, the exact dimensions and dimensional proportions conforming to specific force, weight, strength, and similar requirements will likewise be within the skill of the art after the following teachings of the present invention have been read and understood.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention relates to a medication for Acinetobacter baumannii infection comprising tetracycline and a ginger compound, such as [6]-shogaol, [6]-dehydrogingerdione, [6]-gingerol, and [10]-gingerol. The medication for Acinetobacter baumannii infection can significantly suppress A. baumannii infection, especially to extensively drug-resistant Acinetobacter baumannii infection. With such medication, the severe nosocomial infection of Acinetobacter baumannii can be effectively reduced.
  • In the present invention, the ginger compound is prepared and mixed with 25 m/ml of tetracycline, wherein the ginger compound can be one of [6]-shogaol, [6]-dehydrogingerdione, [6]-gingerol, [10]-gingerol, and their composition. In the present embodiment, the ginger compound is extracted from dried and chipped rhizomes of Zingiber officinale with a mixture of CHCl3-MeOH at room temperature, according to a method published by Chen et al. in 2009. With such performance, an extraction is obtained, and further fractionated by silica gel column chromatography with gradients of n-hexane/CHCl3, in order to collect the [6]-shogaol, [6]-dehydrogingerdione, [6]-gingerol, and [10]-gingerol of the present invention. Referring to FIGS. 1 to 4, the structures of the [6]-shogaol, [6]-dehydrogingerdione, [6]-gingerol, and [10]-gingerol are shown respectively. In the present invention, the obtained [6]-shogaol, [6]-dehydrogingerdione, [6]-gingerol, and [10]-gingerol are further analyzed by spectroscopy and stored in DMSO as a concentration of 10 mM till being used.
  • For further proving the efficiency of the medication in the present invention, various strains of clinical A. baumannii, being extensively drug-resistant, are randomly isolated from numbers of patients suffered from severe nosocomal infections of A. baumannii for a medication test of the present invention. Precisely, five strains of clinical A. baumannii, named AB1, AB2, AB4, AB5, AB6, are isolated from patients in Kaohsiung Medical University Hospital, 1600-bed tertiary referral medical center in Taiwan, wherein each of strains is from different clones by genotyping and collected from different samples, for example, sputum, wound pus, blood, pleural fluid, and bronchial washing. All of the five strains of A. baumannii are stored in trypticase soy broth (Difco Laboratories, Detroit, Mich.) with 20% glycerol at −80° C. until the following use.
  • With reference to TABLE 1, the susceptibility values of the five strains of A. baumannii to various commercial antibiotics are shown. In the present invention, the minimal inhibitory concentration (MIC) of each commercial antibiotic is determined respectively on each strain of A. baumannii via a broth micro-dilution method with LB broth reported by Nariman et al. in 2004. Since the drug-resistance standards for A. baumannii recommended by the Clinical and Laboratory Standards Institute (CLSI, 2009) are summarized in that: ampicillin/sulbactam≧32/16 μg/mL, cefepime≧32 μg/mL, ceftazidime≧32 μg/mL, ceftriaxone≧64 μg/mL, gentamicin≧16 μg/mL, meropenem≧16 μg/mL, piperacillin≧128 μg/mL, tetracycline≧16 μg/mL, trimethoprim/sulfamethoxazole≧4/76 μg/mL, it suggests all of the five strains of A. baumannii share significant and extensive drug-resistance to all of the commercial antibiotics. Some of the antibiotics including ampicillin, cefazolin and cefmetazole have no MIC breakpoints according to CLSI.
  • TABLE 1
    susceptibilities of the five strains of A. baumannii to antibiotics
    (MICs, μg/ml)
    Strains
    Antibiotics AB1 AB2 AB4 AB5 AB6
    Ampicillin ≧512 ≧512 ≧512 ≧512 ≧512
    Ampicillin/ ≧32/16 ≧32/16 ≧32/16  ≧32/16  ≧32/16 
    Sulbactam
    Cefazolin ≧64 ≧64 ≧64 ≧64 ≧64
    Cefepime ≧64 ≧64 ≧64 ≧64 ≧64
    Cefmetazole ≧64 ≧64 ≧64 ≧64 ≧64
    Ceftazidime ≧64 ≧64 ≧64 ≧64 ≧64
    Ceftriaxone ≧64 ≧64 ≧64 ≧64 ≧64
    Gentamicin ≧16 ≧16 ≧16 ≧16 ≧16
    Meropenem ≧16 ≧16 ≧16 ≧16 ≧16
    Piperacillin ≧128 ≧128 ≧128 ≧128 ≧128
    Piperacillin/ ≧128 ≧128 ≧128 ≧128 ≧128
    Tazobactam
    Tetracycline 32 ≧512 ≧512 ≧512 ≧512
    Trimethoprim/ ≧16/ ≧16/ ≧16/320 ≧16/320 ≧16/320
    Sulfamethoxazole 320 320
  • In the present embodiment, 105 cfu/mL of each strain of A. baumannii are prepared, and the medication test of the present invention is carried out by respectively providing the medication of the present invention and the ginger compound only to each strain of A. baumannii. In this way, the antimicrobial activities of the medication of the present invention and of the ginger compound only are monitored and recorded respectively. Precisely, the medication test of the present invention has 4 steps, including (a) [6]-shogaol step, (b) [6]-dehydrogingerdione step, (c) [6]-gingerol step, and (d) [10]-gingerol step, in order to separately analyze the antimicrobial activities of the medication with various formula of 25 μg/mL tetracycline and [6]-shogaol, 25 μg/mL tetracycline and [6]-dehydrogingerdione, 25 μg/mL tetracycline and [6]-gingerol, also 25 μg/mL tetracycline and [10]-gingerol individually.
  • Referring to TABLE 2, the MIC values of the medication with 25 μg/mL tetracycline and [6]-shogaol against the five strains of A. baumannii are summarized. It is suggested that the medication of the present invention, consisting of 25 μg/mL tetracycline and [6]-shogaol, shows significant antimicrobial effect against to all of the five strains of A. baumannii. Furthermore, the [6]-shogaol itself also has dramatically antimicrobial ability to the five strains of A. baumannii, with diverse MIC values from 208.1 μM to 347.2 μM on different strains of A. baumannii.
  • TABLE 2
    antimicrobial activities of the medication (a)
    [6]-shogaol Medication
    groups only (μM) (Tetracycline + [6]-shogaol) (μM)
    AB1 208.1 <10.0
    AB2 274.0 <10.0
    AB4 279.7 <10.0
    AB5 261.3 <10.0
    AB6 347.2 <10.0
  • Referring to TABLE 3, the MIC values of the medication with 25 μg/mL tetracycline and [6]-dehydrogingerdione against the five strains of A. baumannii are summarized. It is suggested that the medication of the present invention, consisting of 25 μg/mL tetracycline and [6]-dehydrogingerdione, shows significant antimicrobial effect against to all of the five strains of A. baumannii. Furthermore, the [6]-dehydrogingerdione itself also has dramatically antimicrobial ability to the five strains of A. baumannii, with diverse MIC values from 137.6 μM to 207.1 μM on different strains of A. baumannii.
  • TABLE 3
    antimicrobial activities of the medication (b)
    Medication
    [6]-dehydrogingerdion (tetracycline + [6]-dehydrogingerdion)
    groups only (μm) (μg/μM)
    AB1 198.1 <10.0
    AB2 166.2 <10.0
    AB4 137.6 <10.0
    AB5 178.5 <10.0
    AB6 207.1 <10.0
  • Referring to TABLE 4, the MIC values of the medication with 25 μg/mL tetracycline and [6]-gingerol against the five strains of A. baumannii are summarized. It is suggested that the medication of the present invention, consisting of 25 μg/mL tetracycline and [6]-gingerol, shows significant antimicrobial effect against to all of the five strains of A. baumannii. Furthermore, the [6]-gingerol itself also has dramatically antimicrobial ability to the five strains of A. baumannii, with diverse MIC values from 226.4 μM to 277.3 μM on different strains of A. baumannii.
  • TABLE 4
    antimicrobial activities of the medication (c)
    [6]-gingerol Medication
    groups only (μM) (tetracycline + [6]-gingerol) (μg/μM)
    AB1 226.4 <10.0
    AB2 226.8 <10.0
    AB4 297.1 <10.0
    AB5 277.3 <10.0
    AB6 275.6 <10.0
  • Referring to TABLE 4, the MIC values of the medication with 25 μg/mL tetracycline and [10]-gingerol against the five strains of A. baumannii are summarized. It is suggested that the medication of the present invention, consisting of 25 μg/mL tetracycline and [10]-gingerol, shows significant antimicrobial effect against to all of the five strains of A. baumannii. Furthermore, the [10]-gingerol itself also has dramatically antimicrobial ability to the five strains of A. baumannii, with diverse MIC values from 196.0 μM to 207.5 μM on different strains of A. baumannii.
  • TABLE 5
    antimicrobial activities of the medication (d)
    [10]-gingerol Medication
    groups only (μM) (tetracycline + [10]-gingerol) (μg/μM)
    AB1 144.6 <10.0
    AB2 162.3 <10.0
    AB4 196.0 <10.0
    AB5 207.5 <10.0
    AB6 198.1 <10.0
  • In summary, the ginger compound of the present invention shows dramatically inhibition on all of the five strains of A. baumannii, with diverse MIC values from 132 μM to 347 μM. With the combination of the ginger compound of the present invention and tetracycline, tetracycline-resistance of the five strains of A. baumannii as it is listed in TABLE 1 can be dramatically improved. Accordingly, antimicrobial activities of ginger compound of the present invention with 25 μg/mL tetracycline are significantly effective against to A. baumannii infection. In the present invention the ginger compound is at a concentration of higher than 0 μM and lower than 10 μM.
  • Through the present invention, a medication compromising 25 μg/ml tetracycline and the ginger compound of the present invention is provided, wherein the ginger compound is selected from a group of [6]-shogaol, [6]-dehydrogingerdione, [6]-gingerol and [10]-gingerol, with a MIC value of <10 μM. The medication of the present invention is sufficient to suppress A. baumannii clinical infection, even for extensively drug-resistant A. baumannii, so that the medication of the present invention can prevent from clinical nosocomial infection of A. baumannii. The medication of the present invention can be manufactured into any form including a tablet, liquid powder or infection and preferable for the form of solution. In general, the medication of the present invention can be given individually or combined with other acceptable medicaments to patients suffered from severe A. baumannii infection, with the ginger compound at a preferable concentration of lower than 10 μM and higher than 0 μM.
  • Additionally, a new therapeutic approach for improving tetracycline-resistance of clinical A. baumannii strains is also developed by providing ginger compound of the present invention combined with tetracycline to against to A. baumannii infection. Preferably, the ginger compound of the present invention can be one of [6]-shogaol, [6]-dehydrogingerdione, [6]-gingerol, [10]-gingerol and their composition. Preferably, the tetracycline is at a concentration of 25 μg/ml and combines with one of [6]-shogaol, [6]-dehydrogingerdione, [6]-gingerol, [10]-gingerol and their composition at a concentration of lower than 10 μM and higher than 0 μM. With such approach, severe clinical A. baumannii infections, especially for extensively drug-resistant A. baumannii infections can be effectively controlled.
  • Although the invention has been described in detail with reference to its presently preferred embodiment, it will be understood by one of ordinary skill in the art that various modifications can be made without departing from the spirit and the scope of the invention, as set forth in the appended claims.

Claims (6)

1. A medication for Acinetobacter baumannii infection, comprising:
tetracycline; and
a ginger compound selected from a group of [6]-dehydrogingerdione, [10]-gingerol, [6]-shogaol and [6]-gingerol.
2. The medication for Acinetobacter baumannii infection as defined in claim 1, with the tetracycline at a concentration of 25 μg/ml.
3. The medication for Acinetobacter baumannii infection as defined in claim 1, with the ginger compound at a concentration of lower than 10 μM and higher than 0 μM.
4. A method for improving tetracycline-resistance of Acinetobacter baumannii, by providing the ginger compound as defined in claim 1 combined with tetracycline to against A. baumannii infection.
5. The method for improving tetracycline-resistance of Acinetobacter baumannii as defined in claim 4, wherein the ginger compound is at a concentration of lower than 10 μM and higher than 0 μM.
6. The method for improving tetracycline-resistance of Acinetobacter baumannii as defined in claim 4, with the tetracycline at a concentration of 25 μg/ml.
US13/042,065 2011-03-07 2011-03-07 Medication for clinical extensively-drug resistant acinetobacter baumannii Abandoned US20120232040A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/042,065 US20120232040A1 (en) 2011-03-07 2011-03-07 Medication for clinical extensively-drug resistant acinetobacter baumannii
US14/028,960 US8802737B2 (en) 2011-03-07 2013-09-17 Method for improving tetracycline-resistance of Acinetobacter baumannii

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/042,065 US20120232040A1 (en) 2011-03-07 2011-03-07 Medication for clinical extensively-drug resistant acinetobacter baumannii

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/028,960 Division US8802737B2 (en) 2011-03-07 2013-09-17 Method for improving tetracycline-resistance of Acinetobacter baumannii

Publications (1)

Publication Number Publication Date
US20120232040A1 true US20120232040A1 (en) 2012-09-13

Family

ID=46796093

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/042,065 Abandoned US20120232040A1 (en) 2011-03-07 2011-03-07 Medication for clinical extensively-drug resistant acinetobacter baumannii
US14/028,960 Expired - Fee Related US8802737B2 (en) 2011-03-07 2013-09-17 Method for improving tetracycline-resistance of Acinetobacter baumannii

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/028,960 Expired - Fee Related US8802737B2 (en) 2011-03-07 2013-09-17 Method for improving tetracycline-resistance of Acinetobacter baumannii

Country Status (1)

Country Link
US (2) US20120232040A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180078619A1 (en) * 2015-04-03 2018-03-22 Konkuk University Glocal Industry-Academic Collaboration Foundation Antibacterial composition for combating carbapenem-resistant gram-negative bacteria comprising adk protein as active ingredient

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5476669A (en) * 1987-10-12 1995-12-19 Examed Australia Pty. Ltd. Method for treatment of gastro intestinal disorders

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6264926B1 (en) 1999-02-12 2001-07-24 Council Of Scientific And Industrial Research Formulation useful as a natural herbal tooth powder
US7658942B2 (en) 2000-04-12 2010-02-09 The Procter & Gamble Company Cosmetic devices
US20060204466A1 (en) 2005-03-08 2006-09-14 Ecolab Inc. Hydroalcoholic antimicrobial composition with skin health benefits
US7736629B2 (en) 2005-11-18 2010-06-15 Colgate-Palmolive Company Red herbal dentifrice
GB2453728B (en) 2007-10-16 2009-11-04 Medical & Pharmaceutical Indus Use of a potent product extracted from rhizomes of zingiber offcinale in preparation of a medicament for treatment gastritis, gastric ulcer and duodenal ulcer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5476669A (en) * 1987-10-12 1995-12-19 Examed Australia Pty. Ltd. Method for treatment of gastro intestinal disorders

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180078619A1 (en) * 2015-04-03 2018-03-22 Konkuk University Glocal Industry-Academic Collaboration Foundation Antibacterial composition for combating carbapenem-resistant gram-negative bacteria comprising adk protein as active ingredient
US10792340B2 (en) * 2015-04-03 2020-10-06 Konkuk University Glocal Industry-Academic Collaboration Foundation Antibacterial composition for combating carbapenem-resistant gram-negative bacteria comprising ADK protein as active ingredient

Also Published As

Publication number Publication date
US20140018324A1 (en) 2014-01-16
US8802737B2 (en) 2014-08-12

Similar Documents

Publication Publication Date Title
JP7245289B2 (en) Methods of treating bacterial infections
US11253557B2 (en) Therapeutic bacteriophage compositions
Chandrasekar et al. Comparison of the activity of antibiotic combinations in vitro with clinical outcome and resistance emergence in serious infection by Pseudomonas aeruginosa in non-neutropenic patients
CN110652512B (en) Application of crizotinib in preparation of anti-gram-positive-bacteria drugs
Alkaabi Bacterial isolates and their antibiograms of burn wound infections in Burns Specialist Hospital in Baghdad
Hoogkamp-Korstanje et al. Ciprofloxacin in acute exacerbations of chronic bronchitis
Balmes et al. Comparative study of azithromycin and amoxicillin/clavulanic acid in the treatment of lower respiratory tract infections
Pulaski et al. Laboratory and clinical studies of polymyxin B and E
Schaad et al. Antipseudomonal therapy in cystic fibrosis: aztreonam and amikacin versus ceftazidime and amikacin administered intravenously followed by oral ciprofloxacin
Vollaard et al. Influence of amoxycillin, erythromycin and roxithromycin on colonization resistance and on appearance of secondary colonization in healthy volunteers
Hayashi et al. Recurrent Gemella haemolysans meningitis in a patient with osteomyelitis of the clivus
US8802737B2 (en) Method for improving tetracycline-resistance of Acinetobacter baumannii
Jauregui et al. Cefepime as treatment for osteomyelitis and other severe bacterial infections
CN115531392B (en) Application of asterone in preparation of pneumolysin inhibitor
TW201130497A (en) A new lytic phage specific to Klebsiella pneumoniae in medication prodection for treating Klebsiella pneumoniae infection related liver abscesses and bacteremia
EP4021505B1 (en) Medicament for treating infectious diseases
Chacon et al. Prospective randomized comparison of pefloxacin and ampicillin plus gentamicin in the treatment of bacteriologically proven biliary tract infections
CN110215445B (en) Application of vanillic acid in inhibiting growth of multiple drug-resistant enterobacter hopcalis
Jibril et al. An open, comparative evaluation of amoxycillin and amoxycillin plus clavulanic acid (‘Augmentin’) in the treatment of bacterial pneumonia in children
Andersen et al. Pivmecillinam in the treatment of therapy resistant urinary tract infections: A comparison with pivmecillinam, pivampicillin and their combination
Petermann Ofloxacin in lower respiratory tract infections
O'Donovan et al. Augmentin (intravenous then oral) compared with cefuroxime followed by cephalexin for chest infections in hospitalised patients
CN112438989B (en) Non-antibiotic antibacterial composition and application thereof
Gremillion et al. Clinical trial of cefonicid for treatment of skin infections
Cleary et al. Anti-infective therapy of infectious endocarditis

Legal Events

Date Code Title Description
AS Assignment

Owner name: KAOHSIUNG MEDICAL UNIVERSITY, TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHEN, YEN-HSU;WANG, HUI-MIN;CHEN, CHUNG-YI;AND OTHERS;REEL/FRAME:025913/0572

Effective date: 20101230

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION