US20120198406A1 - Universal inter-layer interconnect for multi-layer semiconductor stacks - Google Patents

Universal inter-layer interconnect for multi-layer semiconductor stacks Download PDF

Info

Publication number
US20120198406A1
US20120198406A1 US13/422,566 US201213422566A US2012198406A1 US 20120198406 A1 US20120198406 A1 US 20120198406A1 US 201213422566 A US201213422566 A US 201213422566A US 2012198406 A1 US2012198406 A1 US 2012198406A1
Authority
US
United States
Prior art keywords
layer
circuit
inter
bus
stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/422,566
Inventor
Gerald K. Bartley
Russell Dean Hoover
Charles Luther Johnson
Steven Paul Vanderwiel
Patrick Ronald Varekamp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GlobalFoundries Inc
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Priority to US13/422,566 priority Critical patent/US20120198406A1/en
Publication of US20120198406A1 publication Critical patent/US20120198406A1/en
Priority to US13/618,600 priority patent/US9495498B2/en
Assigned to GLOBALFOUNDRIES U.S. 2 LLC reassignment GLOBALFOUNDRIES U.S. 2 LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INTERNATIONAL BUSINESS MACHINES CORPORATION
Assigned to GLOBALFOUNDRIES INC. reassignment GLOBALFOUNDRIES INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GLOBALFOUNDRIES U.S. 2 LLC, GLOBALFOUNDRIES U.S. INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05005Structure
    • H01L2224/05009Bonding area integrally formed with a via connection of the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05568Disposition the whole external layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06541Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01087Francium [Fr]

Definitions

  • the invention is generally related to interconnecting multiple semiconductor dies in a stack and the design of circuit logic therefor.
  • Some conventional stacking technologies are capable of separating circuit layers on adjacent dies in a stack by less than 100 um, which is an order of magnitude or more less than the maximum horizontal dimension of many dies (e.g., a 100 mm2 die has a length and width of 10,000 um).
  • the invention addresses these and other problems associated with the prior art by providing a circuit arrangement and method that utilize a universal, standardized inter-layer interconnect in a multi-layer semiconductor stack to facilitate interconnection and communication between functional units disposed on a stack of semiconductor dies.
  • Each circuit layer in the multi-layer semiconductor stack is required to an inter-layer interface region that is disposed at substantially the same topographic location such that when the semiconductor dies upon which such circuit layers are disposed are arranged together in a stack, electrical conductors disposed within each semiconductor die are aligned with one another to provide an inter-layer bus that is oriented vertically, or transversely, with respect to the individual circuit layers.
  • each circuit layer may be designed using a standardized template upon which the design features necessary to implement the inter-layer bus are already provided, thereby simplifying circuit layer design and the interconnection of functional units to the inter-layer bus.
  • a plurality of semiconductor dies are physically and electrically coupled to one another in a stack, where each semiconductor die includes opposing faces, where at least one face of each semiconductor die includes circuit logic integrated thereon and defining a circuit layer that includes at least one functional unit, where at least one face of each semiconductor die includes an inter-layer interface region disposed thereon, and where each inter-layer interface region on each semiconductor die is disposed at substantially the same topographic location when the respective semiconductor die is disposed within the stack.
  • An inter-layer bus electrically couples the functional units on the plurality of semiconductor dies to one another, where the inter-layer bus comprises a plurality of electrical conductors disposed within the inter-layer interface region of each semiconductor die and extending between the opposing faces of each semiconductor die, and where respective electrical conductors disposed in the inter-layer interface regions of adjacent semiconductor dies in the stack are electrically coupled to one another when the plurality of circuit layers are physically and electrically coupled to one another in the stack.
  • a multi-layer circuit arrangement is designed by allocating each of a plurality of functional units in the circuit arrangement to one of a plurality of circuit layers based upon a functional characteristic thereof.
  • each functional unit is laid out on the respective circuit layer to which such functional unit is allocated, where each circuit layer defines circuit logic configured to be integrated onto a semiconductor die, and where each circuit layer includes an inter-layer interface region disposed at a predefined topographic location thereon such that the inter-layer interface regions on the plurality of circuit layers are disposed at substantially the same topographic location when the respective semiconductor dies are physically and electrically coupled to one another in a stack, and where each inter-layer interface region includes a plurality of signal paths that are configured to define an inter-layer bus that electrically interconnects the plurality of circuit layers to one another when the respective semiconductor dies are physically and electrically coupled to one another in the stack.
  • each functional unit is interconnected to at least a subset of the plurality of signal paths in the inter
  • a circuit arrangement may include a semiconductor stack including a plurality of circuit layers upon which is defined circuit logic, the semiconductor stack comprising a plurality of semiconductor dies physically and electrically coupled to one another, with each semiconductor die including opposing faces, and where at least one face of each semiconductor die includes circuit logic integrated thereon that includes at least one functional unit and that defines a circuit layer from among the plurality of circuit layers.
  • the circuit arrangement may also include a plurality of independently operating vertically-oriented supernodes defined by the circuit logic and disposed on multiple circuit layers of the semiconductor stack, with each vertically-oriented supernode including a plurality of functional units distributed vertically among at least a subset of the plurality of circuit layers, a plurality of inter-layer buses, each dedicated to one of the vertically-oriented supernodes and electrically coupling together the functional units thereof, and each comprising a plurality of electrical conductors disposed within a corresponding inter-layer interface region disposed on each semiconductor die and extending between the opposing faces of each semiconductor die, where respective electrical conductors disposed in the inter-layer interface regions of adjacent semiconductor dies in the stack are electrically coupled to one another when the plurality of circuit layers are physically and electrically coupled to one another in the stack, and where for each vertically-oriented supernode, the inter-layer interface regions therefor are disposed at substantially the same topographic location when their respective semiconductor dies are disposed within the stack, and an inter-layer bus
  • FIG. 1 is a block diagram of a multi-layer semiconductor stack incorporating an inter-layer bus consistent with the invention.
  • FIG. 2 is a block diagram of an exemplary circuit layer from the multi-layer semiconductor stack of FIG. 1 .
  • FIG. 3 is a block diagram illustrating an exemplary contact pad array for a semiconductor die in the multi-layer semiconductor stack of FIG. 1 .
  • FIG. 4 is a functional cross-sectional view of the multi-layer semiconductor stack of FIG. 1 .
  • FIG. 5 is a flowchart illustrating a process for redesigning a single circuit layer design for implementation in a multi-layer semiconductor stack in a manner consistent with the invention.
  • FIG. 6 is a block diagram illustrating an exemplary single circuit layer design capable of being redesigned by the process of FIG. 5 .
  • FIG. 7 is a block diagram of the single circuit layer design of FIG. 6 , illustrating the mapping of functional units in the single circuit layer design to multiple circuit layers.
  • FIG. 8 is a functional exploded perspective view of a multi-layer semiconductor stack implementation of the single circuit layer design of FIG. 6 .
  • FIG. 9 is a block diagram of a compute circuit layer from the multi-layer semiconductor stack of FIG. 8 .
  • FIG. 10 is a block diagram of an accelerator circuit layer from the multi-layer semiconductor stack of FIG. 8 .
  • FIG. 11 is a block diagram of an I/O circuit layer from the multi-layer semiconductor stack of FIG. 8 .
  • FIG. 12 is a block diagram of another multi-layer semiconductor stack implementation, illustrating the use of multiple bus segments for an inter-layer bus consistent with the invention.
  • FIG. 13 is a block diagram of yet another multi-layer semiconductor stack implementation, illustrating the use of differently-sized semiconductor dies.
  • FIG. 14 is a block diagram of still another multi-layer semiconductor stack implementation, illustrating the use of semiconductor dies incorporating different semiconductor fabrication design rules.
  • FIG. 15 is a block diagram of a computer system suitable for designing a multi-layer semiconductor stack implementation in a manner consistent with the invention.
  • Embodiments consistent with the invention utilize a universal, standardized inter-layer bus to facilitate communication between functional units disposed in different circuit layers of a multi-layer semiconductor stack.
  • an individual circuit layer may be considered to include a two dimensional layout of logic circuitry disposed on a semiconductor substrate.
  • a single circuit layer may include multiple physical layers (e.g., metal layers, dielectric layers, etc.) as a result of fabrication processes, but that these multiple layers collectively define a logic circuit that is essentially laid out across a two dimensional footprint.
  • a multi-layer semiconductor stack therefore includes multiple circuit layers interconnected with one another in an overlapping relationship to effectively define a three dimensional circuit design, adding a vertical or transverse dimension to planar dimensions of the individual circuit layers, and utilizing an inter-layer bus to communicate along the vertical direction between functional units defined within the individual circuit layers.
  • FIG. 1 illustrates a multi-layer semiconductor stack 10 incorporating a plurality of semiconductor dies or chips 12 , each including one or more functional units 14 .
  • the functional units 14 on the plurality of chips 12 communicate with one another over a vertically or transversely oriented inter-layer bus 16 , and are physically and electrically coupled to one another in a stacked arrangement.
  • each semiconductor die 12 includes an inter-layer interface region 18 disposed at a predetermined topographic location of the die, which includes a plurality of electrical conductors (not shown in FIG.
  • the respective inter-layer interface regions 18 and thus the electrical conductors therein, are topographically aligned with one another (within the context of the invention, and assuming an x-y-z coordinate system where x and y refer to dimensions within the plane of a circuit and z refers a dimension perpendicular to the plane of the circuit, two features are topographically aligned when those features have substantially the same x, y coordinates when the dies upon which those features are formed are arranged together in a stack.)
  • the interconnection of the electrical conductors within the individual dies to one another to form the inter-layer bus is an automatic occurrence resulting from the physical and electrical interconnection of the dies to one another into the stack.
  • an inter-layer interface region may take a number of forms depending upon factors such as the number of bus segments required, the number of interconnects required to implement the bus, the number and arrangement of functional units, and the size of the respective dies. For example, if a stack includes dies of varying sizes, the inter-layer interface regions on different dies may be differently-sized, but may nonetheless include corresponding and topographically aligned electrical conductors to implement the bus. Also, an interface region may be a single contiguous region or may be broken into multiple non-contiguous regions. Furthermore, as discussed below in connection with FIG.
  • some circuit layers in a stack may include intra-layer bus interconnections, e.g., to interconnect multiple bus segments of an inter-layer bus, such that the inter-layer interface region of one circuit layer may be a superset or subset of the inter-layer interface region of another layer.
  • a functional unit in the context of the invention, generally refers to functionally-related logic circuitry that has been partitioned for functional purposes into a distinct unit. While in the illustrated embodiments, functional units are typically highly complex circuits such as processor cores, memory controllers, or accelerator units, it will be appreciated that in other embodiments, the complexity and functionality of a functional unit may be more or less complex, and that an inter-layer bus consistent with the invention may be used to enable communication of data between practically any type of logic circuitry that may be integrated into a circuit design.
  • FIG. 3 while not mandatory, it is typically desirable to lay out the electrical conductors in an inter-layer bus in a regular pattern that is repeatable among all circuit layers of a multi-layer semiconductor stack.
  • FIG. 3 illustrates a rectangular array of contact pads 22 disposed over the surface of a semiconductor die 12 .
  • the gray pads 24 disposed within inter-layer interface region 18 , are coupled to electrical conductors for the inter-layer bus, while the black pads 26 are power distribution pads coupled to either positive voltage (VDD) or ground.
  • the white pads 22 are dummy pads, and are electrically isolated from any active circuitry. The dummy pads, however, serve as additional mechanical connections to which adjacent semiconductor dies can be secured.
  • the pitch of the inter-layer bus pads 24 is three times that of the power distribution pads 26 , whereby within any 3 ⁇ 3 grid of pads in the inter-layer interface region 18 there will be nine inter-layer bus pads 24 , but within any 3 ⁇ 3 grid of pads in the functional region 20 there will be one power distribution pad 26 and eight dummy pads 28 .
  • the pitch of the inter-layer bus pads in 50 um while that of the power distribution pads is 150 um, which is compatible, for example, with conventional micro C4 bonding techniques.
  • a semiconductor die having contact pads distributed over a 210 mm2 (18.6 mm ⁇ 11.3 mm) area an array of 84,072 (226 ⁇ 372) contact pads may be provided.
  • An inter-layer interface region configured in the manner illustrated in FIG. 3 and having a size of about 18.6 mm ⁇ 0.55 mm (or a width equivalent to 11 rows of contact pads) would occupy less than 5% of the available space on the die, and would provide 4092 separate signal paths.
  • power distribution pads may also be disposed within inter-layer interface region in some embodiments, and that in other embodiments, some positive voltage and ground electrical conductors may be considered part of the inter-layer bus architecture, and therefore be present within the inter-layer interface region for that reason. It will further be appreciated that the distribution of positive voltage and ground contact pads may vary in different embodiments, e.g., with more or less positive voltage contact pads than ground pads, or with the power distribution pads distributed throughout the functional region in an irregular distribution pattern.
  • the semiconductor dies 12 in multi-layer semiconductor stack 10 are physically and electrically coupled to one another in a stack arrangement.
  • Each die 12 includes a substrate 40 (e.g., a silicon substrate), and each die includes opposing surfaces or faces 42 , 44 , and at least one of which includes circuit logic 46 integrated thereon and defining a circuit layer for the multi-layer stack.
  • substrate 40 e.g., a silicon substrate
  • circuit logic 46 integrated thereon and defining a circuit layer for the multi-layer stack.
  • the various manners in which integrated circuit logic may be fabricated on a surface of substrate 40 are well known to those of ordinary skill having the benefit of the instant disclosure, and therefore will not be discussed in greater detail herein.
  • each semiconductor die is fabricated on a silicon wafer of conventional thickness (e.g., about 700 um thick). The side of the wafer opposite that upon which the circuit logic is then ground and polished, e.g., to about 50 to about 70 um in thickness.
  • a regular array of holes e.g., at the same pitch as the regular array of contact pads, in this implementation 50 um
  • a conductive material is deposited on the walls of the holes.
  • TSV's 48 through silicon vias
  • Topographically aligned regular arrays of contact pads 22 are then formed on the opposing surfaces 42 , 44 of each die 12 , with the topographically aligned contact pads 22 on the opposing surfaces 42 , 44 electrically coupled to one another by a respective via 48 extending between such pads 22 .
  • TSV's may extend completely through each die 12 , or some or all of the TSV's may be discontinuous through the thickness of each die.
  • the data signals may enter the bottom of a single circuit layer via a contact pad 22 , connect to a circuit in the circuit layer, and have the output of that circuit routed to the same topographic location and coupled to a TSV extending through the substrate of the die to the opposing contact pad 22 .
  • the area in the functional region of the active circuit layer that would otherwise be occupied by vias is available for functional circuitry.
  • the dies 12 may be separated from the wafer and physically and electrically coupled to one another in a stacked arrangement using any of a number of different types of chip bonding techniques, e.g., compression soldering or micro C4 (Controlled Collapse Chip Connection), resulting in the formation of a regular array of physical/electrical interconnects 50 joining contact pads 22 on adjacent surfaces 42 , 44 of adjacent semiconductor chips 12 . Additional manufacturing steps, e.g., mounting the stack 10 to a carrier or package, applying thermal grease, attaching a heat sink, encapsulating the stack, etc. may also be performed to complete the assembly.
  • chip bonding techniques e.g., compression soldering or micro C4 (Controlled Collapse Chip Connection)
  • each semiconductor die 12 is illustrated as including contact pads on both surfaces, with a single circuit layer deposed on one of the surfaces, and with all dies oriented such that the active layer of each die faces downward, it will be appreciated that alternative arrangements may be used in other embodiments.
  • different die interconnection technologies can be used for different dies within the same stack, and dies disposed at the top or bottom of a stack may be configured differently from other dies in the stack.
  • an end (or top) die in a stack may not include vias, and may simply include contact pads coupled directly to the active circuitry on the single face of the die.
  • the end dies it is desirable, however, for the end dies to include vias and contact pads on the opposite face from the active circuitry, as the conductive material in the vias may operate in much the same manner as a heat pipe, given that the conductive vias and contact pads are topographically aligned through the entire thickness of the stack.
  • active circuitry may be integrated onto both surfaces of a semiconductor die, or a dual sided semiconductor die may be formed by wafer bonding two semiconductor substrates together either face to face or back to back.
  • alternate dies in a stack may be flipped to orient the active circuitry on particular semiconductor dies either closer or farther away from the active circuitry on adjacent semiconductor dies.
  • FIG. 5 next illustrates an exemplary design process 80 that may be utilized to design a circuit arrangement for a multi-layer semiconductor stack in a manner consistent with the invention.
  • an existing single circuit layer design also referred to herein as a two dimensional design
  • design methodologies may be employed, and that the design of three dimensional or multi-layer semiconductor stack designs need not be based upon preexisting two dimensional designs. The invention is therefore not limited to the particular design methodology utilized herein.
  • Process 80 begins in block 82 by starting with an existing two dimensional design and general floorplan.
  • the circuit logic in a design typically is organized into multiple functional units, where each functional unit includes circuit logic that is functionally related toward performing a common computational task. Additional support circuitry that may not have any particular high level task, but that is otherwise required for the operation of the design, may also be considered to be organized into a functional unit for the purposes of process 80 , and it may be desirable to group together circuit logic that is otherwise unrelated but capable of being laid out in the same general region as a functional unit to facilitate the redesign process.
  • circuitry that is otherwise not dedicated to a particular processing core or accelerator unit to one or more I/O functional units that handle ancillary tasks such as external drivers and interfaces, networking, testing, debugging, clock and/or power distribution, memory control, etc.
  • the functional units in the single circuit layer, two dimensional design are repartitioned into N circuit layers. While various alternative methodologies may be used, it is typically desirable to group together functionally-related functional units on the same circuit layer. Moreover, in situations where multiple instances of a given functional unit are present in a design, it may be desirable to locate all of those instances on the same circuit layers. For example, in design incorporating multiple processing cores, it may be desirable to allocate those processing cores to the same layers.
  • the inter-layer interconnect or bus is defined, both from a physical and logical standpoint. Specifically, the dimensions and location of the inter-layer interface region on each circuit layer, as well as the specific locations of the vias and electrical conductors for the bus within that region, are determined. Similarly, in block 88 , the layer-layer power distribution network (Vdd/Gnd) is determined, thereby designating the locations of the positive voltage and ground vias.
  • Vdd/Gnd layer-layer power distribution network
  • a physical layer-layer template is created, using the inter-layer bus electrical conductor locations and power distribution network locations to block out the appropriate regions for the vias and provide contact points to which logic circuitry on each circuit layer can be electrically coupled.
  • the template may be provided with standardized bus interface logic to facilitate interconnection of functional unit circuitry to the inter-layer bus.
  • the created template may then be used as a background for each circuit layer in the multi-layer design, by placing the functional units allocated to those layers in the respective layer designs and coupling those functional units to the inter-layer bus and power distribution network defined by the background template.
  • the N layers may be stacked for the purposes of testing and simulation, and the design is then suitable for fabrication and manufacture.
  • the placement of functional units in the circuit layer designs, as well as the interconnection of functional units to the signal paths of the inter-layer bus are performed by software-based circuit design tools responsive to user input from a circuit designer.
  • the design process results in the generation of one or more design files, from which a design may be tested, simulated, debugged and ultimately used during a fabrication process to manufacture multi-layer semiconductor stacks consistent with the invention.
  • FIGS. 6-11 further illustrate by way of example the process illustrated in FIG. 5 .
  • FIG. 6 in particular, illustrates an exemplary two dimensional design 100 for a multi-core networking device.
  • Design 100 includes a system bus 102 to which a plurality of functional units are coupled to one another, as well as to other support and interface logic in the design.
  • System bus 102 may be implemented, for example, using the PowerBus or PBus bus architecture used in connection with the Power processor architecture available from International Business Machines Corporation, among others.
  • Design 100 includes a plurality (e.g., 16) of nodes 104 , with each node 104 including a plurality (e.g., four) of processing cores 106 coupled to a shared L2 cache 108 .
  • Each processing core 106 may be implemented as a Power architecture compatible core.
  • Design 100 also includes memory controller logic 110 including a plurality (e.g., four) of memory controller blocks 112 , each having a cooperative physical memory interface block 114 for coupling to off-chip memory.
  • Design 100 also includes a set of accelerator blocks providing specialized logic for accelerating various functions required in the design, e.g., pattern matching (blocks 116 ), XML processing (blocks 118 ), cryptography (blocks 120 ) and compression/decompression (blocks 122 ).
  • the accelerator blocks 116 - 122 are grouped into four groups, with each group interfaced with system bus 102 with an associated bus interface logic (PBIC) block 124 .
  • PBIC bus interface logic
  • Three chip/chip interface blocks 126 provide chip-to-chip communication, and are coupled to the system bus 102 by an associated PBIC block 128 , while another PBIC block 130 couples a number of additional networking and interface logic blocks to system bus 102 .
  • a PCI Express block 132 couples to an on-chip PCI bus 134
  • a packet processor unit 136 and host Ethernet controller block 138 are coupled to an on-chip bus 140 .
  • a packet switch interface block 142 and 40 Gigabit Ethernet Media Access Control block 144 are coupled between buses 134 and 140
  • multiple physical interface blocks 146 are coupled to bus 134 to communicate with external (off-chip) devices.
  • a 10 Gigabit Ethernet Media Access Control block 148 is also coupled to bus 134 and interfaced off-chip by a physical interface block 150 .
  • a low pin count (LPC) block 152 is also interfaced with system bus 102 via PBIC 130 , and is coupled to an LPC IO block 154 .
  • Additional circuit logic e.g., a programmable interrupt controller (PIC) block 156 and pervasive logic 158 , among additional support logic that is not otherwise illustrated in FIG. 6 , may also be included in circuit design 100 .
  • Pervasive logic 158 may include, for example, JTAG, performance monitor, clock controller, POR and error control logic.
  • FIG. 7 illustrates the partitioning of functional units in circuit design 100 into four circuit layers.
  • a first layer designated I/O Layer 1
  • the sixteen processing nodes 104 (incorporating a total of 64 processing cores) are allocated to two compute layers, designated as Compute Layers 2 and 3, and the accelerator blocks 116 - 122 are allocated to a separate accelerator layer, designated Accelerator Layer 4, resulting in a total of four separate circuit layers.
  • FIG. 8 illustrates an exemplary multi-layer circuit design 160 including four layers 162 , 164 , 166 and 168 , respectively corresponding to I/O Layer 1, Compute Layer 2, Compute Layer 3 and Accelerator Layer 4.
  • the inter-layer bus 170 is defined with four segments.
  • a PowerBus architecture compatible bus is used, which includes separate command and data buses (illustrated at 172 and 174 ) and pervasive interconnects (illustrated at 176 ).
  • a PowerBus data bus may include 2560 signal paths providing an 8 ⁇ 32B wide data bus and 210 signal paths providing a command bus (including 46 address bits, 17 Ttag bits, 6 Ttype bits, 7 Tsize bits, 10 snoop bits, 40 combined response bits).
  • An additional 40 to 80 signal paths may be used to provide pervasive signal paths, e.g., LBIST channels, an ABIST interface, trace and performance monitor signal paths, power on reset signal paths, error status signal paths, interrupt signal paths, clock control paths, local clock buffer (LCB) signal paths, etc.
  • pervasive signal paths e.g., LBIST channels, an ABIST interface, trace and performance monitor signal paths, power on reset signal paths, error status signal paths, interrupt signal paths, clock control paths, local clock buffer (LCB) signal paths, etc.
  • the partitioning of functional units to layers in the multi-layer design is used to implement a plurality of vertically-oriented “supernodes” or slices that are independently operating from one another, though distributed across the same layers of the design.
  • four supernodes are defined, each including four compute nodes, two of which in each compute layer 164 , 166 , and a dedicated set of accelerator blocks in accelerator layer 168 .
  • the respective bus segments in inter-layer bus 170 are dedicated to each supernode, and as a result, four separate inter-layer interface regions 178 are defined on each of layers 164 , 166 and 168 .
  • the supernodes share I/O resources on layer 162 , as well as communicate with one another via an intra-layer bus interconnected the bus segments, and as a result, the inter-layer interface region 180 of layer 162 may be shared and additionally include logic to logically join the respective bus segments to one another.
  • the regions outside of the respective inter-layer interface regions 178 , 180 of layers 162 - 168 are functional regions 182 , within which functional units, generically represented at 184 , may be placed.
  • FIG. 9 illustrates one suitable layout for compute layer 164 is illustrated, which may also be suitable for compute layer 166 as well. In FIG. 9 , as well as in FIGS.
  • the blocks or functional units numbered 2xx typically correspond to the blocks or functional units numbered 1xx in the two dimensional circuit design of FIG. 6 , and that in many instances, the blocks or functional units from the two dimensional design may simply be reused in the three dimensional multi-layer semiconductor stack design.
  • each supernode includes two compute nodes 204 , each with four processing cores 206 and a shared L2 cache 208 , and coupled to inter-layer bus logic 200 for the associated bus segment for the supernode. It will be appreciated that with two compute layers configured in the manner illustrated in FIG. 9 , each supernode will have a total of four compute nodes 204 allocated thereto.
  • FIG. 10 illustrates one suitable implementation of accelerator layer 168 , including connections to inter-layer bus segments 200 , and with each supernode being allocated respective accelerator blocks, including a pattern matching block 216 , XML processing block 218 , cryptography block 220 and compression/decompression block 222 .
  • Each supernode also includes associated bus interface logic (PBIC) blocks 224 to interface the respective accelerator blocks with the inter-layer bus.
  • PBIC bus interface logic
  • FIG. 11 illustrates one suitable implementation of I/O layer 162 , including a portion of inter-layer bus 200 that additionally includes one or more intra-layer buses to interconnect the four inter-layer bus segments and thereby allow each supernode to access the functional units on I/O layer 162 , as well as to communicate with one another.
  • an inter-layer bus consistent with the invention may be implemented in a number of manners.
  • an inter-layer bus will include both functional signal paths associated with the communication of data over the bus, as well as additional support or pervasive signal paths, including, for example, power distribution signal paths, clock distribution signal paths, testing/debugging signal paths, interrupt signal paths, reset signal paths, etc.
  • the functional signal paths may implement any number of bus implementations, including those implementing separate command, address and data signal paths, or those in which command, address and/or data is communicated over the same signal paths.
  • bus or network architectures e.g., point-to-point, switched, multi-drop, etc.
  • control logic may be utilized in the architecture to partition the inter-layer bus into multiple segments so that all functional units coupled to the bus are not required to share the same bandwidth.
  • bus is utilized herein, it will be appreciated that an inter-layer bus may include practically any networking architecture that enables multiple logical units in a circuit design to communicate with one another, and that an inter-layer bus architecture may include various buffers, controllers, switches, routers, etc. as may be required to implement the desired networking architecture.
  • circuit layers may be designated as source, termination and/or interior layers, with differing bus control logic implemented in each such layer to provide appropriate bus source and termination logic for a given bus architecture. It may be desirable, for example, to utilize one or more master bus controllers on I/O layer 162 to manage the communication of data over each bus segment.
  • pervasive signal paths into an inter-layer bus architecture provides an additional benefit in terms of distributing the pervasive logic of a circuit design throughout the multi-layer semiconductor stack, since the mere process of aligning the semiconductor dies into the stack and bonding them together not only forms the inter-layer bus, but also distributes the pervasive logic, including both clocking and test/debug logic, throughout the multiple circuit layers.
  • an inter-layer bus may include portions that are intra-layer, e.g., to interconnect multiple bus segments that are topographically offset from one another in the stack.
  • FIG. 12 illustrates an exemplary multi-layer semiconductor stack 300 in which an inter-layer bus 302 , including two inter-layer bus segments 302 A and 302 B, additionally includes an intra-layer bus segment 304 to enable functional units 306 A coupled to inter-layer bus segment 302 A to communicate with functional units 306 B coupled to the other inter-layer bus segment 302 B.
  • networking logic may be utilized between each segment 302 A, 302 B and 304 to localize the bandwidth of each inter-layer segment 302 A, 302 B, and intra-layer segment 304 is used only to relay communications from one inter-layer bus segment 302 A, 302 B that are addressed to a functional unit on the other inter-layer bus segment 302 A, 302 B.
  • an inter-layer bus may be global where all functional units share the same bandwidth, or multiple inter-layer buses, which are completely isolated from one another, may be implemented in a given multi-layer semiconductor stack.
  • a multi-layer semiconductor stack 310 consistent with the invention may include one or more semiconductor dies such as die 312 that are differently sized than other semiconductor dies 314 , 316 in the stack. So long as the contact pads for the inter-layer bus are topographically aligned when the dies are bonded into a stack, the physical dimensions of the individual dies may be independent from one another.
  • a multi-layer semiconductor stack 320 consistent with the invention may include one or more semiconductor dies such as die 322 that are designed and fabricated using different semiconductor fabrication design rules than other semiconductor dies 324 , 326 in the stack.
  • Die 322 in particular, is illustrated as being fabricated using a 45 nm process, while dies 324 , 326 are illustrated as being fabricated using a 32 nm process. So long as the contact pads for the inter-layer bus are topographically aligned when the dies are bonded into a stack, the feature sizes for the logic circuits on each individual dies may be independent from one another. In addition, this configuration allows for the possibility that certain legacy layers may be reused with newer, more advanced layers.
  • a new, higher performance version of a compute layer may be substituted for a legacy compute layer, with the accelerator and I/O layers from the prior generation reused in the new multi-layer semiconductor stack.
  • the methodology described herein wherein functional units having common functionality may be allocated to particular circuit layer, enables a substantial amount of flexibility in terms of design reuse.
  • the basic multi-layer design 160 described above in connection with FIGS. 8-11 which includes separate I/O, compute, and accelerator layers 162 , 164 / 166 , 168 , could be used to implement an entire family of products simply by mixing and matching semiconductor dies for different functional layers in different semiconductor stacks.
  • a common I/O layer 162 may be used as a starting point for all variations, including, for example:
  • accelerator layers including appropriate acceleration hardware may be used to optimize a device for particular applications, e.g. networking, graphics processing, cryptography, etc.
  • different alternative layers having different power consumption characteristics may be used in different variations to enable the same platform to be used for both high performance/high power and low performance/low power applications.
  • the techniques described herein may be used to provide different levels and/or sizes of cache memories for different variations so that, for example, applications requiring additional cache memory may utilize a larger cache memory implemented across several circuit layers, or multiple levels of cache.
  • independent circuit layers may also provide the ability to utilize different types of circuits on different layers, e.g., to include FPGA's on certain layers.
  • independent circuit layers may enable specialized circuitry requiring non-uniform characteristics to be isolated to a single layer, e.g., to account for off-chip drivers, varying voltages, passive or analog components, voltage regulation circuits.
  • specialized layers may be also be used solely for testing/debugging purposes or prototyping, which layers are then replaced by different operational layers once a particular design goes into production.
  • FIGS. 8-11 another advantageous aspect of the configuration illustrated in FIGS. 8-11 is that of vertically slicing each circuit layer and utilizing multiple instances of the same logic on each circuit layer such that the individual instances form vertically-oriented supernodes that are interfaced with one another in the I/O layer, but that are otherwise independently operating units.
  • the configuration of FIGS. 8-11 is effectively a collection of four independent processors, each including 16 processing cores, a dedicated L2 cache and a dedicated set of accelerators.
  • each compute layer 164 , 166 is illustrated with eight instances of a compute node 204 , with two such instances allocated to each vertically-oriented supernode, while accelerator layer 168 is illustrated with multiple instances of accelerator blocks, including a pattern matching blocks 216 , XML processing blocks 218 , cryptography blocks 220 and compression/decompression blocks 222 , with separate instances allocated to each supernode.
  • functionally-identical instances allocated to different supernodes may also be identical from the standpoint of the circuit logic used to implement such instances, while in other embodiments, concerns such as optimizing the physical layout of a circuit design may necessitate that functionally-identical instances be implemented using non-identical underlying circuit logic.
  • the supernode is more spatially compact than it would otherwise be if implemented on a single circuit layer, and less affected by signal propagation delays between the functional units within the supernodes.
  • each node 204 in compute layers 164 , 166 was implemented in a 7 mm ⁇ 7 mm (7000 um ⁇ 7000 um) area.
  • the lengths of the signal paths would be at least an order of magnitude longer, and thus require a slower data transmission rate to account for the additional propagation delay that would be present in those signal paths.
  • orienting those cache memories in a separate layer may orient those memories closer to the processing logic than would otherwise occur if laid out side-to-side.
  • circuit layer designs described herein may be implemented as generic gate netlists, or in other ways as may occur to those of skill in the art.
  • a netlist is a Boolean-algebra representation (gates, standard cells) of an circuit's logical-function, analogous to an assembly-code listing for a high-level program application.
  • Circuit layer designs also may be implemented, for example, in synthesizable form, described in a hardware description language such as Verilog or VHDL.
  • circuit layer designs also may be delivered in lower-level, physical descriptions. Analog elements such as SERDES, PLL, DAC, ADC, and so on, may be distributed in a transistor-layout format such as GDSII.
  • circuit layer designs are sometimes offered in layout format as well.
  • circuit layer designs, as well as other logic circuitry implemented consistent with the invention may be distributed in the form of computer data files, e.g., logic definition program code, that define at various levels of detail the functionality and/or layout of the circuit arrangements implementing such logic.
  • logic definition program code e.g., logic definition program code
  • the invention has and hereinafter will be described in the context of circuit arrangements implemented in fully functioning integrated circuit devices and stacked arrangements of such devices, data processing systems utilizing such devices, and other tangible, physical hardware circuits, those of ordinary skill in the art having the benefit of the instant disclosure will appreciate that the invention may also be implemented within a program product, and that the invention applies equally regardless of the particular type of computer readable or signal bearing media being used to distribute the program product.
  • Examples of computer readable or signal bearing media include, but are not limited to, physical, recordable type media such as volatile and non-volatile memory devices, floppy disks, hard disk drives, CD-ROMs, and DVDs (among others), and transmission type media such as digital and analog communication links.
  • FIG. 15 illustrates an apparatus 400 within which the various steps in a design process may be performed.
  • Apparatus 400 in the illustrated embodiment is implemented as a server or multi-user computer that is coupled via a network 402 to one or more client computers 404 .
  • each computer 400 , 404 may represent practically any type of computer, computer system or other programmable electronic device.
  • each computer 400 , 404 may be implemented using one or more networked computers, e.g., in a cluster or other distributed computing system.
  • computer 400 may be implemented within a single computer or other programmable electronic device, e.g., a desktop computer, a laptop computer, a handheld computer, a cell phone, a set top box, etc.
  • Computer 400 typically includes a central processing unit 406 including at least one microprocessor coupled to a memory 408 , which may represent the random access memory (RAM) devices comprising the main storage of computer 400 , as well as any supplemental levels of memory, e.g., cache memories, non-volatile or backup memories (e.g., programmable or flash memories), read-only memories, etc.
  • memory 408 may be considered to include memory storage physically located elsewhere in computer 400 , e.g., any cache memory in a processor in CPU 406 , as well as any storage capacity used as a virtual memory, e.g., as stored on a mass storage device 410 or on another computer coupled to computer 400 .
  • Computer 400 also typically receives a number of inputs and outputs for communicating information externally.
  • computer 400 For interface with a user or operator, computer 400 typically includes a user interface 142 incorporating one or more user input devices (e.g., a keyboard, a mouse, a trackball, a joystick, a touchpad, and/or a microphone, among others) and a display (e.g., a CRT monitor, an LCD display panel, and/or a speaker, among others). Otherwise, user input may be received via another computer or terminal.
  • user input devices e.g., a keyboard, a mouse, a trackball, a joystick, a touchpad, and/or a microphone, among others
  • a display e.g., a CRT monitor, an LCD display panel, and/or a speaker, among others.
  • user input may be received via another computer or terminal.
  • computer 400 may also include one or more mass storage devices 410 , e.g., a floppy or other removable disk drive, a hard disk drive, a direct access storage device (DASD), an optical drive (e.g., a CD drive, a DVD drive, etc.), and/or a tape drive, among others.
  • computer 400 may include an interface 414 with one or more networks 402 (e.g., a LAN, a WAN, a wireless network, and/or the Internet, among others) to permit the communication of information with other computers and electronic devices.
  • networks 402 e.g., a LAN, a WAN, a wireless network, and/or the Internet, among others
  • computer 400 typically includes suitable analog and/or digital interfaces between CPU 406 and each of components 408 , 410 , 412 and 414 as is well known in the art.
  • Other hardware environments are contemplated within the context of the invention.
  • Computer 400 operates under the control of an operating system 416 and executes or otherwise relies upon various computer software applications, components, programs, objects, modules, data structures, etc., as will be described in greater detail below.
  • the processes described herein may be performed with the assistance of various design and simulation tools 418 , which may receive as input, and generate as output, one or more circuit designs 420 .
  • layer templates 422 may be used to facilitate the design of circuit layers incorporating features suitable for implementing a universal or standardized inter-layer bus.
  • processors in another computer may also execute on one or more processors in another computer coupled to computer 400 via network 402 , e.g., in a distributed or client-server computing environment, whereby the processing required to implement the functions of a computer program may be allocated to multiple computers over a network.
  • routines executed to implement the embodiments of the invention will be referred to herein as “computer program code,” or simply “program code.”
  • Program code typically comprises one or more instructions that are resident at various times in various memory and storage devices in a computer, and that, when read and executed by one or more processors in a computer, cause that computer to perform the steps necessary to execute steps or elements embodying the various aspects of the invention.
  • an inter-layer bus may also be utilized to enable intra-functional unit communication.

Abstract

An apparatus, program product and method facilitate the design of a multi-layer circuit arrangement incorporating a universal, standardized inter-layer interconnect in a multi-layer semiconductor stack to facilitate interconnection and communication between functional units disposed on a stack of semiconductor dies. Each circuit layer in the multi-layer semiconductor stack is required to include an inter-layer interface region that is disposed at substantially the same topographic location such that when the semiconductor dies upon which such circuit layers are disposed are arranged together in a stack, electrical conductors disposed within each semiconductor die are aligned with one another to provide an inter-layer bus that is oriented vertically, or transversely, with respect to the individual circuit layers.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional of U.S. patent application Ser. No. 12/431,259 filed on Apr. 28, 2009 by Gerald K. Bartley et al., the entire disclosure of which is incorporated by reference herein.
  • FIELD OF THE INVENTION
  • The invention is generally related to interconnecting multiple semiconductor dies in a stack and the design of circuit logic therefor.
  • BACKGROUND OF THE INVENTION
  • As semiconductor technology continues to inch closer to practical limitations in terms of feature size, architects are increasingly focusing on alternative manners of meeting the demands for integrating increasingly complex circuitry onto semiconductor devices, or chips. In addition, as feature sizes decrease, and thus as faster and more complex circuits are integrated onto a given semiconductor chip, architects are finding that in many instances the communication of data between the various functional units on a semiconductor chip can become a bottleneck on overall performance. Communicating data between functional units disposed at opposite ends of a large semiconductor chip (e.g., a 300 or 500 mm2 die size) often requires several clock cycles, as well as significant buffering logic on the chip. Furthermore, in general as the size and amount of circuitry integrated into a chip design increases, the yield of the manufacturing process typically decreases, thereby increasing the cost of the manufactured chips.
  • One proposed solution to address these limitations has been to physically and electrically couple together multiple semiconductor chips or dies into a stack arrangement. By doing so, individual chips that are smaller, less complex, and less expensive can be used in lieu of a single larger, more complex and more expensive chip, and often with comparable or better overall performance. In many instances, for example, it has been found that the vertical distance between circuit logic disposed in different layers of a multi-layer semiconductor stack may end up being shorter than the maximum horizontal distances within any given circuit layer, and as such, communicating data between circuit layers disposed on different chips may involve less latency than communicating data between distant points on the same chip. Some conventional stacking technologies, for example, are capable of separating circuit layers on adjacent dies in a stack by less than 100 um, which is an order of magnitude or more less than the maximum horizontal dimension of many dies (e.g., a 100 mm2 die has a length and width of 10,000 um).
  • From a design standpoint, however, integrating circuits on multiple chips in a multi-layer semiconductor stack can be problematic. Laying out signal paths and electrical conductors to effectively interconnect circuits conventionally has required substantial design work, and opportunities for design reuse have been limited.
  • Therefore, a significant need continues to exist in the art for an improved manner of facilitating the design and manufacture of multi-layer semiconductor stacks.
  • SUMMARY OF THE INVENTION
  • The invention addresses these and other problems associated with the prior art by providing a circuit arrangement and method that utilize a universal, standardized inter-layer interconnect in a multi-layer semiconductor stack to facilitate interconnection and communication between functional units disposed on a stack of semiconductor dies. Each circuit layer in the multi-layer semiconductor stack is required to an inter-layer interface region that is disposed at substantially the same topographic location such that when the semiconductor dies upon which such circuit layers are disposed are arranged together in a stack, electrical conductors disposed within each semiconductor die are aligned with one another to provide an inter-layer bus that is oriented vertically, or transversely, with respect to the individual circuit layers. By doing so, functional units disposed on the circuit layers may be coupled to the inter-layer bus to permit communication to occur between functional units on different circuit layers. Furthermore, based upon a standardized placement of the inter-layer interface region in each circuit layer, and a standardized arrangement of electrical conductors associated with the inter-layer bus, each circuit layer may designed using a standardized template upon which the design features necessary to implement the inter-layer bus are already provided, thereby simplifying circuit layer design and the interconnection of functional units to the inter-layer bus.
  • Consistent with one aspect of the invention, for example, a plurality of semiconductor dies are physically and electrically coupled to one another in a stack, where each semiconductor die includes opposing faces, where at least one face of each semiconductor die includes circuit logic integrated thereon and defining a circuit layer that includes at least one functional unit, where at least one face of each semiconductor die includes an inter-layer interface region disposed thereon, and where each inter-layer interface region on each semiconductor die is disposed at substantially the same topographic location when the respective semiconductor die is disposed within the stack. An inter-layer bus electrically couples the functional units on the plurality of semiconductor dies to one another, where the inter-layer bus comprises a plurality of electrical conductors disposed within the inter-layer interface region of each semiconductor die and extending between the opposing faces of each semiconductor die, and where respective electrical conductors disposed in the inter-layer interface regions of adjacent semiconductor dies in the stack are electrically coupled to one another when the plurality of circuit layers are physically and electrically coupled to one another in the stack.
  • Consistent with another aspect of the invention, a multi-layer circuit arrangement is designed by allocating each of a plurality of functional units in the circuit arrangement to one of a plurality of circuit layers based upon a functional characteristic thereof. In response to user input, each functional unit is laid out on the respective circuit layer to which such functional unit is allocated, where each circuit layer defines circuit logic configured to be integrated onto a semiconductor die, and where each circuit layer includes an inter-layer interface region disposed at a predefined topographic location thereon such that the inter-layer interface regions on the plurality of circuit layers are disposed at substantially the same topographic location when the respective semiconductor dies are physically and electrically coupled to one another in a stack, and where each inter-layer interface region includes a plurality of signal paths that are configured to define an inter-layer bus that electrically interconnects the plurality of circuit layers to one another when the respective semiconductor dies are physically and electrically coupled to one another in the stack. Also in response to user input, each functional unit is interconnected to at least a subset of the plurality of signal paths in the inter-layer interface region of the circuit layer allocated thereto.
  • Consistent with yet another aspect of the invention, a circuit arrangement may include a semiconductor stack including a plurality of circuit layers upon which is defined circuit logic, the semiconductor stack comprising a plurality of semiconductor dies physically and electrically coupled to one another, with each semiconductor die including opposing faces, and where at least one face of each semiconductor die includes circuit logic integrated thereon that includes at least one functional unit and that defines a circuit layer from among the plurality of circuit layers. The circuit arrangement may also include a plurality of independently operating vertically-oriented supernodes defined by the circuit logic and disposed on multiple circuit layers of the semiconductor stack, with each vertically-oriented supernode including a plurality of functional units distributed vertically among at least a subset of the plurality of circuit layers, a plurality of inter-layer buses, each dedicated to one of the vertically-oriented supernodes and electrically coupling together the functional units thereof, and each comprising a plurality of electrical conductors disposed within a corresponding inter-layer interface region disposed on each semiconductor die and extending between the opposing faces of each semiconductor die, where respective electrical conductors disposed in the inter-layer interface regions of adjacent semiconductor dies in the stack are electrically coupled to one another when the plurality of circuit layers are physically and electrically coupled to one another in the stack, and where for each vertically-oriented supernode, the inter-layer interface regions therefor are disposed at substantially the same topographic location when their respective semiconductor dies are disposed within the stack, and an inter-layer bus disposed in one of the plurality of circuit layers and configured to communicate data between the plurality of vertically-oriented supernodes.
  • These and other advantages and features, which characterize the invention, are set forth in the claims annexed hereto and forming a further part hereof. However, for a better understanding of the invention, and of the advantages and objectives attained through its use, reference should be made to the Drawings, and to the accompanying descriptive matter, in which there is described exemplary embodiments of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram of a multi-layer semiconductor stack incorporating an inter-layer bus consistent with the invention.
  • FIG. 2 is a block diagram of an exemplary circuit layer from the multi-layer semiconductor stack of FIG. 1.
  • FIG. 3 is a block diagram illustrating an exemplary contact pad array for a semiconductor die in the multi-layer semiconductor stack of FIG. 1.
  • FIG. 4 is a functional cross-sectional view of the multi-layer semiconductor stack of FIG. 1.
  • FIG. 5 is a flowchart illustrating a process for redesigning a single circuit layer design for implementation in a multi-layer semiconductor stack in a manner consistent with the invention.
  • FIG. 6 is a block diagram illustrating an exemplary single circuit layer design capable of being redesigned by the process of FIG. 5.
  • FIG. 7 is a block diagram of the single circuit layer design of FIG. 6, illustrating the mapping of functional units in the single circuit layer design to multiple circuit layers.
  • FIG. 8 is a functional exploded perspective view of a multi-layer semiconductor stack implementation of the single circuit layer design of FIG. 6.
  • FIG. 9 is a block diagram of a compute circuit layer from the multi-layer semiconductor stack of FIG. 8.
  • FIG. 10 is a block diagram of an accelerator circuit layer from the multi-layer semiconductor stack of FIG. 8.
  • FIG. 11 is a block diagram of an I/O circuit layer from the multi-layer semiconductor stack of FIG. 8.
  • FIG. 12 is a block diagram of another multi-layer semiconductor stack implementation, illustrating the use of multiple bus segments for an inter-layer bus consistent with the invention.
  • FIG. 13 is a block diagram of yet another multi-layer semiconductor stack implementation, illustrating the use of differently-sized semiconductor dies.
  • FIG. 14 is a block diagram of still another multi-layer semiconductor stack implementation, illustrating the use of semiconductor dies incorporating different semiconductor fabrication design rules.
  • FIG. 15 is a block diagram of a computer system suitable for designing a multi-layer semiconductor stack implementation in a manner consistent with the invention.
  • DETAILED DESCRIPTION
  • Embodiments consistent with the invention utilize a universal, standardized inter-layer bus to facilitate communication between functional units disposed in different circuit layers of a multi-layer semiconductor stack. In this regard, an individual circuit layer may be considered to include a two dimensional layout of logic circuitry disposed on a semiconductor substrate. It will be appreciated that, a single circuit layer may include multiple physical layers (e.g., metal layers, dielectric layers, etc.) as a result of fabrication processes, but that these multiple layers collectively define a logic circuit that is essentially laid out across a two dimensional footprint. A multi-layer semiconductor stack therefore includes multiple circuit layers interconnected with one another in an overlapping relationship to effectively define a three dimensional circuit design, adding a vertical or transverse dimension to planar dimensions of the individual circuit layers, and utilizing an inter-layer bus to communicate along the vertical direction between functional units defined within the individual circuit layers.
  • FIG. 1, for example, illustrates a multi-layer semiconductor stack 10 incorporating a plurality of semiconductor dies or chips 12, each including one or more functional units 14. Consistent with the invention, the functional units 14 on the plurality of chips 12 communicate with one another over a vertically or transversely oriented inter-layer bus 16, and are physically and electrically coupled to one another in a stacked arrangement.
  • As shown in FIG. 2, to implement a universal, standardized inter-layer bus, each semiconductor die 12 includes an inter-layer interface region 18 disposed at a predetermined topographic location of the die, which includes a plurality of electrical conductors (not shown in FIG. 2) disposed at predetermined locations such that, when the dies 12 are stacked together, the respective inter-layer interface regions 18, and thus the electrical conductors therein, are topographically aligned with one another (within the context of the invention, and assuming an x-y-z coordinate system where x and y refer to dimensions within the plane of a circuit and z refers a dimension perpendicular to the plane of the circuit, two features are topographically aligned when those features have substantially the same x, y coordinates when the dies upon which those features are formed are arranged together in a stack.) In many instances, due to this alignment, the interconnection of the electrical conductors within the individual dies to one another to form the inter-layer bus is an automatic occurrence resulting from the physical and electrical interconnection of the dies to one another into the stack.
  • It will be appreciated that an inter-layer interface region may take a number of forms depending upon factors such as the number of bus segments required, the number of interconnects required to implement the bus, the number and arrangement of functional units, and the size of the respective dies. For example, if a stack includes dies of varying sizes, the inter-layer interface regions on different dies may be differently-sized, but may nonetheless include corresponding and topographically aligned electrical conductors to implement the bus. Also, an interface region may be a single contiguous region or may be broken into multiple non-contiguous regions. Furthermore, as discussed below in connection with FIG. 8, some circuit layers in a stack may include intra-layer bus interconnections, e.g., to interconnect multiple bus segments of an inter-layer bus, such that the inter-layer interface region of one circuit layer may be a superset or subset of the inter-layer interface region of another layer.
  • In the illustrated embodiments, functional circuitry for a circuit layer, e.g., the functional units 14 in a circuit design, may not be placed within the inter-layer interface region, but are instead required to be placed in a functional region 20 of the die. A functional unit, in the context of the invention, generally refers to functionally-related logic circuitry that has been partitioned for functional purposes into a distinct unit. While in the illustrated embodiments, functional units are typically highly complex circuits such as processor cores, memory controllers, or accelerator units, it will be appreciated that in other embodiments, the complexity and functionality of a functional unit may be more or less complex, and that an inter-layer bus consistent with the invention may be used to enable communication of data between practically any type of logic circuitry that may be integrated into a circuit design.
  • Turning now to FIG. 3, while not mandatory, it is typically desirable to lay out the electrical conductors in an inter-layer bus in a regular pattern that is repeatable among all circuit layers of a multi-layer semiconductor stack. In the illustrated embodiment, for example, it may be desirable to arrange the electrical conductors into a regular two dimensional array such as a rectangular array, and moreover, to integrate such an array with an array of power distribution electrical conductors that operate as the power distribution network for each semiconductor die.
  • FIG. 3, for example, illustrates a rectangular array of contact pads 22 disposed over the surface of a semiconductor die 12. The gray pads 24, disposed within inter-layer interface region 18, are coupled to electrical conductors for the inter-layer bus, while the black pads 26 are power distribution pads coupled to either positive voltage (VDD) or ground. The white pads 22 are dummy pads, and are electrically isolated from any active circuitry. The dummy pads, however, serve as additional mechanical connections to which adjacent semiconductor dies can be secured.
  • In this embodiment, the pitch of the inter-layer bus pads 24 is three times that of the power distribution pads 26, whereby within any 3×3 grid of pads in the inter-layer interface region 18 there will be nine inter-layer bus pads 24, but within any 3×3 grid of pads in the functional region 20 there will be one power distribution pad 26 and eight dummy pads 28.
  • In one embodiment, for example, the pitch of the inter-layer bus pads in 50 um while that of the power distribution pads is 150 um, which is compatible, for example, with conventional micro C4 bonding techniques. On, for example, a semiconductor die having contact pads distributed over a 210 mm2 (18.6 mm×11.3 mm) area, an array of 84,072 (226×372) contact pads may be provided. An inter-layer interface region configured in the manner illustrated in FIG. 3, and having a size of about 18.6 mm×0.55 mm (or a width equivalent to 11 rows of contact pads) would occupy less than 5% of the available space on the die, and would provide 4092 separate signal paths.
  • It will be appreciated that power distribution pads may also be disposed within inter-layer interface region in some embodiments, and that in other embodiments, some positive voltage and ground electrical conductors may be considered part of the inter-layer bus architecture, and therefore be present within the inter-layer interface region for that reason. It will further be appreciated that the distribution of positive voltage and ground contact pads may vary in different embodiments, e.g., with more or less positive voltage contact pads than ground pads, or with the power distribution pads distributed throughout the functional region in an irregular distribution pattern.
  • As illustrated in FIG. 4 (which is not shown to scale), in one implementation, the semiconductor dies 12 in multi-layer semiconductor stack 10 are physically and electrically coupled to one another in a stack arrangement. Each die 12 includes a substrate 40 (e.g., a silicon substrate), and each die includes opposing surfaces or faces 42, 44, and at least one of which includes circuit logic 46 integrated thereon and defining a circuit layer for the multi-layer stack. The various manners in which integrated circuit logic may be fabricated on a surface of substrate 40 are well known to those of ordinary skill having the benefit of the instant disclosure, and therefore will not be discussed in greater detail herein.
  • To physically and electrically couple the semiconductor dies 12 together, and thereby join the electrical conductors for the inter-layer bus, various techniques may be used. For example, in one embodiment, each semiconductor die is fabricated on a silicon wafer of conventional thickness (e.g., about 700 um thick). The side of the wafer opposite that upon which the circuit logic is then ground and polished, e.g., to about 50 to about 70 um in thickness. A regular array of holes (e.g., at the same pitch as the regular array of contact pads, in this implementation 50 um) are formed in each die extending completely between surfaces 42, 44 (e.g., via ion etching) and a conductive material is deposited on the walls of the holes. The holes are then filled with silicon to form through silicon vias (TSV's) 48. Topographically aligned regular arrays of contact pads 22 are then formed on the opposing surfaces 42, 44 of each die 12, with the topographically aligned contact pads 22 on the opposing surfaces 42, 44 electrically coupled to one another by a respective via 48 extending between such pads 22.
  • It will be appreciated that TSV's may extend completely through each die 12, or some or all of the TSV's may be discontinuous through the thickness of each die. For example, in some embodiments, it may be desirable for any TSV's associated with Vdd/Gnd to extend completely through the thickness of the due, and for any TSV's associated with data-carrying signals, the data signals may enter the bottom of a single circuit layer via a contact pad 22, connect to a circuit in the circuit layer, and have the output of that circuit routed to the same topographic location and coupled to a TSV extending through the substrate of the die to the opposing contact pad 22.
  • In the illustrated embodiment, it is desirable to not form vias in each die that are topographically aligned with any dummy contact pads on the die. Thus, for example, it may be desirable to form a regular array of vias at the pitch of the inter-layer bus electrical conductors within the inter-layer interface region 18 of each die (in this embodiment, 50 um), but form a regular array of vias at the pitch of the power distribution conductors in the functional region 20 (in this embodiment, 150 um). By doing so, the area in the functional region of the active circuit layer that would otherwise be occupied by vias is available for functional circuitry.
  • Once the contact pads are formed on the opposing surfaces of the semiconductor dies 12, the dies 12 may be separated from the wafer and physically and electrically coupled to one another in a stacked arrangement using any of a number of different types of chip bonding techniques, e.g., compression soldering or micro C4 (Controlled Collapse Chip Connection), resulting in the formation of a regular array of physical/electrical interconnects 50 joining contact pads 22 on adjacent surfaces 42, 44 of adjacent semiconductor chips 12. Additional manufacturing steps, e.g., mounting the stack 10 to a carrier or package, applying thermal grease, attaching a heat sink, encapsulating the stack, etc. may also be performed to complete the assembly.
  • While each semiconductor die 12 is illustrated as including contact pads on both surfaces, with a single circuit layer deposed on one of the surfaces, and with all dies oriented such that the active layer of each die faces downward, it will be appreciated that alternative arrangements may be used in other embodiments. For example, different die interconnection technologies can be used for different dies within the same stack, and dies disposed at the top or bottom of a stack may be configured differently from other dies in the stack. As an example, an end (or top) die in a stack may not include vias, and may simply include contact pads coupled directly to the active circuitry on the single face of the die. In many embodiments, it is desirable, however, for the end dies to include vias and contact pads on the opposite face from the active circuitry, as the conductive material in the vias may operate in much the same manner as a heat pipe, given that the conductive vias and contact pads are topographically aligned through the entire thickness of the stack.
  • As another example, active circuitry may be integrated onto both surfaces of a semiconductor die, or a dual sided semiconductor die may be formed by wafer bonding two semiconductor substrates together either face to face or back to back. As yet another example, alternate dies in a stack may be flipped to orient the active circuitry on particular semiconductor dies either closer or farther away from the active circuitry on adjacent semiconductor dies.
  • It will also be appreciated that a number of alternate fabrication, packaging, and manufacturing techniques, which are either currently known or which may hereinafter be developed, may be utilized to manufacture a multi-layer semiconductor stack consistent with the invention. The invention is therefore not limited to the particular techniques described herein.
  • FIG. 5 next illustrates an exemplary design process 80 that may be utilized to design a circuit arrangement for a multi-layer semiconductor stack in a manner consistent with the invention. In this implementation, an existing single circuit layer design, also referred to herein as a two dimensional design, is redesigned or adapted into a three dimensional design suitable for implementation in a multi-layer semiconductor stack. It will be appreciated, however, that other design methodologies may be employed, and that the design of three dimensional or multi-layer semiconductor stack designs need not be based upon preexisting two dimensional designs. The invention is therefore not limited to the particular design methodology utilized herein.
  • Process 80 begins in block 82 by starting with an existing two dimensional design and general floorplan. The circuit logic in a design typically is organized into multiple functional units, where each functional unit includes circuit logic that is functionally related toward performing a common computational task. Additional support circuitry that may not have any particular high level task, but that is otherwise required for the operation of the design, may also be considered to be organized into a functional unit for the purposes of process 80, and it may be desirable to group together circuit logic that is otherwise unrelated but capable of being laid out in the same general region as a functional unit to facilitate the redesign process. In the example described below, for example, it may be desirable to group together much of the circuitry that is otherwise not dedicated to a particular processing core or accelerator unit to one or more I/O functional units that handle ancillary tasks such as external drivers and interfaces, networking, testing, debugging, clock and/or power distribution, memory control, etc.
  • Next, in block 84, the functional units in the single circuit layer, two dimensional design are repartitioned into N circuit layers. While various alternative methodologies may be used, it is typically desirable to group together functionally-related functional units on the same circuit layer. Moreover, in situations where multiple instances of a given functional unit are present in a design, it may be desirable to locate all of those instances on the same circuit layers. For example, in design incorporating multiple processing cores, it may be desirable to allocate those processing cores to the same layers.
  • Next, in block 86, the inter-layer interconnect or bus is defined, both from a physical and logical standpoint. Specifically, the dimensions and location of the inter-layer interface region on each circuit layer, as well as the specific locations of the vias and electrical conductors for the bus within that region, are determined. Similarly, in block 88, the layer-layer power distribution network (Vdd/Gnd) is determined, thereby designating the locations of the positive voltage and ground vias.
  • Next, in block 90, a physical layer-layer template is created, using the inter-layer bus electrical conductor locations and power distribution network locations to block out the appropriate regions for the vias and provide contact points to which logic circuitry on each circuit layer can be electrically coupled. In addition, the template may be provided with standardized bus interface logic to facilitate interconnection of functional unit circuitry to the inter-layer bus.
  • Next, as illustrated in blocks 92-96, the created template may then be used as a background for each circuit layer in the multi-layer design, by placing the functional units allocated to those layers in the respective layer designs and coupling those functional units to the inter-layer bus and power distribution network defined by the background template. As shown in block 98, once each layer is designed, the N layers may be stacked for the purposes of testing and simulation, and the design is then suitable for fabrication and manufacture.
  • Typically, the placement of functional units in the circuit layer designs, as well as the interconnection of functional units to the signal paths of the inter-layer bus, are performed by software-based circuit design tools responsive to user input from a circuit designer. The design process results in the generation of one or more design files, from which a design may be tested, simulated, debugged and ultimately used during a fabrication process to manufacture multi-layer semiconductor stacks consistent with the invention.
  • FIGS. 6-11 further illustrate by way of example the process illustrated in FIG. 5. FIG. 6, in particular, illustrates an exemplary two dimensional design 100 for a multi-core networking device. Design 100 includes a system bus 102 to which a plurality of functional units are coupled to one another, as well as to other support and interface logic in the design. System bus 102 may be implemented, for example, using the PowerBus or PBus bus architecture used in connection with the Power processor architecture available from International Business Machines Corporation, among others.
  • Design 100 includes a plurality (e.g., 16) of nodes 104, with each node 104 including a plurality (e.g., four) of processing cores 106 coupled to a shared L2 cache 108. Each processing core 106, for example, may be implemented as a Power architecture compatible core.
  • Design 100 also includes memory controller logic 110 including a plurality (e.g., four) of memory controller blocks 112, each having a cooperative physical memory interface block 114 for coupling to off-chip memory. Design 100 also includes a set of accelerator blocks providing specialized logic for accelerating various functions required in the design, e.g., pattern matching (blocks 116), XML processing (blocks 118), cryptography (blocks 120) and compression/decompression (blocks 122). The accelerator blocks 116-122 are grouped into four groups, with each group interfaced with system bus 102 with an associated bus interface logic (PBIC) block 124.
  • Three chip/chip interface blocks 126 provide chip-to-chip communication, and are coupled to the system bus 102 by an associated PBIC block 128, while another PBIC block 130 couples a number of additional networking and interface logic blocks to system bus 102. Specifically a PCI Express block 132 couples to an on-chip PCI bus 134, while a packet processor unit 136 and host Ethernet controller block 138 are coupled to an on-chip bus 140. A packet switch interface block 142 and 40 Gigabit Ethernet Media Access Control block 144 are coupled between buses 134 and 140, and multiple physical interface blocks 146 are coupled to bus 134 to communicate with external (off-chip) devices. A 10 Gigabit Ethernet Media Access Control block 148 is also coupled to bus 134 and interfaced off-chip by a physical interface block 150. A low pin count (LPC) block 152 is also interfaced with system bus 102 via PBIC 130, and is coupled to an LPC IO block 154. Additional circuit logic, e.g., a programmable interrupt controller (PIC) block 156 and pervasive logic 158, among additional support logic that is not otherwise illustrated in FIG. 6, may also be included in circuit design 100. Pervasive logic 158 may include, for example, JTAG, performance monitor, clock controller, POR and error control logic.
  • To redesign circuit design 100 for use in a multi-layer semiconductor stack, functional units in design 100 are repartitioned into multiple circuit layers, as described above in connection with block 84 of FIG. 5. FIG. 7, for example, illustrates the partitioning of functional units in circuit design 100 into four circuit layers. In this example, a first layer, designated I/O Layer 1, is used for memory controllers, network and interface logic, pervasive logic and other support logic, including any other logic required to implement off-chip communications. The sixteen processing nodes 104 (incorporating a total of 64 processing cores) are allocated to two compute layers, designated as Compute Layers 2 and 3, and the accelerator blocks 116-122 are allocated to a separate accelerator layer, designated Accelerator Layer 4, resulting in a total of four separate circuit layers.
  • Next, as described above in connection with block 86 of FIG. 5, the layer-layer or inter-layer interconnect is defined. For example, FIG. 8 illustrates an exemplary multi-layer circuit design 160 including four layers 162, 164, 166 and 168, respectively corresponding to I/O Layer 1, Compute Layer 2, Compute Layer 3 and Accelerator Layer 4.
  • In this implementation, the inter-layer bus 170 is defined with four segments. In this implementation, a PowerBus architecture compatible bus is used, which includes separate command and data buses (illustrated at 172 and 174) and pervasive interconnects (illustrated at 176). In one embodiment, for example, a PowerBus data bus may include 2560 signal paths providing an 8×32B wide data bus and 210 signal paths providing a command bus (including 46 address bits, 17 Ttag bits, 6 Ttype bits, 7 Tsize bits, 10 snoop bits, 40 combined response bits). An additional 40 to 80 signal paths may be used to provide pervasive signal paths, e.g., LBIST channels, an ABIST interface, trace and performance monitor signal paths, power on reset signal paths, error status signal paths, interrupt signal paths, clock control paths, local clock buffer (LCB) signal paths, etc. It will be appreciated, however, that the allocation of signal paths and interconnects to an inter-layer bus may vary in different embodiments, so the invention is not limited to the particular allocation described herein.
  • In this implementation, the partitioning of functional units to layers in the multi-layer design is used to implement a plurality of vertically-oriented “supernodes” or slices that are independently operating from one another, though distributed across the same layers of the design. In particular, four supernodes are defined, each including four compute nodes, two of which in each compute layer 164, 166, and a dedicated set of accelerator blocks in accelerator layer 168. The respective bus segments in inter-layer bus 170 are dedicated to each supernode, and as a result, four separate inter-layer interface regions 178 are defined on each of layers 164, 166 and 168. The supernodes, however, share I/O resources on layer 162, as well as communicate with one another via an intra-layer bus interconnected the bus segments, and as a result, the inter-layer interface region 180 of layer 162 may be shared and additionally include logic to logically join the respective bus segments to one another. The regions outside of the respective inter-layer interface regions 178, 180 of layers 162-168 are functional regions 182, within which functional units, generically represented at 184, may be placed.
  • Once the layer-layer interconnect has been defined, as described above in connection with FIG. 5, a template is created and used as a background for the design of the individual circuit layers. In the implementation of FIGS. 8-11, two separate templates are used, a first for the compute and accelerator layers 164-168 (since these layers include four separate bus segments) and a second for the I/O layer 162 (since the four bus segments are effectively joined in this layer). FIG. 9, for example, illustrates one suitable layout for compute layer 164 is illustrated, which may also be suitable for compute layer 166 as well. In FIG. 9, as well as in FIGS. 10-11, it will be appreciated that the blocks or functional units numbered 2xx typically correspond to the blocks or functional units numbered 1xx in the two dimensional circuit design of FIG. 6, and that in many instances, the blocks or functional units from the two dimensional design may simply be reused in the three dimensional multi-layer semiconductor stack design.
  • In this layout, each supernode includes two compute nodes 204, each with four processing cores 206 and a shared L2 cache 208, and coupled to inter-layer bus logic 200 for the associated bus segment for the supernode. It will be appreciated that with two compute layers configured in the manner illustrated in FIG. 9, each supernode will have a total of four compute nodes 204 allocated thereto.
  • FIG. 10 illustrates one suitable implementation of accelerator layer 168, including connections to inter-layer bus segments 200, and with each supernode being allocated respective accelerator blocks, including a pattern matching block 216, XML processing block 218, cryptography block 220 and compression/decompression block 222. Each supernode also includes associated bus interface logic (PBIC) blocks 224 to interface the respective accelerator blocks with the inter-layer bus.
  • FIG. 11 illustrates one suitable implementation of I/O layer 162, including a portion of inter-layer bus 200 that additionally includes one or more intra-layer buses to interconnect the four inter-layer bus segments and thereby allow each supernode to access the functional units on I/O layer 162, as well as to communicate with one another.
  • As noted above, an inter-layer bus consistent with the invention may be implemented in a number of manners. Typically, an inter-layer bus will include both functional signal paths associated with the communication of data over the bus, as well as additional support or pervasive signal paths, including, for example, power distribution signal paths, clock distribution signal paths, testing/debugging signal paths, interrupt signal paths, reset signal paths, etc. The functional signal paths may implement any number of bus implementations, including those implementing separate command, address and data signal paths, or those in which command, address and/or data is communicated over the same signal paths. Various bus or network architectures, e.g., point-to-point, switched, multi-drop, etc., may also be implemented, and control logic may be utilized in the architecture to partition the inter-layer bus into multiple segments so that all functional units coupled to the bus are not required to share the same bandwidth. While the term “bus” is utilized herein, it will be appreciated that an inter-layer bus may include practically any networking architecture that enables multiple logical units in a circuit design to communicate with one another, and that an inter-layer bus architecture may include various buffers, controllers, switches, routers, etc. as may be required to implement the desired networking architecture. Furthermore, in some embodiments, circuit layers may be designated as source, termination and/or interior layers, with differing bus control logic implemented in each such layer to provide appropriate bus source and termination logic for a given bus architecture. It may be desirable, for example, to utilize one or more master bus controllers on I/O layer 162 to manage the communication of data over each bus segment.
  • The integration of pervasive signal paths into an inter-layer bus architecture provides an additional benefit in terms of distributing the pervasive logic of a circuit design throughout the multi-layer semiconductor stack, since the mere process of aligning the semiconductor dies into the stack and bonding them together not only forms the inter-layer bus, but also distributes the pervasive logic, including both clocking and test/debug logic, throughout the multiple circuit layers. Furthermore, an additional benefit is realized during manufacture since the standardized locations of the pervasive signal paths within the inter-layer interface region of each semiconductor die enables the individual semiconductor dies to be tested individually once the contact pads are formed on the dies, and moreover, once the semiconductor dies are bonded into the stack, the same contact pads on one of the exterior semiconductor dies can be used to perform additional global testing of the entire bonded stack.
  • In addition, an inter-layer bus may include portions that are intra-layer, e.g., to interconnect multiple bus segments that are topographically offset from one another in the stack. FIG. 12, for example, illustrates an exemplary multi-layer semiconductor stack 300 in which an inter-layer bus 302, including two inter-layer bus segments 302A and 302B, additionally includes an intra-layer bus segment 304 to enable functional units 306A coupled to inter-layer bus segment 302A to communicate with functional units 306B coupled to the other inter-layer bus segment 302B. In this implementation, networking logic may be utilized between each segment 302A, 302B and 304 to localize the bandwidth of each inter-layer segment 302A, 302B, and intra-layer segment 304 is used only to relay communications from one inter-layer bus segment 302A, 302B that are addressed to a functional unit on the other inter-layer bus segment 302A, 302B. In other embodiments, however, an inter-layer bus may be global where all functional units share the same bandwidth, or multiple inter-layer buses, which are completely isolated from one another, may be implemented in a given multi-layer semiconductor stack.
  • Another benefit of a standardized or universal inter-layer bus architecture is that the individual circuit layers and semiconductor dies within a given stack may be of different dimensions and/or compositions. For example, as shown in FIG. 13, a multi-layer semiconductor stack 310 consistent with the invention may include one or more semiconductor dies such as die 312 that are differently sized than other semiconductor dies 314, 316 in the stack. So long as the contact pads for the inter-layer bus are topographically aligned when the dies are bonded into a stack, the physical dimensions of the individual dies may be independent from one another.
  • As another example, as shown in FIG. 14, a multi-layer semiconductor stack 320 consistent with the invention may include one or more semiconductor dies such as die 322 that are designed and fabricated using different semiconductor fabrication design rules than other semiconductor dies 324, 326 in the stack. Die 322, in particular, is illustrated as being fabricated using a 45 nm process, while dies 324, 326 are illustrated as being fabricated using a 32 nm process. So long as the contact pads for the inter-layer bus are topographically aligned when the dies are bonded into a stack, the feature sizes for the logic circuits on each individual dies may be independent from one another. In addition, this configuration allows for the possibility that certain legacy layers may be reused with newer, more advanced layers. For example, in the circuit design of FIG. 8, a new, higher performance version of a compute layer, fabricated using a smaller feature size, may be substituted for a legacy compute layer, with the accelerator and I/O layers from the prior generation reused in the new multi-layer semiconductor stack.
  • Furthermore, the methodology described herein, wherein functional units having common functionality may be allocated to particular circuit layer, enables a substantial amount of flexibility in terms of design reuse. For example, the basic multi-layer design 160 described above in connection with FIGS. 8-11, which includes separate I/O, compute, and accelerator layers 162, 164/166, 168, could be used to implement an entire family of products simply by mixing and matching semiconductor dies for different functional layers in different semiconductor stacks. A common I/O layer 162 may be used as a starting point for all variations, including, for example:
  • low power—I/O layer, 1 compute layer
  • low power+accelerator—I/O layer, 1 compute layer, 1 accelerator layer
  • medium power—I/O layer, 2 compute layers
  • medium power+accelerator—I/O layer, 2 compute layers, 1 accelerator layer
  • high power—I/O layer, 3 compute layers
  • high power+accelerator—I/O layer, 3 compute layers, 1 accelerator layer
  • Also, by providing different accelerator layers, various types of specialized devices may be built from the same general purpose computing platform. For example, accelerator layers including appropriate acceleration hardware may be used to optimize a device for particular applications, e.g. networking, graphics processing, cryptography, etc. Likewise, different alternative layers having different power consumption characteristics may be used in different variations to enable the same platform to be used for both high performance/high power and low performance/low power applications. In addition, the techniques described herein may be used to provide different levels and/or sizes of cache memories for different variations so that, for example, applications requiring additional cache memory may utilize a larger cache memory implemented across several circuit layers, or multiple levels of cache.
  • The use of independent circuit layers may also provide the ability to utilize different types of circuits on different layers, e.g., to include FPGA's on certain layers. In addition, independent circuit layers may enable specialized circuitry requiring non-uniform characteristics to be isolated to a single layer, e.g., to account for off-chip drivers, varying voltages, passive or analog components, voltage regulation circuits. In some embodiments, specialized layers may be also be used solely for testing/debugging purposes or prototyping, which layers are then replaced by different operational layers once a particular design goes into production.
  • As noted above, another advantageous aspect of the configuration illustrated in FIGS. 8-11 is that of vertically slicing each circuit layer and utilizing multiple instances of the same logic on each circuit layer such that the individual instances form vertically-oriented supernodes that are interfaced with one another in the I/O layer, but that are otherwise independently operating units. The configuration of FIGS. 8-11 is effectively a collection of four independent processors, each including 16 processing cores, a dedicated L2 cache and a dedicated set of accelerators.
  • It is desirable in many embodiments, for example, to define multiple independently operating vertically-oriented supernodes that are functional duplicates of one another, e.g., to define multiple circuits that, from the standpoint of an external circuit interfacing with such circuits, operate in substantially the same manner as one another (e.g., analogous to integrating multiple processor chips into the same integrated circuit). Furthermore, in some embodiments, it is desirable for ease of design, fabrication and testing to implement the multiple supernodes using the same instances of functional units, e.g., so that for each circuit layer in which a functional unit is defined for one of the vertically-oriented supernodes, a corresponding instance of such functional unit is defined in such circuit layer for each of the plurality of vertically-oriented supernodes. Thus, for example, each compute layer 164, 166 is illustrated with eight instances of a compute node 204, with two such instances allocated to each vertically-oriented supernode, while accelerator layer 168 is illustrated with multiple instances of accelerator blocks, including a pattern matching blocks 216, XML processing blocks 218, cryptography blocks 220 and compression/decompression blocks 222, with separate instances allocated to each supernode. It will be appreciated that in some embodiments, functionally-identical instances allocated to different supernodes may also be identical from the standpoint of the circuit logic used to implement such instances, while in other embodiments, concerns such as optimizing the physical layout of a circuit design may necessitate that functionally-identical instances be implemented using non-identical underlying circuit logic.
  • Furthermore, due to the vertical orientation of the circuitry within each supernode, the supernode is more spatially compact than it would otherwise be if implemented on a single circuit layer, and less affected by signal propagation delays between the functional units within the supernodes. Assume, for example, that each node 204 in compute layers 164, 166 was implemented in a 7 mm×7 mm (7000 um×7000 um) area. Were two nodes that otherwise communicated through the inter-layer bus (assuming a 70 um layer thickness) laid out side-by-side on the same layer and forced to communicate intra-layer, the lengths of the signal paths would be at least an order of magnitude longer, and thus require a slower data transmission rate to account for the additional propagation delay that would be present in those signal paths. Likewise, for larger cache memories, orienting those cache memories in a separate layer may orient those memories closer to the processing logic than would otherwise occur if laid out side-to-side.
  • It will be appreciated that the circuit layer designs described herein may be implemented as generic gate netlists, or in other ways as may occur to those of skill in the art. A netlist is a Boolean-algebra representation (gates, standard cells) of an circuit's logical-function, analogous to an assembly-code listing for a high-level program application. Circuit layer designs also may be implemented, for example, in synthesizable form, described in a hardware description language such as Verilog or VHDL. In addition to netlist and synthesizable implementation, circuit layer designs also may be delivered in lower-level, physical descriptions. Analog elements such as SERDES, PLL, DAC, ADC, and so on, may be distributed in a transistor-layout format such as GDSII. Digital elements of circuit layer designs are sometimes offered in layout format as well. It will also be appreciated that circuit layer designs, as well as other logic circuitry implemented consistent with the invention may be distributed in the form of computer data files, e.g., logic definition program code, that define at various levels of detail the functionality and/or layout of the circuit arrangements implementing such logic. Thus, while the invention has and hereinafter will be described in the context of circuit arrangements implemented in fully functioning integrated circuit devices and stacked arrangements of such devices, data processing systems utilizing such devices, and other tangible, physical hardware circuits, those of ordinary skill in the art having the benefit of the instant disclosure will appreciate that the invention may also be implemented within a program product, and that the invention applies equally regardless of the particular type of computer readable or signal bearing media being used to distribute the program product. Examples of computer readable or signal bearing media include, but are not limited to, physical, recordable type media such as volatile and non-volatile memory devices, floppy disks, hard disk drives, CD-ROMs, and DVDs (among others), and transmission type media such as digital and analog communication links.
  • It will also be appreciated that the aforementioned design processes may be performed at least in part using computerized design and simulation tools. FIG. 15, for example, illustrates an apparatus 400 within which the various steps in a design process may be performed. Apparatus 400 in the illustrated embodiment is implemented as a server or multi-user computer that is coupled via a network 402 to one or more client computers 404. For the purposes of the invention, each computer 400, 404 may represent practically any type of computer, computer system or other programmable electronic device. Moreover, each computer 400, 404 may be implemented using one or more networked computers, e.g., in a cluster or other distributed computing system. In the alternative, computer 400 may be implemented within a single computer or other programmable electronic device, e.g., a desktop computer, a laptop computer, a handheld computer, a cell phone, a set top box, etc.
  • Computer 400 typically includes a central processing unit 406 including at least one microprocessor coupled to a memory 408, which may represent the random access memory (RAM) devices comprising the main storage of computer 400, as well as any supplemental levels of memory, e.g., cache memories, non-volatile or backup memories (e.g., programmable or flash memories), read-only memories, etc. In addition, memory 408 may be considered to include memory storage physically located elsewhere in computer 400, e.g., any cache memory in a processor in CPU 406, as well as any storage capacity used as a virtual memory, e.g., as stored on a mass storage device 410 or on another computer coupled to computer 400. Computer 400 also typically receives a number of inputs and outputs for communicating information externally. For interface with a user or operator, computer 400 typically includes a user interface 142 incorporating one or more user input devices (e.g., a keyboard, a mouse, a trackball, a joystick, a touchpad, and/or a microphone, among others) and a display (e.g., a CRT monitor, an LCD display panel, and/or a speaker, among others). Otherwise, user input may be received via another computer or terminal.
  • For additional storage, computer 400 may also include one or more mass storage devices 410, e.g., a floppy or other removable disk drive, a hard disk drive, a direct access storage device (DASD), an optical drive (e.g., a CD drive, a DVD drive, etc.), and/or a tape drive, among others. Furthermore, computer 400 may include an interface 414 with one or more networks 402 (e.g., a LAN, a WAN, a wireless network, and/or the Internet, among others) to permit the communication of information with other computers and electronic devices. It should be appreciated that computer 400 typically includes suitable analog and/or digital interfaces between CPU 406 and each of components 408, 410, 412 and 414 as is well known in the art. Other hardware environments are contemplated within the context of the invention.
  • Computer 400 operates under the control of an operating system 416 and executes or otherwise relies upon various computer software applications, components, programs, objects, modules, data structures, etc., as will be described in greater detail below. For example, the processes described herein may be performed with the assistance of various design and simulation tools 418, which may receive as input, and generate as output, one or more circuit designs 420. In addition, as noted above, layer templates 422 may be used to facilitate the design of circuit layers incorporating features suitable for implementing a universal or standardized inter-layer bus. Moreover, various applications, components, programs, objects, modules, etc. may also execute on one or more processors in another computer coupled to computer 400 via network 402, e.g., in a distributed or client-server computing environment, whereby the processing required to implement the functions of a computer program may be allocated to multiple computers over a network.
  • In general, the routines executed to implement the embodiments of the invention, whether implemented as part of an operating system or a specific application, component, program, object, module or sequence of instructions, or even a subset thereof, will be referred to herein as “computer program code,” or simply “program code.” Program code typically comprises one or more instructions that are resident at various times in various memory and storage devices in a computer, and that, when read and executed by one or more processors in a computer, cause that computer to perform the steps necessary to execute steps or elements embodying the various aspects of the invention. Moreover, while aspects of the invention has been described in the context of fully functioning computers and computer systems, those skilled in the art will appreciate that the various embodiments of the invention are capable of being distributed as a program product in a variety of forms, and that the invention applies equally regardless of the particular type of computer readable media used to actually carry out the distribution.
  • In addition, various program code described herein may be identified based upon the application within which it is implemented in a specific embodiment of the invention. However, it should be appreciated that any particular program nomenclature that follows is used merely for convenience, and thus the invention should not be limited to use solely in any specific application identified and/or implied by such nomenclature. Furthermore, given the typically endless number of manners in which computer programs may be organized into routines, procedures, methods, modules, objects, and the like, as well as the various manners in which program functionality may be allocated among various software layers that are resident within a typical computer (e.g., operating systems, libraries, API's, applications, applets, etc.), it should be appreciated that the invention is not limited to the specific organization and allocation of program functionality described herein.
  • Various modifications may be made without departing from the spirit and scope of the invention. For example, while the embodiments illustrated herein utilize an inter-layer bus to enable functional units to communicate with one another, an inter-layer bus may also be utilized to enable intra-functional unit communication.
  • Other modifications will be apparent to one of ordinary skill in the art. Therefore, the invention lies in the claims hereinafter appended.

Claims (12)

1. A computer-implemented method of designing a multi-layer circuit arrangement, the method comprising:
allocating each of a plurality of functional units in the circuit arrangement to one of a plurality of circuit layers based upon a functional characteristic thereof;
in response to user input, laying out each functional unit on the respective circuit layer to which such functional unit is allocated, wherein each circuit layer defines circuit logic configured to be integrated onto a semiconductor die, and wherein each circuit layer includes an inter-layer interface region disposed at a predefined topographic location thereon such that the inter-layer interface regions on the plurality of circuit layers are disposed at substantially the same topographic location when the respective semiconductor dies are physically and electrically coupled to one another in a stack, and wherein each inter-layer interface region includes a plurality of signal paths that are configured to define an inter-layer bus that electrically interconnects the plurality of circuit layers to one another when the respective semiconductor dies are physically and electrically coupled to one another in the stack; and
in response to user input, interconnecting each functional unit to at least a subset of the plurality of signal paths in the inter-layer interface region of the circuit layer allocated thereto.
2. The method of claim 1, wherein laying out each functional unit and interconnecting each functional unit include generating at least one design file describing the plurality of circuit layers, the method further comprising manufacturing the circuit arrangement using the at least one design file, wherein manufacturing the circuit arrangement includes fabricating a plurality of semiconductor dies with the plurality of circuit layers defined thereon, and physically and electrically coupling the semiconductor dies to one another in a stack such that the inter-layer interface regions of the respective circuit layers are topographically aligned and the functional units defined on the plurality of circuit layers are electrically coupled to one another via the inter-layer bus.
3. The method of claim 1, wherein each circuit layer is based upon a circuit layer template having the inter-layer interface region defined at a predefined topographical location thereon.
4. The method of claim 1, wherein the inter-layer bus comprises a plurality of bus segments extending through the plurality of circuit layers, each bus segment disposed at a different topographical location, and wherein at least one circuit layer includes an intra-layer bus defined therein and configured to electrically couple the plurality of bus segments to one another.
5. The method of claim 1, wherein the plurality of circuit layers are designed using the same semiconductor fabrication design rules.
6. The method of claim 1, wherein at least one circuit layer is designed using different semiconductor fabrication design rules from another circuit layer.
7. The method of claim 1, wherein the plurality of functional units are associated with a single-layer circuit arrangement, and wherein the method comprises adapting the single-layer circuit arrangement into the multi-layer circuit arrangement.
8. The method of claim 1, wherein allocating each functional unit to a circuit layer includes allocating a plurality of processor functional units to at least one compute circuit layer and allocating a plurality of accelerator functional units to at least one accelerator circuit layer.
9. The method of claim 8, wherein allocating each functional unit to a circuit layer further includes allocating a memory controller functional unit and at least one external interface functional unit to an I/O circuit layer that additionally includes external interfaces for interfacing the circuit arrangement with at least one external device.
10. The method of claim 1, wherein the plurality of signal paths comprises a plurality of functional bus signal paths and a plurality of pervasive signal paths.
11. An apparatus, comprising:
at least one processor; and
program code configured upon execution by the at least one processor to design a multi-layer circuit arrangement by:
allocating each of a plurality of functional units in the circuit arrangement to one of a plurality of circuit layers based upon a functional characteristic thereof;
in response to user input, laying out each functional unit on the respective circuit layer to which such functional unit is allocated, wherein each circuit layer defines circuit logic configured to be integrated onto a semiconductor die, and wherein each circuit layer includes an inter-layer interface region disposed at a predefined topographic location thereon such that the inter-layer interface regions on the plurality of circuit layers are disposed at substantially the same topographic location when the respective semiconductor dies are physically and electrically coupled to one another in a stack, and wherein each inter-layer interface region includes a plurality of signal paths that are configured to define an inter-layer bus that electrically interconnects the plurality of circuit layers to one another when the respective semiconductor dies are physically and electrically coupled to one another in the stack; and
in response to user input, interconnecting each functional unit to at least a subset of the plurality of signal paths in the inter-layer interface region of the circuit layer allocated thereto.
12. A program product, comprising:
a computer readable medium; and
program code resident on the computer readable medium and configured upon execution to design a multi-layer circuit arrangement by:
allocating each of a plurality of functional units in the circuit arrangement to one of a plurality of circuit layers based upon a functional characteristic thereof;
in response to user input, laying out each functional unit on the respective circuit layer to which such functional unit is allocated, wherein each circuit layer defines circuit logic configured to be integrated onto a semiconductor die, and wherein each circuit layer includes an inter-layer interface region disposed at a predefined topographic location thereon such that the inter-layer interface regions on the plurality of circuit layers are disposed at substantially the same topographic location when the respective semiconductor dies are physically and electrically coupled to one another in a stack, and wherein each inter-layer interface region includes a plurality of signal paths that are configured to define an inter-layer bus that electrically interconnects the plurality of circuit layers to one another when the respective semiconductor dies are physically and electrically coupled to one another in the stack; and
in response to user input, interconnecting each functional unit to at least a subset of the plurality of signal paths in the inter-layer interface region of the circuit layer allocated thereto.
US13/422,566 2009-04-28 2012-03-16 Universal inter-layer interconnect for multi-layer semiconductor stacks Abandoned US20120198406A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/422,566 US20120198406A1 (en) 2009-04-28 2012-03-16 Universal inter-layer interconnect for multi-layer semiconductor stacks
US13/618,600 US9495498B2 (en) 2009-04-28 2012-09-14 Universal inter-layer interconnect for multi-layer semiconductor stacks

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/431,259 US8330489B2 (en) 2009-04-28 2009-04-28 Universal inter-layer interconnect for multi-layer semiconductor stacks
US13/422,566 US20120198406A1 (en) 2009-04-28 2012-03-16 Universal inter-layer interconnect for multi-layer semiconductor stacks

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/431,259 Division US8330489B2 (en) 2009-04-28 2009-04-28 Universal inter-layer interconnect for multi-layer semiconductor stacks

Publications (1)

Publication Number Publication Date
US20120198406A1 true US20120198406A1 (en) 2012-08-02

Family

ID=42991580

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/431,259 Active 2030-12-09 US8330489B2 (en) 2009-04-28 2009-04-28 Universal inter-layer interconnect for multi-layer semiconductor stacks
US13/422,566 Abandoned US20120198406A1 (en) 2009-04-28 2012-03-16 Universal inter-layer interconnect for multi-layer semiconductor stacks
US13/618,600 Active 2030-10-22 US9495498B2 (en) 2009-04-28 2012-09-14 Universal inter-layer interconnect for multi-layer semiconductor stacks

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/431,259 Active 2030-12-09 US8330489B2 (en) 2009-04-28 2009-04-28 Universal inter-layer interconnect for multi-layer semiconductor stacks

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/618,600 Active 2030-10-22 US9495498B2 (en) 2009-04-28 2012-09-14 Universal inter-layer interconnect for multi-layer semiconductor stacks

Country Status (4)

Country Link
US (3) US8330489B2 (en)
JP (1) JP5618603B2 (en)
KR (1) KR101182988B1 (en)
CN (1) CN101877342B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8732647B1 (en) * 2013-03-13 2014-05-20 Atrenta, Inc. Method for creating physical connections in 3D integrated circuits

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8418115B1 (en) * 2010-05-11 2013-04-09 Xilinx, Inc. Routability based placement for multi-die integrated circuits
US9098438B2 (en) * 2010-09-30 2015-08-04 Texas Instruments Incorporated Synchronized voltage scaling and device calibration
KR20120062281A (en) * 2010-12-06 2012-06-14 삼성전자주식회사 Semiconductor device of stacked structure having through-silicon-via and test method for the same
KR101747191B1 (en) 2011-01-14 2017-06-14 에스케이하이닉스 주식회사 Semiconductor Apparatus
US9543956B2 (en) * 2011-05-09 2017-01-10 Intel Corporation Systems and methods for configuring an SOPC without a need to use an external memory
CN103136394B (en) * 2011-11-28 2016-04-13 上海华虹宏力半导体制造有限公司 A kind of port laying method of module level layout design
US20130140688A1 (en) * 2011-12-02 2013-06-06 Chun-Hung Chen Through Silicon Via and Method of Manufacturing the Same
US9268738B2 (en) * 2012-02-24 2016-02-23 International Business Machines Corporation Three-dimensional permute unit for a single-instruction multiple-data processor
CN104321714B (en) 2012-03-16 2017-05-17 英特尔公司 At least one die produced, at least in part, from wafer, and including at least one replicated integrated circuit
CN102663204B (en) * 2012-04-25 2014-03-26 北京工业大学 Distance optimizing method of through silicon via (TSV) positions in three-dimensional (3D) integrated circuit automatic layout
US8924786B2 (en) * 2012-06-28 2014-12-30 Intel Corporation No-touch stress testing of memory I/O interfaces
US8853847B2 (en) * 2012-10-22 2014-10-07 International Business Machines Corporation Stacked chip module with integrated circuit chips having integratable and reconfigurable built-in self-maintenance blocks
US9612988B2 (en) * 2013-07-23 2017-04-04 International Business Machines Corporation Donor cores to improve integrated circuit yield
US9773754B2 (en) 2014-12-05 2017-09-26 Taiwan Semiconductor Manufacturing Co., Ltd. Input output for an integrated circuit
US10231324B2 (en) 2014-04-29 2019-03-12 Qualcomm Incorporated Staggered power structure in a power distribution network (PDN)
WO2016025755A1 (en) 2014-08-13 2016-02-18 R.R. Donnelley & Sons Company Method and apparatus for producing an electronic device
WO2016028905A1 (en) 2014-08-19 2016-02-25 R.R. Donnelley & Sons Company Apparatus and method for monitoring a package during transit
US9378326B2 (en) * 2014-09-09 2016-06-28 International Business Machines Corporation Critical region identification
US9245870B1 (en) 2014-10-17 2016-01-26 Qualcomm Incorporated Systems and methods for providing data channels at a die-to-die interface
JP5956708B1 (en) * 2015-11-30 2016-07-27 株式会社PEZY Computing DIE AND PACKAGE, DIE MANUFACTURING METHOD, AND PACKAGE GENERATION METHOD
EP3385858A4 (en) 2015-11-30 2018-12-26 Pezy Computing K.K. Die and package
US10379072B2 (en) 2016-01-04 2019-08-13 Cryovac, Llc Multiple detector apparatus and method for monitoring an environment
US9785881B2 (en) * 2016-02-15 2017-10-10 R.R. Donnelley & Sons Company System and method for producing an electronic device
US10342136B2 (en) 2016-09-23 2019-07-02 R.R. Donnelley & Sons Company Monitoring device
US10424921B2 (en) 2017-02-16 2019-09-24 Qualcomm Incorporated Die-to-die interface configuration and methods of use thereof
US10445692B2 (en) 2017-03-06 2019-10-15 Cryovac, Llc Monitoring device and method of operating a monitoring device to transmit data
EP3376539A1 (en) 2017-03-14 2018-09-19 HS Elektronik Systeme GmbH Stackable power module
NO343359B1 (en) 2017-05-02 2019-02-11 Numascale As Interconnect switch in multiprocessor systems
WO2018222877A1 (en) 2017-05-31 2018-12-06 R.R. Donnelley & Sons Company Electronic device, method and apparatus for producing an electronic device, and composition therefor
US10423751B2 (en) 2017-09-29 2019-09-24 International Business Machines Corporation Semiconductor package floating metal checks
US10423752B2 (en) 2017-09-29 2019-09-24 International Business Machines Corporation Semiconductor package metal shadowing checks
US10546096B2 (en) 2017-09-29 2020-01-28 International Business Machines Corporation Semiconductor package via stack checking
CN111386604B (en) * 2018-06-01 2023-12-19 富士电机株式会社 Semiconductor device with a semiconductor device having a plurality of semiconductor chips
TWI720572B (en) * 2018-08-03 2021-03-01 邁倫 渥克 Flexible, interruptible radial bus mounted with electronically addressable devices and producing method thereof
US11625245B2 (en) * 2018-09-28 2023-04-11 Intel Corporation Compute-in-memory systems and methods
CN109446677B (en) * 2018-11-02 2023-07-14 南京贝伦思网络科技股份有限公司 Universal platform based on network chip and construction method thereof
CN110348116B (en) * 2019-07-09 2022-12-20 北京艾达方武器装备技术研究所 Process manufacturing method of circuit module
US11217563B2 (en) 2019-10-24 2022-01-04 Apple Inc. Fully interconnected heterogeneous multi-layer reconstructed silicon device
US11238206B1 (en) 2021-03-26 2022-02-01 Xilinx, Inc. Partition wire assignment for routing multi-partition circuit designs
CN113283209B (en) * 2021-05-24 2023-01-31 海光信息技术股份有限公司 Interconnection line design method and device, chip, electronic device and computer-readable storage medium
CN115630702B (en) * 2022-12-23 2023-03-28 材料科学姑苏实验室 Multilayer superconducting quantum chip

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8089299B1 (en) * 2008-05-19 2012-01-03 Xilinx, Inc. Integrated circuit with through-die via interface for die stacking and cross-track routing

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5703747A (en) 1995-02-22 1997-12-30 Voldman; Steven Howard Multichip semiconductor structures with interchip electrostatic discharge protection, and fabrication methods therefore
JPH0992781A (en) * 1995-09-22 1997-04-04 Internatl Business Mach Corp <Ibm> Multichip semiconductor structure with integrated circuit and its preparation
IT1290505B1 (en) * 1997-03-28 1998-12-04 Sgs Thomson Microelectronics PROCEDURE FOR ASSEMBLING MODULES TO BUILD A COMPLEX INTEGRATED CIRCUIT AND RELATED MODULE ARCHITECTURE
US6300670B1 (en) * 1999-07-26 2001-10-09 Stmicroelectronics, Inc. Backside bus vias
US7649386B2 (en) * 2002-01-17 2010-01-19 Ozguz Volkan H Field programmable gate array utilizing dedicated memory stacks in a vertical layer format
US7112994B2 (en) * 2002-07-08 2006-09-26 Viciciv Technology Three dimensional integrated circuits
JP4248928B2 (en) * 2003-05-13 2009-04-02 ローム株式会社 Semiconductor chip manufacturing method, semiconductor device manufacturing method, semiconductor chip, and semiconductor device
DE102004060345A1 (en) 2003-12-26 2005-10-06 Elpida Memory, Inc. Semiconductor device with layered chips
JP4068616B2 (en) * 2003-12-26 2008-03-26 エルピーダメモリ株式会社 Semiconductor device
US7548567B2 (en) 2004-04-02 2009-06-16 Vladimir Kupershmidt Analog transmitter using an external cavity laser (ECL)
US7768314B2 (en) * 2004-05-12 2010-08-03 National University Corporation Okayama University Integrated circuit with multidimensional switch topology
KR100570514B1 (en) * 2004-06-18 2006-04-13 삼성전자주식회사 Manufacturing method for wafer level chip stack package
CN101013795A (en) * 2005-04-01 2007-08-08 K2光电子公司 Analog external cavity laser
US7382154B2 (en) 2005-10-03 2008-06-03 Honeywell International Inc. Reconfigurable network on a chip
JP5143451B2 (en) * 2007-03-15 2013-02-13 オンセミコンダクター・トレーディング・リミテッド Semiconductor device and manufacturing method thereof
KR100845006B1 (en) * 2007-03-19 2008-07-09 삼성전자주식회사 Chip-stacked package and method of manufacturing the same
JP2008251666A (en) 2007-03-29 2008-10-16 Tohoku Univ Three-dimensional structure semiconductor device
US7701252B1 (en) * 2007-11-06 2010-04-20 Altera Corporation Stacked die network-on-chip for FPGA
US7741156B2 (en) * 2008-05-27 2010-06-22 Stats Chippac, Ltd. Semiconductor device and method of forming through vias with reflowed conductive material
US7973555B1 (en) * 2008-05-28 2011-07-05 Xilinx, Inc. Configuration interface to stacked FPGA
US7930661B1 (en) * 2008-08-04 2011-04-19 Xilinx, Inc. Software model for a hybrid stacked field programmable gate array
US8932906B2 (en) * 2008-08-19 2015-01-13 Taiwan Semiconductor Manufacturing Company, Ltd. Through silicon via bonding structure
US7943411B2 (en) * 2008-09-10 2011-05-17 Analog Devices, Inc. Apparatus and method of wafer bonding using compatible alloy
US20110193212A1 (en) * 2010-02-08 2011-08-11 Qualcomm Incorporated Systems and Methods Providing Arrangements of Vias

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8089299B1 (en) * 2008-05-19 2012-01-03 Xilinx, Inc. Integrated circuit with through-die via interface for die stacking and cross-track routing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8732647B1 (en) * 2013-03-13 2014-05-20 Atrenta, Inc. Method for creating physical connections in 3D integrated circuits

Also Published As

Publication number Publication date
KR101182988B1 (en) 2012-09-18
JP5618603B2 (en) 2014-11-05
JP2010263203A (en) 2010-11-18
KR20100118508A (en) 2010-11-05
US20100271071A1 (en) 2010-10-28
US9495498B2 (en) 2016-11-15
CN101877342A (en) 2010-11-03
US20130009324A1 (en) 2013-01-10
US8330489B2 (en) 2012-12-11
CN101877342B (en) 2012-10-03

Similar Documents

Publication Publication Date Title
US9495498B2 (en) Universal inter-layer interconnect for multi-layer semiconductor stacks
US8445918B2 (en) Thermal enhancement for multi-layer semiconductor stacks
US8736068B2 (en) Hybrid bonding techniques for multi-layer semiconductor stacks
US11625522B2 (en) Method and apparatus for generating three-dimensional integrated circuit design
Stow et al. Cost-effective design of scalable high-performance systems using active and passive interposers
CN110085570B (en) Programmable interposer circuitry
US20200117627A1 (en) Stacked Semiconductor Device Assembly in Computer System
Emma et al. Is 3D chip technology the next growth engine for performance improvement?
JP5331427B2 (en) Semiconductor device
CN113764399B (en) Integrated circuit system, method of manufacturing integrated circuit, and storage medium
JP2012511263A (en) Parallel plane memory and processor combined in 3D microarchitecture system
CN109564914A (en) For stacking the stand-alone interface of silicon interconnection (SSI) Integration ofTechnology
CN115525592A (en) Modular peripheral tile for integrated circuit devices
Pangracious et al. Three-dimensional integration: A more than Moore technology
US8305789B2 (en) Memory/logic conjugate system
WO2021061949A1 (en) Fabricating active-bridge-coupled gpu chiplets
KR20220005603A (en) Network on Layer Enabled Architecture
JP2013521585A (en) Interconnect coupled to master device via at least two different connections
US20220320042A1 (en) Die stacking for modular parallel processors
Randall Cost-Driven Integration Architectures for Multi-Die Silicon Systems
CN117751696A (en) Multi-die stacked power delivery
Pionteck Lennart Bamberg Jan Moritz Joseph Alberto García-Ortiz

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE

AS Assignment

Owner name: GLOBALFOUNDRIES U.S. 2 LLC, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTERNATIONAL BUSINESS MACHINES CORPORATION;REEL/FRAME:036550/0001

Effective date: 20150629

AS Assignment

Owner name: GLOBALFOUNDRIES INC., CAYMAN ISLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GLOBALFOUNDRIES U.S. 2 LLC;GLOBALFOUNDRIES U.S. INC.;REEL/FRAME:036779/0001

Effective date: 20150910