US20120230406A1 - Multi-format video decoder with vector processing and methods for use therewith - Google Patents
Multi-format video decoder with vector processing and methods for use therewith Download PDFInfo
- Publication number
- US20120230406A1 US20120230406A1 US13/076,536 US201113076536A US2012230406A1 US 20120230406 A1 US20120230406 A1 US 20120230406A1 US 201113076536 A US201113076536 A US 201113076536A US 2012230406 A1 US2012230406 A1 US 2012230406A1
- Authority
- US
- United States
- Prior art keywords
- data
- vector
- module
- prediction
- filter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/103—Selection of coding mode or of prediction mode
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/136—Incoming video signal characteristics or properties
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/42—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
- H04N19/436—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation using parallelised computational arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/44—Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/60—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
- H04N19/61—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/90—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
- H04N19/91—Entropy coding, e.g. variable length coding [VLC] or arithmetic coding
Definitions
- the present invention relates to coding used in devices such as video encoders/decoders for stereoscopic television signals.
- Video encoding has become an important issue for modern video processing devices. Robust encoding algorithms allow video signals to be transmitted with reduced bandwidth and stored in less memory. However, the accuracy of these encoding methods face the scrutiny of users that are becoming accustomed to greater resolution and higher picture quality. Standards have been promulgated for many encoding methods including the H.264 standard that is also referred to as MPEG-4, part 10 or Advanced Video Coding, (AVC) and the VP8 standard set forth by On2 Technologies, Inc. While these standards set forth many powerful techniques, further improvements are possible to improve the performance and speed of implementation of such methods. The video signal encoded by these encoding methods must be similarly decoded for playback on most video display devices.
- SVC Scalable Video Coding
- Efficient and fast encoding and decoding of video signals is important to the implementation of many video devices, particularly video devices that are destined for home use. Further limitations and disadvantages of conventional and traditional approaches will become apparent to one of ordinary skill in the art through comparison of such systems with the present invention.
- FIGS. 1-3 present pictorial diagram representations of various video devices in accordance with embodiments of the present invention.
- FIG. 4 presents a block diagram representation of a video system in accordance with an embodiment of the present invention.
- FIG. 5 presents a block diagram representation of a video decoder 102 in accordance with an embodiment of the present invention.
- FIG. 6 presents a block diagram representation of a multi-format video decoder 150 in accordance with an embodiment of the present invention.
- FIG. 7 presents a block diagram representation of a multi-format video decoder 150 in accordance with an embodiment of the present invention.
- FIG. 8 presents a block diagram representation of a decoding process in accordance with an embodiment of the present invention.
- FIG. 9 presents a block diagram representation of a matrix vector processing unit 190 in accordance with another embodiment of the present invention.
- FIG. 10 presents a block diagram representation of a filter vector processing unit in accordance with another embodiment of the present invention.
- FIG. 11 presents a block diagram representation of a VPU instruction 180 in accordance with another embodiment of the present invention.
- FIG. 12 presents a block diagram representation of a video distribution system 375 in accordance with an embodiment of the present invention.
- FIG. 13 presents a block diagram representation of a video storage system 179 in accordance with an embodiment of the present invention.
- FIG. 14 presents a flow diagram representation of a method in accordance with an embodiment of the present invention.
- FIG. 15 presents a flow diagram representation of a method in accordance with an embodiment of the present invention.
- FIG. 16 presents a flow diagram representation of a method in accordance with an embodiment of the present invention.
- FIG. 17 presents a flow diagram representation of a method in accordance with an embodiment of the present invention.
- FIGS. 1-3 present pictorial diagram representations of various video devices in accordance with embodiments of the present invention.
- set top box 10 with built-in digital video recorder functionality or a stand alone digital video recorder, television or monitor 20 and portable computer 30 illustrate electronic devices that incorporate a video decoder in accordance with one or more features or functions of the present invention. While these particular devices are illustrated, the present invention can be implemented in any device that is capable of decoding and/or transcoding video content in accordance with the methods and systems described in conjunction with FIGS. 4-17 and the appended claims.
- FIG. 4 presents a block diagram representation of a video decoder 102 in accordance with an embodiment of the present invention.
- this video device includes a receiving module 100 , such as a server, cable head end, television receiver, cable television receiver, satellite broadcast receiver, broadband modem, 3G transceiver or other information receiver or transceiver that is capable of receiving a received signal 98 and generating a video signal 110 that has been encoded via a video encoding format.
- Video processing device 125 includes video decoder 102 and is coupled to the receiving module 100 to decode or transcode the video signal for storage, editing, and/or playback in a format corresponding to video display device 104 .
- Video processing device can include set top box 10 with built-in digital video recorder functionality or a stand alone digital video recorder. While shown as separate from video display device 104 , video processing device 125 , including video decoder 102 can be incorporated in television or monitor 20 and portable computer 30 of other device that includes a video decoder, such as video decoder 102 .
- the received signal 98 is a broadcast video signal, such as a television signal, high definition television signal, enhanced definition television signal or other broadcast video signal that has been transmitted over a wireless medium, either directly or through one or more satellites or other relay stations or through a cable network, optical network or other transmission network.
- received signal 98 can be generated from a stored video file, played back from a recording medium such as a magnetic tape, magnetic disk or optical disk, and can include a streaming video signal that is transmitted over a public or private network such as a local area network, wide area network, metropolitan area network or the Internet.
- Video signal 110 can include a digital video signal complying with a digital video codec standard such as H.264, MPEG-4 Part 10 Advanced Video Coding (AVC) including a SVC signal, an encoded stereoscopic video signal having a base layer that includes a 2D compatible base layer and an enhancement layer generated by processing in accordance with an MVC extension of MPEG-4 AVC, or another digital format such as a Motion Picture Experts Group (MPEG) format (such as MPEG1, MPEG2 or MPEG4), Quicktime format, Real Media format, Windows Media Video (WMV) or Audio Video Interleave (AVI), video coding one (VC-1), VP8, etc.
- MPEG Motion Picture Experts Group
- WMV Windows Media Video
- AVI Audio Video Interleave
- Video display devices 104 can include a television, monitor, computer, handheld device or other video display device that creates an optical image stream either directly or indirectly, such as by projection, based on the processed video signal 112 either as a streaming video signal or by playback of a stored digital video file.
- FIG. 5 presents a block diagram representation of a video decoder 102 in accordance with an embodiment of the present invention.
- Video decoder 102 includes an entropy decoding device 140 having a processing module 142 that generates entropy decoded (EDC) data 146 from an encoded video signal such as video signal 110 .
- the EDC data 146 can include run level data, motion vector differential data, and macroblock header data and/or other data that results from the entropy decoding of an encoded video signal.
- Multi-format video decoding device 150 includes a processing module 152 , a memory module 154 and a hardware accelerator module 156 that operate to generate a decoded video signal, such as processed video signal 112 , from the EDC data 146 .
- the entropy decoding device 140 and the multi-format video decoding device 150 operate contemporaneously in a pipelined process where the multi-format video decoding device 150 generates a first portion of the decoded video signal during at least a portion of time that the entropy decoding device 140 generates EDC data 146 from a second portion of the encoded video signal.
- the processing modules 142 and 152 can each be implemented using a single processing device or a plurality of processing devices.
- a processing device may be a microprocessor, co-processors, a micro-controller, digital signal processor, microcomputer, central processing unit, field programmable gate array, programmable logic device, state machine, logic circuitry, analog circuitry, digital circuitry, and/or any device that manipulates signals (analog and/or digital) based on operational instructions that are stored in a memory, such as memory modules 144 and 154 .
- These memories may each be a single memory device or a plurality of memory devices.
- Such a memory device can include a hard disk drive or other disk drive, read-only memory, random access memory, volatile memory, non-volatile memory, static memory, dynamic memory, flash memory, cache memory, and/or any device that stores digital information.
- the processing modules 142 and 152 implement one or more of their functions via a state machine, analog circuitry, digital circuitry, and/or logic circuitry
- the memory storing the corresponding operational instructions may be embedded within, or external to, the circuitry comprising the state machine, analog circuitry, digital circuitry, and/or logic circuitry.
- the processing modules 142 and 152 each includes a processor produced by ARC International to implement the neighbor management module 218 , however other processor configurations could likewise be employed.
- FIG. 6 presents a block diagram representation of a multi-format video decoder 150 in accordance with an embodiment of the present invention.
- the memory module 154 includes a software library 160 that stores format configuration data corresponding to a plurality of video coding formats such as such as H.264, MPEG-4 Part 10 Advanced Video Coding (AVC) including the SVC and MVC extensions of MPEG-4 AVC, MPEG2, MPEG4, Quicktime format, Real Media format, Windows Media Video (WMV) or Audio Video Interleave (AVI), video coding one (VC-1), VP8, or other video coding/compression format, etc.
- the hardware accelerator module 156 includes a plurality of vector processor units (VPU 1 , VPU 2 , . . .
- VPU N that operate in conjunction with processing module 152 to generating a decoded video signal from the EDC data 146 .
- the plurality of vector processing units and the processing module 152 are configured, based on the configuration data, to a selected one of the plurality of video coding formats. In this fashion, a since video decoder 102 can be configured for operation of the particular video coding format or formats of the video signal 110 .
- the multi-format video decoder 150 can receive selection data from a user or designer that indicates the particular video coding format.
- EDC data 146 can be analyzed by processing module 152 to identify the video coding format of the video signal 110 .
- the multi-format video decoder 150 responds to the selection by retrieving the configuration data from the software library 160 and by configuring the processing module 152 and the vector processing units to decode the selected video coding format.
- Configuration data can include loading program instructions executed by the processing module 152 and the vector processing units of the hardware accelerator module 156 along with other data used in conjunction with the decoding of the EDC data 146 .
- the VPU instructions include one or more instructions that configure the vector processing units of hardware accelerator module 156 to the selected coding format, in addition to instructions that perform the particular decoding operations performed by the vector processing units in accordance with the selected video coding format.
- the vector processors can include one or more matrix vector processors that perform parallel matrix operations such as matrix addition, multiplication, transposition, inversion and/or other matrix operation.
- the vector processors can further include one or more filter vector processors that perform parallel filter operations.
- These vector processing units are configured via VPU programming instructions that include vector instructions, scalar instructions and branching instructions, to operate in accordance with the selected video coding format.
- FIG. 7 presents a block diagram representation of a multi-format video decoder 150 in accordance with an embodiment of the present invention.
- multi-format video decoder 150 includes a processing module 152 and a memory module 154 as described in conjunction with FIG. 5 .
- the multi-format video decoding device 150 further includes a bus 221 , a signal interface 158 , decode motion compensation module 204 , neighbor management module 218 , deblocking filter module 222 , inverse transform module 276 , inverse quantization module 274 , and inverse intra prediction module 211 . While a particular bus architecture is shown that represents the functionally of communication between the various modules of multi-format video decoding device 150 , other architectures can be implemented in accordance with the broad scope of the present invention.
- the signal interface 158 receives EDC data 146 and optionally buffers and preprocesses the EDC data 146 for processing by the other modules of multi-format video decoding device 150 .
- the decoded video signal generated via processing by the other modules of multi-format video decoding device 150 is optionally buffered, such as via a ring buffer or other buffer structure implemented in conjunction with memory locations of memory module 154 and formatted for output as processed video signal 112 .
- the decode motion compensation module 204 , neighbor management module 218 , deblocking filter module 222 , inverse transform module 276 , inverse quantization module 274 , and inverse intra prediction module 211 are configured to operate to decode the EDC data 146 in accordance with the selected video format such as VP8, H.264 (including MVC and/or SVC), VC-1 or other compression standard.
- the decode motion compensation module 204 , neighbor management module 218 , deblocking filter module 222 , inverse transform module 276 , inverse quantization module 274 , inverse intra prediction module 211 are implemented using software stored in memory module 154 and executed via processing module 152 as well as via vector processing unit instructions executed by the plurality of vector processing units of hardware accelerator module 156 .
- the decode motion compensation module 204 , deblocking filter module 222 , and inverse intra prediction module 211 are implemented using three separate filter vector processing units, one for each module.
- the inverse transform module 276 and the inverse quantization module 274 are implemented via two separate matrix vector processing units, one for each module.
- the neighbor management module 218 is implemented via software executed by processing module 152 .
- neighbor management module 218 In operation, neighbor management module 218 generates motion vector data, macroblock mode data and deblock strength data, based on the motion vector differential data and the macroblock header data.
- a data structure such as a linked list, array or one or more registers are used to associate and store neighbor data for each macroblock of a processed picture.
- the neighbor management module 218 stores the motion vector data for a group of macroblocks that neighbor a current macroblock and generates the motion vector data for the current macroblock based on both the macroblock mode data and the motion vector data for the group of macroblocks that neighbor the current macroblock.
- the neighbor management module 218 calculates a motion vector magnitude and adjusts the deblock strength data based on the motion vector magnitude.
- the decode motion compensation module 204 generates inter-prediction data based on the motion vector data when the macroblock mode data indicates an inter-prediction mode.
- the inverse intra-prediction module 211 generates intra-prediction data when the macroblock mode data indicates an intra-prediction mode.
- the inverse quantization module 274 dequantizes run level data. The dequantized run level data is inverse transformed, such as via an inverse discrete cosine transform or other inverse transform via inverse transform module 276 to generate residual data.
- the inverse intra-prediction module 211 generates reconstructed picture data based on the residual data and on the inter-prediction data when the macroblock mode data indicates an inter-prediction mode and based on the residual data and on the intra-prediction data when the macroblock mode data indicates an intra-prediction mode.
- the deblocking filter module 222 generates the decoded video signal from the reconstructed picture data, based on the deblock strength data.
- the deblocking filter 222 operates to smooth horizontal and vertical edges of a block that may correspond to exterior boundaries of a macroblock of a frame or field of video signal 110 or edges that occur in the interior of a macroblock.
- a boundary strength that is determined based on quantization parameters, adjacent macroblock type, etcetera, can vary the amount of filtering to be performed.
- the H.264 standard defines two parameters, ⁇ and ⁇ , that are used to determine the strength of filtering on a particular edge.
- the parameter ⁇ is a boundary edge parameter applied to data that includes macroblock boundaries.
- the parameter ⁇ is an interior edge parameter applied to data that within a macroblock interior.
- motion vector magnitude is used by neighbor management module 218 to generate deblock strength data that adjusts the values for ⁇ and ⁇ for deblocking filter module 222 . For instance, when the motion vector magnitude indicates large motion vectors, e.g. magnitudes above a first magnitude threshold, a larger value of ⁇ can be selected. Further, motion vector magnitude indicates small motion vectors, e.g. magnitudes below the same or other threshold, a smaller value of a can be selected.
- FIG. 8 presents a block diagram representation of a decoding process in accordance with an embodiment of the present invention.
- the neighbor management module 218 receives macroblock header and motion vector differential data 230 from the EDC data 146 via buffer 300 .
- the neighbor management module 218 checks the macroblock (MB) mode from the MB header.
- MB macroblock
- inter-prediction mode the neighbor management module 218 calculates motion vectors and also calculates deblock strength data and passes this data along with other EDC data, such as run level data 272 to one or more frame buffers, represented in the process flow as buffers 302 , 304 , 308 , 310 and 318 implemented via memory module 154 .
- the decode motion compensation module 204 generates inter-prediction data based on the motion vectors and on reference frames retrieved from the frame buffer and stores the results in buffer 314 , such as a ring buffer.
- the inverse intra prediction module 211 generates intra-prediction data.
- the inverse quantization module 274 retrieves run level data 272 from buffer 304 and inverse quantizes the data with data from the frame buffer 302 and generates de-quantized data that is stored in buffer 306 .
- Inverse transforms module 276 inverse transforms the de-quantized data based on the frame buffered data to generate residual data that is stored in buffer 312 .
- the residual data is combined in inverse intra-prediction module 211 with either intra-prediction data or inter-prediction data supplied in response to the mode determination by neighbor management module 218 , to generate current reconstructed frames/fields that are buffered in the buffer 316 .
- Deblocking filter module 222 applies deblocking filtering to the reconstructed frames/fields in accordance with the deblock strength data from neighbor management module 218 to generate decoded video output in the form of filtered pictures 226 that are buffered via buffer 320 .
- the buffers 306 , 312 , 314 , 316 , 318 and 320 can each be a ring buffer implemented via memory module 154 , however other buffer configurations are likewise possible.
- FIG. 9 presents a block diagram representation of a matrix vector processing unit 190 in accordance with another embodiment of the present invention.
- matrix vector processing unit 190 includes a dedicated hardware block that performs parallel matrix operations such as matrix addition, multiplication, transposition, inversion and/or other matrix operation on an input matrix 192 to generate an output matrix 194 .
- the matrix vector processing unit 190 is configured via VPU instructions 180 that include vector instructions, scalar instructions and branching instructions. These VPU instructions 180 include configuration data and commands 170 that configure the matrix VPU 190 in accordance with the selected video coding format and command the matrix vector processing unit to perform the corresponding functions such as all or part of an inverse discrete cosine transform, inverse quantization or other matrix function of the multi-format video decoder 150 .
- the VPU instructions 180 further include vector and/or scalar data used in conjunction with vector and scalar operations of the device.
- FIG. 10 resents a block diagram representation of a filter vector processing unit 195 in accordance with another embodiment of the present invention
- filter vector processing unit 195 includes a dedicated hardware block that performs parallel filter operations such as an n-tap one-dimensional horizontal filter, an n-tap one-dimensional vertical filter, or an n-tap two-dimensional filter.
- the filter VPU 196 operates to filter input data 196 , such as a block of pixels, a row of pixels, a column of pixels of a video picture or other data to generate filtered data 198 .
- the filter vector processing unit 195 is configured via VPU instructions 181 that include vector instructions, scalar instructions and branching instructions. These VPU instructions 181 include configuration data and commands 172 that configure the filter VPU 195 in accordance with the selected video coding format such as by programming the filter parameters,(e.g. the number of taps, type of filter, and the particular filter coefficients) and command the filter vector processing unit to perform the corresponding functions such as all or part of the generation of inter-prediction data, intra-prediction data and or filtered picture data of the multi-function video decoder 150 .
- the VPU instructions 181 further include vector and/or scalar data used in conjunction with vector and scalar operations of the device.
- FIG. 11 presents a block diagram representation of a VPU instruction 180 or 181 in accordance with another embodiment of the present invention.
- the VPU instructions include three portions, vector instruction 182 , scalar instruction 184 , and branching instruction 186 .
- a vector processing unit such as matrix vector processing unit 190 or filter vector processing unit 195 can be configured/programmed to move blocks of data, to perform vector or scalar operations on the data, to perform conditional or unconditional branching, or to perform other logical or arithmetic operations.
- the vector instruction 182 can include commands and data to perform multiple simultaneous logical or arithmetic operations via a single instruction.
- the vector data can include data blocks of 32 bits or more and the matrix or vector filter operations include any of the operations discussed in conjunction with either matrix VPU 190 or filter VPU 195 .
- the scalar instruction 184 can include commands and data to perform single scalar logical or arithmetic operations via a single instruction.
- the scalar data can include scalar data blocks of 32 bits or less or long scalar blocks of more than 32 bits.
- Matrix or filter scalar operations include mask creation, data masking, addressing instructions, data move operations, flag calculations, etc.
- Branching instructions include conditional or unconditional branching instructions based on logical or arithmetic conditions.
- the filter VPU 195 implements a deblocking filter as part of deblocking filter module 222 .
- the filter VPU 195 executes filter VPU instructions 181 in a similar fashion to a function or subroutine call.
- the filter VPU 195 can execute a data move command to configure a particular n-tap deblocking filter, based on the selection of the particular video coding format, by loading filter coefficients and other configuration data to establish an initial filter configuration.
- the deblock strength is retrieved to optionally adjust the filter coefficients or otherwise adjust the filter configuration to a current deblock strength.
- input data 196 is retrieved, filtered and transferred to a buffer in response to filter commands.
- FIG. 12 presents a block diagram representation of a video distribution system 375 in accordance with an embodiment of the present invention.
- video signal 110 is transmitted from a video encoder via a transmission path 122 to a video decoder 102 .
- the video decoder 102 operates to decode the video signal 110 for display on a display devices 12 or 14 or other display device.
- video decoder 102 can be implemented in a set-top box, digital video recorder, router or home gateway.
- decoder 102 can optionally be incorporated directly in the display device 12 or 14 .
- the transmission path 122 can include a wireless path that operates in accordance with a wireless local area network protocol such as an 802.11 protocol, a WIMAX protocol, a Bluetooth protocol, etc. Further, the transmission path can include a wired path that operates in accordance with a wired protocol such as a Universal Serial Bus protocol, an Ethernet protocol or other high speed protocol.
- a wireless local area network protocol such as an 802.11 protocol, a WIMAX protocol, a Bluetooth protocol, etc.
- the transmission path can include a wired path that operates in accordance with a wired protocol such as a Universal Serial Bus protocol, an Ethernet protocol or other high speed protocol.
- FIG. 13 presents a block diagram representation of a video storage system 179 in accordance with an embodiment of the present invention.
- device 11 is a set top box with built-in digital video recorder functionality, a stand alone digital video recorder, a DVD recorder/player or other device that stores the video signal 110 .
- device 11 can include video decoder 102 that operates to decode the video signal 110 when retrieved from storage to generate a processed video signal 112 in a format that is suitable for display by video display device 12 or 14 .
- video storage system 179 can include a hard drive, flash memory device, computer, DVD burner, or any other device that is capable of generating, storing, decoding, transcoding and/or displaying the video content of video signal 110 in accordance with the methods and systems described in conjunction with the features and functions of the present invention as described herein.
- FIG. 14 presents a block diagram representation of a method in accordance with an embodiment of the present invention.
- a method is presented for use in conjunction with one or more functions and features described in conjunction with FIGS. 1-9 .
- EDC entropy decoded
- step 400 entropy decoded (EDC) data is generated from an encoded video signal.
- step 402 format configuration data, corresponding to a plurality of video coding formats, is stored.
- a plurality of vector processor units are configured, based on the configuration data, to a selected one of the plurality of video coding formats.
- a decoded video signal is generated from the EDC data, via the plurality of vector processing units, in accordance with the selected one of the plurality of video coding formats.
- step 404 includes configuring at least one or more matrix vector processors to parallel process at least one matrix operation and/or configuring one or more filter vector processors to parallel process at least one filter operation.
- FIG. 15 presents a block diagram representation of a method in accordance with an embodiment of the present invention. In particular, a method is presented for use in conjunction with one or more functions and features described in conjunction with FIGS. 1-10 .
- EDC entropy decoded
- step 410 entropy decoded (EDC) data is generated from an encoded video signal, wherein the EDC data includes motion vector differential data and macroblock header data and run level data.
- a decoded video signal is generated from the EDC data via a plurality of vector processor units, by:
- the plurality of vector processors includes at least one matrix vector processor that parallel processes at least one matrix operation in conjunction with the generation of the inverse quantization data based on the run level data.
- the plurality of vector processors can further include at least one matrix vector processor that parallel processes at least one matrix operation in conjunction with the generation of the residual data based on the inverse quantization data; at least one filter vector processor that parallel processes at least one filter operation of the generation of the inter-prediction data based on the motion vector data; at least one filter vector processor that parallel processes at least one filter operation of the generation of the intra-prediction data based on the macroblock mode data; and/or at least one filter vector processor that parallel processes at least one filter operation of the generation of the decoded video signal from the reconstructed picture data,.
- FIG. 16 presents a block diagram representation of a method in accordance with an embodiment of the present invention. In particular, a method is presented for use in conjunction with one or more functions and features described in conjunction with FIGS. 1 - 9 .
- EDC entropy decoded
- step 420 entropy decoded (EDC) data is generated from an encoded video signal.
- step 422 a plurality of vector processor units are programmed based on VPU instructions formatted to include a vector instruction portion, a scalar instruction portion, and a branching instruction portion.
- a decoded video signal is generated from the EDC data, via the plurality of vector processing units.
- the step 422 includes configuring at least one matrix vector processor to parallel process at least one matrix operation, and wherein the vector instruction includes a matrix command and matrix data.
- Step 422 can also include configuring at least one filter vector processor to parallel process at least one filter operation, and wherein the vector instruction includes a filter command and filter data.
- the branching instruction can include an unconditional branching instruction or a conditional branching instruction.
- the scalar instruction can includes a data component, a scalar logical operation on the data component, and/or a scalar arithmetic operation on the data component.
- FIG. 17 presents a block diagram representation of a method in accordance with an embodiment of the present invention. In particular, a method is presented for use in conjunction with one or more functions and features described in conjunction with FIGS. 1-9 .
- entropy decoded (EDC) data is generated from an encoded video signal.
- at least one filter vector processing unit is configured based on a selection of one of a plurality of video coding formats.
- a decoded video signal is generated from the EDC data, via the at least one filter vector processing unit.
- Step 434 can include parallel processing picture data via the at least one filter vector processor in accordance with a vector instruction that includes a filter command and picture data, wherein the picture data includes a plurality of pixels.
- Step 434 can include implementing an n-tap one-dimensional vertical filter; implementing an n-tap one-dimensional horizontal filter; and/or implementing an n-tap two-dimensional filter.
- the term “substantially” or “approximately”, as may be used herein, provides an industry-accepted tolerance to its corresponding term and/or relativity between items. Such an industry-accepted tolerance ranges from less than one percent to twenty percent and corresponds to, but is not limited to, component values, integrated circuit process variations, temperature variations, rise and fall times, and/or thermal noise. Such relativity between items ranges from a difference of a few percent to magnitude differences.
- the term “coupled”, as may be used herein, includes direct coupling and indirect coupling via another component, element, circuit, or module where, for indirect coupling, the intervening component, element, circuit, or module does not modify the information of a signal but may adjust its current level, voltage level, and/or power level.
- inferred coupling i.e., where one element is coupled to another element by inference
- inferred coupling includes direct and indirect coupling between two elements in the same manner as “coupled”.
- the term “compares favorably”, as may be used herein, indicates that a comparison between two or more elements, items, signals, etc., provides a desired relationship. For example, when the desired relationship is that signal 1 has a greater magnitude than signal 2 , a favorable comparison may be achieved when the magnitude of signal 1 is greater than that of signal 2 or when the magnitude of signal 2 is less than that of signal 1 .
- a module includes a functional block that is implemented in hardware, software, and/or firmware that performs one or module functions such as the processing of an input signal to produce an output signal.
- a module may contain submodules that themselves are modules.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Computing Systems (AREA)
- Theoretical Computer Science (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
A video decoder includes an entropy decoding device that generates entropy decoded (EDC) data from an encoded video signal. A multi-format video decoding device generates a decoded video signal from the EDC data, the multi-format video decoding device having a plurality of modules that are implemented via a plurality of vector processor units.
Description
- The present application claims priority under 35 USC 119(e) to the provisionally filed application entitled, “MULTI-FORMAT VIDEO DECODER AND METHODS FOR USE THEREWITH,” having Ser. No. 61/450,859, filed on Mar. 9, 2011, the contents of which are incorporated herein by reference thereto.
- The present invention relates to coding used in devices such as video encoders/decoders for stereoscopic television signals.
- Video encoding has become an important issue for modern video processing devices. Robust encoding algorithms allow video signals to be transmitted with reduced bandwidth and stored in less memory. However, the accuracy of these encoding methods face the scrutiny of users that are becoming accustomed to greater resolution and higher picture quality. Standards have been promulgated for many encoding methods including the H.264 standard that is also referred to as MPEG-4,
part 10 or Advanced Video Coding, (AVC) and the VP8 standard set forth by On2 Technologies, Inc. While these standards set forth many powerful techniques, further improvements are possible to improve the performance and speed of implementation of such methods. The video signal encoded by these encoding methods must be similarly decoded for playback on most video display devices. - The Motion Picture Expert Group (MPEG) has presented a Scalable Video Coding (SVC) Annex G extension to H.264/MPEG-4 AVC for standardization. SVC provides for encoding of video bitstreams that include subset bitstreams that can represent lower spatial resolution, lower temporal resolution or otherwise lower quality video. A subset bitstream can be derived by dropping packets from the total bitstream. SVC streams allow end devices to flexibly scale the temporal resolution, spatial resolution or video fidelity, for example, to match the capabilities of a particular device.
- Efficient and fast encoding and decoding of video signals is important to the implementation of many video devices, particularly video devices that are destined for home use. Further limitations and disadvantages of conventional and traditional approaches will become apparent to one of ordinary skill in the art through comparison of such systems with the present invention.
-
FIGS. 1-3 present pictorial diagram representations of various video devices in accordance with embodiments of the present invention. -
FIG. 4 presents a block diagram representation of a video system in accordance with an embodiment of the present invention. -
FIG. 5 presents a block diagram representation of avideo decoder 102 in accordance with an embodiment of the present invention. -
FIG. 6 presents a block diagram representation of amulti-format video decoder 150 in accordance with an embodiment of the present invention. -
FIG. 7 presents a block diagram representation of amulti-format video decoder 150 in accordance with an embodiment of the present invention. -
FIG. 8 presents a block diagram representation of a decoding process in accordance with an embodiment of the present invention. -
FIG. 9 presents a block diagram representation of a matrixvector processing unit 190 in accordance with another embodiment of the present invention. -
FIG. 10 presents a block diagram representation of a filter vector processing unit in accordance with another embodiment of the present invention. -
FIG. 11 presents a block diagram representation of aVPU instruction 180 in accordance with another embodiment of the present invention. -
FIG. 12 presents a block diagram representation of avideo distribution system 375 in accordance with an embodiment of the present invention. -
FIG. 13 presents a block diagram representation of avideo storage system 179 in accordance with an embodiment of the present invention. -
FIG. 14 presents a flow diagram representation of a method in accordance with an embodiment of the present invention. -
FIG. 15 presents a flow diagram representation of a method in accordance with an embodiment of the present invention. -
FIG. 16 presents a flow diagram representation of a method in accordance with an embodiment of the present invention. -
FIG. 17 presents a flow diagram representation of a method in accordance with an embodiment of the present invention. -
FIGS. 1-3 present pictorial diagram representations of various video devices in accordance with embodiments of the present invention. In particular, settop box 10 with built-in digital video recorder functionality or a stand alone digital video recorder, television ormonitor 20 andportable computer 30 illustrate electronic devices that incorporate a video decoder in accordance with one or more features or functions of the present invention. While these particular devices are illustrated, the present invention can be implemented in any device that is capable of decoding and/or transcoding video content in accordance with the methods and systems described in conjunction withFIGS. 4-17 and the appended claims. -
FIG. 4 presents a block diagram representation of avideo decoder 102 in accordance with an embodiment of the present invention. In particular, this video device includes areceiving module 100, such as a server, cable head end, television receiver, cable television receiver, satellite broadcast receiver, broadband modem, 3G transceiver or other information receiver or transceiver that is capable of receiving a receivedsignal 98 and generating avideo signal 110 that has been encoded via a video encoding format.Video processing device 125 includesvideo decoder 102 and is coupled to the receivingmodule 100 to decode or transcode the video signal for storage, editing, and/or playback in a format corresponding tovideo display device 104. Video processing device can include settop box 10 with built-in digital video recorder functionality or a stand alone digital video recorder. While shown as separate fromvideo display device 104,video processing device 125, includingvideo decoder 102 can be incorporated in television or monitor 20 andportable computer 30 of other device that includes a video decoder, such asvideo decoder 102. - In an embodiment of the present invention, the received
signal 98 is a broadcast video signal, such as a television signal, high definition television signal, enhanced definition television signal or other broadcast video signal that has been transmitted over a wireless medium, either directly or through one or more satellites or other relay stations or through a cable network, optical network or other transmission network. In addition, receivedsignal 98 can be generated from a stored video file, played back from a recording medium such as a magnetic tape, magnetic disk or optical disk, and can include a streaming video signal that is transmitted over a public or private network such as a local area network, wide area network, metropolitan area network or the Internet. -
Video signal 110 can include a digital video signal complying with a digital video codec standard such as H.264, MPEG-4 Part 10 Advanced Video Coding (AVC) including a SVC signal, an encoded stereoscopic video signal having a base layer that includes a 2D compatible base layer and an enhancement layer generated by processing in accordance with an MVC extension of MPEG-4 AVC, or another digital format such as a Motion Picture Experts Group (MPEG) format (such as MPEG1, MPEG2 or MPEG4), Quicktime format, Real Media format, Windows Media Video (WMV) or Audio Video Interleave (AVI), video coding one (VC-1), VP8, etc.Video display devices 104 can include a television, monitor, computer, handheld device or other video display device that creates an optical image stream either directly or indirectly, such as by projection, based on the processedvideo signal 112 either as a streaming video signal or by playback of a stored digital video file. -
FIG. 5 presents a block diagram representation of avideo decoder 102 in accordance with an embodiment of the present invention.Video decoder 102 includes anentropy decoding device 140 having aprocessing module 142 that generates entropy decoded (EDC)data 146 from an encoded video signal such asvideo signal 110. TheEDC data 146 can include run level data, motion vector differential data, and macroblock header data and/or other data that results from the entropy decoding of an encoded video signal. Multi-formatvideo decoding device 150 includes aprocessing module 152, amemory module 154 and ahardware accelerator module 156 that operate to generate a decoded video signal, such as processedvideo signal 112, from theEDC data 146. - In an embodiment of the present invention, the
entropy decoding device 140 and the multi-formatvideo decoding device 150 operate contemporaneously in a pipelined process where the multi-formatvideo decoding device 150 generates a first portion of the decoded video signal during at least a portion of time that theentropy decoding device 140 generatesEDC data 146 from a second portion of the encoded video signal. - The
processing modules memory modules processing modules processing modules neighbor management module 218, however other processor configurations could likewise be employed. -
FIG. 6 presents a block diagram representation of amulti-format video decoder 150 in accordance with an embodiment of the present invention. Thememory module 154 includes asoftware library 160 that stores format configuration data corresponding to a plurality of video coding formats such as such as H.264, MPEG-4 Part 10 Advanced Video Coding (AVC) including the SVC and MVC extensions of MPEG-4 AVC, MPEG2, MPEG4, Quicktime format, Real Media format, Windows Media Video (WMV) or Audio Video Interleave (AVI), video coding one (VC-1), VP8, or other video coding/compression format, etc. Thehardware accelerator module 156 includes a plurality of vector processor units (VPU 1,VPU 2, . . . VPU N) that operate in conjunction withprocessing module 152 to generating a decoded video signal from theEDC data 146. The plurality of vector processing units and theprocessing module 152 are configured, based on the configuration data, to a selected one of the plurality of video coding formats. In this fashion, a sincevideo decoder 102 can be configured for operation of the particular video coding format or formats of thevideo signal 110. - In an embodiment of the present invention, the
multi-format video decoder 150 can receive selection data from a user or designer that indicates the particular video coding format. In another embodiment of the present invention,EDC data 146 can be analyzed by processingmodule 152 to identify the video coding format of thevideo signal 110. In either case, themulti-format video decoder 150 responds to the selection by retrieving the configuration data from thesoftware library 160 and by configuring theprocessing module 152 and the vector processing units to decode the selected video coding format. - Configuration data can include loading program instructions executed by the
processing module 152 and the vector processing units of thehardware accelerator module 156 along with other data used in conjunction with the decoding of theEDC data 146. For example, when a particular video coding format is selected, software forprocessing module 152 and VPU instructions for thehardware accelerator module 156 are selected to be executed. In one mode of operation, the VPU instructions include one or more instructions that configure the vector processing units ofhardware accelerator module 156 to the selected coding format, in addition to instructions that perform the particular decoding operations performed by the vector processing units in accordance with the selected video coding format. - As will be discussed further in conjunction with
FIGS. 7-12 , the vector processors can include one or more matrix vector processors that perform parallel matrix operations such as matrix addition, multiplication, transposition, inversion and/or other matrix operation. The vector processors can further include one or more filter vector processors that perform parallel filter operations. These vector processing units are configured via VPU programming instructions that include vector instructions, scalar instructions and branching instructions, to operate in accordance with the selected video coding format. -
FIG. 7 presents a block diagram representation of amulti-format video decoder 150 in accordance with an embodiment of the present invention. In particular,multi-format video decoder 150 includes aprocessing module 152 and amemory module 154 as described in conjunction withFIG. 5 . In addition, the multi-formatvideo decoding device 150 further includes abus 221, asignal interface 158, decodemotion compensation module 204,neighbor management module 218,deblocking filter module 222,inverse transform module 276,inverse quantization module 274, and inverseintra prediction module 211. While a particular bus architecture is shown that represents the functionally of communication between the various modules of multi-formatvideo decoding device 150, other architectures can be implemented in accordance with the broad scope of the present invention. - In operation, the
signal interface 158 receivesEDC data 146 and optionally buffers and preprocesses theEDC data 146 for processing by the other modules of multi-formatvideo decoding device 150. Similarly, the decoded video signal generated via processing by the other modules of multi-formatvideo decoding device 150 is optionally buffered, such as via a ring buffer or other buffer structure implemented in conjunction with memory locations ofmemory module 154 and formatted for output as processedvideo signal 112. - The decode
motion compensation module 204,neighbor management module 218,deblocking filter module 222,inverse transform module 276,inverse quantization module 274, and inverseintra prediction module 211 are configured to operate to decode theEDC data 146 in accordance with the selected video format such as VP8, H.264 (including MVC and/or SVC), VC-1 or other compression standard. In an embodiment of the present invention, the decodemotion compensation module 204,neighbor management module 218,deblocking filter module 222,inverse transform module 276,inverse quantization module 274, inverseintra prediction module 211 are implemented using software stored inmemory module 154 and executed viaprocessing module 152 as well as via vector processing unit instructions executed by the plurality of vector processing units ofhardware accelerator module 156. In a particular embodiment, the decodemotion compensation module 204,deblocking filter module 222, and inverseintra prediction module 211 are implemented using three separate filter vector processing units, one for each module. In addition, theinverse transform module 276 and theinverse quantization module 274 are implemented via two separate matrix vector processing units, one for each module. In an embodiment of the present invention theneighbor management module 218 is implemented via software executed by processingmodule 152. - In operation,
neighbor management module 218 generates motion vector data, macroblock mode data and deblock strength data, based on the motion vector differential data and the macroblock header data. In an embodiment of the present invention, a data structure, such as a linked list, array or one or more registers are used to associate and store neighbor data for each macroblock of a processed picture. In particular, theneighbor management module 218 stores the motion vector data for a group of macroblocks that neighbor a current macroblock and generates the motion vector data for the current macroblock based on both the macroblock mode data and the motion vector data for the group of macroblocks that neighbor the current macroblock. In addition, theneighbor management module 218 calculates a motion vector magnitude and adjusts the deblock strength data based on the motion vector magnitude. - The decode
motion compensation module 204 generates inter-prediction data based on the motion vector data when the macroblock mode data indicates an inter-prediction mode. Theinverse intra-prediction module 211 generates intra-prediction data when the macroblock mode data indicates an intra-prediction mode. Theinverse quantization module 274 dequantizes run level data. The dequantized run level data is inverse transformed, such as via an inverse discrete cosine transform or other inverse transform viainverse transform module 276 to generate residual data. Theinverse intra-prediction module 211 generates reconstructed picture data based on the residual data and on the inter-prediction data when the macroblock mode data indicates an inter-prediction mode and based on the residual data and on the intra-prediction data when the macroblock mode data indicates an intra-prediction mode. - The
deblocking filter module 222 generates the decoded video signal from the reconstructed picture data, based on the deblock strength data. In operation, thedeblocking filter 222 operates to smooth horizontal and vertical edges of a block that may correspond to exterior boundaries of a macroblock of a frame or field ofvideo signal 110 or edges that occur in the interior of a macroblock. A boundary strength, that is determined based on quantization parameters, adjacent macroblock type, etcetera, can vary the amount of filtering to be performed. For example, the H.264 standard defines two parameters, α and β, that are used to determine the strength of filtering on a particular edge. The parameter α is a boundary edge parameter applied to data that includes macroblock boundaries. The parameter β is an interior edge parameter applied to data that within a macroblock interior. In accordance with the present invention, motion vector magnitude is used byneighbor management module 218 to generate deblock strength data that adjusts the values for α and β for deblockingfilter module 222. For instance, when the motion vector magnitude indicates large motion vectors, e.g. magnitudes above a first magnitude threshold, a larger value of α can be selected. Further, motion vector magnitude indicates small motion vectors, e.g. magnitudes below the same or other threshold, a smaller value of a can be selected. -
FIG. 8 presents a block diagram representation of a decoding process in accordance with an embodiment of the present invention. In this embodiment, theneighbor management module 218 receives macroblock header and motion vectordifferential data 230 from theEDC data 146 viabuffer 300. Theneighbor management module 218 checks the macroblock (MB) mode from the MB header. In inter-prediction mode, theneighbor management module 218 calculates motion vectors and also calculates deblock strength data and passes this data along with other EDC data, such asrun level data 272 to one or more frame buffers, represented in the process flow asbuffers memory module 154. The decodemotion compensation module 204 generates inter-prediction data based on the motion vectors and on reference frames retrieved from the frame buffer and stores the results inbuffer 314, such as a ring buffer. In intra-prediction mode, the inverseintra prediction module 211 generates intra-prediction data. - The
inverse quantization module 274 retrieves runlevel data 272 frombuffer 304 and inverse quantizes the data with data from theframe buffer 302 and generates de-quantized data that is stored inbuffer 306. Inverse transformsmodule 276 inverse transforms the de-quantized data based on the frame buffered data to generate residual data that is stored inbuffer 312. The residual data is combined ininverse intra-prediction module 211 with either intra-prediction data or inter-prediction data supplied in response to the mode determination byneighbor management module 218, to generate current reconstructed frames/fields that are buffered in thebuffer 316. -
Deblocking filter module 222 applies deblocking filtering to the reconstructed frames/fields in accordance with the deblock strength data fromneighbor management module 218 to generate decoded video output in the form of filteredpictures 226 that are buffered viabuffer 320. - The
buffers memory module 154, however other buffer configurations are likewise possible. -
FIG. 9 presents a block diagram representation of a matrixvector processing unit 190 in accordance with another embodiment of the present invention. In particular, matrixvector processing unit 190 includes a dedicated hardware block that performs parallel matrix operations such as matrix addition, multiplication, transposition, inversion and/or other matrix operation on aninput matrix 192 to generate anoutput matrix 194. - The matrix
vector processing unit 190 is configured viaVPU instructions 180 that include vector instructions, scalar instructions and branching instructions. TheseVPU instructions 180 include configuration data and commands 170 that configure thematrix VPU 190 in accordance with the selected video coding format and command the matrix vector processing unit to perform the corresponding functions such as all or part of an inverse discrete cosine transform, inverse quantization or other matrix function of themulti-format video decoder 150. TheVPU instructions 180 further include vector and/or scalar data used in conjunction with vector and scalar operations of the device. -
FIG. 10 resents a block diagram representation of a filtervector processing unit 195 in accordance with another embodiment of the present invention In particular, filtervector processing unit 195 includes a dedicated hardware block that performs parallel filter operations such as an n-tap one-dimensional horizontal filter, an n-tap one-dimensional vertical filter, or an n-tap two-dimensional filter. Thefilter VPU 196 operates to filterinput data 196, such as a block of pixels, a row of pixels, a column of pixels of a video picture or other data to generate filtered data 198. - The filter
vector processing unit 195 is configured viaVPU instructions 181 that include vector instructions, scalar instructions and branching instructions. TheseVPU instructions 181 include configuration data and commands 172 that configure thefilter VPU 195 in accordance with the selected video coding format such as by programming the filter parameters,(e.g. the number of taps, type of filter, and the particular filter coefficients) and command the filter vector processing unit to perform the corresponding functions such as all or part of the generation of inter-prediction data, intra-prediction data and or filtered picture data of themulti-function video decoder 150. TheVPU instructions 181 further include vector and/or scalar data used in conjunction with vector and scalar operations of the device. -
FIG. 11 presents a block diagram representation of aVPU instruction vector instruction 182,scalar instruction 184, and branchinginstruction 186. Through the use of these instructions, a vector processing unit, such as matrixvector processing unit 190 or filtervector processing unit 195 can be configured/programmed to move blocks of data, to perform vector or scalar operations on the data, to perform conditional or unconditional branching, or to perform other logical or arithmetic operations. - In an embodiment of the present invention, the
vector instruction 182 can include commands and data to perform multiple simultaneous logical or arithmetic operations via a single instruction. In an embodiment of the present invention, the vector data can include data blocks of 32 bits or more and the matrix or vector filter operations include any of the operations discussed in conjunction with eithermatrix VPU 190 or filterVPU 195. Thescalar instruction 184 can include commands and data to perform single scalar logical or arithmetic operations via a single instruction. In an embodiment of the present invention, the scalar data can include scalar data blocks of 32 bits or less or long scalar blocks of more than 32 bits. Matrix or filter scalar operations include mask creation, data masking, addressing instructions, data move operations, flag calculations, etc. Branching instructions include conditional or unconditional branching instructions based on logical or arithmetic conditions. - In an example of operation, the
filter VPU 195 implements a deblocking filter as part ofdeblocking filter module 222. In one mode of operation, thefilter VPU 195 executesfilter VPU instructions 181 in a similar fashion to a function or subroutine call. For example, in aninitial VPU instruction 181, thefilter VPU 195 can execute a data move command to configure a particular n-tap deblocking filter, based on the selection of the particular video coding format, by loading filter coefficients and other configuration data to establish an initial filter configuration. Insubsequent VPU instructions 181, the deblock strength is retrieved to optionally adjust the filter coefficients or otherwise adjust the filter configuration to a current deblock strength. In addition,input data 196 is retrieved, filtered and transferred to a buffer in response to filter commands. -
FIG. 12 presents a block diagram representation of avideo distribution system 375 in accordance with an embodiment of the present invention. In particular,video signal 110 is transmitted from a video encoder via a transmission path 122 to avideo decoder 102. Thevideo decoder 102 operates to decode thevideo signal 110 for display on adisplay devices video decoder 102 can be implemented in a set-top box, digital video recorder, router or home gateway. In the alternative,decoder 102 can optionally be incorporated directly in thedisplay device - The transmission path 122 can include a wireless path that operates in accordance with a wireless local area network protocol such as an 802.11 protocol, a WIMAX protocol, a Bluetooth protocol, etc. Further, the transmission path can include a wired path that operates in accordance with a wired protocol such as a Universal Serial Bus protocol, an Ethernet protocol or other high speed protocol.
-
FIG. 13 presents a block diagram representation of avideo storage system 179 in accordance with an embodiment of the present invention. In particular,device 11 is a set top box with built-in digital video recorder functionality, a stand alone digital video recorder, a DVD recorder/player or other device that stores thevideo signal 110. In this configuration,device 11 can includevideo decoder 102 that operates to decode thevideo signal 110 when retrieved from storage to generate a processedvideo signal 112 in a format that is suitable for display byvideo display device video storage system 179 can include a hard drive, flash memory device, computer, DVD burner, or any other device that is capable of generating, storing, decoding, transcoding and/or displaying the video content ofvideo signal 110 in accordance with the methods and systems described in conjunction with the features and functions of the present invention as described herein. -
FIG. 14 presents a block diagram representation of a method in accordance with an embodiment of the present invention. In particular, a method is presented for use in conjunction with one or more functions and features described in conjunction withFIGS. 1-9 . Instep 400, entropy decoded (EDC) data is generated from an encoded video signal. Instep 402, format configuration data, corresponding to a plurality of video coding formats, is stored. Instep 404, a plurality of vector processor units are configured, based on the configuration data, to a selected one of the plurality of video coding formats. Instep 406, a decoded video signal is generated from the EDC data, via the plurality of vector processing units, in accordance with the selected one of the plurality of video coding formats. - In an embodiment of the present invention,
step 404 includes configuring at least one or more matrix vector processors to parallel process at least one matrix operation and/or configuring one or more filter vector processors to parallel process at least one filter operation. -
FIG. 15 presents a block diagram representation of a method in accordance with an embodiment of the present invention. In particular, a method is presented for use in conjunction with one or more functions and features described in conjunction withFIGS. 1-10 . Instep 410, entropy decoded (EDC) data is generated from an encoded video signal, wherein the EDC data includes motion vector differential data and macroblock header data and run level data. Instep 412, a decoded video signal is generated from the EDC data via a plurality of vector processor units, by: -
- (a) generating motion vector data, macroblock mode data and deblock strength data, based on the motion vector differential data and the macroblock header data;
- (b) generating inter-prediction data based on the motion vector data when the macroblock mode data indicates an inter-prediction mode;
- (c) generating inverse quantization data based on the run level data;
- (d) generating residual data, based on the inverse quantization data;
- (e) generating intra-prediction data when the macroblock mode data indicates an intra-prediction mode;
- (f) generating reconstructed picture data based on the residual data and on the inter-prediction data when the macroblock mode data indicates an inter-prediction mode and based on the residual data and on the intra-prediction data when the macroblock mode data indicates an intra-prediction mode; and
- (g) generating the decoded video signal from the reconstructed picture data, based on the deblock strength data.
- In an embodiment of the present invention, the plurality of vector processors includes at least one matrix vector processor that parallel processes at least one matrix operation in conjunction with the generation of the inverse quantization data based on the run level data. The plurality of vector processors can further include at least one matrix vector processor that parallel processes at least one matrix operation in conjunction with the generation of the residual data based on the inverse quantization data; at least one filter vector processor that parallel processes at least one filter operation of the generation of the inter-prediction data based on the motion vector data; at least one filter vector processor that parallel processes at least one filter operation of the generation of the intra-prediction data based on the macroblock mode data; and/or at least one filter vector processor that parallel processes at least one filter operation of the generation of the decoded video signal from the reconstructed picture data,.
-
FIG. 16 presents a block diagram representation of a method in accordance with an embodiment of the present invention. In particular, a method is presented for use in conjunction with one or more functions and features described in conjunction with FIGS. 1-9. Instep 420, entropy decoded (EDC) data is generated from an encoded video signal. Instep 422, a plurality of vector processor units are programmed based on VPU instructions formatted to include a vector instruction portion, a scalar instruction portion, and a branching instruction portion. Instep 424, a decoded video signal is generated from the EDC data, via the plurality of vector processing units. - In an embodiment of the present invention, the
step 422 includes configuring at least one matrix vector processor to parallel process at least one matrix operation, and wherein the vector instruction includes a matrix command and matrix data. Step 422 can also include configuring at least one filter vector processor to parallel process at least one filter operation, and wherein the vector instruction includes a filter command and filter data. The branching instruction can include an unconditional branching instruction or a conditional branching instruction. The scalar instruction can includes a data component, a scalar logical operation on the data component, and/or a scalar arithmetic operation on the data component. -
FIG. 17 presents a block diagram representation of a method in accordance with an embodiment of the present invention. In particular, a method is presented for use in conjunction with one or more functions and features described in conjunction withFIGS. 1-9 . Instep 430, entropy decoded (EDC) data is generated from an encoded video signal. Instep 432, at least one filter vector processing unit is configured based on a selection of one of a plurality of video coding formats. Instep 434, a decoded video signal is generated from the EDC data, via the at least one filter vector processing unit. - Step 434 can include parallel processing picture data via the at least one filter vector processor in accordance with a vector instruction that includes a filter command and picture data, wherein the picture data includes a plurality of pixels. Step 434 can include implementing an n-tap one-dimensional vertical filter; implementing an n-tap one-dimensional horizontal filter; and/or implementing an n-tap two-dimensional filter.
- While particular combinations of various functions and features of the present invention have been expressly described herein, other combinations of these features and functions are possible that are not limited by the particular examples disclosed herein are expressly incorporated in within the scope of the present invention.
- As one of ordinary skill in the art will appreciate, the term “substantially” or “approximately”, as may be used herein, provides an industry-accepted tolerance to its corresponding term and/or relativity between items. Such an industry-accepted tolerance ranges from less than one percent to twenty percent and corresponds to, but is not limited to, component values, integrated circuit process variations, temperature variations, rise and fall times, and/or thermal noise. Such relativity between items ranges from a difference of a few percent to magnitude differences. As one of ordinary skill in the art will further appreciate, the term “coupled”, as may be used herein, includes direct coupling and indirect coupling via another component, element, circuit, or module where, for indirect coupling, the intervening component, element, circuit, or module does not modify the information of a signal but may adjust its current level, voltage level, and/or power level. As one of ordinary skill in the art will also appreciate, inferred coupling (i.e., where one element is coupled to another element by inference) includes direct and indirect coupling between two elements in the same manner as “coupled”. As one of ordinary skill in the art will further appreciate, the term “compares favorably”, as may be used herein, indicates that a comparison between two or more elements, items, signals, etc., provides a desired relationship. For example, when the desired relationship is that
signal 1 has a greater magnitude thansignal 2, a favorable comparison may be achieved when the magnitude ofsignal 1 is greater than that ofsignal 2 or when the magnitude ofsignal 2 is less than that ofsignal 1. - As the term module is used in the description of the various embodiments of the present invention, a module includes a functional block that is implemented in hardware, software, and/or firmware that performs one or module functions such as the processing of an input signal to produce an output signal. As used herein, a module may contain submodules that themselves are modules.
- Thus, there has been described herein an apparatus and method, as well as several embodiments including a preferred embodiment, for implementing a video decoder. Various embodiments of the present invention herein-described have features that distinguish the present invention from the prior art.
- It will be apparent to those skilled in the art that the disclosed invention may be modified in numerous ways and may assume many embodiments other than the preferred forms specifically set out and described above. Accordingly, it is intended by the appended claims to cover all modifications of the invention which fall within the true spirit and scope of the invention.
Claims (15)
1. A video decoder comprising:
an entropy decoding device that generates entropy decoded (EDC) data from an encoded video signal, wherein the EDC data includes motion vector differential data and macroblock header data and run level data;
a multi-format video decoding device, coupled to the entropy decoding device, for generating a decoded video signal from the EDC data, the multi-format video decoding device having a plurality of modules including:
a neighbor management module that generates motion vector data, macroblock mode data and deblock strength data, based on the motion vector differential data and the macroblock header data;
a decode motion compensation module, coupled to the neighbor management module, that generates inter-prediction data based on the motion vector data when the macroblock mode data indicates an inter-prediction mode;
an inverse quantization module that generates inverse quantization data based on the run level data;
an inverse transform module, coupled to the inverse quantization module, that generates residual data, based on the inverse quantization data;
an inverse intra-prediction module, coupled to the neighbor management module, that generates intra-prediction data when the macroblock mode data indicates an intra-prediction mode, that generates reconstructed picture data based on the residual data and on the inter-prediction data when the macroblock mode data indicates an inter-prediction mode and based on the residual data and on the intra-prediction data when the macroblock mode data indicates an intra-prediction mode; and
a deblocking filter module, coupled to the inverse transform/quantization module and the neighbor management module, that generates the decoded video signal from the reconstructed picture data, based on the deblock strength data;
wherein the plurality of modules are implemented via a plurality of vector processor units.
2. The video decoder of claim 1 wherein the plurality of vector processors includes at least one matrix vector processor that parallel processes at least one matrix operation of the inverse quantization module.
3. The video decoder of claim 1 wherein the plurality of vector processors includes at least one matrix vector processor that parallel processes at least one matrix operation of the inverse transform module.
4. The video decoder of claim 1 wherein the plurality of vector processors includes at least one filter vector processor that parallel processes at least one filter operation of the decode motion compensation module.
5. The video decoder of claim 1 wherein the plurality of vector processors includes at least one filter vector processor that parallel processes at least one filter operation of the inverse intra-prediction module.
6. The video decoder of claim 1 wherein the plurality of vector processors includes at least one filter vector processor that parallel processes at least one filter operation of the deblocking filter module.
7. The video decoder of claim 1 wherein the plurality of modules are coupled via a plurality of buffering including at least one frame buffer and at least one ring buffer.
8. The video decoder of claim 1 wherein the encoded video signal is encoded in accordance with a VP8 coding standard.
9. A method comprising:
generating entropy decoded (EDC) data from an encoded video signal, wherein the EDC data includes motion vector differential data and macroblock header data and run level data;
generating a decoded video signal from the EDC data via a plurality of vector processor units, by:
generating motion vector data, macroblock mode data and deblock strength data, based on the motion vector differential data and the macroblock header data;
generating inter-prediction data based on the motion vector data when the macroblock mode data indicates an inter-prediction mode;
generating inverse quantization data based on the run level data;
generating residual data, based on the inverse quantization data;
generating intra-prediction data when the macroblock mode data indicates an intra-prediction mode;
generating reconstructed picture data based on the residual data and on the inter-prediction data when the macroblock mode data indicates an inter-prediction mode and based on the residual data and on the intra-prediction data when the macroblock mode data indicates an intra-prediction mode; and
generating the decoded video signal from the reconstructed picture data, based on the deblock strength data.
10. The method of claim 9 wherein the plurality of vector processors includes at least one matrix vector processor that parallel processes at least one matrix operation in conjunction with the generation of the inverse quantization data based on the run level data.
11. The method of claim 9 wherein the plurality of vector processors includes at least one matrix vector processor that parallel processes at least one matrix operation in conjunction with the generation of the residual data based on the inverse quantization data.
12. The method of claim 9 wherein the plurality of vector processors includes at least one filter vector processor that parallel processes at least one filter operation of the generation of the inter-prediction data based on the motion vector data.
13. The method of claim 9 wherein the plurality of vector processors includes at least one filter vector processor that parallel processes at least one filter operation of the generation of the intra-prediction data based on the macroblock mode data.
14. The method of claim 9 wherein the plurality of vector processors includes at least one filter vector processor that parallel processes at least one filter operation of the generation of the decoded video signal from the reconstructed picture data.
15. The method of claim 9 wherein the encoded video signal is encoded in accordance with a VP8 coding standard.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/076,536 US20120230406A1 (en) | 2011-03-09 | 2011-03-31 | Multi-format video decoder with vector processing and methods for use therewith |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161450859P | 2011-03-09 | 2011-03-09 | |
US13/076,536 US20120230406A1 (en) | 2011-03-09 | 2011-03-31 | Multi-format video decoder with vector processing and methods for use therewith |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120230406A1 true US20120230406A1 (en) | 2012-09-13 |
Family
ID=46795572
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/076,554 Active 2032-04-02 US8743967B2 (en) | 2011-03-09 | 2011-03-31 | Multi-format video decoder with vector processing instructions and methods for use therewith |
US13/076,536 Abandoned US20120230406A1 (en) | 2011-03-09 | 2011-03-31 | Multi-format video decoder with vector processing and methods for use therewith |
US13/076,568 Active 2032-06-24 US9088793B2 (en) | 2011-03-09 | 2011-03-31 | Multi-format video decoder with filter vector processing and methods for use therewith |
US14/249,694 Active 2031-07-12 US9369713B2 (en) | 2011-03-09 | 2014-04-10 | Multi-format video decoder with vector processing instructions and methods for use therewith |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/076,554 Active 2032-04-02 US8743967B2 (en) | 2011-03-09 | 2011-03-31 | Multi-format video decoder with vector processing instructions and methods for use therewith |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/076,568 Active 2032-06-24 US9088793B2 (en) | 2011-03-09 | 2011-03-31 | Multi-format video decoder with filter vector processing and methods for use therewith |
US14/249,694 Active 2031-07-12 US9369713B2 (en) | 2011-03-09 | 2014-04-10 | Multi-format video decoder with vector processing instructions and methods for use therewith |
Country Status (1)
Country | Link |
---|---|
US (4) | US8743967B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140112636A1 (en) * | 2012-10-19 | 2014-04-24 | Arcsoft Hangzhou Co., Ltd. | Video Playback System and Related Method of Sharing Video from a Source Device on a Wireless Display |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110381323B (en) * | 2018-04-12 | 2021-10-26 | 福州瑞芯微电子股份有限公司 | Inter-frame prediction-based lossless compression system and method for assisting frame motion vector information |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5170259A (en) * | 1990-09-29 | 1992-12-08 | Victor Company Of Japan, Ltd. | Motion compensated predictive coding/decoding system of picture signal |
US20030185306A1 (en) * | 2002-04-01 | 2003-10-02 | Macinnis Alexander G. | Video decoding system supporting multiple standards |
US20060013308A1 (en) * | 2004-07-15 | 2006-01-19 | Samsung Electronics Co., Ltd. | Method and apparatus for scalably encoding and decoding color video |
US20060140487A1 (en) * | 2004-12-23 | 2006-06-29 | Kabushiki Kaisha Toshiba | Image compressing apparatus and image decoding apparatus and image converting apparatus and image processing method |
US20070076797A1 (en) * | 2005-10-04 | 2007-04-05 | Samsung Electronics Co., Ltd. | Filtering apparatus, method, and medium for multi-format codec |
US20090303098A1 (en) * | 2008-06-06 | 2009-12-10 | On2 Technologies Inc. | System and Method for Data Communication |
US20110145549A1 (en) * | 2009-12-15 | 2011-06-16 | Electronics And Telecommunications Research Institute | Pipelined decoding apparatus and method based on parallel processing |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6077265A (en) * | 1983-10-05 | 1985-05-01 | Hitachi Ltd | Vector processor |
US20020116595A1 (en) * | 1996-01-11 | 2002-08-22 | Morton Steven G. | Digital signal processor integrated circuit |
US5821886A (en) * | 1996-10-18 | 1998-10-13 | Samsung Electronics Company, Ltd. | Variable length code detection in a signal processing system |
GB2348064A (en) * | 1999-03-16 | 2000-09-20 | Mitsubishi Electric Inf Tech | Motion vector field encoding |
US6909744B2 (en) | 1999-12-09 | 2005-06-21 | Redrock Semiconductor, Inc. | Processor architecture for compression and decompression of video and images |
US6839828B2 (en) * | 2001-08-14 | 2005-01-04 | International Business Machines Corporation | SIMD datapath coupled to scalar/vector/address/conditional data register file with selective subpath scalar processing mode |
US7278137B1 (en) * | 2001-12-26 | 2007-10-02 | Arc International | Methods and apparatus for compiling instructions for a data processor |
EP1351512A3 (en) | 2002-04-01 | 2005-08-03 | Broadcom Corporation | Video decoding system supporting multiple standards |
FR2854019B1 (en) * | 2003-04-16 | 2005-09-16 | Medialive | SCREENING, UNLOCKING AND SECURED DISTRIBUTION OF AUDIOVISUAL SEQUENCES FROM VIDEO ENCODERS BASED ON WAVELET PROCESSING |
US20050251644A1 (en) * | 2004-05-06 | 2005-11-10 | Monier Maher | Physics processing unit instruction set architecture |
US9210437B2 (en) | 2005-12-09 | 2015-12-08 | Nvidia Corporation | Hardware multi-stream multi-standard video decoder device |
US8208745B2 (en) * | 2008-01-31 | 2012-06-26 | Analog Devices, Inc. | Spatial domain video enhancement/scaling system and method |
US8209525B2 (en) * | 2008-08-15 | 2012-06-26 | Apple Inc. | Method and apparatus for executing program code |
US9182959B2 (en) * | 2008-08-15 | 2015-11-10 | Apple Inc. | Predicate count and segment count instructions for processing vectors |
US20110283092A1 (en) * | 2008-08-15 | 2011-11-17 | Apple Inc. | Getfirst and assignlast instructions for processing vectors |
US8793472B2 (en) * | 2008-08-15 | 2014-07-29 | Apple Inc. | Vector index instruction for generating a result vector with incremental values based on a start value and an increment value |
US8271832B2 (en) * | 2008-08-15 | 2012-09-18 | Apple Inc. | Non-faulting and first-faulting instructions for processing vectors |
US8325796B2 (en) * | 2008-09-11 | 2012-12-04 | Google Inc. | System and method for video coding using adaptive segmentation |
US8675736B2 (en) * | 2009-05-14 | 2014-03-18 | Qualcomm Incorporated | Motion vector processing |
US20130212354A1 (en) * | 2009-09-20 | 2013-08-15 | Tibet MIMAR | Method for efficient data array sorting in a programmable processor |
US9060176B2 (en) * | 2009-10-01 | 2015-06-16 | Ntt Docomo, Inc. | Motion vector prediction in video coding |
JP5321426B2 (en) * | 2009-11-26 | 2013-10-23 | 株式会社Jvcケンウッド | Image encoding device, image decoding device, image encoding method, and image decoding method |
US9706214B2 (en) * | 2010-12-24 | 2017-07-11 | Microsoft Technology Licensing, Llc | Image and video decoding implementations |
-
2011
- 2011-03-31 US US13/076,554 patent/US8743967B2/en active Active
- 2011-03-31 US US13/076,536 patent/US20120230406A1/en not_active Abandoned
- 2011-03-31 US US13/076,568 patent/US9088793B2/en active Active
-
2014
- 2014-04-10 US US14/249,694 patent/US9369713B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5170259A (en) * | 1990-09-29 | 1992-12-08 | Victor Company Of Japan, Ltd. | Motion compensated predictive coding/decoding system of picture signal |
US20030185306A1 (en) * | 2002-04-01 | 2003-10-02 | Macinnis Alexander G. | Video decoding system supporting multiple standards |
US20060013308A1 (en) * | 2004-07-15 | 2006-01-19 | Samsung Electronics Co., Ltd. | Method and apparatus for scalably encoding and decoding color video |
US20060140487A1 (en) * | 2004-12-23 | 2006-06-29 | Kabushiki Kaisha Toshiba | Image compressing apparatus and image decoding apparatus and image converting apparatus and image processing method |
US20070076797A1 (en) * | 2005-10-04 | 2007-04-05 | Samsung Electronics Co., Ltd. | Filtering apparatus, method, and medium for multi-format codec |
US20090303098A1 (en) * | 2008-06-06 | 2009-12-10 | On2 Technologies Inc. | System and Method for Data Communication |
US20110145549A1 (en) * | 2009-12-15 | 2011-06-16 | Electronics And Telecommunications Research Institute | Pipelined decoding apparatus and method based on parallel processing |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140112636A1 (en) * | 2012-10-19 | 2014-04-24 | Arcsoft Hangzhou Co., Ltd. | Video Playback System and Related Method of Sharing Video from a Source Device on a Wireless Display |
Also Published As
Publication number | Publication date |
---|---|
US8743967B2 (en) | 2014-06-03 |
US20140341299A1 (en) | 2014-11-20 |
US20120230426A1 (en) | 2012-09-13 |
US9369713B2 (en) | 2016-06-14 |
US9088793B2 (en) | 2015-07-21 |
US20120230427A1 (en) | 2012-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9503741B2 (en) | Video decoder with multi-format vector processor and methods for use therewith | |
US8971416B2 (en) | Video decoder with vector processor and methods for use therewith | |
US9025666B2 (en) | Video decoder with shared memory and methods for use therewith | |
US9426498B2 (en) | Real-time encoding system of multiple spatially scaled video based on shared video coding information | |
US9088800B2 (en) | General video decoding device for decoding multilayer video and methods for use therewith | |
EP3262840B1 (en) | Mitigating loss in inter-operability scenarios for digital video | |
US9271005B2 (en) | Multi-pass video encoder and methods for use therewith | |
US20100104015A1 (en) | Method and apparatus for transrating compressed digital video | |
US9025660B2 (en) | Video decoder with general video decoding device and methods for use therewith | |
US20080031333A1 (en) | Motion compensation module and methods for use therewith | |
US8243798B2 (en) | Methods and apparatus for scalable video bitstreams | |
US20100118948A1 (en) | Method and apparatus for video processing using macroblock mode refinement | |
US20070147515A1 (en) | Information processing apparatus | |
US9369713B2 (en) | Multi-format video decoder with vector processing instructions and methods for use therewith | |
EP2498496A1 (en) | Multi-format video decoder and methods for use therewith | |
KR20230162801A (en) | Externally enhanced prediction for video coding | |
US8885726B2 (en) | Neighbor management for use in entropy encoding and methods for use therewith | |
JP2023544711A (en) | In-loop and post-filtering spatial resolution adaptation of compressed video using metadata | |
US20110080944A1 (en) | Real-time video transcoder and methods for use therewith | |
US20120002719A1 (en) | Video encoder with non-syntax reuse and method for use therewith | |
US20130101023A9 (en) | Video encoder with video decoder reuse and method for use therewith | |
Ohm et al. | MPEG video compression advances | |
JP2007110376A (en) | Moving image recoding unit, moving image coding method, and moving image recoding program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: VIXS SYSTEMS, INC., CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LAKSONO, INDRA;YANG, KAI;WANG, HONGRI (GRACE);AND OTHERS;SIGNING DATES FROM 20110316 TO 20110317;REEL/FRAME:026141/0721 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |