US20120180678A1 - Seismic Explosive System - Google Patents

Seismic Explosive System Download PDF

Info

Publication number
US20120180678A1
US20120180678A1 US11/308,515 US30851506A US2012180678A1 US 20120180678 A1 US20120180678 A1 US 20120180678A1 US 30851506 A US30851506 A US 30851506A US 2012180678 A1 US2012180678 A1 US 2012180678A1
Authority
US
United States
Prior art keywords
signal
explosive
addressable switch
firing
fireset
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/308,515
Other languages
English (en)
Inventor
Philip Kneisl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schlumberger Technology Corp
Original Assignee
Schlumberger Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schlumberger Technology Corp filed Critical Schlumberger Technology Corp
Priority to US11/308,515 priority Critical patent/US20120180678A1/en
Assigned to SCHLUMBERGER TECHNOLOGY CORPORATION reassignment SCHLUMBERGER TECHNOLOGY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KNEISL, PHILIP
Priority to GB0703922A priority patent/GB2442975B/en
Priority to CA2580911A priority patent/CA2580911C/en
Priority to NO20071665A priority patent/NO339841B1/no
Priority to RU2007111803/28A priority patent/RU2457510C2/ru
Publication of US20120180678A1 publication Critical patent/US20120180678A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/02Generating seismic energy
    • G01V1/104Generating seismic energy using explosive charges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B3/00Blasting cartridges, i.e. case and explosive
    • F42B3/10Initiators therefor
    • F42B3/18Safety initiators resistant to premature firing by static electricity or stray currents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C15/00Arming-means in fuzes; Safety means for preventing premature detonation of fuzes or charges
    • F42C15/40Arming-means in fuzes; Safety means for preventing premature detonation of fuzes or charges wherein the safety or arming action is effected electrically
    • F42C15/42Arming-means in fuzes; Safety means for preventing premature detonation of fuzes or charges wherein the safety or arming action is effected electrically from a remote location, e.g. for controlled mines or mine fields
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D1/00Blasting methods or apparatus, e.g. loading or tamping
    • F42D1/04Arrangements for ignition
    • F42D1/045Arrangements for electric ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D1/00Blasting methods or apparatus, e.g. loading or tamping
    • F42D1/04Arrangements for ignition
    • F42D1/045Arrangements for electric ignition
    • F42D1/05Electric circuits for blasting
    • F42D1/055Electric circuits for blasting specially adapted for firing multiple charges with a time delay
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/02Generating seismic energy
    • G01V1/04Details
    • G01V1/06Ignition devices

Definitions

  • the present invention relates to an explosive system for seismic charges which is safe from detonation by radio frequency (RF) signals and electrostatic discharge (ESD).
  • RF radio frequency
  • ESD electrostatic discharge
  • seismic electric detonators typically function in less than 1 millisecond, and up to 1,000 detonators may be fired essentially simultaneously by a relatively low-voltage capacitor discharge. Because of their fast action, seismic electric detonators rely on a very sensitive primary explosive like lead styphnate, lead azide and diazodinitrophenol (DDNP). These seismic electric detonators can never be considered totally safe because they may be actuated by electrostatic discharge or stray voltage and are also susceptible to actuation by stray current and distant lightning strikes.
  • DDNP diazodinitrophenol
  • seismic charges are currently shipped from the factory without detonators, and the detonators and charges are assembled and combined in the field.
  • assembly of the charges and detonators in the field presents safety problems since RF signals and electrostatic discharge can cause detonation as the charges are being field-assembled.
  • An example of an exploding bridge wire (EBW) detonator is illustrated in U.S. Pat. No. 4,777,878.
  • An EBW detonator may, for example, employ a two electrode arrangement in the detonator and have an exploding bridge conductor between the two electrodes.
  • the exploding bridge is located at one end of a column of explosive material used in the device.
  • Within the column of explosive and spaced a distance away from the exploding bridge portion of the detonator is a shock reflector element on an inert but relatively dense material having a high shockwave impedance. The cooperative action of the exploding bridge and the shock reflector intensifies the shockwave propagated through the explosive and causes a detonation because of this intensification.
  • An EFI detonator includes an electrically conductive metal foil which is connected to a source of current.
  • the metal foil includes a narrow neck section that explodes or vaporizes when a high current is discharged quickly through the neck section.
  • the exploding neck section of the foil shears a small flier from a disk that is disposed in contact with the foil.
  • the flier travels or flies through a barrel to impact a secondary explosive, e.g., dynamite, to initiate a detonation.
  • EBW and EFI detonators contain only secondary explosives (e.g. HNS, Nona, and RDX), and require very high power to function, they are known to offer safety against electrostatic discharge, stray current and even lightening strike hazards. These detonators also have extremely short function times that meet or surpass the standard seismic requirement of less than 1 millisecond.
  • the disadvantage of this technology is the requirement of very high voltages, e.g., over one thousand volts, and extremely high currents, usually over one thousand amps to activate these devices.
  • the required voltage and current need only be applied for a very short period of time, e.g., 1-2 microseconds and is typically accomplished by the discharge of a high-voltage capacitor into a low-inductance firing circuit.
  • SCB semiconductor bridges
  • SCB's can be used in two ways. They can be placed in direct contact with sensitive pyrotechnic and primary explosives in which case their use offers only a slight improvement over typical hot-wire low-voltage detonators because they are still susceptible to stray voltages, currents and ESD.
  • the SCB can also be used to replace the metal foil bridge in a slapper type detonator. When used this way with only secondary explosives the resulting detonator is ESD safe.
  • an SCB slapper detonator is also coupled to an addressable switch, then the whole assembly becomes safe from stray voltages and currents and ESD.
  • initiation systems that do not contain primary explosives it is not required to have a physical barrier, shutter, that interrupts the initiation chain. Rather in these systems it is acceptable to require just two independent signals to arm the device and a third signal to fire the device. These signals can be mechanical or electrical. A further restriction on such non-primary systems is that at signal of at least 500 volts is required to fire the device.
  • a seismic explosive package which comprises a seismic charge, and an addressable switch for use in selecting that seismic charge for detonation.
  • a seismic explosive package according to the present invention further comprises a fireset which is interposed between the addressable switch and the seismic charge. The fireset is for receiving a firing voltage via the addressable switch and for using the firing voltage to produce an actuation voltage.
  • the actuation voltage may be formed by increasing the magnitude of the firing voltage, and the fireset may, for example, comprise a voltage multiplier for increasing the magnitude of the firing voltage.
  • a seismic explosive package according to the present invention further comprises a Detonating Device, which comprises a secondary explosive.
  • the Detonating Device may, for example, may be either an EBW detonator, an EFI detonator or a Semiconductor Bridge (SCB) Slapper Detonator, which is interposed between the fireset and the seismic charge.
  • the actuation voltage from the fireset is sufficient to cause the Detonating Device to detonate, which in turn detonates the seismic charge.
  • a system for detonating seismic explosives which comprises a plurality of explosive devices, as described above.
  • the plurality of explosive devices may be deployed in desired patterns at spaced intervals at or near the earth's surface, and a system according to the present invention may further comprise a base unit having a computer and a power supply for providing selection, firing and trigger signals to the plurality of explosive devices.
  • the base unit selects an explosive device for detonation by providing a selection signal to the addressable switch associated with that explosive device.
  • the base unit also provides the firing signal via the addressable switch to the fireset in the selected explosive device.
  • the actuation voltage is presented to the Detonating Device. This actuation voltage causes detonation of the Detonating Device which in turn causes detonation of the seismic charge.
  • FIG. 1 is a pictorial drawing illustrating a system for use in seismic exploration in accordance with the present invention.
  • FIG. 2 is a schematic diagram in partial block diagram form illustrating an explosive device in accordance with the present invention for use in seismic exploration.
  • Detonating Device means a device which contains only secondary explosives and which when detonated causes a seismic charge to detonate.
  • Examples of a Detonating Device include EBWs, EFIs and SBC slapper detonators; and
  • two items are “operative coupled” if they are directly connected or connected through an intermediate device.
  • System 100 comprises base unit 102 which includes a computer and a power supply for providing selection, firing and trigger signals to explosive packages 101 ( 1 ), 101 ( 2 ) . . . 101 (n), where n represents the number of explosive packages that are arranged in a predetermined pattern at or near the earth's surface.
  • Each of the explosive devices 101 ( 1 ), 101 ( 2 ), . . . 101 (n) are constructed as illustrated in FIG. 2 and described below.
  • Base unit 102 utilizes the computer therein to generate a selection signal or signals to select which explosive package 101 (i) will be detonated.
  • base unit 102 Following selection of the explosive package 101 (i) to be detonated, base unit 102 generates a firing signal which is received by the selected explosive device 101 (i). The receipt of a trigger signal by the selected explosive device causes seismic charge in the selected explosive device to be detonated.
  • Explosive package 101 (i) comprises seismic charge 204 which may, for example, be dynamite. Explosive package 101 (i) also comprises addressable switch 201 which, when selected by the selection signals from base unit, permits a firing signal to be presented to fireset 202 which is operatively coupled to the addressable switch 201 . The output of fireset package 102 is operatively coupled to Detonating Device 203 , which in turn is coupled to seismic charge 204 .
  • explosive package 101 (i) is coupled to base unit 102 by appropriate cabling 103 , and base unit 102 provides selection, firing and trigger signals to explosive package 101 (i) via cabling 103 .
  • a selection signal is first provided which selects the addressable switch associated with seismic charge 204 in explosive package 101 (i) for detonation.
  • a firing signal is provided by base unit 102 and this firing signal may, for example, be a voltage between 300 and 500 volts.
  • Addressable switch 201 which has been selected, allows the firing voltage to be presented to fireset 202 which uses the firing voltage to charge a capacitor to produce an actuation voltage.
  • the fireset may, for example, also comprise circuitry for increasing the magnitude of the firing voltage from base unit 102 to produce the actuation voltage.
  • This increase in firing voltage may, for example, be necessary when the Detonating Device is an EBW or EEI detonator and may be accomplished by using a voltage multiplier circuit in fireset 202 .
  • Such voltage multiplier circuitry is well known to those skilled in the art.
  • the output of fireset 202 is operatively coupled to the input of Detonating Device 203 , and when base unit 102 provides a trigger signal to the selected explosive device, the actuation voltage, which is present at the output of fireset 202 , is presented to Detonating Device 203 .
  • Detonating Device is thus detonated which in turn detonates seismic charge 204 .
  • An explosive package 101 (i) which is made in accordance with the present invention has an advantage over the prior art in that all explosive devices for use in a particular seismic operation may be assembled in a factory as opposed to being assembled in the field. Factory assembly of explosive package 101 (i) should not only be cheaper, but also safer than the field assembly of seismic charges which is currently practiced.
  • An explosive package in accordance with the present invention may also be safely transported and stored while assembled with its own circuitry for initiation; which is of great advantage to the seismic exploration industry.
  • Such devices have not previously been used or available to the seismic exploration community and are possible only by coupling several dissimilar technologies together to form a new invention.
  • This invention couples direct initiation of secondary explosive via EBW, EFI or SCB Slapper technology with the use of addressable switch technology and a seismic charge to create a seismic explosive system with an initiation train requiring two independent arming signals, and an independent firing signal, and an initiator (detonator) that requires more than 500 volts to function.
  • Such a system is safe from accidental initiation due to commonly encountered stray voltages, currents, electrostatic discharge and simple human errors.
  • the explosive devices 101 ( 1 ), 101 ( 2 ), . . . 101 (n) may be arranged in any pattern which the user deems appropriate for the seismic exploration task at hand.
  • a plurality of the explosive devices may, for example, be arranged in series with one another and the series connection of explosive devices may be arranged in parallel with one another.
  • the present inventive concept may be used in a detonator package for downhole operation, e.g, for detonating a perforating gun, jet cutter, propellant or other downhole device.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Acoustics & Sound (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Air Bags (AREA)
  • Control Of Vending Devices And Auxiliary Devices For Vending Devices (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Toys (AREA)
US11/308,515 2006-03-31 2006-03-31 Seismic Explosive System Abandoned US20120180678A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US11/308,515 US20120180678A1 (en) 2006-03-31 2006-03-31 Seismic Explosive System
GB0703922A GB2442975B (en) 2006-03-31 2007-03-01 Seismic explosive system
CA2580911A CA2580911C (en) 2006-03-31 2007-03-06 Seismic explosive system
NO20071665A NO339841B1 (no) 2006-03-31 2007-03-29 Seismisk ladningspakke og system for anvendelse i seismiske undersøkelser, og fremgangsmåte for seismisk undersøkelse
RU2007111803/28A RU2457510C2 (ru) 2006-03-31 2007-03-30 Сейсмическая взрывная система

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/308,515 US20120180678A1 (en) 2006-03-31 2006-03-31 Seismic Explosive System

Publications (1)

Publication Number Publication Date
US20120180678A1 true US20120180678A1 (en) 2012-07-19

Family

ID=37965696

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/308,515 Abandoned US20120180678A1 (en) 2006-03-31 2006-03-31 Seismic Explosive System

Country Status (5)

Country Link
US (1) US20120180678A1 (ru)
CA (1) CA2580911C (ru)
GB (1) GB2442975B (ru)
NO (1) NO339841B1 (ru)
RU (1) RU2457510C2 (ru)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160084048A1 (en) * 2013-05-03 2016-03-24 Schlumberger Technology Corporation Cohesively Enhanced Modular Perforating Gun
CN106542940A (zh) * 2016-08-26 2017-03-29 湖北凯龙化工集团股份有限公司 一种用于热塑型震源药柱的冷却挂柱机构
CN106917602A (zh) * 2015-12-24 2017-07-04 中国石油天然气股份有限公司 放喷管线
US10151181B2 (en) 2016-06-23 2018-12-11 Schlumberger Technology Corporation Selectable switch to set a downhole tool
CN110243238A (zh) * 2018-03-09 2019-09-17 南京理工大学 低能触发Si基开关集成爆炸箔起爆装置及其制备方法
US10794159B2 (en) 2018-05-31 2020-10-06 DynaEnergetics Europe GmbH Bottom-fire perforating drone
CN112346112A (zh) * 2020-09-18 2021-02-09 中国石油天然气集团有限公司 井炮遥爆系统扩容装置、方法及井炮遥爆系统
CN112554852A (zh) * 2020-12-25 2021-03-26 西安茂泽电子科技有限公司 用于井下射孔雷管起爆的自适应智能选发开关
US11377935B2 (en) 2018-03-26 2022-07-05 Schlumberger Technology Corporation Universal initiator and packaging
US11408279B2 (en) 2018-08-21 2022-08-09 DynaEnergetics Europe GmbH System and method for navigating a wellbore and determining location in a wellbore
US11566500B2 (en) 2019-02-08 2023-01-31 Schlumberger Technology Corporation Integrated loading tube
CN115790303A (zh) * 2022-10-31 2023-03-14 维纳芯科技(无锡)有限公司 一种基于电子雷管的地勘系统及其工作方法
US11661824B2 (en) 2018-05-31 2023-05-30 DynaEnergetics Europe GmbH Autonomous perforating drone
US11834934B2 (en) 2019-05-16 2023-12-05 Schlumberger Technology Corporation Modular perforation tool
US11834920B2 (en) 2019-07-19 2023-12-05 DynaEnergetics Europe GmbH Ballistically actuated wellbore tool
USD1016958S1 (en) 2020-09-11 2024-03-05 Schlumberger Technology Corporation Shaped charge frame
US12000267B2 (en) 2021-09-24 2024-06-04 DynaEnergetics Europe GmbH Communication and location system for an autonomous frack system
US12098623B2 (en) 2020-11-13 2024-09-24 Schlumberger Technology Corporation Oriented-perforation tool

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU168303U1 (ru) * 2016-09-06 2017-01-30 Общество с ограниченной ответственностью "Сервисная Группа Компаний "РЕГИОН" Универсальный заряд сейсмический
GB2549559B (en) 2016-09-26 2019-06-12 Guardian Global Tech Limited Downhole firing tool
US11268376B1 (en) 2019-03-27 2022-03-08 Acuity Technical Designs, LLC Downhole safety switch and communication protocol
US11619119B1 (en) 2020-04-10 2023-04-04 Integrated Solutions, Inc. Downhole gun tube extension

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5477785A (en) * 1995-01-27 1995-12-26 The Ensign-Bickford Company Well pipe perforating gun
US7007756B2 (en) * 2002-11-22 2006-03-07 Schlumberger Technology Corporation Providing electrical isolation for a downhole device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5714712A (en) * 1996-10-25 1998-02-03 The Ensign-Bickford Company Explosive initiation system
US6283227B1 (en) * 1998-10-27 2001-09-04 Schlumberger Technology Corporation Downhole activation system that assigns and retrieves identifiers
GB2388420B (en) * 2001-11-27 2004-05-12 Schlumberger Holdings Integrated activating device for explosives
US8091477B2 (en) * 2001-11-27 2012-01-10 Schlumberger Technology Corporation Integrated detonators for use with explosive devices
GB2405423A (en) * 2003-08-28 2005-03-02 Schlumberger Holdings Perforator tool with initiator activated by unique identification command

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5477785A (en) * 1995-01-27 1995-12-26 The Ensign-Bickford Company Well pipe perforating gun
US7007756B2 (en) * 2002-11-22 2006-03-07 Schlumberger Technology Corporation Providing electrical isolation for a downhole device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160084048A1 (en) * 2013-05-03 2016-03-24 Schlumberger Technology Corporation Cohesively Enhanced Modular Perforating Gun
US11421514B2 (en) * 2013-05-03 2022-08-23 Schlumberger Technology Corporation Cohesively enhanced modular perforating gun
CN106917602A (zh) * 2015-12-24 2017-07-04 中国石油天然气股份有限公司 放喷管线
US10151181B2 (en) 2016-06-23 2018-12-11 Schlumberger Technology Corporation Selectable switch to set a downhole tool
CN106542940A (zh) * 2016-08-26 2017-03-29 湖北凯龙化工集团股份有限公司 一种用于热塑型震源药柱的冷却挂柱机构
CN110243238A (zh) * 2018-03-09 2019-09-17 南京理工大学 低能触发Si基开关集成爆炸箔起爆装置及其制备方法
US11377935B2 (en) 2018-03-26 2022-07-05 Schlumberger Technology Corporation Universal initiator and packaging
US10794159B2 (en) 2018-05-31 2020-10-06 DynaEnergetics Europe GmbH Bottom-fire perforating drone
US11661824B2 (en) 2018-05-31 2023-05-30 DynaEnergetics Europe GmbH Autonomous perforating drone
US11408279B2 (en) 2018-08-21 2022-08-09 DynaEnergetics Europe GmbH System and method for navigating a wellbore and determining location in a wellbore
US11566500B2 (en) 2019-02-08 2023-01-31 Schlumberger Technology Corporation Integrated loading tube
US11834934B2 (en) 2019-05-16 2023-12-05 Schlumberger Technology Corporation Modular perforation tool
US11834920B2 (en) 2019-07-19 2023-12-05 DynaEnergetics Europe GmbH Ballistically actuated wellbore tool
US12110751B2 (en) 2019-07-19 2024-10-08 DynaEnergetics Europe GmbH Ballistically actuated wellbore tool
USD1016958S1 (en) 2020-09-11 2024-03-05 Schlumberger Technology Corporation Shaped charge frame
CN112346112A (zh) * 2020-09-18 2021-02-09 中国石油天然气集团有限公司 井炮遥爆系统扩容装置、方法及井炮遥爆系统
US12098623B2 (en) 2020-11-13 2024-09-24 Schlumberger Technology Corporation Oriented-perforation tool
CN112554852A (zh) * 2020-12-25 2021-03-26 西安茂泽电子科技有限公司 用于井下射孔雷管起爆的自适应智能选发开关
US12000267B2 (en) 2021-09-24 2024-06-04 DynaEnergetics Europe GmbH Communication and location system for an autonomous frack system
CN115790303A (zh) * 2022-10-31 2023-03-14 维纳芯科技(无锡)有限公司 一种基于电子雷管的地勘系统及其工作方法

Also Published As

Publication number Publication date
NO20071665L (no) 2007-10-01
CA2580911C (en) 2014-05-13
GB2442975A (en) 2008-04-23
NO339841B1 (no) 2017-02-06
RU2457510C2 (ru) 2012-07-27
CA2580911A1 (en) 2007-09-30
GB2442975B (en) 2008-10-15
GB0703922D0 (en) 2007-04-11
RU2007111803A (ru) 2008-10-10

Similar Documents

Publication Publication Date Title
CA2580911C (en) Seismic explosive system
US8746144B2 (en) Electronic detonator system
US5435248A (en) Extended range digital delay detonator
US5505134A (en) Perforating gun having a plurality of charges including a corresponding plurality of exploding foil or exploding bridgewire initiator apparatus responsive to a pulse of current for simultaneously detonating the plurality of charges
US5714712A (en) Explosive initiation system
US5377592A (en) Impulse signal delay unit
US5094167A (en) Shape charge for a perforating gun including an integrated circuit detonator and wire contactor responsive to ordinary current for detonation
US4311096A (en) Electronic blasting cap
EP2649405B1 (en) Detonation of explosives
US5094166A (en) Shape charge for a perforating gun including integrated circuit detonator and wire contactor responsive to ordinary current for detonation
US7992494B2 (en) Detonator ignition protection circuit
US7191706B2 (en) Optically triggered fire set/detonator system
US5144893A (en) Safe ordnance initiation system
US8037824B1 (en) Exploding foil initiator actuated cartridge
EP0396465A1 (en) Ignition system for shaped charge perforating gun
US3208380A (en) Electric blasting cap assembly
CA2599056C (en) A perforating gun having a plurality of charges
Gaikwad et al. Miniature Integrated Semiconductor Bridge Based Chip for Explosive Initiation
WO1995020746A1 (en) Autonomous electric detonator

Legal Events

Date Code Title Description
AS Assignment

Owner name: SCHLUMBERGER TECHNOLOGY CORPORATION, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KNEISL, PHILIP;REEL/FRAME:017876/0708

Effective date: 20060705

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION