US20120227651A1 - Rotatable Footstrap Plate And Footstrap Assembly For Gliding Boards - Google Patents

Rotatable Footstrap Plate And Footstrap Assembly For Gliding Boards Download PDF

Info

Publication number
US20120227651A1
US20120227651A1 US13/512,343 US201013512343A US2012227651A1 US 20120227651 A1 US20120227651 A1 US 20120227651A1 US 201013512343 A US201013512343 A US 201013512343A US 2012227651 A1 US2012227651 A1 US 2012227651A1
Authority
US
United States
Prior art keywords
footstrap
rotatable
plate
outer ring
ring element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/512,343
Inventor
Henning Küntzel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US13/512,343 priority Critical patent/US20120227651A1/en
Publication of US20120227651A1 publication Critical patent/US20120227651A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C17/00Roller skates; Skate-boards
    • A63C17/26Roller skates; Skate-boards with special auxiliary arrangements, e.g. illuminating, marking, or push-off devices
    • A63C17/262Roller skates; Skate-boards with special auxiliary arrangements, e.g. illuminating, marking, or push-off devices with foot bindings or supports therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B32/00Water sports boards; Accessories therefor
    • B63B32/40Twintip boards; Wakeboards; Surfboards; Windsurfing boards; Paddle boards, e.g. SUP boards; Accessories specially adapted therefor
    • B63B32/45Fixation means for feet of the board user, e.g. footstraps
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C17/00Roller skates; Skate-boards
    • A63C17/01Skateboards

Definitions

  • the current invention relates to a rotatable footstrap plate for gliding boards.
  • a footstrap assembly and a gliding board with at least one footstrap assembly are also provided.
  • a “gliding board” is defined as a board which used in sports where a user stands on a board and the board “glides” over some form of “supporting surface”.
  • a skateboard is a gliding board where the user stands on the board and the skateboard “glides” over an asphalt surface.
  • a surf board where the user stands on the surfboard and the surfboard “glides” over the water surface.
  • a snowboard where the supporting surface is snow.
  • the rotatable footstrap plate of this invention is particularly suited for “gliding boards” used on water. This could for example be surfboards, kitesurf boards, wakeboards and windsurf boards. In this specification the main example is of a surfboard which is used with a kite.
  • the use of the rotatable footstrap plate of the current invention is not limited to this application as should be clear to the person skilled in the art.
  • the rotatable footstrap plate of this invention in certain embodiments is suitable for use with bare feet.
  • footstraps are typically arched pieces of flexible material which are attached to the board in a fixed position. The user can then insert his or her foot into the arched piece of flexible material, thereby establishing a good connection with the board.
  • the angular position of the footstrap is fixed and non adjustable, but some footstrap assemblies may be pivoted with the help of tools or special mechanisms between uses are known.
  • footstrap assemblies which are designed to pivot during use.
  • pivot it is meant that the angle between the longitudinal axis of the footstrap and the longitudinal axis of the board can change.
  • measuring use is meant during use by a person actively participating in a sport. In other words, the mechanisms which are adjusted with tools or special mechanisms between uses are not considered to be “pivotable during use”.
  • footstrap should be interpreted widely. As will be known to the person skilled in the art, there are many different types of devices used to establish a connection between a user's foot and his or her board. In some cases these are called “bindings”. However, for the sake of this specification, the term footstrap should be understood as all devices used to establish a connection between a user's foot and his or her board. However, it should also be noted that the current invention is especially suitable for use with a simple footstrap as known from for example kitesurfing and windsurfing which allows the user to insert his or her foot easily into the strap from both sides.
  • the user When sailing, the user will have his back foot in the back strap and his front foot in the middle strap. Both straps are mounted parallel with the longitudinal axis of the board. This is because when changing the sailing direction, the user moves his or her body from one side of the board to the other side of the board. It should therefore be easy to get into the strap from both sides. However, the most comfortable position while riding is with the front foot angled such that the toes are pointing slightly in the direction of travel. Holding the foot perpendicular to the longitudinal axis of the board is not comfortable for the user. By allowing the footstrap to pivot, the user benefits since the user will experience less force in his or her ankles and knees, when different angles between the user's feet are needed.
  • a second aspect of the current invention is to provide a rotatable footstrap plate which solves the problems associated with the prior art rotatable footstrap assemblies.
  • a rotatable footstrap plate for a gliding board, said rotatable footstrap plate comprising: a centre disc which is arranged to be mounted on the deck of the gliding board in a fixed angular position, a non-slip surface mounted on the centre disc, said non-slip surface being arranged to be in contact with the user's foot during use, an outer ring element which is arranged to be rotatable around the centre disc during use of the rotatable footstrap plate and footstrap mounting elements fastened to the outer ring element.
  • FIG. 1 shows a perspective view of a footstrap assembly comprising a first embodiment of the rotatable footstrap plate with a footstrap mounted on the rotatable plate.
  • FIG. 2 shows a perspective exploded view of the footstrap assembly of FIG. 1 .
  • FIG. 3 shows a perspective view of the rotatable footstrap plate of FIG. 1 .
  • FIG. 4 shows a perspective view of the rotatable footstrap plate of FIG. 1 without the non- slip surface.
  • FIG. 5 shows a cross section view of the footstrap assembly of FIG. 1 according to the line V-V defined in FIG. 1 .
  • FIG. 6 shows an exploded cross section view of the exploded footstrap assembly of FIG. 2 according to the line VI-VI defined in FIG. 2 .
  • FIG. 7 shows a cross section view of the footstrap assembly of FIG. 1 according to the line VII-VII defined in FIG. 1 .
  • FIG. 8 shows a perspective view of a second embodiment of a footstrap assembly.
  • FIG. 9 shows a perspective view of a third embodiment of a footstrap assembly.
  • FIGS. 1-7 all show different views of the same footstrap assembly, in different views and in different stages of assembly.
  • the same reference numbers will therefore be used to identify the same elements in all the figures.
  • the footstrap assembly 1 consists of a rotatable footstrap plate 2 , 3 , 4 and footstrap 5 mounted on the rotatable footstrap plate.
  • the rotatable footstrap plate comprises a center disc 2 upon which is mounted a non-slip/cushioning layer/pad/surface 3 to create friction resistance and cushioning between the user's foot and the footstrap plate.
  • This non-slip/cushioning layer could be made of any number of different materials known to the person skilled in the art, for example rubber or foam.
  • the center disc 2 is arranged to be mounted to the deck of the surfboard in a fixed angular position.
  • the rotatable footstrap plate further comprises an outer ring element 4 .
  • the diameter of the center disc 3 is slightly larger than inner diameter of the outer ring element 4 .
  • the outer ring element is arranged between the deck of the board and the top of the center disc such that the outer ring is held on the deck by the center disc.
  • the outer ring element can rotate around the centre of the centre disc.
  • both the centre disc and the outer ring element are made of a strong plastic or composite material which is resistant to a salt water environment.
  • other suitable materials could also be used.
  • the tolerances between the disc and the ring are chosen to ensure that any sand buildup between the disc and the ring can be washed out as soon as the rotatable footstrap plate is placed in the water.
  • a footstrap 5 is fixed to the outer ring element 4 via footstrap mounting elements 6 .
  • the footstrap mounting elements 6 are, in the current embodiment, two blocks arranged at opposite locations on the outer ring element 4 .
  • the footstrap mounting elements 6 are formed with pre drilled holes or screw inserts suitable for inserting screws in order to fasten one or more footstraps to the outer ring element in different desired positions.
  • the footstrap When the footstrap is fastened to the footstrap mounting elements, the footstrap can rotate about the center disc 2 .
  • the user when the user stands on the board with his or her foot in the footstrap, the user has a firm, non-rotating connection with the board via the non-slip surface of the center disc which is fixed to the board in an angularly fixed position.
  • the user When the user lifts his or her foot slightly, the user can rotate the footstrap until it is oriented in an optimal way. The user then puts weight on his or her foot and again has a good, non-rotating connection to the board.
  • FIGS. 5-7 show more details of the rotatable footstrap plate.
  • the centre disc is formed with two concentric circular portions, the first portion 2 a having a radius A and the second portion 2 b having a larger radius B.
  • the outer ring element is formed with an inner diameter C which is larger than the diameter A of the centre disc but smaller than the diameter B of the centre.
  • the first portion of the centre disc is arranged below the second portion of the centre disc in the orientation shown in the figures.
  • the outer diameter of second portion of the centre disc is 17 cm. It should also be noted that the outer diameter of the second portion of the centre disc is desired to be made as large as possible in order to increase the contact area between the user's foot and the rotatable footstrap plate. However, if the diameter of the centre portion is made too large, then the footstrap which in this embodiment spans the centre portion would become too flat. Also, if the diameter of the centre disc becomes too large then the moments applied by the footstrap to the centre disc and the outer ring element will become quite large thereby creating a risk that the two discs will bind due to deformation.
  • a diameter of around 15-17 cm is ideal for most users. Users with small feet could use a footstrap plate with a centre portion having an outer diameter of less than 15 cm. In general, the outer diameter will be greater than 5 cm, preferably greater than 10 cm and most preferably greater than 14 cm.
  • the difference between the diameters A and C ensure that there is room for sand and other debris to accumulate between the outer ring and the centre disc. If the diameters A and C were too close together, then any small amount of sand between the two elements would cause the elements to bind and would prevent rotation. Furthermore, it can be noted that the greater the difference in the diameters A and C, the more motion will be allowed between the two elements. A large amount of motion is undesired, so a difference of between 2 and 3 mm gives a good compromise. However, greater or smaller values could also be used depending on the application and desired effect. It can also be noted that it should be obvious to the person skilled in the art that the outer ring and the centre disc do not have to be perfectly circle formed.
  • the first portion of the centre disc could be arranged with three equally spaced tabs (not shown) which centre the outer ring and allow the outer ring to rotate about the three tabs.
  • the first portion of the centre disc could be two arc shaped portions (not shown) arrange at the front and back of the centre disc. Therefore the term “circular portion” should be broadly interpreted for the sake of this specification.
  • the height E of the first portion of the centre disc is slightly greater than the height F of the first portion of the outer ring element. This allows the outer ring to rotate with respect to the centre disc even if the centre disc is firmly screwed onto the deck of the surfboard.
  • the term “height” refers to the thickness, or the dimension which is perpendicular to the deck of the surfboard when the rotatable footstrap plate is mounted on the deck of the surfboard.
  • the center disc and the outer ring are connected together by an elastic string 7 which functions as a spring element. See FIGS. 3 and 4 which show the details of the function of the elastic string 7 .
  • One end 8 of the string is fixed at the inside edge 9 of the outer ring 4 .
  • the other end 10 of the elastic string is fixed at the opposite outer edge 11 of the center disc 2 .
  • the string is as long as possible.
  • Four pivots 12 a , 12 b on the center disc 2 keep the elastic string in position.
  • the elastic string is tightened when the outer ring element is rotated away from its biased centre position. When the user pulls his or her foot out of the foot strap, the outer ring seeks back to its initial or biased centre position.
  • the footstrap plate In the case where the rotatable footstrap plate is mounted on a surfboard with two footstrap locations, one at the back and one at the middle of the board, the footstrap plate would be arranged at the middle of the board and such that the initial position would be chosen such that the footstrap was parallel to the longitudinal axis of the surfboard.
  • the elastic string is held in place at its second end by a knot (not shown) formed in the string which prevents the string from being pulled through the two pivots 12 a .
  • the string is held in place by the footstrap which is screwed onto the outer ring.
  • the arrangement of the spring element can take different forms.
  • a string element could be held in place in different ways.
  • the slot 13 in the outer ring in which the elastic spring is arranged could be formed as a clam cleat to more precisely adjust the tension in the string.
  • the elastic string could be replaced with a different spring element, for example a spiral spring could be arranged between the centre disc and the outer ring.
  • the centre disc is provided with two holes 14 a , 14 b and a slot 15 .
  • the holes and the slot are provided such that screws can be used to fix the centre disc to the deck of the surfboard.
  • surfboards are provided with screw plugs/inserts in the deck of the board. These screw plugs/inserts are provided for mounting footstraps to the surfboard in a strong manner.
  • the user can choose the hole or holes which best fit to the existing screw plugs/inserts in the surfboard on which the footstrap assembly is to be mounted.
  • the slot does not extend through the entire thickness of the centre disc. The user is therefore required to drill a hole through the slot such that the hole is aligned with the appropriate screw plug/insert in the surfboard.
  • centre disc could be provided.
  • two slots which are not drilled through could be provided. In this way, the user must first drill two holes before mounting the centre disc on the deck of the surfboard.
  • a number of marked positions could be indicated with printing, showing the different standard positions for the different board manufacturers. The user could then choose the correct locations and drill through the centre disc.
  • the user will experience that he or she can increase the friction resistance between his or her foot and the non-slip layer on the center disc by pushing further into the footstrap and pressing his or her toes onto the deck. At the same time increased tension in the strap will give more resistance between the outer and center disc. Both contributions prevent against unwanted rotation when sudden maneuvers result in high loads on the foot. If more friction between the centre disc and the outer ring portion is desired, the interface between the centre disc and the outer ring portion could be provided with friction enhancing means, such as protrusions in one surface and matching recesses in the opposite surface.
  • the user will experience that it is easier to insert his or her foot into the strap during sailing. This is because the user can stand further back on the board with his or her feet pointing more forwards with the toes placed beside the strap. Then just by pivoting on the heel, the user can cause the footstrap to pivot while simultaneously sliding the foot into the strap.
  • the footstrap assembly has a number of advantages when sailing which make it unique on the market.
  • FIG. 8 shows a second embodiment 20 of a footstrap assembly.
  • the rotatable footstrap plate of FIG. 8 is the same as in FIGS. 1-7 , however, instead of one single wide footstrap, two narrower footstraps 21 are mounted on the outer ring in a parallel arrangement.
  • the footstraps are placed further from the centre line of the board. In this way, when the user inserts his or her foot into one of the footstraps, the weight of the user will be located further from the centre line of the board.
  • This embodiment is advantageous for boards which are wide and which require the user to put more pressure on the edge of the board to hold the edge down.
  • the weight of the user is moved closer and closer to the centre of the board.
  • This allows the user to apply his or her weight on the board at different locations on the board, just by pivoting the strap. For example, when reaching, the user has his or her weight forward and on the edge of the board with his or her feet close to perpendicular to the centre line of the board. However, when gybing, the user shifts his or her weight to the centre of the board by pivoting the strap.
  • FIG. 9 shows a third embodiment 30 of the footstrap assembly.
  • the rotatable footstrap plate is the same as in FIGS. 1-7 , however, instead of one wide footstrap, two narrower footstraps 31 are used. In contrast to the embodiment of FIG. 8 , in this case the footstraps are mounted at an angle to each other.
  • FIGS. 1-7 Two footstrap assemblies of the kind shown in FIGS. 1-7 could be mounted to the front and back of a twintip kitesurf or wakeboard. In this way, the user is able to pivot both feet. This is especially useful since a twin tip board is sailed in both directions without removing the feet from the straps.
  • the user's feet When sailing one way, the user's feet could be arranged pointing in one direction and when sailing the other way, the user's feet could be pointing the other way. This allows the user's body to much better adapt to the sailing direction.
  • the footstrap assembly can be mounted either on an existing footpad on the board, or it could be mounted directly to the deck of the board itself.
  • a footpad could be placed around the footstrap assembly such that the height difference between the non-slip surface of the centre disc and the surrounding footpad is small. If the surfboard already has a footpad, then a hole, the size of the footstrap assembly, could be cut into the footpad.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Motorcycle And Bicycle Frame (AREA)

Abstract

A rotatable footstrap plate (2,4,7) for a gliding board, said rotatable footstrap plate comprising: a centre disc (2) which is arranged to be mounted on the deck of the gliding board in a fixed angular position, a non-slip surface (3) mounted on the centre disc, said non-slip surface being arranged to be in contact with the user's foot during use, an outer ring element (4) which is arranged to be rotatable around the centre disc during use of the rotatable footstrap plate and footstrap mounting elements (6) fastened to the outer ring element. In addition, a footstrap assembly comprising the rotatable footstrap plate of the current invention is also provided as is a gliding board comprising said footstrap assembly.

Description

  • Rotatable footstrap plate and footstrap assembly for gliding boards
  • The current invention relates to a rotatable footstrap plate for gliding boards. A footstrap assembly and a gliding board with at least one footstrap assembly are also provided.
  • For the sake of this specification a “gliding board” is defined as a board which used in sports where a user stands on a board and the board “glides” over some form of “supporting surface”. For example, a skateboard is a gliding board where the user stands on the board and the skateboard “glides” over an asphalt surface. Another example is a surf board where the user stands on the surfboard and the surfboard “glides” over the water surface. Another example is a snowboard where the supporting surface is snow.
  • It should be noted that the rotatable footstrap plate of this invention is particularly suited for “gliding boards” used on water. This could for example be surfboards, kitesurf boards, wakeboards and windsurf boards. In this specification the main example is of a surfboard which is used with a kite. However, the use of the rotatable footstrap plate of the current invention is not limited to this application as should be clear to the person skilled in the art. In addition, it should be noted that the rotatable footstrap plate of this invention in certain embodiments is suitable for use with bare feet.
  • DESCRIPTION OF RELATED ART
  • In water gliding board sports, such as kitesurfing, surfing, windsurfing, etc., the user of the board is typically connected to the board via some form of footstrap. These footstraps are typically arched pieces of flexible material which are attached to the board in a fixed position. The user can then insert his or her foot into the arched piece of flexible material, thereby establishing a good connection with the board.
  • In general, the angular position of the footstrap is fixed and non adjustable, but some footstrap assemblies may be pivoted with the help of tools or special mechanisms between uses are known. However, there are not many footstrap assemblies which are designed to pivot during use. It should be noted that by “pivot”, it is meant that the angle between the longitudinal axis of the footstrap and the longitudinal axis of the board can change. In addition, by “during use” is meant during use by a person actively participating in a sport. In other words, the mechanisms which are adjusted with tools or special mechanisms between uses are not considered to be “pivotable during use”.
  • It should also be noted that for the sake of this specification, the term footstrap should be interpreted widely. As will be known to the person skilled in the art, there are many different types of devices used to establish a connection between a user's foot and his or her board. In some cases these are called “bindings”. However, for the sake of this specification, the term footstrap should be understood as all devices used to establish a connection between a user's foot and his or her board. However, it should also be noted that the current invention is especially suitable for use with a simple footstrap as known from for example kitesurfing and windsurfing which allows the user to insert his or her foot easily into the strap from both sides.
  • The disadvantage of mounting footstraps on a board in a fixed angular position is that during use, the position of the user will often change depending on many factors such as the direction of the wind, the direction of sailing, the type of sailing being done, etc. With a fixed angular footstrap position, the user's foot is therefore forced to twist in the footstrap putting undesirable forces on the user's feet, ankles, knees and legs. In addition, in certain cases, it is not possible for the user to put his or her foot in an optimal position due to the fixed mounting angle of the footstrap. For example on surfboards used with a kite, it is often the case that two straps are mounted on the board, one at the back and one in the middle of the board. When sailing, the user will have his back foot in the back strap and his front foot in the middle strap. Both straps are mounted parallel with the longitudinal axis of the board. This is because when changing the sailing direction, the user moves his or her body from one side of the board to the other side of the board. It should therefore be easy to get into the strap from both sides. However, the most comfortable position while riding is with the front foot angled such that the toes are pointing slightly in the direction of travel. Holding the foot perpendicular to the longitudinal axis of the board is not comfortable for the user. By allowing the footstrap to pivot, the user benefits since the user will experience less force in his or her ankles and knees, when different angles between the user's feet are needed.
  • In the history of water board sports, a number of footstrap assemblies have been provided which attempt to allow the footstrap to pivot. Some examples of these prior art solutions are provided in: DE 3023419, DE 8703466, EP 50878, EP 179424, FR 2518188, FR 2593135, FR 2633242 and WO 2004018286.
  • However, these straps have not been successful. This can be attributed to the fact that in order to be successful, a number of features need to be provided. An incomplete list of these features is: resistance to sand buildup, resistance to corrosion, light weight, good connection between board and user, low cost and simple to operate/mount.
  • SUMMARY OF THE INVENTION
  • It is therefore a first aspect of the current invention to provide a rotatable footstrap plate which allows the user to pivot a footstrap during use.
  • A second aspect of the current invention is to provide a rotatable footstrap plate which solves the problems associated with the prior art rotatable footstrap assemblies.
  • This aspect is provided in part by a rotatable footstrap plate for a gliding board, said rotatable footstrap plate comprising: a centre disc which is arranged to be mounted on the deck of the gliding board in a fixed angular position, a non-slip surface mounted on the centre disc, said non-slip surface being arranged to be in contact with the user's foot during use, an outer ring element which is arranged to be rotatable around the centre disc during use of the rotatable footstrap plate and footstrap mounting elements fastened to the outer ring element.
  • Additional advantageous features are provided by the dependent claims.
  • It should be emphasized that the term “comprises/comprising/comprised of” when used in this specification is taken to specify the presence of stated features, integers, steps or components but does not preclude the presence or addition of one or more other features, integers, steps, components or groups thereof.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In the following, the invention will be described in greater detail with reference to embodiments shown by the enclosed figures. It should be emphasized that the embodiments shown are used for example purposes only and should not be used to limit the scope of the invention.
  • FIG. 1 shows a perspective view of a footstrap assembly comprising a first embodiment of the rotatable footstrap plate with a footstrap mounted on the rotatable plate.
  • FIG. 2 shows a perspective exploded view of the footstrap assembly of FIG. 1.
  • FIG. 3 shows a perspective view of the rotatable footstrap plate of FIG. 1.
  • FIG. 4 shows a perspective view of the rotatable footstrap plate of FIG. 1 without the non- slip surface.
  • FIG. 5 shows a cross section view of the footstrap assembly of FIG. 1 according to the line V-V defined in FIG. 1.
  • FIG. 6 shows an exploded cross section view of the exploded footstrap assembly of FIG. 2 according to the line VI-VI defined in FIG. 2.
  • FIG. 7 shows a cross section view of the footstrap assembly of FIG. 1 according to the line VII-VII defined in FIG. 1.
  • FIG. 8 shows a perspective view of a second embodiment of a footstrap assembly.
  • FIG. 9 shows a perspective view of a third embodiment of a footstrap assembly.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • FIGS. 1-7 all show different views of the same footstrap assembly, in different views and in different stages of assembly. The same reference numbers will therefore be used to identify the same elements in all the figures.
  • The footstrap assembly 1 consists of a rotatable footstrap plate 2,3,4 and footstrap 5 mounted on the rotatable footstrap plate. The rotatable footstrap plate comprises a center disc 2 upon which is mounted a non-slip/cushioning layer/pad/surface 3 to create friction resistance and cushioning between the user's foot and the footstrap plate. This non-slip/cushioning layer could be made of any number of different materials known to the person skilled in the art, for example rubber or foam. The center disc 2 is arranged to be mounted to the deck of the surfboard in a fixed angular position. The rotatable footstrap plate further comprises an outer ring element 4. The diameter of the center disc 3 is slightly larger than inner diameter of the outer ring element 4. When the rotatable footstrap plate is mounted on the board, the outer ring element is arranged between the deck of the board and the top of the center disc such that the outer ring is held on the deck by the center disc. However due to the arrangement of the centre disc and outer ring element, the outer ring element can rotate around the centre of the centre disc.
  • In the current embodiment, both the centre disc and the outer ring element are made of a strong plastic or composite material which is resistant to a salt water environment. However, other suitable materials could also be used. In addition, the tolerances between the disc and the ring are chosen to ensure that any sand buildup between the disc and the ring can be washed out as soon as the rotatable footstrap plate is placed in the water.
  • A footstrap 5 is fixed to the outer ring element 4 via footstrap mounting elements 6. The footstrap mounting elements 6 are, in the current embodiment, two blocks arranged at opposite locations on the outer ring element 4. The footstrap mounting elements 6 are formed with pre drilled holes or screw inserts suitable for inserting screws in order to fasten one or more footstraps to the outer ring element in different desired positions.
  • When the footstrap is fastened to the footstrap mounting elements, the footstrap can rotate about the center disc 2. However, when the user stands on the board with his or her foot in the footstrap, the user has a firm, non-rotating connection with the board via the non-slip surface of the center disc which is fixed to the board in an angularly fixed position. When the user lifts his or her foot slightly, the user can rotate the footstrap until it is oriented in an optimal way. The user then puts weight on his or her foot and again has a good, non-rotating connection to the board.
  • The cross section views shown in FIGS. 5-7 show more details of the rotatable footstrap plate. In particular it should be noted that the centre disc is formed with two concentric circular portions, the first portion 2 a having a radius A and the second portion 2 b having a larger radius B. The outer ring element is formed with an inner diameter C which is larger than the diameter A of the centre disc but smaller than the diameter B of the centre. The first portion of the centre disc is arranged below the second portion of the centre disc in the orientation shown in the figures. When the centre disc is mounted on the outer ring element, the first portion of the centre disc is placed in the centre portion of the outer ring element. The second portion of the centre disc holds the outer ring element in place. In this way, the centre disc when mounted on the outer ring element and the deck of the surfboard keeps the outer ring attached to the surfboard.
  • For the sake of completeness and to give the reader an indication of the size of the embodiment shown in FIG. 1-7, it can be noted that the outer diameter of second portion of the centre disc is 17 cm. It should also be noted that the outer diameter of the second portion of the centre disc is desired to be made as large as possible in order to increase the contact area between the user's foot and the rotatable footstrap plate. However, if the diameter of the centre portion is made too large, then the footstrap which in this embodiment spans the centre portion would become too flat. Also, if the diameter of the centre disc becomes too large then the moments applied by the footstrap to the centre disc and the outer ring element will become quite large thereby creating a risk that the two discs will bind due to deformation. Therefore a diameter of around 15-17 cm is ideal for most users. Users with small feet could use a footstrap plate with a centre portion having an outer diameter of less than 15 cm. In general, the outer diameter will be greater than 5 cm, preferably greater than 10 cm and most preferably greater than 14 cm.
  • It can be noted that the difference between the diameters A and C ensure that there is room for sand and other debris to accumulate between the outer ring and the centre disc. If the diameters A and C were too close together, then any small amount of sand between the two elements would cause the elements to bind and would prevent rotation. Furthermore, it can be noted that the greater the difference in the diameters A and C, the more motion will be allowed between the two elements. A large amount of motion is undesired, so a difference of between 2 and 3 mm gives a good compromise. However, greater or smaller values could also be used depending on the application and desired effect. It can also be noted that it should be obvious to the person skilled in the art that the outer ring and the centre disc do not have to be perfectly circle formed. For example, the first portion of the centre disc could be arranged with three equally spaced tabs (not shown) which centre the outer ring and allow the outer ring to rotate about the three tabs. Or the first portion of the centre disc could be two arc shaped portions (not shown) arrange at the front and back of the centre disc. Therefore the term “circular portion” should be broadly interpreted for the sake of this specification.
  • It can also be seen from the cross section figures, that the height E of the first portion of the centre disc is slightly greater than the height F of the first portion of the outer ring element. This allows the outer ring to rotate with respect to the centre disc even if the centre disc is firmly screwed onto the deck of the surfboard. It should be noted that the term “height” refers to the thickness, or the dimension which is perpendicular to the deck of the surfboard when the rotatable footstrap plate is mounted on the deck of the surfboard.
  • In the current embodiment, the center disc and the outer ring are connected together by an elastic string 7 which functions as a spring element. See FIGS. 3 and 4 which show the details of the function of the elastic string 7. One end 8 of the string is fixed at the inside edge 9 of the outer ring 4. The other end 10 of the elastic string is fixed at the opposite outer edge 11 of the center disc 2. In this way, the string is as long as possible. Four pivots 12 a,12 b on the center disc 2 keep the elastic string in position. The elastic string is tightened when the outer ring element is rotated away from its biased centre position. When the user pulls his or her foot out of the foot strap, the outer ring seeks back to its initial or biased centre position. In the case where the rotatable footstrap plate is mounted on a surfboard with two footstrap locations, one at the back and one at the middle of the board, the footstrap plate would be arranged at the middle of the board and such that the initial position would be chosen such that the footstrap was parallel to the longitudinal axis of the surfboard.
  • In the current embodiment, the elastic string is held in place at its second end by a knot (not shown) formed in the string which prevents the string from being pulled through the two pivots 12 a. At the first end 8 of the string, the string is held in place by the footstrap which is screwed onto the outer ring. In the current embodiment, there is a certain amount of friction between the string and the footstrap. This allows the tension in the string to be adjusted. By pulling on the first end of the string, a portion of the string will stick out past the footstrap, thereby increasing the tension in the string. This will increase the return action of the footstrap assembly to its initial position.
  • It should be noted that it should be obvious to the person skilled in the art that the arrangement of the spring element can take different forms. For example, a string element could be held in place in different ways. One example of this could be that the slot 13 in the outer ring in which the elastic spring is arranged could be formed as a clam cleat to more precisely adjust the tension in the string. In another example, the elastic string could be replaced with a different spring element, for example a spiral spring could be arranged between the centre disc and the outer ring.
  • In the current embodiment of the footstrap assembly, the centre disc is provided with two holes 14 a, 14 b and a slot 15. The holes and the slot are provided such that screws can be used to fix the centre disc to the deck of the surfboard. In most cases, surfboards are provided with screw plugs/inserts in the deck of the board. These screw plugs/inserts are provided for mounting footstraps to the surfboard in a strong manner. By providing a number of different holes 14 a,14 b in the centre disc of the footstrap plate, the user can choose the hole or holes which best fit to the existing screw plugs/inserts in the surfboard on which the footstrap assembly is to be mounted. As can be seen from FIGS. 5 and 6, the slot does not extend through the entire thickness of the centre disc. The user is therefore required to drill a hole through the slot such that the hole is aligned with the appropriate screw plug/insert in the surfboard.
  • It should however be noted that different arrangements of the centre disc could be provided. For example, two slots which are not drilled through could be provided. In this way, the user must first drill two holes before mounting the centre disc on the deck of the surfboard. In another embodiment, a number of marked positions could be indicated with printing, showing the different standard positions for the different board manufacturers. The user could then choose the correct locations and drill through the centre disc.
  • During use, the user will experience that he or she can increase the friction resistance between his or her foot and the non-slip layer on the center disc by pushing further into the footstrap and pressing his or her toes onto the deck. At the same time increased tension in the strap will give more resistance between the outer and center disc. Both contributions prevent against unwanted rotation when sudden maneuvers result in high loads on the foot. If more friction between the centre disc and the outer ring portion is desired, the interface between the centre disc and the outer ring portion could be provided with friction enhancing means, such as protrusions in one surface and matching recesses in the opposite surface.
  • Also during use, the user will experience that it is easier to insert his or her foot into the strap during sailing. This is because the user can stand further back on the board with his or her feet pointing more forwards with the toes placed beside the strap. Then just by pivoting on the heel, the user can cause the footstrap to pivot while simultaneously sliding the foot into the strap. In general, the footstrap assembly has a number of advantages when sailing which make it unique on the market.
  • FIG. 8 shows a second embodiment 20 of a footstrap assembly. The rotatable footstrap plate of FIG. 8 is the same as in FIGS. 1-7, however, instead of one single wide footstrap, two narrower footstraps 21 are mounted on the outer ring in a parallel arrangement. In this embodiment, the footstraps are placed further from the centre line of the board. In this way, when the user inserts his or her foot into one of the footstraps, the weight of the user will be located further from the centre line of the board. This embodiment is advantageous for boards which are wide and which require the user to put more pressure on the edge of the board to hold the edge down. It should be noted that in this embodiment, as the user rotates the strap from an orientation where the straps are parallel with the centre axis of the board towards an orientation where the straps are more angled with respect to the centre line of the board, the weight of the user is moved closer and closer to the centre of the board. This allows the user to apply his or her weight on the board at different locations on the board, just by pivoting the strap. For example, when reaching, the user has his or her weight forward and on the edge of the board with his or her feet close to perpendicular to the centre line of the board. However, when gybing, the user shifts his or her weight to the centre of the board by pivoting the strap.
  • FIG. 9 shows a third embodiment 30 of the footstrap assembly. In this embodiment, the rotatable footstrap plate is the same as in FIGS. 1-7, however, instead of one wide footstrap, two narrower footstraps 31 are used. In contrast to the embodiment of FIG. 8, in this case the footstraps are mounted at an angle to each other.
  • While the above mentioned description has focused mainly on an application where a single footstrap assembly is mounted at the forward location of a surfboard for use with a kite, in another application (not shown), two footstrap assemblies of the kind shown in FIGS. 1-7 could be mounted to the front and back of a twintip kitesurf or wakeboard. In this way, the user is able to pivot both feet. This is especially useful since a twin tip board is sailed in both directions without removing the feet from the straps. When sailing one way, the user's feet could be arranged pointing in one direction and when sailing the other way, the user's feet could be pointing the other way. This allows the user's body to much better adapt to the sailing direction.
  • It should be noted that a number of additional details with respect to the integration between the board and the footstrap assembly can also be provided. For example, the footstrap assembly can be mounted either on an existing footpad on the board, or it could be mounted directly to the deck of the board itself. In the case where the footstrap assembly is mounted directly to the deck of the board itself, a footpad could be placed around the footstrap assembly such that the height difference between the non-slip surface of the centre disc and the surrounding footpad is small. If the surfboard already has a footpad, then a hole, the size of the footstrap assembly, could be cut into the footpad.
  • It is to be noted that the figures and the above description have shown the example embodiments in a relatively simple and schematic manner. Mechanical details, for example all the screws, clamps etc, have not been shown in detail since the person skilled in the art should be familiar with these details and they would just unnecessarily complicate this description.

Claims (20)

1. A rotatable footstrap plate (2,4,7) for a gliding board, said rotatable footstrap plate comprising:
a centre disc (2) which is arranged to be mounted on the deck of the gliding board in a fixed angular position,
a non-slip surface (3) mounted on the centre disc, said non-slip surface being arranged to be in contact with the user's foot during use,
an outer ring element (4) which is arranged to be rotatable around the centre disc during use of the rotatable footstrap plate and
footstrap mounting elements (6) fastened to the outer ring element.
2. A rotatable footstrap plate (2,4,7) according to claim 1, characterized in that the centre disc (2) comprises a first circular portion (2 a) and a second circular portion (2 b), the outer diameter (A) of the first circular portion (2 a) being smaller than the outer diameter (B) of the second circular portion (2 b) and in that the inner diameter (C) of the outer ring element (4) is greater than the outer diameter (A) of the first circular portion of the centre disc, but smaller than the outer diameter (B) of the second circular portion of the centre disc.
3. A rotatable footstrap plate (2,4,7) according to claim 2, characterized in that the outer diameter (B) of the second portion (2 b) of the centre disc (2) is greater than 5 cm.
4. A rotatable footstrap plate (2,4,7) according to claim 2 characterized in that the height (E) of the first portion (2 a) of the centre disc (2) is greater than the height (F) of the outer ring element (4) along the inner edge of the outer ring element.
5. A rotatable footstrap plate (2,4,7) according to claim 1, characterized in that the rotatable footstrap plate further comprises a spring element (7) arranged between the centre disc (2) and the outer ring element (4) such that the outer ring element has a biased centre position with respect to the centre disc.
6. A rotatable footstrap plate (2,4,7) according to claim 5, characterized in that the spring element (7) is an elastic string connected between the centre disc (2) and the outer ring element (4).
7. A rotatable footstrap plate (2,4,7) according to claim 6, characterized in that a first portion (10) of the elastic string (7) is connected to the outer edge (11) of the centre disc (2) and a second portion (8) of the elastic string is connected to the outer ring element (4) at a location (9) opposite the connection between the centre disc and the string.
8. A footstrap assembly (1;20;30) comprising a rotatable footstrap plate (2,4,7) according to claim 1, said footstrap assembly further comprising a first footstrap (5;21;31) fastened to the footstrap mounting elements (6) of the outer ring element (4) of the rotatable footstrap plate.
9. A footstrap assembly (20;30) according to claim 8, characterized in that the footstrap assembly further comprises a second footstrap (21;31) which is fastened to the footstrap mounting elements (6) of the outer ring element (4) of the rotatable footstrap plate (2,4,7).
10. A footstrap assembly according to claim 8 wherein the at least one footstrap assembly (1;20;30) has one of the group of: a kitesurf board, a surf board, a wakeboard and a windsurf board attached thereto.
11. A rotatable footstrap plate (2,4,7) according to claim 3 characterized in that the height (E) of the first portion (2 a) of the centre disc (2) is greater than the height (F) of the outer ring element (4) along the inner edge of the outer ring element.
12. A rotatable footstrap plate (2,4,7) according to claim 2, characterized in that the rotatable footstrap plate further comprises a spring element (7) arranged between the centre disc (2) and the outer ring element (4) such that the outer ring element has a biased centre position with respect to the centre disc.
13. A rotatable footstrap plate (2,4,7) according to claim 3, characterized in that the rotatable footstrap plate further comprises a spring element (7) arranged between the centre disc (2) and the outer ring element (4) such that the outer ring element has a biased centre position with respect to the centre disc.
14. A rotatable footstrap plate (2,4,7) according to claim 4, characterized in that the rotatable footstrap plate further comprises a spring element (7) arranged between the centre disc (2) and the outer ring element (4) such that the outer ring element has a biased centre position with respect to the centre disc.
15. A footstrap assembly according to claim 9, wherein the at least one footstrap assembly (1;20;30) has one of the group of: a kitesurf board, a surf board, a wakeboard and a windsurf board attached thereto.
16. A footstrap assembly (1;20;30) comprising a rotatable footstrap plate (2,4,7) according to claim 2, said footstrap assembly further comprising a first footstrap (5;21;31) fastened to the footstrap mounting elements (6) of the outer ring element (4) of the rotatable footstrap plate.
17. A footstrap assembly (1;20;30) comprising a rotatable footstrap plate (2,4,7) according to claim 3, said footstrap assembly further comprising a first footstrap (5;21;31) fastened to the footstrap mounting elements (6) of the outer ring element (4) of the rotatable footstrap plate.
18. A footstrap assembly (1;20;30) comprising a rotatable footstrap plate (2,4,7) according to claim 4, said footstrap assembly further comprising a first footstrap (5;21;31) fastened to the footstrap mounting elements (6) of the outer ring element (4) of the rotatable footstrap plate.
19. A footstrap assembly (1;20;30) comprising a rotatable footstrap plate (2,4,7) according to claim 5, said footstrap assembly further comprising a first footstrap (5;21;31) fastened to the footstrap mounting elements (6) of the outer ring element (4) of the rotatable footstrap plate.
20. A footstrap assembly (1;20;30) comprising a rotatable footstrap plate (2,4,7) according to claim 6, said footstrap assembly further comprising a first footstrap (5;21;31) fastened to the footstrap mounting elements (6) of the outer ring element (4) of the rotatable footstrap plate.
US13/512,343 2009-11-26 2010-11-26 Rotatable Footstrap Plate And Footstrap Assembly For Gliding Boards Abandoned US20120227651A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/512,343 US20120227651A1 (en) 2009-11-26 2010-11-26 Rotatable Footstrap Plate And Footstrap Assembly For Gliding Boards

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US26466709P 2009-11-26 2009-11-26
DKPA200901252 2009-11-26
DK200901252 2009-11-26
US13/512,343 US20120227651A1 (en) 2009-11-26 2010-11-26 Rotatable Footstrap Plate And Footstrap Assembly For Gliding Boards
PCT/EP2010/068291 WO2011064326A2 (en) 2009-11-26 2010-11-26 Rotatable footstrap plate and footstrap assembly for gliding boards

Publications (1)

Publication Number Publication Date
US20120227651A1 true US20120227651A1 (en) 2012-09-13

Family

ID=43924023

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/512,343 Abandoned US20120227651A1 (en) 2009-11-26 2010-11-26 Rotatable Footstrap Plate And Footstrap Assembly For Gliding Boards

Country Status (2)

Country Link
US (1) US20120227651A1 (en)
WO (1) WO2011064326A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130213287A1 (en) * 2013-03-25 2013-08-22 Peter Schulz Dynamic foot repositioning systems
US20150176884A1 (en) * 2013-10-31 2015-06-25 Ryan Grepper Cooler having integrated accessory storage
US20160272286A1 (en) * 2015-03-20 2016-09-22 Todd Caranto Accessory mounting system for a stand up paddle board
WO2018182519A1 (en) * 2017-03-31 2018-10-04 Changi General Hospital Pte Ltd A foot-securing assembly and related methods
US11110339B2 (en) * 2019-05-23 2021-09-07 UNLCKED UG (haftungsbeschränkt) Sports equipment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2979062A1 (en) * 2011-08-17 2013-02-22 Florent Herouard Fixing device for fixing e.g. foot of user on street board, to practice urban glide sports, has rectangular main part surrounding and retaining glide board, and fixing loop fixed on main part to accommodate front part of shoe
US20150182847A1 (en) * 2012-05-29 2015-07-02 Ocean Rodeo Sports Inc. Adaptable riding board

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5277635A (en) * 1991-12-19 1994-01-11 Connelly Skis, Inc. Water skiboard with rotatable binding
US5667237A (en) * 1995-06-30 1997-09-16 Lauer; Jonathan L. Rotary locking feature for snowboard binding
US6726238B2 (en) * 2001-11-21 2004-04-27 The Burton Corporation Snowboard binding

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3023419A1 (en) 1980-06-23 1982-01-07 Hannes 8100 Garmisch-Partenkirchen Marker Foot-grip for wind-surfer - has plastics loop on adjustable swivel mounting
DE3040764A1 (en) 1980-10-29 1982-05-27 Marker, Hannes, 8100 Garmisch-Partenkirchen SAILING BOARD WITH FOOT STRAPS
FI65746C (en) 1981-12-10 1984-07-10 Tuurna Sami REDUCING FRAMEWORK
DE8431161U1 (en) 1984-10-24 1985-04-25 Schäfer, Gerhard, 4970 Bad Oeynhausen SURFBOARD
FR2593135B1 (en) 1986-01-21 1989-11-17 Frappat Jean Louis MOBILE FOOT HOLDER DEVICE FOR THE EQUIPMENT OF VARIOUS SPORTS EQUIPMENT AND PARTICULARLY SAILBOARD FLOATS.
DE8703466U1 (en) 1987-03-07 1987-08-06 Schäfer, Gerhard, 4970 Bad Oeynhausen surfboard
FR2633242A1 (en) 1988-06-27 1989-12-29 Giffard Laurent Sailboard in which the support for the feet is mounted on shock absorbers
AU2002950935A0 (en) 2002-08-22 2002-09-12 Christopher Paul Gray Rotatble control surface for a ride-on device
US6994370B2 (en) * 2003-09-09 2006-02-07 Sabol Jeffrey P Adjustable rotatable sports board boot binding
JP2007007405A (en) * 2005-06-27 2007-01-18 Motion Water Sports Inc Wakeboard binding plate assembly and method of using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5277635A (en) * 1991-12-19 1994-01-11 Connelly Skis, Inc. Water skiboard with rotatable binding
US5667237A (en) * 1995-06-30 1997-09-16 Lauer; Jonathan L. Rotary locking feature for snowboard binding
US6726238B2 (en) * 2001-11-21 2004-04-27 The Burton Corporation Snowboard binding

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130213287A1 (en) * 2013-03-25 2013-08-22 Peter Schulz Dynamic foot repositioning systems
US8870615B2 (en) * 2013-03-25 2014-10-28 Peter Schulz Dynamic foot repositioning systems
US20150176884A1 (en) * 2013-10-31 2015-06-25 Ryan Grepper Cooler having integrated accessory storage
US20160272286A1 (en) * 2015-03-20 2016-09-22 Todd Caranto Accessory mounting system for a stand up paddle board
US10040519B2 (en) * 2015-03-20 2018-08-07 Todd Caranto Accessory mounting system for a stand up paddle board
US20180334229A1 (en) * 2015-03-20 2018-11-22 Todd Caranto Accessory mounting system for a stand up paddle board
US10479460B2 (en) * 2015-03-20 2019-11-19 Pau Hana Surf Supply Company Accessory mounting system for a stand up paddle board
WO2018182519A1 (en) * 2017-03-31 2018-10-04 Changi General Hospital Pte Ltd A foot-securing assembly and related methods
US11110339B2 (en) * 2019-05-23 2021-09-07 UNLCKED UG (haftungsbeschränkt) Sports equipment

Also Published As

Publication number Publication date
WO2011064326A3 (en) 2012-07-05
WO2011064326A2 (en) 2011-06-03

Similar Documents

Publication Publication Date Title
US20120227651A1 (en) Rotatable Footstrap Plate And Footstrap Assembly For Gliding Boards
CA2117424C (en) Snowboard boot binding system
US6866273B2 (en) Sliding device
US20060091634A1 (en) Braking and steering system for a truck, wheeled platform, skateboard or vehicle
US7059614B2 (en) Freely rotatable binding for snowboarding and other single-board sports
US5603645A (en) Prone surf board construction
EP1294455B1 (en) An accessory for a snowboard
US8870615B2 (en) Dynamic foot repositioning systems
US10576357B2 (en) Bindingless snowboard
US6579134B1 (en) User-propellable sport board device
US7314227B2 (en) Gliding board with vibration-absorbing layer
WO2016054690A1 (en) Foot piece for a water board
US9233296B2 (en) Binding systems for boards and skis
US20040070175A1 (en) Snowboard with steering control
US20100159759A1 (en) Shark fin
US6969290B2 (en) Sport board control device and footpiece
US20150182847A1 (en) Adaptable riding board
WO2019136557A1 (en) Curvature adjustment of a sliding board
KR101514758B1 (en) Binding device of deck and boots
WO2004018286A1 (en) Rotatable control surface for a ride-on device
US11505290B2 (en) Mounting apparatus and related methods of fabricating or retrofitting a surfboard with said mounting apparatus
FR2831452A1 (en) Board for practicing snowboard, wakeboard and other board maneuvers on a trampoline is made from wood and fiberglass with protected edges
AU679976B2 (en) Support pads
US20120028523A1 (en) Fin Assembly For Water Sports Board
FR2789323A1 (en) Snowboard assembly comprises a central cavity defining two longitudinal side beams, anchoring points, and intermediate plate

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION