US20120200170A1 - Alignment independent and self-aligning inductive power transfer system using mobile, flexible inductors - Google Patents

Alignment independent and self-aligning inductive power transfer system using mobile, flexible inductors Download PDF

Info

Publication number
US20120200170A1
US20120200170A1 US13/453,687 US201213453687A US2012200170A1 US 20120200170 A1 US20120200170 A1 US 20120200170A1 US 201213453687 A US201213453687 A US 201213453687A US 2012200170 A1 US2012200170 A1 US 2012200170A1
Authority
US
United States
Prior art keywords
inductor
power transfer
mobile
transfer system
recited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/453,687
Inventor
Anthony Sabo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/702,234 external-priority patent/US6803744B1/en
Application filed by Individual filed Critical Individual
Priority to US13/453,687 priority Critical patent/US20120200170A1/en
Publication of US20120200170A1 publication Critical patent/US20120200170A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings

Definitions

  • the present invention generally relates to inductive power transfer devices for charging or powering cordless appliances.
  • cordless electrically operated devices are charged by a source of electrical energy only when the device and source are connected to one another.
  • the source includes some sort of pedestal to which the device is connected before charging may occur.
  • the drawbacks of such an arrangement are self-evident. For example, when working with a cordless drill, it is often necessary to mount a battery which must be removed from the drill, or the drill itself, on the charger before the charging process can begin. If the charger is not kept in close proximity, the drill battery must be moved to the charger.
  • the present invention differs significantly from the known prior art wherein the source and devices are specifically matched to only operate when the receiver is mounted on the holder for recharging.
  • the present invention provides a novel system for automatically charging a device whenever it is placed on a rest surface without a direct electrical connection, regardless of the orientation of the device on the surface.
  • an induction power transfer device for an appliance including a housing and a plurality of primary inductors or coils arranged in an array within the housing.
  • a circuit connects the inductors with a power supply and a plurality of switches connect each inductor with the circuit.
  • the switches are operable to selectively activate respective primary inductors so that when an appliance having at least one secondary inductor is placed on the housing, power is transferred to the appliance via a transformer defined by the primary inductors and the secondary inductor.
  • At least one of the primary inductors has a longitudinal axis arranged normal to the axes of the other primary inductors.
  • the housing preferably has a flat top wall beneath which the primary inductors are arranged in a plane parallel to the wall.
  • An appliance placed on the wall has its secondary inductor inductively coupled with at least one of the primary inductors.
  • either the inductive transformer device or the appliance may include an alignment mechanism to assist in aligning their respective inductors to maximize power transfer.
  • capacitors are provided for each primary inductor to balance the inductance thereof.
  • a user could merely place the appliance such as a cordless power tool, laptop computer, or recording device on a table, shelf or other common storage member and the charging process occurs automatically, regardless of the orientation of the receiver relative to the charging source. This would result in the appliance being charged whenever it is not in use, rather then merely resting on a work table between uses as in current practice.
  • the appliance such as a cordless power tool, laptop computer, or recording device
  • the unique assembly of the present invention assures that the transfer of inductive power will occur regardless of the orientation of the appliance relative to the charging source.
  • the source may be configured with a number of coils that are arranged in predetermined positions that optimize the transfer of power to the appliance for certain applications such as a maximum duty cycle, i.e., power transfer density, or minimum obtrusiveness.
  • FIG. 1 is a front plan view of an induction power transfer device in the form of a table in accordance with the invention
  • FIGS. 2-5 are circuit diagrams, respectively, showing various ways in which a plurality of inductors is connected in the induction power transfer device according to the invention
  • FIG. 6 is a circuit diagram of the induction power transfer device including capacitors for inductors
  • FIG. 7 is a diagram showing the arrangement of inductors of the power transfer device and of an appliance to form a transformer
  • FIGS. 8 and 9 are front and side views, respectively, of an embodiment of the invention being activated by an appliance
  • FIG. 10 is a diagram of a further embodiment of the invention including annular contacts thereof;
  • FIGS. 11 and 12 are sectional views showing movable inductors in an appliance for alignment with an inductor of the induction power transfer device;
  • FIG. 13 is a diagram showing an alignment mechanism of the invention.
  • FIG. 14 is a diagram illustrating a further embodiment of the invention for simultaneously charging a plurality of appliances.
  • FIG. 15 a is a top view of dispersed self-forming flexible inductor (along a z-axis);
  • FIG. 15 b is self-forming beginning to coalesce
  • FIG. 15 c is self-forming inductor fully coalesced.
  • FIG. 15 d is self-forming (x-y axis) inductor in a relaxed, dispersed condition
  • FIG. 15 e is a self-forming inductor (x-y axis) beginning to coalesce;
  • FIG. 15 f is self-forming inductor fully coalesced (x-y axis);
  • FIG. 16 is a cross-section of a self-forming inductor in a top view
  • FIG. 17 illustrates a dispersed coils shape memory material is relaxed state
  • FIG. 18 illustrates a tightened state of the inductor
  • FIG. 19 a illustrates mobile inductor within a housing within a non-aligned load
  • FIG. 19 b shows mobile inductor having moved to align with the load
  • FIG. 19 c illustrates shows a variant with wheels that can swivel
  • FIG. 20 a illustrates shows an additional variant of a mobile inductor from a top view
  • FIG. 20 b illustrates shows an side view of the additional variant inductor within a housing
  • FIG. 21 a illustrates a grid of selectively energize-able circuit elements
  • FIG. 21 b illustrates circuit elements selectively energized
  • FIG. 22 a shows an array of rotatable conductor elements
  • FIG. 22 b shows certain elements rotated as to constitute an inductor.
  • the invention relates to an induction power transfer device which is operable to charge a cordless battery powered appliance such as a hand tool, laptop computer, music player, or the like.
  • a cordless battery powered appliance such as a hand tool, laptop computer, music player, or the like.
  • the invention is a universal inductive interface power connection system including both a powered “source” and a cordless “receiver” which can be used together to transfer power from the source to a variety of receivers for charging the same.
  • the induction power transfer device includes a housing which may take one of several forms.
  • the housing comprises a bench or table 2 having a flat upper surface 4 . Beneath the surface is a planar array of inductors 6 which operate as the primary inductors of one or more transformers.
  • each inductor comprises a coil having a longitudinal axis. A magnetic core may be provided for each coil.
  • the inductors 6 are connected with an electrical conductor 8 which in turn is connected with a power supply 10 .
  • an electrical switch 12 is connected between each inductor 6 and the conductor 8 so that the primary inductors can be selectively activated.
  • FIG. 1 four inductors 6 are shown, but only the first and fourth have their switches closed to supply power thereto for activation.
  • a laptop computer 14 having a secondary inductor 16 and a cordless drill 18 having a secondary inductor 20 Resting on the top surface 4 of the table 2 are two appliances, namely, a laptop computer 14 having a secondary inductor 16 and a cordless drill 18 having a secondary inductor 20 .
  • the appliances i.e., the laptop computer 14 and the drill 18 via transformers defined by the adjacent primary and secondary inductors.
  • This power can be transferred to a battery in the appliance to charge the battery in order to power the appliance.
  • power from the secondary inductor 20 is supplied to a battery.
  • a switch then activates the motor of the drill for operation.
  • the housing may take many shapes.
  • it can be formed as an elongated strip or pad on which an appliance may be rested, or a tool belt against which a power tool can be suspended.
  • any time an appliance is not in use it can be rested or placed on the power transfer housing and recharged owing to the proximity of the primary and secondary inductors.
  • the inductors 6 can be arranged in various patterns to insure charging of an appliance regardless of the position of the appliance on the housing on the power transfer device.
  • a plurality of inductors 6 are connected in series with a source 10 .
  • some inductors 6 a are arranged with their longitudinal axes normal to the axes of the inductors 6 , with all of the inductors arranged in the same plane.
  • FIGS. 4 and 5 show additional arrays of inductors in series and square configurations, respectively.
  • the power transfer device inductors are arranged as close as possible to the inside surface of a protective wall of the housing ( FIG. 1 ) which should be thin enough not to unduly separate the source and receiver inductors and thereby diminish the ability to transfer power to the receiver resting on the cover.
  • the multiplicity of source inductors is connected in parallel to pairs of supply lines, which pairs of liens extend to the power supply via interposed coil switches to allow only those coils in proximity to the receiver to be selectively energized.
  • the source coil is energized through a single supply line provided one coil lead is connected to the line and the other lead coil is connected to a capacitor 24 .
  • sufficient capacitance may be needed in series with each inductor to keep the current in phase with the voltage.
  • capacitors are arranged relative to the interface when the appliance and the source are in mating positions so as to provide capacitive coupling for additional power transfer. Such transfer may be weak relative to the inductive transfer generated between the primary coils mounted in the source and the secondary coils mounted in the appliance.
  • the source inductors may be oriented parallel or normal to the array plane.
  • the inductor coils may include a compressed portion extending substantially parallel to the mating surface (similar to the flat portion of the letter “D” as shown in FIG. 7 ) to increase magnetic permeation from the source to the appliance.
  • the coil cross-section may be customized to follow the contours of the mating surface to maximize permeation.
  • the coils may take the form of an air coil or may have iron and/or other material extending through the core to improve transmission of the field lines between the source and the appliance.
  • the core of the inductors may be formed of magnetically permeable fibers, threads or tubes in air or oil or a binding matrix which could consist of a viscous fluid or elastomer either of which could be designed to soften as the air temperature around the coil rises. This would result in the magnetic core fibers migrating into the most efficient configuration for transmitting power through the interface with the appliance, while avoiding the potential inconvenience of a fluid filled array. It will be readily appreciated that, by choosing a matrix configuration which has some compressive strength when not heated by the presence of an operating interface, the coils within the cord or other array may be protected against crushing when subjected to transverse forces.
  • the core matrix could be fluidized by the presence of the electrical or magnetic activity at the interface between the source and the appliance, such as by a magnetic core fiber being non-aligned with the field lines of the interface, which tends to generate more heat than an aligned core.
  • the fluid core arrangement allows the cores to configure themselves into the most efficient configurations with respect to any established interface configuration, by curving toward the mating surface end of the coils.
  • the inductors mounted in the appliance should be embedded near the surface of the device that comes in proximity with the source pad or table as shown in FIG. 1 .
  • the inductor coil(s) may be embedded near the bottom surface of a laptop computer for inductively coupling with any source array mounted in a seatback tray on an airplane, train computer table, etc. This would allow the laptop to be recharged while resting or in use.
  • a power tool may include a coil array positioned adjacent to a surface of the tool that would conveniently rest on the source pad, thereby allowing the tool to recharge while laid to rest.
  • the appliance include a set or plurality of inductors, i.e., solenoid coils with some arranged parallel and some arranged normal to the surface of the source pad.
  • the coils When the coils are arranged parallel to the surface, they have a dispersion of x-y orientations such as a tessellated polygonal or square grid, so that at least some of the appliance and source coils are in alignment with each other to allow efficient inductive coupling between the source and the appliance.
  • FIG. 7 a further embodiment of an inductive power transfer device 102 for an appliance 104 .
  • the device 102 includes separate coils 106 , 108 , with the coil 106 having a magnetic core 110 contoured to the core 112 of a secondary coil 114 of the appliance.
  • Each primary coil 106 , 108 also includes its own power source 116 , 118 in lieu of a switch for activating the coil.
  • Rectification can be provided to each lead from each coil in the form of a pair of diodes 120 of opposite polarity on each coil lead with the output of each diode feeding the appropriate side of the battery.
  • each increment of power generated in any secondary coil in each inductive cycle caused by the power supply will be captured.
  • all output leads from the diodes of one polarity could go “up,” i.e., in the +z direction relative to the x-y plane of the array to contact an essentially planar bus such as used in a PC board comprising the inner side of an appliance array.
  • the other polarity diode output leads could go “down,” i.e., -z to a similar bus positioned on the outer side of the receiver cavity.
  • the source coils It is desirable for the source coils to only operate when an appliance is laid to rest on an item containing the source coils. By preventing the source coils from continuously generating an electromagnetic field, the system would conserve power while eliminating objectionable electromagnetic fields. This result is achieved by the switches 12 ( FIGS. 2-5 ) provided so that each source or primary coil is energized from the power supply only when a secondary coil is within effective range and there is sufficient translational and rotational alignment between primary and secondary coils.
  • this arrangement can be achieved by residual permanent magnetism in the appliance 104 or by a separate magnet 112 associated with each secondary coil 114 which operates a magnetic switch, a MOSFET, or similar switch (not shown) to turn the source coil on or off.
  • the coils could be selectively energized by a resonance created between the primary and secondary coils which resonance amplifies a tiny residual power flow in each source coil.
  • a further means for controlling energization may include a piezoelectric, or other oscillator in a tuned circuit pumped by random vibrations which generates feedback amplification when in proximity to a matched oscillator, thus opening a power transistor and/or OP-AMP between the coil and supply line once a threshold is reached.
  • the coil switch (including transistor and/or OP-AMP) could also be operated by any kind of tag such as a microchip associated with each receiver coil which could generate its own signal (acoustic, radio, etc.) or respond to a polling signal from a matched device associated with each source coil.
  • tag such as a microchip associated with each receiver coil which could generate its own signal (acoustic, radio, etc.) or respond to a polling signal from a matched device associated with each source coil.
  • a continuous source coil 202 with multiple leads or taps 204 i.e., at regular intervals going to the supply line, up to the limit of one lead (or tap) per coil going to each side of the power supply 208 can be provided.
  • a coil switch is on every lead so that whatever length of source coil is in range of the receiver coil is activated.
  • a continuous integrated circuit coil switch (“CICCS”) may take the form of a ribbon or strip of a magnetoreactive semiconductor, possibly organo-polymeric in nature, which goes into its conductive mode when in the presence of a magnetic field emanating from a secondary coil 210 in close proximity.
  • a magnetic north responsive CICCS is deployed to be in continuous contact with one supply conductor and each coil tap connected to the N-CICCS so that power from the supply conductor must traverse the width of the N-CICCS to reach the tap.
  • a south (magnetic) responsive CICCS is similarly deployed between the coil taps and the other source conductor.
  • the N end of the core magnet opens the N-CICCS and the S end of the core magnet opens the S-CICCS, wherein the points of opening of the N-CICCS and the S-CICCS are separated by exactly the length of the receiver inductor whose core magnet opened the two CICCs, forming a circuit from one supply line to the other supply line that extends through the corresponding segment of the source inductor coil or a single CICCS could be used in the single lead with a capacitor scheme.
  • the CICCS could be opened by other conventional devices.
  • the power supply 208 for generating the electromagnetic field in the source inductor coils may be either AC or intermittent DC, such as half-wave rectified.
  • the power supply may vary at line frequency (60 or 50 Hz.) or a power supply with a higher frequency oscillator may be employed.
  • the inductive power transfer is proportional to dv/dt, minus losses to self inductance, which increase with increase in frequency.
  • maximum transfer of power is achieved by allowing the coils forming either the primary 302 or the secondary 304 to move relative to the other set of coils. If one set of coils is allowed to move, i.e., to translate as much as one-half or more of the intercoil spacing in either the x or y direction or both and to rotate as much as one-half of the intercoil angle or more in either direction about the z axis so that via an engagement alignment device such as a core magnet the coils or arrays can achieve maximum alignment when forming a coupled transformer.
  • the movable coils or arrays may be set in a non-conductive container or lozenge 306 preferably having an annular configuration with connections provided either by flexible wires, or by brushes and concentric commutators on the lozenge body designed to exclusively contact the appropriate brush.
  • the upper and lower surface of each inductive coil/array-lozenge may functionally serve as the output brushes for the secondary inductor coils or arrays, which brushes transmit any power generated to the upper and lower internal surfaces of the cavity in which the inductor coil/array lozenges are free to move transitionally and rotationally.
  • These surfaces 308 serve as sliding contacts or commutators, collecting power from the secondary coils and sending it to the device's battery, switch and end user circuitry.
  • the secondary and/or source coils could also take the shape of flexible coils which are free to bend and migrate within a cavity formed in either the source or appliance device.
  • the flexible coil may be free from the constraint of any cavity, so as to best align with its mating coil.
  • Motion of the coils is facilitated by a vibrator which is briefly energized when a coil-switch is opened, with the vibrations making it easier for the coils to migrate into alignment with each other and/or by an active seeker mechanism ( FIGS. 11 and 12 ) attached to the coil.
  • the vibrator could be periodically energized. It and the seeker are also usable with any other form of the inductor coils.
  • the seeker mechanism 402 is attached to any movable source or appliance inductor which mechanism is designed to bring the primary and secondary coils into ideal alignment for inductive coupling.
  • the appliance 404 has the movable coil 406 .
  • This may be achieved by means of a piezoelectric or piezomagnetic leg 408 extending from each side of the movable inductor 406 to contact the inner side of the mating surface which is designed to flex (under influence of the electric or magnetic flux at the interface) in a direction which will move the inductor into alignment with the primary coil 410 as shown in FIG. 12 .
  • the legs may be made of materials of opposite polarity in the dorsal and ventral region to cause lateral motion.
  • end portions of the legs may need to have a biased grip to engage the mating surface.
  • the lower leg portions may have a coefficient of friction which varies with the variations in electric or magnetic fields. As a result, the lower portions of the legs grip the mating surface more strongly during that phase of the motion which would bring the coil into alignment. This may apply to a mobile discrete inductor or a flexible inductor which could be arrayed in their space in an “s” curve to allow motion of the central portion or other arrangement.
  • An advantageous form of inductive interface system shown in FIG. 13 includes bumps or waffles formed in the exterior surface of the source pad 502 , which bumps correspond to locations of a source coil or array.
  • the bumps or waffles would mate with indentations in the cover of the appliance coil or array 504 a - e so as to provide a simple system of aligning the mating coils resulting in high interface efficiency.
  • the system of bumps and indentations might be positioned with one bump located at each end of each coil, or a pair of bumps on either side, or any other suitable arrangement.
  • the source array is preferred for the bumps, as indentations would tend to accumulate sawdust or the like from the workplace which could impede inductive coupling efficiency.
  • the ideal system of bumps and indentations is envisioned as having the cross section of the upper half of a sine wave, so that a receiver array will sit casually on a source array and will tend to rotate and translate under the influence of gravity and/or magnetic or other attraction into maximum alignment.
  • a good degree of interoperability may be achieved.
  • a grooved form of source and receiver array may be employed, wherein the surface is described by a sinusoid undulation (possibly flattened on tops to allow interface with flat surfaced interfaces) with the coils disposed in the convex portions of the sinusoid.
  • This arrangement assures that when sinusoidal powered source and appliance arrays are located proximate to each other, inductive interaction of source and appliance coil arrays is maximized.
  • Sinusoids could be transverse to each other, such as in a power tool power cord/strip so as to facilitate rolling up of cord/strip, or longitudinal (if such axes are identifiable).
  • inductive interface system formed in accordance with the present invention may consist of a source array disposed on the end of an extension cord which would engage with a secondary array disposed on a power tool or other device. This could provide power for 100% duty cycle even with the heaviest of usage, and yet be readily disconnected at any time, merely by manually applying tension, or via one of the disengagement devices discussed hereabove.
  • Another form of the invention includes a small table/toolrest with source arrays in the surface, with the table having extendable legs that allow the table to be positioned where needed.
  • a major feature of the “Universal Inductive Interface Power Connection System” comprising the present invention resides in the fact that while configurations and densities of source and appliance arrays may be optimized for different applications, different sources and receivers are at all times interoperable.
  • a flat surfaced array may be employed with a sinusoid surfaced array and vice versa.
  • the maximum current available for power transfer will be a function of interface area, inductor density and the coupling efficiency factor.
  • the secondary array maximum voltage will be a function of appliance coil density, as in any transformer.
  • all forms 602 a - d of the source array which might be desirable on a job-site or in a home or office, would have both a plug 604 for receiving power from wall socket or other source 606 and a socket 608 or more so that other forms of course array may be connected together to provide a broad spectrum of recharging possibilities.
  • a long power cord array could stretch the entire expanse of a job-site, providing opportunities along its entire length for a modest rate of recharging, and forms of source arrays such as a pad comprising the upper surface of a shelf of a work table could be connected to and derive power from the conductors of this power cord. This would provide faster recharging than otherwise available.
  • Source pads or other containers for the source inductor coils employed in the charging system of the present invention may advantageously be set upon tables, workbenches, saw horses, shelves or the like to relieve the worker of the current necessity of bending over each time it is desired to put down or pick up a tool from the ground, which is customary practice at most construction sites.
  • a single source inductor array located on an extension cord may be connected at another location, with a sinusoidal undulating source array at another location and a bump array at another, to provide additional recharging opportunities.
  • the different source arrays could also transfer power to each other through their inductive interfaces. Thus, there would be no further need for a conventional plug and socket connection to recharge the device.
  • a magnet e.g., a permanent magnet
  • each inductor coil has a sufficient degree of permanent magnetism to function as engagement devices, since these cores are ideally located for this purpose. In effect, the magnetic attraction is sufficient to open the coil switch and thus operate the charging system.
  • the degree of permanent magnetism needed to align the coils is incompatible with the electro-magnetizability (permeability) required for the core to function efficiently in an inductor, in which case the alignment magnet may be set orthogonal to the inductor primary axis of the “x-y” plane, preferably mutually centered, as shown in FIG. 8 .
  • each coil has a degree of mobility at each of its ends approximately equal to half the spacing between coils, intercoil spacing will allow the pairs of coils to assume alignment.
  • Such mobility of the coils can be achieved by using braided wires in the coil connections and a housing larger than the diameter of the coils. This allows the coils to slide in the x-y plane, wherein one surface of the housing is the interface surface of the source array.
  • VelcroTM mating tongues and grooves in the source and receiver or mating physical structures may be employed as engagement members.
  • the housing is larger than the size of the coils makes it possible for the pairs of coils to achieve proper alignment.
  • the housings for the source and appliance arrays could be magnetically attractive to each other.
  • a disengagement device may be required to break the electromagnetic bond. Disengagement may be effected by physically moving the appliance away from the source, reducing the magnetic coupling.
  • a magnet functions as an engagement device, it could be mounted in an opening in the appliance such that the magnet could be moved within the appliance away from the source, in the z direction away from the interface, thereby reducing the magnetic force of engagement. This movement could be achieved mechanically by the squeezing of a trigger in the appliance, or electrically through a trigger switch.
  • a contact detector responding to a user's touch could be employed. The detector actuates a solenoid connected to the engager, pulling away from the interface.
  • Disengagement is achieved by sending a back voltage through any activated secondary coils, so as to generate a repulsive magnetic force against the primary coils.
  • a forward voltage could be sent through the activated receiver coils if the inductive coupling generates a net repulsive force which in operative engagement must be countered by the attachment system, thereby increasing the repulsive force in the inductive coupling and overcoming the attachment force.
  • the theoretical maximum voltage output of the appliance array should be higher than the desired output by a factor inverse to the cosine of the greatest operational misalignment of a coil-set and any excess voltages diverted and added with other excess voltages from other coil sets and input to the appliance, or the secondary coils can be multitapped, with the tap producing optimal voltage automatically selected by a trimmer circuit.
  • the maximum theoretical output voltage can be set equal to a desired input voltage, and voltage multiplier circuits used to increase any low voltages resulting from any misalignment. Exact voltages are achieved by using conventional means, i.e., variable resistors, to split the original voltage, only multiplying a portion of it, which is added back or by any conventional arithmetic circuit.
  • a battery/fuel cell overcharge prevention circuit which would operate to disable the system either by electrically isolating the engaged secondary coils or, preferably, by turning off the coil switches of any source coil actuated due to secondary coil proximity.
  • the secondary coils could be physically relocated within the body of the appliance, to reduce magneto-inductive interaction.
  • a rechargeable fuel cell system may be employed with the inductive interface as the recharging device, wherein the secondary array in the powered device will, after receiving power from a source array, cause the fuel within the fuel cell to be regenerated from the oxidation products of the fuel cell's operating reactions.
  • the hydrogen fuel for the fuel cell would be stored in the form of a metal hydride, a saturated graphite or fullerance (possibly doped with electrophiles such as lithium and/or electrophos), or compressed gas, which in the absence of power from an inductive coupling of the secondary array, would react with atmospheric oxygen to produce electricity and water. The water would be stored and the electricity used to power the device.
  • the stored water When later connected to a source power array and receiving power through inductive coupling, the stored water would be reduced by hydrolysis using electric power from the inductive coupling into hydrogen which would be stored in the above cited storage device, and oxygen which would be released to the atmosphere. If the system lost its hydrogen, it could be replaced as water, and hydrolysis would occur as stated above through the inductive power transfer, to put the fuel cell system back into a charged condition.
  • a power tool having one or more inductive secondary coils formed in accordance with the present invention may be laid to rest on either side on a source pad having an array of built in primary coils. Secondary coils are positioned in the bottom and/or along the sides of the tool, or may be located in the bottom of a battery pack which itself may be detached and replaced. Whether the secondary coils are mounted in the power tool or in an attachment to the tool, by positioning the power tool with its interface (inductor secondary array) on a source pad or similar receptacle including the source inductor array, it becomes possible to charge the power tool between operations, merely by placing the tool on the source pad, thus maintaining a sufficient charge in the power tool at all times. The extra batteries or fuel cells could be recharged on the same source array.
  • the source array could be set on an incline so that exhausted batteries would be set at the top of a sequence of batteries on the incline, and the battery which has charged for the longest period of time could be withdrawn from the bottom of the incline.
  • a job-site source array might take the form of a coilable flat power cord ribbon about 1 ⁇ 2-inch thick by 2-6 inches wide by any length from 2-100 feet. Workers conveniently lay their tools on the ribbon when not in use. The edges could be tapered to prevent tripping.
  • One end ribbon may have a cord adaptable to being plugged into a conventional electric outlet. It could also have sockets into which may be plugged other appliances and source arrays.
  • the flat power cord ribbon could have a central stripe of ferrous material with a separate strip of source coils complete with coil switches and supply conductors on either side.
  • the ribbon would be designed to mate with a receiver array consisting of polygonal cells of diameter equal to the spacing of the two strips of source coils, composed of secondary coils with supporting circuitry and with a magnetic button at the center of each polygonal secondary array, thereby assuring good coil alignment.
  • an inductor having been described as being in the x-y plane, i.e., its longitudinal axis parallel to the plane of the interface, an inductor being in the z direction, i.e., its axis normal to the plane of the interface, may also be provided, and an inductive array may contain both parallel and normal inductors.
  • a signal can be transmitted through the same inductive array which transmits power from a source to an appliance by injecting the signal into the interface at an appropriate frequency through an appropriate filter and removing it on the other side of the interface through another appropriate filter.
  • computers and all types of portable and non-portable devices can communicate when they are engaged through an inductive interface.
  • This wire may be initially disposed as a loose coil or array of coils within a broad flat cavity defined on the mating surface side by a thin wall, as in FIG. 15 a .
  • These coils would increase their curvature (i.e. tighten their radius) when in the proximity of the mating inductor, so as to increase the number of coils there (thus increasing the amount of inductor there) at the expense of the number of coils elsewhere.
  • the coils, which were built into the wire would migrate to the interface location and achieve the correct alignment, as in FIG. 15 b , until maximal concentration of the coils at the inductor mating location is achieved, as in FIG. 15 c.
  • the wire-coils are dispersed flatly in the housing cavity for a z-axis coupling (i.e. solenoid axis orthogonal to the mating surface) FIG. 15 a - c.
  • these coils would have their solenoid axis in the x-y plane, i.e. parallel to the mating surface.
  • the coils would be somewhat loosely dispersed in the cavity ( FIG. 15 d ), until a mating inductor made it's presence felt, at which point the coils would begin to coalesce adjacent to it as in FIG. 15 e and finally constitute a fully formed inductor as in FIG. 15 f.
  • wire of these coils may be a physical property of the wire of these coils which causes them to tighten their radius and coalesce into an inductor, or it may be a property of the insulation or of an element parallel to the wire, such as a piece of nitinol or other shape-memory or shape-changing material, or it may be a specifically responsive servo-mechanism with micro actuators dispersed along the length of the wire.
  • the hot condition of the nitinol (etc.) would be the tighter radius of curvature as in FIG. 18 , versus the cold condition or shape which would be the looser radius of curvature as in FIG. 17 .
  • said hot condition would be invoked by the waste heat from the (initially small) induction in the region where the mating inductor has been placed, which said heat and said inductive coupling will progressively reinforce each other until all or most of the formerly loosely arrayed coils are tightly clustered into an inductor, adjacent to and coupled with the mated inductor which caused it to coalesce, into an inductor, as in 15 a - c and 15 d - f.
  • the nitinol or other shape-changing element in an x-y axis coil-inductor, since there are many coils diameter it may be desirable to have the nitinol or other shape-changing element as described above, not run parallel to the conductor, but form a mandrel about which the wire coils.
  • This mandrel could be a coil of the same diameter(s) as the conductor coil, but with a fraction of the helical pitch (i.e. # of coils length), and affixed to the insulation at each point of crossing, or even to the wire itself, if the shape-changing coil is a sufficiently weak conductor as to not divert current from the conductor-inductor wire (which could heat and deform the entire length of the shape-changing element).
  • the shape changing component could be a solid or tubular core for the inductor coils, which shortens in proximity to the mating inductor, due to heat, or the presence of electric or magnetic fields, thus causing the coil to concentrate in this region. It could be plastic. It could be the insulation itself
  • the mating inductor could send out a signal which turns on the coil coalescence system, and this signal could also activate the coil switch(s) which allows electricity to pass through the coil. It should be understood that these above forms of inductor could operate free of a housing.
  • the mobility and alignment of said inductors may be achieved by equipping each mobile inductor with a sensor means to detect proximity and direction of/the mating inductor, connected to a motion causing means which moves the inductor in the direction indicated by the sensor.
  • This motion causing means could be small motorized wheels associated with the inductor, which wheels bear upon the inside surface of the broad flat cavity parallel to the mating surface in the apparatus in which the inductor is to move about. These wheels (or wheel) would move the inductor into mating alignment.
  • FIG. 20 a shows a top view of such a mobile inductor
  • FIG. 20 b shows the side view of same.
  • 601 is the inductor coils
  • 602 is the wheel
  • 603 is the rolling motor
  • 604 is the pivoting motor
  • 605 is the sensor
  • 606 is the housing cavity
  • 607 is the pivot axis.
  • FIG. 19 a shows a side view of an x-y axis mobile inductor sensing a mating inductor and moving into (translational) alignment.
  • FIG. 19 b show alignment achieved.
  • FIGS. 501 is the sensor
  • 502 is the mating inductor
  • 503 is the device powered by the inductor's interface
  • 504 is the inductor housing with a broad flat cavity for the mobile inductor
  • 505 is the mobile inductor
  • 506 is the motor connected to the wheel 507 which moves the inductor
  • And 508 is the connection by which the sensor controls the motor(s).
  • FIG. 19 c is a top view of the same x-y inductor showing the wheels pivoted by another mechanism so that the inductor may achieve rotational alignment with its mating inductor.
  • the inductor array is composed of a 2-dimensional (x-y) tessellated grid of inductor elements (as described in the parent application Ser. No. 09/1702,234), in which each element of the grid is a conductor or small inductor element which when a plurality of these are electrically energized in the correct pattern such as in direct response to the presence of a mating inductor, will constitute an inductor of sufficient power and such orientation as to inductively transfer power to the mated inductor.
  • Each grid element would in response to the field information from the mating inductor, orient its axis of conduction or induction in the correct direction so that the required inductor was created.
  • each grid element this could occur by selective activation only of those conductive or inductive elements of a multiplicity of such elements 701 running in different directions as in FIG. 21 a , which are running in the required direction 703 , due to the influence of mating inductor 702 (which is shown elevated above it for ease of illustration) as in FIG. 21 b , or it could be achieved by rotation of the grid element which only contains one direction of conductor or inductor, into the correct orientation, as in FIG. 22 a - b with FIG. 22 a showing the disorganized state wherein 801 are the randomized grid elements and FIG. 22 b showing the inductor organized under the influence of the mating inductor 802 (again shown displaced for ease of illustration) and 803 being the directional organized grid elements.
  • Each grid element could have its own power connections, so that the system would be independent of establishing perfect connection between all of the grid elements required to be connected to constitute a working inductor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

An inductive power transfer device is provided for recharging cordless appliances. The device includes a plurality of inductors arranged in an array and connected with a power supply via switches which are selectively operable to activate the respective inductors. The inductors serve as the primary coil of a transformer. The secondary coil of the transformer is arranged in the appliance. When the appliance is arranged proximate to the power transfer device with the respective coils in alignment, power is inductively transferred from the device to the appliance via the transformer.

Description

    REFERENCE TO PRIORITY DOCUMENTS
  • This application claims priority to under 35 USC §120 and is a continuation of U.S. patent application Ser. No. 10/960,102, filed Oct. 8, 2004, said application Ser. No. 10/960,102 claims priority under 35 USC §120, is a continuation-in-part, claiming priority under 35 USC §120 to U.S. application Ser. No. 09/702,234, filed in the USPTO on Oct. 31, 2001, and issued as U.S. Pat. No. 6,803,744, issued Oct. 12, 2004, which is incorporated by reference for all purposes. U.S. patent application Ser. No. 09/702,234 claims priority under 35 USC §119(e) to U.S. Provisional Application Ser. No. 60/162,295 filed Nov. 1, 1999, which is incorporated by reference for all purposes.
  • BACKGROUND OF THE INVENTION
  • The present invention generally relates to inductive power transfer devices for charging or powering cordless appliances.
  • Currently, cordless electrically operated devices are charged by a source of electrical energy only when the device and source are connected to one another. Normally, the source includes some sort of pedestal to which the device is connected before charging may occur. The drawbacks of such an arrangement are self-evident. For example, when working with a cordless drill, it is often necessary to mount a battery which must be removed from the drill, or the drill itself, on the charger before the charging process can begin. If the charger is not kept in close proximity, the drill battery must be moved to the charger. The present invention differs significantly from the known prior art wherein the source and devices are specifically matched to only operate when the receiver is mounted on the holder for recharging. The present invention provides a novel system for automatically charging a device whenever it is placed on a rest surface without a direct electrical connection, regardless of the orientation of the device on the surface.
  • SUMMARY OF THE INVENTION
  • Accordingly, it is a primary object of the invention to provide an induction power transfer device for an appliance including a housing and a plurality of primary inductors or coils arranged in an array within the housing. A circuit connects the inductors with a power supply and a plurality of switches connect each inductor with the circuit. The switches are operable to selectively activate respective primary inductors so that when an appliance having at least one secondary inductor is placed on the housing, power is transferred to the appliance via a transformer defined by the primary inductors and the secondary inductor.
  • According to a further embodiment of the invention, at least one of the primary inductors has a longitudinal axis arranged normal to the axes of the other primary inductors.
  • The housing preferably has a flat top wall beneath which the primary inductors are arranged in a plane parallel to the wall. An appliance placed on the wall has its secondary inductor inductively coupled with at least one of the primary inductors.
  • According to a further object of the invention either the inductive transformer device or the appliance may include an alignment mechanism to assist in aligning their respective inductors to maximize power transfer.
  • According to another object of the invention, capacitors are provided for each primary inductor to balance the inductance thereof.
  • In accordance with the invention, a user could merely place the appliance such as a cordless power tool, laptop computer, or recording device on a table, shelf or other common storage member and the charging process occurs automatically, regardless of the orientation of the receiver relative to the charging source. This would result in the appliance being charged whenever it is not in use, rather then merely resting on a work table between uses as in current practice.
  • The unique assembly of the present invention assures that the transfer of inductive power will occur regardless of the orientation of the appliance relative to the charging source. To achieve this result, the source may be configured with a number of coils that are arranged in predetermined positions that optimize the transfer of power to the appliance for certain applications such as a maximum duty cycle, i.e., power transfer density, or minimum obtrusiveness.
  • BRIEF DESCRIPTION OF THE FIGURES
  • Other objects and advantages of the invention will become apparent from a study of the following specification, when viewed in the light of the accompanying drawing, in which:
  • FIG. 1 is a front plan view of an induction power transfer device in the form of a table in accordance with the invention;
  • FIGS. 2-5 are circuit diagrams, respectively, showing various ways in which a plurality of inductors is connected in the induction power transfer device according to the invention;
  • FIG. 6 is a circuit diagram of the induction power transfer device including capacitors for inductors;
  • FIG. 7 is a diagram showing the arrangement of inductors of the power transfer device and of an appliance to form a transformer;
  • FIGS. 8 and 9 are front and side views, respectively, of an embodiment of the invention being activated by an appliance;
  • FIG. 10 is a diagram of a further embodiment of the invention including annular contacts thereof;
  • FIGS. 11 and 12 are sectional views showing movable inductors in an appliance for alignment with an inductor of the induction power transfer device;
  • FIG. 13 is a diagram showing an alignment mechanism of the invention; and
  • FIG. 14 is a diagram illustrating a further embodiment of the invention for simultaneously charging a plurality of appliances.
  • FIG. 15 a is a top view of dispersed self-forming flexible inductor (along a z-axis);
  • FIG. 15 b is self-forming beginning to coalesce;
  • FIG. 15 c is self-forming inductor fully coalesced.
  • FIG. 15 d is self-forming (x-y axis) inductor in a relaxed, dispersed condition;
  • FIG. 15 e is a self-forming inductor (x-y axis) beginning to coalesce;
  • FIG. 15 f is self-forming inductor fully coalesced (x-y axis);
  • FIG. 16 is a cross-section of a self-forming inductor in a top view;
  • FIG. 17 illustrates a dispersed coils shape memory material is relaxed state
  • FIG. 18 illustrates a tightened state of the inductor;
  • FIG. 19 a illustrates mobile inductor within a housing within a non-aligned load;
  • FIG. 19 b shows mobile inductor having moved to align with the load;
  • FIG. 19 c illustrates shows a variant with wheels that can swivel;
  • FIG. 20 a illustrates shows an additional variant of a mobile inductor from a top view;
  • FIG. 20 b illustrates shows an side view of the additional variant inductor within a housing;
  • FIG. 21 a illustrates a grid of selectively energize-able circuit elements;
  • FIG. 21 b illustrates circuit elements selectively energized;
  • FIG. 22 a shows an array of rotatable conductor elements;
  • FIG. 22 b shows certain elements rotated as to constitute an inductor.
  • DETAILED DESCRIPTION
  • The invention relates to an induction power transfer device which is operable to charge a cordless battery powered appliance such as a hand tool, laptop computer, music player, or the like. In its broadest sense, the invention is a universal inductive interface power connection system including both a powered “source” and a cordless “receiver” which can be used together to transfer power from the source to a variety of receivers for charging the same.
  • The induction power transfer device includes a housing which may take one of several forms. In FIG. 1, the housing comprises a bench or table 2 having a flat upper surface 4. Beneath the surface is a planar array of inductors 6 which operate as the primary inductors of one or more transformers. As will be developed below, each inductor comprises a coil having a longitudinal axis. A magnetic core may be provided for each coil.
  • The inductors 6 are connected with an electrical conductor 8 which in turn is connected with a power supply 10. In addition, an electrical switch 12 is connected between each inductor 6 and the conductor 8 so that the primary inductors can be selectively activated. For example, in FIG. 1, four inductors 6 are shown, but only the first and fourth have their switches closed to supply power thereto for activation.
  • Resting on the top surface 4 of the table 2 are two appliances, namely, a laptop computer 14 having a secondary inductor 16 and a cordless drill 18 having a secondary inductor 20. When the secondary inductors 16, 12 are aligned with primary inductors of the power transfer table 2, power is transferred from the table to the appliances, i.e., the laptop computer 14 and the drill 18 via transformers defined by the adjacent primary and secondary inductors. This power can be transferred to a battery in the appliance to charge the battery in order to power the appliance. Thus, for example, as represented by the block 22 in the drill 18 of FIG. 1, power from the secondary inductor 20 is supplied to a battery. A switch then activates the motor of the drill for operation.
  • It will be appreciated by those of ordinary skill in the art that the housing may take many shapes. For example, it can be formed as an elongated strip or pad on which an appliance may be rested, or a tool belt against which a power tool can be suspended. With the invention, any time an appliance is not in use, it can be rested or placed on the power transfer housing and recharged owing to the proximity of the primary and secondary inductors.
  • Referring now to FIGS. 2-5, the inductors 6 can be arranged in various patterns to insure charging of an appliance regardless of the position of the appliance on the housing on the power transfer device. In FIG. 2, a plurality of inductors 6 are connected in series with a source 10. In FIG. 3, some inductors 6 a are arranged with their longitudinal axes normal to the axes of the inductors 6, with all of the inductors arranged in the same plane. FIGS. 4 and 5 show additional arrays of inductors in series and square configurations, respectively.
  • While the drawings illustrate a fixed number of inductors, it will be appreciated that the invention is not so limited and that any number of inductors may be provided to define an array as large as the housing in which it is arranged.
  • Preferably, the power transfer device inductors are arranged as close as possible to the inside surface of a protective wall of the housing (FIG. 1) which should be thin enough not to unduly separate the source and receiver inductors and thereby diminish the ability to transfer power to the receiver resting on the cover. Advantageously, the multiplicity of source inductors is connected in parallel to pairs of supply lines, which pairs of liens extend to the power supply via interposed coil switches to allow only those coils in proximity to the receiver to be selectively energized.
  • In an alternative arrangement shown in FIG. 6, the source coil is energized through a single supply line provided one coil lead is connected to the line and the other lead coil is connected to a capacitor 24. To maximize power transfer, sufficient capacitance may be needed in series with each inductor to keep the current in phase with the voltage. Accordingly, capacitors are arranged relative to the interface when the appliance and the source are in mating positions so as to provide capacitive coupling for additional power transfer. Such transfer may be weak relative to the inductive transfer generated between the primary coils mounted in the source and the secondary coils mounted in the appliance.
  • As stated above, the source inductors may be oriented parallel or normal to the array plane. The inductor coils may include a compressed portion extending substantially parallel to the mating surface (similar to the flat portion of the letter “D” as shown in FIG. 7) to increase magnetic permeation from the source to the appliance. Alternatively, the coil cross-section may be customized to follow the contours of the mating surface to maximize permeation. The coils may take the form of an air coil or may have iron and/or other material extending through the core to improve transmission of the field lines between the source and the appliance.
  • The core of the inductors may be formed of magnetically permeable fibers, threads or tubes in air or oil or a binding matrix which could consist of a viscous fluid or elastomer either of which could be designed to soften as the air temperature around the coil rises. This would result in the magnetic core fibers migrating into the most efficient configuration for transmitting power through the interface with the appliance, while avoiding the potential inconvenience of a fluid filled array. It will be readily appreciated that, by choosing a matrix configuration which has some compressive strength when not heated by the presence of an operating interface, the coils within the cord or other array may be protected against crushing when subjected to transverse forces. Alternatively, the core matrix could be fluidized by the presence of the electrical or magnetic activity at the interface between the source and the appliance, such as by a magnetic core fiber being non-aligned with the field lines of the interface, which tends to generate more heat than an aligned core. The fluid core arrangement allows the cores to configure themselves into the most efficient configurations with respect to any established interface configuration, by curving toward the mating surface end of the coils.
  • The inductors mounted in the appliance should be embedded near the surface of the device that comes in proximity with the source pad or table as shown in FIG. 1. For example, the inductor coil(s) may be embedded near the bottom surface of a laptop computer for inductively coupling with any source array mounted in a seatback tray on an airplane, train computer table, etc. This would allow the laptop to be recharged while resting or in use. In a similar manner, a power tool may include a coil array positioned adjacent to a surface of the tool that would conveniently rest on the source pad, thereby allowing the tool to recharge while laid to rest.
  • To assure that the appliance will recharge no matter its orientation relative to the source array, it is preferable that the appliance include a set or plurality of inductors, i.e., solenoid coils with some arranged parallel and some arranged normal to the surface of the source pad. When the coils are arranged parallel to the surface, they have a dispersion of x-y orientations such as a tessellated polygonal or square grid, so that at least some of the appliance and source coils are in alignment with each other to allow efficient inductive coupling between the source and the appliance.
  • In FIG. 7 is shown a further embodiment of an inductive power transfer device 102 for an appliance 104. The device 102 includes separate coils 106, 108, with the coil 106 having a magnetic core 110 contoured to the core 112 of a secondary coil 114 of the appliance. Each primary coil 106, 108 also includes its own power source 116, 118 in lieu of a switch for activating the coil.
  • Rectification can be provided to each lead from each coil in the form of a pair of diodes 120 of opposite polarity on each coil lead with the output of each diode feeding the appropriate side of the battery. In this embodiment, each increment of power generated in any secondary coil in each inductive cycle caused by the power supply will be captured. For ease of manufacturing, all output leads from the diodes of one polarity could go “up,” i.e., in the +z direction relative to the x-y plane of the array to contact an essentially planar bus such as used in a PC board comprising the inner side of an appliance array. The other polarity diode output leads could go “down,” i.e., -z to a similar bus positioned on the outer side of the receiver cavity.
  • It is desirable for the source coils to only operate when an appliance is laid to rest on an item containing the source coils. By preventing the source coils from continuously generating an electromagnetic field, the system would conserve power while eliminating objectionable electromagnetic fields. This result is achieved by the switches 12 (FIGS. 2-5) provided so that each source or primary coil is energized from the power supply only when a secondary coil is within effective range and there is sufficient translational and rotational alignment between primary and secondary coils.
  • Referring to FIG. 7, this arrangement can be achieved by residual permanent magnetism in the appliance 104 or by a separate magnet 112 associated with each secondary coil 114 which operates a magnetic switch, a MOSFET, or similar switch (not shown) to turn the source coil on or off. Alternatively, the coils could be selectively energized by a resonance created between the primary and secondary coils which resonance amplifies a tiny residual power flow in each source coil. A further means for controlling energization may include a piezoelectric, or other oscillator in a tuned circuit pumped by random vibrations which generates feedback amplification when in proximity to a matched oscillator, thus opening a power transistor and/or OP-AMP between the coil and supply line once a threshold is reached. The coil switch (including transistor and/or OP-AMP) could also be operated by any kind of tag such as a microchip associated with each receiver coil which could generate its own signal (acoustic, radio, etc.) or respond to a polling signal from a matched device associated with each source coil.
  • In the alternative embodiment of FIGS. 8 and 9, a continuous source coil 202 with multiple leads or taps 204, i.e., at regular intervals going to the supply line, up to the limit of one lead (or tap) per coil going to each side of the power supply 208 can be provided. A coil switch is on every lead so that whatever length of source coil is in range of the receiver coil is activated. A continuous integrated circuit coil switch (“CICCS”) may take the form of a ribbon or strip of a magnetoreactive semiconductor, possibly organo-polymeric in nature, which goes into its conductive mode when in the presence of a magnetic field emanating from a secondary coil 210 in close proximity. In one embodiment, a magnetic north responsive CICCS is deployed to be in continuous contact with one supply conductor and each coil tap connected to the N-CICCS so that power from the supply conductor must traverse the width of the N-CICCS to reach the tap. A south (magnetic) responsive CICCS is similarly deployed between the coil taps and the other source conductor. When a secondary coil with a permanent magnet 212 as its core is positioned at a position wherein the magnetic fields interact, the N end of the core magnet opens the N-CICCS and the S end of the core magnet opens the S-CICCS, wherein the points of opening of the N-CICCS and the S-CICCS are separated by exactly the length of the receiver inductor whose core magnet opened the two CICCs, forming a circuit from one supply line to the other supply line that extends through the corresponding segment of the source inductor coil or a single CICCS could be used in the single lead with a capacitor scheme. Alternatively, the CICCS could be opened by other conventional devices.
  • The power supply 208 for generating the electromagnetic field in the source inductor coils may be either AC or intermittent DC, such as half-wave rectified. The power supply may vary at line frequency (60 or 50 Hz.) or a power supply with a higher frequency oscillator may be employed. The inductive power transfer is proportional to dv/dt, minus losses to self inductance, which increase with increase in frequency.
  • In another preferred embodiment of the present invention shown in FIG. 10, maximum transfer of power is achieved by allowing the coils forming either the primary 302 or the secondary 304 to move relative to the other set of coils. If one set of coils is allowed to move, i.e., to translate as much as one-half or more of the intercoil spacing in either the x or y direction or both and to rotate as much as one-half of the intercoil angle or more in either direction about the z axis so that via an engagement alignment device such as a core magnet the coils or arrays can achieve maximum alignment when forming a coupled transformer. To achieve this result, the movable coils or arrays may be set in a non-conductive container or lozenge 306 preferably having an annular configuration with connections provided either by flexible wires, or by brushes and concentric commutators on the lozenge body designed to exclusively contact the appropriate brush. Alternatively, the upper and lower surface of each inductive coil/array-lozenge may functionally serve as the output brushes for the secondary inductor coils or arrays, which brushes transmit any power generated to the upper and lower internal surfaces of the cavity in which the inductor coil/array lozenges are free to move transitionally and rotationally. These surfaces 308 serve as sliding contacts or commutators, collecting power from the secondary coils and sending it to the device's battery, switch and end user circuitry.
  • The secondary and/or source coils could also take the shape of flexible coils which are free to bend and migrate within a cavity formed in either the source or appliance device. Alternatively, the flexible coil may be free from the constraint of any cavity, so as to best align with its mating coil. Motion of the coils (within or without their cavities) is facilitated by a vibrator which is briefly energized when a coil-switch is opened, with the vibrations making it easier for the coils to migrate into alignment with each other and/or by an active seeker mechanism (FIGS. 11 and 12) attached to the coil. The vibrator could be periodically energized. It and the seeker are also usable with any other form of the inductor coils.
  • The seeker mechanism 402 is attached to any movable source or appliance inductor which mechanism is designed to bring the primary and secondary coils into ideal alignment for inductive coupling. In FIGS. 12 and 13, the appliance 404 has the movable coil 406. This may be achieved by means of a piezoelectric or piezomagnetic leg 408 extending from each side of the movable inductor 406 to contact the inner side of the mating surface which is designed to flex (under influence of the electric or magnetic flux at the interface) in a direction which will move the inductor into alignment with the primary coil 410 as shown in FIG. 12. The legs may be made of materials of opposite polarity in the dorsal and ventral region to cause lateral motion. Furthermore, end portions of the legs may need to have a biased grip to engage the mating surface. Alternatively, the lower leg portions may have a coefficient of friction which varies with the variations in electric or magnetic fields. As a result, the lower portions of the legs grip the mating surface more strongly during that phase of the motion which would bring the coil into alignment. This may apply to a mobile discrete inductor or a flexible inductor which could be arrayed in their space in an “s” curve to allow motion of the central portion or other arrangement.
  • An advantageous form of inductive interface system shown in FIG. 13 includes bumps or waffles formed in the exterior surface of the source pad 502, which bumps correspond to locations of a source coil or array. The bumps or waffles would mate with indentations in the cover of the appliance coil or array 504 a-e so as to provide a simple system of aligning the mating coils resulting in high interface efficiency. The system of bumps and indentations might be positioned with one bump located at each end of each coil, or a pair of bumps on either side, or any other suitable arrangement. The source array is preferred for the bumps, as indentations would tend to accumulate sawdust or the like from the workplace which could impede inductive coupling efficiency. The ideal system of bumps and indentations is envisioned as having the cross section of the upper half of a sine wave, so that a receiver array will sit casually on a source array and will tend to rotate and translate under the influence of gravity and/or magnetic or other attraction into maximum alignment. By proper sizing and spacing of the bumps into a shape similar to the sinusoidal undulating wave form of array, a good degree of interoperability may be achieved.
  • For power tools and other uses requiring larger amounts of power, a grooved form of source and receiver array may be employed, wherein the surface is described by a sinusoid undulation (possibly flattened on tops to allow interface with flat surfaced interfaces) with the coils disposed in the convex portions of the sinusoid. This arrangement assures that when sinusoidal powered source and appliance arrays are located proximate to each other, inductive interaction of source and appliance coil arrays is maximized. Sinusoids could be transverse to each other, such as in a power tool power cord/strip so as to facilitate rolling up of cord/strip, or longitudinal (if such axes are identifiable).
  • Another form of inductive interface system formed in accordance with the present invention may consist of a source array disposed on the end of an extension cord which would engage with a secondary array disposed on a power tool or other device. This could provide power for 100% duty cycle even with the heaviest of usage, and yet be readily disconnected at any time, merely by manually applying tension, or via one of the disengagement devices discussed hereabove. Another form of the invention includes a small table/toolrest with source arrays in the surface, with the table having extendable legs that allow the table to be positioned where needed.
  • A major feature of the “Universal Inductive Interface Power Connection System” comprising the present invention resides in the fact that while configurations and densities of source and appliance arrays may be optimized for different applications, different sources and receivers are at all times interoperable. For example, a flat surfaced array may be employed with a sinusoid surfaced array and vice versa. As a general rule, the maximum current available for power transfer will be a function of interface area, inductor density and the coupling efficiency factor. With a standardized source coil density, the secondary array maximum voltage will be a function of appliance coil density, as in any transformer.
  • Referring to FIG. 14, all forms 602 a-d of the source array which might be desirable on a job-site or in a home or office, would have both a plug 604 for receiving power from wall socket or other source 606 and a socket 608 or more so that other forms of course array may be connected together to provide a broad spectrum of recharging possibilities. For example, a long power cord array could stretch the entire expanse of a job-site, providing opportunities along its entire length for a modest rate of recharging, and forms of source arrays such as a pad comprising the upper surface of a shelf of a work table could be connected to and derive power from the conductors of this power cord. This would provide faster recharging than otherwise available. It would also provide efficient recharging at locations on the job-site of heaviest tool use. Source pads or other containers for the source inductor coils employed in the charging system of the present invention may advantageously be set upon tables, workbenches, saw horses, shelves or the like to relieve the worker of the current necessity of bending over each time it is desired to put down or pick up a tool from the ground, which is customary practice at most construction sites. A single source inductor array located on an extension cord may be connected at another location, with a sinusoidal undulating source array at another location and a bump array at another, to provide additional recharging opportunities. The different source arrays could also transfer power to each other through their inductive interfaces. Thus, there would be no further need for a conventional plug and socket connection to recharge the device.
  • It is preferable to provide for positive engagement between the receiver and the source. This may prove useful when the source is positioned other than in a horizontal position and when the interface is subjected to vibration or jostling, since it produces a tighter magneto-inductive coupling (between source and appliance) by ensuring the best proximity and/or alignment of coils. This, in turn, helps overcome possible magnetic repulsion between the coupled sets of source and appliance inductors. This desirable result may be achieved by provision of a magnet, e.g., a permanent magnet, in the center or edge of each repeating coil unit of the appliance or source coils to mate with another magnet or magneto attractive mass positioned in the center or edge of each repeating coil unit of source or appliance coil, respectively.
  • The iron or other core material employed in each inductor coil has a sufficient degree of permanent magnetism to function as engagement devices, since these cores are ideally located for this purpose. In effect, the magnetic attraction is sufficient to open the coil switch and thus operate the charging system. However, it could be that the degree of permanent magnetism needed to align the coils is incompatible with the electro-magnetizability (permeability) required for the core to function efficiently in an inductor, in which case the alignment magnet may be set orthogonal to the inductor primary axis of the “x-y” plane, preferably mutually centered, as shown in FIG. 8.
  • If each coil has a degree of mobility at each of its ends approximately equal to half the spacing between coils, intercoil spacing will allow the pairs of coils to assume alignment. Such mobility of the coils can be achieved by using braided wires in the coil connections and a housing larger than the diameter of the coils. This allows the coils to slide in the x-y plane, wherein one surface of the housing is the interface surface of the source array. Alternatively, Velcro™ mating tongues and grooves in the source and receiver or mating physical structures may be employed as engagement members. In each of these embodiments, the fact that the housing is larger than the size of the coils makes it possible for the pairs of coils to achieve proper alignment. Alternatively, the housings for the source and appliance arrays could be magnetically attractive to each other.
  • Once the source and appliance coils are brought in proximity with each other, a disengagement device may be required to break the electromagnetic bond. Disengagement may be effected by physically moving the appliance away from the source, reducing the magnetic coupling. Alternatively, if a magnet functions as an engagement device, it could be mounted in an opening in the appliance such that the magnet could be moved within the appliance away from the source, in the z direction away from the interface, thereby reducing the magnetic force of engagement. This movement could be achieved mechanically by the squeezing of a trigger in the appliance, or electrically through a trigger switch. Alternatively, a contact detector responding to a user's touch could be employed. The detector actuates a solenoid connected to the engager, pulling away from the interface. Disengagement is achieved by sending a back voltage through any activated secondary coils, so as to generate a repulsive magnetic force against the primary coils. Alternatively, a forward voltage could be sent through the activated receiver coils if the inductive coupling generates a net repulsive force which in operative engagement must be countered by the attachment system, thereby increasing the repulsive force in the inductive coupling and overcoming the attachment force.
  • So as not to waste power in systems where primary coil to secondary coil alignment is not assured, either the theoretical maximum voltage output of the appliance array should be higher than the desired output by a factor inverse to the cosine of the greatest operational misalignment of a coil-set and any excess voltages diverted and added with other excess voltages from other coil sets and input to the appliance, or the secondary coils can be multitapped, with the tap producing optimal voltage automatically selected by a trimmer circuit. Alternatively, the maximum theoretical output voltage can be set equal to a desired input voltage, and voltage multiplier circuits used to increase any low voltages resulting from any misalignment. Exact voltages are achieved by using conventional means, i.e., variable resistors, to split the original voltage, only multiplying a portion of it, which is added back or by any conventional arithmetic circuit.
  • It may be desirable to include a battery/fuel cell overcharge prevention circuit, which would operate to disable the system either by electrically isolating the engaged secondary coils or, preferably, by turning off the coil switches of any source coil actuated due to secondary coil proximity. Alternatively, the secondary coils could be physically relocated within the body of the appliance, to reduce magneto-inductive interaction.
  • A rechargeable fuel cell system may be employed with the inductive interface as the recharging device, wherein the secondary array in the powered device will, after receiving power from a source array, cause the fuel within the fuel cell to be regenerated from the oxidation products of the fuel cell's operating reactions. For example, in a hydrogen fueled system, the hydrogen fuel for the fuel cell would be stored in the form of a metal hydride, a saturated graphite or fullerance (possibly doped with electrophiles such as lithium and/or electrophos), or compressed gas, which in the absence of power from an inductive coupling of the secondary array, would react with atmospheric oxygen to produce electricity and water. The water would be stored and the electricity used to power the device. When later connected to a source power array and receiving power through inductive coupling, the stored water would be reduced by hydrolysis using electric power from the inductive coupling into hydrogen which would be stored in the above cited storage device, and oxygen which would be released to the atmosphere. If the system lost its hydrogen, it could be replaced as water, and hydrolysis would occur as stated above through the inductive power transfer, to put the fuel cell system back into a charged condition.
  • In a preferred embodiment of the present invention, a power tool having one or more inductive secondary coils formed in accordance with the present invention may be laid to rest on either side on a source pad having an array of built in primary coils. Secondary coils are positioned in the bottom and/or along the sides of the tool, or may be located in the bottom of a battery pack which itself may be detached and replaced. Whether the secondary coils are mounted in the power tool or in an attachment to the tool, by positioning the power tool with its interface (inductor secondary array) on a source pad or similar receptacle including the source inductor array, it becomes possible to charge the power tool between operations, merely by placing the tool on the source pad, thus maintaining a sufficient charge in the power tool at all times. The extra batteries or fuel cells could be recharged on the same source array.
  • For extremely severe use, the source array could be set on an incline so that exhausted batteries would be set at the top of a sequence of batteries on the incline, and the battery which has charged for the longest period of time could be withdrawn from the bottom of the incline.
  • A job-site source array might take the form of a coilable flat power cord ribbon about ½-inch thick by 2-6 inches wide by any length from 2-100 feet. Workers conveniently lay their tools on the ribbon when not in use. The edges could be tapered to prevent tripping. One end ribbon may have a cord adaptable to being plugged into a conventional electric outlet. It could also have sockets into which may be plugged other appliances and source arrays. The flat power cord ribbon could have a central stripe of ferrous material with a separate strip of source coils complete with coil switches and supply conductors on either side. The ribbon would be designed to mate with a receiver array consisting of polygonal cells of diameter equal to the spacing of the two strips of source coils, composed of secondary coils with supporting circuitry and with a magnetic button at the center of each polygonal secondary array, thereby assuring good coil alignment.
  • In all instances in which an inductor has been described as being in the x-y plane, i.e., its longitudinal axis parallel to the plane of the interface, an inductor being in the z direction, i.e., its axis normal to the plane of the interface, may also be provided, and an inductive array may contain both parallel and normal inductors.
  • A signal can be transmitted through the same inductive array which transmits power from a source to an appliance by injecting the signal into the interface at an appropriate frequency through an appropriate filter and removing it on the other side of the interface through another appropriate filter. In this way, computers and all types of portable and non-portable devices can communicate when they are engaged through an inductive interface.
  • While the preferred forms and embodiments of the invention have been illustrated and described, it will be apparent to those of ordinary skill in the art that various changes and modifications may be made without deviating from the inventive concepts set forth above.
  • A wire which upon sensing the presence of an inductor which seeks to establish an inductive mating (interface) with it, will coil itself so as to form an inductor.
  • This wire may be initially disposed as a loose coil or array of coils within a broad flat cavity defined on the mating surface side by a thin wall, as in FIG. 15 a. These coils would increase their curvature (i.e. tighten their radius) when in the proximity of the mating inductor, so as to increase the number of coils there (thus increasing the amount of inductor there) at the expense of the number of coils elsewhere. In effect, the coils, which were built into the wire, would migrate to the interface location and achieve the correct alignment, as in FIG. 15 b, until maximal concentration of the coils at the inductor mating location is achieved, as in FIG. 15 c.
  • In the embodiment as described above, the wire-coils are dispersed flatly in the housing cavity for a z-axis coupling (i.e. solenoid axis orthogonal to the mating surface) FIG. 15 a-c.
  • In an alternative and equally valid embodiment, these coils would have their solenoid axis in the x-y plane, i.e. parallel to the mating surface. In this case, there would be relatively many coils of a smaller diameter, as is known from conventional inductor design. As in the previous example, the coils would be somewhat loosely dispersed in the cavity (FIG. 15 d), until a mating inductor made it's presence felt, at which point the coils would begin to coalesce adjacent to it as in FIG. 15 e and finally constitute a fully formed inductor as in FIG. 15 f.
  • It should be understood that it may be a physical property of the wire of these coils which causes them to tighten their radius and coalesce into an inductor, or it may be a property of the insulation or of an element parallel to the wire, such as a piece of nitinol or other shape-memory or shape-changing material, or it may be a specifically responsive servo-mechanism with micro actuators dispersed along the length of the wire.
  • Specifically examining the example of a nitinol or other shape-memory wire embedded with (301) or identical with the inductor wire (302), in the same insulation sheath (303), as in FIG. 16. The hot condition of the nitinol (etc.) would be the tighter radius of curvature as in FIG. 18, versus the cold condition or shape which would be the looser radius of curvature as in FIG. 17. In one embodiment said hot condition would be invoked by the waste heat from the (initially small) induction in the region where the mating inductor has been placed, which said heat and said inductive coupling will progressively reinforce each other until all or most of the formerly loosely arrayed coils are tightly clustered into an inductor, adjacent to and coupled with the mated inductor which caused it to coalesce, into an inductor, as in 15 a-c and 15 d-f.
  • In an x-y axis coil-inductor, since there are many coils diameter it may be desirable to have the nitinol or other shape-changing element as described above, not run parallel to the conductor, but form a mandrel about which the wire coils. This mandrel could be a coil of the same diameter(s) as the conductor coil, but with a fraction of the helical pitch (i.e. # of coils length), and affixed to the insulation at each point of crossing, or even to the wire itself, if the shape-changing coil is a sufficiently weak conductor as to not divert current from the conductor-inductor wire (which could heat and deform the entire length of the shape-changing element). (Alternatively, it may be that by balancing the conductivity of the nitinol etc, with the main wire, a small portion of the total current would go through the nitinol etc. and heat it causing it to curl as desired, if there were coil switches dispersed along the whole coil length, so that only the region in proximity to the mating inductor were energized.) The reason for having less turns of the shape changing element is that then for a given mass it could be thicker and thus exert more force. Of course, the shape changing component could be a solid or tubular core for the inductor coils, which shortens in proximity to the mating inductor, due to heat, or the presence of electric or magnetic fields, thus causing the coil to concentrate in this region. It could be plastic. It could be the insulation itself
  • The mating inductor could send out a signal which turns on the coil coalescence system, and this signal could also activate the coil switch(s) which allows electricity to pass through the coil. It should be understood that these above forms of inductor could operate free of a housing.
  • In another preferred embodiment, when it is desired for discrete inductors to be mobile within their apparatus so as to achieve alignment with a mated inductor, as described in the parent application Ser. No. 09/702,234 (which is incorporated by reference, and beginning pg 10 In. 17 through pg. 12), the mobility and alignment of said inductors may be achieved by equipping each mobile inductor with a sensor means to detect proximity and direction of/the mating inductor, connected to a motion causing means which moves the inductor in the direction indicated by the sensor. This motion causing means could be small motorized wheels associated with the inductor, which wheels bear upon the inside surface of the broad flat cavity parallel to the mating surface in the apparatus in which the inductor is to move about. These wheels (or wheel) would move the inductor into mating alignment.
  • For x-y inductors, both translational and rotational alignment would be required to be made by this alignment mechanism, the 3 degrees of freedom (x,y, and rotational) requiring at least 3 mechanisms. For a z-axis inductor, since it has rotational symmetry in the x-y plane, only two degrees of freedom exist and only two directions of motion are required. This could be done by an x-axis mechanism (such as a motorized wheel or jack screw or other mechanism) and a y-axis motorized wheel or jack screw or other mechanism, or it could be achieved by a single wheel which pivots, with one motor or means to pivot the wheel for movement in any direction such as is determined by the sensor to be toward the mating location, and another motor or means to roll the wheel towards that point. In a possible preferred embodiment, that single wheel could be centrally located in the core region of the inductor it could be a spherical wheel. The overall appearance would be similar to a computer mouse. FIG. 20 a shows a top view of such a mobile inductor, and FIG. 20 b shows the side view of same. 601 is the inductor coils, 602 is the wheel, 603 is the rolling motor, 604 is the pivoting motor, 605 is the sensor, 606 is the housing cavity, and 607 is the pivot axis.
  • FIG. 19 a shows a side view of an x-y axis mobile inductor sensing a mating inductor and moving into (translational) alignment. FIG. 19 b show alignment achieved. In these FIGS. 501 is the sensor, 502 is the mating inductor, 503 is the device powered by the inductor's interface, 504 is the inductor housing with a broad flat cavity for the mobile inductor, 505 is the mobile inductor, 506 is the motor connected to the wheel 507 which moves the inductor, And 508 is the connection by which the sensor controls the motor(s). FIG. 19 c is a top view of the same x-y inductor showing the wheels pivoted by another mechanism so that the inductor may achieve rotational alignment with its mating inductor.
  • In another important embodiment of the invention; the inductor array is composed of a 2-dimensional (x-y) tessellated grid of inductor elements (as described in the parent application Ser. No. 09/1702,234), in which each element of the grid is a conductor or small inductor element which when a plurality of these are electrically energized in the correct pattern such as in direct response to the presence of a mating inductor, will constitute an inductor of sufficient power and such orientation as to inductively transfer power to the mated inductor. Each grid element would in response to the field information from the mating inductor, orient its axis of conduction or induction in the correct direction so that the required inductor was created. Within each grid element this could occur by selective activation only of those conductive or inductive elements of a multiplicity of such elements 701 running in different directions as in FIG. 21 a, which are running in the required direction 703, due to the influence of mating inductor 702 (which is shown elevated above it for ease of illustration) as in FIG. 21 b, or it could be achieved by rotation of the grid element which only contains one direction of conductor or inductor, into the correct orientation, as in FIG. 22 a-b with FIG. 22 a showing the disorganized state wherein 801 are the randomized grid elements and FIG. 22 b showing the inductor organized under the influence of the mating inductor 802 (again shown displaced for ease of illustration) and 803 being the directional organized grid elements.
  • Each grid element could have its own power connections, so that the system would be independent of establishing perfect connection between all of the grid elements required to be connected to constitute a working inductor.

Claims (21)

1. A power transfer system, including power connection means, said system with at least one inductor in which said at least one inductor is mobile such as to achieve alignment with another inductor for inductive power transfer to occur.
2. The power transfer system as recited in claim 1, wherein the said at least one mobile inductors are mobile within a housing.
3. The power transfer system as recited in claim 2, wherein said external housing does not change shape when the at least one mobile inductor(s) moves.
4. The power transfer as recited in claim 3, wherein said housing has a thin flat external wall, and wherein said at least one mobile inductor moves along the inner surface of said external wall, in order to seek alignment with an inductor placed in proximity to the external surface of said external wall.
5. The power transfer system as recited in claim 4, wherein there is a broad flat cavity parallel to said external wall, the upper bound of which is the inner side of said external wall, and the lower bound of said broad flat cavity is a second parallel external wall, configured to provide space for movement of said at least one mobile inductor.
6. The power transfer system as in claim 5 wherein said second parallel external wall may rest upon any existing surface.
7. A power transfer system, including power connection means, said system with at least one inductor in which said at least one inductor is mobile such as to achieve alignment with another inductor for inductive power transfer to occur wherein there is at least one sensor which can detect proximity and relative direction of a mating inductor, said sensor connected to and controlling at least one motion causing means so as to move at least one of said mobile inductor(s) into effective alignment with said mating inductor so that inductive power transfer may occur.
8. The power transfer system of claim 7, wherein said motion sensors are placed within or adjacent to said at least one mobile inductor.
9. The power transfer system of claim 1, wherein said power connection means to each said at least one mobile inductor(s) is a wire connected to the power supply or load.
10. The power transfer of claim 1, wherein said power connection means to each mobile inductor is at least one brush or sliding electrical contact
11. The power transfer system as recited in claim 10, wherein said brushes or sliding electrical contacts slide-ably make electrical contact with the said inner surfaces of the said housing in which surfaces are conductive and connected to said power supply or load.
12. The power transfer system as recited in claim 11, wherein both inner surfaces of said housing are conductive, and are assigned polarity so as to establish a circuit with those of said mobile inductors which are energized.
13. The power transfer system as recited in claim 1, wherein there is only one electrical connection to each mobile inductor.
14. The power transfer system as recited in claim 7, wherein said motion causing means is non-mechanical.
15. The power transfer system as recited in claim 11, wherein all of said mobile inductors which are energized are effectively connected in parallel.
16. The power transfer system as recited in claim 1, wherein there is at least one capacitor connected to each of said mobile inductors.
17. A power transfer system which includes a power connection means and at least one mobile inductor, which is also a flexible inductor wherein said flexible inductor which is sufficiently flexible so as to be able to allow at least a portion of its length to bend and migrate so as to achieve alignment with another inductor for inductive power transfer.
18. The power transfer system as recited in claim 17, further including a housing, wherein said flexible inductor is free to move within said housing.
19. A power transfer system as recited in claim 17, said flexible inductor being self-reconfigurable due to the properties of said at least one flexible inductor, said properties so as to optimize inductance at a given region with a mating inductor.
20. The power transfer system as recited in claim 17, wherein said flexible inductor is capable of actively changing its shape.
21. The power transfer system as recited in claim 1, wherein each mobile inductor includes a switch, said switch operable in the effective presence of a mated secondary inductor seeking power transfer.
US13/453,687 1999-11-01 2012-04-23 Alignment independent and self-aligning inductive power transfer system using mobile, flexible inductors Abandoned US20120200170A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/453,687 US20120200170A1 (en) 1999-11-01 2012-04-23 Alignment independent and self-aligning inductive power transfer system using mobile, flexible inductors

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US16229599P 1999-11-01 1999-11-01
US09/702,234 US6803744B1 (en) 1999-11-01 2000-10-31 Alignment independent and self aligning inductive power transfer system
US96010204A 2004-10-08 2004-10-08
US13/453,687 US20120200170A1 (en) 1999-11-01 2012-04-23 Alignment independent and self-aligning inductive power transfer system using mobile, flexible inductors

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US96010204A Continuation 1999-11-01 2004-10-08

Publications (1)

Publication Number Publication Date
US20120200170A1 true US20120200170A1 (en) 2012-08-09

Family

ID=46332633

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/398,119 Expired - Fee Related US9425638B2 (en) 1999-11-01 2012-02-16 Alignment independent and self-aligning inductive power transfer system
US13/453,687 Abandoned US20120200170A1 (en) 1999-11-01 2012-04-23 Alignment independent and self-aligning inductive power transfer system using mobile, flexible inductors

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/398,119 Expired - Fee Related US9425638B2 (en) 1999-11-01 2012-02-16 Alignment independent and self-aligning inductive power transfer system

Country Status (1)

Country Link
US (2) US9425638B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020057088A1 (en) * 1998-10-05 2002-05-16 Alessandro Carrozzi Machine for diagnostic and/or therapeutic treatment, particularly a nuclear magnetic resonance imaging machine
US20210234428A1 (en) * 2020-01-29 2021-07-29 Hougen Manufacturing, Inc. Electric motor power cord for portable electrical assembly
US20230036419A1 (en) * 2021-07-28 2023-02-02 Dell Products L.P. Information handling system with an integrated wireless charger

Families Citing this family (192)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9305701B2 (en) * 2010-12-31 2016-04-05 Nokia Technologies Oy Power transfer
RU2616966C2 (en) * 2011-12-22 2017-04-19 Конинклейке Филипс Н.В. Coil charging system for inserted target device, eg toothbrush
US10128699B2 (en) 2014-07-14 2018-11-13 Energous Corporation Systems and methods of providing wireless power using receiver device sensor inputs
US10211674B1 (en) 2013-06-12 2019-02-19 Energous Corporation Wireless charging using selected reflectors
US9143000B2 (en) 2012-07-06 2015-09-22 Energous Corporation Portable wireless charging pad
US9124125B2 (en) 2013-05-10 2015-09-01 Energous Corporation Wireless power transmission with selective range
US10186913B2 (en) 2012-07-06 2019-01-22 Energous Corporation System and methods for pocket-forming based on constructive and destructive interferences to power one or more wireless power receivers using a wireless power transmitter including a plurality of antennas
US10075008B1 (en) 2014-07-14 2018-09-11 Energous Corporation Systems and methods for manually adjusting when receiving electronic devices are scheduled to receive wirelessly delivered power from a wireless power transmitter in a wireless power network
US9368020B1 (en) 2013-05-10 2016-06-14 Energous Corporation Off-premises alert system and method for wireless power receivers in a wireless power network
US9812890B1 (en) 2013-07-11 2017-11-07 Energous Corporation Portable wireless charging pad
US10141768B2 (en) 2013-06-03 2018-11-27 Energous Corporation Systems and methods for maximizing wireless power transfer efficiency by instructing a user to change a receiver device's position
US9787103B1 (en) 2013-08-06 2017-10-10 Energous Corporation Systems and methods for wirelessly delivering power to electronic devices that are unable to communicate with a transmitter
US10141791B2 (en) 2014-05-07 2018-11-27 Energous Corporation Systems and methods for controlling communications during wireless transmission of power using application programming interfaces
US10090886B1 (en) 2014-07-14 2018-10-02 Energous Corporation System and method for enabling automatic charging schedules in a wireless power network to one or more devices
US9912199B2 (en) 2012-07-06 2018-03-06 Energous Corporation Receivers for wireless power transmission
US10992187B2 (en) 2012-07-06 2021-04-27 Energous Corporation System and methods of using electromagnetic waves to wirelessly deliver power to electronic devices
US9906065B2 (en) 2012-07-06 2018-02-27 Energous Corporation Systems and methods of transmitting power transmission waves based on signals received at first and second subsets of a transmitter's antenna array
US9876379B1 (en) 2013-07-11 2018-01-23 Energous Corporation Wireless charging and powering of electronic devices in a vehicle
US10128693B2 (en) 2014-07-14 2018-11-13 Energous Corporation System and method for providing health safety in a wireless power transmission system
US10312715B2 (en) 2015-09-16 2019-06-04 Energous Corporation Systems and methods for wireless power charging
US9843213B2 (en) 2013-08-06 2017-12-12 Energous Corporation Social power sharing for mobile devices based on pocket-forming
US10063064B1 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for generating a power receiver identifier in a wireless power network
US10270261B2 (en) 2015-09-16 2019-04-23 Energous Corporation Systems and methods of object detection in wireless power charging systems
US9853692B1 (en) 2014-05-23 2017-12-26 Energous Corporation Systems and methods for wireless power transmission
US9893768B2 (en) 2012-07-06 2018-02-13 Energous Corporation Methodology for multiple pocket-forming
US10381880B2 (en) 2014-07-21 2019-08-13 Energous Corporation Integrated antenna structure arrays for wireless power transmission
US9973021B2 (en) 2012-07-06 2018-05-15 Energous Corporation Receivers for wireless power transmission
US9876648B2 (en) 2014-08-21 2018-01-23 Energous Corporation System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters
US10223717B1 (en) 2014-05-23 2019-03-05 Energous Corporation Systems and methods for payment-based authorization of wireless power transmission service
US10090699B1 (en) 2013-11-01 2018-10-02 Energous Corporation Wireless powered house
US9806564B2 (en) 2014-05-07 2017-10-31 Energous Corporation Integrated rectifier and boost converter for wireless power transmission
US9893555B1 (en) 2013-10-10 2018-02-13 Energous Corporation Wireless charging of tools using a toolbox transmitter
US10224982B1 (en) 2013-07-11 2019-03-05 Energous Corporation Wireless power transmitters for transmitting wireless power and tracking whether wireless power receivers are within authorized locations
US9838083B2 (en) 2014-07-21 2017-12-05 Energous Corporation Systems and methods for communication with remote management systems
US9882430B1 (en) 2014-05-07 2018-01-30 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US10103582B2 (en) 2012-07-06 2018-10-16 Energous Corporation Transmitters for wireless power transmission
US10050462B1 (en) 2013-08-06 2018-08-14 Energous Corporation Social power sharing for mobile devices based on pocket-forming
US10224758B2 (en) 2013-05-10 2019-03-05 Energous Corporation Wireless powering of electronic devices with selective delivery range
US9954374B1 (en) 2014-05-23 2018-04-24 Energous Corporation System and method for self-system analysis for detecting a fault in a wireless power transmission Network
US9966765B1 (en) 2013-06-25 2018-05-08 Energous Corporation Multi-mode transmitter
US9941754B2 (en) 2012-07-06 2018-04-10 Energous Corporation Wireless power transmission with selective range
US9871398B1 (en) 2013-07-01 2018-01-16 Energous Corporation Hybrid charging method for wireless power transmission based on pocket-forming
US10205239B1 (en) 2014-05-07 2019-02-12 Energous Corporation Compact PIFA antenna
US9824815B2 (en) 2013-05-10 2017-11-21 Energous Corporation Wireless charging and powering of healthcare gadgets and sensors
US9900057B2 (en) 2012-07-06 2018-02-20 Energous Corporation Systems and methods for assigning groups of antenas of a wireless power transmitter to different wireless power receivers, and determining effective phases to use for wirelessly transmitting power using the assigned groups of antennas
US10211680B2 (en) 2013-07-19 2019-02-19 Energous Corporation Method for 3 dimensional pocket-forming
US9859797B1 (en) 2014-05-07 2018-01-02 Energous Corporation Synchronous rectifier design for wireless power receiver
US9941747B2 (en) 2014-07-14 2018-04-10 Energous Corporation System and method for manually selecting and deselecting devices to charge in a wireless power network
US9438045B1 (en) 2013-05-10 2016-09-06 Energous Corporation Methods and systems for maximum power point transfer in receivers
US9887584B1 (en) 2014-08-21 2018-02-06 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
US9831718B2 (en) 2013-07-25 2017-11-28 Energous Corporation TV with integrated wireless power transmitter
US9893554B2 (en) 2014-07-14 2018-02-13 Energous Corporation System and method for providing health safety in a wireless power transmission system
US10063106B2 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for a self-system analysis in a wireless power transmission network
US9882427B2 (en) 2013-05-10 2018-01-30 Energous Corporation Wireless power delivery using a base station to control operations of a plurality of wireless power transmitters
US10206185B2 (en) 2013-05-10 2019-02-12 Energous Corporation System and methods for wireless power transmission to an electronic device in accordance with user-defined restrictions
US9252628B2 (en) 2013-05-10 2016-02-02 Energous Corporation Laptop computer as a transmitter for wireless charging
US9899861B1 (en) 2013-10-10 2018-02-20 Energous Corporation Wireless charging methods and systems for game controllers, based on pocket-forming
US10038337B1 (en) 2013-09-16 2018-07-31 Energous Corporation Wireless power supply for rescue devices
US9891669B2 (en) 2014-08-21 2018-02-13 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
US9948135B2 (en) 2015-09-22 2018-04-17 Energous Corporation Systems and methods for identifying sensitive objects in a wireless charging transmission field
US9923386B1 (en) 2012-07-06 2018-03-20 Energous Corporation Systems and methods for wireless power transmission by modifying a number of antenna elements used to transmit power waves to a receiver
US10992185B2 (en) 2012-07-06 2021-04-27 Energous Corporation Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers
US9847677B1 (en) 2013-10-10 2017-12-19 Energous Corporation Wireless charging and powering of healthcare gadgets and sensors
US10199835B2 (en) 2015-12-29 2019-02-05 Energous Corporation Radar motion detection using stepped frequency in wireless power transmission system
US10218227B2 (en) 2014-05-07 2019-02-26 Energous Corporation Compact PIFA antenna
US9941707B1 (en) * 2013-07-19 2018-04-10 Energous Corporation Home base station for multiple room coverage with multiple transmitters
US10230266B1 (en) 2014-02-06 2019-03-12 Energous Corporation Wireless power receivers that communicate status data indicating wireless power transmission effectiveness with a transmitter using a built-in communications component of a mobile device, and methods of use thereof
US10439448B2 (en) 2014-08-21 2019-10-08 Energous Corporation Systems and methods for automatically testing the communication between wireless power transmitter and wireless power receiver
US10063105B2 (en) 2013-07-11 2018-08-28 Energous Corporation Proximity transmitters for wireless power charging systems
US9899873B2 (en) 2014-05-23 2018-02-20 Energous Corporation System and method for generating a power receiver identifier in a wireless power network
US9859757B1 (en) 2013-07-25 2018-01-02 Energous Corporation Antenna tile arrangements in electronic device enclosures
US10193396B1 (en) 2014-05-07 2019-01-29 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US9867062B1 (en) 2014-07-21 2018-01-09 Energous Corporation System and methods for using a remote server to authorize a receiving device that has requested wireless power and to determine whether another receiving device should request wireless power in a wireless power transmission system
US10211682B2 (en) 2014-05-07 2019-02-19 Energous Corporation Systems and methods for controlling operation of a transmitter of a wireless power network based on user instructions received from an authenticated computing device powered or charged by a receiver of the wireless power network
US9847679B2 (en) 2014-05-07 2017-12-19 Energous Corporation System and method for controlling communication between wireless power transmitter managers
US10291066B1 (en) 2014-05-07 2019-05-14 Energous Corporation Power transmission control systems and methods
US10124754B1 (en) 2013-07-19 2018-11-13 Energous Corporation Wireless charging and powering of electronic sensors in a vehicle
US10008889B2 (en) 2014-08-21 2018-06-26 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US20150326070A1 (en) 2014-05-07 2015-11-12 Energous Corporation Methods and Systems for Maximum Power Point Transfer in Receivers
US9793758B2 (en) 2014-05-23 2017-10-17 Energous Corporation Enhanced transmitter using frequency control for wireless power transmission
US9825674B1 (en) 2014-05-23 2017-11-21 Energous Corporation Enhanced transmitter that selects configurations of antenna elements for performing wireless power transmission and receiving functions
US20140008993A1 (en) 2012-07-06 2014-01-09 DvineWave Inc. Methodology for pocket-forming
US10148097B1 (en) 2013-11-08 2018-12-04 Energous Corporation Systems and methods for using a predetermined number of communication channels of a wireless power transmitter to communicate with different wireless power receivers
US10243414B1 (en) 2014-05-07 2019-03-26 Energous Corporation Wearable device with wireless power and payload receiver
US9991741B1 (en) 2014-07-14 2018-06-05 Energous Corporation System for tracking and reporting status and usage information in a wireless power management system
US9853458B1 (en) 2014-05-07 2017-12-26 Energous Corporation Systems and methods for device and power receiver pairing
US9939864B1 (en) 2014-08-21 2018-04-10 Energous Corporation System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters
US10199849B1 (en) 2014-08-21 2019-02-05 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US9859756B2 (en) 2012-07-06 2018-01-02 Energous Corporation Transmittersand methods for adjusting wireless power transmission based on information from receivers
US10965164B2 (en) 2012-07-06 2021-03-30 Energous Corporation Systems and methods of wirelessly delivering power to a receiver device
US9843201B1 (en) 2012-07-06 2017-12-12 Energous Corporation Wireless power transmitter that selects antenna sets for transmitting wireless power to a receiver based on location of the receiver, and methods of use thereof
US9876394B1 (en) 2014-05-07 2018-01-23 Energous Corporation Boost-charger-boost system for enhanced power delivery
US9887739B2 (en) 2012-07-06 2018-02-06 Energous Corporation Systems and methods for wireless power transmission by comparing voltage levels associated with power waves transmitted by antennas of a plurality of antennas of a transmitter to determine appropriate phase adjustments for the power waves
US10256657B2 (en) 2015-12-24 2019-04-09 Energous Corporation Antenna having coaxial structure for near field wireless power charging
US10291055B1 (en) 2014-12-29 2019-05-14 Energous Corporation Systems and methods for controlling far-field wireless power transmission based on battery power levels of a receiving device
US11502551B2 (en) 2012-07-06 2022-11-15 Energous Corporation Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations
US10263432B1 (en) 2013-06-25 2019-04-16 Energous Corporation Multi-mode transmitter with an antenna array for delivering wireless power and providing Wi-Fi access
DE102013226247A1 (en) * 2012-12-21 2014-06-26 Robert Bosch Gmbh Hand Tools Battery
DE102013226232A1 (en) * 2012-12-21 2014-06-26 Robert Bosch Gmbh Hand Tools Battery
JP2014220893A (en) * 2013-05-07 2014-11-20 株式会社東芝 Control device, wireless power transmission system, and wireless power transmission device
US9635715B1 (en) * 2013-05-08 2017-04-25 The Boeing Company Smart susceptor radiant heater
US9538382B2 (en) 2013-05-10 2017-01-03 Energous Corporation System and method for smart registration of wireless power receivers in a wireless power network
US9537357B2 (en) 2013-05-10 2017-01-03 Energous Corporation Wireless sound charging methods and systems for game controllers, based on pocket-forming
US9419443B2 (en) 2013-05-10 2016-08-16 Energous Corporation Transducer sound arrangement for pocket-forming
US9866279B2 (en) 2013-05-10 2018-01-09 Energous Corporation Systems and methods for selecting which power transmitter should deliver wireless power to a receiving device in a wireless power delivery network
US9819230B2 (en) 2014-05-07 2017-11-14 Energous Corporation Enhanced receiver for wireless power transmission
US10103552B1 (en) 2013-06-03 2018-10-16 Energous Corporation Protocols for authenticated wireless power transmission
US10003211B1 (en) 2013-06-17 2018-06-19 Energous Corporation Battery life of portable electronic devices
US10021523B2 (en) 2013-07-11 2018-07-10 Energous Corporation Proximity transmitters for wireless power charging systems
US9979440B1 (en) 2013-07-25 2018-05-22 Energous Corporation Antenna tile arrangements configured to operate as one functional unit
DE102013219239A1 (en) * 2013-09-25 2015-03-26 Robert Bosch Gmbh Method, device and system for determining a position of a vehicle
US20150091523A1 (en) * 2013-10-02 2015-04-02 Mediatek Singapore Pte. Ltd. Wireless charger system that has variable power / adaptive load modulation
WO2015116111A1 (en) * 2014-01-30 2015-08-06 Hewlett-Packard Development Company, L.P. Wireless power alignment
US9935482B1 (en) 2014-02-06 2018-04-03 Energous Corporation Wireless power transmitters that transmit at determined times based on power availability and consumption at a receiving mobile device
US10075017B2 (en) 2014-02-06 2018-09-11 Energous Corporation External or internal wireless power receiver with spaced-apart antenna elements for charging or powering mobile devices using wirelessly delivered power
US10158257B2 (en) 2014-05-01 2018-12-18 Energous Corporation System and methods for using sound waves to wirelessly deliver power to electronic devices
US9966784B2 (en) 2014-06-03 2018-05-08 Energous Corporation Systems and methods for extending battery life of portable electronic devices charged by sound
US9800172B1 (en) 2014-05-07 2017-10-24 Energous Corporation Integrated rectifier and boost converter for boosting voltage received from wireless power transmission waves
US10153653B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for using application programming interfaces to control communications between a transmitter and a receiver
US10170917B1 (en) 2014-05-07 2019-01-01 Energous Corporation Systems and methods for managing and controlling a wireless power network by establishing time intervals during which receivers communicate with a transmitter
US9973008B1 (en) 2014-05-07 2018-05-15 Energous Corporation Wireless power receiver with boost converters directly coupled to a storage element
US10153645B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for designating a master power transmitter in a cluster of wireless power transmitters
US9876536B1 (en) 2014-05-23 2018-01-23 Energous Corporation Systems and methods for assigning groups of antennas to transmit wireless power to different wireless power receivers
US10116143B1 (en) 2014-07-21 2018-10-30 Energous Corporation Integrated antenna arrays for wireless power transmission
US9871301B2 (en) 2014-07-21 2018-01-16 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US10068703B1 (en) 2014-07-21 2018-09-04 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US9965009B1 (en) 2014-08-21 2018-05-08 Energous Corporation Systems and methods for assigning a power receiver to individual power transmitters based on location of the power receiver
US9917477B1 (en) 2014-08-21 2018-03-13 Energous Corporation Systems and methods for automatically testing the communication between power transmitter and wireless receiver
US10122415B2 (en) 2014-12-27 2018-11-06 Energous Corporation Systems and methods for assigning a set of antennas of a wireless power transmitter to a wireless power receiver based on a location of the wireless power receiver
US9893535B2 (en) 2015-02-13 2018-02-13 Energous Corporation Systems and methods for determining optimal charging positions to maximize efficiency of power received from wirelessly delivered sound wave energy
US10523033B2 (en) 2015-09-15 2019-12-31 Energous Corporation Receiver devices configured to determine location within a transmission field
US9906275B2 (en) 2015-09-15 2018-02-27 Energous Corporation Identifying receivers in a wireless charging transmission field
US10008875B1 (en) 2015-09-16 2018-06-26 Energous Corporation Wireless power transmitter configured to transmit power waves to a predicted location of a moving wireless power receiver
US10211685B2 (en) 2015-09-16 2019-02-19 Energous Corporation Systems and methods for real or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US10778041B2 (en) 2015-09-16 2020-09-15 Energous Corporation Systems and methods for generating power waves in a wireless power transmission system
US9893538B1 (en) 2015-09-16 2018-02-13 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10199850B2 (en) 2015-09-16 2019-02-05 Energous Corporation Systems and methods for wirelessly transmitting power from a transmitter to a receiver by determining refined locations of the receiver in a segmented transmission field associated with the transmitter
US10186893B2 (en) 2015-09-16 2019-01-22 Energous Corporation Systems and methods for real time or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US11710321B2 (en) 2015-09-16 2023-07-25 Energous Corporation Systems and methods of object detection in wireless power charging systems
US9871387B1 (en) 2015-09-16 2018-01-16 Energous Corporation Systems and methods of object detection using one or more video cameras in wireless power charging systems
US9941752B2 (en) 2015-09-16 2018-04-10 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10158259B1 (en) 2015-09-16 2018-12-18 Energous Corporation Systems and methods for identifying receivers in a transmission field by transmitting exploratory power waves towards different segments of a transmission field
US10128686B1 (en) 2015-09-22 2018-11-13 Energous Corporation Systems and methods for identifying receiver locations using sensor technologies
US10027168B2 (en) 2015-09-22 2018-07-17 Energous Corporation Systems and methods for generating and transmitting wireless power transmission waves using antennas having a spacing that is selected by the transmitter
US10020678B1 (en) 2015-09-22 2018-07-10 Energous Corporation Systems and methods for selecting antennas to generate and transmit power transmission waves
US10033222B1 (en) 2015-09-22 2018-07-24 Energous Corporation Systems and methods for determining and generating a waveform for wireless power transmission waves
US10135295B2 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for nullifying energy levels for wireless power transmission waves
US10050470B1 (en) 2015-09-22 2018-08-14 Energous Corporation Wireless power transmission device having antennas oriented in three dimensions
US10135294B1 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for preconfiguring transmission devices for power wave transmissions based on location data of one or more receivers
US10153660B1 (en) 2015-09-22 2018-12-11 Energous Corporation Systems and methods for preconfiguring sensor data for wireless charging systems
US10734717B2 (en) 2015-10-13 2020-08-04 Energous Corporation 3D ceramic mold antenna
US10333332B1 (en) 2015-10-13 2019-06-25 Energous Corporation Cross-polarized dipole antenna
US9899744B1 (en) 2015-10-28 2018-02-20 Energous Corporation Antenna for wireless charging systems
US9853485B2 (en) 2015-10-28 2017-12-26 Energous Corporation Antenna for wireless charging systems
US10135112B1 (en) 2015-11-02 2018-11-20 Energous Corporation 3D antenna mount
US10027180B1 (en) 2015-11-02 2018-07-17 Energous Corporation 3D triple linear antenna that acts as heat sink
US10063108B1 (en) 2015-11-02 2018-08-28 Energous Corporation Stamped three-dimensional antenna
US9876385B2 (en) 2015-11-12 2018-01-23 Ami Industries, Inc. Seat wireless charger
US10027159B2 (en) 2015-12-24 2018-07-17 Energous Corporation Antenna for transmitting wireless power signals
US10079515B2 (en) 2016-12-12 2018-09-18 Energous Corporation Near-field RF charging pad with multi-band antenna element with adaptive loading to efficiently charge an electronic device at any position on the pad
US10135286B2 (en) 2015-12-24 2018-11-20 Energous Corporation Near field transmitters for wireless power charging of an electronic device by leaking RF energy through an aperture offset from a patch antenna
US11863001B2 (en) 2015-12-24 2024-01-02 Energous Corporation Near-field antenna for wireless power transmission with antenna elements that follow meandering patterns
US10256677B2 (en) 2016-12-12 2019-04-09 Energous Corporation Near-field RF charging pad with adaptive loading to efficiently charge an electronic device at any position on the pad
US10038332B1 (en) 2015-12-24 2018-07-31 Energous Corporation Systems and methods of wireless power charging through multiple receiving devices
US10320446B2 (en) 2015-12-24 2019-06-11 Energous Corporation Miniaturized highly-efficient designs for near-field power transfer system
US10164478B2 (en) 2015-12-29 2018-12-25 Energous Corporation Modular antenna boards in wireless power transmission systems
US10923954B2 (en) 2016-11-03 2021-02-16 Energous Corporation Wireless power receiver with a synchronous rectifier
KR102349607B1 (en) 2016-12-12 2022-01-12 에너저스 코포레이션 Methods of selectively activating antenna zones of a near-field charging pad to maximize wireless power delivered
US10680319B2 (en) 2017-01-06 2020-06-09 Energous Corporation Devices and methods for reducing mutual coupling effects in wireless power transmission systems
US10439442B2 (en) 2017-01-24 2019-10-08 Energous Corporation Microstrip antennas for wireless power transmitters
US10389161B2 (en) 2017-03-15 2019-08-20 Energous Corporation Surface mount dielectric antennas for wireless power transmitters
WO2018183892A1 (en) 2017-03-30 2018-10-04 Energous Corporation Flat antennas having two or more resonant frequencies for use in wireless power transmission systems
US10511097B2 (en) 2017-05-12 2019-12-17 Energous Corporation Near-field antennas for accumulating energy at a near-field distance with minimal far-field gain
US11462949B2 (en) 2017-05-16 2022-10-04 Wireless electrical Grid LAN, WiGL Inc Wireless charging method and system
US10848853B2 (en) 2017-06-23 2020-11-24 Energous Corporation Systems, methods, and devices for utilizing a wire of a sound-producing device as an antenna for receipt of wirelessly delivered power
US10122219B1 (en) 2017-10-10 2018-11-06 Energous Corporation Systems, methods, and devices for using a battery as a antenna for receiving wirelessly delivered power from radio frequency power waves
US11342798B2 (en) 2017-10-30 2022-05-24 Energous Corporation Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band
US10615647B2 (en) 2018-02-02 2020-04-07 Energous Corporation Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad
US11159057B2 (en) 2018-03-14 2021-10-26 Energous Corporation Loop antennas with selectively-activated feeds to control propagation patterns of wireless power signals
US11515732B2 (en) 2018-06-25 2022-11-29 Energous Corporation Power wave transmission techniques to focus wirelessly delivered power at a receiving device
US11437735B2 (en) 2018-11-14 2022-09-06 Energous Corporation Systems for receiving electromagnetic energy using antennas that are minimally affected by the presence of the human body
CN113597723A (en) 2019-01-28 2021-11-02 艾诺格思公司 System and method for miniaturized antenna for wireless power transmission
CN113661660B (en) 2019-02-06 2023-01-24 艾诺格思公司 Method of estimating optimal phase, wireless power transmitting apparatus, and storage medium
WO2021055898A1 (en) 2019-09-20 2021-03-25 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
US11381118B2 (en) 2019-09-20 2022-07-05 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
EP4032166A4 (en) 2019-09-20 2023-10-18 Energous Corporation Systems and methods of protecting wireless power receivers using multiple rectifiers and establishing in-band communications using multiple rectifiers
EP4032169A4 (en) 2019-09-20 2023-12-06 Energous Corporation Classifying and detecting foreign objects using a power amplifier controller integrated circuit in wireless power transmission systems
EP4073905A4 (en) 2019-12-13 2024-01-03 Energous Corporation Charging pad with guiding contours to align an electronic device on the charging pad and efficiently transfer near-field radio-frequency energy to the electronic device
US10985617B1 (en) 2019-12-31 2021-04-20 Energous Corporation System for wirelessly transmitting energy at a near-field distance without using beam-forming control
US11799324B2 (en) 2020-04-13 2023-10-24 Energous Corporation Wireless-power transmitting device for creating a uniform near-field charging area
US11387690B1 (en) * 2021-03-11 2022-07-12 Hong Kong Applied Science and Technology Research Institute Company, Limited Self-aligning wireless power transfer system that switches power current into aligning electromagnets
US11916398B2 (en) 2021-12-29 2024-02-27 Energous Corporation Small form-factor devices with integrated and modular harvesting receivers, and shelving-mounted wireless-power transmitters for use therewith

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5027255A (en) * 1988-10-22 1991-06-25 Westinghouse Electric Co. High performance, high current miniaturized low voltage power supply
US5498948A (en) * 1994-10-14 1996-03-12 Delco Electornics Self-aligning inductive charger
US5617003A (en) * 1995-03-24 1997-04-01 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Method and apparatus for charging a battery of an electric vehicle
US5646500A (en) * 1995-01-27 1997-07-08 Delco Electronics Corp. Inductively coupled charger having a light-activated mechanical positioning system
US20090079386A1 (en) * 2004-10-06 2009-03-26 Zi Medical Plc Electrical recharger unit

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US461057A (en) 1891-10-13 shover
US516188A (en) 1894-03-13 Mark w
US479493A (en) 1892-07-26 Mark w
US458859A (en) 1891-09-01 Elegteic eailwats
US452099A (en) 1891-05-12 dewey
US473253A (en) 1892-04-19 dewey
US874411A (en) 1904-03-31 1907-12-24 Westinghouse Electric & Mfg Co System of electrical transmission and propulsion.
US3018356A (en) 1960-08-24 1962-01-23 Gen Electric Temperature control systems
FR1462329A (en) 1965-10-15 1966-04-15 Materiel Telephonique Electric control device
US3796850A (en) 1973-05-31 1974-03-12 Westinghouse Electric Corp Pan detector for induction heating cooking unit
JPS5441143B2 (en) 1974-02-04 1979-12-06
US3938018A (en) * 1974-09-16 1976-02-10 Dahl Ernest A Induction charging system
US4013859A (en) 1975-06-04 1977-03-22 Environment/One Corporation Induction cooking unit having cooking load sensing device and essentially zero stand-by power loss
US4031449A (en) 1975-11-20 1977-06-21 Arthur D. Little, Inc. Electromagnetically coupled battery charger
US4169222A (en) 1977-07-26 1979-09-25 Rangaire Corporation Induction cook-top system and control
US4334135A (en) 1980-12-22 1982-06-08 General Electric Company Utensil location sensor for induction surface units
DE3204598A1 (en) 1982-02-10 1983-08-18 Bosch Siemens Hausgeraete CIRCUIT ARRANGEMENT FOR HEATING ELEMENTS IN COOKER BASINS
US4647831A (en) 1986-04-04 1987-03-03 John Zink Company Rechargeable battery operated appliance system
DE3900802A1 (en) * 1989-01-13 1990-07-19 Lohse Christian Schalttech TEMPERATURE-STABLE VIBRATION Oscillator
IT1243760B (en) 1989-11-17 1994-06-23 Eurodomestici Ind Riunite DEVICE SUITABLE TO DETECT THE PRESENCE IN A COOKING CONTAINER FOR FOOD PLACED ON A COOKING HOB, FOR EXAMPLE IN CERAMIC GLASS.
DE4004129A1 (en) 1990-02-10 1991-08-14 Ego Elektro Blanc & Fischer DEVICE FOR RECOGNIZING A COOKING VESSEL SET UP IN A HEATING ZONE OF A COOKING OR HEATING APPLIANCE
FR2685992B1 (en) 1992-01-08 1994-04-08 Seb Sa ELECTRIC COOKING PLATE WITH TEMPERATURE SENSOR.
US5311973A (en) 1992-07-31 1994-05-17 Ling-Yuan Tseng Inductive charging of a moving electric vehicle's battery
FR2695266B1 (en) 1992-09-02 1994-09-30 Cableco Sa Assembly for recharging the accumulator batteries of an electric motor vehicle.
DE4236286A1 (en) 1992-10-28 1994-05-05 Daimler Benz Ag Method and arrangement for automatic contactless charging
US5519262A (en) 1992-11-17 1996-05-21 Wood; Mark B. Near field power coupling system
JP3409145B2 (en) 1993-07-26 2003-05-26 任天堂株式会社 Small electrical equipment
US5455466A (en) * 1993-07-29 1995-10-03 Dell Usa, L.P. Inductive coupling system for power and data transfer
US5600222A (en) 1993-10-25 1997-02-04 Delco Electronics Corporation Thermal management using a hybrid spiral/helical winding geometry
NO944266L (en) 1993-11-15 1995-05-16 Hughes Aircraft Co Inductive charging system
US5606237A (en) 1994-04-29 1997-02-25 Delco Electronics Corp. Inductive coupler characteristic shape
US5536979A (en) * 1994-06-30 1996-07-16 Mceachern; Alexander Charger for hand-held rechargeable electric apparatus with switch for reduced magnetic field
FR2728132A1 (en) 1994-12-09 1996-06-14 Bonnet Sa DEVICE FOR HEATING BY INDUCTION OF CONTAINER AND METHOD FOR CONTROLLING SUCH A DEVICE
US5594318A (en) 1995-04-10 1997-01-14 Norvik Traction Inc. Traction battery charging with inductive coupling
US5703461A (en) 1995-06-28 1997-12-30 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Inductive coupler for electric vehicle charger
JP3228097B2 (en) * 1995-10-19 2001-11-12 株式会社日立製作所 Charging system and electric vehicle
US6608464B1 (en) 1995-12-11 2003-08-19 The Johns Hopkins University Integrated power source layered with thin film rechargeable batteries, charger, and charge-control
DE69711963T2 (en) 1996-01-30 2002-11-28 Sumitomo Wiring Systems Connection system and method for an electrically powered vehicle
DE69714879T2 (en) 1996-01-30 2003-05-08 Sumitomo Wiring Systems Connection system with associated procedure
DE69735586D1 (en) 1996-05-03 2006-05-18 Auckland Uniservices Ltd INDUCTIVE POWERED BATTERY CHARGER
JP3456093B2 (en) 1996-06-25 2003-10-14 松下電工株式会社 Non-contact power transmission device
JPH1023677A (en) 1996-07-03 1998-01-23 Uniden Corp Non-contact charging device, charger, cordless device and non-contact charger
US5703462A (en) 1996-07-15 1997-12-30 Delco Electronics Corp. Inductive coupler assembly having its primary winding formed in a printed wiring board
US5821728A (en) * 1996-07-22 1998-10-13 Schwind; John P. Armature induction charging of moving electric vehicle batteries
EP0823716A3 (en) 1996-08-07 1998-04-08 SUMITOMO WIRING SYSTEMS, Ltd. Magnetic coupling device for charging an electric vehicle
WO1998023020A1 (en) * 1996-11-20 1998-05-28 Philips Electronics N.V. An induction charging apparatus and an electronic device
US5959433A (en) 1997-08-22 1999-09-28 Centurion Intl., Inc. Universal inductive battery charger system
DE19836401A1 (en) 1997-09-19 2000-02-17 Salcomp Oy Salo Device for charging accumulators
JPH11103531A (en) 1997-09-29 1999-04-13 Nec Mori Energy Kk Noncontact charger
DE29816725U1 (en) 1998-09-17 1999-01-14 Chao, Wen-Chung, Yungho, Taipeh Charging device for mobile phones
US6184501B1 (en) 1999-09-23 2001-02-06 Cherry Gmbh Object detection system
IT1313966B1 (en) 1999-12-24 2002-09-26 Whirlpool Co POTS AND SIMILAR PRESENCE DETECTOR ON COOKING APPLIANCES
IT1319292B1 (en) 2000-11-08 2003-10-10 Whirlpool Co DEVICE TO DETECT THE PLACEMENT OF COOKING TOOLS ON A COOKING HOB WITH DISCRETE AND DISTRIBUTED HEATING ELEMENTS.
JP3851504B2 (en) 2000-11-16 2006-11-29 矢崎総業株式会社 Automotive sliding door feeder
JP3706022B2 (en) 2000-12-27 2005-10-12 東光株式会社 Contactless charger
KR100566220B1 (en) 2001-01-05 2006-03-29 삼성전자주식회사 Contactless battery charger
US6586909B1 (en) 2001-12-21 2003-07-01 Ron Trepka Parallel battery charging device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5027255A (en) * 1988-10-22 1991-06-25 Westinghouse Electric Co. High performance, high current miniaturized low voltage power supply
US5498948A (en) * 1994-10-14 1996-03-12 Delco Electornics Self-aligning inductive charger
US5646500A (en) * 1995-01-27 1997-07-08 Delco Electronics Corp. Inductively coupled charger having a light-activated mechanical positioning system
US5617003A (en) * 1995-03-24 1997-04-01 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Method and apparatus for charging a battery of an electric vehicle
US20090079386A1 (en) * 2004-10-06 2009-03-26 Zi Medical Plc Electrical recharger unit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020057088A1 (en) * 1998-10-05 2002-05-16 Alessandro Carrozzi Machine for diagnostic and/or therapeutic treatment, particularly a nuclear magnetic resonance imaging machine
US20210234428A1 (en) * 2020-01-29 2021-07-29 Hougen Manufacturing, Inc. Electric motor power cord for portable electrical assembly
US20230036419A1 (en) * 2021-07-28 2023-02-02 Dell Products L.P. Information handling system with an integrated wireless charger
US11902732B2 (en) * 2021-07-28 2024-02-13 Dell Products L.P. Information handling system with an integrated wireless charger

Also Published As

Publication number Publication date
US20120146426A1 (en) 2012-06-14
US9425638B2 (en) 2016-08-23

Similar Documents

Publication Publication Date Title
US20120200170A1 (en) Alignment independent and self-aligning inductive power transfer system using mobile, flexible inductors
US6803744B1 (en) Alignment independent and self aligning inductive power transfer system
JP5682885B2 (en) System for transmitting power, primary unit for transmitting power, method for transmitting power, primary unit having power transmission area, and primary unit for use in power transmission system
CN1813396B (en) Resonant converter and its method and inductive coupling electric energy transmission system
US7863861B2 (en) Contact-less power transfer
AU2008255158B2 (en) Improvements relating to contact-less power transfer
EP1634355B1 (en) Methods and apparatus for control of inductively coupled power transfer systems
WO2004038888A3 (en) Unit and system for contactless power transfer
GB2476375A (en) Hand Tool Charging Device
GB2399229A (en) Inductive power transfer system having areas with horizontal field
US20180183265A1 (en) Support tray with device charging
WO2007015206A2 (en) Automatic battery recharging robot as an alternative to power cables
CN208820513U (en) A kind of vehicle carried wireless charging equipment for mobile phone
KR100279795B1 (en) Portable Mobile Device Charging Device
WO2014175851A1 (en) Self-organizing inductors

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION