US20120205857A1 - Method and apparatus for feeding media sheets in an image production device - Google Patents

Method and apparatus for feeding media sheets in an image production device Download PDF

Info

Publication number
US20120205857A1
US20120205857A1 US13/026,400 US201113026400A US2012205857A1 US 20120205857 A1 US20120205857 A1 US 20120205857A1 US 201113026400 A US201113026400 A US 201113026400A US 2012205857 A1 US2012205857 A1 US 2012205857A1
Authority
US
United States
Prior art keywords
image production
sheet
media sheet
media
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US13/026,400
Other versions
US9067439B2 (en
Inventor
Douglas K. Herrmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xerox Corp
Original Assignee
Xerox Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xerox Corp filed Critical Xerox Corp
Priority to US13/026,400 priority Critical patent/US9067439B2/en
Assigned to XEROX CORPORATION reassignment XEROX CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HERRMANN, DOUGLAS K.
Priority to JP2012014591A priority patent/JP2012166952A/en
Priority to DE102012202092.6A priority patent/DE102012202092B4/en
Publication of US20120205857A1 publication Critical patent/US20120205857A1/en
Application granted granted Critical
Publication of US9067439B2 publication Critical patent/US9067439B2/en
Assigned to CITIBANK, N.A., AS AGENT reassignment CITIBANK, N.A., AS AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: XEROX CORPORATION
Assigned to XEROX CORPORATION reassignment XEROX CORPORATION RELEASE OF SECURITY INTEREST IN PATENTS AT R/F 062740/0214 Assignors: CITIBANK, N.A., AS AGENT
Assigned to CITIBANK, N.A., AS COLLATERAL AGENT reassignment CITIBANK, N.A., AS COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: XEROX CORPORATION
Assigned to JEFFERIES FINANCE LLC, AS COLLATERAL AGENT reassignment JEFFERIES FINANCE LLC, AS COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: XEROX CORPORATION
Assigned to CITIBANK, N.A., AS COLLATERAL AGENT reassignment CITIBANK, N.A., AS COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: XEROX CORPORATION
Assigned to XEROX CORPORATION reassignment XEROX CORPORATION TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS RECORDED AT RF 064760/0389 Assignors: CITIBANK, N.A., AS COLLATERAL AGENT
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J13/00Devices or arrangements of selective printing mechanisms, e.g. ink-jet printers or thermal printers, specially adapted for supporting or handling copy material in short lengths, e.g. sheets
    • B41J13/10Sheet holders, retainers, movable guides, or stationary guides
    • B41J13/103Sheet holders, retainers, movable guides, or stationary guides for the sheet feeding section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H3/00Separating articles from piles
    • B65H3/08Separating articles from piles using pneumatic force
    • B65H3/0808Suction grippers
    • B65H3/0816Suction grippers separating from the top of pile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H3/00Separating articles from piles
    • B65H3/08Separating articles from piles using pneumatic force
    • B65H3/0808Suction grippers
    • B65H3/0816Suction grippers separating from the top of pile
    • B65H3/0825Suction grippers separating from the top of pile and acting on the rear part of the articles relatively to the final separating direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H3/00Separating articles from piles
    • B65H3/08Separating articles from piles using pneumatic force
    • B65H3/14Air blasts producing partial vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H3/00Separating articles from piles
    • B65H3/46Supplementary devices or measures to assist separation or prevent double feed
    • B65H3/48Air blast acting on edges of, or under, articles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/65Apparatus which relate to the handling of copy material
    • G03G15/6502Supplying of sheet copy material; Cassettes therefor
    • G03G15/6511Feeding devices for picking up or separation of copy sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/10Handled articles or webs
    • B65H2701/13Parts concerned of the handled material
    • B65H2701/131Edges
    • B65H2701/1313Edges trailing edge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2801/00Application field
    • B65H2801/03Image reproduction devices
    • B65H2801/06Office-type machines, e.g. photocopiers

Definitions

  • Disclosed herein is a method for method and apparatus for feeding media sheets in an image production device, as well as corresponding apparatus and computer-readable medium.
  • the feed head may not acquire the sheet properly and this may lead to several failure conditions. These issues generally result in multi-feeds, such as when 2 or more media sheets are acquired and fed as a single media sheet, or mis-feeds, such as when a media sheet is not acquired within the necessary time to match the system pitch timing.
  • the air being forced into the media stack cannot be directed accurately enough to always separate the top media sheet.
  • the fluffer forces air to a subset of media sheets at the top of the media stack and does not always focus on the separation of the top media sheet.
  • a method and apparatus for feeding media sheets in an image production device may include applying air downward to a top of a trailing edge of a media sheet located at a top of a media stack that is to be fed to an image production section of the image production device, the applied air causing the top media sheet to separate from the media stack, and feeding the separated top media sheet to the image production section.
  • FIG. 1 is an exemplary diagram of an image production device in accordance with one possible embodiment of the disclosure
  • FIG. 2 is an exemplary block diagram of the image production device in accordance with one possible embodiment of the disclosure.
  • FIG. 4 is an exemplary diagram of a top view of a media sheet separation environment in accordance with one possible embodiment of the disclosure.
  • FIG. 5 is a flowchart of an exemplary media sheet feeding process in accordance with one possible embodiment of the disclosure.
  • aspects of the embodiments disclosed herein relate to a method for feeding media sheets in an image production device, as well as corresponding apparatus.
  • the disclosed embodiments may concern feeding media sheets in an image production device.
  • the disclosed embodiments concern a method and apparatus that may take advantage of the Bernoulli effect by forcing high velocity air across the top of a media sheet to lift the top media sheet by using the pressure differential caused by the air moving over the media sheet surface.
  • the disclosed embodiments may ensure that lift is applied to the top media sheet.
  • By forcing the air down through a hole in a plate the air then creates a high speed boundary layer between the plate and the top media sheet in the media stack.
  • the air being applied down toward the media sheet causes the media sheet to be “acquired” quickly and consistently.
  • the boundary layer of air remains and provides a low friction interface between the media sheet and the plate. This helps the feed head acquire the media sheet since it lowers the drive forces required to feed the sheet. This aspect of the embodiments provides media sheet lift while reducing the contact friction of the plate.
  • FIG. 1 is an exemplary diagram of an image production device 100 in accordance with one possible embodiment of the disclosure.
  • the image production device 100 may be any device or combination of devices that may be capable of making image production documents (e.g., printed documents, copies, etc.) including a copier, a printer, a facsimile device, and a multi-function device (MFD), for example.
  • image production documents e.g., printed documents, copies, etc.
  • MFD multi-function device
  • the section may include any number of feeder trays 160 , each of which stores a media stack 170 or print sheets (“media”) of a predetermined type (size, weight, color, coating, transparency, etc.) and may include a feeder to dispense one of the sheets therein as instructed.
  • a media stack 170 or print sheets (“media”) of a predetermined type size, weight, color, coating, transparency, etc.
  • Certain types of media may require special handling in order to be dispensed properly.
  • heavier or larger media may desirably be drawn from a media stack 170 by use of an air knife, fluffer, vacuum grip or other application (not shown in the Figure) of air pressure toward the top sheet or sheets in a media stack 170 .
  • Certain types of coated media may be advantageously drawn from a media stack 170 by the use of an application of heat, such as by a stream of hot air (not shown in the Figure). Sheets of media drawn from a media stack 170 on a selected feeder tray 160 may then be moved to the image production section 120 to receive one or more images thereon. Then, the printed sheet is then moved to output section 130 , where it may be collated, stapled, folded, punched, etc., with other media sheets in manners familiar in the art.
  • Processor 220 may include at least one conventional processor or microprocessor that interprets and executes instructions.
  • Memory 230 may be a random access memory (RAM) or another type of dynamic storage device that stores information and instructions for execution by processor 220 .
  • Memory 230 may also include a read-only memory (ROM) which may include a conventional ROM device or another type of static storage device that stores static information and instructions for processor 220 .
  • ROM read-only memory
  • Communication interface 280 may include any mechanism that facilitates communication via a network.
  • communication interface 280 may include a modem.
  • communication interface 280 may include other mechanisms for assisting in communications with other devices and/or systems.
  • Computer-executable instructions include, for example, instructions and data which cause a general purpose computer, special purpose computer, or special purpose processing device to perform a certain function or group of functions.
  • Computer-executable instructions also include program modules that are executed by computers in stand-alone or network environments.
  • program modules include routines, programs, objects, components, and data structures, and the like that perform particular tasks or implement particular abstract data types.
  • Computer-executable instructions, associated data structures, and program modules represent examples of the program code means for executing steps of the methods disclosed herein. The particular sequence of such executable instructions or associated data structures represents examples of corresponding acts for implementing the functions described therein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Sheets, Magazines, And Separation Thereof (AREA)
  • Controlling Sheets Or Webs (AREA)

Abstract

A method and apparatus for feeding media sheets in an image production device is disclosed. The method may include applying air downward to a top of a trailing edge of a media sheet located at a top of a media stack that is to be fed to an image production section of the image production device, the applied air causing the top media sheet to separate from the media stack, and feeding the separated top media sheet to the image production section.

Description

    BACKGROUND
  • Disclosed herein is a method for method and apparatus for feeding media sheets in an image production device, as well as corresponding apparatus and computer-readable medium.
  • In image production devices where sheets are fed from a media stack, it is important to attain consistent separation of the top media sheet from the rest of the media stack, especially media sheets of larger length. This is especially important in vacuum corrugation feeding due to the lower acquisition forces available.
  • If the top media sheet is not fully separated due to edge welds (sheets sticking together at the edges from the shearing operation at the mill), or other contact issues caused by ambient conditions and interactions with the paper coatings, the feed head may not acquire the sheet properly and this may lead to several failure conditions. These issues generally result in multi-feeds, such as when 2 or more media sheets are acquired and fed as a single media sheet, or mis-feeds, such as when a media sheet is not acquired within the necessary time to match the system pitch timing.
  • In an attempt to separate the top media sheets at the trailing edge of the media stack conventional image production devices use “fluffers” to force air into the media stack. The theory of fluffing up the trail edge of the stack is based on the idea that when the top media sheet is being acquired by the feed head the resistance at the trail edge of the media sheet can be reduced by forcing air into the trail edge of the media stack.
  • However, the air being forced into the media stack cannot be directed accurately enough to always separate the top media sheet. The fluffer forces air to a subset of media sheets at the top of the media stack and does not always focus on the separation of the top media sheet.
  • SUMMARY
  • A method and apparatus for feeding media sheets in an image production device is disclosed. The method may include applying air downward to a top of a trailing edge of a media sheet located at a top of a media stack that is to be fed to an image production section of the image production device, the applied air causing the top media sheet to separate from the media stack, and feeding the separated top media sheet to the image production section.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an exemplary diagram of an image production device in accordance with one possible embodiment of the disclosure;
  • FIG. 2 is an exemplary block diagram of the image production device in accordance with one possible embodiment of the disclosure;
  • FIG. 3 is an exemplary diagram of a side view of a media sheet separation environment in accordance with one possible embodiment of the disclosure;
  • FIG. 4 is an exemplary diagram of a top view of a media sheet separation environment in accordance with one possible embodiment of the disclosure; and
  • FIG. 5 is a flowchart of an exemplary media sheet feeding process in accordance with one possible embodiment of the disclosure.
  • DETAILED DESCRIPTION
  • Aspects of the embodiments disclosed herein relate to a method for feeding media sheets in an image production device, as well as corresponding apparatus.
  • The disclosed embodiments may include a method for feeding media sheets in an image production device. The method may include applying air downward to a top of a trailing edge of a media sheet located at a top of a media stack that is to be fed to an image production section of the image production device, the applied air causing the top media sheet to separate from the media stack, and feeding the separated top media sheet to the image production section.
  • The disclosed embodiments may further include an image production device that may include a sheet separation unit that applies air downward to a top of a trailing edge of a media sheet located at a top of a media stack that is to be fed to an image production section of the image production device, the applied air causing the top media sheet to separate from the media stack, and a feeder section that feeds the separated top media sheet to the image production section.
  • The disclosed embodiments may further include a feeder section of an image production device that may include a sheet separation unit that applies air downward to a top of a trailing edge of a media sheet located at a top of a media stack that is to be fed to an image production section of the image production device, the applied air causing the top media sheet to separate from the media stack, and a feed head that feeds the separated top media sheet to the image production section.
  • The disclosed embodiments may concern feeding media sheets in an image production device. The disclosed embodiments concern a method and apparatus that may take advantage of the Bernoulli effect by forcing high velocity air across the top of a media sheet to lift the top media sheet by using the pressure differential caused by the air moving over the media sheet surface. The disclosed embodiments may ensure that lift is applied to the top media sheet. By forcing the air down through a hole in a plate, the air then creates a high speed boundary layer between the plate and the top media sheet in the media stack. Although counterintuitive, the air being applied down toward the media sheet causes the media sheet to be “acquired” quickly and consistently.
  • Additionally as the media sheet is “acquired”, the boundary layer of air remains and provides a low friction interface between the media sheet and the plate. This helps the feed head acquire the media sheet since it lowers the drive forces required to feed the sheet. This aspect of the embodiments provides media sheet lift while reducing the contact friction of the plate.
  • As sheet sizes get larger, space around the media stack become more constrained. This method and apparatus allows for the media sheet separation to be addressed from above the media stack rather than the side of the media stack. In this manner, the disclosed embodiments provide:
      • Plate air system that uses pressure differential caused by high velocity air to lift top media sheet of a media stack at the trailing edge for top media sheet feed systems to separate top media sheet. (i.e., for a vacuum corrugation feeder).
      • Use of boundary layer of air across bottom surface of plate to provide a low friction contact to reduce the frictional forces of the media sheet acquisition system during the feed operation once trail edge of the media sheet is separated.
  • Benefits of the disclosed embodiments may include:
      • Acquires top media sheet of a media stack to reduce loading of a vacuum corrugation feed head.
      • Improves acquisition especially for longer media sheets where the load on the feed head is higher.
      • Reduces the forced fluffing issues of multi-sheet acquisition.
      • Boundary layer of high velocity air provides dual function of top media sheet acquisition and low friction surface that reduces media sheet to plate frictional loads.
      • Allows for air application from above the media stack rather than from the side as in forced air fluffers for reduced footprint and increased sheet size.
  • FIG. 1 is an exemplary diagram of an image production device 100 in accordance with one possible embodiment of the disclosure. The image production device 100 may be any device or combination of devices that may be capable of making image production documents (e.g., printed documents, copies, etc.) including a copier, a printer, a facsimile device, and a multi-function device (MFD), for example.
  • The image production device 100 may include an image production section 120, which includes hardware by which image signals are used to create a desired image, as well as a stand-alone feeder section 110, which stores and dispenses sheets on which images are to be printed, and an output section 130, which may include hardware for stacking, folding, stapling, binding, etc., prints which are output from the marking engine. If the image production device 100 is also operable as a copier, the image production device 100 may further include a document feeder 140, which operates to convert signals from light reflected from original hard-copy image into digital signals, which are in turn processed to create copies with the image production section 120. The image production device 100 may also include a local user interface 150 for controlling its operations, although another source of image data and instructions may include any number of computers to which the printer is connected via a network.
  • With reference to feeder section 110, the section may include any number of feeder trays 160, each of which stores a media stack 170 or print sheets (“media”) of a predetermined type (size, weight, color, coating, transparency, etc.) and may include a feeder to dispense one of the sheets therein as instructed. Certain types of media may require special handling in order to be dispensed properly. For example, heavier or larger media may desirably be drawn from a media stack 170 by use of an air knife, fluffer, vacuum grip or other application (not shown in the Figure) of air pressure toward the top sheet or sheets in a media stack 170. Certain types of coated media may be advantageously drawn from a media stack 170 by the use of an application of heat, such as by a stream of hot air (not shown in the Figure). Sheets of media drawn from a media stack 170 on a selected feeder tray 160 may then be moved to the image production section 120 to receive one or more images thereon. Then, the printed sheet is then moved to output section 130, where it may be collated, stapled, folded, punched, etc., with other media sheets in manners familiar in the art.
  • Note that the image production device 100 may be or may include a stand-alone feeder section 110 (or module) and/or a stand-alone output (finishing) section 130 (or module within the spirit and scope of the disclosed embodiments.
  • FIG. 2 is an exemplary block diagram of the image production device 100 in accordance with one possible embodiment of the disclosure. The image production device 100 may include a bus 210, a processor 220, a memory 230, a read only memory (ROM) 240, a sheet separation management unit 250, a feeder section 110, an output section 130, a user interface 150, a scanner 260, a sheet separation sensor 270, a communication interface 280, an image production section 120, and a sheet separation unit 290. Bus 210 may permit communication among the components of the image production device 100.
  • Processor 220 may include at least one conventional processor or microprocessor that interprets and executes instructions. Memory 230 may be a random access memory (RAM) or another type of dynamic storage device that stores information and instructions for execution by processor 220. Memory 230 may also include a read-only memory (ROM) which may include a conventional ROM device or another type of static storage device that stores static information and instructions for processor 220.
  • Communication interface 280 may include any mechanism that facilitates communication via a network. For example, communication interface 280 may include a modem. Alternatively, communication interface 280 may include other mechanisms for assisting in communications with other devices and/or systems.
  • ROM 240 may include a conventional ROM device or another type of static storage device that stores static information and instructions for processor 220. A storage device may augment the ROM and may include any type of storage media, such as, for example, magnetic or optical recording media and its corresponding drive.
  • User interface 150 may include one or more conventional mechanisms that permit a user to input information to and interact with the image production unit 100, such as a keyboard, a display, a mouse, a pen, a voice recognition device, touchpad, buttons, etc., for example. Output section 130 may include one or more conventional mechanisms that output image production documents to the user, including output trays, output paths, finishing section, etc., for example. The image production section 120 may include an image printing and/or copying section, a scanner, a fuser, etc., for example. The scanner 260 may be any device that may scan documents and may create electronic images from the scanned document. The scanner 260 may also scan, recognize, and decode marking-readable codes or markings, for example.
  • The sheet separation sensor 270 may be a contact image sensor (CIS), or a two-dimensional (2D) sensor array, a timing sensor, a contact sensor, etc., for example. In this manner, the sheet separation sensor 270 may serve a function of determining if the top media sheet from the media stack 170 has been acquired by one or more feed heads in the feeder section 110 and fed to the image production section 120.
  • In one possible embodiment, the sheet separation sensor 270 may sense whether the top media sheet has been acquired by the image production section 120. If the sheet separation sensor 270 senses that the top media sheet has not been acquired by the image production section 120, the sheet separation management unit 250 may adjust the amount of air applied to the top media sheet.
  • In yet another possible embodiment, the sheet separation sensor 270 may sense whether the top media sheet has been acquired by the image production section 120 within a predetermined time period. If the sheet separation sensor 270 senses that the top media sheet has not been acquired by the image production section 120 within a predetermined time period, the sheet separation management unit 250 may adjust the amount of air applied to the top media sheet. The predetermined time period may be 0.5-3 seconds, for example.
  • The image production device 100 may perform such functions in response to processor 220 by executing sequences of instructions contained in a computer-readable medium, such as, for example, memory 230. Such instructions may be read into memory 230 from another computer-readable medium, such as a storage device or from a separate device via communication interface 280.
  • The operation of the sheet separation unit 290 will be discussed in relation to the diagram in FIGS. 3 and 4, and the flowchart in FIG. 5.
  • FIG. 3 is an exemplary diagram of a side view of a media sheet separation environment 300 in accordance with one possible embodiment of the disclosure. The media sheet separation environment 300 may include the sheet separation unit 290, the feeder tray 160, the media stack 170, the top media sheet 330, and the feed head 340. The sheet separation unit 290 may include an air flow path 310 leading to one or more holes, and a plate 320. The plate 320 may have a bottom surface facing parallel to the top media sheet 330, as shown.
  • In operation, air may be applied from any blower know to one of skill in the art (not shown) and may travel down the air flow path 310 to one or more holes in plate 320. As shown, the Bernoulli effect causes the trailing edge of the media sheet 330 at the top of the media stack 170 to rise to enable the media sheet 330 to be properly acquired and fed by the feed head 340 of the feeder section 110 to then be acquired by the image production section 120.
  • FIG. 4 is an exemplary diagram of a top view of a media sheet separation environment 400 in accordance with one possible embodiment of the disclosure. The media sheet separation environment 400 may include the sheet separation unit 290, and the top media sheet 330. The sheet separation unit 290 may include the plate 320 and one or more holes 410 in the media plate through which air is applied to the top media sheet 330. The one or more holes 410 may be 4 mm-10 mm in diameter, for example. The air may be applied approximately 1″-3″ horizontally from the trailing edge of the top media sheet 330, for example.
  • FIG. 5 is a flowchart of an exemplary media sheet feeding process in accordance with one possible embodiment of the disclosure. The method may begin at step 5100, and may continue to step 5200, where the sheet separation unit may apply air downward to the top of a trailing edge of a media sheet 330 located at a top of a media stack 170 that is to be fed to the image production section 120 of the image production device 100. The applied air may cause the top media sheet 330 to separate from the media stack 170. Note that the trailing edge of the media sheet 330 may be the edge furthest away from a direction that the media sheet 330 is to be fed. At step 5300, the feeder section 110 feeds the separated top media sheet 330 to the image production section 120. The process may then go to step 5400 and end.
  • Embodiments as disclosed herein may also include computer-readable media for carrying or having computer-executable instructions or data structures stored thereon. Such computer-readable media can be any available media that can be accessed by a general purpose or special purpose computer. By way of example, and not limitation, such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to carry or store desired program code means in the form of computer-executable instructions or data structures. When information is transferred or provided over a network or another communications connection (either hardwired, wireless, or combination thereof) to a computer, the computer properly views the connection as a computer-readable medium. Thus, any such connection is properly termed a computer-readable medium. Combinations of the above should also be included within the scope of the computer-readable media.
  • Computer-executable instructions include, for example, instructions and data which cause a general purpose computer, special purpose computer, or special purpose processing device to perform a certain function or group of functions. Computer-executable instructions also include program modules that are executed by computers in stand-alone or network environments. Generally, program modules include routines, programs, objects, components, and data structures, and the like that perform particular tasks or implement particular abstract data types. Computer-executable instructions, associated data structures, and program modules represent examples of the program code means for executing steps of the methods disclosed herein. The particular sequence of such executable instructions or associated data structures represents examples of corresponding acts for implementing the functions described therein.
  • It will be appreciated that various of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Also that various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims.

Claims (21)

1. A method for feeding media sheets in an image production device, comprising:
applying air downward to a top of a trailing edge of a media sheet located at a top of a media stack that is to be fed to an image production section of the image production device, the applied air causing the top media sheet to separate from the media stack; and
feeding the separated top media sheet to the image production section.
2. The method of claim 1, wherein the air is applied approximately 1″-3″ horizontally from the trailing edge of the top media sheet.
3. The method of claim 1, wherein the air is applied through a sheet separation unit having a plate having one or more holes, the plate having a bottom surface facing parallel to the top media sheet.
4. The method of claim 3, wherein the one or more holes are 4 mm-10 mm in diameter.
5. The method of claim 1, further comprising:
sensing whether the top media sheet has been acquired by the image production section, wherein if it is sensed that the top media sheet has not been acquired by the image production section, adjusting an amount of air applied to the top media sheet.
6. The method of claim 1, further comprising:
sensing whether the top media sheet has been acquired by the image production section within a predetermined time period, wherein if it is sensed that the top media sheet has not been acquired by the image production section within the predetermined time period, adjusting an amount of air applied to the top media sheet.
7. The method of claim 1, wherein the image production device is one of a copier, a printer, a facsimile device, and a multi-function device.
8. An image production device, comprising:
a sheet separation unit that applies air downward to a top of a trailing edge of a media sheet located at a top of a media stack that is to be fed to an image production section of the image production device, the applied air causing the top media sheet to separate from the media stack; and
a feeder section that feeds the separated top media sheet to the image production section.
9. The image production device of claim 8, wherein the sheet separation unit applies air approximately 1″-3″ horizontally from the trailing edge of the top media sheet.
10. The image production device of claim 8, wherein the sheet separation unit comprises:
a plate having a bottom surface facing parallel to the top media sheet and a having one or more holes, the air being applied to the top media sheet through the one or more holes.
11. The image production device of claim 10, wherein the one or more holes are 4 mm-10 mm in diameter.
12. The image production device of claim 8, further comprising:
a sheet separation management unit; and
a sheet separation sensor that senses whether the top media sheet has been acquired by the image production section, wherein if the sheet separation sensor senses that the top media sheet has not been acquired by the image production section, the sheet separation management unit adjusts an amount of air applied to the top media sheet.
13. The image production device of claim 8, further comprising:
a sheet separation management unit; and
a sheet separation sensor that senses whether the top media sheet has been acquired by the image production section within a predetermined time period, wherein if the sheet separation sensor senses that the top media sheet has not been acquired by the image production section within the predetermined time period, the sheet separation management unit adjusts an amount of air applied to the top media sheet.
14. The image production device of claim 8, wherein the image production device is one of a copier, a printer, a facsimile device, and a multi-function device.
15. A feeder section of an image production device, comprising:
a sheet separation unit that applies air downward to a top of a trailing edge of a media sheet located at a top of a media stack that is to be fed to an image production section of the image production device, the applied air causing the top media sheet to separate from the media stack; and
a feed head that feeds the separated top media sheet to the image production section.
16. The feeder section of claim 15, wherein the sheet separation unit applies air approximately 1″-3″ horizontally from the trailing edge of the top media sheet.
17. The feeder section of claim 15, wherein the sheet separation unit comprises:
a plate having a bottom surface facing parallel to the top media sheet and a having one or more holes, the air being applied to the top media sheet through the one or more holes.
18. The feeder section of claim 17, wherein the one or more holes are 4 mm-10 mm in diameter.
19. The feeder section of claim 15, further comprising:
a sheet separation management unit; and
a sheet separation sensor that senses whether the top media sheet has been acquired by the image production section, wherein if the sheet separation sensor senses that the top media sheet has not been acquired by the image production section, the sheet separation management unit adjusts an amount of air applied to the top media sheet.
20. The feeder section of claim 15, further comprising:
a sheet separation management unit; and
a sheet separation sensor that senses whether the top media sheet has been acquired by the image production section within a predetermined time period, wherein if the sheet separation sensor senses that the top media sheet has not been acquired by the image production section within the predetermined time period, the sheet separation management unit adjusts an amount of air applied to the top media sheet.
21. The feeder section of claim 15, wherein the image production device is one of a copier, a printer, a facsimile device, and a multi-function device.
US13/026,400 2011-02-14 2011-02-14 Method and apparatus for feeding media sheets in an image production device Active 2031-04-19 US9067439B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/026,400 US9067439B2 (en) 2011-02-14 2011-02-14 Method and apparatus for feeding media sheets in an image production device
JP2012014591A JP2012166952A (en) 2011-02-14 2012-01-26 Method and apparatus for feeding medium sheet in image production device
DE102012202092.6A DE102012202092B4 (en) 2011-02-14 2012-02-13 Method and apparatus for feeding sheets of media to an imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/026,400 US9067439B2 (en) 2011-02-14 2011-02-14 Method and apparatus for feeding media sheets in an image production device

Publications (2)

Publication Number Publication Date
US20120205857A1 true US20120205857A1 (en) 2012-08-16
US9067439B2 US9067439B2 (en) 2015-06-30

Family

ID=46579827

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/026,400 Active 2031-04-19 US9067439B2 (en) 2011-02-14 2011-02-14 Method and apparatus for feeding media sheets in an image production device

Country Status (3)

Country Link
US (1) US9067439B2 (en)
JP (1) JP2012166952A (en)
DE (1) DE102012202092B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180229871A1 (en) * 2015-06-30 2018-08-16 Kimberly-Clark Worldwide, Inc. Tissue packaging apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019026449A (en) * 2017-08-02 2019-02-21 株式会社リコー Feeding device and image forming apparatus
CN112041175B (en) 2018-07-23 2022-06-03 惠普发展公司,有限责任合伙企业 Media transport

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2819075A (en) * 1954-12-20 1958-01-07 Alonzo W Noon Sheet-separating device
US3168307A (en) * 1962-07-09 1965-02-02 Walton R Fabric handling
US3219340A (en) * 1961-09-07 1965-11-23 Hitachi Ltd Apparatus for separating and conveying cards or the like by means of an air stream
US3411770A (en) * 1966-08-04 1968-11-19 Sperry Rand Corp Sheet separator
US3539216A (en) * 1968-01-11 1970-11-10 Sprague Electric Co Pickup device
US3547431A (en) * 1968-07-01 1970-12-15 Xerox Corp Pneumatic cut sheet feeder
JPS55123830A (en) * 1979-03-12 1980-09-24 Toyobo Co Ltd Attracting and transporting method for soft and thin article
US4364550A (en) * 1980-10-03 1982-12-21 Xerox Corporation Corrugation venturi paper feeder
JPS61229750A (en) * 1985-04-05 1986-10-14 Seibu Giken:Kk Method for conveying flat plate by fluid while being suspended out of touch with flat section
JPH01209243A (en) * 1988-02-17 1989-08-23 Hiroshi Akashi Sheet feeder
JPH0416434A (en) * 1990-05-07 1992-01-21 Sumitomo Metal Ind Ltd Sample retainer
US6279896B1 (en) * 1999-10-12 2001-08-28 Xerox Corporation Systems and methods for dynamically setting air system pressures based on real time sheet acquisition time data
US20040041328A1 (en) * 2002-08-29 2004-03-04 Xerox Corporation Sheet feeding apparatus having an adaptive air fluffer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1065430B (en) 1959-09-17
JPS57180542A (en) 1981-04-27 1982-11-06 Fuji Xerox Co Ltd Paper feed unit
US5470420A (en) 1992-07-31 1995-11-28 Eastman Kodak Company Apparatus for label application using Bernoulli Effect
JP2000062979A (en) * 1998-08-25 2000-02-29 Hiroshi Akashi Sheet transferring device
US6554269B1 (en) 2000-10-14 2003-04-29 Heidelberger Druckmashinen Ag Airknife and vacuum control changes to improve sheet acquisition for a vacuum corrugated feed supply
US7007944B1 (en) 2000-10-14 2006-03-07 Eastman Kodak Company Pulsed airknife control for a vacuum corrugated feed supply
JP2006168922A (en) * 2004-12-16 2006-06-29 Konica Minolta Business Technologies Inc Image forming apparatus and paper feeding method

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2819075A (en) * 1954-12-20 1958-01-07 Alonzo W Noon Sheet-separating device
US3219340A (en) * 1961-09-07 1965-11-23 Hitachi Ltd Apparatus for separating and conveying cards or the like by means of an air stream
US3168307A (en) * 1962-07-09 1965-02-02 Walton R Fabric handling
US3411770A (en) * 1966-08-04 1968-11-19 Sperry Rand Corp Sheet separator
US3539216A (en) * 1968-01-11 1970-11-10 Sprague Electric Co Pickup device
US3547431A (en) * 1968-07-01 1970-12-15 Xerox Corp Pneumatic cut sheet feeder
JPS55123830A (en) * 1979-03-12 1980-09-24 Toyobo Co Ltd Attracting and transporting method for soft and thin article
US4364550A (en) * 1980-10-03 1982-12-21 Xerox Corporation Corrugation venturi paper feeder
JPS61229750A (en) * 1985-04-05 1986-10-14 Seibu Giken:Kk Method for conveying flat plate by fluid while being suspended out of touch with flat section
JPH01209243A (en) * 1988-02-17 1989-08-23 Hiroshi Akashi Sheet feeder
JPH0416434A (en) * 1990-05-07 1992-01-21 Sumitomo Metal Ind Ltd Sample retainer
US6279896B1 (en) * 1999-10-12 2001-08-28 Xerox Corporation Systems and methods for dynamically setting air system pressures based on real time sheet acquisition time data
US20040041328A1 (en) * 2002-08-29 2004-03-04 Xerox Corporation Sheet feeding apparatus having an adaptive air fluffer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180229871A1 (en) * 2015-06-30 2018-08-16 Kimberly-Clark Worldwide, Inc. Tissue packaging apparatus

Also Published As

Publication number Publication date
US9067439B2 (en) 2015-06-30
DE102012202092A1 (en) 2012-08-16
DE102012202092B4 (en) 2023-08-10
JP2012166952A (en) 2012-09-06

Similar Documents

Publication Publication Date Title
EP1279516A2 (en) Combination color inkjet and laser image-printing device with dual paper-picking mechanism and method of implementing same
US7891652B2 (en) Sheet compiling system and method
US7913995B2 (en) Method and apparatus for non-contact measurement of a media stack in an image production device
US8061706B2 (en) Method and apparatus for adjusting the height of a media stack in an image production device
US8317185B1 (en) Method and apparatus for feeding media sheets in an image production device
EP2664965B1 (en) Use of scanner unit for paper tray preprocessing
US9067439B2 (en) Method and apparatus for feeding media sheets in an image production device
US8917415B2 (en) Method and apparatus for automatically scaling print jobs in an image production device
US8583024B2 (en) Method and apparatus for lifting an elevator plate of a media tray in an image production device
US8339618B2 (en) Method and apparatus for confirming attributes of media loaded in a media tray in an image production device
US8564794B2 (en) Method and apparatus for continuous dual-feed simplex in an image production device
US8191889B1 (en) Method and apparatus for maintaining a predetermined media stack height in a media tray used in an image production device
US8405872B2 (en) Method and apparatus for printing on custom media using an image production device
US8446643B2 (en) Method and apparatus for detecting a size and shape of media on which image data is to be printed in an image production device
US8237979B2 (en) System and method of utilizing tab attributes as job ticket attributes for printing
US20190243297A1 (en) Image forming apparatus method for controlling image forming apparatus and storage medium
US8823955B2 (en) Automatic image inverting for book copying
US8485517B2 (en) Method and apparatus for feeding sheets of media from a media stack in an image production device
EP3293579B1 (en) Sheet feeding apparatus and image forming apparatus
US8104756B2 (en) Method and apparatus for selecting media trays for hole punching in an image production device
US7942410B2 (en) Document imaging system and method
US8448078B2 (en) Method and apparatus for selection of default media based on media size in an image production device
US11003398B2 (en) Printer system
US20120267842A1 (en) Control apparatus for controlling stapling and image forming apparatus for controlling stapling
WO2019209430A1 (en) Misfeed prevention through controlling retard roller operation of image forming apparatus

Legal Events

Date Code Title Description
AS Assignment

Owner name: XEROX CORPORATION, CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HERRMANN, DOUGLAS K.;REEL/FRAME:025801/0329

Effective date: 20110214

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

AS Assignment

Owner name: CITIBANK, N.A., AS AGENT, DELAWARE

Free format text: SECURITY INTEREST;ASSIGNOR:XEROX CORPORATION;REEL/FRAME:062740/0214

Effective date: 20221107

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

AS Assignment

Owner name: XEROX CORPORATION, CONNECTICUT

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS AT R/F 062740/0214;ASSIGNOR:CITIBANK, N.A., AS AGENT;REEL/FRAME:063694/0122

Effective date: 20230517

AS Assignment

Owner name: CITIBANK, N.A., AS COLLATERAL AGENT, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:XEROX CORPORATION;REEL/FRAME:064760/0389

Effective date: 20230621

AS Assignment

Owner name: JEFFERIES FINANCE LLC, AS COLLATERAL AGENT, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:XEROX CORPORATION;REEL/FRAME:065628/0019

Effective date: 20231117

AS Assignment

Owner name: XEROX CORPORATION, CONNECTICUT

Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS RECORDED AT RF 064760/0389;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:068261/0001

Effective date: 20240206

Owner name: CITIBANK, N.A., AS COLLATERAL AGENT, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:XEROX CORPORATION;REEL/FRAME:066741/0001

Effective date: 20240206