US20120178739A1 - Lactam compounds useful as protein kinase inhibitors - Google Patents

Lactam compounds useful as protein kinase inhibitors Download PDF

Info

Publication number
US20120178739A1
US20120178739A1 US13/419,663 US201213419663A US2012178739A1 US 20120178739 A1 US20120178739 A1 US 20120178739A1 US 201213419663 A US201213419663 A US 201213419663A US 2012178739 A1 US2012178739 A1 US 2012178739A1
Authority
US
United States
Prior art keywords
optionally substituted
aliphatic
ring
independently
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/419,663
Inventor
Christopher Blackburn
Christopher F. Claiborne
Courtney A. Cullis
Natalie A. Dales
Michael Patane
Matthew Stirling
Omar Stradella
Gabriel S. Weatherhead
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Millennium Pharmaceuticals Inc
Original Assignee
Millennium Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Millennium Pharmaceuticals Inc filed Critical Millennium Pharmaceuticals Inc
Priority to US13/419,663 priority Critical patent/US20120178739A1/en
Publication of US20120178739A1 publication Critical patent/US20120178739A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/12Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains three hetero rings
    • C07D491/14Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains three hetero rings
    • C07D471/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/12Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
    • C07D495/14Ortho-condensed systems

Definitions

  • the present invention relates to inhibitors of protein kinases.
  • the invention also provides pharmaceutical compositions comprising the compounds of the invention and methods of using the compositions in the treatment of various diseases.
  • Protein kinases constitute a large family of structurally related enzymes that effect the transfer of a phosphate group from a nucleoside triphosphate to a protein acceptor.
  • protein kinase activity has been implicated in a number of disease states. Accordingly, protein kinase targets have attracted substantial drug discovery efforts in recent years, with several protein kinase inhibitors achieving regulatory approval (reviewed in Fischer, Curr. Med. Chem., 11:1563 (2004); Dancey and Sausville, Nature Rev. Drug Disc., 2:296 (2003)).
  • Mitosis is a stage in the cell cycle during which a series of complex events ensure the fidelity of chromosome separation into two daughter cells.
  • Several current cancer therapies including the taxanes and vinca alkaloids, act to inhibit the mitotic machinery. Mitotic progression is largely regulated by proteolysis and by phosphorylation events that are mediated by mitotic kinases.
  • Aurora kinase family members e.g., Aurora A, Aurora B, Aurora C
  • regulate mitotic progression through modulation of centrosome separation, spindle dynamics, spindle assembly checkpoint, chromosome alignment, and cytokinesis (Dutertre et al., Oncogene, 21: 6175 (2002); Berdnik et al., Curr.
  • PLK is a serine/threonine protein kinase that plays a key role in cell cycle control. PLK controls entry and progression through mitosis at multiple stages by regulating centrosome maturation, activation of initiating factors, degradation of inhibitory components, chromosome condensation, and exit from mitosis (reviewed in Barr et al., Nature Reviews Mol Cell Biol., 5; 429 (2004)). PLK has been reported to be overexpressed in numerous cancers such as melanoma, ovarian, colorectal, lung and squamous cell carcinoma of the head and neck. Increased levels of expression are additionally correlated with poor prognosis and survival.
  • Anti-mitotic drugs that bind to tubulin are currently utilized as chemotherapeutic drugs.
  • Tubulin regulates cellular processes outside of mitosis therefore these drugs offer no selectivity towards cancer cells and are toxic to normal cells.
  • Cell cycle checkpoints are regulatory pathways that control the order and timing of cell cycle transitions. They ensure that critical events such as DNA replication and chromosome segregation are completed in high fidelity.
  • the regulation of these cell cycle checkpoints is a critical determinant of the manner in which tumor cells respond to many chemotherapies and radiation.
  • Many effective cancer therapies work by causing DNA damage; however, resistance to these agents remains a significant limitation in the treatment of cancer.
  • One important mechanism leading to drug resistance is the activation of a checkpoint pathway that arrests the cell cycle to provide time for repair and induces the transcription of genes that facilitate repair. Cell cycle progression is prevented, and immediate cell death of the damaged cell is avoided.
  • inhibitors of protein kinases including Chk-1, Aurora, and PLK.
  • Such inhibitors are useful for treating various diseases or conditions associated with protein kinase activity, and are especially needed in view of the inadequate treatments currently available for many of these disorders.
  • the present invention provides compounds that are effective inhibitors of protein kinases, including Chk-1, Aurora kinase, and PLK. These compounds are useful for inhibiting kinase activity in vitro and in vivo, and are especially useful for the treatment of various cell proliferative diseases.
  • aliphatic or “aliphatic group”, as used herein, means a substituted or unsubstituted straight-chain, branched or cyclic C 1-12 hydrocarbon, which is completely saturated or which contains one or more units of unsaturation, but which is not aromatic.
  • suitable aliphatic groups include substituted or unsubstituted linear, branched or cyclic alkyl, alkenyl, alkynyl groups and hybrids thereof, such as (cylcoalkyl)alkyl, (cycloalkenyl)alkyl or (cycloalkyl)alkenyl.
  • the aliphatic group has 1 to 12, 1 to 8, 1 to 6, 1 to 4, or 1 to 3 carbons.
  • alkyl refers to a straight and branched chain aliphatic group having from 1 to 12 carbon atoms.
  • alkyl will be used when the carbon atom attaching the aliphatic group to the rest of the molecule is a saturated carbon atom.
  • an alkyl group may include unsaturation at other carbon atoms.
  • alkyl groups include, without limitation, methyl, ethyl, propyl, allyl, propargyl, butyl, pentyl, and hexyl.
  • alkenyl will be used when the carbon atom attaching the aliphatic group to the rest of the molecule forms part of a carbon-carbon double bond.
  • Alkenyl groups include, without limitation, vinyl, 1-propenyl, 1-butenyl, 1-pentenyl, and 1-hexenyl.
  • alkynyl will be used when the carbon atom attaching the aliphatic group to the rest of the molecule forms part of a carbon-carbon triple bond.
  • Alkynyl groups include, without limitation, ethynyl, 1-propynyl, 1-butynyl, 1-pentynyl, and 1-hexynyl.
  • cycloaliphatic used alone or as part of a larger moiety, refers to a saturated or partially unsaturated cyclic aliphatic ring system having from 3 to about 14 members, wherein the aliphatic ring system is optionally substituted.
  • the cycloaliphatic is a monocyclic hydrocarbon having 3-8 or 3-6 ring carbon atoms.
  • Nonlimiting examples include cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, cycloheptyl, cycloheptenyl, cyclooctyl, cyclooctenyl, and cyclooctadienyl.
  • the cycloaliphatic is a bridged or fused bicyclic hydrocarbon having 6-12, 6-10, or 6-8 ring carbon atoms, wherein any individual ring in the bicyclic ring system has 3-8 members.
  • two adjacent substituents on the cycloaliphatic ring taken together with the intervening ring atoms, form an optionally substituted fused 5- to 6-membered aromatic or 3- to 8-membered non-aromatic ring having 0-3 ring heteroatoms selected from the group consisting of O, N, and S.
  • cycloaliphatic includes aliphatic rings that are fused to one or more aryl, heteroaryl, or heterocyclyl rings.
  • Nonlimiting examples include indanyl, 5,6,7,8-tetrahydro-quinoxalinyl, decahydronaphthyl, or tetrahydronaphthyl, where the radical or point of attachment is on the aliphatic ring.
  • cycloaliphatic may be used interchangeably with the terms “carbocycle”, “carbocyclyl”, “carbocyclo”, or “carbocyclic”.
  • aryl and “ar-”, used alone or as part of a larger moiety e.g., “aralkyl”, “aralkoxy”, or “aryloxyalkyl”, refer to a C 6 to C 14 aromatic hydrocarbon, comprising one to three rings, each of which is optionally substituted.
  • the aryl group is a C 6-10 aryl group.
  • Aryl groups include, without limitation, phenyl, naphthyl, and anthracenyl.
  • two adjacent substituents on the aryl ring taken together with the intervening ring atoms, form an optionally substituted fused 5- to 6-membered aromatic or 4- to 8-membered non-aromatic ring having 0-3 ring heteroatoms selected from the group consisting of O, N, and S.
  • aryl includes groups in which an aromatic ring is fused to one or more heteroaryl, cycloaliphatic, or heterocyclyl rings, where the radical or point of attachment is on the aromatic ring.
  • Nonlimiting examples of such fused ring systems include indolyl, isoindolyl, benzothienyl, benzofuranyl, dibenzofuranyl, indazolyl, benzimidazolyl, benzthiazolyl, quinolyl, isoquinolyl, cinnolinyl, phthalazinyl, quinazolinyl, quinoxalinyl, carbazolyl, acridinyl, phenazinyl, phenothiazinyl, phenoxazinyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, fluorenyl, indanyl, phenanthridinyl, tetrahydronaphthyl, indolinyl, phenoxazinyl, benzodioxanyl, and benzodioxolyl.
  • aryl group may be mono-, bi-, tri-, or polycyclic, preferably mono-, bi-, or tricyclic, more preferably mono- or bicyclic.
  • aryl may be used interchangeably with the terms “aryl group”, “aryl moiety”, and “aryl ring”.
  • an “aralkyl” or “arylalkyl” group comprises an aryl group covalently attached to an alkyl group, either of which independently is optionally substituted.
  • the aralkyl group is C 6-10 aryl(C 1-6 )alkyl, C 6-10 aryl(C 1-4 )alkyl, or C 6-10 aryl(C 1-3 )alkyl, including, without limitation, benzyl, phenethyl, and naphthylmethyl.
  • heteroaryl and “heteroar-”, used alone or as part of a larger moiety, e.g., heteroaralkyl, or “heteroaralkoxy”, refer to groups having 5 to 14 ring atoms, preferably 5, 6, 9, or 10 ring atoms; having 6, 10, or 14 it electrons shared in a cyclic array; and having, in addition to carbon atoms, from one to four heteroatoms.
  • heteroatom refers to nitrogen, oxygen, or sulfur, and includes any oxidized form of nitrogen or sulfur, and any quaternized form of a basic nitrogen.
  • Heteroaryl groups include, without limitation, thienyl, furanyl, pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, oxazolyl, isoxazolyl, oxadiazolyl, thiazolyl, isothiazolyl, thiadiazolyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, indolizinyl, purinyl, naphthyridinyl, and pteridinyl.
  • heteroaryl taken together with the intervening ring atoms, form an optionally substituted fused 5- to 6-membered aromatic or 4- to 8-membered non-aromatic ring having 0-3 ring heteroatoms selected from the group consisting of O, N, and S.
  • heteroaryl and “heteroar-”, as used herein, also include groups in which a heteroaromatic ring is fused to one or more aryl, cycloaliphatic, or heterocyclyl rings, where the radical or point of attachment is on the heteroaromatic ring.
  • Nonlimiting examples include indolyl, isoindolyl, benzothienyl, benzofuranyl, dibenzofuranyl, indazolyl, benzimidazolyl, benzthiazolyl, quinolyl, isoquinolyl, cinnolinyl, phthalazinyl, quinazolinyl, quinoxalinyl, 4H-quinolizinyl, carbazolyl, acridinyl, phenazinyl, phenothiazinyl, phenoxazinyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, and pyrido[2,3-b]-1,4-oxazin-3(4H)-one.
  • a heteroaryl group may be mono-, bi-, tri-, or polycyclic, preferably mono-, bi-, or tricyclic, more preferably mono- or bicyclic.
  • heteroaryl may be used interchangeably with the terms “heteroaryl ring”, “heteroaryl group”, or “heteroaromatic”, any of which terms include rings that are optionally substituted.
  • heteroarylkyl refers to an alkyl group substituted by a heteroaryl, wherein the alkyl and heteroaryl portions independently are optionally substituted.
  • heterocycle As used herein, the terms “heterocycle”, “heterocyclyl”, “heterocyclic radical”, and “heterocyclic ring” are used interchangeably and refer to a stable 3- to 7-membered monocyclic, or to a fused 7- to 10-membered or bridged 6- to 10-membered bicyclic heterocyclic moiety that is either saturated or partially unsaturated, and having, in addition to carbon atoms, one or more, preferably one to four, heteroatoms, as defined above.
  • nitrogen includes a substituted nitrogen.
  • heterocyclyl ring having 1-3 heteroatoms selected from oxygen, sulfur or nitrogen
  • the nitrogen may be N (as in 3,4-dihydro-2H-pyrrolyl), NH (as in pyrrolidinyl) or + NR (as in N-substituted pyrrolidinyl).
  • a heterocyclic ring can be attached to its pendant group at any, heteroatom or carbon atom that results in a stable structure, and any of the ring atoms can be optionally substituted.
  • saturated or partially unsaturated heterocyclic radicals include, without limitation, tetrahydrofuranyl, tetrahydrothienyl, pyrrolidinyl, pyrrolidonyl, piperidinyl, pyrrolinyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, decahydroquinolinyl, oxazolidinyl, piperazinyl, dioxanyl, dioxolanyl, diazepinyl, oxazepinyl, thiazepinyl, morpholinyl, and quinuclidinyl.
  • two adjacent substituents on a heterocyclic ring taken together with the intervening ring atoms, for an optionally substituted fused 5- to 6-membered aromatic or 3- to 8-membered non-aromatic ring having 0-3 ring heteroatoms selected from the group consisting of O, N, and S.
  • heterocycle used interchangeably herein, and include groups in which a heterocyclyl ring is fused to one or more aryl, heteroaryl, or cycloaliphatic rings, such as indolinyl, 3H-indolyl, chromanyl, phenanthridinyl, or tetrahydroquinolinyl, where the radical or point of attachment is on the heterocyclyl ring.
  • a heterocyclyl group may be mono-, bi-, tri-, or polycyclic, preferably mono-, bi-, or tricyclic, more preferably mono- or bicyclic.
  • heterocyclylalkyl refers to an alkyl group substituted by a heterocyclyl, wherein the alkyl and heterocyclyl portions independently are optionally substituted.
  • partially unsaturated refers to a ring moiety that includes at least one double or triple bond between ring atoms.
  • the term “partially unsaturated” is intended to encompass rings having multiple sites of unsaturation, but is not intended to include aryl or heteroaryl moieties, as herein defined.
  • haloaliphatic refers to an aliphatic, alkyl, alkenyl or alkoxy group, as the case may be, which is substituted with one or more halogen atoms.
  • halogen or “halo” means F, Cl, Br, or I.
  • fluoroaliphatic refers to a haloaliphatic wherein the halogen is fluoro.
  • linker group means an organic moiety that connects two parts of a compound.
  • Linkers typically comprise an atom such as oxygen or sulfur, a unit such as —NH—, —CH 2 —, —C(O)—, —C(O)NH—, or a chain of atoms, such as an alkylene chain.
  • the molecular mass of a linker is typically in the range of about 14 to 200, preferably in the range of 14 to 96 with a length of up to about six atoms.
  • the linker is a C 1-6 alkylene chain.
  • alkylene refers to a bivalent alkyl group.
  • An “alkylene chain” is a polymethylene group, i.e., —(CH 2 ) n —, wherein n is a positive integer, preferably from 1 to 6, from 1 to 4, from 1 to 3, from 1 to 2, or from 2 to 3.
  • a substituted alkylene chain is a polymethylene group in which one or more methylene hydrogen atoms is replaced with a substituent. Suitable substituents include those described below for a substituted aliphatic group.
  • An alkylene chain also may be substituted at one or more positions with an aliphatic group or a substituted aliphatic group.
  • An alkylene chain also can be optionally interrupted by a functional group.
  • An alkylene chain is “interrupted” by a functional group when an internal methylene unit is replaced with the functional group.
  • suitable “interrupting functional groups” include —C(R*) ⁇ C(R*)—, —C ⁇ C—, —O—, —S—, —S(O)—, —S(O) 2 —, —S(O) 2 N(R + )—, —N(R*)—, —N(R + )CO—, —N(R + )C(O)N(R + )—, —N(R + )CO 2 —, —C(O)N(R + )—, —C(O)—, —C(O)—C(O)—, —CO 2 —, —OC(O)—, —OC(O)O—, —OC(O)N(R + —, —C
  • Each R + independently, is hydrogen or an optionally substituted aliphatic, aryl, heteroaryl, or heterocyclyl group, or two R + on the same nitrogen atom, taken together with the nitrogen atom, form a 5-8 membered aromatic or non-aromatic ring having, in addition to the nitrogen atom, 0-2 ring heteroatoms selected from N, O, and S.
  • Each R* independently is hydrogen or an optionally substituted aliphatic, aryl, heteroaryl, or heterocyclyl group.
  • Examples of C 3-6 alkylene chains that have been “interrupted” with —O— include —CH 2 OCH 2 —, —CH 2 —O—(CH 2 ) 2 —, —CH 2 —O—(CH 2 ) 3 —, —CH 2 —O—(CH 2 ) 4 —, —(CH 2 ) 2 OCH 2 —, —(CH 2 ) 2 O(CH 2 ) 2 —, —(CH 2 ) 2 O(CH 2 ) 3 —, —(CH 2 ) 3 O(CH 2 )—, —(CH 2 ) 3 O(CH 2 ) 2 —, and —(CH 2 ) 4 O(CH 2 )—.
  • alkylene chains that are “interrupted” with functional groups include —CH 2 ZCH 2 —, —CH 2 Z(CH 2 ) 2 —, —CH 2 Z(CH 2 ) 3 —, —CH 2 Z(CH 2 ) 4 —, —(CH 2 ) 2 ZCH 2 —, —(CH 2 ) 2 Z(CH 2 ) 2 —, —(CH 2 ) 2 Z(CH 2 ) 3 —, —(CH 2 ) 3 Z(CH 2 )—, —(CH 2 ) 3 Z(CH 2 ) 2 —, and —(CH 2 ) 4 Z(CH 2 )—, wherein Z is one of the “interrupting” functional groups listed above.
  • a stable or chemically feasible compound is one in which the chemical structure is not substantially altered when kept at a temperature from about ⁇ 80° C. to about +40° C., preferably from about ⁇ 20° C. to about +40° C., in the absence of moisture or other chemically reactive conditions, for at least a week, or a compound which maintains its integrity long enough to be useful for therapeutic or prophylactic administration to a patient.
  • substituted means that a hydrogen radical of the designated moiety is replaced with the radical of a specified substituent, provided that the substitution results in a stable or chemically feasible compound.
  • substituents refers to a number of substituents that equals from one to the maximum number of substituents possible based on the number of available bonding sites, provided that the above conditions of stability and chemical feasibility are met.
  • an optionally substituted group may have a substituent at each substitutable position of the group, and the substituents may be either the same or different.
  • the term “independently selected” means that the same or different values may be selected for multiple instances of a given variable in a single compound.
  • each substituent is selected from the group of defined values for R 2h , and the two values selected may be the same or different.
  • aryl including the aryl moiety in aralkyl, aralkoxy, aryloxyalkyl and the like
  • heteroaryl including the heteroaryl moiety in heteroaralkyl and heteroaralkoxy and the like
  • Suitable substituents on the unsaturated carbon atom of an aryl or heteroaryl group include -halo, —NO 2 , —CN, —R*, —C(R*) ⁇ C(R*) 2 , —C ⁇ C—R*, —OR*, —SR o , —S(O)R o , —SO 2 R o , —SO 3 R*, —SO 2 N(R + ) 2 , —N(R +) 2 , —NR + C(O)R*, —NR+C(O)N(R + ) 2 , —NR + CO 2 R o , —O—CO 2 R*, —OC(O)N(R + ) 2 , —O—C(O)R*, —CO 2 R*, —C(O)—C(O)R*, —C(O)N(R + ) 2 , —C(O)N(R + ) 2
  • An aliphatic group or a non-aromatic heterocyclic ring may be substituted with one or more substituents.
  • suitable substituents on the saturated carbon of an aliphatic group or of a non-aromatic heterocyclic ring include, without limitation, those listed above for the unsaturated carbon of an aryl or heteroaryl group and the following: ⁇ O, ⁇ C(R*) 2 , ⁇ N—N(R*) 2 , ⁇ N—OR*, ⁇ N—NHC(O)R*, ⁇ N—NHCO 2 R o , ⁇ N—NHSO 2 R o , or ⁇ N—R*, where each R* and R o is as defined above.
  • Suitable substituents on the nitrogen atom of a non-aromatic heterocyclic ring include —R*, —N(R*) 2 , —C(O)R*, —CO 2 R*, —C(O)—C(O)R* —C(O)CH 2 C(O)R*, —SO 2 R*, —SO 2 N(R*) 2 , —C( ⁇ S)N(R*) 2 , —C( ⁇ NH)—N(R*) 2 , and —NR*SO 2 R*; wherein each R* is as defined above.
  • structures depicted herein are also meant to include compounds which differ only in the presence of one or more isotopically enriched atoms.
  • compounds having the present structure except for the replacement of a hydrogen atom by a deuterium or tritium, or the replacement of a carbon atom by a 13 C- or 14 C-enriched carbon are within the scope of the invention.
  • solvates of the compounds disclosed herein.
  • the term “solvate” means a physical association of a compound of this invention with one or more solvent molecules. This physical association includes hydrogen bonding. In certain instances, the solvate will be capable of isolation, for example when one or more solvent molecules are incorporated in the crystal lattice of the crystalline solid. “Solvate” encompasses both solution-phase and isolable solvates. Representative solvates include hydrates, ethanolates, and methanolates.
  • the term “pharmaceutically acceptable salt” refers to those salts which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio.
  • Y 1 is N or CH and Y 2 is N or CR e , provided that at least one of Y 1 and Y 2 is N.
  • the variable R e is hydrogen, halo, —NO 2 , —CN, —C(R 5 ) ⁇ C(R 5 ) 2 , —C(R 5 ) ⁇ C(R 5 )(R 10 ), —OR 5 , —N(R 4 ) 2 , —NR 4 C(O)R 5 , —NR 4 C(O)N(R 4 ) 2 , —NR 4 CO 2 R 6 , —CO 2 R 5 , —C(O)R 5 , —C(O)N(R 4 ) 2 , —N(R 4 )SO 2 R 6 , —N(R 4 )SO 2 N(R 4 ) 2 , or an optionally substituted C 1-4
  • One embodiment of the invention relates to a compound of formula (I), wherein Y 2 is CR e and R e is hydrogen, halo, C 14 aliphatic, C 1-4 fluoroaliphatic, —R 2e , -T 3 —R 1e , -T 3 —R 2e , —V 2 -T 3 —R 1e , or—V 2 -T 3 —R 2e .
  • the variables V 2 , T 3 , R 1e , R 2e have the values described below.
  • V 2 is —C(R 5 ) ⁇ C(R 5 )— or —C ⁇ C—.
  • T 3 is a C 1-4 alkylene chain optionally substituted with one or two R 3 . In some embodiments, T 3 is a C 1-3 alkylene chain.
  • R 1e is an optionally substituted aryl, heteroaryl, heterocyclyl, or cycloaliphatic ring.
  • R 2e is —NO 2 , —CN, —C(R 5 ) ⁇ C(R 5 ) 2 , —C(R 5 ) ⁇ C(R 5 )(R 10 ), —OR 5 , —N(R 4 ) 2 , —NR 4 C(O)R 5 , —NR 4 C(O)N(R 4 ) 2 , —NR 4 CO 2 R 6 , —CO 2 R 5 , —C(O)R 5 , —C(O)N(R 4 ) 2 , —N(R 4 )SO 2 R 6 , or —N(R 4 )SO 2 N(R 4 ) 2 .
  • R 2e is —OR 5 , —N(R 4 ) 2 , —CN, —CO 2 R 5 , —C(O)N(R 4 ) 2 , —C(R 5 ) ⁇ C(R 5 ) 2 , —C(R 5 ) ⁇ C(R 5 )(R 10 ), —C ⁇ C—R 5 , or —C ⁇ C—R 10 .
  • the compound of formula (I) is characterized by one or more, and preferably all, of the following features (a)-(e):
  • Y 2 is CR e , where R e is selected from the group consisting of hydrogen, C 1-4 aliphatic, C 1-4 fluoroaliphatic, -halo, —OR 5 , —N(R 4 ) 2 , —CN, —CO 2 R 5 , —C(O)N(R 4 ) 2 , —C(R 5 ) ⁇ C(R 5 ) 2 , —C(R 5 ) ⁇ C(R 5 )(R 10 ), —C ⁇ C—R 5 , and —C ⁇ C—R 10 ;
  • R c is selected from the group consisting of hydrogen, fluoro, —OR 5 , —N(R 4 ) 2 , and C 1-4 aliphatic optionally substituted with one or two groups independently selected from C 1-3 aliphatic, fluoro, —OR 5 , —N(R 4 ) 2 , —CO 2 R 5 , —C(O)N(R 4 ) 2 , and optionally substituted 5- or 6-membered aryl or heteroaryl; and
  • R d is hydrogen
  • Some embodiments of the invention relate to a compound of formula (I), wherein Y 1 is N, V is CR e , G 1 is C ⁇ O, R c is hydrogen or C 14 aliphatic, and R d is hydrogen.
  • Y 1 is N
  • V is CH
  • G 1 is C ⁇ O
  • each of R c and R d is hydrogen.
  • Ring A is a substituted or unsubstituted 5- or 6-membered aryl or heteroaryl ring.
  • Nonlimiting examples of Ring A include furano, thieno, pyrrolo, oxazolo, thiazolo, imidazolo, pyrazolo, isoxazolo, isothiazolo, oxadiazolo, triazolo, thiadiazolo, benzo, pyridino, pyridazino, pyrimidino, pyrazino, and triazino, any of which groups may be substituted or unsubstituted.
  • Ring A includes substituted or unsubstituted rings selected from the group consisting of furano, thieno, benzo, pyridino, pyridazino, pyrimidino, and pyrazino. In some embodiments, Ring A is substituted with 0-2 R h and 0-2 R 8h , or is substituted with 0-1 R h and 0-2 R 8h .
  • Each R h independently is selected from the group consisting of C 1-6 aliphatic, C 1-6 fluoroaliphatic, halo, —R 1h , —R 2h , -T 4 —R 2h , -T 4 -R 1h , —V 3 -T 4 -R 1h , and —V 3 -T 4 -R 2h , or two adjacent R h , taken together with the intervening ring atoms, form an optionally substituted fused 5- to 6-membered aromatic or 4- to 8-membered non-aromatic ring having 0-3 ring heteroatoms selected from the group consisting of O, N, and S.
  • Each R 8h independently is selected from the group consisting of C 1-4 aliphatic, C 1-4 fluoroaliphatic, -halo, and —O(C 1-4 aliphatic).
  • R 1h , R 2h , T 4 , and V 3 have the values described below.
  • Each R 1h independently is an optionally substituted aryl, heteroaryl, heterocyclyl, or cycloaliphatic ring. In some embodiments, R 1h is an optionally substituted 5- or 6-membered aryl, heteroaryl, heterocyclyl, or cycloaliphatic ring.
  • Each R 2h independently is —NO 2 , —CN, —C(R 5 ) ⁇ C(R 5 ) 2 , —C ⁇ C—R 5 , —C(R 5 ) ⁇ C(R 5 )(R 10 ), —C ⁇ C—R 10 , —OR 5 , —SR 6 , —S(O)R 6 , —SO 2 R 6 , SO 3 R 5 , —SO 2 N(R 4 ) 2 , —N(R 4 ) 2 , —NR 4 C(O)R 5 , —NR 4 C(O)N(R 4 ) 2 , —NR 4 CO 2 R 6 , —O—CO 2 R 5 , —OC(O)N(R 4 ) 2 , —O—C(O)R 5 , —CO 2 R 5 , —C(O)—C(O)R 5 , —C(O)N(R 4 )
  • R 2h is —C(R 5 ) ⁇ C(R 5 ) 2 , —C ⁇ C—R 5 , —OR 5 , —N(R 4 ) 2 , —NR 4 C(O)R 5 , —NR 4 C(O)N(R 4 ) 2 , —NR 4 CO 2 R 6 , —OC(O)N(R 4 ) 2 , —C(O)R 5 , —C(O)N(R 4 ) 2 —N(R 4 )SO 2 R 6 , or —N(R 4 )SO 2 N(R 4 ) 2 .
  • R 2h is —N(R 4 ) 2 , —C(O)R 5 , or —C(O)N(R 4 ) 2 .
  • V 3 is —C(R 5 ) ⁇ C(R 5 )—, —O—, —S—, —S(O)—, —S(O) 2 —, —SO 2 N(R 4 )—, —N(R 4 )—, —N(R 4 )C(O)—, —NR 4 C(O)N(R 4 )—, —N(R 4 )CO 2 —, —C(O)N(R 4 )—, —C(O)—C(O)—, —CO 2 —, —OC(O)—, —OC(O)O—, —OC(O)N(R 4 )—, —C(NR 4 ) ⁇ N—, —C(OR 5 ) ⁇ N—, —N(R 4 )SO 2 —, —N(R 4 )SO 2 N(R 4 )—, —P(O)(R 5 )—, —P(O)(OR
  • V 3 is —C(R 5 ) ⁇ C(R 5 )—, —C ⁇ C—, —O—, —N(R 4 )—, —N(R 4 )C(O)—, —NR 4 C(O)N(R 4 )—, —N(R 4 )CO 2 —, —OC(O)N(R 4 )—, —C(O)—, —C(O)N(R 4 )—, —N(R 4 )SO 2 —, or —N(R 4 )SO 2 N(R 4 )—.
  • V 3 is —C(R 5 ) ⁇ C(R 5 )—, —C ⁇ C—, or —C(O)N(R 4 )—.
  • T 4 is a C 1-6 alkylene chain optionally substituted with one or two independently selected R 3a or R 3b , wherein the alkylene chain optionally is interrupted by —C(R 5 ) ⁇ C(R 5 )—, —C ⁇ C—, —O—, —S—, —S(O)—, —S(O) 2 —, —SO 2 N(R 4 )—, —N(R 4 )—, —N(R 4 )C(O)—, —NR 4 C(O)N(R 4 )—, —N(R 4 )CO 2 —, —C(O)N(R 4 )—, —C(O)—, —C(O)—C(O)—, —CO 2 —, —OC(O)—, —OC(O)O—, —OC(O)N(R 4 )—, —N(R 4 )SO 2 —, or —SO 2 N(R
  • Each R 3a independently is selected from the group consisting of —F, —OH, —O(C 1-3 alkyl), —CN, —N(R 4 ) 2 , —C(O)(C 1-3 alkyl), —CO 2 H, —CO 2 (C 1-3 alkyl), —C(O)NH 2 , and —C(O)NH(C 1-3 alkyl).
  • R 3a is —F, —OH, —O(C 1-3 alkyl), or —N(R 4 ) 2 , where each R 4 independently is hydrogen, C 1-4 alkyl, or C 6-10 ar(C 1-6 )alkyl, the aryl portion of which is optionally substituted, or —N(R 4 ) 2 is an optionally substituted pyrrolidinyl, imidazolyl, pyrazolyl, piperidinyl, morpholinyl, or piperazinyl ring.
  • Each R 3b independently is a C 1-3 aliphatic optionally substituted with R 3a or R 7 , or two substituents R 3b on the same carbon atom, taken together with the carbon atom to which they are attached, form a 3- to 6-membered carbocyclic ring.
  • Each R 7 independently is an optionally substituted aryl or heteroaryl ring.
  • Ring A is an optionally substituted pyridino, thieno, or furano ring, wherein Ring A is substituted with 0, 1, or 2 R h and 0, 1, or 2 R 8h , where R h and R 8h have the values described above.
  • two adjacent substituents on Ring A are taken together to form an optionally substituted fused 5- to -6-membered aromatic or 4- to 8-membered non-aromatic ring having 0-3 ring heteroatoms selected from the group consisting of O, N, and S.
  • two adjacent substituents on Ring A are taken together to form a fused benzene ring.
  • Ring A is an optionally substituted phenyl ring, and the invention relates to a compound of formula (II):
  • Ring A is substituted with 0, 1, or 2 R h and 0, 1, or 2 R 8h .
  • the variables R a , R b , R c , R d , R h , R 8h , G 1 , Y 1 , and Y 2 have the values described above for formula (I).
  • the compound of formula (II) is represented by one of formulae (IIA)-(II-F):
  • Ring A in formula (II) is substituted with 0-2 substituents independently selected from the group consisting of C 1-4 aliphatic, C 1-4 fluoroaliphatic, -halo, and —O(C 1-4 aliphatic), or two adjacent substituents on Ring A, taken together with the intervening ring atoms, form a fused dioxolane or dioxane ring.
  • Ring A in formula (II) has the formula A-i, A-ii, or A-iii:
  • R h and R 8h are as described above for formula (I), and m is 0, 1, or 2, preferably 0 or 1.
  • R h in formula A-i or A-ii is selected from —CN, —CO 2 R 5 , —C(O)N(R 4 ) 2 , —N(R 4 ) 2 , or —OR 5 .
  • R h is —C(O)N(R 4 ) 2 or —N(R 4 ) 2 , wherein one R 4 is hydrogen or C 1-4 alkyl, and the other R 4 is hydrogen, C 1-4 alkyl, or a phenyl, cyclohexyl, piperidinyl, piperazinyl, or pyrrolidinyl ring, any of which groups optionally is substituted with one or two substituents independently selected from the group consisting of -halo, C 1-4 aliphatic, C 1-4 fluoroaliphatic, —OH, —O(C 1-4 alkyl), —NH 2 , —NH(C 1-4 alkyl), and —N(C 1-4 alkyl) 2 , or two adjacent substituents on a phenyl ring optionally are taken together to form a fused furan, dihydrofuran, oxazole, pyrrole, dioxolane, or dioxan
  • R h is —C(O)N(R 4 ) 2 or —N(R 4 ) 2 , wherein the two R 4 are taken together with the nitrogen to which they are attached to form a piperidinyl, piperazinyl, or pyrrolidinyl ring optionally substituted with one or two substituents independently selected from the group consisting of -fluoro, C 1-4 aliphatic, C 1-4 fluoroaliphatic, —OH, —O(C 1-4 alkyl), —NH 2 , —NH(C 1-4 alkyl), and —N(C 1-4 alkyl) 2 .
  • R h in formula A-i or is -T 4 —R 2h , —V 3 -T 4 —R 2h , or —Cy-T 4 —R 2h , where Cy is a 5- or 6-membered arylene or heteroarylene.
  • T 4 is a C 1-4 alkylene chain;
  • V 3 is —C(R 5 ) ⁇ C(R 5 )—, —N(R 4 )—, or —C(O)N(R 4 )—;
  • Cy is phenylene or thienylene;
  • R 2h is —OR 5 , —N(R 4 ) 2 , or —C(O)N(R 4 ) 2 .
  • R 2h is —N(R 4 ) 2 , wherein one R 4 is hydrogen or C 1-4 alkyl, and the other R 4 is hydrogen, C 1-4 alkyl, optionally substituted C 6-10 aryl, or optionally substituted C 6-10 ar(C 1-4 )alkyl.
  • R 2h is —N(R 4 ) 2 , wherein the two R 4 , taken together with the nitrogen to which they are attached, form a piperidinyl, piperazinyl, or pyrrolidinyl ring optionally substituted with one or two substituents independently selected from the group consisting of -fluoro, C 1-4 alkyl, C 1-4 fluoroalkyl, —OH, —O(C 1-4 alkyl), —NH 2 , —NH(C 1-4 alkyl), and —N(C 1-4 alkyl) 2 .
  • variable R a is hydrogen, —C(O)R 5a , —C(O)N(R 4a ) 2 , —CO 2 R 6a , —SO 2 R 6a , —SO 2 N(R 4a ) 2 , an optionally substituted C 1-10 aliphatic, or an optionally substituted aryl, heteroaryl, or heterocyclyl ring.
  • R a is hydrogen, C 1-6 aliphatic, or a substituted C 1-6 aliphatic having the formula -T 11 —R 1a , -T 11 —R 21a , or -T 12 —R 22a .
  • R a is —V 1 -T 11 —R 1a , —V 1 -T 11 —R 21a , or —V 1 -T 11 —R 22a .
  • R a is —R 1a or -T 11 -R 1a .
  • the variables V 1 , T 11 , T 12 , R 1a , R 21a , and R 22a have the values described below.
  • V 1 is —C(O)—, —C(O)N(R 4a )—, —C(O)O—, —SO 2 —, or —SO 2 N(R 4a )—. In certain embodiments, V 1 is —C(O)—.
  • T 11 is a C 1-6 alkylene chain optionally substituted with one or two independently selected R 3a or R 3b , wherein the alkylene chain optionally is interrupted by —C(R 5 ) ⁇ C(R 5 )— or —C ⁇ C—.
  • the variables R 3a and R 3b have the values and preferred values described above in connection with Ring A.
  • T 11 is a C 1-3 alkylene chain optionally substituted with one or two independently selected R 3a or R 3b .
  • T 12 is a C 2-6 alkylene chain optionally substituted with one or two independently selected R 3a or R 3b , wherein the alkylene chain optionally is interrupted by —C(R 5 ) ⁇ C(R 5 )— or —C ⁇ C—. In certain embodiments, T 12 is a C 2-3 alkylene chain optionally substituted with one or two independently selected R 3a or R 3b .
  • R 21a is —C(R 5a ) ⁇ C(R 5a ) 2 , —C ⁇ C—R 5a , —S(O)R 6a , —SO 2 R 6a , —SO 3 R 6a , —SO 2 N(R 4a ) 2 , —CO 2 R 5a , —C(O)—C(O)R 5a , —C(O)R 5a , —C(O)N(R 4a ) 2 , —C(O)N(R 4a )C( ⁇ NR 4a )—N(R 4a ) 2 , —C( ⁇ NR 4a )—N(R 4a ) 2 , —C( ⁇ NR 4a )—OR 5a , —C(R 6a ) ⁇ N—OR 5a , —P(O)(R 5a ) 2 , or —P(O)(OR 5a ) 2 .
  • R 21a is —CO 2 R 5a , —C(O)N(R 4a ) 2 , —SO 2 N(R 4a ) 2 , —C(O)N(R 4a )C( ⁇ NR 4a )—N(R 4a ) 2 , or —C( ⁇ NR 4a )—N(R 4a ) 2 .
  • R 22a is —NO 2 , —CN, —OR 5a , —SR 6a , —N(R 4a ) 2 , —NR 4a C(O)R 5a , —NR 4a C(O)N(R 4a ) 2 , —NR 4a CO 2 R 6a , —O—CO 2 R 5a , —OC(O)N(R 4a ) 2 , —O—C(O)R 5a , —N(R 4a )C( ⁇ NR 4a )—N(R 4a ) 2 , —N(R 4a )C( ⁇ NR 4a )—N(R 4a )—C(O)R 5 , —N(R 4a )SO 2 R 6a , or —N(R 4a )SO 2 N(R 4a ) 2 .
  • R 22a is —OR 5a , —N(R 4a ) 2 , —NR 4a C(O)R 5a , —NR 4a C(O)N(R 4a ) 2 , —N(R 4a )C( ⁇ NR 4a )—N(R 4a ) 2 , —N(R 4a )C( ⁇ NR 4a )—N(R 4a )—C(O)R 5 , or —N(R 4a )SO 2 R 6a .
  • R 1a is an optionally substituted aryl, heteroaryl, heterocyclyl, or cycloaliphatic ring.
  • R 1a is a 5- or 6-membered aryl or heteroaryl ring that is substituted with 0, 1, or 2 independently selected R 1 and 0, 1, or 2 independently selected R 81 .
  • Each R 1 independently is selected from the group consisting of C 1-6 aliphatic, C 1 fluoroaliphatic, halo, —R 1j , —R 2j , -T 5 —R 2j , -T 5 —R 1j , —V 4 -T 5 —R 1j , and —V 4 -T 5 —R 2j ; or two adjacent R j , taken together with the intervening ring atoms, form an optionally substituted fused 5- to 6-membered aromatic or 4- to 8-membered non-aromatic ring having 0-3 ring heteroatoms selected from the group consisting of O, N, and S.
  • Each R 8j independently is selected from the group consisting of C 1-4 aliphatic, C 1-4 fluoroaliphatic, -halo, —CO 2 H, —CO 2 (C 1-4 aliphatic), —OH, and —O(C 1-4 aliphatic).
  • two adjacent R j taken together with the intervening ring atoms, form an optionally substituted fused furan, dihydrofuran, oxazole, pyrrole, dioxolane, or dioxane ring.
  • R 1j , R 2j , T 5 , and V 4 have the values described below:
  • Each R 1j independently is an optionally substituted aryl, heteroaryl, heterocyclyl, or cycloaliphatic ring. In some embodiments, R 1j is an optionally substituted 5- to 6-membered aryl, heteroaryl, heterocyclyl, or cycloaliphatic ring.
  • Each R 2j independently is —NO 2 , —CN, —C(R 5 ) ⁇ C(R 5 ) 2 , —C ⁇ C—R 5 , —C(R 5 ) ⁇ C(R 5 )(R 10 ), —C ⁇ C—R 10 , —OR 5 , —SR 6 , —S(O)R 6 , —SO 2 R 6 , —SO 3 R 5 , —SO 2 N(R 4 ) 2 , —N(R 4 ) 2 , —NR 4 C(O)R 5 , —NR 4 C(O)N(R 4 ) 2 , —NR 4 CO 2 R 6 , —O—CO 2 R 5 , —OC(O)N(R 4 ) 2 , —O—C(O)R 5 , —CO 2 R 5 , —C(O)—C(O)R 5 , —C(O)N(R 4
  • R 2j is —C(R 5 ) ⁇ C(R 5 ) 2 , —C ⁇ C—R 5 , —OR 5 , —N(R 4 ) 2 , —NR 4 C(O)R 5 , —NR 4 C(O)N(R 4 ) 2 , —NR 4 CO 2 R 6 , —OC(O)N(R 4 ) 2 , —C(O)R 5 , —C(O)N(R 4 ) 2 —N(R 4 )SO 2 R 6 , or —N(R 4 )SO 2 N(R 4 ) 2 .
  • V 4 is —C(R 5 ) ⁇ C(R 5 )—, —C ⁇ C—, —O—, —S—, —S(O)—, —S(O) 2 —, —SO 2 N(R 4 )—, —N(R 4 )—, —N(R 4 )C(O)—, —NR 4 C(O)N(R 4 )—, —N(R 4 )CO 2 —, —C(O)N(R 4 )—, —C(O)—, —C(O)—C(O)—, —CO 2 —, —OC(O)—, —OC(O)O—, —OC(O)N(R 4 )—, —C(NR 4 ) ⁇ N—, —C(OR 5 ) ⁇ N—, —N(R 4 )SO 2 —, —N(R 4 )SO 2 N(R 4 )—, —P(O)
  • V 4 is —C(R 5 ) ⁇ C(R 5 )—, —C ⁇ C—, —O—, —N(R 4 )—, —N(R 4 )C(O)—, —NR 4 C(O)N(R 4 )—, —N(R 4 )CO 2 —, —OC(O)N(R 4 )—, —C(O)—, —C(O)N(R 4 )—, —N(R 4 )SO 2 —, or —N(R 4 )SO 2 N(R 4 )—.
  • V 4 is —C(R 5 ) ⁇ C(R 5 )—, —C ⁇ C—, or —C(O)N(R 4 )—.
  • T 5 is a C 1-6 alkylene chain optionally substituted with one or two independently selected R 3a or R 3b , wherein the alkylene chain optionally is interrupted by —C(R 5 ) ⁇ C(R 5 )—, —C ⁇ C—, —O—, —S—, —S(O)—, —S(O) 2 —, —SO 2 N(R 4 )—, —N(R 4 )—, —N(R 4 )C(O)—, —NR 4 C(O)N(R 4 )—, —N(R 4 )CO 2 —, —C(O)N(R 4 )—, —C(O)—, —C(O)—C(O)—, —CO 2 —, —OC(O)—, —OC(O)O—, —OC(O)N(R 4 )—, —N(R 4 )SO 2 —, or —SO 2 N(R
  • T 5 is a C 1-4 or C 2-4 alkylene chain, optionally substituted with one or two independently selected R 3a or R 3b .
  • the variables R 3a and R 3b have the values and preferred values described above in connection with Ring A.
  • R a is an optionally substituted 5- or 6-membered aryl or heteroaryl ring.
  • R a is selected from the group consisting of imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, oxadiazolyl, thiazolyl, thiadiazolyl, triazolyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, and triazinyl.
  • Ring B is an optionally substituted phenyl ring, and the invention relates to a compound of formula (III):
  • Ring B is substituted with 0, 1, or 2 R j and 0, 1, or 2 R 8j .
  • Ring A and the variables R b , R c , R d , R j , R 8j , G 1 , Y 1 , and Y 2 have the values described above for formula (I).
  • Ring B is substituted with 0-2 R 8j and one R j .
  • R j is an optionally substituted aryl, heteroaryl, or heterocyclyl ring.
  • R j is selected from the group consisting of imidazolyl, pyrrolyl, pyrazolyl, oxazolyl, thienyl, phenyl, pyridyl, pyrimidinyl, piperazinyl, piperidinyl, or morpholinyl.
  • R j is selected from the group consisting of —CO 2 R 5 , —C(O)N(R 4 ) 2 , —SO 2 N(R 4 ) 2 , —C( ⁇ NR 4 )—N(R 4 ) 2 , —N(R 4 )C( ⁇ NR 4 )—(N(R 4 ) 2 , —C(O)N(R 4 )C( ⁇ NR 4 )—N(R 4 ) 2 , and —N(R 4 )C( ⁇ NR 4 )—N(R 4 )—C(O)R 5 .
  • R j is —CO 2 H.
  • R j has the formula -T 5 —R 2j or —V 4 -T 5 —R 2j , wherein V 4 is —C ⁇ C— or —C(R 5 ) ⁇ C(R 5 )—, and R 2j is —OR 5 or —N(R 4 ) 2 .
  • R j has the formula —V 4 -T 5 —R 2j or —V 4 -T 5 —R 1j , wherein V 4 is —C(O)N(R 4 )— or —SO 2 N(R 4 )— and T 5 is a C 2-4 alkylene chain, optionally substituted with —F or C 1-4 aliphatic.
  • the variables R 1j and R 2j have the values described above for formula (I).
  • R 1j is an optionally substituted 3- to 6-membered heterocyclyl or an optionally substituted 5- to 6-membered heteroaryl.
  • R 2j is —N(R 4 ) 2 , where each R 4 independently is hydrogen or C 1-4 aliphatic, or —N(R 4 ) 2 is an optionally substituted 3- to 6-membered heterocyclyl or an optionally substituted 5- to 6-membered heteroaryl, having, in addition to the nitrogen, 0-2 ring heteroatoms selected from N, O, and S.
  • Ring B is substituted with one or two substituents independently selected from the group consisting of C 1-4 aliphatic, C 1-4 fluoroaliphatic, -halo, —OR 5 , or —N(R 4 ) 2 , or two adjacent R j , taken together with the intervening ring atoms, form an optionally substituted fused benzene, pyridine, furan, dihydrofuran, oxazole, thiazole, oxadiazole, thiadiazole, pyrrole, pyrazole, dioxolane, or dioxane ring.
  • substituents independently selected from the group consisting of C 1-4 aliphatic, C 1-4 fluoroaliphatic, -halo, —OR 5 , or —N(R 4 ) 2 , or two adjacent R j , taken together with the intervening ring atoms, form an optionally substituted fused benzene, pyridine, furan, dihydrofur
  • Ring B is substituted with 0-2 substituents independently selected from the group consisting of C 1-4 aliphatic, C 1-4 fluoroaliphatic, -halo, and —O(C 1-4 aliphatic), or two adjacent substituents, taken together with the intervening ring atoms, form a fused dioxolane or dioxane ring.
  • Ring B has the formula B-i, B-ii, or B-iii:
  • variable R b is hydrogen or an optionally substituted aliphatic, aryl, heteroaryl, or heterocyclyl group.
  • the invention relates to a compound of formula (I), wherein R b is hydrogen or C 1-6 aliphatic. In certain such embodiments, R b is hydrogen or methyl.
  • the invention relates to a compound of formula (I), wherein R b is an optionally substituted C 1-6 aliphatic.
  • R b has the formula -T 21 —R 1b , -T 21 —R 21b , or -T 22 —R 22b .
  • the variables R 1b , R 21b , R 22b T 21 , and T 22 have the values described below:
  • R 1b is an optionally substituted aryl, heteroaryl, heterocyclyl, or cycloaliphatic ring.
  • R 1b is an optionally substituted pyrrolyl, imidazolyl, pyrazolyl, triazolyl, phenyl, pyridyl, pyrimidinyl, pyrazinyl, pyrrolidinyl, piperidinyl, piperazinyl, or morpholinyl ring.
  • R 21b is —C(R 5 ) ⁇ C(R 5 ) 2 , —C ⁇ C—R 5 , —C(R 5 ) ⁇ C(R 5 )(R 10 ), —C ⁇ C—R 10 , —S(O)R 6 , —SO 2 R 6 , —SO 3 R 5 , —SO 2 N(R 4 ) 2 , —CO 2 R 5 , —C(O)—C(O)R 5 , —C(O)R 5 , —C(O)N(R 4 ) 2 , —C(O)N(R 4 )C( ⁇ NR 4 )—N(R 4 ) 2 , —C( ⁇ NR 4 )—N(R 4 ) 2 , —C( ⁇ NR 4 )—OR 5 , —C(R 6 ) ⁇ N—OR 5 , —P(O)(R 5 ) 2 , or —P(O)(OR 5 ) 2
  • R 21b is —CO 2 R 5 or —C(O)N(R 4 ) 2 .
  • R 5 is hydrogen, C 1-4 alkyl, or C 6-10 ar(C 1-4 )alkyl
  • each R 4 independently is hydrogen, C 1-4 alkyl, or C 6-10 ar(C 1-4 )alkyl, or two R 4 , taken together with the nitrogen atom to which they are attached, form an optionally substituted 5- to 6-membered heterocyclyl ring having, in addition to the nitrogen atom, 0-2 ring heteroatoms selected from N, O, and S.
  • R 22b is —NO 2 , —CN, —OR 5 , —SR 6 , —N(R 4 ) 2 , —NR 4 C(O)R 5 , —NR 4 C(O)N(R 4 ) 2 , —NR 4 CO 2 R 6 , —O—CO 2 R 5 , —OC(O)N(R 4 ) 2 , —O—C(O)R 5 , —N(R 4 )C( ⁇ NR 4 )—N(R 4 ) 2 , —N(R 4 )C( ⁇ NR 4 )—N(R 4 )—C(O)R 5 , —N(R 4 )SO 2 R 6 , or —N(R 4 )SO 2 N(R 4 ) 2 .
  • R 22b is —OR 5 or —N(R 4 ) 2 .
  • R 5 is hydrogen, C 1-4 alkyl, or C 6-10 ar(C 1-4 )alkyl
  • each R 4 independently is hydrogen, C 1-4 alkyl, or C 6-10 ar(C 1-4 )alkyl, or two R 4 , taken together with the nitrogen atom to which they are attached, form an optionally substituted 5- to 6-membered heterocyclyl ring having, in addition to the nitrogen atom, 0-2 ring heteroatoms selected from N, O, and S.
  • T 21 is a C 1-6 alkylene chain optionally substituted with one or two R 3 , wherein the alkylene chain optionally is interrupted by —C(R 5 ) ⁇ C(R 5 )— or —C ⁇ C—. In some embodiments, T 21 is a C 1-4 alkylene chain.
  • T 22 is a C 2-6 alkylene chain optionally substituted with one or two R 3 , wherein the alkylene chain optionally is interrupted by —C(R 5 ) ⁇ C(R 5 )— or In some embodiments, T 22 is a C 2-4 alkylene chain.
  • the invention relates to a compound of formula (I), wherein R b is an optionally substituted aryl, heteroaryl, or heterocyclyl ring.
  • R b is a 5- or 6-membered aryl or heteroaryl ring that is substituted with 0-2 independently selected R k and 0-2 independently selected R 8k .
  • Each R k independently is selected from the group consisting of C 1-6 aliphatic, C 16 fluoroaliphatic, -halo, —R 1k , —R 2k , -T 6 —R 2k , -T 6 -R 1k , —V 5 -T 6 -R 1k , and —V 5 -T 6 -R 2k ; or two adjacent R k , taken together with the intervening ring atoms, form an optionally substituted fused 4- to 8-membered aromatic or non-aromatic ring having 0-3 ring heteroatoms selected from the group consisting of O, N, and S.
  • Each R 8k independently is selected from the group consisting of C 1-4 aliphatic, C 1-4 fluoroaliphatic, -halo, and —O(C 1-4 aliphatic).
  • R 1k , R 2k , T 6 , and V 5 have the values described below:
  • Each R 1k independently is an optionally substituted aryl, heteroaryl, heterocyclyl, or cycloaliphatic ring. In some embodiments, R 1k is an optionally substituted 5- or 6-membered aryl, heteroaryl, heterocyclyl, or cycloaliphatic ring.
  • Each R 2k independently is —NO 2 , —CN, —C(R 5 ) ⁇ C(R 5 ) 2 , —C ⁇ C—R 5 , —C(R 5 ) ⁇ C(R 5 )(R 10 ), —C ⁇ C—R 10 , —OR 5 , —SR 6 , —S(O)R 6 , —SO 2 R 6 , —SO 3 R 5 , —SO 2 N(R 4 ) 2 , —N(R 4 ) 2 , —NR 4 C(O)R 5 , —NR 4 C(O)N(R 4 ) 2 , —NR 4 CO 2 R 6 , —O—CO 2 R 5 , —OC(O)N(R 4 ) 2 , —O—C(O)R 5 , —CO 2 R 5 , —C(O)—C(O)R 5 , —C(O)N(R 4
  • V 5 is —C(R 5 ) ⁇ C(R 5 )—, —O—, —S—, —S(O)—, —S(O) 2 —, —SO 2 N(R 4 )—, —N(R 4 )—, —N(R 4 )C(O)—, —NR 4 C(O)N(R 4 )—, —N(R 4 )CO 2 —, —C(O)N(R 4 )—, —C(O)—, —C(O)—C(O)—, —CO 2 —, —OC(O)—, —OC(O)O—, —OC(O)N(R 4 )—, —C(NR 4 ) ⁇ N—, —C(OR 5 ) ⁇ N—, —N(R 4 )SO 2 —, —N(R 4 )SO 2 N(R 4 )—, —P(O)(R 5 )—,
  • V 5 is —C(R 5 ) ⁇ C(R 5 )—, —O—, —N(R 4 )—, —N(R 4 )C(O)—, —NR 4 C(O)N(R 4 )—, —N(R 4 )CO 2 —, —OC(O)N(R 4 )—, —C(O)—, —C(O)N(R 4 )—, —N(R 4 )SO 2 —, or —N(R 4 )SO 2 N(R 4 )—.
  • V 5 is —C(R 5 ) ⁇ C(R 5 )—, or —C(O)N(R 4 )—.
  • T 6 is a C 1-6 alkylene chain optionally substituted with one or two independently selected R 3a or R 3b , wherein the alkylene chain optionally is interrupted by —C(R 5 ) ⁇ C(R 5 )—, —O—, —S—, —S(O)—, —S(O) 2 —, —SO 2 N(R 4 )—, —N(R 4 )—, —N(R 4 )C(O)—, —NR 4 C(O)N(R 4 )—, —N(R 4 )CO 2 —, —C(O)N(R 4 )—, —C(O)—, —C(O)—C(O)—, —CO 2 —, —OC(O)—, —OC(O)O—, —OC(O)N(R 4 )—, —N(R 4 )SO 2 —, or —SO 2 N(R 4 )—, and where
  • R b is an optionally substituted phenyl ring, and the invention relates to a compound of formula (IV):
  • Ring C is substituted with 0, 1, or 2 R k and 0, 1, or 2 R 8k .
  • Ring A and the variables R a , R c , R d , R k , R 8k , G 1 , Y 1 , and Y 2 have the values described above for formula
  • Ring C is substituted with 0-2 R 8k and one R k . In some embodiments, Ring C is substituted with 1 or 2 R 8k . In some embodiments, Ring C is substituted with 0-2 substituents independently selected from the group consisting of C 1-4 aliphatic, C 1-4 fluoroaliphatic, -halo, and —O(C 1-4 aliphatic).
  • Ring C has the formula v or vi:
  • each R 8k independently is selected from the group consisting of C 1-4 aliphatic, C 1-4 fluoroaliphatic, -halo, and —O(C 1-4 aliphatic).
  • the invention relates to a subgenus of the compounds of formula (I) represented by formula (V):
  • Ring A is substituted with 0-2 R h and 0-2 R 8h
  • Ring B is substituted with 0-2 R j and 0-2 R 8j
  • the variables G 1 , Y 1 , Y 2 , R b , R c , R d , R h , R j , R 8h , and R 8j have the values and preferred values described above for formulae (I)-(III).
  • the invention relates to a compound of any one of formulae (II)-(V), characterized by one or more, and preferably all, of the following features (a)-(e):
  • Y 2 is CR e , where R e is selected from the group consisting of hydrogen, C 1-4 aliphatic, C 1-4 fluoroaliphatic, -halo, —OR 5 , —N(R 4 ) 2 , —CN, —CO 2 R 5 , —C(O)N(R 4 ) 2 , —C(R 5 ) ⁇ C(R 5 ) 2 , —C(R 5 ) ⁇ C(R 5 )(R 10 ), —C ⁇ C—R 5 , and —C ⁇ C—R 10 ;
  • R c is selected from the group consisting of hydrogen, fluoro, —OR 5 , —N(R 4 ) 2 , and C 1-4 aliphatic optionally substituted with one or two groups independently selected from C 1-4 aliphatic, fluoro, —OR 5 , —N(R 4 ) 2 , —CO 2 R 5 , —C(O)N(R 4 ) 2 , and optionally substituted 5- or 6-membered aryl or heteroaryl; and
  • R d is hydrogen
  • the invention relates to a compound of any one of formulae (I)-(V) wherein G 1 is C ⁇ O, Y 1 is N, Y 2 is CH, and each of R c and R d is hydrogen.
  • the invention relates to a subgenus of the compounds of formula (I) represented by formula (VI) or (VIa):
  • Ring A is substituted with 0-2 R h and 0-2 R 8h
  • Ring B is substituted with 0-2 R j and 0-2 R 81 .
  • the variables G 1 , Y 1 , Y 2 , R b , R c , R d , R h , R 1 , R 8h , and R 8j have the values and preferred values described above for formulae (I)-(III).
  • the invention relates to a subgenus of the compounds of formula (I) represented by formula (VII) or (VIIa):
  • Ring A is substituted with 0-2 R h and 0-2 R 8h
  • Ring B is substituted with 0-2 R j and 0-2 R 8j
  • Ring C is substituted with 0-2 R k and 0-2 R 8k .
  • the variables G 1 , Y 1 , Y 2 , R b , R c , R d , R h , R j , R k , R 8h , R 8j , and R 8k have the values and preferred values described above for formulae (I)-(IV).
  • the compounds of the present invention can be prepared by methods known to one of ordinary skill in the art and/or by reference to the schemes shown below and the synthetic examples that follow. Exemplary synthetic routes are set forth in Schemes 1-12 below, and in the Examples.
  • lactam nitrogen of formula iv can be alkylated using a suitable base, such as Cs 2 CO 3 , and an alkyl halide as described in Method W.
  • iv can be arylated using aryl halides through a CuI-mediated process.
  • Method F Treatment of iv with N,N-dimethylformamide dimethyl acetal in refluxing THF affords v, according to Method F.
  • the reaction may be performed by treatment of iv with N,N-dimethylformamide dimethyl acetal in DMF followed by microwave irradiation, according to Method G.
  • Enamine v is converted to the pyrimido compound vi by treatment with an aryl or alkyl guanidine.
  • the reaction may be performed in the presence of a mild base in ethanol or DMF utilizing heat or microwave irradiation, according to Method H and Method I.
  • a leaving group such as a sulfone
  • a leaving group can be directly displaced by alkyl and aryl amines.
  • treatment of v with 2-methylisothiourea using Method I provides compounds of formula vii.
  • treatment of vii with an oxidizing agent, such as MCPBA provides the sulfone viii.
  • Compounds of formula viii can then be reacted with substituted amines or anilines in the presence of AlMe 3 to provide compounds of formula vi (Method J).
  • the conversion of compounds viii to vi (formula (I)) is amenable to solution phase library synthesis.
  • compounds of formula vi-a can be converted to xii through a palladium-mediated process outlined in Method M.
  • the xii acid can be further elaborated to the amides xiii according to Method N using a standard coupling reagent, such as TBTU, and the desired amine.
  • a standard coupling reagent such as TBTU
  • the acid xii can be converted to the ester and/or reduced using a suitable reagent to provide the alcohol, which can be further elaborated to provide alternate substitutions, such as ethers or nitriles.
  • the alcohol could then be oxidized to the aldehyde, which could undergo reductive amination with a variety of substituted amines.
  • compounds of formula vi can be converted to the cyano-substituted compound xvi according to Method Q.
  • a suitable reducing agent such as Raney nickel according to Method R
  • compounds of formula xvii are prepared from xvi.
  • guanidines used for the preparation of compounds of formula xix are either commercially available, or they can be prepared through the literature methods described in Scheme 4 (Methods S or T or U).
  • the compounds xxi and xxii derived from reaction of xx with propargyl alcohol, can be oxidized using a suitable reagent to the acid, which can be further elaborated to amides or esters.
  • the alcohol can be oxidized using a suitable reagent to the aldehyde, which can undergo reductive amination to provide substituted amines.
  • Thioamides of formula xxx (corresponding to Formula (II-D)) can be prepared from vi according to Scheme 8 using a suitable reagent, such as Lawesson's Reagent.
  • a suitable reagent such as Lawesson's Reagent.
  • the thioamides of Formulae (II-E) and (II-F) can be prepared from compounds of Formulae (II-B) and (II-C).
  • compounds of formula xxxv can be prepared from xxxi using a 4-step sequence.
  • Compound xxxi is converted to xxxii using a suitable chlorinating agent, such as POCl 3 .
  • the dichloro pyrimidine is then coupled with the appropriately substituted aniline using a palladium-catalyzed procedure to provide xxxiii.
  • the ester xxxiii can be hydrolyzed and coupled to the aniline using a suitable reagent, such as AcOH, to provide the lactam xxxiv.
  • chloro pyrimidine xxxiv can be displaced with the appropriately substituted amine or aniline to provide compounds of formula xxxv.
  • compounds of formula xxxix can be prepared from xxxvi using a 3-step sequence.
  • the dichloro pyrimidine xxxvi is coupled with the appropriately substituted aniline using a palladium-catalyzed procedure to provide xxxvii.
  • the chloro pyrimidine xxxvii can be displaced with the appropriately substituted amine to provide cyano compound xxxviii, which can be hydrolyzed and coupled to the aniline using a suitable reagent, such as NaOH, to provide the lactam xxxix.
  • the present invention provides compounds that are inhibitors of protein kinases.
  • the compounds can be assayed in vitro or in vivo for their ability to bind to and/or inhibit a protein kinase.
  • In vitro assays include assays to determine inhibition of the ability of the kinase to phosphorylate a substrate protein or peptide. Alternate in vitro assays quantitate the ability of the compound to bind to the kinase. Inhibitor binding may be measured by radiolabelling the inhibitor prior to binding, isolating the inhibitor/kinase complex and determining the amount of radiolabel bound.
  • inhibitor binding may be determined by running a competition experiment in which new inhibitors are incubated with the kinase bound to a known radioligand.
  • the compounds also can be assayed for their ability to affect cellular or physiological functions mediated by protein kinase activity. Assays for each of these activities are described in the Examples and/or are known in the art.
  • Nonlimiting examples of protein kinases that are inhibited by the compounds of the invention include Chk-1, Aurora kinase, PLK, Chk-2, LCK, CDK1, CDK2E, PKA.
  • the compound of formula (I) inhibits a protein kinase selected from the group consisting of Chk-1, Aurora kinase, and PLK.
  • the invention provides a method for inhibiting protein kinase activity in a cell, comprising contacting a cell in which inhibition of a protein kinase is desired with a compound of formula (I).
  • the compound of formula (I) interacts with and reduces the activity of more than one protein kinase enzyme in the cell.
  • some compounds of formula (I) show inhibition of all three enzymes.
  • the compound of formula (I) is selective, i.e., the concentration of the compound that is required for inhibition of one or several protein kinase enzymes is lower, preferably at least 2-fold, 5-fold, 10-fold, or 50-fold lower, than the concentration of the compound required for inhibition of other protein kinase enzymes.
  • the compound of formula (I) inhibits one or two of Chk-1, Aurora kinase, and PLK at a concentration that is lower than that required for inhibition of the other enzyme(s).
  • the compound of formula (I) inhibits one or more protein kinase enzymes involved in cell cycle regulation or cell division.
  • the invention thus provides a method for inhibiting cell proliferation, comprising contacting a cell in which such inhibition is desired with a compound of formula (I).
  • the phrase “inhibiting cell proliferation” is used to denote the ability of a compound of formula (I) to inhibit cell number or cell growth in contacted cells as compared to cells not contacted with the inhibitor.
  • An assessment of cell proliferation can be made by counting cells using a cell counter or by an assay of cell viability, e.g., an MTT or WST assay.
  • such an assessment of cell proliferation can be made by measuring the growth, e.g., with calipers, and comparing the size of the growth of contacted cells with non-contacted cells.
  • the growth of cells contacted with the inhibitor is retarded by at least about 50% as compared to growth of non-contacted cells.
  • cell proliferation of contacted cells is inhibited by at least about 75%, at least about 90%, or at least about 95% as compared to non-contacted cells.
  • the phrase “inhibiting cell proliferation” includes a reduction in the number of contacted cells, as compare to non-contacted cells.
  • a kinase inhibitor that inhibits cell proliferation in a contacted cell may induce the contacted cell to undergo growth retardation, to undergo growth arrest, to undergo programmed cell death (i.e., apoptosis), or to undergo necrotic cell death.
  • the invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising a compound of formula (I) as defined above, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
  • the salts preferably are derived from inorganic or organic acids and bases.
  • suitable salts see, e.g., Berge et al, J. Pharm. Sci. 66:1-19 (1977) and Remington: The Science and Practice of Pharmacy, 20th Ed., ed. A. Gennaro, Lippincott Williams & Wilkins, 2000.
  • Nonlimiting examples of suitable acid addition salts include the following: acetate, adipate, alginate, aspartate, benzoate, benzene sulfonate, bisulfate, butyrate, citrate, camphorate, camphor sulfonate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, fumarate, lucoheptanoate, glycerophosphate, hemisulfate, heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, lactate, maleate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, oxalate, pamoate, pectinate, persulfate, 3-phenyl-propionate, picrate, pivalate, propionate, succinate, tartrate
  • Suitable base addition salts include, without limitation, ammonium salts, alkali metal salts, such as sodium and potassium salts, alkaline earth metal salts, such as calcium and magnesium salts, salts with organic bases, such as dicyclohexylamine salts, N-methyl-D-glucamine, and salts with amino acids such as arginine, lysine, and so forth.
  • basic nitrogen-containing groups may be quaternized with such agents as lower alkyl halides, such as methyl, ethyl, propyl, and butyl chloride, bromides and iodides; dialkyl sulfates, such as dimethyl, diethyl, dibutyl and diamyl sulfates, long chain halides such as decyl, lauryl, myristyl and stearyl chlorides, bromides and iodides, aralkyl halides, such as benzyl and phenethyl bromides and others. Water or oil-soluble or dispersible products are thereby obtained.
  • lower alkyl halides such as methyl, ethyl, propyl, and butyl chloride, bromides and iodides
  • dialkyl sulfates such as dimethyl, diethyl, dibutyl and diamyl sulfates
  • long chain halides such as
  • pharmaceutically acceptable carrier is used herein to refer to a material that is compatible with a recipient subject, preferably a mammal, more preferably a human, and is suitable for delivering an active agent to the target site without terminating the activity of the agent.
  • the toxicity or adverse effects, if any, associated with the carrier preferably are commensurate with a reasonable risk/benefit ratio for the intended use of the active agent.
  • compositions of the invention can be manufactured by methods well known in the art such as conventional granulating, mixing, dissolving, encapsulating, lyophilizing, or emulsifying processes, among others.
  • Compositions may be produced in various forms, including granules, precipitates, or particulates, powders, including freeze dried, rotary dried or spray dried powders, amorphous powders, tablets, capsules, syrup, suppositories, injections, emulsions, elixirs, suspensions or solutions.
  • Formulations may optionally contain stabilizers, pH modifiers, surfactants, bioavailability modifiers and combinations of these.
  • compositions may be prepared as liquid suspensions or solutions using a liquid, such as, but not limited to, an oil, water, an alcohol, and combinations of these.
  • a liquid such as, but not limited to, an oil, water, an alcohol, and combinations of these.
  • Pharmaceutically suitable surfactants, suspending agents, or emulsifying agents may be added for oral or parenteral administration.
  • Suspensions may include oils, such as but not limited to, peanut oil, sesame oil, cottonseed oil, corn oil and olive oil.
  • Suspension preparation may also contain esters of fatty acids such as ethyl oleate, isopropyl myristate, fatty acid glycerides and acetylated fatty acid glycerides.
  • Suspension formulations may include alcohols, such as, but not limited to, ethanol, isopropyl alcohol, hexadecyl alcohol, glycerol and propylene glycol.
  • Ethers such as but not limited to, poly(ethyleneglycol), petroleum hydrocarbons such as mineral oil and petrolatum; and water may also be used in suspension formulations.
  • compositions include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene-polyoxypropylene-block polymers, polyethylene glycol and wool fat.
  • ion exchangers alumina, aluminum stearate, lecithin
  • serum proteins such as human serum albumin
  • buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial g
  • compositions of this invention are formulated for pharmaceutical administration to a mammal, preferably a human being.
  • Such pharmaceutical compositions of the present invention may be administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir.
  • parenteral as used herein includes subcutaneous, intravenous, intramuscular, intra-articular, intra-synovial, intrasternal, intrathecal, intrahepatic, intralesional and intracranial injection or infusion techniques.
  • the compositions are administered orally, intravenously, or subcutaneously.
  • the formulations of the invention may be designed to be short-acting, fast-releasing, or long-acting.
  • compounds can be administered in a local rather than systemic means, such as administration (e.g., by injection) at a tumor site.
  • Sterile injectable forms of the compositions of this invention may be aqueous or oleaginous suspension. These suspensions may be formulated according to techniques known in the art using suitable dispersing or wetting agents and suspending agents.
  • the sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, for example as a solution in 1,3-butanediol.
  • the acceptable vehicles and solvents that may be employed are water, Ringer's solution and isotonic sodium chloride solution.
  • sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose, any bland fixed oil may be employed including synthetic mono- or di-glycerides.
  • Fatty acids such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions.
  • These oil solutions or suspensions may also contain a long-chain alcohol diluent or dispersant, such as carboxymethyl cellulose or similar dispersing agents which are commonly used in the formulation of pharmaceutically acceptable dosage forms including emulsions and suspensions.
  • Other commonly used surfactants such as Tweens, Spans and other emulsifying agents or bioavailability enhancers which are commonly used in the manufacture of pharmaceutically acceptable solid, liquid, or other dosage forms may also be used for the purposes of formulation.
  • Compounds may be formulated for parenteral administration by injection such as by bolus injection or continuous infusion.
  • a unit dosage form for injection may be in ampoules or in multi-dose containers.
  • compositions of this invention may be orally administered in any orally acceptable dosage form including, but not limited to, capsules, tablets, aqueous suspensions or solutions.
  • carriers that are commonly used include lactose and corn starch.
  • Lubricating agents such as magnesium stearate, are also typically added.
  • useful diluents include lactose and dried cornstarch.
  • aqueous suspensions are required for oral use, the active ingredient is combined with emulsifying and suspending agents. If desired, certain sweetening, flavoring or coloring agents may also be added.
  • compositions of this invention may be administered in the form of suppositories for rectal administration.
  • suppositories may be prepared by mixing the agent with a suitable non-irritating excipient which is solid at room temperature but liquid at rectal temperature and therefore will melt in the rectum to release the drug.
  • suitable non-irritating excipient include cocoa butter, beeswax and polyethylene glycols.
  • compositions of this invention may also be administered topically, especially when the target of treatment includes areas or organs readily accessible by topical application, including diseases of the eye, the skin, or the lower intestinal tract. Suitable topical formulations are readily prepared for each of these areas or organs.
  • Topical application for the lower intestinal tract may be effected in a rectal suppository formulation (see above) or in a suitable enema formulation. Topically-transdermal patches may also be used.
  • the pharmaceutical compositions may be formulated in a suitable ointment containing the active component suspended or dissolved in one or more carriers.
  • Carriers for topical administration of the compounds of this invention include, but are not limited to, mineral oil, liquid petrolatum, white petrolatum, propylene glycol, polyoxyethylene, polyoxypropylene compound, emulsifying wax and water.
  • the pharmaceutical compositions may be formulated in a suitable lotion or cream containing the active components suspended or dissolved in one or more pharmaceutically acceptable carriers. Suitable carriers include, but are not limited to, mineral oil, sorbitan monostearate, polysorbate 60, cetyl esters wax, cetearyl alcohol, 2-octyldodecanol, benzyl alcohol and water.
  • the pharmaceutical compositions may be formulated as micronized suspensions in isotonic, pH adjusted sterile saline, or, preferably, as solutions in isotonic, pH adjusted sterile saline, either with our without a preservative such as benzylalkonium chloride.
  • the pharmaceutical compositions may be formulated in an ointment such as petrolatum.
  • compositions of this invention may also be administered by nasal aerosol or inhalation.
  • Such compositions are prepared according to techniques well known in the art of pharmaceutical formulation and may be prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other conventional solubilizing or dispersing agents.
  • compositions of the invention preferably are formulated for administration to a patient having, or at risk of developing or experiencing a recurrence of, a protein kinase-mediated disorder.
  • patient means an animal, preferably a mammal, more preferably a human.
  • Preferred pharmaceutical compositions of the invention are those formulated for oral, intravenous, or subcutaneous administration.
  • any of the above dosage forms containing a therapeutically effective amount of a compound of the invention are well within the bounds of routine experimentation and therefore, well within the scope of the instant invention.
  • the pharmaceutical composition of the invention may further comprise another therapeutic agent.
  • such other therapeutic agent is one that is normally administered to patients with the disease or condition being treated.
  • terapéuticaally effective amount is meant an amount sufficient to cause a detectable decrease in protein kinase activity or the severity of a protein kinase-mediated disorder.
  • the amount of protein kinase inhibitor needed will depend on the effectiveness of the inhibitor for the given cell type and the length of time required to treat the disorder. It should also be understood that a specific dosage and treatment regimen for any particular patient will depend upon a variety of factors, including the activity of the specific compound employed, the age, body weight, general health, sex, and diet of the patient, time of administration, rate of excretion, drug combinations, the judgment of the treating physician, and the severity of the particular disease being treated.
  • the amount of additional therapeutic agent present in a composition of this invention typically will be no more than the amount that would normally be administered in a composition comprising that therapeutic agent as the only active agent.
  • the amount of additional therapeutic agent will range from about 50% to about 100% of the amount normally present in a composition comprising that agent as the only therapeutically active agent.
  • the invention provides a method for treating a patient having, or at risk of developing or experiencing a recurrence of, a protein kinase-mediated disorder.
  • protein kinase-mediated disorder includes any disorder, disease or condition which is caused or characterized by an increase in kinase expression or activity, or which requires kinase activity.
  • protein kinase-mediated disorder also includes any disorder, disease or condition in which inhibition of protein kinase activity is beneficial.
  • the protein kinase-mediated disorder is one in which inhibition of Chk-1, Aurora kinase, or PLK activity is beneficial.
  • the protein kinase inhibitors of the invention can be used to achieve a beneficial therapeutic or prophylactic effect, for example, in subjects with a proliferative disorder.
  • proliferative disorders include chronic inflammatory proliferative disorders, e.g., psoriasis and rheumatoid arthritis; proliferative ocular disorders, e.g., diabetic retinopathy; benign proliferative disorders, e.g., hemangiomas; and cancer.
  • cancer refers to a cellular disorder characterized by uncontrolled or disregulated cell proliferation, decreased cellular differentiation, inappropriate ability to invade surrounding tissue, and/or ability to establish new growth at ectopic sites.
  • cancer includes, but is not limited to, solid tumors and bloodborne tumors.
  • the term “cancer” encompasses diseases of skin, tissues, organs, bone, cartilage, blood, and vessels.
  • the term “cancer” further encompasses primary and metastatic cancers.
  • Non-limiting examples of solid tumors that can be treated with the disclosed protein kinase inhibitors include pancreatic cancer; bladder cancer; colorectal cancer; breast cancer, including metastatic breast cancer; prostate cancer, including androgen-dependent and androgen-independent prostate cancer; renal cancer, including, e.g., metastatic renal cell carcinoma; hepatocellular cancer; lung cancer, including, e.g., non-small cell lung cancer (NSCLC), bronchioloalveolar carcinoma (BAC), and adenocarcinoma of the lung; ovarian cancer, including, e.g., progressive epithelial or primary peritoneal cancer; cervical cancer; gastric cancer; esophageal cancer; head and neck cancer, including, e.g., squamous cell carcinoma of the head and neck; melanoma; neuroendocrine cancer, including metastatic neuroendocrine tumors; brain tumors, including, e.g., glioma, anaplastic oligodendroglioma
  • Non-limiting examples of hematologic malignancies that can be treated with the disclosed protein kinase inhibitors include acute myeloid leukemia (A ML); chronic myelogenous leukemia (C ML), including accelerated C ML and C ML blast phase (C ML-BP); acute lymphoblastic leukemia (ALL); chronic lymphocytic leukemia (CLL); Hodgkin's disease (HD); non-Hodgkin's lymphoma (NHL), including follicular lymphoma and mantle cell lymphoma; B-cell lymphoma; T-cell lymphoma; multiple myeloma (MM); Waldenstrom's macroglobulinemia; myelodysplastic syndromes (MDS), including refractory anemia (RA), refractory anemia with ringed siderblasts (RARS), (refractory anemia with excess blasts (RAEB), and RAEB in transformation (RAEB-T); and myeloproliferative
  • the compounds of formula (I) are particularly useful in the treatment of cancers or cell types in which protein kinase activity is upregulated.
  • the compounds of the invention are especially useful in the treatment of cancers or cell types in which Chk-1, Aurora, or PLK activity is upregulated, including, in particular, rapidly proliferating cells.
  • Chk-1 also is upregulated in drug-resistant cells (Shyjan et al., U.S. Pat. No. 6,723,498 (2004)), as well as retinoblastomas such as Rb negative or inactivated cells (Gottifredi et al., Mol. Cell. Biol., 21:1066 (2001)), or cells in which the ARF p14/p19 locus has been inactivated or misregulated.
  • Chk-1 inhibitors also are particularly useful in the treatment of cancers or cell types in which another checkpoint pathway has been mutated or abrogated, including, without limitation, cancers or cell types in which p53 or the p53 pathway has been inactivated or abrogated.
  • the compound or composition of the invention is used to treat a patient having or at risk of developing or experiencing a recurrence in a cancer selected from the group consisting of colorectal cancer, ovarian cancer, breast cancer, gastric cancer, prostate cancer, and pancreatic cancer.
  • a cancer selected from the group consisting of colorectal cancer, ovarian cancer, breast cancer, gastric cancer, prostate cancer, and pancreatic cancer.
  • the cancer is selected from the group consisting of breast cancer, colorectal cancer, and pancreatic cancer.
  • the protein kinase inhibitor of the invention is administered in conjunction with another therapeutic agent.
  • the other therapeutic agent may inhibit the same or a different protein kinase, or may operate by a different mechanism.
  • the other therapeutic agent is one that is normally administered to patients with the disease or condition being treated.
  • the protein kinase inhibitor of the invention may be administered with the other therapeutic agent in a single dosage form or as a separate dosage form. When administered as a separate dosage form, the other therapeutic agent may be administered prior to, at the same time as, or following administration of the protein kinase inhibitor of the invention.
  • a protein kinase inhibitor of formula (I) is administered in conjunction with an anticancer agent.
  • anticancer agent refers to any agent that is administered to a subject with cancer for purposes of treating the cancer.
  • Nonlimiting examples anticancer agents include: radiotherapy; immunotherapy; DNA damaging chemotherapeutic agents; and chemotherapeutic agents that disrupt cell replication.
  • Non-limiting examples of DNA damaging chemotherapeutic agents include topoisomerase I inhibitors (e.g., irinotecan, topotecan, camptothecin and analogs or metabolites thereof, and doxorubicin); topoisomerase II inhibitors (e.g., etoposide, teniposide, and daunorubicin); alkylating agents (e.g., melphalan, chlorambucil, busulfan, thiotepa, ifosfamide, carmustine, lomustine, semustine, streptozocin, decarbazine, methotrexate, mitomycin C, and cyclophosphamide); DNA intercalators (e.g., cisplatin, oxaliplatin, and carboplatin); DNA intercalators and free radical generators such as bleomycin; and nucleoside mimetics (e.g., 5-fluorouracil, capecitibine
  • Chemotherapeutic agents that disrupt cell replication include: paclitaxel, docetaxel, and related analogs; vincristine, vinblastin, and related analogs; thalidomide and related analogs (e.g., CC-5013 and CC-4047); protein tyrosine kinase inhibitors (e.g., imatinib mesylate and gefitinib); proteasome inhibitors (e.g., bortezomib); NF- ⁇ B inhibitors, including inhibitors of I ⁇ B kinase; antibodies which bind to proteins overexpressed in cancers and thereby downregulate cell replication (e.g., trastuzumab, rituximab, cetuximab, and bevacizumab); and other inhibitors of proteins or enzymes known to be upregulated, over-expressed or activated in cancers, the inhibition of which downregulates cell replication.
  • protein tyrosine kinase inhibitors e.
  • a compound of formula (I) that inhibits Chk-1 is used in combination with radiation therapy or a chemotherapeutic agent that acts by causing damage to the genetic material of cells (collectively referred to herein as “DNA damaging agents”).
  • DNA damaging agents a chemotherapeutic agent that acts by causing damage to the genetic material of cells
  • the combination of a Chk-1 inhibitor of formula (I) with a DNA damaging agent is used to treat a subject with a multi-drug resistant cancer.
  • a cancer is resistant to a drug when it resumes a normal rate of tumor growth while undergoing treatment with the drug after the tumor had initially responded to the drug.
  • a tumor “responds to a drug” when it exhibits a decrease in tumor mass or a decrease in the rate of tumor growth.
  • multi-drug resistant cancer refers to cancer that is resistant to two or more drugs, often as many as five or more.
  • an “effective amount” of a Chk-1 inhibitor is the quantity of the inhibitor at which a greater response is achieved when the Chk-1 inhibitor is co-administered with the DNA damaging anti-cancer drug and/or radiation therapy than is achieved when the DNA damaging anti-cancer drug and/or radiation therapy is administered alone.
  • FA Method Formic Acid
  • Esters i-a, i-c, i-d, i-j, and i-k are commercially available. Ester i-h was not prepared; ii-h was prepared as described below.
  • PL-CHO resins Polymer Laboratories, Inc., Amherst, Mass. (400 mg, 1.2 mmol), and 1M AcOH in DCM (0.12 mL, 0.12 mmol) were added to the solution. The resin mixtures were shaken at rt overnight. The resins were filtered off and the filtrates were concentrated. Each resulting residue was purified by reverse phase HPLC using an Agilent HPLC equipped with a SunFireTM column (Waters Corporation), Method Formic Acid.
  • Formamidinesulfinic acid (2.65 g, 24.5 mmol) was dissolved in acetic acid (8.3 mL) and cooled to 10° C. Peracetic acid (5.7 mL, 27 mmol) was slowly added to the cooled solution. After addition was complete, the reaction was warmed slowly to 22° C. and stirred for 3 h. The solid was filtered and washed with ethanol (200 proof) then dried in vacuo to give an unstable intermediate 2.44 g (80%). The intermediate was dissolved in mixture of CH 3 CN (5 mL) and MeOH (10 mL). Then (3,4-dimethoxy-phenyl)methanamine (1.27 mL, 8.39 mmol) was added slowly and stirred at 22° C. The reaction was stirred for 12 h and then concentrated in vacuo to give xix-o (2.44 g, 99%).
  • PS-carbodiimide resin (Argonaut Technologies) (1.069 g, 1.71 mmol, 1.6 mmol/g) placed in a 20 mL vial was added anhydrous 1,2-dichloroethane (6.0 mL), N,N′-bis(tert-butoxycarbonyl)thiourea (235 mg, 0.85 mmol) in anhydrous 1,2-dichloroethane (2.0 mL), and 5-amino-3,4-dimethylisoxazole (63.9 mg, 0.57 mmol) solution or dispersion in anhydrous 1,2-dichloroethane (1.0 mL). The reaction mixture was shaken at 50° C. until the reaction completed, typically for 36 hours.
  • the vial was sealed with a silicone lined crimp cap and removed from the glove box.
  • the vial was sonicated for 2 minutes and then heated to 90° C. (oil bath temperature) for 18 hours.
  • the dark brown solution was diluted with 50 mL of water and the brown solids were collected by filtration and washed with water and then diethyl ether.
  • Recombinant mouse Aurora A with an amino-terminus hexahistidine tag was expressed using a standard baculovirus vector and insect cell expression system (Bac-to-Bac®, Invitrogen).
  • Soluble, recombinant mouse Aurora A was purified from insect cells using Ni-NTA agarose (Qiagen) as described by the manufacturer and further purified over an S75 size exclusion column (Amersham Pharmacia Biotech).
  • Recombinant mouse Aurora B with an amino-terminus hexahistidine tag was expressed using a standard baculovirus vector and insect cell expression system (Bac-to-Bac®, Invitrogen).
  • Soluble, recombinant mouse Aurora B was purified from insect cells using Ni-NTA agarose (Qiagen) as described by the manufacturer.
  • Recombinant human Chk-1 was expressed as a fusion protein with glutathione S-transferase at the amino-terminus (GST-Chk1) using standard baculovirus vectors and (Bac-to-Bac®) insect cell expression system purchased from GIBCOTM Invitrogen. Recombinant protein expressed in insect cells was purified using glutathione sepharose (Amersham Biotech) using standard procedures described by the manufacturer.
  • Recombinant human PLK1 was expressed in E. coli as an N-terminal Smt fusion protein using a proprietary vector (pSGX4) by Structural Genomics (SGX). The fusion partner was removed through cleavage with Ulp1 after an initial purification using a Ni2+ affinity column.
  • the mouse Aurora A enzymatic reaction totaled 25 ⁇ L, and contained 25 mM Tris-HCl (pH 8.5), 2.5 mM MgCl 2 , 0.05% Surfact-AMPS-20, 5 mM Sodium Fluoride, 5 mM DTT, 1 mM ATP, 3 ⁇ M peptide substrate (Biotin- ⁇ -Ala-QTRRKSTGGKAPR-NH 2 ), and 20 nM recombinant murine Aurora A enzyme.
  • the enzymatic reaction mixture, with and without Aurora inhibitors, was incubated for 10 minutes at room temperature before termination with 100 ⁇ L of stop buffer (1% BSA, 0.05% Surfact-AMPS-20, and 100 mM EDTA).
  • a total of 100 ⁇ L of the enzyme reaction mixture was transferred to wells of a Neutravidin-coated 96-well plate (Pierce) and incubated at room temperature for 30 minutes.
  • the wells were washed with wash buffer (25 mM Tris, 150 mM sodium chloride, and 0.1% Tween 20) and incubated for 1 hour with 100 ⁇ L of antibody reaction mixture containing 1% BSA, 0.05% Surfact-AMPS-20, anti-phospho-PKA rabbit polyclonal antibody (1:2000, New England Biolabs), and europium labeled anti-rabbit IgG (1:2000, Perkin Elmer).
  • the wells were washed and then the bound europium was liberated using 100 ⁇ L of Enhancement Solution (Perkin Elmer). Quantification of europium was done using a WallacTM EnVision (Perkin Elmer).
  • compounds I-1 to I-93 provided the following test results: I-1 to I-10, I-14 to I-15, I-18, I-24 to I-28, I-30, I-32 to I-33, I-37 to I-42, I-46, to I-47, I-49 to I-50, I-52 to I-57, I-59 to I-60, I-62 to I-67, I-70 to I-73, I-78 to I-79, I-81 to I-82, I-86 to I-89, and I-91 were shown to have IC 50 values in this assay of less than or equal to 5.0 ⁇ M, and compounds I-2, I-3, I-7, I-9, I-10, I-27, I-30, I-32, I-33, I-37, I-38, I-42, I-47, I-49, I-50, I-53, I-57, I-62, I-64, I-66, I-67,
  • the mouse Aurora B enzymatic reaction totaling 25 ⁇ L contained 25 mM Tris-HCl (pH 8.5), 2.5 mM MgCl 2 , 0.025% Surfact-AMPS-20 (Pierce), 1% Glycerol, 1 mM DTT, 1 mM ATP, 3 ⁇ M peptide substrate (Biotin- ⁇ -Ala-QTRRKSTGGKAPR—NH 2 ), and 20 nM recombinant murine Aurora B enzyme.
  • the enzymatic reaction mixture, with or without Aurora inhibitors, was incubated for 3 hours at room temperature before termination with 100 ⁇ L of stop buffer (1% BSA, 0.05% Surfact-AMPS-20, and 100 mM EDTA).
  • a total of 100 ⁇ L of the enzyme reaction mixture was transferred to wells of a Neutravidin-coated 96-well plate (Pierce) and incubated at room temperature for 30 minutes.
  • the wells were washed with wash buffer (25 mM Tris, 150 mM sodium chloride, and 0.1% Tween 20) and incubated for 1 hour with 100 ⁇ L of antibody reaction mix containing 1% BSA, 0.05% Surfact-AMPS-20, anti-phospho-PKA rabbit polyclonal antibody (1:2000, New England Biolabs), and europium labeled anti-rabbit IgG (1:2000, Perkin Elmer).
  • the wells were washed and then the bound europium was liberated using 100 ⁇ L of Enhancement Solution (Perkin Elmer). Quantification of europium was done using a WallacTM EnVision (Perkin Elmer).
  • Assays (25 ⁇ L) utilized 1.94 nM GST-Chk-1 containing 10 mM Tris, pH 7.5, 0.1% BSA (TBS), 50 mM NaCl 2 , 0.01% Surfact-Amps® 20.1 ⁇ M peptide substrate (Biotin-GLYRSPSMPEN-amide), 2 mM DTT, 4% DMSO, 50 or 600 ⁇ M ATP (depending on potency), 10 mM MgCl 2 and were reacted for 90 minutes at room temperature. Reactions were terminated with 120 ⁇ L of Stop buffer containing 1% BSA (TBS), 100 mM EDTA, pH 8.0, 0.05% Surfact-Amps® 20.
  • compounds I-1 to I-93 provided the following test results: compounds I-1 to I-3, I-5, I-6, I-9, I-14, I-15, I-18, I-24, I-26, I-27, I-30 to I-33, I-37 to I-42, I-46, I-47, I-49, I-50, I-52 to I-54, I-56, I-57, I-59 to I-67, I-69 to I-73, I-76, I-78, I-79, I-81, I-82, and I-86 to I-92 were shown to have IC 50 values in this assay of less than or equal to 5 ⁇ M, and compounds I-1 to I-3, I-9, I-18, I-24, I-27, I-30, I-32, I-33, I-37, I-38, I-41, I-42, I-46, I-47, I-49, I-50, I-52, I-
  • the human PLK1 enzymatic reaction totaling 30 4 contained 50 mM Tris-HCl (pH 8.0), 10 mM MgCl 2 , 0.02% BSA, 10% glycerol, 1 mM DTT, 100 mM NaCl, 3.3% DMSO, 8 ⁇ M ATP, 0.2 ⁇ Ci [ ⁇ - 33 P]-ATP, 4 ⁇ M peptide substrate (Biotin-AHX-LDETGHLDSSGLQEVHLA-CONH 2 ) and 10 nM recombinant human PLK1[2-369]T210D.
  • compounds I-1 to 1-93 provided the following test results: compounds I-2, I-3, I-5, I-7 to I-9, I-11 to I-18, I-24 to I-30, I-32 to I-38, I-41, I-42, I-45 to I-47, I-49, I-50, I-52 to I-56, I-65 to I-73, I-78 to I-82, and I-86 to I-89 were shown to have an IC 50 of less than or equal to 5 ⁇ M in this assay, and compounds I-2, I-3, I-5, I-7, I-9, I-11 to I-15, I-18, I-24, I-27 to I-30, I-33 to I-37, I-42, I-45 to I-47, I-49, I-50, I-54 to I-56, I-65 to I-67, I-69, I-70, I-78, I-79, I-81, I-82, and I-86
  • Inhibition of Aurora A or Aurora B activity in whole cell systems can be assessed by determination of decreased phosphorylation of Aurora substrates. For example, determining decreased phosphorylation of histone H3 on Serine 10, an Aurora B substrate can be used to measure inhibition of Aurora B activity in a whole cell system. Alternatively, any known Aurora B substrate can be used in similar assay methods to assess inhibition of Aurora B activity. Similarly, Aurora A inhibition can be determined using analogous methods and known Aurora A substrates for detection.
  • HeLa cells were seeded in a 96-well cell culture plate (10 ⁇ 10 3 cells/well) and incubated overnight at 37° C. Cells were incubated with Aurora inhibitors for 1 hour at 37° C., fixed with 4% paraformaldehyde for 10 minutes and then permeabilized with 0.5% TritonX-100 in PBS. Cells were incubated with mouse anti-pH is H3 (1:120, Cell Signaling Technologies) and rabbit anti-mitotic marker (1:120, Millennium Pharmaceuticals Inc.) antibodies for 1 hour at room temperature.
  • HCT-116 1000 or other tumor cells in 100 ⁇ l of appropriate cell culture medium (McCoy's 5A for HCT-116, Invitrogen) supplemented with 10% fetal bovine serum (Invitrogen) was seeded in wells of a 96-well cell culture plate and incubated overnight at 37 C. Test compounds were added to the wells and the plates were incubated for 96 hours at 37° C. MTT or WST reagent (10 Roche) was added to each well and incubated for 4 hours at 37° C. as described by the manufacturer. For MTT the metabolized dye was solublized overnight according to manufacturer's instructions (Roche).
  • the optical density for each well was read at 595 nm (primary) and 690 nm (reference) for the MTT and 450 nm for the WST using a spectrophotometer (Molecular Devices).
  • the reference optical density values were subtracted from the values of the primary wavelength. Percent inhibition was calculated using the values from a DMSO control set to 100%.
  • HT29, HCT116 (5000 cells/well) or other cells were seeded (75 ⁇ L) to 96 well clear bottom plates at densities which provide linear growth curves for 72 hours.
  • Cells were cultured under sterile conditions in appropriate media; for HT29 and HCT116, this media was McCoy's 5A containing 10% Fetal Bovine Serum (FBS).
  • FBS Fetal Bovine Serum
  • Final volume of all DNA damaging agent and test compound additions was 25 ⁇ L and assays contained ⁇ 1% DMSO final.
  • the test compound was added at fixed concentrations to each DNA damaging agent titration to observe enhancement of cell killing.
  • toxicity of each test compound alone was observed. By doing this over a range of test compound concentrations, compounds were identified which maximally enhance (2-30 fold) cell killing by each DNA damaging agent and generated ⁇ 80% cell killing by the compound alone.
  • Cell viability/cell killing under the conditions described above was determined by addition WST reagent (Roche) according to the manufacturer at 47 hours following DNA damage & Chk-1 inhibitor addition and following a 3.5 hour or 2.5 hour incubation at 37 C, 5% CO 2 , OD 450 was measured.
  • HCT-116 (1 ⁇ 10 6 ) or other tumor cells in 100 ⁇ L of phosphate buffered saline are aseptically injected into the subcutaneous space in the right dorsal flank of female CD-1 nude mice (age 5-8 weeks, Charles River) using a 23-ga needle. Beginning at day 7 after inoculation tumors are measured twice weekly using a vernier caliper. Tumor volumes are calculated using standard procedures (0.5 ⁇ (length ⁇ width 2 )). When the tumors reach a volume of approximately 200 mm 3 mice are injected i.v. in the tail vein with test compound (100 ⁇ l) at various doses and schedules. All control groups receive vehicle alone. Tumor size and body weight are measured twice a week and the study is terminated when the control tumors reach approximately 2000 mm 3 .
  • HT29 human colon cancer cells with p53 deficiency are cultured with 10% FBS in McCoy's 3A medium and incubated at 5% CO 2 .
  • the cells are trypsinized and resuspended in Hanks buffer at 2 ⁇ 10 7 cells/mL.
  • the individual animals are assigned to different study groups using a random number generation method.
  • the typical study consists of vehicle control, CPT-11 alone (i.v.), Chk-1 inhibitor alone (i.p.), and CPT-11 in combination with Chk-1 inhibitor groups at various doses and schedules. Tumor size and body weight are measured twice a week for four weeks. Once the tumor volume reaches over 10% of the body weight of the animal, or the mouse body weight loss is more than 20%, the mouse is euthanized. Data is collected only from those study groups in which there are five or more animals.

Abstract

The present invention provides novel compounds useful as inhibitors of protein kinases. The invention also provides pharmaceutical compositions comprising the compounds of the invention and methods of using the compositions in the treatment of various diseases.

Description

    PRIORITY CLAIM
  • The present application is a continuation of U.S. patent application Ser. No. 12/903,370, filed Oct. 13, 2010 (pending), which is a continuation of U.S. patent application Ser. No. 12/231,661, filed Sep. 4, 2008, now U.S. Pat. No. 7,935,694, which is a divisional of U.S. patent application Ser. No. 11/242,413, filed Oct. 3, 2005, now U.S. Pat. No. 7,459,448, which claims the benefit of U.S. Provisional Application Ser. No. 60/615,761, filed Oct. 4, 2004 (abandoned). The entire contents of each of the above-referenced patent applications are incorporated herein by this reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to inhibitors of protein kinases. The invention also provides pharmaceutical compositions comprising the compounds of the invention and methods of using the compositions in the treatment of various diseases.
  • 2. Background of the Invention
  • Protein kinases constitute a large family of structurally related enzymes that effect the transfer of a phosphate group from a nucleoside triphosphate to a protein acceptor. A vast array of cellular functions, including DNA replication, cell cycle progression, energy metabolism, and cell growth and differentiation, are regulated by reversible protein phosphorylation events mediated by protein kinases. Additionally, protein kinase activity has been implicated in a number of disease states. Accordingly, protein kinase targets have attracted substantial drug discovery efforts in recent years, with several protein kinase inhibitors achieving regulatory approval (reviewed in Fischer, Curr. Med. Chem., 11:1563 (2004); Dancey and Sausville, Nature Rev. Drug Disc., 2:296 (2003)).
  • Mitosis is a stage in the cell cycle during which a series of complex events ensure the fidelity of chromosome separation into two daughter cells. Several current cancer therapies, including the taxanes and vinca alkaloids, act to inhibit the mitotic machinery. Mitotic progression is largely regulated by proteolysis and by phosphorylation events that are mediated by mitotic kinases. Aurora kinase family members (e.g., Aurora A, Aurora B, Aurora C) regulate mitotic progression through modulation of centrosome separation, spindle dynamics, spindle assembly checkpoint, chromosome alignment, and cytokinesis (Dutertre et al., Oncogene, 21: 6175 (2002); Berdnik et al., Curr. Biol., 12: 640 (2002)). Overexpression and/or amplification of Aurora kinases have been linked to oncogenesis in several tumor types including those of colon and breast (Warner et al., Mol. Cancer. Ther., 2: 589 (2003); Bischoff et al., EMBO, 17: 3062 (1998); Sen et al., Cancer Res., 94: 1320 (2002)). Moreover, Aurora kinase inhibition in tumor cells results in mitotic arrest and apoptosis, suggesting that these kinases are important targets for cancer therapy (Ditchfield, J. Cell Biol., 161: 267 (2003); Harrington et al., Nature Med., 1 (2004)). Given the central role of mitosis in the progression of virtually all malignancies, inhibitors of the Aurora kinases are expected to have application across a broad range of human tumors.
  • PLK is a serine/threonine protein kinase that plays a key role in cell cycle control. PLK controls entry and progression through mitosis at multiple stages by regulating centrosome maturation, activation of initiating factors, degradation of inhibitory components, chromosome condensation, and exit from mitosis (reviewed in Barr et al., Nature Reviews Mol Cell Biol., 5; 429 (2004)). PLK has been reported to be overexpressed in numerous cancers such as melanoma, ovarian, colorectal, lung and squamous cell carcinoma of the head and neck. Increased levels of expression are additionally correlated with poor prognosis and survival. (Kneisel et al., J Cutan Pathol 29: 354 (2002); Takai et al. Cancer Lett 164: 41 (2001); Takahashi et al Cancer Sci.; 94(2):148 (2003); Wolf et al. Oncogene 14: 543 (1997); Knecht et al. Cancer Res. 59 (1999)). Overexpression of the kinase transforms cells, rendering them oncogenic such that they acquire the ability to form tumors in mice (Smith et al., Biochem. Biophys. Res. Commun. 234; 397 (1997)). PLK protein levels are also elevated in tumor relative to normal cell lines in culture. Downregulation of PLK protein expression by RNA interference in tumor cell lines results in a reduction of cell proliferation, mitotic arrest at prometaphase and the rapid progression into apoptosis (Spankuch-Schmitt et al. J. Natl. Cancer Inst. 94(24):1863 (2002); Spankuch-Schmitt et al. Oncogene 21(20):3162 (2002)). This effect was not observed in normal cell lines. Moreover downregulation of PLK by short hairpin expression in mice with human xenografts reduced tumor growth to 18% (Spankuch B et al. (2004) J. Natl. Cancer Inst. 96(11):862-72). The key role of PLK in mitotic progression, its overexpression in a wide range of malignancies and the anti-proliferative effect observed upon its inhibition demonstrate its feasibility as a therapeutic target.
  • Anti-mitotic drugs that bind to tubulin (taxanes and vinca alkaloids) are currently utilized as chemotherapeutic drugs. Tubulin regulates cellular processes outside of mitosis therefore these drugs offer no selectivity towards cancer cells and are toxic to normal cells. Small molecule inhibitors that target the mitotic process specifically by targeting kinases that are overexpressed and active only in rapidly proliferating mitotic cells, such as PLK and Aurora kinase, may be clinically effective against tumors and not constrained by dose-limiting toxicities.
  • Cell cycle checkpoints are regulatory pathways that control the order and timing of cell cycle transitions. They ensure that critical events such as DNA replication and chromosome segregation are completed in high fidelity. The regulation of these cell cycle checkpoints is a critical determinant of the manner in which tumor cells respond to many chemotherapies and radiation. Many effective cancer therapies work by causing DNA damage; however, resistance to these agents remains a significant limitation in the treatment of cancer. One important mechanism leading to drug resistance is the activation of a checkpoint pathway that arrests the cell cycle to provide time for repair and induces the transcription of genes that facilitate repair. Cell cycle progression is prevented, and immediate cell death of the damaged cell is avoided. By abrogating such checkpoint arrests at, for example, the G2 checkpoint, it may be possible to synergistically augment the tumor cell death induced by DNA damage and to circumvent resistance. (Shyjan et al., U.S. Pat. No. 6,723,498 (2004)). Human Chk-1 plays a role in regulating cell cycle arrest by phosphorylating the phosphatase cdc25 on Serine 216, thereby preventing the activation of cdc2/cyclin B and the initiation of mitosis. (Sanchez et al., Science, 277:1497 (1997)). Therefore, inhibition of Chk-1 should enhance the effect of DNA damaging agents by initiating mitosis before DNA repair is complete, thereby promoting tumor cell death.
  • Accordingly, there is a need to develop inhibitors of protein kinases, including Chk-1, Aurora, and PLK. Such inhibitors are useful for treating various diseases or conditions associated with protein kinase activity, and are especially needed in view of the inadequate treatments currently available for many of these disorders.
  • DESCRIPTION OF THE INVENTION
  • The present invention provides compounds that are effective inhibitors of protein kinases, including Chk-1, Aurora kinase, and PLK. These compounds are useful for inhibiting kinase activity in vitro and in vivo, and are especially useful for the treatment of various cell proliferative diseases.
  • The compounds of the invention are represented by formula (I):
  • Figure US20120178739A1-20120712-C00001
      • or a pharmaceutically acceptable salt thereof;
      • wherein:
    • Ring A is an optionally substituted 5- or 6-membered aryl or heteroaryl ring;
    • G1 is C═O, C═S, or S(═O)2;
    • Y1 is N or CH and Y2 is N or CRe, provided that at least one of Y1 and Y2 is N;
    • Ra is hydrogen, —C(O)R5a, —C(O)N(R4a)2, —CO2R6a, —SO2R6a, —SO2N(R4a)2, an optionally substituted C1-10 aliphatic, or an optionally substituted aryl, heteroaryl, or heterocyclyl ring;
    • Rb is hydrogen or an optionally substituted aliphatic, aryl, heteroaryl, or heterocyclyl group;
    • Rc is hydrogen, fluoro, —OR5, —N(R4)2, or an optionally substituted C1-4 aliphatic;
    • Rd is hydrogen, fluoro, C1-4 aliphatic, or C1-4 fluoroaliphatic; or Rc and Rd, taken together with the carbon atom to which they are attached, form an optionally substituted 3- to 6-membered carbocyclic ring;
    • Re is hydrogen, halo, —NO2, —CN, —C(R5)═C(R5)2, —C(R5)═C(R5)(R10), —OR5, —N(R4)2, —NR4C(O)R5, —NR4C(O)N(R4)2, —NR4CO2R6, —CO2R5, —C(O)R5, —C(O)N(R4)2, —N(R4)SO2R6, —N(R4)SO2N(R4)2, or an optionally substituted C1-4 aliphatic;
    • each R3 independently is selected from the group consisting of C1-3 aliphatic, -fluoro, —OH, and —O(C1-3 alkyl), or two substituents R3 on the same carbon atom, taken together with the carbon atom to which they are attached, form a 3- to 6-membered carbocyclic ring;
    • each R4 independently is hydrogen or an optionally substituted aliphatic, aryl, heteroaryl, or heterocyclyl group; or two R4 on the same nitrogen atom, taken together with the nitrogen atom, form an optionally substituted 3-to-membered heterocyclyl ring having, in addition to the nitrogen atom, 0-2 ring heteroatoms selected from N, O, and S;
    • each R4a independently is hydrogen or an optionally substituted aliphatic, aryl, heteroaryl, or heterocyclyl group; or two R4a on the same nitrogen atom, taken together with the nitrogen atom, form an optionally substituted 4- to 8-membered heterocyclyl ring having, in addition to the nitrogen atom, 0-2 ring heteroatoms selected from N, O, and S;
    • each R5 independently is hydrogen or an optionally substituted aliphatic, aryl, heteroaryl, or heterocyclyl group;
    • each R5a independently is hydrogen or an optionally substituted aliphatic, aryl, heteroaryl, or heterocyclyl group;
    • each R6 independently is an optionally substituted aliphatic or aryl group;
    • each R6a independently is an optionally substituted aliphatic or aryl group; and
    • R10 is —CO2R5 or —C(O)N(R4)2.
  • Compounds of this invention include those described generally above, and are further illustrated by the classes, subclasses, and species disclosed herein. Terms used herein shall be accorded the following defined meanings, unless otherwise indicated.
  • The term “aliphatic” or “aliphatic group”, as used herein, means a substituted or unsubstituted straight-chain, branched or cyclic C1-12 hydrocarbon, which is completely saturated or which contains one or more units of unsaturation, but which is not aromatic. For example, suitable aliphatic groups include substituted or unsubstituted linear, branched or cyclic alkyl, alkenyl, alkynyl groups and hybrids thereof, such as (cylcoalkyl)alkyl, (cycloalkenyl)alkyl or (cycloalkyl)alkenyl. In various embodiments, the aliphatic group has 1 to 12, 1 to 8, 1 to 6, 1 to 4, or 1 to 3 carbons.
  • The terms “alkyl”, “alkenyl”, and “alkynyl”, used alone or as part of a larger moiety, refer to a straight and branched chain aliphatic group having from 1 to 12 carbon atoms. For purposes of the present invention, the term “alkyl” will be used when the carbon atom attaching the aliphatic group to the rest of the molecule is a saturated carbon atom. However, an alkyl group may include unsaturation at other carbon atoms. Thus, alkyl groups include, without limitation, methyl, ethyl, propyl, allyl, propargyl, butyl, pentyl, and hexyl.
  • For purposes of the present invention, the term “alkenyl” will be used when the carbon atom attaching the aliphatic group to the rest of the molecule forms part of a carbon-carbon double bond. Alkenyl groups include, without limitation, vinyl, 1-propenyl, 1-butenyl, 1-pentenyl, and 1-hexenyl.
  • For purposes of the present invention, the term “alkynyl” will be used when the carbon atom attaching the aliphatic group to the rest of the molecule forms part of a carbon-carbon triple bond. Alkynyl groups include, without limitation, ethynyl, 1-propynyl, 1-butynyl, 1-pentynyl, and 1-hexynyl.
  • The term “cycloaliphatic”, used alone or as part of a larger moiety, refers to a saturated or partially unsaturated cyclic aliphatic ring system having from 3 to about 14 members, wherein the aliphatic ring system is optionally substituted. In some embodiments, the cycloaliphatic is a monocyclic hydrocarbon having 3-8 or 3-6 ring carbon atoms. Nonlimiting examples include cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, cycloheptyl, cycloheptenyl, cyclooctyl, cyclooctenyl, and cyclooctadienyl. In some embodiments, the cycloaliphatic is a bridged or fused bicyclic hydrocarbon having 6-12, 6-10, or 6-8 ring carbon atoms, wherein any individual ring in the bicyclic ring system has 3-8 members.
  • In some embodiments, two adjacent substituents on the cycloaliphatic ring, taken together with the intervening ring atoms, form an optionally substituted fused 5- to 6-membered aromatic or 3- to 8-membered non-aromatic ring having 0-3 ring heteroatoms selected from the group consisting of O, N, and S. Thus, the term “cycloaliphatic” includes aliphatic rings that are fused to one or more aryl, heteroaryl, or heterocyclyl rings. Nonlimiting examples include indanyl, 5,6,7,8-tetrahydro-quinoxalinyl, decahydronaphthyl, or tetrahydronaphthyl, where the radical or point of attachment is on the aliphatic ring. The term “cycloaliphatic” may be used interchangeably with the terms “carbocycle”, “carbocyclyl”, “carbocyclo”, or “carbocyclic”.
  • The terms “aryl” and “ar-”, used alone or as part of a larger moiety, e.g., “aralkyl”, “aralkoxy”, or “aryloxyalkyl”, refer to a C6 to C14 aromatic hydrocarbon, comprising one to three rings, each of which is optionally substituted. Preferably, the aryl group is a C6-10 aryl group. Aryl groups include, without limitation, phenyl, naphthyl, and anthracenyl. In some embodiments, two adjacent substituents on the aryl ring, taken together with the intervening ring atoms, form an optionally substituted fused 5- to 6-membered aromatic or 4- to 8-membered non-aromatic ring having 0-3 ring heteroatoms selected from the group consisting of O, N, and S. Thus, the term “aryl”, as used herein, includes groups in which an aromatic ring is fused to one or more heteroaryl, cycloaliphatic, or heterocyclyl rings, where the radical or point of attachment is on the aromatic ring. Nonlimiting examples of such fused ring systems include indolyl, isoindolyl, benzothienyl, benzofuranyl, dibenzofuranyl, indazolyl, benzimidazolyl, benzthiazolyl, quinolyl, isoquinolyl, cinnolinyl, phthalazinyl, quinazolinyl, quinoxalinyl, carbazolyl, acridinyl, phenazinyl, phenothiazinyl, phenoxazinyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, fluorenyl, indanyl, phenanthridinyl, tetrahydronaphthyl, indolinyl, phenoxazinyl, benzodioxanyl, and benzodioxolyl. An aryl group may be mono-, bi-, tri-, or polycyclic, preferably mono-, bi-, or tricyclic, more preferably mono- or bicyclic. The term “aryl” may be used interchangeably with the terms “aryl group”, “aryl moiety”, and “aryl ring”.
  • An “aralkyl” or “arylalkyl” group comprises an aryl group covalently attached to an alkyl group, either of which independently is optionally substituted. Preferably, the aralkyl group is C6-10 aryl(C1-6)alkyl, C6-10 aryl(C1-4)alkyl, or C6-10 aryl(C1-3)alkyl, including, without limitation, benzyl, phenethyl, and naphthylmethyl.
  • The terms “heteroaryl” and “heteroar-”, used alone or as part of a larger moiety, e.g., heteroaralkyl, or “heteroaralkoxy”, refer to groups having 5 to 14 ring atoms, preferably 5, 6, 9, or 10 ring atoms; having 6, 10, or 14 it electrons shared in a cyclic array; and having, in addition to carbon atoms, from one to four heteroatoms. The term “heteroatom” refers to nitrogen, oxygen, or sulfur, and includes any oxidized form of nitrogen or sulfur, and any quaternized form of a basic nitrogen. Heteroaryl groups include, without limitation, thienyl, furanyl, pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, oxazolyl, isoxazolyl, oxadiazolyl, thiazolyl, isothiazolyl, thiadiazolyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, indolizinyl, purinyl, naphthyridinyl, and pteridinyl. In some embodiments, two adjacent substituents on the heteroaryl, taken together with the intervening ring atoms, form an optionally substituted fused 5- to 6-membered aromatic or 4- to 8-membered non-aromatic ring having 0-3 ring heteroatoms selected from the group consisting of O, N, and S. Thus, the terms “heteroaryl” and “heteroar-”, as used herein, also include groups in which a heteroaromatic ring is fused to one or more aryl, cycloaliphatic, or heterocyclyl rings, where the radical or point of attachment is on the heteroaromatic ring. Nonlimiting examples include indolyl, isoindolyl, benzothienyl, benzofuranyl, dibenzofuranyl, indazolyl, benzimidazolyl, benzthiazolyl, quinolyl, isoquinolyl, cinnolinyl, phthalazinyl, quinazolinyl, quinoxalinyl, 4H-quinolizinyl, carbazolyl, acridinyl, phenazinyl, phenothiazinyl, phenoxazinyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, and pyrido[2,3-b]-1,4-oxazin-3(4H)-one. A heteroaryl group may be mono-, bi-, tri-, or polycyclic, preferably mono-, bi-, or tricyclic, more preferably mono- or bicyclic. The term “heteroaryl” may be used interchangeably with the terms “heteroaryl ring”, “heteroaryl group”, or “heteroaromatic”, any of which terms include rings that are optionally substituted. The term “heteroaralkyl” refers to an alkyl group substituted by a heteroaryl, wherein the alkyl and heteroaryl portions independently are optionally substituted.
  • As used herein, the terms “heterocycle”, “heterocyclyl”, “heterocyclic radical”, and “heterocyclic ring” are used interchangeably and refer to a stable 3- to 7-membered monocyclic, or to a fused 7- to 10-membered or bridged 6- to 10-membered bicyclic heterocyclic moiety that is either saturated or partially unsaturated, and having, in addition to carbon atoms, one or more, preferably one to four, heteroatoms, as defined above. When used in reference to a ring atom of a heterocycle, the term “nitrogen” includes a substituted nitrogen. As an example, in a heterocyclyl ring having 1-3 heteroatoms selected from oxygen, sulfur or nitrogen, the nitrogen may be N (as in 3,4-dihydro-2H-pyrrolyl), NH (as in pyrrolidinyl) or +NR (as in N-substituted pyrrolidinyl). A heterocyclic ring can be attached to its pendant group at any, heteroatom or carbon atom that results in a stable structure, and any of the ring atoms can be optionally substituted. Examples of such saturated or partially unsaturated heterocyclic radicals include, without limitation, tetrahydrofuranyl, tetrahydrothienyl, pyrrolidinyl, pyrrolidonyl, piperidinyl, pyrrolinyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, decahydroquinolinyl, oxazolidinyl, piperazinyl, dioxanyl, dioxolanyl, diazepinyl, oxazepinyl, thiazepinyl, morpholinyl, and quinuclidinyl.
  • In some embodiments, two adjacent substituents on a heterocyclic ring, taken together with the intervening ring atoms, for an optionally substituted fused 5- to 6-membered aromatic or 3- to 8-membered non-aromatic ring having 0-3 ring heteroatoms selected from the group consisting of O, N, and S. Thus, the terms “heterocycle”, “heterocyclyl”, “heterocyclyl ring”, “heterocyclic group”, “heterocyclic moiety”, and “heterocyclic radical”, are used interchangeably herein, and include groups in which a heterocyclyl ring is fused to one or more aryl, heteroaryl, or cycloaliphatic rings, such as indolinyl, 3H-indolyl, chromanyl, phenanthridinyl, or tetrahydroquinolinyl, where the radical or point of attachment is on the heterocyclyl ring. A heterocyclyl group may be mono-, bi-, tri-, or polycyclic, preferably mono-, bi-, or tricyclic, more preferably mono- or bicyclic. The term “heterocyclylalkyl” refers to an alkyl group substituted by a heterocyclyl, wherein the alkyl and heterocyclyl portions independently are optionally substituted.
  • As used herein, the term “partially unsaturated” refers to a ring moiety that includes at least one double or triple bond between ring atoms. The term “partially unsaturated” is intended to encompass rings having multiple sites of unsaturation, but is not intended to include aryl or heteroaryl moieties, as herein defined.
  • The terms “haloaliphatic”, “haloalkyl”, “haloalkenyl” and “haloalkoxy” refer to an aliphatic, alkyl, alkenyl or alkoxy group, as the case may be, which is substituted with one or more halogen atoms. As used herein, the term “halogen” or “halo” means F, Cl, Br, or I. The term “fluoroaliphatic” refers to a haloaliphatic wherein the halogen is fluoro.
  • The term “linker group” or “linker” means an organic moiety that connects two parts of a compound. Linkers typically comprise an atom such as oxygen or sulfur, a unit such as —NH—, —CH2—, —C(O)—, —C(O)NH—, or a chain of atoms, such as an alkylene chain. The molecular mass of a linker is typically in the range of about 14 to 200, preferably in the range of 14 to 96 with a length of up to about six atoms. In some embodiments, the linker is a C1-6 alkylene chain.
  • The term “alkylene” refers to a bivalent alkyl group. An “alkylene chain” is a polymethylene group, i.e., —(CH2)n—, wherein n is a positive integer, preferably from 1 to 6, from 1 to 4, from 1 to 3, from 1 to 2, or from 2 to 3. A substituted alkylene chain is a polymethylene group in which one or more methylene hydrogen atoms is replaced with a substituent. Suitable substituents include those described below for a substituted aliphatic group. An alkylene chain also may be substituted at one or more positions with an aliphatic group or a substituted aliphatic group.
  • An alkylene chain also can be optionally interrupted by a functional group. An alkylene chain is “interrupted” by a functional group when an internal methylene unit is replaced with the functional group. Examples of suitable “interrupting functional groups” include —C(R*)═C(R*)—, —C≡C—, —O—, —S—, —S(O)—, —S(O)2—, —S(O)2N(R+)—, —N(R*)—, —N(R+)CO—, —N(R+)C(O)N(R+)—, —N(R+)CO2—, —C(O)N(R+)—, —C(O)—, —C(O)—C(O)—, —CO2—, —OC(O)—, —OC(O)O—, —OC(O)N(R+—, —C(NR+)═N, —C(OR*)═N—, —N(R+)—N(R +)—, or —N(R+)S(O)2—. Each R+, independently, is hydrogen or an optionally substituted aliphatic, aryl, heteroaryl, or heterocyclyl group, or two R+ on the same nitrogen atom, taken together with the nitrogen atom, form a 5-8 membered aromatic or non-aromatic ring having, in addition to the nitrogen atom, 0-2 ring heteroatoms selected from N, O, and S. Each R* independently is hydrogen or an optionally substituted aliphatic, aryl, heteroaryl, or heterocyclyl group.
  • Examples of C3-6 alkylene chains that have been “interrupted” with —O— include —CH2OCH2—, —CH2—O—(CH2)2—, —CH2—O—(CH2)3—, —CH2—O—(CH2)4—, —(CH2)2OCH2—, —(CH2)2O(CH2)2—, —(CH2)2O(CH2)3—, —(CH2)3O(CH2)—, —(CH2)3O(CH2)2—, and —(CH2)4O(CH2)—. Other examples of alkylene chains that are “interrupted” with functional groups include —CH2ZCH2—, —CH2Z(CH2)2—, —CH2Z(CH2)3—, —CH2Z(CH2)4—, —(CH2)2ZCH2—, —(CH2)2Z(CH2)2—, —(CH2)2Z(CH2)3—, —(CH2)3Z(CH2)—, —(CH2)3Z(CH2)2—, and —(CH2)4Z(CH2)—, wherein Z is one of the “interrupting” functional groups listed above.
  • One of ordinary skill in the art will recognize that when an alkylene chain having an interruption is attached to a functional group, certain combinations are not sufficiently stable for pharmaceutical use. Only stable or chemically feasible compounds are within the scope of the present invention. A stable or chemically feasible compound is one in which the chemical structure is not substantially altered when kept at a temperature from about −80° C. to about +40° C., preferably from about −20° C. to about +40° C., in the absence of moisture or other chemically reactive conditions, for at least a week, or a compound which maintains its integrity long enough to be useful for therapeutic or prophylactic administration to a patient.
  • The term “substituted”, as used herein, means that a hydrogen radical of the designated moiety is replaced with the radical of a specified substituent, provided that the substitution results in a stable or chemically feasible compound. The phrase “one or more substituents”, as used herein, refers to a number of substituents that equals from one to the maximum number of substituents possible based on the number of available bonding sites, provided that the above conditions of stability and chemical feasibility are met. Unless otherwise indicated, an optionally substituted group may have a substituent at each substitutable position of the group, and the substituents may be either the same or different.
  • As used herein, the term “independently selected” means that the same or different values may be selected for multiple instances of a given variable in a single compound. By way of example, in a compound of formula (I), if Ring A is substituted with two substituents —R2h, each substituent is selected from the group of defined values for R2h, and the two values selected may be the same or different.
  • An aryl (including the aryl moiety in aralkyl, aralkoxy, aryloxyalkyl and the like) or heteroaryl (including the heteroaryl moiety in heteroaralkyl and heteroaralkoxy and the like) group may contain one or more substituents. Examples of suitable substituents on the unsaturated carbon atom of an aryl or heteroaryl group include -halo, —NO2, —CN, —R*, —C(R*)═C(R*)2, —C≡C—R*, —OR*, —SRo, —S(O)Ro, —SO2Ro, —SO3R*, —SO2N(R+)2, —N(R+) 2, —NR+C(O)R*, —NR+C(O)N(R+)2, —NR+CO2Ro, —O—CO2R*, —OC(O)N(R+)2, —O—C(O)R*, —CO2R*, —C(O)—C(O)R*, —C(O)R*, —C(O)N(R+)2, —C(O)N(R+)C(═NR+)—N(R+)2, —N(R+)C(═NR+)—N(R+)—C(O)R*, —C(═NR+)—N(R+) 2, —C(═NR+)—OR*, —N(R+)—N(R+)2, —N(R+)C(═NR+)—N(R+)2, —NR+SO2Ro, —NR+SO2N(R+ 2, —P(O)(R*)2, —P(O)(OR*)2, —O—P(O)—OR*, and —P(O)(NR+)—N(R+)2, wherein Ro is an optionally substituted aliphatic or aryl group, and R+ and R* are as defined above, or two adjacent substituents, taken together with their intervening atoms, form a 5-6 membered unsaturated or partially unsaturated ring having 0-3 ring atoms selected from the group consisting of N, O, and S.
  • An aliphatic group or a non-aromatic heterocyclic ring may be substituted with one or more substituents. Examples of suitable substituents on the saturated carbon of an aliphatic group or of a non-aromatic heterocyclic ring include, without limitation, those listed above for the unsaturated carbon of an aryl or heteroaryl group and the following: ═O, ═C(R*)2, ═N—N(R*)2, ═N—OR*, ═N—NHC(O)R*, ═N—NHCO2Ro, ═N—NHSO2Ro, or ═N—R*, where each R* and Ro is as defined above.
  • Suitable substituents on the nitrogen atom of a non-aromatic heterocyclic ring include —R*, —N(R*)2, —C(O)R*, —CO2R*, —C(O)—C(O)R* —C(O)CH2C(O)R*, —SO2R*, —SO2N(R*)2, —C(═S)N(R*)2, —C(═NH)—N(R*)2, and —NR*SO2R*; wherein each R* is as defined above.
  • The term “about” is used herein to mean approximately, in the region of, roughly, or around. When the term “about” is used in conjunction with a numerical range, it modifies that range by extending the boundaries above and below the numerical values set forth. In general, the term “about” is used herein to modify a numerical value above and below the stated value by a variance of 10%.
  • As used herein, the term “comprises” means “includes, but is not limited to.”
  • It will be apparent to one skilled in the art that certain compounds of this invention may exist in tautomeric forms, all such tautomeric forms of the compounds being within the scope of the invention. Unless otherwise stated, structures depicted herein are also meant to include all stereochemical forms of the structure; i.e., the R and S configurations for each asymmetric center. Therefore, single stereochemical isomers as well as enantiomeric and diastereomeric mixtures of the present compounds are within the scope of the invention. When a mixture is enriched in one enantiomer relative to its optical isomer, the mixture preferably contains an enantiomeric excess of at least 50%, 75%, 90%, 95%, 99%, or 99.5%. Similarly, when a mixture is enriched in one diastereomer relative to other diastereomer(s), the mixture preferably contains a diastereomeric excess of at least 50%, 75%, 90%, 95%, 99%, or 99.5%.
  • Unless otherwise stated, structures depicted herein are also meant to include compounds which differ only in the presence of one or more isotopically enriched atoms. For example, compounds having the present structure except for the replacement of a hydrogen atom by a deuterium or tritium, or the replacement of a carbon atom by a 13C- or 14C-enriched carbon are within the scope of the invention.
  • Also included within the scope of the invention are solvates of the compounds disclosed herein. As used herein, the term “solvate” means a physical association of a compound of this invention with one or more solvent molecules. This physical association includes hydrogen bonding. In certain instances, the solvate will be capable of isolation, for example when one or more solvent molecules are incorporated in the crystal lattice of the crystalline solid. “Solvate” encompasses both solution-phase and isolable solvates. Representative solvates include hydrates, ethanolates, and methanolates.
  • As used herein, the term “pharmaceutically acceptable salt” refers to those salts which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio.
  • The present invention provides compounds of formula (I), as described above, and pharmaceutically acceptable salts thereof. In formula (I), Y1 is N or CH and Y2 is N or CRe, provided that at least one of Y1 and Y2 is N. The variable Re is hydrogen, halo, —NO2, —CN, —C(R5)═C(R5)2, —C(R5)═C(R5)(R10), —OR5, —N(R4)2, —NR4C(O)R5, —NR4C(O)N(R4)2, —NR4CO2R6, —CO2R5, —C(O)R5, —C(O)N(R4)2, —N(R4)SO2R6, —N(R4)SO2N(R4)2, or an optionally substituted C1-4 aliphatic.
  • One embodiment of the invention relates to a compound of formula (I), wherein Y2 is CRe and Re is hydrogen, halo, C14 aliphatic, C1-4 fluoroaliphatic, —R2e, -T3—R1e, -T3—R2e, —V2-T3—R1e, or—V2-T3—R2e. The variables V2, T3, R1e, R2e have the values described below.
  • V2 is —C(R5)═C(R5)— or —C≡C—.
  • T3 is a C1-4 alkylene chain optionally substituted with one or two R3. In some embodiments, T3 is a C1-3 alkylene chain.
  • R1e is an optionally substituted aryl, heteroaryl, heterocyclyl, or cycloaliphatic ring.
  • R2e is —NO2, —CN, —C(R5)═C(R5)2, —C(R5)═C(R5)(R10), —OR5, —N(R4)2, —NR4C(O)R5, —NR4C(O)N(R4)2, —NR4CO2R6, —CO2R5, —C(O)R5, —C(O)N(R4)2, —N(R4)SO2R6, or —N(R4)SO2N(R4)2. In some embodiments, R2e is —OR5, —N(R4)2, —CN, —CO2R5, —C(O)N(R4)2, —C(R5)═C(R5)2, —C(R5)═C(R5)(R10), —C≡C—R5, or —C≡C—R10.
  • In particular embodiments of the present invention, the compound of formula (I) is characterized by one or more, and preferably all, of the following features (a)-(e):
  • (a) Y1 is N;
  • (b) Y2 is CRe, where Re is selected from the group consisting of hydrogen, C1-4 aliphatic, C1-4 fluoroaliphatic, -halo, —OR5, —N(R4)2, —CN, —CO2R5, —C(O)N(R4)2, —C(R5)═C(R5)2, —C(R5)═C(R5)(R10), —C≡C—R5, and —C≡C—R10;
  • (c) G1 is C═O;
  • (d) Rc is selected from the group consisting of hydrogen, fluoro, —OR5, —N(R4)2, and C1-4 aliphatic optionally substituted with one or two groups independently selected from C1-3 aliphatic, fluoro, —OR5, —N(R4)2, —CO2R5, —C(O)N(R4)2, and optionally substituted 5- or 6-membered aryl or heteroaryl; and
  • (e) Rd is hydrogen.
  • Some embodiments of the invention relate to a compound of formula (I), wherein Y1 is N, V is CRe, G1 is C═O, Rc is hydrogen or C14 aliphatic, and Rd is hydrogen. In a particular embodiment, Y1 is N, V is CH, G1 is C═O, and each of Rc and Rd is hydrogen.
  • Ring A is a substituted or unsubstituted 5- or 6-membered aryl or heteroaryl ring. Nonlimiting examples of Ring A include furano, thieno, pyrrolo, oxazolo, thiazolo, imidazolo, pyrazolo, isoxazolo, isothiazolo, oxadiazolo, triazolo, thiadiazolo, benzo, pyridino, pyridazino, pyrimidino, pyrazino, and triazino, any of which groups may be substituted or unsubstituted. Particular values for Ring A include substituted or unsubstituted rings selected from the group consisting of furano, thieno, benzo, pyridino, pyridazino, pyrimidino, and pyrazino. In some embodiments, Ring A is substituted with 0-2 Rh and 0-2 R8h, or is substituted with 0-1 Rh and 0-2 R8h. Each Rh independently is selected from the group consisting of C1-6 aliphatic, C1-6 fluoroaliphatic, halo, —R1h, —R2h, -T4—R2h, -T4-R1h, —V3-T4-R1h, and —V3-T4-R2h, or two adjacent Rh, taken together with the intervening ring atoms, form an optionally substituted fused 5- to 6-membered aromatic or 4- to 8-membered non-aromatic ring having 0-3 ring heteroatoms selected from the group consisting of O, N, and S. Each R8h independently is selected from the group consisting of C1-4 aliphatic, C1-4 fluoroaliphatic, -halo, and —O(C1-4 aliphatic).
  • The variables R1h, R2h, T4, and V3 have the values described below.
  • Each R1h independently is an optionally substituted aryl, heteroaryl, heterocyclyl, or cycloaliphatic ring. In some embodiments, R1h is an optionally substituted 5- or 6-membered aryl, heteroaryl, heterocyclyl, or cycloaliphatic ring.
  • Each R2h independently is —NO2, —CN, —C(R5)═C(R5)2, —C≡C—R5, —C(R5)═C(R5)(R10), —C≡C—R10, —OR5, —SR6, —S(O)R6, —SO2R6, SO3R5, —SO2N(R4)2, —N(R4)2, —NR4C(O)R5, —NR4C(O)N(R4)2, —NR4CO2R6, —O—CO2R5, —OC(O)N(R4)2, —O—C(O)R5, —CO2R5, —C(O)—C(O)R5, —C(O)R5, —C(O)N(R4)2, —C(O)N(R4)C(═NR4)—N(R4)2, —N(R4)C(═NR4)—N(R4)—C(O), —C(═NR4)—N(R4)2, —C(═NR4)—OR5, —C(R6)═N—OR5, —N(R4)C(═NR4)—N(R4)2, —N(R4)SO2R6, —N(R4)SO2N(R4)2, —P(O)(R5)2, or —P(O)(OR5)2. In some embodiments, R2h is —C(R5)═C(R5)2, —C≡C—R5, —OR5, —N(R4)2, —NR4C(O)R5, —NR4C(O)N(R4)2, —NR4CO2R6, —OC(O)N(R4)2, —C(O)R5, —C(O)N(R4)2—N(R4)SO2R6, or —N(R4)SO2N(R4)2. In certain embodiments, R2h is —N(R4)2, —C(O)R5, or —C(O)N(R4)2.
  • V3 is —C(R5)═C(R5)—, —O—, —S—, —S(O)—, —S(O)2—, —SO2N(R4)—, —N(R4)—, —N(R4)C(O)—, —NR4C(O)N(R4)—, —N(R4)CO2—, —C(O)N(R4)—, —C(O)—C(O)—, —CO2—, —OC(O)—, —OC(O)O—, —OC(O)N(R4)—, —C(NR4)═N—, —C(OR5)═N—, —N(R4)SO2—, —N(R4)SO2N(R4)—, —P(O)(R5)—, —P(O)(OR5)—O—, —P(O)—O—, or —P(O)(NR5)—N(R5)—. In some embodiments, V3 is —C(R5)═C(R5)—, —C≡C—, —O—, —N(R4)—, —N(R4)C(O)—, —NR4C(O)N(R4)—, —N(R4)CO2—, —OC(O)N(R4)—, —C(O)—, —C(O)N(R4)—, —N(R4)SO2—, or —N(R4)SO2N(R4)—. In certain embodiments, V3 is —C(R5)═C(R5)—, —C≡C—, or —C(O)N(R4)—.
  • T4 is a C1-6 alkylene chain optionally substituted with one or two independently selected R3a or R3b, wherein the alkylene chain optionally is interrupted by —C(R5)═C(R5)—, —C≡C—, —O—, —S—, —S(O)—, —S(O)2—, —SO2N(R4)—, —N(R4)—, —N(R4)C(O)—, —NR4C(O)N(R4)—, —N(R4)CO2—, —C(O)N(R4)—, —C(O)—, —C(O)—C(O)—, —CO2—, —OC(O)—, —OC(O)O—, —OC(O)N(R4)—, —N(R4)SO2—, or —SO2N(R4)—, and wherein T4 or a portion thereof optionally forms part of a 3-7 membered ring. In some embodiments, T4 is a C1-4 or C2-4 alkylene chain, optionally substituted with one or two independently selected R3a or R3b.
  • Each R3a independently is selected from the group consisting of —F, —OH, —O(C1-3 alkyl), —CN, —N(R4)2, —C(O)(C1-3 alkyl), —CO2H, —CO2(C1-3 alkyl), —C(O)NH2, and —C(O)NH(C1-3 alkyl). In some embodiments, R3a is —F, —OH, —O(C1-3 alkyl), or —N(R4)2, where each R4 independently is hydrogen, C1-4 alkyl, or C6-10ar(C1-6)alkyl, the aryl portion of which is optionally substituted, or —N(R4)2 is an optionally substituted pyrrolidinyl, imidazolyl, pyrazolyl, piperidinyl, morpholinyl, or piperazinyl ring.
  • Each R3b independently is a C1-3 aliphatic optionally substituted with R3a or R7, or two substituents R3b on the same carbon atom, taken together with the carbon atom to which they are attached, form a 3- to 6-membered carbocyclic ring. Each R7 independently is an optionally substituted aryl or heteroaryl ring.
  • In some embodiments, Ring A is an optionally substituted pyridino, thieno, or furano ring, wherein Ring A is substituted with 0, 1, or 2 Rh and 0, 1, or 2 R8h, where Rh and R8h have the values described above. In some such embodiments, two adjacent substituents on Ring A are taken together to form an optionally substituted fused 5- to -6-membered aromatic or 4- to 8-membered non-aromatic ring having 0-3 ring heteroatoms selected from the group consisting of O, N, and S. In certain such embodiments, two adjacent substituents on Ring A are taken together to form a fused benzene ring.
  • In some other embodiments, Ring A is an optionally substituted phenyl ring, and the invention relates to a compound of formula (II):
  • Figure US20120178739A1-20120712-C00002
  • or a pharmaceutically acceptable salt thereof;
  • wherein Ring A is substituted with 0, 1, or 2 Rh and 0, 1, or 2 R8h. The variables Ra, Rb, Rc, Rd, Rh, R8h, G1, Y1, and Y2 have the values described above for formula (I).
  • In certain embodiments, the compound of formula (II) is represented by one of formulae (IIA)-(II-F):
  • Figure US20120178739A1-20120712-C00003
    Figure US20120178739A1-20120712-C00004
  • In some embodiments, Ring A in formula (II) is substituted with 0-2 substituents independently selected from the group consisting of C1-4 aliphatic, C1-4 fluoroaliphatic, -halo, and —O(C1-4 aliphatic), or two adjacent substituents on Ring A, taken together with the intervening ring atoms, form a fused dioxolane or dioxane ring.
  • In some embodiments, Ring A in formula (II) has the formula A-i, A-ii, or A-iii:
  • Figure US20120178739A1-20120712-C00005
  • Rh and R8h are as described above for formula (I), and m is 0, 1, or 2, preferably 0 or 1.
  • In some embodiments, Rh in formula A-i or A-ii is selected from —CN, —CO2R5, —C(O)N(R4)2, —N(R4)2, or —OR5. In a particular embodiment, Rh is —C(O)N(R4)2 or —N(R4)2, wherein one R4 is hydrogen or C1-4 alkyl, and the other R4 is hydrogen, C1-4 alkyl, or a phenyl, cyclohexyl, piperidinyl, piperazinyl, or pyrrolidinyl ring, any of which groups optionally is substituted with one or two substituents independently selected from the group consisting of -halo, C1-4 aliphatic, C1-4 fluoroaliphatic, —OH, —O(C1-4 alkyl), —NH2, —NH(C1-4alkyl), and —N(C1-4 alkyl)2, or two adjacent substituents on a phenyl ring optionally are taken together to form a fused furan, dihydrofuran, oxazole, pyrrole, dioxolane, or dioxane ring. In another particular embodiment, Rh is —C(O)N(R4)2 or —N(R4)2, wherein the two R4 are taken together with the nitrogen to which they are attached to form a piperidinyl, piperazinyl, or pyrrolidinyl ring optionally substituted with one or two substituents independently selected from the group consisting of -fluoro, C1-4 aliphatic, C1-4 fluoroaliphatic, —OH, —O(C1-4 alkyl), —NH2, —NH(C1-4 alkyl), and —N(C1-4 alkyl)2.
  • In other embodiments, Rh in formula A-i or is -T4—R2h, —V3-T4—R2h, or —Cy-T4—R2h, where Cy is a 5- or 6-membered arylene or heteroarylene. In some such embodiments, T4 is a C1-4 alkylene chain; V3 is —C(R5)═C(R5)—, —N(R4)—, or —C(O)N(R4)—; Cy is phenylene or thienylene; and R2h is —OR5, —N(R4)2, or —C(O)N(R4)2. In a particular embodiment, R2h is —N(R4)2, wherein one R4 is hydrogen or C1-4 alkyl, and the other R4 is hydrogen, C1-4 alkyl, optionally substituted C6-10 aryl, or optionally substituted C6-10ar(C1-4)alkyl. In another particular embodiment, R2h is —N(R4)2, wherein the two R4, taken together with the nitrogen to which they are attached, form a piperidinyl, piperazinyl, or pyrrolidinyl ring optionally substituted with one or two substituents independently selected from the group consisting of -fluoro, C1-4 alkyl, C1-4 fluoroalkyl, —OH, —O(C1-4 alkyl), —NH2, —NH(C1-4 alkyl), and —N(C1-4 alkyl)2.
  • The variable Ra is hydrogen, —C(O)R5a, —C(O)N(R4a)2, —CO2R6a, —SO2R6a, —SO2N(R4a)2, an optionally substituted C1-10 aliphatic, or an optionally substituted aryl, heteroaryl, or heterocyclyl ring. One embodiment of the invention relates to a compound of formula (I), wherein Ra is hydrogen, C1-6 aliphatic, or a substituted C1-6 aliphatic having the formula -T11—R1a, -T11—R21a, or -T12—R22a. In another embodiment, Ra is —V1-T11—R1a, —V1-T11—R21a, or —V1-T11—R22a. In another embodiment, Ra is —R1a or -T11-R1a. The variables V1, T11, T12, R1a, R21a, and R22a have the values described below.
  • V1 is —C(O)—, —C(O)N(R4a)—, —C(O)O—, —SO2—, or —SO2N(R4a)—. In certain embodiments, V1 is —C(O)—.
  • T11 is a C1-6 alkylene chain optionally substituted with one or two independently selected R3a or R3b, wherein the alkylene chain optionally is interrupted by —C(R5)═C(R5)— or —C≡C—. The variables R3a and R3b have the values and preferred values described above in connection with Ring A. In certain embodiments, T11 is a C1-3 alkylene chain optionally substituted with one or two independently selected R3a or R3b.
  • T12 is a C2-6 alkylene chain optionally substituted with one or two independently selected R3a or R3b, wherein the alkylene chain optionally is interrupted by —C(R5)═C(R5)— or —C≡C—. In certain embodiments, T12 is a C2-3 alkylene chain optionally substituted with one or two independently selected R3a or R3b.
  • R21a is —C(R5a)═C(R5a)2, —C≡C—R5a, —S(O)R6a, —SO2R6a, —SO3R6a, —SO2N(R4a)2, —CO2R5a, —C(O)—C(O)R5a, —C(O)R5a, —C(O)N(R4a)2, —C(O)N(R4a)C(═NR4a)—N(R4a)2, —C(═NR4a)—N(R4a)2, —C(═NR4a)—OR5a, —C(R6a)═N—OR5a, —P(O)(R5a)2, or —P(O)(OR5a)2. In certain embodiments, R21a is —CO2R5a, —C(O)N(R4a)2, —SO2N(R4a)2, —C(O)N(R4a)C(═NR4a)—N(R4a)2, or —C(═NR4a)—N(R4a)2.
  • R22a is —NO2, —CN, —OR5a, —SR6a, —N(R4a)2, —NR4aC(O)R5a, —NR4aC(O)N(R4a)2, —NR4aCO2R6a, —O—CO2R5a, —OC(O)N(R4a)2, —O—C(O)R5a, —N(R4a)C(═NR4a)—N(R4a)2, —N(R4a)C(═NR4a)—N(R4a)—C(O)R5, —N(R4a)SO2R6a, or —N(R4a)SO2N(R4a)2. In certain embodiments, R22a is —OR5a, —N(R4a)2, —NR4aC(O)R5a, —NR4aC(O)N(R4a)2, —N(R4a)C(═NR4a)—N(R4a)2, —N(R4a)C(═NR4a)—N(R4a)—C(O)R5, or —N(R4a)SO2R6a.
  • R1a is an optionally substituted aryl, heteroaryl, heterocyclyl, or cycloaliphatic ring. In some embodiments, R1a is a 5- or 6-membered aryl or heteroaryl ring that is substituted with 0, 1, or 2 independently selected R1 and 0, 1, or 2 independently selected R81. Each R1 independently is selected from the group consisting of C1-6 aliphatic, C1 fluoroaliphatic, halo, —R1j, —R2j, -T5—R2j, -T5—R1j, —V4-T5—R1j, and —V4-T5—R2j; or two adjacent Rj, taken together with the intervening ring atoms, form an optionally substituted fused 5- to 6-membered aromatic or 4- to 8-membered non-aromatic ring having 0-3 ring heteroatoms selected from the group consisting of O, N, and S. Each R8j independently is selected from the group consisting of C1-4 aliphatic, C1-4 fluoroaliphatic, -halo, —CO2H, —CO2(C1-4 aliphatic), —OH, and —O(C1-4 aliphatic). In some embodiments, two adjacent Rj, taken together with the intervening ring atoms, form an optionally substituted fused furan, dihydrofuran, oxazole, pyrrole, dioxolane, or dioxane ring.
  • The variables R1j, R2j, T5, and V4 have the values described below:
  • Each R1j independently is an optionally substituted aryl, heteroaryl, heterocyclyl, or cycloaliphatic ring. In some embodiments, R1j is an optionally substituted 5- to 6-membered aryl, heteroaryl, heterocyclyl, or cycloaliphatic ring.
  • Each R2j independently is —NO2, —CN, —C(R5)═C(R5)2, —C≡C—R5, —C(R5)═C(R5)(R10), —C≡C—R10, —OR5, —SR6, —S(O)R6, —SO2R6, —SO3R5, —SO2N(R4)2, —N(R4)2, —NR4C(O)R5, —NR4C(O)N(R4)2, —NR4CO2R6, —O—CO2R5, —OC(O)N(R4)2, —O—C(O)R5, —CO2R5, —C(O)—C(O)R5, —C(O)R5, —C(O)N(R4)2, —C(O)N(R4)C(═NR4)—N(R4)2, —N(R4)C(═NR4)—N(R4)—N(R4)—C(O), —C(═NR4)—N(R4)2, —C(═NR4)—OR5, —N(R4)C(═NR4)—N(R4)2, —N(R4)SO2R6, —N(R4)SO2N(R4)2, —P(O)(R5)2, or —P(O)(OR5)2. In some embodiments, R2j is —C(R5)═C(R5)2, —C≡C—R5, —OR5, —N(R4)2, —NR4C(O)R5, —NR4C(O)N(R4)2, —NR4CO2R6, —OC(O)N(R4)2, —C(O)R5, —C(O)N(R4)2—N(R4)SO2R6, or —N(R4)SO2N(R4)2.
  • V4 is —C(R5)═C(R5)—, —C≡C—, —O—, —S—, —S(O)—, —S(O)2—, —SO2N(R4)—, —N(R4)—, —N(R4)C(O)—, —NR4C(O)N(R4)—, —N(R4)CO2—, —C(O)N(R4)—, —C(O)—, —C(O)—C(O)—, —CO2—, —OC(O)—, —OC(O)O—, —OC(O)N(R4)—, —C(NR4)═N—, —C(OR5)═N—, —N(R4)SO2—, —N(R4)SO2N(R4)—, —P(O)(R5)—, —P(O)(OR5)—O—, —P(O)—O—, or —P(O)(NR5)—N(R5)—. In some embodiments, V4 is —C(R5)═C(R5)—, —C≡C—, —O—, —N(R4)—, —N(R4)C(O)—, —NR4C(O)N(R4)—, —N(R4)CO2—, —OC(O)N(R4)—, —C(O)—, —C(O)N(R4)—, —N(R4)SO2—, or —N(R4)SO2N(R4)—. In certain embodiments, V4 is —C(R5)═C(R5)—, —C≡C—, or —C(O)N(R4)—.
  • T5 is a C1-6 alkylene chain optionally substituted with one or two independently selected R3a or R3b, wherein the alkylene chain optionally is interrupted by —C(R5)═C(R5)—, —C≡C—, —O—, —S—, —S(O)—, —S(O)2—, —SO2N(R4)—, —N(R4)—, —N(R4)C(O)—, —NR4C(O)N(R4)—, —N(R4)CO2—, —C(O)N(R4)—, —C(O)—, —C(O)—C(O)—, —CO2—, —OC(O)—, —OC(O)O—, —OC(O)N(R4)—, —N(R4)SO2—, or —SO2N(R4)—, and wherein T5 or a portion thereof optionally forms part of a 3-7 membered ring. In some embodiments, T5 is a C1-4 or C2-4 alkylene chain, optionally substituted with one or two independently selected R3a or R3b. The variables R3a and R3b have the values and preferred values described above in connection with Ring A.
  • In some embodiments, Ra is an optionally substituted 5- or 6-membered aryl or heteroaryl ring. In some such embodiments, Ra is selected from the group consisting of imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, oxadiazolyl, thiazolyl, thiadiazolyl, triazolyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, and triazinyl.
  • In certain other embodiments, Ring B is an optionally substituted phenyl ring, and the invention relates to a compound of formula (III):
  • Figure US20120178739A1-20120712-C00006
  • or a pharmaceutically acceptable salt thereof;
  • wherein Ring B is substituted with 0, 1, or 2 Rj and 0, 1, or 2 R8j. Ring A, and the variables Rb, Rc, Rd, Rj, R8j, G1, Y1, and Y2 have the values described above for formula (I). In some such embodiments, Ring B is substituted with 0-2 R8j and one Rj.
  • In some embodiments, Rj is an optionally substituted aryl, heteroaryl, or heterocyclyl ring. In certain such embodiments, Rj is selected from the group consisting of imidazolyl, pyrrolyl, pyrazolyl, oxazolyl, thienyl, phenyl, pyridyl, pyrimidinyl, piperazinyl, piperidinyl, or morpholinyl.
  • In other embodiments, Rj is selected from the group consisting of —CO2R5, —C(O)N(R4)2, —SO2N(R4)2, —C(═NR4)—N(R4)2, —N(R4)C(═NR4)—(N(R4)2, —C(O)N(R4)C(═NR4)—N(R4)2, and —N(R4)C(═NR4)—N(R4)—C(O)R5. In certain such embodiments, Rj is —CO2H.
  • In some other embodiments, Rj has the formula -T5—R2j or —V4-T5—R2j, wherein V4 is —C≡C— or —C(R5)═C(R5)—, and R2j is —OR5 or —N(R4)2.
  • In still other embodiments, Rj has the formula —V4-T5—R2j or —V4-T5—R1j, wherein V4 is —C(O)N(R4)— or —SO2N(R4)— and T5 is a C2-4 alkylene chain, optionally substituted with —F or C1-4 aliphatic. The variables R1j and R2j have the values described above for formula (I). In certain embodiments, R1j is an optionally substituted 3- to 6-membered heterocyclyl or an optionally substituted 5- to 6-membered heteroaryl. A particular value for R2j is —N(R4)2, where each R4 independently is hydrogen or C1-4 aliphatic, or —N(R4)2 is an optionally substituted 3- to 6-membered heterocyclyl or an optionally substituted 5- to 6-membered heteroaryl, having, in addition to the nitrogen, 0-2 ring heteroatoms selected from N, O, and S.
  • In some embodiments, Ring B is substituted with one or two substituents independently selected from the group consisting of C1-4 aliphatic, C1-4 fluoroaliphatic, -halo, —OR5, or —N(R4)2, or two adjacent Rj, taken together with the intervening ring atoms, form an optionally substituted fused benzene, pyridine, furan, dihydrofuran, oxazole, thiazole, oxadiazole, thiadiazole, pyrrole, pyrazole, dioxolane, or dioxane ring.
  • In yet other embodiments, Ring B is substituted with 0-2 substituents independently selected from the group consisting of C1-4 aliphatic, C1-4 fluoroaliphatic, -halo, and —O(C1-4 aliphatic), or two adjacent substituents, taken together with the intervening ring atoms, form a fused dioxolane or dioxane ring.
  • In some embodiments, Ring B has the formula B-i, B-ii, or B-iii:
  • Figure US20120178739A1-20120712-C00007
      • wherein n is 0, 1, or 2, preferably 0 or 1. Rj and R8j have the values and preferred values described above described above for formulae (I) and (III).
  • The variable Rb is hydrogen or an optionally substituted aliphatic, aryl, heteroaryl, or heterocyclyl group. In some embodiments, the invention relates to a compound of formula (I), wherein Rb is hydrogen or C1-6 aliphatic. In certain such embodiments, Rb is hydrogen or methyl.
  • In some other embodiments, the invention relates to a compound of formula (I), wherein Rb is an optionally substituted C1-6 aliphatic. In some such embodiments, Rb has the formula -T21—R1b, -T21—R21b, or -T22—R22b. The variables R1b, R21b, R22bT21, and T22 have the values described below:
  • R1b is an optionally substituted aryl, heteroaryl, heterocyclyl, or cycloaliphatic ring. In some embodiments, R1b is an optionally substituted pyrrolyl, imidazolyl, pyrazolyl, triazolyl, phenyl, pyridyl, pyrimidinyl, pyrazinyl, pyrrolidinyl, piperidinyl, piperazinyl, or morpholinyl ring.
  • R21b is —C(R5)═C(R5)2, —C≡C—R5, —C(R5)═C(R5)(R10), —C≡C—R10, —S(O)R6, —SO2R6, —SO3R5, —SO2N(R4)2, —CO2R5, —C(O)—C(O)R5, —C(O)R5, —C(O)N(R4)2, —C(O)N(R4)C(═NR4)—N(R4)2, —C(═NR4)—N(R4)2, —C(═NR4)—OR5, —C(R6)═N—OR5, —P(O)(R5)2, or —P(O)(OR5)2. In some embodiments, R21b is —CO2R5 or —C(O)N(R4)2. In certain such embodiments, R5 is hydrogen, C1-4 alkyl, or C6-10ar(C1-4)alkyl, and each R4 independently is hydrogen, C1-4 alkyl, or C6-10ar(C1-4)alkyl, or two R4, taken together with the nitrogen atom to which they are attached, form an optionally substituted 5- to 6-membered heterocyclyl ring having, in addition to the nitrogen atom, 0-2 ring heteroatoms selected from N, O, and S.
  • R22b is —NO2, —CN, —OR5, —SR6, —N(R4)2, —NR4C(O)R5, —NR4C(O)N(R4)2, —NR4CO2R6, —O—CO2R5, —OC(O)N(R4)2, —O—C(O)R5, —N(R4)C(═NR4)—N(R4)2, —N(R4)C(═NR4)—N(R4)—C(O)R5, —N(R4)SO2R6, or —N(R4)SO2N(R4)2. In some embodiments, R22b is —OR5 or —N(R4)2. In certain such embodiments, R5 is hydrogen, C1-4 alkyl, or C6-10ar(C1-4)alkyl, and each R4 independently is hydrogen, C1-4 alkyl, or C6-10ar(C1-4)alkyl, or two R4, taken together with the nitrogen atom to which they are attached, form an optionally substituted 5- to 6-membered heterocyclyl ring having, in addition to the nitrogen atom, 0-2 ring heteroatoms selected from N, O, and S.
  • T21 is a C1-6 alkylene chain optionally substituted with one or two R3, wherein the alkylene chain optionally is interrupted by —C(R5)═C(R5)— or —C≡C—. In some embodiments, T21 is a C1-4 alkylene chain. T22 is a C2-6 alkylene chain optionally substituted with one or two R3, wherein the alkylene chain optionally is interrupted by —C(R5)═C(R5)— or In some embodiments, T22 is a C2-4 alkylene chain.
  • In other embodiments, the invention relates to a compound of formula (I), wherein Rb is an optionally substituted aryl, heteroaryl, or heterocyclyl ring. In some such embodiments, Rb is a 5- or 6-membered aryl or heteroaryl ring that is substituted with 0-2 independently selected Rk and 0-2 independently selected R8k. Each Rk independently is selected from the group consisting of C1-6 aliphatic, C16 fluoroaliphatic, -halo, —R1k, —R2k, -T6—R2k, -T6-R1k, —V5-T6-R1k, and —V5-T6-R2k; or two adjacent Rk, taken together with the intervening ring atoms, form an optionally substituted fused 4- to 8-membered aromatic or non-aromatic ring having 0-3 ring heteroatoms selected from the group consisting of O, N, and S. Each R8k independently is selected from the group consisting of C1-4 aliphatic, C1-4 fluoroaliphatic, -halo, and —O(C1-4 aliphatic).
  • The variables R1k, R2k, T6, and V5 have the values described below:
  • Each R1k independently is an optionally substituted aryl, heteroaryl, heterocyclyl, or cycloaliphatic ring. In some embodiments, R1k is an optionally substituted 5- or 6-membered aryl, heteroaryl, heterocyclyl, or cycloaliphatic ring.
  • Each R2k independently is —NO2, —CN, —C(R5)═C(R5)2, —C≡C—R5, —C(R5)═C(R5)(R10), —C≡C—R10, —OR5, —SR6, —S(O)R6, —SO2R6, —SO3R5, —SO2N(R4)2, —N(R4)2, —NR4C(O)R5, —NR4C(O)N(R4)2, —NR4CO2R6, —O—CO2R5, —OC(O)N(R4)2, —O—C(O)R5, —CO2R5, —C(O)—C(O)R5, —C(O)R5, —C(O)N(R4)2, —C(O)N(R4)C(═NR4)—N(R4)2, —N(R4)C(═NR4)—N(R4)—C(O), —C(═NR4)—N(R4)2, —C(═NR4)—OR5, —N(R4)C(═NR4)—N(R4)2, —N(R4)SO2R6, —N(R4)SO2N(R4)2, —P(O)(R5)2, or —P(O)(OR5)2.
  • V5 is —C(R5)═C(R5)—, —O—, —S—, —S(O)—, —S(O)2—, —SO2N(R4)—, —N(R4)—, —N(R4)C(O)—, —NR4C(O)N(R4)—, —N(R4)CO2—, —C(O)N(R4)—, —C(O)—, —C(O)—C(O)—, —CO2—, —OC(O)—, —OC(O)O—, —OC(O)N(R4)—, —C(NR4)═N—, —C(OR5)═N—, —N(R4)SO2—, —N(R4)SO2N(R4)—, —P(O)(R5)—, —P(O)(OR5)—O—, —P(O)—O—, or —P(O)(NR5)—N(R5)—. In some embodiments, V5 is —C(R5)═C(R5)—, —O—, —N(R4)—, —N(R4)C(O)—, —NR4C(O)N(R4)—, —N(R4)CO2—, —OC(O)N(R4)—, —C(O)—, —C(O)N(R4)—, —N(R4)SO2—, or —N(R4)SO2N(R4)—. In certain embodiments, V5 is —C(R5)═C(R5)—, or —C(O)N(R4)—.
  • T6 is a C1-6 alkylene chain optionally substituted with one or two independently selected R3a or R3b, wherein the alkylene chain optionally is interrupted by —C(R5)═C(R5)—, —O—, —S—, —S(O)—, —S(O)2—, —SO2N(R4)—, —N(R4)—, —N(R4)C(O)—, —NR4C(O)N(R4)—, —N(R4)CO2—, —C(O)N(R4)—, —C(O)—, —C(O)—C(O)—, —CO2—, —OC(O)—, —OC(O)O—, —OC(O)N(R4)—, —N(R4)SO2—, or —SO2N(R4)—, and wherein T6 or a portion thereof optionally forms part of a 3-7 membered ring. The variables R3a and R3b have the values and preferred values described above in connection with Ring A.
  • In a particular embodiment, Rb is an optionally substituted phenyl ring, and the invention relates to a compound of formula (IV):
  • Figure US20120178739A1-20120712-C00008
  • or a pharmaceutically acceptable salt thereof;
  • wherein Ring C is substituted with 0, 1, or 2 Rk and 0, 1, or 2 R8k. Ring A, and the variables Ra, Rc, Rd, Rk, R8k, G1, Y1, and Y2 have the values described above for formula
  • In some such embodiments, Ring C is substituted with 0-2 R8k and one Rk. In some embodiments, Ring C is substituted with 1 or 2 R8k. In some embodiments, Ring C is substituted with 0-2 substituents independently selected from the group consisting of C1-4 aliphatic, C1-4 fluoroaliphatic, -halo, and —O(C1-4 aliphatic).
  • In certain embodiments, Ring C has the formula v or vi:
  • Figure US20120178739A1-20120712-C00009
  • wherein each R8k independently is selected from the group consisting of C1-4 aliphatic, C1-4 fluoroaliphatic, -halo, and —O(C1-4 aliphatic).
  • In some embodiments, the invention relates to a subgenus of the compounds of formula (I) represented by formula (V):
  • Figure US20120178739A1-20120712-C00010
  • or a pharmaceutically acceptable salt thereof;
  • wherein Ring A is substituted with 0-2 Rh and 0-2 R8h, and Ring B is substituted with 0-2 Rj and 0-2 R8j. The variables G1, Y1, Y2, Rb, Rc, Rd, Rh, Rj, R8h, and R8j have the values and preferred values described above for formulae (I)-(III).
  • In some embodiments, the invention relates to a compound of any one of formulae (II)-(V), characterized by one or more, and preferably all, of the following features (a)-(e):
  • (a) Y1 is N;
  • (b) Y2 is CRe, where Re is selected from the group consisting of hydrogen, C1-4 aliphatic, C1-4 fluoroaliphatic, -halo, —OR5, —N(R4)2, —CN, —CO2R5, —C(O)N(R4)2, —C(R5)═C(R5)2, —C(R5)═C(R5)(R10), —C≡C—R5, and —C≡C—R10;
  • (c) G1 is C═O;
  • (d) Rc is selected from the group consisting of hydrogen, fluoro, —OR5, —N(R4)2, and C1-4 aliphatic optionally substituted with one or two groups independently selected from C1-4 aliphatic, fluoro, —OR5, —N(R4)2, —CO2R5, —C(O)N(R4)2, and optionally substituted 5- or 6-membered aryl or heteroaryl; and
  • (e) Rd is hydrogen.
  • In some embodiments, the invention relates to a compound of any one of formulae (I)-(V) wherein G1 is C═O, Y1 is N, Y2 is CH, and each of Rc and Rd is hydrogen.
  • In some embodiments, the invention relates to a subgenus of the compounds of formula (I) represented by formula (VI) or (VIa):
  • Figure US20120178739A1-20120712-C00011
  • or a pharmaceutically acceptable salt thereof;
  • wherein Ring A is substituted with 0-2 Rh and 0-2 R8h, and Ring B is substituted with 0-2 Rj and 0-2 R81. The variables G1, Y1, Y2, Rb, Rc, Rd, Rh, R1, R8h, and R8j have the values and preferred values described above for formulae (I)-(III).
  • In some embodiments, the invention relates to a subgenus of the compounds of formula (I) represented by formula (VII) or (VIIa):
  • Figure US20120178739A1-20120712-C00012
  • or a pharmaceutically acceptable salt thereof;
  • wherein Ring A is substituted with 0-2 Rh and 0-2 R8h, Ring B is substituted with 0-2 Rj and 0-2 R8j, and Ring C is substituted with 0-2 Rk and 0-2 R8k. The variables G1, Y1, Y2, Rb, Rc, Rd, Rh, Rj, Rk, R8h, R8j, and R8k have the values and preferred values described above for formulae (I)-(IV).
  • Subgenus definitions for Rings A, B, and C described for any one of formulae (I)-(VI), or exemplified in any specific compound(s) disclosed herein, apply also to the other formulae. Compounds embodying any combination of the preferred values for the variables described herein are considered to be within the scope of the present invention.
  • Specific examples of compounds of formula (I) are shown below in Table 1.
  • TABLE 1
    Protein Kinase Inhibitors
    Figure US20120178739A1-20120712-C00013
    I-1
    Figure US20120178739A1-20120712-C00014
    I-2
    Figure US20120178739A1-20120712-C00015
    I-3
    Figure US20120178739A1-20120712-C00016
    I-4
    Figure US20120178739A1-20120712-C00017
    I-5
    Figure US20120178739A1-20120712-C00018
    I-6
    Figure US20120178739A1-20120712-C00019
    I-7
    Figure US20120178739A1-20120712-C00020
    I-8
    Figure US20120178739A1-20120712-C00021
    I-9
    Figure US20120178739A1-20120712-C00022
    I-10
    Figure US20120178739A1-20120712-C00023
    I-11
    Figure US20120178739A1-20120712-C00024
    I-12
    Figure US20120178739A1-20120712-C00025
    I-13
    Figure US20120178739A1-20120712-C00026
    I-14
    Figure US20120178739A1-20120712-C00027
    I-15
    Figure US20120178739A1-20120712-C00028
    I-16
    Figure US20120178739A1-20120712-C00029
    I-17
    Figure US20120178739A1-20120712-C00030
    I-18
    Figure US20120178739A1-20120712-C00031
    I-19
    Figure US20120178739A1-20120712-C00032
    I-20
    Figure US20120178739A1-20120712-C00033
    I-21
    Figure US20120178739A1-20120712-C00034
    I-22
    Figure US20120178739A1-20120712-C00035
    I-23
    Figure US20120178739A1-20120712-C00036
    I-24
    Figure US20120178739A1-20120712-C00037
    I-25
    Figure US20120178739A1-20120712-C00038
    I-26
    Figure US20120178739A1-20120712-C00039
    I-27
    Figure US20120178739A1-20120712-C00040
    I-28
    Figure US20120178739A1-20120712-C00041
    I-29
    Figure US20120178739A1-20120712-C00042
    I-30
    Figure US20120178739A1-20120712-C00043
    I-31
    Figure US20120178739A1-20120712-C00044
    I-32
    Figure US20120178739A1-20120712-C00045
    I-33
    Figure US20120178739A1-20120712-C00046
    I-34
    Figure US20120178739A1-20120712-C00047
    I-35
    Figure US20120178739A1-20120712-C00048
    I-36
    Figure US20120178739A1-20120712-C00049
    I-37
    Figure US20120178739A1-20120712-C00050
    I-38
    Figure US20120178739A1-20120712-C00051
    I-39
    Figure US20120178739A1-20120712-C00052
    I-40
    Figure US20120178739A1-20120712-C00053
    I-41
    Figure US20120178739A1-20120712-C00054
    I-42
    Figure US20120178739A1-20120712-C00055
    I-43
    Figure US20120178739A1-20120712-C00056
    I-44
    Figure US20120178739A1-20120712-C00057
    I-45
    Figure US20120178739A1-20120712-C00058
    I-46
    Figure US20120178739A1-20120712-C00059
    I-47
    Figure US20120178739A1-20120712-C00060
    I-48
    Figure US20120178739A1-20120712-C00061
    I-49
    Figure US20120178739A1-20120712-C00062
    I-50
    Figure US20120178739A1-20120712-C00063
    I-51
    Figure US20120178739A1-20120712-C00064
    I-52
    Figure US20120178739A1-20120712-C00065
    I-53
    Figure US20120178739A1-20120712-C00066
    I-54
    Figure US20120178739A1-20120712-C00067
    I-55
    Figure US20120178739A1-20120712-C00068
    I-56
    Figure US20120178739A1-20120712-C00069
    I-57
    Figure US20120178739A1-20120712-C00070
    I-58
    Figure US20120178739A1-20120712-C00071
    I-59
    Figure US20120178739A1-20120712-C00072
    I-60
    Figure US20120178739A1-20120712-C00073
    I-61
    Figure US20120178739A1-20120712-C00074
    I-62
    Figure US20120178739A1-20120712-C00075
    I-63
    Figure US20120178739A1-20120712-C00076
    I-64
    Figure US20120178739A1-20120712-C00077
    I-65
    Figure US20120178739A1-20120712-C00078
    I-66
    Figure US20120178739A1-20120712-C00079
    I-67
    Figure US20120178739A1-20120712-C00080
    I-68
    Figure US20120178739A1-20120712-C00081
    I-69
    Figure US20120178739A1-20120712-C00082
    I-70
    Figure US20120178739A1-20120712-C00083
    I-71
    Figure US20120178739A1-20120712-C00084
    I-72
    Figure US20120178739A1-20120712-C00085
    I-73
    Figure US20120178739A1-20120712-C00086
    I-74
    Figure US20120178739A1-20120712-C00087
    I-75
    Figure US20120178739A1-20120712-C00088
    I-76
    Figure US20120178739A1-20120712-C00089
    I-77
    Figure US20120178739A1-20120712-C00090
    I-78
    Figure US20120178739A1-20120712-C00091
    I-79
    Figure US20120178739A1-20120712-C00092
    I-80
    Figure US20120178739A1-20120712-C00093
    I-81
    Figure US20120178739A1-20120712-C00094
    I-82
    Figure US20120178739A1-20120712-C00095
    I-83
    Figure US20120178739A1-20120712-C00096
    I-84
    Figure US20120178739A1-20120712-C00097
    I-85
    Figure US20120178739A1-20120712-C00098
    I-86
    Figure US20120178739A1-20120712-C00099
    I-87
    Figure US20120178739A1-20120712-C00100
    I-88
    Figure US20120178739A1-20120712-C00101
    I-89
    Figure US20120178739A1-20120712-C00102
    I-90
    Figure US20120178739A1-20120712-C00103
    I-91
    Figure US20120178739A1-20120712-C00104
    I-92
    Figure US20120178739A1-20120712-C00105
    I-93
    Figure US20120178739A1-20120712-C00106
    I-94
    Figure US20120178739A1-20120712-C00107
    I-95
    Figure US20120178739A1-20120712-C00108
    I-96
    Figure US20120178739A1-20120712-C00109
    I-97
    Figure US20120178739A1-20120712-C00110
    I-98
    Figure US20120178739A1-20120712-C00111
    I-99
    Figure US20120178739A1-20120712-C00112
    I-100
    Figure US20120178739A1-20120712-C00113
    I-101
    Figure US20120178739A1-20120712-C00114
    I-102
    Figure US20120178739A1-20120712-C00115
    I-103
    Figure US20120178739A1-20120712-C00116
    I-104
    Figure US20120178739A1-20120712-C00117
    I-105
    Figure US20120178739A1-20120712-C00118
    I-106
    Figure US20120178739A1-20120712-C00119
    I-107
    Figure US20120178739A1-20120712-C00120
    I-108
    Figure US20120178739A1-20120712-C00121
    I-109
    Figure US20120178739A1-20120712-C00122
    I-110
    Figure US20120178739A1-20120712-C00123
    I-111
    Figure US20120178739A1-20120712-C00124
    I-112
    Figure US20120178739A1-20120712-C00125
    I-113
    Figure US20120178739A1-20120712-C00126
    I-114
    Figure US20120178739A1-20120712-C00127
    I-115
    Figure US20120178739A1-20120712-C00128
    I-116
    Figure US20120178739A1-20120712-C00129
    I-117
    Figure US20120178739A1-20120712-C00130
    I-118
    Figure US20120178739A1-20120712-C00131
    I-119
    Figure US20120178739A1-20120712-C00132
    I-120
    Figure US20120178739A1-20120712-C00133
    I-121
    Figure US20120178739A1-20120712-C00134
    I-122
    Figure US20120178739A1-20120712-C00135
    I-123
    Figure US20120178739A1-20120712-C00136
    I-124
    Figure US20120178739A1-20120712-C00137
    I-125
    Figure US20120178739A1-20120712-C00138
    I-126
    Figure US20120178739A1-20120712-C00139
    I-127
    Figure US20120178739A1-20120712-C00140
    I-128
    Figure US20120178739A1-20120712-C00141
    I-129
    Figure US20120178739A1-20120712-C00142
    I-130
    Figure US20120178739A1-20120712-C00143
    I-131
    Figure US20120178739A1-20120712-C00144
    I-132
    Figure US20120178739A1-20120712-C00145
    I-133
    Figure US20120178739A1-20120712-C00146
    I-134
    Figure US20120178739A1-20120712-C00147
    I-135
    Figure US20120178739A1-20120712-C00148
    I-136
    Figure US20120178739A1-20120712-C00149
    I-137
    Figure US20120178739A1-20120712-C00150
    I-138
    Figure US20120178739A1-20120712-C00151
    I-139
    Figure US20120178739A1-20120712-C00152
    I-140
    Figure US20120178739A1-20120712-C00153
    I-141
    Figure US20120178739A1-20120712-C00154
    I-142
    Figure US20120178739A1-20120712-C00155
    I-143
    Figure US20120178739A1-20120712-C00156
    I-144
    Figure US20120178739A1-20120712-C00157
    I-145
    Figure US20120178739A1-20120712-C00158
    I-146
    Figure US20120178739A1-20120712-C00159
    I-147
    Figure US20120178739A1-20120712-C00160
    I-148
    Figure US20120178739A1-20120712-C00161
    I-149
    Figure US20120178739A1-20120712-C00162
    I-150
    Figure US20120178739A1-20120712-C00163
    I-151
    Figure US20120178739A1-20120712-C00164
    I-152
    Figure US20120178739A1-20120712-C00165
    I-153
    Figure US20120178739A1-20120712-C00166
    I-154
    Figure US20120178739A1-20120712-C00167
    I-155
    Figure US20120178739A1-20120712-C00168
    I-156
    Figure US20120178739A1-20120712-C00169
    I-157
    Figure US20120178739A1-20120712-C00170
    I-158
    Figure US20120178739A1-20120712-C00171
    I-159
    Figure US20120178739A1-20120712-C00172
    I-160
    Figure US20120178739A1-20120712-C00173
    I-161
    Figure US20120178739A1-20120712-C00174
    I-162
    Figure US20120178739A1-20120712-C00175
    I-163
    Figure US20120178739A1-20120712-C00176
    I-164
    Figure US20120178739A1-20120712-C00177
    I-165
    Figure US20120178739A1-20120712-C00178
    I-166
    Figure US20120178739A1-20120712-C00179
    I-167
    Figure US20120178739A1-20120712-C00180
    I-168
    Figure US20120178739A1-20120712-C00181
    I-169
    Figure US20120178739A1-20120712-C00182
    I-170
    Figure US20120178739A1-20120712-C00183
    I-171
    Figure US20120178739A1-20120712-C00184
    I-172
    Figure US20120178739A1-20120712-C00185
    I-173
    Figure US20120178739A1-20120712-C00186
    I-174
    Figure US20120178739A1-20120712-C00187
    I-175
    Figure US20120178739A1-20120712-C00188
    I-176
    Figure US20120178739A1-20120712-C00189
    I-177
    Figure US20120178739A1-20120712-C00190
    I-178
    Figure US20120178739A1-20120712-C00191
    I-179
    Figure US20120178739A1-20120712-C00192
    I-180
    Figure US20120178739A1-20120712-C00193
    I-181
    Figure US20120178739A1-20120712-C00194
    I-182
    Figure US20120178739A1-20120712-C00195
    I-183
    Figure US20120178739A1-20120712-C00196
    I-184
    Figure US20120178739A1-20120712-C00197
    I-185
    Figure US20120178739A1-20120712-C00198
    I-186
    Figure US20120178739A1-20120712-C00199
    I-187
    Figure US20120178739A1-20120712-C00200
    I-188
    Figure US20120178739A1-20120712-C00201
    I-189
    Figure US20120178739A1-20120712-C00202
    I-190
    Figure US20120178739A1-20120712-C00203
    I-191
    Figure US20120178739A1-20120712-C00204
    I-192
    Figure US20120178739A1-20120712-C00205
    I-193
    Figure US20120178739A1-20120712-C00206
    I-194
    Figure US20120178739A1-20120712-C00207
    I-195
    Figure US20120178739A1-20120712-C00208
    I-196
    Figure US20120178739A1-20120712-C00209
    I-197
    Figure US20120178739A1-20120712-C00210
    I-198
    Figure US20120178739A1-20120712-C00211
    I-199
    Figure US20120178739A1-20120712-C00212
    I-200
    Figure US20120178739A1-20120712-C00213
    I-201
    Figure US20120178739A1-20120712-C00214
    I-202
    Figure US20120178739A1-20120712-C00215
    I-203
    Figure US20120178739A1-20120712-C00216
    I-204
    Figure US20120178739A1-20120712-C00217
    I-205
    Figure US20120178739A1-20120712-C00218
    I-206
    Figure US20120178739A1-20120712-C00219
    I-207
    Figure US20120178739A1-20120712-C00220
    I-208
    Figure US20120178739A1-20120712-C00221
    I-209
    Figure US20120178739A1-20120712-C00222
    I-210
    Figure US20120178739A1-20120712-C00223
    I-211
    Figure US20120178739A1-20120712-C00224
    I-212
    Figure US20120178739A1-20120712-C00225
    I-213
    Figure US20120178739A1-20120712-C00226
    I-214
    Figure US20120178739A1-20120712-C00227
    I-215
    Figure US20120178739A1-20120712-C00228
    I-216
    Figure US20120178739A1-20120712-C00229
    I-217
    Figure US20120178739A1-20120712-C00230
    I-218
    Figure US20120178739A1-20120712-C00231
    I-219
    Figure US20120178739A1-20120712-C00232
    I-220
    Figure US20120178739A1-20120712-C00233
    I-221
    Figure US20120178739A1-20120712-C00234
    I-222
    Figure US20120178739A1-20120712-C00235
    I-223
    Figure US20120178739A1-20120712-C00236
    I-224
    Figure US20120178739A1-20120712-C00237
    I-225
    Figure US20120178739A1-20120712-C00238
    I-226
    Figure US20120178739A1-20120712-C00239
    I-227
    Figure US20120178739A1-20120712-C00240
    I-228
    Figure US20120178739A1-20120712-C00241
    I-229
    Figure US20120178739A1-20120712-C00242
    I-230
    Figure US20120178739A1-20120712-C00243
    I-231
    Figure US20120178739A1-20120712-C00244
    I-232
    Figure US20120178739A1-20120712-C00245
    I-233
    Figure US20120178739A1-20120712-C00246
    I-234
    Figure US20120178739A1-20120712-C00247
    I-235
    Figure US20120178739A1-20120712-C00248
    I-236
    Figure US20120178739A1-20120712-C00249
    I-237
    Figure US20120178739A1-20120712-C00250
    I-238
    Figure US20120178739A1-20120712-C00251
    I-239
    Figure US20120178739A1-20120712-C00252
    I-240
    Figure US20120178739A1-20120712-C00253
    I-241
    Figure US20120178739A1-20120712-C00254
    I-242
    Figure US20120178739A1-20120712-C00255
    I-243
    Figure US20120178739A1-20120712-C00256
    I-244
    Figure US20120178739A1-20120712-C00257
    I-245
    Figure US20120178739A1-20120712-C00258
    I-246
    Figure US20120178739A1-20120712-C00259
    I-247
    Figure US20120178739A1-20120712-C00260
    I-248
    Figure US20120178739A1-20120712-C00261
    I-249
    Figure US20120178739A1-20120712-C00262
    I-250
    Figure US20120178739A1-20120712-C00263
    I-251
    Figure US20120178739A1-20120712-C00264
    I-252
    Figure US20120178739A1-20120712-C00265
    I-253
    Figure US20120178739A1-20120712-C00266
    I-254
    Figure US20120178739A1-20120712-C00267
    I-255
    Figure US20120178739A1-20120712-C00268
    I-256
    Figure US20120178739A1-20120712-C00269
    I-257
    Figure US20120178739A1-20120712-C00270
    I-258
    Figure US20120178739A1-20120712-C00271
    I-259
    Figure US20120178739A1-20120712-C00272
    I-260
    Figure US20120178739A1-20120712-C00273
    I-261
    Figure US20120178739A1-20120712-C00274
    I-262
    Figure US20120178739A1-20120712-C00275
    I-263
    Figure US20120178739A1-20120712-C00276
    I-264
    Figure US20120178739A1-20120712-C00277
    I-265
    Figure US20120178739A1-20120712-C00278
    I-266
    Figure US20120178739A1-20120712-C00279
    I-267
    Figure US20120178739A1-20120712-C00280
    I-268
    Figure US20120178739A1-20120712-C00281
    I-269
    Figure US20120178739A1-20120712-C00282
    I-270
    Figure US20120178739A1-20120712-C00283
    I-271
    Figure US20120178739A1-20120712-C00284
    I-272
    Figure US20120178739A1-20120712-C00285
    I-273
    Figure US20120178739A1-20120712-C00286
    I-274
    Figure US20120178739A1-20120712-C00287
    I-275
    Figure US20120178739A1-20120712-C00288
    I-276
    Figure US20120178739A1-20120712-C00289
    I-277
    Figure US20120178739A1-20120712-C00290
    I-278
    Figure US20120178739A1-20120712-C00291
    I-279
    Figure US20120178739A1-20120712-C00292
    I-280
    Figure US20120178739A1-20120712-C00293
    I-281
    Figure US20120178739A1-20120712-C00294
    I-282
    Figure US20120178739A1-20120712-C00295
    I-283
    Figure US20120178739A1-20120712-C00296
    I-284
    Figure US20120178739A1-20120712-C00297
    I-285
    Figure US20120178739A1-20120712-C00298
    I-286
    Figure US20120178739A1-20120712-C00299
    I-287
    Figure US20120178739A1-20120712-C00300
    I-288
    Figure US20120178739A1-20120712-C00301
    I-289
    Figure US20120178739A1-20120712-C00302
    I-290
    Figure US20120178739A1-20120712-C00303
    I-291
    Figure US20120178739A1-20120712-C00304
    I-292
    Figure US20120178739A1-20120712-C00305
    I-293
    Figure US20120178739A1-20120712-C00306
    I-294
    Figure US20120178739A1-20120712-C00307
    I-295
    Figure US20120178739A1-20120712-C00308
    I-296
    Figure US20120178739A1-20120712-C00309
    I-297
    Figure US20120178739A1-20120712-C00310
    I-298
    Figure US20120178739A1-20120712-C00311
    I-299
    Figure US20120178739A1-20120712-C00312
    I-300
    Figure US20120178739A1-20120712-C00313
    I-301
    Figure US20120178739A1-20120712-C00314
    I-302
    Figure US20120178739A1-20120712-C00315
    I-303
    Figure US20120178739A1-20120712-C00316
    I-304
    Figure US20120178739A1-20120712-C00317
    I-305
    Figure US20120178739A1-20120712-C00318
    I-306
    Figure US20120178739A1-20120712-C00319
    I-307
    Figure US20120178739A1-20120712-C00320
    I-308
    Figure US20120178739A1-20120712-C00321
    I-309
    Figure US20120178739A1-20120712-C00322
    I-310
    Figure US20120178739A1-20120712-C00323
    I-311
    Figure US20120178739A1-20120712-C00324
    I-312
    Figure US20120178739A1-20120712-C00325
    I-313
    Figure US20120178739A1-20120712-C00326
    I-314
    Figure US20120178739A1-20120712-C00327
    I-315
    Figure US20120178739A1-20120712-C00328
    I-316
    Figure US20120178739A1-20120712-C00329
    I-317
    Figure US20120178739A1-20120712-C00330
    I-318
    Figure US20120178739A1-20120712-C00331
    I-319
    Figure US20120178739A1-20120712-C00332
    I-320
    Figure US20120178739A1-20120712-C00333
    I-321
    Figure US20120178739A1-20120712-C00334
    I-322
    Figure US20120178739A1-20120712-C00335
    I-323
    Figure US20120178739A1-20120712-C00336
    I-324
    Figure US20120178739A1-20120712-C00337
    I-325
    Figure US20120178739A1-20120712-C00338
    I-326
    Figure US20120178739A1-20120712-C00339
    I-327
    Figure US20120178739A1-20120712-C00340
    I-328
    Figure US20120178739A1-20120712-C00341
    I-329
    Figure US20120178739A1-20120712-C00342
    I-330
    Figure US20120178739A1-20120712-C00343
    I-331
    Figure US20120178739A1-20120712-C00344
    I-332
    Figure US20120178739A1-20120712-C00345
    I-333
    Figure US20120178739A1-20120712-C00346
    I-334
    Figure US20120178739A1-20120712-C00347
    I-335
    Figure US20120178739A1-20120712-C00348
    I-336
    Figure US20120178739A1-20120712-C00349
    I-337
    Figure US20120178739A1-20120712-C00350
    I-338
    Figure US20120178739A1-20120712-C00351
    I-339
    Figure US20120178739A1-20120712-C00352
    I-340
    Figure US20120178739A1-20120712-C00353
    I-341
    Figure US20120178739A1-20120712-C00354
    I-342
    Figure US20120178739A1-20120712-C00355
    I-343
    Figure US20120178739A1-20120712-C00356
    I-344
    Figure US20120178739A1-20120712-C00357
    I-345
    Figure US20120178739A1-20120712-C00358
    I-346
    Figure US20120178739A1-20120712-C00359
    I-347
    Figure US20120178739A1-20120712-C00360
    I-348
    Figure US20120178739A1-20120712-C00361
    I-349
    Figure US20120178739A1-20120712-C00362
    I-350
    Figure US20120178739A1-20120712-C00363
    I-351
    Figure US20120178739A1-20120712-C00364
    I-352
    Figure US20120178739A1-20120712-C00365
    I-353
    Figure US20120178739A1-20120712-C00366
    I-354
    Figure US20120178739A1-20120712-C00367
    I-355
    Figure US20120178739A1-20120712-C00368
    I-356
    Figure US20120178739A1-20120712-C00369
    I-357
    Figure US20120178739A1-20120712-C00370
    I-358
    Figure US20120178739A1-20120712-C00371
    I-359
    Figure US20120178739A1-20120712-C00372
    I-360
    Figure US20120178739A1-20120712-C00373
    I-361
    Figure US20120178739A1-20120712-C00374
    I-362
    Figure US20120178739A1-20120712-C00375
    I-363
    Figure US20120178739A1-20120712-C00376
    I-364
    Figure US20120178739A1-20120712-C00377
    I-365
    Figure US20120178739A1-20120712-C00378
    I-366
    Figure US20120178739A1-20120712-C00379
    I-367
    Figure US20120178739A1-20120712-C00380
    I-368
    Figure US20120178739A1-20120712-C00381
    I-369
    Figure US20120178739A1-20120712-C00382
    I-370
    Figure US20120178739A1-20120712-C00383
    I-371
    Figure US20120178739A1-20120712-C00384
    I-372
    Figure US20120178739A1-20120712-C00385
    I-373
    Figure US20120178739A1-20120712-C00386
    I-374
    Figure US20120178739A1-20120712-C00387
    I-375
    Figure US20120178739A1-20120712-C00388
    I-376
    Figure US20120178739A1-20120712-C00389
    I-377
    Figure US20120178739A1-20120712-C00390
    I-378
    Figure US20120178739A1-20120712-C00391
    I-379
    Figure US20120178739A1-20120712-C00392
    I-380
    Figure US20120178739A1-20120712-C00393
    I-381
    Figure US20120178739A1-20120712-C00394
    I-382
    Figure US20120178739A1-20120712-C00395
    I-383
    Figure US20120178739A1-20120712-C00396
    I-384
    Figure US20120178739A1-20120712-C00397
    I-385
    Figure US20120178739A1-20120712-C00398
    I-386
    Figure US20120178739A1-20120712-C00399
    I-387
    Figure US20120178739A1-20120712-C00400
    I-388
    Figure US20120178739A1-20120712-C00401
    I-389
    Figure US20120178739A1-20120712-C00402
    I-390
    Figure US20120178739A1-20120712-C00403
    I-391
    Figure US20120178739A1-20120712-C00404
    I-392
    Figure US20120178739A1-20120712-C00405
    I-393
    Figure US20120178739A1-20120712-C00406
    I-394
    Figure US20120178739A1-20120712-C00407
    I-395
    Figure US20120178739A1-20120712-C00408
    I-396
    Figure US20120178739A1-20120712-C00409
    I-397
    Figure US20120178739A1-20120712-C00410
    I-398
    Figure US20120178739A1-20120712-C00411
    I-399
    Figure US20120178739A1-20120712-C00412
    I-400
    Figure US20120178739A1-20120712-C00413
    I-401
    Figure US20120178739A1-20120712-C00414
    I-402
    Figure US20120178739A1-20120712-C00415
    I-403
    Figure US20120178739A1-20120712-C00416
    I-404
    Figure US20120178739A1-20120712-C00417
    I-405
    Figure US20120178739A1-20120712-C00418
    I-406
    Figure US20120178739A1-20120712-C00419
    I-407
    Figure US20120178739A1-20120712-C00420
    I-408
    Figure US20120178739A1-20120712-C00421
    I-409
    Figure US20120178739A1-20120712-C00422
    I-410
    Figure US20120178739A1-20120712-C00423
    I-411
    Figure US20120178739A1-20120712-C00424
    I-412
    Figure US20120178739A1-20120712-C00425
    I-413
    Figure US20120178739A1-20120712-C00426
    I-414
    Figure US20120178739A1-20120712-C00427
    I-415
    Figure US20120178739A1-20120712-C00428
    I-416
    Figure US20120178739A1-20120712-C00429
    I-417
    Figure US20120178739A1-20120712-C00430
    I-418
    Figure US20120178739A1-20120712-C00431
    I-419
    Figure US20120178739A1-20120712-C00432
    I-420
    Figure US20120178739A1-20120712-C00433
    I-421
    Figure US20120178739A1-20120712-C00434
    I-422
    Figure US20120178739A1-20120712-C00435
    I-423
    Figure US20120178739A1-20120712-C00436
    I-424
    Figure US20120178739A1-20120712-C00437
    I-425
    Figure US20120178739A1-20120712-C00438
    I-426
    Figure US20120178739A1-20120712-C00439
    I-427
    Figure US20120178739A1-20120712-C00440
    I-428
    Figure US20120178739A1-20120712-C00441
    I-429
    Figure US20120178739A1-20120712-C00442
    I-430
    Figure US20120178739A1-20120712-C00443
    I-431
    Figure US20120178739A1-20120712-C00444
    I-432
    Figure US20120178739A1-20120712-C00445
    I-433
    Figure US20120178739A1-20120712-C00446
    I-434
    Figure US20120178739A1-20120712-C00447
    I-435
    Figure US20120178739A1-20120712-C00448
    I-436
    Figure US20120178739A1-20120712-C00449
    I-437
    Figure US20120178739A1-20120712-C00450
    I-438
    Figure US20120178739A1-20120712-C00451
    I-439
    Figure US20120178739A1-20120712-C00452
    I-440
    Figure US20120178739A1-20120712-C00453
    I-441
    Figure US20120178739A1-20120712-C00454
    I-442
    Figure US20120178739A1-20120712-C00455
    I-443
    Figure US20120178739A1-20120712-C00456
    I-444
    Figure US20120178739A1-20120712-C00457
    I-445
    Figure US20120178739A1-20120712-C00458
    I-446
    Figure US20120178739A1-20120712-C00459
    I-447
    Figure US20120178739A1-20120712-C00460
    I-448
    Figure US20120178739A1-20120712-C00461
    I-449
    Figure US20120178739A1-20120712-C00462
    I-450
    Figure US20120178739A1-20120712-C00463
    I-451
    Figure US20120178739A1-20120712-C00464
    I-452
    Figure US20120178739A1-20120712-C00465
    I-453
    Figure US20120178739A1-20120712-C00466
    I-454
    Figure US20120178739A1-20120712-C00467
    I-455
    Figure US20120178739A1-20120712-C00468
    I-456
    Figure US20120178739A1-20120712-C00469
    I-457
    Figure US20120178739A1-20120712-C00470
    I-458
    Figure US20120178739A1-20120712-C00471
    I-459
    Figure US20120178739A1-20120712-C00472
    I-460
    Figure US20120178739A1-20120712-C00473
    I-461
    Figure US20120178739A1-20120712-C00474
    I-462
    Figure US20120178739A1-20120712-C00475
    I-463
    Figure US20120178739A1-20120712-C00476
    I-464
    Figure US20120178739A1-20120712-C00477
    I-465
    Figure US20120178739A1-20120712-C00478
    I-466
    Figure US20120178739A1-20120712-C00479
    I-467
    Figure US20120178739A1-20120712-C00480
    I-468
    Figure US20120178739A1-20120712-C00481
    I-469
    Figure US20120178739A1-20120712-C00482
    I-470
    Figure US20120178739A1-20120712-C00483
    I-471
    Figure US20120178739A1-20120712-C00484
    I-472
    Figure US20120178739A1-20120712-C00485
    I-473
    Figure US20120178739A1-20120712-C00486
    I-474
    Figure US20120178739A1-20120712-C00487
    I-475
    Figure US20120178739A1-20120712-C00488
    I-476
    Figure US20120178739A1-20120712-C00489
    I-477
    Figure US20120178739A1-20120712-C00490
    I-478
    Figure US20120178739A1-20120712-C00491
    I-479
    Figure US20120178739A1-20120712-C00492
    I-480
    Figure US20120178739A1-20120712-C00493
    I-481
    Figure US20120178739A1-20120712-C00494
    I-482
    Figure US20120178739A1-20120712-C00495
    I-483
    Figure US20120178739A1-20120712-C00496
    I-484
    Figure US20120178739A1-20120712-C00497
    I-485
    Figure US20120178739A1-20120712-C00498
    I-486
    Figure US20120178739A1-20120712-C00499
    I-487
    Figure US20120178739A1-20120712-C00500
    I-488
    Figure US20120178739A1-20120712-C00501
    I-489
    Figure US20120178739A1-20120712-C00502
    I-490
    Figure US20120178739A1-20120712-C00503
    I-491
    Figure US20120178739A1-20120712-C00504
    I-492
    Figure US20120178739A1-20120712-C00505
    I-493
    Figure US20120178739A1-20120712-C00506
    I-494
    Figure US20120178739A1-20120712-C00507
    I-495
    Figure US20120178739A1-20120712-C00508
    I-496
    Figure US20120178739A1-20120712-C00509
    I-497
    Figure US20120178739A1-20120712-C00510
    I-498
    Figure US20120178739A1-20120712-C00511
    I-499
    Figure US20120178739A1-20120712-C00512
    I-500
    Figure US20120178739A1-20120712-C00513
    I-501
    Figure US20120178739A1-20120712-C00514
    I-502
    Figure US20120178739A1-20120712-C00515
    I-503
    Figure US20120178739A1-20120712-C00516
    I-504
    Figure US20120178739A1-20120712-C00517
    I-505
    Figure US20120178739A1-20120712-C00518
    I-506
    Figure US20120178739A1-20120712-C00519
    I-507
    Figure US20120178739A1-20120712-C00520
    I-508
    Figure US20120178739A1-20120712-C00521
    I-509
    Figure US20120178739A1-20120712-C00522
    I-510
    Figure US20120178739A1-20120712-C00523
    I-511
    Figure US20120178739A1-20120712-C00524
    I-512
    Figure US20120178739A1-20120712-C00525
    I-513
    Figure US20120178739A1-20120712-C00526
    I-514
    Figure US20120178739A1-20120712-C00527
    I-515
    Figure US20120178739A1-20120712-C00528
    I-516
    Figure US20120178739A1-20120712-C00529
    I-517
    Figure US20120178739A1-20120712-C00530
    I-518
    Figure US20120178739A1-20120712-C00531
    I-519
    Figure US20120178739A1-20120712-C00532
    I-520
    Figure US20120178739A1-20120712-C00533
    I-521
    Figure US20120178739A1-20120712-C00534
    I-522
    Figure US20120178739A1-20120712-C00535
    I-523
    Figure US20120178739A1-20120712-C00536
    I-524
    Figure US20120178739A1-20120712-C00537
    I-525
    Figure US20120178739A1-20120712-C00538
    I-526
    Figure US20120178739A1-20120712-C00539
    I-527
    Figure US20120178739A1-20120712-C00540
    I-528
    Figure US20120178739A1-20120712-C00541
    I-529
    Figure US20120178739A1-20120712-C00542
    I-530
    Figure US20120178739A1-20120712-C00543
    I-531
    Figure US20120178739A1-20120712-C00544
    I-532
    Figure US20120178739A1-20120712-C00545
    I-533
    Figure US20120178739A1-20120712-C00546
    I-534
    Figure US20120178739A1-20120712-C00547
    I-535
    Figure US20120178739A1-20120712-C00548
    I-536
    Figure US20120178739A1-20120712-C00549
    I-537
    Figure US20120178739A1-20120712-C00550
    I-538
    Figure US20120178739A1-20120712-C00551
    I-539
    Figure US20120178739A1-20120712-C00552
    I-540
    Figure US20120178739A1-20120712-C00553
    I-541
    Figure US20120178739A1-20120712-C00554
    I-542
    Figure US20120178739A1-20120712-C00555
    I-543
    Figure US20120178739A1-20120712-C00556
    I-544
    Figure US20120178739A1-20120712-C00557
    I-545
    Figure US20120178739A1-20120712-C00558
    I-546
    Figure US20120178739A1-20120712-C00559
    I-547
    Figure US20120178739A1-20120712-C00560
    I-548
    Figure US20120178739A1-20120712-C00561
    I-549
    Figure US20120178739A1-20120712-C00562
    I-550
    Figure US20120178739A1-20120712-C00563
    I-551
    Figure US20120178739A1-20120712-C00564
    I-552
    Figure US20120178739A1-20120712-C00565
    I-553
    Figure US20120178739A1-20120712-C00566
    I-554
    Figure US20120178739A1-20120712-C00567
    I-555
    Figure US20120178739A1-20120712-C00568
    I-556
    Figure US20120178739A1-20120712-C00569
    I-557
    Figure US20120178739A1-20120712-C00570
    I-558
    Figure US20120178739A1-20120712-C00571
    I-559
    Figure US20120178739A1-20120712-C00572
    I-560
    Figure US20120178739A1-20120712-C00573
    I-561
    Figure US20120178739A1-20120712-C00574
    I-562
    Figure US20120178739A1-20120712-C00575
    I-563
    Figure US20120178739A1-20120712-C00576
    I-564
    Figure US20120178739A1-20120712-C00577
    I-565
    Figure US20120178739A1-20120712-C00578
    I-566
    Figure US20120178739A1-20120712-C00579
    I-567
    Figure US20120178739A1-20120712-C00580
    I-568
    Figure US20120178739A1-20120712-C00581
    I-569
    Figure US20120178739A1-20120712-C00582
    I-570
    Figure US20120178739A1-20120712-C00583
    I-571
    Figure US20120178739A1-20120712-C00584
    I-572
    Figure US20120178739A1-20120712-C00585
    I-573
    Figure US20120178739A1-20120712-C00586
    I-574
    Figure US20120178739A1-20120712-C00587
    I-575
    Figure US20120178739A1-20120712-C00588
    I-576
    Figure US20120178739A1-20120712-C00589
    I-577
    Figure US20120178739A1-20120712-C00590
    I-578
    Figure US20120178739A1-20120712-C00591
    I-579
    Figure US20120178739A1-20120712-C00592
    I-580
    Figure US20120178739A1-20120712-C00593
    I-581
    Figure US20120178739A1-20120712-C00594
    I-582
    Figure US20120178739A1-20120712-C00595
    I-583
    Figure US20120178739A1-20120712-C00596
    I-584
    Figure US20120178739A1-20120712-C00597
    I-585
    Figure US20120178739A1-20120712-C00598
    I-586
    Figure US20120178739A1-20120712-C00599
    I-587
    Figure US20120178739A1-20120712-C00600
    I-588
    Figure US20120178739A1-20120712-C00601
    I-589
    Figure US20120178739A1-20120712-C00602
    I-590
    Figure US20120178739A1-20120712-C00603
    I-591
    Figure US20120178739A1-20120712-C00604
    I-592
    Figure US20120178739A1-20120712-C00605
    I-593
    Figure US20120178739A1-20120712-C00606
    I-594
    Figure US20120178739A1-20120712-C00607
    I-595
    Figure US20120178739A1-20120712-C00608
    I-596
    Figure US20120178739A1-20120712-C00609
    I-597
    Figure US20120178739A1-20120712-C00610
    I-598
    Figure US20120178739A1-20120712-C00611
    I-599
    Figure US20120178739A1-20120712-C00612
    I-600
    Figure US20120178739A1-20120712-C00613
    I-601
    Figure US20120178739A1-20120712-C00614
    I-602
    Figure US20120178739A1-20120712-C00615
    I-603
    Figure US20120178739A1-20120712-C00616
    I-604
    Figure US20120178739A1-20120712-C00617
    I-605
    Figure US20120178739A1-20120712-C00618
    I-606
    Figure US20120178739A1-20120712-C00619
    I-607
    Figure US20120178739A1-20120712-C00620
    I-608
    Figure US20120178739A1-20120712-C00621
    I-609
    Figure US20120178739A1-20120712-C00622
    I-610
    Figure US20120178739A1-20120712-C00623
    I-611
    Figure US20120178739A1-20120712-C00624
    I-612
    Figure US20120178739A1-20120712-C00625
    I-613
    Figure US20120178739A1-20120712-C00626
    I-614
    Figure US20120178739A1-20120712-C00627
    I-615
    Figure US20120178739A1-20120712-C00628
    I-616
    Figure US20120178739A1-20120712-C00629
    I-617
    Figure US20120178739A1-20120712-C00630
    I-618
    Figure US20120178739A1-20120712-C00631
    I-619
    Figure US20120178739A1-20120712-C00632
    I-620
    Figure US20120178739A1-20120712-C00633
    I-621
    Figure US20120178739A1-20120712-C00634
    I-622
    Figure US20120178739A1-20120712-C00635
    I-623
    Figure US20120178739A1-20120712-C00636
    I-624
    Figure US20120178739A1-20120712-C00637
    I-625
    Figure US20120178739A1-20120712-C00638
    I-626
    Figure US20120178739A1-20120712-C00639
    I-627
    Figure US20120178739A1-20120712-C00640
    I-628
    Figure US20120178739A1-20120712-C00641
    I-629
    Figure US20120178739A1-20120712-C00642
    I-630
    Figure US20120178739A1-20120712-C00643
    I-631
    Figure US20120178739A1-20120712-C00644
    I-632
    Figure US20120178739A1-20120712-C00645
    I-633
    Figure US20120178739A1-20120712-C00646
    I-634
    Figure US20120178739A1-20120712-C00647
    I-635
    Figure US20120178739A1-20120712-C00648
    I-636
    Figure US20120178739A1-20120712-C00649
    I-637
    Figure US20120178739A1-20120712-C00650
    I-638
    Figure US20120178739A1-20120712-C00651
    I-639
    Figure US20120178739A1-20120712-C00652
    I-640
    Figure US20120178739A1-20120712-C00653
    I-641
    Figure US20120178739A1-20120712-C00654
    I-642
    Figure US20120178739A1-20120712-C00655
    I-643
    Figure US20120178739A1-20120712-C00656
    I-644
    Figure US20120178739A1-20120712-C00657
    I-645
    Figure US20120178739A1-20120712-C00658
    I-646
    Figure US20120178739A1-20120712-C00659
    I-647
    Figure US20120178739A1-20120712-C00660
    I-648
    Figure US20120178739A1-20120712-C00661
    I-649
    Figure US20120178739A1-20120712-C00662
    I-650
    Figure US20120178739A1-20120712-C00663
    I-651
    Figure US20120178739A1-20120712-C00664
    I-652
    Figure US20120178739A1-20120712-C00665
    I-653
    Figure US20120178739A1-20120712-C00666
    I-654
    Figure US20120178739A1-20120712-C00667
    I-655
    Figure US20120178739A1-20120712-C00668
    I-656
    Figure US20120178739A1-20120712-C00669
    I-657
    Figure US20120178739A1-20120712-C00670
    I-658
    Figure US20120178739A1-20120712-C00671
    I-659
    Figure US20120178739A1-20120712-C00672
    I-660
    Figure US20120178739A1-20120712-C00673
    I-661
    Figure US20120178739A1-20120712-C00674
    I-662
    Figure US20120178739A1-20120712-C00675
    I-663
    Figure US20120178739A1-20120712-C00676
    I-664
    Figure US20120178739A1-20120712-C00677
    I-665
    Figure US20120178739A1-20120712-C00678
    I-666
    Figure US20120178739A1-20120712-C00679
    I-667
    Figure US20120178739A1-20120712-C00680
    I-668
    Figure US20120178739A1-20120712-C00681
    I-669
    Figure US20120178739A1-20120712-C00682
    I-670
    Figure US20120178739A1-20120712-C00683
    I-671
    Figure US20120178739A1-20120712-C00684
    I-672
    Figure US20120178739A1-20120712-C00685
    I-673
    Figure US20120178739A1-20120712-C00686
    I-674
    Figure US20120178739A1-20120712-C00687
    I-675
    Figure US20120178739A1-20120712-C00688
    I-676
    Figure US20120178739A1-20120712-C00689
    I-677
    Figure US20120178739A1-20120712-C00690
    I-678
    Figure US20120178739A1-20120712-C00691
    I-679
    Figure US20120178739A1-20120712-C00692
    I-680
    Figure US20120178739A1-20120712-C00693
    I-681
    Figure US20120178739A1-20120712-C00694
    I-682
    Figure US20120178739A1-20120712-C00695
    I-683
    Figure US20120178739A1-20120712-C00696
    I-684
    Figure US20120178739A1-20120712-C00697
    I-685
    Figure US20120178739A1-20120712-C00698
    I-686
    Figure US20120178739A1-20120712-C00699
    I-687
    Figure US20120178739A1-20120712-C00700
    I-688
    Figure US20120178739A1-20120712-C00701
    I-689
    Figure US20120178739A1-20120712-C00702
    I-690
    Figure US20120178739A1-20120712-C00703
    I-691
    Figure US20120178739A1-20120712-C00704
    I-692
    Figure US20120178739A1-20120712-C00705
    I-693
    Figure US20120178739A1-20120712-C00706
    I-694
    Figure US20120178739A1-20120712-C00707
    I-695
    Figure US20120178739A1-20120712-C00708
    I-696
    Figure US20120178739A1-20120712-C00709
    I-697
    Figure US20120178739A1-20120712-C00710
    I-698
    Figure US20120178739A1-20120712-C00711
    I-699
    Figure US20120178739A1-20120712-C00712
    I-700
    Figure US20120178739A1-20120712-C00713
    I-701
    Figure US20120178739A1-20120712-C00714
    I-702
    Figure US20120178739A1-20120712-C00715
    I-703
    Figure US20120178739A1-20120712-C00716
    I-704
    Figure US20120178739A1-20120712-C00717
    I-705
    Figure US20120178739A1-20120712-C00718
    I-706
    Figure US20120178739A1-20120712-C00719
    I-707
    Figure US20120178739A1-20120712-C00720
    I-708
    Figure US20120178739A1-20120712-C00721
    I-709
    Figure US20120178739A1-20120712-C00722
    I-710
    Figure US20120178739A1-20120712-C00723
    I-711
    Figure US20120178739A1-20120712-C00724
    I-712
    Figure US20120178739A1-20120712-C00725
    I-713
    Figure US20120178739A1-20120712-C00726
    I-714
    Figure US20120178739A1-20120712-C00727
    I-715
    Figure US20120178739A1-20120712-C00728
    I-716
    Figure US20120178739A1-20120712-C00729
    I-717
    Figure US20120178739A1-20120712-C00730
    I-718
    Figure US20120178739A1-20120712-C00731
    I-719
    Figure US20120178739A1-20120712-C00732
    I-720
    Figure US20120178739A1-20120712-C00733
    I-721
    Figure US20120178739A1-20120712-C00734
    I-722
    Figure US20120178739A1-20120712-C00735
    I-723
    Figure US20120178739A1-20120712-C00736
    I-724
    Figure US20120178739A1-20120712-C00737
    I-725
    Figure US20120178739A1-20120712-C00738
    I-726
    Figure US20120178739A1-20120712-C00739
    I-727
    Figure US20120178739A1-20120712-C00740
    I-728
    Figure US20120178739A1-20120712-C00741
    I-729
    Figure US20120178739A1-20120712-C00742
    I-730
    Figure US20120178739A1-20120712-C00743
    I-731
    Figure US20120178739A1-20120712-C00744
    I-732
    Figure US20120178739A1-20120712-C00745
    I-733
    Figure US20120178739A1-20120712-C00746
    I-734
    Figure US20120178739A1-20120712-C00747
    I-735
    Figure US20120178739A1-20120712-C00748
    I-736
    Figure US20120178739A1-20120712-C00749
    I-737
    Figure US20120178739A1-20120712-C00750
    I-738
    Figure US20120178739A1-20120712-C00751
    I-739
    Figure US20120178739A1-20120712-C00752
    I-740
    Figure US20120178739A1-20120712-C00753
    I-741
    Figure US20120178739A1-20120712-C00754
    I-742
    Figure US20120178739A1-20120712-C00755
    I-743
    Figure US20120178739A1-20120712-C00756
    I-744
    Figure US20120178739A1-20120712-C00757
    I-745
    Figure US20120178739A1-20120712-C00758
    I-746
    Figure US20120178739A1-20120712-C00759
    I-747
    Figure US20120178739A1-20120712-C00760
    I-748
    Figure US20120178739A1-20120712-C00761
    I-749
    Figure US20120178739A1-20120712-C00762
    I-750
    Figure US20120178739A1-20120712-C00763
    I-751
    Figure US20120178739A1-20120712-C00764
    I-752
    Figure US20120178739A1-20120712-C00765
    I-753
    Figure US20120178739A1-20120712-C00766
    I-754
    Figure US20120178739A1-20120712-C00767
    I-755
    Figure US20120178739A1-20120712-C00768
    I-756
    Figure US20120178739A1-20120712-C00769
    I-757
    Figure US20120178739A1-20120712-C00770
    I-758
    Figure US20120178739A1-20120712-C00771
    I-759
    Figure US20120178739A1-20120712-C00772
    I-760
    Figure US20120178739A1-20120712-C00773
    I-761
    Figure US20120178739A1-20120712-C00774
    I-762
    Figure US20120178739A1-20120712-C00775
    I-763
    Figure US20120178739A1-20120712-C00776
    I-764
    Figure US20120178739A1-20120712-C00777
    I-765
    Figure US20120178739A1-20120712-C00778
    I-766
    Figure US20120178739A1-20120712-C00779
    I-767
    Figure US20120178739A1-20120712-C00780
    I-768
    Figure US20120178739A1-20120712-C00781
    I-769
    Figure US20120178739A1-20120712-C00782
    I-770
    Figure US20120178739A1-20120712-C00783
    I-771
    Figure US20120178739A1-20120712-C00784
    I-772
    Figure US20120178739A1-20120712-C00785
    I-773
    Figure US20120178739A1-20120712-C00786
    I-774
    Figure US20120178739A1-20120712-C00787
    I-775
    Figure US20120178739A1-20120712-C00788
    I-776
    Figure US20120178739A1-20120712-C00789
    I-777
    Figure US20120178739A1-20120712-C00790
    I-778
    Figure US20120178739A1-20120712-C00791
    I-779
    Figure US20120178739A1-20120712-C00792
    I-780
    Figure US20120178739A1-20120712-C00793
    I-781
    Figure US20120178739A1-20120712-C00794
    I-782
    Figure US20120178739A1-20120712-C00795
    I-783
    Figure US20120178739A1-20120712-C00796
    I-784
    Figure US20120178739A1-20120712-C00797
    I-785
    Figure US20120178739A1-20120712-C00798
    I-786
    Figure US20120178739A1-20120712-C00799
    I-787
    Figure US20120178739A1-20120712-C00800
    I-788
    Figure US20120178739A1-20120712-C00801
    I-789
    Figure US20120178739A1-20120712-C00802
    I-790
    Figure US20120178739A1-20120712-C00803
    I-791
    Figure US20120178739A1-20120712-C00804
    I-792
    Figure US20120178739A1-20120712-C00805
    I-793
    Figure US20120178739A1-20120712-C00806
    I-794
    Figure US20120178739A1-20120712-C00807
    I-795
    Figure US20120178739A1-20120712-C00808
    I-796
    Figure US20120178739A1-20120712-C00809
    I-797
    Figure US20120178739A1-20120712-C00810
    I-798
    Figure US20120178739A1-20120712-C00811
    I-799
    Figure US20120178739A1-20120712-C00812
    I-800
    Figure US20120178739A1-20120712-C00813
    I-801
    Figure US20120178739A1-20120712-C00814
    I-802
    Figure US20120178739A1-20120712-C00815
    I-803
    Figure US20120178739A1-20120712-C00816
    I-804
    Figure US20120178739A1-20120712-C00817
    I-805
    Figure US20120178739A1-20120712-C00818
    I-806
    Figure US20120178739A1-20120712-C00819
    I-807
    Figure US20120178739A1-20120712-C00820
    I-808
    Figure US20120178739A1-20120712-C00821
    I-809
    Figure US20120178739A1-20120712-C00822
    I-810
    Figure US20120178739A1-20120712-C00823
    I-811
    Figure US20120178739A1-20120712-C00824
    I-812
    Figure US20120178739A1-20120712-C00825
    I-813
    Figure US20120178739A1-20120712-C00826
    I-814
    Figure US20120178739A1-20120712-C00827
    I-815
    Figure US20120178739A1-20120712-C00828
    I-816
    Figure US20120178739A1-20120712-C00829
    I-817
    Figure US20120178739A1-20120712-C00830
    I-818
    Figure US20120178739A1-20120712-C00831
    I-819
    Figure US20120178739A1-20120712-C00832
    I-820
    Figure US20120178739A1-20120712-C00833
    I-821
    Figure US20120178739A1-20120712-C00834
    I-822
    Figure US20120178739A1-20120712-C00835
    I-823
    Figure US20120178739A1-20120712-C00836
    I-824
    Figure US20120178739A1-20120712-C00837
    I-825
    Figure US20120178739A1-20120712-C00838
    I-826
    Figure US20120178739A1-20120712-C00839
    I-827
    Figure US20120178739A1-20120712-C00840
    I-828
    Figure US20120178739A1-20120712-C00841
    I-829
    Figure US20120178739A1-20120712-C00842
    I-830
    Figure US20120178739A1-20120712-C00843
    I-831
    Figure US20120178739A1-20120712-C00844
    I-832
    Figure US20120178739A1-20120712-C00845
    I-833
    Figure US20120178739A1-20120712-C00846
    I-834
    Figure US20120178739A1-20120712-C00847
    I-835
    Figure US20120178739A1-20120712-C00848
    I-836
    Figure US20120178739A1-20120712-C00849
    I-837
    Figure US20120178739A1-20120712-C00850
    I-838
    Figure US20120178739A1-20120712-C00851
    I-839
    Figure US20120178739A1-20120712-C00852
    I-840
    Figure US20120178739A1-20120712-C00853
    I-841
    Figure US20120178739A1-20120712-C00854
    I-842
    Figure US20120178739A1-20120712-C00855
    I-843
    Figure US20120178739A1-20120712-C00856
    I-844
    Figure US20120178739A1-20120712-C00857
    I-845
    Figure US20120178739A1-20120712-C00858
    I-846
    Figure US20120178739A1-20120712-C00859
    I-847
    Figure US20120178739A1-20120712-C00860
    I-848
    Figure US20120178739A1-20120712-C00861
    I-849
    Figure US20120178739A1-20120712-C00862
    I-850
    Figure US20120178739A1-20120712-C00863
    I-851
    Figure US20120178739A1-20120712-C00864
    I-852
    Figure US20120178739A1-20120712-C00865
    I-853
    Figure US20120178739A1-20120712-C00866
    I-854
    Figure US20120178739A1-20120712-C00867
    I-855
    Figure US20120178739A1-20120712-C00868
    I-856
    Figure US20120178739A1-20120712-C00869
    I-857
    Figure US20120178739A1-20120712-C00870
    I-858
    Figure US20120178739A1-20120712-C00871
    I-859
    Figure US20120178739A1-20120712-C00872
    I-860
    Figure US20120178739A1-20120712-C00873
    I-861
    Figure US20120178739A1-20120712-C00874
    I-862
    Figure US20120178739A1-20120712-C00875
    I-863
    Figure US20120178739A1-20120712-C00876
    I-864
    Figure US20120178739A1-20120712-C00877
    I-865
    Figure US20120178739A1-20120712-C00878
    I-866
    Figure US20120178739A1-20120712-C00879
    I-867
    Figure US20120178739A1-20120712-C00880
    I-868
    Figure US20120178739A1-20120712-C00881
    I-869
    Figure US20120178739A1-20120712-C00882
    I-870
    Figure US20120178739A1-20120712-C00883
    I-871
    Figure US20120178739A1-20120712-C00884
    I-872
    Figure US20120178739A1-20120712-C00885
    I-873
    Figure US20120178739A1-20120712-C00886
    I-874
    Figure US20120178739A1-20120712-C00887
    I-875
    Figure US20120178739A1-20120712-C00888
    I-876
    Figure US20120178739A1-20120712-C00889
    I-877
    Figure US20120178739A1-20120712-C00890
    I-878
    Figure US20120178739A1-20120712-C00891
    I-879
    Figure US20120178739A1-20120712-C00892
    I-880
    Figure US20120178739A1-20120712-C00893
    I-881
    Figure US20120178739A1-20120712-C00894
    I-882
    Figure US20120178739A1-20120712-C00895
    I-883
    Figure US20120178739A1-20120712-C00896
    I-884
    Figure US20120178739A1-20120712-C00897
    I-885
    Figure US20120178739A1-20120712-C00898
    I-886
    Figure US20120178739A1-20120712-C00899
    I-887
    Figure US20120178739A1-20120712-C00900
    I-888
    Figure US20120178739A1-20120712-C00901
    I-889
    Figure US20120178739A1-20120712-C00902
    I-890
    Figure US20120178739A1-20120712-C00903
    I-891
    Figure US20120178739A1-20120712-C00904
    I-892
    Figure US20120178739A1-20120712-C00905
    I-893
    Figure US20120178739A1-20120712-C00906
    I-894
    Figure US20120178739A1-20120712-C00907
    I-895
    Figure US20120178739A1-20120712-C00908
    I-896
    Figure US20120178739A1-20120712-C00909
    I-897
    Figure US20120178739A1-20120712-C00910
    I-898
    Figure US20120178739A1-20120712-C00911
    I-899
    Figure US20120178739A1-20120712-C00912
    I-900
    Figure US20120178739A1-20120712-C00913
    I-901
    Figure US20120178739A1-20120712-C00914
    I-902
    Figure US20120178739A1-20120712-C00915
    I-903
    Figure US20120178739A1-20120712-C00916
    I-904
    Figure US20120178739A1-20120712-C00917
    I-905
    Figure US20120178739A1-20120712-C00918
    I-906
    Figure US20120178739A1-20120712-C00919
    I-907
    Figure US20120178739A1-20120712-C00920
    I-908
    Figure US20120178739A1-20120712-C00921
    I-909
    Figure US20120178739A1-20120712-C00922
    I-910
    Figure US20120178739A1-20120712-C00923
    I-911
    Figure US20120178739A1-20120712-C00924
    I-912
    Figure US20120178739A1-20120712-C00925
    I-913
    Figure US20120178739A1-20120712-C00926
    I-914
    Figure US20120178739A1-20120712-C00927
    I-915
    Figure US20120178739A1-20120712-C00928
    I-916
    Figure US20120178739A1-20120712-C00929
    I-917
    Figure US20120178739A1-20120712-C00930
    I-918
    Figure US20120178739A1-20120712-C00931
    I-919
    Figure US20120178739A1-20120712-C00932
    I-920
    Figure US20120178739A1-20120712-C00933
    I-921
    Figure US20120178739A1-20120712-C00934
    I-922
    Figure US20120178739A1-20120712-C00935
    I-923
    Figure US20120178739A1-20120712-C00936
    I-924
    Figure US20120178739A1-20120712-C00937
    I-925
    Figure US20120178739A1-20120712-C00938
    I-926
    Figure US20120178739A1-20120712-C00939
    I-927
    Figure US20120178739A1-20120712-C00940
    I-928
    Figure US20120178739A1-20120712-C00941
    I-929
    Figure US20120178739A1-20120712-C00942
    I-930
    Figure US20120178739A1-20120712-C00943
    I-931
    Figure US20120178739A1-20120712-C00944
    I-932
    Figure US20120178739A1-20120712-C00945
    I-933
    Figure US20120178739A1-20120712-C00946
    I-934
    Figure US20120178739A1-20120712-C00947
    I-935
    Figure US20120178739A1-20120712-C00948
    I-936
    Figure US20120178739A1-20120712-C00949
    I-937
    Figure US20120178739A1-20120712-C00950
    I-938
    Figure US20120178739A1-20120712-C00951
    I-939
    Figure US20120178739A1-20120712-C00952
    I-940
    Figure US20120178739A1-20120712-C00953
    I-941
    Figure US20120178739A1-20120712-C00954
    I-942
    Figure US20120178739A1-20120712-C00955
    I-943
    Figure US20120178739A1-20120712-C00956
    I-944
    Figure US20120178739A1-20120712-C00957
    I-945
    Figure US20120178739A1-20120712-C00958
    I-946
    Figure US20120178739A1-20120712-C00959
    I-947
    Figure US20120178739A1-20120712-C00960
    I-948
    Figure US20120178739A1-20120712-C00961
    I-949
    Figure US20120178739A1-20120712-C00962
    I-950
    Figure US20120178739A1-20120712-C00963
    I-951
    Figure US20120178739A1-20120712-C00964
    I-952
    Figure US20120178739A1-20120712-C00965
    I-953
    Figure US20120178739A1-20120712-C00966
    I-954
    Figure US20120178739A1-20120712-C00967
    I-955
    Figure US20120178739A1-20120712-C00968
    I-956
    Figure US20120178739A1-20120712-C00969
    I-957
    Figure US20120178739A1-20120712-C00970
    I-958
    Figure US20120178739A1-20120712-C00971
    I-959
    Figure US20120178739A1-20120712-C00972
    I-960
    Figure US20120178739A1-20120712-C00973
    I-961
    Figure US20120178739A1-20120712-C00974
    I-962
    Figure US20120178739A1-20120712-C00975
    I-963
    Figure US20120178739A1-20120712-C00976
    I-964
    Figure US20120178739A1-20120712-C00977
    I-965
    Figure US20120178739A1-20120712-C00978
    I-966
    Figure US20120178739A1-20120712-C00979
    I-967
    Figure US20120178739A1-20120712-C00980
    I-968
    Figure US20120178739A1-20120712-C00981
    I-969
    Figure US20120178739A1-20120712-C00982
    I-970
    Figure US20120178739A1-20120712-C00983
    I-971
    Figure US20120178739A1-20120712-C00984
    I-972
    Figure US20120178739A1-20120712-C00985
    I-973
    Figure US20120178739A1-20120712-C00986
    I-974
    Figure US20120178739A1-20120712-C00987
    I-975
    Figure US20120178739A1-20120712-C00988
    I-976
    Figure US20120178739A1-20120712-C00989
    I-977
    Figure US20120178739A1-20120712-C00990
    I-978
    Figure US20120178739A1-20120712-C00991
    I-979
    Figure US20120178739A1-20120712-C00992
    I-980
    Figure US20120178739A1-20120712-C00993
    I-981
    Figure US20120178739A1-20120712-C00994
    I-982
    Figure US20120178739A1-20120712-C00995
    I-983
    Figure US20120178739A1-20120712-C00996
    I-984
    Figure US20120178739A1-20120712-C00997
    I-985
    Figure US20120178739A1-20120712-C00998
    I-986
    Figure US20120178739A1-20120712-C00999
    I-987
    Figure US20120178739A1-20120712-C01000
    I-988
    Figure US20120178739A1-20120712-C01001
    I-989
    Figure US20120178739A1-20120712-C01002
    I-990
    Figure US20120178739A1-20120712-C01003
    I-991
    Figure US20120178739A1-20120712-C01004
    I-992
    Figure US20120178739A1-20120712-C01005
    I-993
    Figure US20120178739A1-20120712-C01006
    I-994
    Figure US20120178739A1-20120712-C01007
    I-995
    Figure US20120178739A1-20120712-C01008
    I-996
    Figure US20120178739A1-20120712-C01009
    I-997
    Figure US20120178739A1-20120712-C01010
    I-998
    Figure US20120178739A1-20120712-C01011
    I-999
    Figure US20120178739A1-20120712-C01012
    I-1000
    Figure US20120178739A1-20120712-C01013
    I-1001
    Figure US20120178739A1-20120712-C01014
    I-1002
    Figure US20120178739A1-20120712-C01015
    I-1003
    Figure US20120178739A1-20120712-C01016
    I-1004
    Figure US20120178739A1-20120712-C01017
    I-1005
    Figure US20120178739A1-20120712-C01018
    I-1006
    Figure US20120178739A1-20120712-C01019
    I-1007
    Figure US20120178739A1-20120712-C01020
    I-1008
    Figure US20120178739A1-20120712-C01021
    I-1009
    Figure US20120178739A1-20120712-C01022
    I-1010
    Figure US20120178739A1-20120712-C01023
    I-1011
    Figure US20120178739A1-20120712-C01024
    I-1012
    Figure US20120178739A1-20120712-C01025
    I-1013
    Figure US20120178739A1-20120712-C01026
    I-1014
    Figure US20120178739A1-20120712-C01027
    I-1015
    Figure US20120178739A1-20120712-C01028
    I-1016
    Figure US20120178739A1-20120712-C01029
    I-1017
    Figure US20120178739A1-20120712-C01030
    I-1018
    Figure US20120178739A1-20120712-C01031
    I-1019
    Figure US20120178739A1-20120712-C01032
    I-1020
    Figure US20120178739A1-20120712-C01033
    I-1021
    Figure US20120178739A1-20120712-C01034
    I-1022
    Figure US20120178739A1-20120712-C01035
    I-1023
    Figure US20120178739A1-20120712-C01036
    I-1024
    Figure US20120178739A1-20120712-C01037
    I-1025
    Figure US20120178739A1-20120712-C01038
    I-1026
    Figure US20120178739A1-20120712-C01039
    I-1027
    Figure US20120178739A1-20120712-C01040
    I-1028
    Figure US20120178739A1-20120712-C01041
    I-1029
    Figure US20120178739A1-20120712-C01042
    I-1030
    Figure US20120178739A1-20120712-C01043
    I-1031
    Figure US20120178739A1-20120712-C01044
    I-1032
    Figure US20120178739A1-20120712-C01045
    I-1033
    Figure US20120178739A1-20120712-C01046
    I-1034
    Figure US20120178739A1-20120712-C01047
    I-1035
    Figure US20120178739A1-20120712-C01048
    I-1036
    Figure US20120178739A1-20120712-C01049
    I-1037
    Figure US20120178739A1-20120712-C01050
    I-1038
    Figure US20120178739A1-20120712-C01051
    I-1039
    Figure US20120178739A1-20120712-C01052
    I-1040
    Figure US20120178739A1-20120712-C01053
    I-1041
    Figure US20120178739A1-20120712-C01054
    I-1042
    Figure US20120178739A1-20120712-C01055
    I-1043
    Figure US20120178739A1-20120712-C01056
    I-1044
    Figure US20120178739A1-20120712-C01057
    I-1045
    Figure US20120178739A1-20120712-C01058
    I-1046
    Figure US20120178739A1-20120712-C01059
    I-1047
    Figure US20120178739A1-20120712-C01060
    I-1048
    Figure US20120178739A1-20120712-C01061
    I-1049
    Figure US20120178739A1-20120712-C01062
    I-1050
    Figure US20120178739A1-20120712-C01063
    I-1051
    Figure US20120178739A1-20120712-C01064
    I-1052
    Figure US20120178739A1-20120712-C01065
    I-1053
    Figure US20120178739A1-20120712-C01066
    I-1054
    Figure US20120178739A1-20120712-C01067
    I-1055
    Figure US20120178739A1-20120712-C01068
    I-1056
    Figure US20120178739A1-20120712-C01069
    I-1057
    Figure US20120178739A1-20120712-C01070
    I-1058
    Figure US20120178739A1-20120712-C01071
    I-1059
    Figure US20120178739A1-20120712-C01072
    I-1060
    Figure US20120178739A1-20120712-C01073
    I-1061
    Figure US20120178739A1-20120712-C01074
    I-1062
    Figure US20120178739A1-20120712-C01075
    I-1063
    Figure US20120178739A1-20120712-C01076
    I-1064
    Figure US20120178739A1-20120712-C01077
    I-1065
    Figure US20120178739A1-20120712-C01078
    I-1066
    Figure US20120178739A1-20120712-C01079
    I-1067
    Figure US20120178739A1-20120712-C01080
    I-1068
    Figure US20120178739A1-20120712-C01081
    I-1069
    Figure US20120178739A1-20120712-C01082
    I-1070
    Figure US20120178739A1-20120712-C01083
    I-1071
    Figure US20120178739A1-20120712-C01084
    I-1072
    Figure US20120178739A1-20120712-C01085
    I-1073
    Figure US20120178739A1-20120712-C01086
    I-1074
    Figure US20120178739A1-20120712-C01087
    I-1075
    Figure US20120178739A1-20120712-C01088
    I-1076
    Figure US20120178739A1-20120712-C01089
    I-1077
    Figure US20120178739A1-20120712-C01090
    I-1078
    Figure US20120178739A1-20120712-C01091
    I-1079
    Figure US20120178739A1-20120712-C01092
    I-1080
    Figure US20120178739A1-20120712-C01093
    I-1081
    Figure US20120178739A1-20120712-C01094
    I-1082
    Figure US20120178739A1-20120712-C01095
    I-1083
    Figure US20120178739A1-20120712-C01096
    I-1084
    Figure US20120178739A1-20120712-C01097
    I-1085
    Figure US20120178739A1-20120712-C01098
    I-1086
    Figure US20120178739A1-20120712-C01099
    I-1087
    Figure US20120178739A1-20120712-C01100
    I-1088
    Figure US20120178739A1-20120712-C01101
    I-1089
    Figure US20120178739A1-20120712-C01102
    I-1090
    Figure US20120178739A1-20120712-C01103
    I-1091
    Figure US20120178739A1-20120712-C01104
    I-1092
    Figure US20120178739A1-20120712-C01105
    I-1093
    Figure US20120178739A1-20120712-C01106
    I-1094
    Figure US20120178739A1-20120712-C01107
    I-1095
    Figure US20120178739A1-20120712-C01108
    I-1096
    Figure US20120178739A1-20120712-C01109
    I-1097
    Figure US20120178739A1-20120712-C01110
    I-1098
    Figure US20120178739A1-20120712-C01111
    I-1099
    Figure US20120178739A1-20120712-C01112
    I-1100
    Figure US20120178739A1-20120712-C01113
    I-1101
    Figure US20120178739A1-20120712-C01114
    I-1102
    Figure US20120178739A1-20120712-C01115
    I-1103
    Figure US20120178739A1-20120712-C01116
    I-1104
    Figure US20120178739A1-20120712-C01117
    I-1105
    Figure US20120178739A1-20120712-C01118
    I-1106
    Figure US20120178739A1-20120712-C01119
    I-1107
    Figure US20120178739A1-20120712-C01120
    I-1108
    Figure US20120178739A1-20120712-C01121
    I-1109
    Figure US20120178739A1-20120712-C01122
    I-1110
    Figure US20120178739A1-20120712-C01123
    I-1111
    Figure US20120178739A1-20120712-C01124
    I-1112
    Figure US20120178739A1-20120712-C01125
    I-1113
    Figure US20120178739A1-20120712-C01126
    I-1114
    Figure US20120178739A1-20120712-C01127
    I-1115
    Figure US20120178739A1-20120712-C01128
    I-1116
    Figure US20120178739A1-20120712-C01129
    I-1117
    Figure US20120178739A1-20120712-C01130
    I-1118
    Figure US20120178739A1-20120712-C01131
    I-1119
    Figure US20120178739A1-20120712-C01132
    I-1120
    Figure US20120178739A1-20120712-C01133
    I-1121
    Figure US20120178739A1-20120712-C01134
    I-1122
    Figure US20120178739A1-20120712-C01135
    I-1123
    Figure US20120178739A1-20120712-C01136
    I-1124
    Figure US20120178739A1-20120712-C01137
    I-1125
    Figure US20120178739A1-20120712-C01138
    I-1126
    Figure US20120178739A1-20120712-C01139
    I-1127
    Figure US20120178739A1-20120712-C01140
    I-1128
    Figure US20120178739A1-20120712-C01141
    I-1129
    Figure US20120178739A1-20120712-C01142
    I-1130
    Figure US20120178739A1-20120712-C01143
    I-1131
    Figure US20120178739A1-20120712-C01144
    I-1132
    Figure US20120178739A1-20120712-C01145
    I-1133
    Figure US20120178739A1-20120712-C01146
    I-1134
    Figure US20120178739A1-20120712-C01147
    I-1135
    Figure US20120178739A1-20120712-C01148
    I-1136
    Figure US20120178739A1-20120712-C01149
    I-1137
    Figure US20120178739A1-20120712-C01150
    I-1138
    Figure US20120178739A1-20120712-C01151
    I-1139
    Figure US20120178739A1-20120712-C01152
    I-1140
    Figure US20120178739A1-20120712-C01153
    I-1141
    Figure US20120178739A1-20120712-C01154
    I-1142
    Figure US20120178739A1-20120712-C01155
    I-1143
    Figure US20120178739A1-20120712-C01156
    I-1144
    Figure US20120178739A1-20120712-C01157
    I-1145
    Figure US20120178739A1-20120712-C01158
    I-1146
    Figure US20120178739A1-20120712-C01159
    I-1147
    Figure US20120178739A1-20120712-C01160
    I-1148
    Figure US20120178739A1-20120712-C01161
    I-1149
    Figure US20120178739A1-20120712-C01162
    I-1150
    Figure US20120178739A1-20120712-C01163
    I-1151
    Figure US20120178739A1-20120712-C01164
    I-1152
    Figure US20120178739A1-20120712-C01165
    I-1153
    Figure US20120178739A1-20120712-C01166
    I-1154
    Figure US20120178739A1-20120712-C01167
    I-1155
    Figure US20120178739A1-20120712-C01168
    I-1156
    Figure US20120178739A1-20120712-C01169
    I-1157
    Figure US20120178739A1-20120712-C01170
    I-1158
    Figure US20120178739A1-20120712-C01171
    I-1159
    Figure US20120178739A1-20120712-C01172
    I-1160
    Figure US20120178739A1-20120712-C01173
    I-1161
    Figure US20120178739A1-20120712-C01174
    I-1162
    Figure US20120178739A1-20120712-C01175
    I-1163
    Figure US20120178739A1-20120712-C01176
    I-1164
    Figure US20120178739A1-20120712-C01177
    I-1165
    Figure US20120178739A1-20120712-C01178
    I-1166
    Figure US20120178739A1-20120712-C01179
    I-1167
    Figure US20120178739A1-20120712-C01180
    I-1168
    Figure US20120178739A1-20120712-C01181
    I-1169
    Figure US20120178739A1-20120712-C01182
    I-1170
    Figure US20120178739A1-20120712-C01183
    I-1171
    Figure US20120178739A1-20120712-C01184
    I-1172
    Figure US20120178739A1-20120712-C01185
    I-1173
    Figure US20120178739A1-20120712-C01186
    I-1174
    Figure US20120178739A1-20120712-C01187
    I-1175
    Figure US20120178739A1-20120712-C01188
    I-1176
    Figure US20120178739A1-20120712-C01189
    I-1177
    Figure US20120178739A1-20120712-C01190
    I-1178
    Figure US20120178739A1-20120712-C01191
    I-1179
    Figure US20120178739A1-20120712-C01192
    I-1180
    Figure US20120178739A1-20120712-C01193
    I-1181
    Figure US20120178739A1-20120712-C01194
    I-1182
    Figure US20120178739A1-20120712-C01195
    I-1183
    Figure US20120178739A1-20120712-C01196
    I-1184
    Figure US20120178739A1-20120712-C01197
    I-1185
    Figure US20120178739A1-20120712-C01198
    I-1186
    Figure US20120178739A1-20120712-C01199
    I-1187
    Figure US20120178739A1-20120712-C01200
    I-1188
    Figure US20120178739A1-20120712-C01201
    I-1189
    Figure US20120178739A1-20120712-C01202
    I-1190
    Figure US20120178739A1-20120712-C01203
    I-1191
    Figure US20120178739A1-20120712-C01204
    I-1192
    Figure US20120178739A1-20120712-C01205
    I-1193
    Figure US20120178739A1-20120712-C01206
    I-1194
    Figure US20120178739A1-20120712-C01207
    I-1195
    Figure US20120178739A1-20120712-C01208
    I-1196
    Figure US20120178739A1-20120712-C01209
    I-1197
    Figure US20120178739A1-20120712-C01210
    I-1198
    Figure US20120178739A1-20120712-C01211
    I-1199
    Figure US20120178739A1-20120712-C01212
    I-1200
    Figure US20120178739A1-20120712-C01213
    I-1201
    Figure US20120178739A1-20120712-C01214
    I-1202
    Figure US20120178739A1-20120712-C01215
    I-1203
    Figure US20120178739A1-20120712-C01216
    I-1204
    Figure US20120178739A1-20120712-C01217
    I-1205
    Figure US20120178739A1-20120712-C01218
    I-1206
    Figure US20120178739A1-20120712-C01219
    I-1207
    Figure US20120178739A1-20120712-C01220
    I-1208
    Figure US20120178739A1-20120712-C01221
    I-1209
    Figure US20120178739A1-20120712-C01222
    I-1210
    Figure US20120178739A1-20120712-C01223
    I-1211
    Figure US20120178739A1-20120712-C01224
    I-1212
    Figure US20120178739A1-20120712-C01225
    I-1213
    Figure US20120178739A1-20120712-C01226
    I-1214
    Figure US20120178739A1-20120712-C01227
    I-1215
    Figure US20120178739A1-20120712-C01228
    I-1216
    Figure US20120178739A1-20120712-C01229
    I-1217
    Figure US20120178739A1-20120712-C01230
    I-1218
    Figure US20120178739A1-20120712-C01231
    I-1219
    Figure US20120178739A1-20120712-C01232
    I-1220
    Figure US20120178739A1-20120712-C01233
    I-1221
    Figure US20120178739A1-20120712-C01234
    I-1222
    Figure US20120178739A1-20120712-C01235
    I-1223
    Figure US20120178739A1-20120712-C01236
    I-1224
    Figure US20120178739A1-20120712-C01237
    I-1225
    Figure US20120178739A1-20120712-C01238
    I-1226
    Figure US20120178739A1-20120712-C01239
    I-1227
    Figure US20120178739A1-20120712-C01240
    I-1228
    Figure US20120178739A1-20120712-C01241
    I-1229
    Figure US20120178739A1-20120712-C01242
    I-1230
    Figure US20120178739A1-20120712-C01243
    I-1231
    Figure US20120178739A1-20120712-C01244
    I-1232
    Figure US20120178739A1-20120712-C01245
    I-1233
    Figure US20120178739A1-20120712-C01246
    I-1234
    Figure US20120178739A1-20120712-C01247
    I-1235
    Figure US20120178739A1-20120712-C01248
    I-1236
    Figure US20120178739A1-20120712-C01249
    I-1237
    Figure US20120178739A1-20120712-C01250
    I-1238
    Figure US20120178739A1-20120712-C01251
    I-1239
    Figure US20120178739A1-20120712-C01252
    I-1240
    Figure US20120178739A1-20120712-C01253
    I-1241
    Figure US20120178739A1-20120712-C01254
    I-1242
    Figure US20120178739A1-20120712-C01255
    I-1243
    Figure US20120178739A1-20120712-C01256
    I-1244
    Figure US20120178739A1-20120712-C01257
    I-1245
    Figure US20120178739A1-20120712-C01258
    I-1246
    Figure US20120178739A1-20120712-C01259
    I-1247
    Figure US20120178739A1-20120712-C01260
    I-1248
    Figure US20120178739A1-20120712-C01261
    I-1249
    Figure US20120178739A1-20120712-C01262
    I-1250
    Figure US20120178739A1-20120712-C01263
    I-1251
    Figure US20120178739A1-20120712-C01264
    I-1252
    Figure US20120178739A1-20120712-C01265
    I-1253
    Figure US20120178739A1-20120712-C01266
    I-1254
    Figure US20120178739A1-20120712-C01267
    I-1255
    Figure US20120178739A1-20120712-C01268
    I-1256
    Figure US20120178739A1-20120712-C01269
    I-1257
    Figure US20120178739A1-20120712-C01270
    I-1258
    Figure US20120178739A1-20120712-C01271
    I-1259
    Figure US20120178739A1-20120712-C01272
    I-1260
    Figure US20120178739A1-20120712-C01273
    I-1261
    Figure US20120178739A1-20120712-C01274
    I-1262
    Figure US20120178739A1-20120712-C01275
    I-1263
    Figure US20120178739A1-20120712-C01276
    I-1264
    Figure US20120178739A1-20120712-C01277
    I-1265
    Figure US20120178739A1-20120712-C01278
    I-1266
    Figure US20120178739A1-20120712-C01279
    I-1267
    Figure US20120178739A1-20120712-C01280
    I-1268
    Figure US20120178739A1-20120712-C01281
    I-1269
    Figure US20120178739A1-20120712-C01282
    I-1270
    Figure US20120178739A1-20120712-C01283
    I-1271
    Figure US20120178739A1-20120712-C01284
    I-1272
    Figure US20120178739A1-20120712-C01285
    I-1273
    Figure US20120178739A1-20120712-C01286
    I-1274
    Figure US20120178739A1-20120712-C01287
    I-1275
    Figure US20120178739A1-20120712-C01288
    I-1276
    Figure US20120178739A1-20120712-C01289
    I-1277
    Figure US20120178739A1-20120712-C01290
    I-1278
    Figure US20120178739A1-20120712-C01291
    I-1279
    Figure US20120178739A1-20120712-C01292
  • The compounds in Table 1 above also may be identified by the following chemical names:
  • Chemical Name
    • I-1 2-(3,4-Dimethoxy-phenylamino)-5,7-dihydro-1,3,7,8-tetraaza-dibenzo[a,c]cyclohepten-6-one
    • I-2 9-Chloro-2-(3,4-dimethoxy-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-3 4-(9-Chloro-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino)-benzoic acid
    • I-4 4-(9-Chloro-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino)-benzoic acid methyl ester
    • I-5 4-(10-Fluoro-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino)-benzoic acid
    • I-6 4-(7-Benzyl-9-chloro-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino)-benzoic acid
    • I-7 4-(9-Chloro-7-methyl-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino)-benzoic acid
    • I-8 4-(10-Methoxy-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino)-benzoic acid
    • I-9 4-(9-Methyl-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino)-benzoic acid
    • I-10 4-(9-Chloro-6-oxo-7-phenyl-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino)-benzoic acid
    • I-11 9-Chloro-2-(4-chloro-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-12 9-Chloro-2-(2-chloro-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-13 9-Chloro-2-(3-chloro-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-14 9-Chloro-2-(4-methoxy-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-15 9-Chloro-2-(3-methoxy-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-16 9-Chloro-2-(2-methoxy-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-17 9-Chloro-2-(3,4-dimethoxy-benzylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-18 10-Bromo-2-(3,4-dimethoxy-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-19 4-(9-Chloro-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino)-butyric acid
    • I-20 9-Chloro-2-methylamino-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-21 N′-(9-Chloro-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-yl)-N,N-dimethyl-guanidine
    • I-22 9-Chloro-2-dimethylamino-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-23 2-Amino-9-chloro-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-24 10-Chloro-2-(3,4-dimethoxy-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-25 4-(10-Bromo-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino)-benzoic acid
    • I-26 2-(3,4-Dimethoxy-phenylamino)-10-iodo-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-27 2-(3,4-Dimethoxy-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-28 9-Chloro-2-(2,3-dihydro-benzo[1,4]dioxin-6-ylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-29 9-Chloro-2-(3,4-dimethyl-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-30 2-(3,4-Dimethoxy-phenylamino)-9-iodo-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-31 2-(3,4-Dimethoxy-phenylamino)-10-(3-pyrrolidin-1-yl-prop-1-ynyl)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-32 2-(3,4-Dimethoxy-phenylamino)-9-(3-pyrrolidin-1-yl-prop-1-ynyl)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-33 2-(3,4-Dimethoxy-phenylamino)-9-ethynyl-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-34 2-(Benzo[1,3]dioxol-5-ylamino)-9-chloro-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-35 9-Chloro-2-(3,5-dimethyl-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-36 9-Chloro-2-(4-iodo-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-37 2-(3,4-Dimethoxy-phenylamino)-9-ethyl-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-38 9-(3-Amino-prop-1-ynyl)-2-(3,4-dimethoxy-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-39 {3-[2-(3,4-Dimethoxy-phenylamino)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-9-yl]-prop-2-ynyl}-carbamic acid tert-butyl ester
    • I-40 7-(3-Amino-propyl)-9-chloro-2-(3,4-dimethoxy-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-41 {3-[2-(3,4-Dimethoxy-phenylamino)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-9-yl]-propyl}-carbamic acid tert-butyl ester
    • I-42 2-(3,4-Dimethoxy-phenylamino)-9-methyl-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-43 2-(3,4-Dimethoxy-phenylamino)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepine-10-carboxylic acid
    • I-44 2-Amino-10-bromo-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-45 9-Chloro-2-(4-ethynyl-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-46 2-[4-(3-Amino-prop-1-ynyl)-phenylamino]-9-chloro-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-47 9-Chloro-2-[4-(3-pyrrolidin-1-yl-prop-1-ynyl)-phenylamino]-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-48 2-(3,4-Dimethoxy-phenylamino)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepine-10-carboxylic acid (2-pyridin-4-yl-ethyl)-amide
    • I-49 2-(3,4-Dimethoxy-phenylamino)-9-(3-pyrrolidin-1-yl-propyl)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-50 9-(3-Amino-propyl)-2-(3,4-dimethoxy-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-51 2-Amino-10-iodo-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-52 2-(3,4-Dimethoxy-phenylamino)-9-(3-hydroxy-prop-1-ynyl)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-53 2-(3,4-Dimethoxy-phenylamino)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepine-9-carboxylic acid
    • I-54 9-Chloro-2-[4-(3-hydroxy-prop-1-ynyl)-phenylamino]-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-55 9-Chloro-2-(3,5-dimethoxy-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-56 2-(3,4-Dimethoxy-phenylamino)-10-(3-pyrrolidin-1-yl-propyl)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-57 2-[4-(3-Amino-propyl)-phenylamino]-9-chloro-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-58 9-Chloro-2-(3-iodo-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-59 10-(3-Amino-prop-1-ynyl)-2-(3,4-dimethoxy-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-60 10-(3-Amino-propyl)-2-(3,4-dimethoxy-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-61 9-Chloro-2-phenylamino-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-62 N-(2-Amino-ethyl)-3-(9-chloro-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino)-benzamide
    • I-63 N-(3-Amino-propyl)-3-(9-chloro-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino)-benzamide
    • I-64 N-(4-Amino-butyl)-3-(9-chloro-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino)-benzamide
    • I-65 9-Chloro-2-(3-hydroxy-4-methoxy-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-66 9-Chloro-2-[4-(3-pyrrolidin-1-yl-propyl)-phenylamino]-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-67 2-[3-(3-Amino-prop-1-ynyl)-phenylamino]-9-chloro-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-68 4-(9-Chloro-5,7-dimethyl-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino)-benzoic acid
    • I-69 4-(9-Chloro-5-methyl-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino)-benzoic acid
    • I-70 2-(3,4-Dimethoxy-phenylamino)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepine-9-carboxylic acid amide
    • I-71 2-(3,4-Dimethoxy-phenylamino)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepine-9-carboxylic acid (2-amino-ethyl)-amide
    • I-72 2-(3,4-Dimethoxy-phenylamino)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepine-9-carboxylic acid (3-amino-propyl)-amide
    • I-73 2-(3,4-Dimethoxy-phenylamino)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepine-9-carboxylic acid (4-amino-butyl)-amide
    • I-74 10-(4-Amino-piperidine-1-carbonyl)-2-(3,4-dimethoxy-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-75 2-(3,4-Dimethoxy-phenylamino)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepine-10-carboxylic acid (2-pyrrolidin-1-yl-ethyl)-amide
    • I-76 2-(3,4-Dimethoxy-phenylamino)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepine-10-carboxylic acid (3-amino-propyl)-amide
    • I-77 2-(3,4-Dimethoxy-phenylamino)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepine-10-carboxylic acid (3-pyrrolidin-1-yl-propyl)-amide
    • I-78 [3-(9-Chloro-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino)-phenyl]-acetonitrile
    • I-79 9-Chloro-2-(3-hydroxymethyl-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-80 9-Chloro-2-[3-(2-hydroxy-ethyl)-phenylamino]-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-81 2-(3,4-Dimethoxy-phenylamino)-9-(3-hydroxy-propyl)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-82 2-(3,4-Dimethoxy-phenylamino)-9-propyl-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-83 N-(10-Iodo-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-yl)-benzamide
    • I-84 2-Amino-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepine-10-carboxylic acid
    • I-85 10-Bromo-2-(methyl-phenyl-amino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-86 2-[3-(2-Amino-ethyl)-phenylamino]-9-chloro-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-87 2-(3,4-Dimethoxy-phenylamino)-9-(3-methylamino-propyl)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-88 2-(3,4-Dimethoxy-phenylamino)-9-(3-dimethylamino-propyl)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-89 9-Chloro-2-[3-(3-pyrrolidin-1-yl-prop-1-ynyl)-phenylamino]-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-90 3-(9-Chloro-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino)-benzonitrile
    • I-91 2-(3,4-Dimethoxy-phenylamino)-9-(3-dimethylamino-prop-1-ynyl)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-92 2-(3,4-Dimethoxy-phenylamino)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepine-9-carbonitrile
    • I-93 3-(9-Chloro-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino)-N-(3-dimethylamino-propyl)-N-methyl-benzamide
    • I-94 4-[9-Chloro-7-(2-fluoro-phenyl)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino]-benzoic acid
    • I-95 4-[9-Chloro-7-(2-fluoro-phenyl)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino]-N-methyl-N-(1-methyl-pyrrolidin-3-yl)-benzamide
    • I-96 9-Chloro-7-(2,6-difluoro-phenyl)-2-[4-(4-methyl-piperazine-1-carbonyl)-phenylamino]-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-97 4-[9-Chloro-7-(2-fluoro-phenyl)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino]-benzenesulfonic acid
    • I-98 9-Chloro-2-(3,4-dimethoxy-phenylamino)-7-(2-fluoro-phenyl)-5,7-dihydro-3,4,7-triaza-dibenzo[a,c]cyclohepten-6-one
    • I-99 9-Chloro-2-(3,4-dimethoxy-phenylamino)-7-(2-fluoro-phenyl)-5,7-dihydro-1,3,4,7-tetraaza-dibenzo[a,c]cyclohepten-6-one
    • I-100 N-(3-Amino-propyl)-6-(9-chloro-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino)-nicotinamide
    • I-101 9-Chloro-246-(3-pyrrolidin-1-yl-prop-1-ynyl)-pyridin-2-ylamino]-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-102 2-(Benzofuran-6-ylamino)-9-chloro-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-103 9-Chloro-2-(5-methyl-pyrazin-2-ylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-104 2-(4-Furan-3-yl-phenylamino)-9-(3-pyrrolidin-1-yl-propyl)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-105 2-(3-Aminomethyl-phenylamino)-10-(3-dimethylamino-propyl)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-106 9-(3-Dimethylamino-propyl)-2-(3-hydroxymethyl-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-107 9-Chloro-2-(pyridin-2-ylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-108 9-Chloro-2-(pyridin-3-ylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-109 9-Chloro-2-(pyridin-4-ylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-110 10-(3-Dimethylamino-propyl)-2-(pyridin-4-ylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-111 2-(Pyridin-3-ylamino)-9-(3-pyrrolidin-1-yl-propyl)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-112 5-Amino-9-chloro-2-(3,4-dimethoxy-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-113 10-(3-Diethylamino-propyl)-2-(4-methoxy-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-114 2-(3,4-Dimethoxy-phenylamino)-9-(3-piperidin-1-yl-propyl)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-115 9-(3-Diethylamino-propyl)-2-(3,4-dimethoxy-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-116 2-(4-Methoxy-phenylamino)-10-(3-piperidin-1-yl-propyl)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-117 2-(3,4-Dimethoxy-phenylamino)-9-(3-morpholin-4-yl-propyl)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-118 2-(4-Methoxy-phenylamino)-10-(3-morpholin-4-yl-propyl)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-119 9-Chloro-242-(3,5-difluoro-phenyl)-ethylamino]-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-120 9-Chloro-2-(4-trifluoromethoxy-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-121 9-Chloro-2-(3-trifluoromethyl-benzylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-122 2-(3-Methoxy-4-methyl-phenylamino)-9-trifluoromethyl-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-123 2-(3,4-Dimethoxy-phenylamino)-9-(1H-imidazol-2-yl)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-124 9-Chloro-2-[4-(1H-imidazol-2-yl)-phenylamino]-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-125 2-[4-(1H-Pyrazol-4-yl)-phenylamino]-9-(3-pyrrolidin-1-yl-propyl)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-126 10-(1H-Imidazol-2-yl)-2-(4-methoxy-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-127 9-Chloro-2-[3-(1H-imidazol-2-yl)-phenylamino]-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-128 2-[3-(1H-Imidazol-2-yl)-phenylamino]-9-(3-pyrrolidin-1-yl-propyl)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-129 2-[3-(3-Dimethylamino-propyl)-phenylamino]-9-thiophen-3-yl-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-130 9-Amino-2-(3,4-dimethoxy-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-131 9-(3-Pyrrolidin-1-yl-propyl)-2-(3-thiophen-2-yl-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-132 2-(3,4-Dimethoxy-phenylamino)-9-dimethylamino-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-133 2-[3-(3-Diethylamino-propyl)-phenylamino]-9-methoxy-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-134 2-[3-(3-Dimethylamino-propyl)-phenylamino]-9-(1H-imidazol-2-yl)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-135 2-(4-Methoxy-phenylamino)-10-(3-pyrrolidin-1-yl-propyl)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-136 2-(4-Methoxy-phenylamino)-10-(3-pyrrolidin-1-yl-prop-1-ynyl)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-137 7-(3-Amino-propyl)-9-chloro-2-(3,4-dimethoxy-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
    • I-138 9-Aminomethyl-2-(3,4-dimethoxy-phenylamino)-5H,7H-benzo[b]-pyrimido[4,5-d]azepin-6-one
    • I-139 2-[3-(3-Amino-propyl)-phenylamino]-9-chloro-5H,7H-benzo[b]pyrimido-[4,5-d]azepin-6-one
    • I-140 2-(3-Aminomethyl-phenylamino)-9-chloro-5H,7H-benzo[b]pyrimido[4,5-d]-azepin-6-one
    • I-141 N-(8-Chloro-2-oxo-4-vinyl-2,3-dihydro-1H-benzo[b]azepin-5-yl)-N′-(3-nitro-phenyl)-acetamidine
    • I-142 2-[(4-methoxyphenyl)amino]-10-(3-pyrrolidin-1-ylprop-1-yn-1-yl)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-143 2-[(4-methoxyphenyl)amino]-10-(3-pyrrolidin-1-ylpropyl)-5,7-dihydro-6H-1-pyrimido[5,4-d][1]benzazepin-6-one
    • I-144 2-[(3-aminophenyl)amino]-9-chloro-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-145 9-chloro-2-{[3-(3-hydroxypropyl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-146 (2E)-3-{2-[(3,4-dimethoxyphenyl)amino]-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-9-yl}acrylamide
    • I-147 tert-butyl 4-({9-chloro-2-[(3,4-dimethoxyphenyl)amino]-6-oxo-5,6-dihydro-7H-pyrimido[5,4-d][1]benzazepin-7-yl}methyl)piperidine-1-carboxylate
    • I-148 2-(2-{2-[(3,4-dimethoxyphenyl)amino]-6-oxo-5,6-dihydro-7H-pyrimido[5,4-d][1]benzazepin-7-yl}ethyl)-1H-isoindole-1,3(2H)-dione
    • I-149 9-chloro-2-[(3,4-dimethoxyphenyl)amino]-7-(piperidin-4-ylmethyl)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-150 2-[(4-methoxyphenyl)amino]-9-(3-pyrrolidin-1-ylprop-1-yn-1-yl)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-151 2-[(3-methoxyphenyl)amino]-9-(3-pyrrolidin-1-ylprop-1-yn-1-yl)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-152 2-[(4-chlorophenyl)amino]-9-(3-pyrrolidin-1-ylprop-1-yn-1-yl)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-153 2-[(3-chlorophenyl)amino]-9-(3-pyrrolidin-1-ylprop-1-yn-1-yl)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-154 2-[(3,4-dimethylphenyl)amino]-9-(3-pyrrolidin-1-ylprop-1-yn-1-yl)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-155 9-chloro-2-({3-[3-(dimethylamino)propyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-156 9-chloro-2-({3-[3-(diethylamino)propyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-157 9-chloro-2-{[3-(3-morpholin-4-ylpropyl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-158 9-chloro-2-{[3-(3-piperidin-1-ylpropyl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-159 9-chloro-2-{[3-(3-pyrrolidin-1-ylpropyl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-160 10-bromo-2-[(3-methoxyphenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-161 10-bromo-2-[(3,5-dimethoxyphenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-162 9-chloro-2-{[2-(4-methoxyphenyl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-163 9-chloro-2-[(4-methyl-1,3-thiazol-2-yl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-164 2-[(3-methoxyphenyl)amino]-10-(3-pyrrolidin-1-ylprop-1-yn-1-yl)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-165 2-[(3,4-dimethoxyphenyl)amino]-9-fluoro-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-166 2-[(3-methoxyphenyl)amino]-10-(3-pyrrolidin-1-ylpropyl)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-167 2-[(3,5-dimethoxyphenyl)amino]-10-(3-pyrrolidin-1-ylprop-1-yn-1-yl)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-168 2-[(3,5-dimethoxyphenyl)amino]-10-(3-pyrrolidin-1-ylpropyl)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-169 9-chloro-2-({3-[4-(dimethylamino)but-1-yn-1-yl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-170 9-chloro-2-({3-[4-(dimethylamino)butyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-171 3-{[6-oxo-10-(3-pyrrolidin-1-ylprop-1-yn-1-yl)-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl]amino}benzoic acid
    • I-172 9-chloro-7-[2-(diethylamino)ethyl]-2-[(3,4-dimethoxyphenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-173 9-chloro-2-[(3,4-dimethoxyphenyl)amino]-7-(2-morpholin-4-ylethyl)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-174 9-chloro-2-[(3,4-dimethoxyphenyl)amino]-7-[2-(1-methylpyrrolidin-2-yl)ethyl]5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-175 9-chloro-2-[(6-chloro-1,3-benzothiazol-2-yl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-176 3-{[6-oxo-10-(3-pyrrolidin-1-ylpropyl)-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl]amino}benzoic acid
    • I-177 2-anilino-10-iodo-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-178 2-(1,3-benzodioxol-5-ylamino)-10-iodo-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-179 9-chloro-2-[(6-methoxypyridin-3-yl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-180 9-chloro-2-[(5-ethyl-1,3,4-thiadiazol-2-yl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-181 2-{[4-(4-bromophenyl)-1,3-thiazol-2-yl]amino}-9-chloro-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-182 9-chloro-2-{[5-(trifluoromethyl)-1,3,4-thiadiazol-2-yl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-183 9-(3-pyrrolidin-1-ylprop-1-yn-1-yl)-2-{[4-(2-thienyl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-184 2-anilino-10-(3-pyrrolidin-1-ylprop-1-yn-1-yl)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-185 2-(1,3-benzodioxol-5-ylamino)-10-(3-pyrrolidin-1-ylprop-1-yn-1-yl)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-186 9-(3-pyrrolidin-1-ylpropyl)-2-{[4-(2-thienyl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-187 9-chloro-2-{[4-(trifluoromethoxy)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-188 9-chloro-2-[(4-morpholin-4-ylphenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-189 9-chloro-2-{[4-(dimethylamino)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-190 9-chloro-2-[(1-methyl-3-phenyl-1H-pyrazol-5-yl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-191 9-chloro-2-{[4-(4-methylpiperazin-1-yl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-192 9-chloro-2-[(5-methyl-1,3-thiazol-2-yl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-193 9-chloro-2-(1,3-dihydro-2-benzofuran-5-ylamino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-194 3-{3-[(10-iodo-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]phenyl}propanoic acid
    • I-195 2-[(3-aminophenyl)amino]-10-(3-pyrrolidin-1-ylpropyl)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-196 2-[(4-aminophenyl)amino]-10-(3-pyrrolidin-1-ylpropyl)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-197 9-chloro-2-(pyridin-2-ylamino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-198 2-[(3,4-dimethoxyphenyl)amino]-5,7-dihydro-6H-pyrimido[4,5-d]thieno[3,2-b]azepin-6-one
    • I-199 2-[(4-methoxyphenyl)amino]-5,7-dihydro-6H-pyrimido[4,5-d]thieno[3,2-b]azepin-6-one
    • I-200 2-[(4-methylphenyl)amino]-5,7-dihydro-6H-pyrimido[4,5-d]thieno[3,2-b]azepin-6-one
    • I-201 2-amino-9-[(4-methoxyphenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-202 2-[(3,4-dichlorophenyl)amino]-5,7-dihydro-6H-pyrimido[4,5-d]thieno[3,2-b]azepin-6-one
    • I-203 2-amino-9-(1,3-benzodioxol-5-ylamino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-204 2-[(4-chlorophenyl)amino]-5,7-dihydro-6H-pyrimido[4,5-d]thieno[3,2-b]azepin-6-one
    • I-205 2-amino-9-[(4-methylphenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-206 2-amino-9-[(3-fluorophenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-207 2-{[4-(trifluoromethyl)phenyl]amino}-5,7-dihydro-6H-pyrimido[4,5-d]thieno[3,2-b]azepin-6-one
    • I-208 2-[(3-fluorophenyl)amino]-5,7-dihydro-6H-pyrimido[4,5-d]thieno[3,2-b]azepin-6-one
    • I-209 4-[(6-oxo-6,7-dihydro-5H-pyrimido[4,5-d]thieno[3,2-b]azepin-2-yl)amino]benzoic acid
    • I-210 2-amino-5,7-dihydro-6H-pyrimido[4,5-d]thieno[3,2-b]azepin-6-one
    • I-211 2-anilino-5,7-dihydro-6H-pyrimido[4,5-d]thieno[3,2-b]azepin-6-one
    • I-212 2-[(4-iodophenyl)amino]-10-(3-pyrrolidin-1-ylpropyl)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-213 2-amino-7-[3-(dimethylamino)propyl]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-214 2-amino-7-(2-methoxyethyl)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-215 methyl 3-(2-amino-6-oxo-5,6-dihydro-7H-pyrimido[5,4-d][1]benzazepin-7-yl)propanoate
    • I-216 2-amino-7-[3-(1H-pyrrol-1-yl)propyl]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-217 2-amino-7-[2-(1-methylpyrrolidin-2-yl)ethyl]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-218 2-amino-7-(2-morpholin-4-ylethyl)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-219 2-anilino-10-(3-pyrrolidin-1-ylpropyl)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-220 2-(1,3-benzodioxol-5-ylamino)-10-(3-pyrrolidin-1-ylpropyl)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-221 2-[(3,4-dimethoxyphenyl)amino]-9-[5-(pyrrolidin-1-ylmethyl)-2-thienyl]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-222 2-[(4-chlorophenyl)amino]-10-(3-pyrrolidin-1-ylpropyl)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-223 2-[(3-iodophenyl)amino]-10-(3-pyrrolidin-1-ylpropyl)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-224 tert-butyl 4-({2-[(3,4-dimethoxyphenyl)amino]-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-9-yl}carbonyl)piperazine-1-carboxylate
    • I-225 2-amino-9-[(3-methoxyphenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-226 2-{[3-(hydroxymethyl)phenyl]amino}-10-(3-pyrrolidin-1-ylpropyl)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-227 2-[(3,4-dimethoxyphenyl)amino]-6-oxo-N-(2-pyrrolidin-1-ylethyl)-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepine-9-carboxamide
    • I-228 2-[(3,4-dimethoxyphenyl)amino]-9-(piperazin-1-ylcarbonyl)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-229 tert-butyl 4-[({2-[(3,4-dimethoxyphenyl)amino]-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-9-yl}carbonyl)amino]piperidine-1-carboxylate
    • I-230 2-amino-7-benzyl-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-231 2-amino-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-232 2-[(3,5-dimethoxyphenyl)amino]-9-iodo-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-233 2-amino-7-[3-(diethylamino)propyl]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-234 tert-butyl 4-[(2-amino-6-oxo-5,6-dihydro-7H-pyrimido[5,4-d][1]benzazepin-7-yl)methyl]piperidine-1-carboxylate
    • I-235 9-chloro-2-{[2-(3-fluorophenyl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-236 9-chloro-2-{[2-(1H-imidazol-5-yl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-237 9-chloro-2-{[2-(4-nitrophenyl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-238 2-{[2-(4-bromophenyl)ethyl]amino}-9-chloro-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-239 2-[(3-aminophenyl)amino]-10-ethyl-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-240 2-amino-9-{[4-(dimethylamino)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-241 2-[(3,4-dimethoxyphenyl)amino]-6-oxo-N-(3-pyrrolidin-1-ylpropyl)-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepine-9-carboxamide
    • I-242 tert-butyl {trans-4-[({2-[(3,4-dimethoxyphenyl)amino]-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-9-yl}carbonyl)amino]cyclohexyl}carbamate
    • I-243 2-[(4-ethynylphenyl)amino]-10-(3-pyrrolidin-1-ylpropyl)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-244 2-[(3,4-dimethoxyphenyl)amino]-6-oxo-N-piperidin-4-yl-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepine-9-carboxamide
    • I-245 N-(trans-4-aminocyclohexyl)-2-[(3,4-dimethoxyphenyl)amino]-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepine-9-carboxamide
    • I-246 2-amino-7-(4-fluorobenzyl)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-247 2-[(3,4-dimethoxyphenyl)amino]-9-(2-pyrrolidin-1-ylethyl)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-248 2-amino-7-(3-fluorobenzyl)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-249 2-amino-7-(4-methoxybenzyl)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-250 2-[(3-ethynylphenyl)amino]-10-(3-pyrrolidin-1-ylpropyl)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-251 2-amino-7-(4-methylbenzyl)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-252 2-amino-7-(4-chlorobenzyl)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-253 2-amino-7-(3,4-dichlorobenzyl)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-254 2-[(3,4-dimethoxyphenyl)amino]-5H-pyrimido[4,5-d]thieno[3,4-b]azepin-6(7H)-one
    • I-255 2-amino-9-anilino-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-256 2-[(4-methoxyphenyl)amino]-5H-pyrimido[4,5-d]thieno[3,4-b]azepin-6(7H)-one
    • I-257 2-amino-9-{[4-(trifluoromethyl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-258 2-[(4-methylphenyl)amino]-5H-pyrimido[4,5-d]thieno[3,4-b]azepin-6(7H)-one
    • I-259 2-[(3,4-dichlorophenyl)amino]-5H-pyrimido[4,5-d]thieno[3,4-b]azepin-6(7H)-one
    • I-260 2-[(4-chlorophenyl)amino]-5H-pyrimido[4,5-d]thieno[3,4-b]azepin-6(7H)-one
    • I-261 2-{[4-(trifluoromethyl)phenyl]amino}-5H-pyrimido[4,5-d]thieno[3,4-b]azepin-6(7H)-one
    • I-262 2-[(3-fluorophenyl)amino]-5H-pyrimido[4,5-d]thieno[3,4-b]azepin-6(7H)-one
    • I-263 4-[(6-oxo-6,7-dihydro-5H-pyrimido[4,5-d]thieno[3,4-b]azepin-2-yl)amino]benzoic acid
    • I-264 2-amino-5H-pyrimido[4,5-d]thieno[3,4-b]azepin-6(7H)-one
    • I-265 2-anilino-5H-pyrimido[4,5-d]thieno[3,4-b]azepin-6(7H)-one
    • I-266 9-chloro-2-{[3-(trifluoromethoxy)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-267 9-chloro-2-[(5-chloropyridin-2-yl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-268 9-chloro-2-[(4-nitrophenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-269 9-chloro-2-(pyrimidin-4-ylamino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-270 9-chloro-2-(cyclopropylamino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-271 9-chloro-2-{[1-(hydroxymethyl)-2-methylpropyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-272 9-chloro-2-({4-[(3-methylpiperazin-1-yl)carbonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-273 9-chloro-2-({4-[(3,5-dimethylpiperazin-1-yl)carbonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-274 9-chloro-2-[(4-{[3-(methylamino)pyrrolidin-1-yl]carbonyl}phenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-275 2-[(3,4-dimethoxyphenyl)amino]-7-methyl-10-(3-pyrrolidin-1-ylpropyl)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-276 2-[(3,4-dimethoxyphenyl)amino]-5,7-dihydro-6H-[1]benzofuro[3,2-b]pyrimido[4,5-d]azepin-6-one
    • I-277 2-[(4-methoxyphenyl)amino]-5,7-dihydro-6H-[1]benzofuro[3,2-b]pyrimido[4,5-d]azepin-6-one
    • I-278 2-[(4-methylphenyl)amino]-5,7-dihydro-6H-[1]benzofuro[3,2-b]pyrimido[4,5-d]azepin-6-one
    • I-279 2-[(3,4-dichlorophenyl)amino]-5,7-dihydro-6H-[1]benzofuro[3,2-b]pyrimido[4,5-d]azepin-6-one
    • I-280 2-[(4-chlorophenyl)amino]-5,7-dihydro-6H-[1]benzofuro[3,2-b]pyrimido[4,5-d]azepin-6-one
    • I-281 2-{[4-(trifluoromethyl)phenyl]amino}-5,7-dihydro-6H-[1]benzofuro[3,2-b]pyrimido[4,5-d]azepin-6-one
    • I-282 4-[(6-oxo-6,7-dihydro-5H-[1]benzofuro[3,2-b]pyrimido[4,5-d]azepin-2-yl)amino]benzoic acid
    • I-283 2-amino-5,7-dihydro-6H-[1]benzofuro[3,2-b]pyrimido[4,5-d]azepin-6-one
    • I-284 2-{[3-(3-piperidin-1-ylpropyl)phenyl]amino}-10-(3-pyrrolidin-1-ylpropyl)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-285 2-amino-7-[4-(1H-pyrazol-1-yl)benzyl]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-286 2-amino-7-[4-(1H-1,2,4-triazol-1-yl)benzyl]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-287 2-amino-7-[(1-methyl-1H-1,2,3-benzotriazol-6-yl)methyl]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-288 2-amino-7-[2-(diethylamino)ethyl]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-289 methyl 4-(2-amino-6-oxo-5,6-dihydro-7H-pyrimido[5,4-d][1]benzazepin-7-yl)butanoate
    • I-290 2-amino-7-(3-methoxypropyl)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-291 2-amino-7-(piperidin-4-ylmethyl)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-292 5-amino-2-[(3,4-dimethoxyphenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-293 2-[(3-fluorophenyl)amino]-5,7-dihydro-6H-[1]benzofuro[3,2-b]pyrimido[4,5-d]azepin-6-one
    • I-294 2-anilino-5,7-dihydro-6H-[1]benzofuro[3,2-b]pyrimido[4,5-d]azepin-6-one
    • I-295 N-(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)benzamide
    • I-296 2-methoxy-N-(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)benzamide
    • I-297 4-chloro-N-(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)benzamide
    • I-298 3,4-dichloro-N-(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)benzamide
    • I-299 3,4-dimethoxy-N-(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)benzamide
    • I-300 2-({4-[(4-methylpiperazin-1-yl)carbonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[4,5-d]thieno[3,2-b]azepin-6-one
    • I-301 N-[2-(dimethylamino)ethyl]-4-[(6-oxo-6,7-dihydro-5H-pyrimido[4,5-d]thieno[3,2-b]azepin-2-yl)amino]benzamide
    • I-302 tert-butyl (1-{4-[(6-oxo-6,7-dihydro-5H-pyrimido[4,5-d]thieno[3,2-b]azepin-2-yl)amino]benzoyl}pyrrolidin-3-yl)carbamate
    • I-303 2-[(4-{[3-(dimethylamino)pyrrolidin-1-yl]carbonyl}phenyl)amino]-5,7-dihydro-6H-pyrimido[4,5-d]thieno[3,2-b]azepin-6-one
    • I-304 2-({4-[(3-methylpiperazin-1-yl)carbonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[4,5-d]thieno[3,2-b]azepin-6-one
    • I-305 2-[(2-methoxyphenyl)amino]-5,7-dihydro-6H-pyrimido[4,5-d]thieno[3,2-b]azepin-6-one
    • I-306 2-[(2-fluorophenyl)amino]-5,7-dihydro-6H-pyrimido[4,5-d]thieno[3,2-b]azepin-6-one
    • I-307 2-[(2-methylphenyl)amino]-5,7-dihydro-6H-pyrimido[4,5-d]thieno[3,2-b]azepin-6-one
    • I-308 2-[(2-methoxyphenyl)amino]-5H-pyrimido[4,5-d]thieno[3,4-b]azepin-6(7H)-one
    • I-309 2-[(2-fluorophenyl)amino]-5H-pyrimido[4,5-d]thieno[3,4-b]azepin-6(7H)-one
    • I-310 2-[(2-methylphenyl)amino]-5H-pyrimido[4,5-d]thieno[3,4-b]azepin-6(7H)-one
    • I-311 2-[(2-methoxyphenyl)amino]-5,7-dihydro-6H-[1]benzofuro [3,2-b]pyrimido[4,5-d]azepin-6-one
    • I-312 2-[(2-fluorophenyl)amino]-5,7-dihydro-6H-[1]benzofuro[3,2-b]pyrimido[4,5-d]azepin-6-one
    • I-313 2-[(2-methylphenyl)amino]-5,7-dihydro-6H-[1]benzofuro[3,2-b]pyrimido[4,5-d]azepin-6-one
    • I-314 2-({4-[(3-aminopyrrolidin-1-yl)carbonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[4,5-d]thieno[3,2-b]azepin-6-one
    • I-315 9-chloro-2-{[4-(1H-imidazol-1-yl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-316 9-chloro-2-{[3-(4-methylpiperazin-1-yl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-317 9-chloro-2-{[4-(4-ethylpiperazin-1-yl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-318 9-chloro-{[4-(1-methylpiperidin-4-yl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-319 2-[(2-aminophenyl)amino]-10-(3-pyrrolidin-1-ylpropyl)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-320 2-({4-[(4-methylpiperazin-1-yl)carbonyl]phenyl}amino)-5H-pyrimido[4,5-d]thieno[3,4-b]azepin-6(7H)-one
    • I-321 2-({4-[(3-methylpiperazin-1-yl)carbonyl]phenyl}amino)-5H-pyrimido[4,5-d]thieno[3,4-b]azepin-6(7H)-one
    • I-322 N-[2-(dimethylamino)ethyl]-4-[(6-oxo-6,7-dihydro-5H-pyrimido[4,5-d]thieno[3,4-b]azepin-2-yl)amino]benzamide
    • I-323 2-[(4-{[3-(dimethylamino)pyrrolidin-1-yl]carbonyl}phenyl)amino]-5H-pyrimido[4,5-d]thieno[3,4-b]azepin-6(7H)-one
    • I-324 4-methyl-N-(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)benzamide
    • I-325 2-({4-[(3-aminopyrrolidin-1-yl)carbonyl]phenyl}amino)-5H-pyrimido[4,5-d]thieno[3,4-b]azepin-6(7H)-one
    • I-326 2-[(3,4-dimethoxyphenyl)amino]-8-methyl-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-327 8-methyl-2-{[3-(4-methylpiperazin-1-yl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-328 4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzoic acid
    • I-329 9-chloro-2-[(3-methylbutyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-330 9-chloro-2-(propylamino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-331 9-chloro-7-methyl-2-[(4-{[3-(methylamino)pyrrolidin-1-yl]carbonyl}phenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-332 9-chloro-2-{[2-(2-thienyl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one methyl (2R)-2-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]propanoate
    • I-334 9-chloro-2-{[2-(5-chloro-1H-indol-3-yl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-335 2-{[(2-bromo-3-thienyl)methyl]amino}-9-chloro-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-336 9-chloro-2-[(2-thienylmethyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-337 3-{2-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]ethyl}-2-methyl-1H-indole-5-carbonitrile
    • I-338 9-chloro-2-[(2,3-dihydro-1,4-benzodioxin-6-ylmethyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-339 2-[(1,3-benzodioxol-5-ylmethyl)amino]-9-chloro-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-340 9-chloro-2-[(3-methoxybenzyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-341 9-chloro-2-{[3-(1H-imidazol-1-yl)propyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-342 9-chloro-2-{[2-(2-methyl-1H-indol-3-yl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-343 9-chloro-2-[(2,3-dihydro-1-benzofuran-5-ylmethyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-344 9-chloro-2-{[2-(3,4-dimethoxyphenyl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-345 9-chloro-2-{[(2-methyl-1,3-thiazol-4-yl)methyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-346 9-chloro-2-[(2-pyridin-2-ylethyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-347 9-chloro-2-{[(5-methyl-2-furyl)methyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-348 9-chloro-2-[(3-furylmethyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-349 9-chloro-2-{[2-(5-methoxy-1H-indol-3-yl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-350 9-chloro-2-[(2-phenylethyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-351 9-chloro-2-{[2-(4-fluorophenyl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-352 9-chloro-2-{[2-(4-methylphenyl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-353 ethyl (2S)-2-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]propanoate
    • I-354 9-chloro-2-{[(5-pyridin-2-yl-2-thienyl)methyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-355 9-chloro-2-({3-[methyl(phenyl)amino]propyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-356 9-chloro-2-{[2-(2,4-dimethylphenyl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-357 2-(benzylamino)-9-chloro-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-358 9-chloro-2-{[2-(1H-indol-3-yl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-359 9-chloro-2-{[2-(3,5-dimethyl-1H-pyrazol-4-yl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-360 methyl (2R)-2-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-3-phenylpropanoate
    • I-361 9-chloro-2-{[2-(3-methoxyphenyl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-362 9-chloro-2-{[2-(2,4-dichlorophenyl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-363 9-chloro-2-[(2-furylmethyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-364 4-[(6-oxo-6,7-dihydro-5H-pyrido[3,4-b]pyrimido[4,5-d]azepin-2-yl)amino]benzoic acid
    • I-365 2-[(3,4-dimethoxyphenyl)amino]-5,7-dihydro-6H-pyrido[3,4-b]pyrimido[4,5-d]azepin-6-one
    • I-366 2-[(4-methylphenyl)amino]-5,7-dihydro-6H-pyrido[3,4-b]pyrimido[4,5-d]azepin-6-one
    • I-367 2-[(3,4-dichlorophenyl)amino]-5,7-dihydro-6H-pyrido[3,4-b]pyrimido[4,5-d]azepin-6-one
    • I-368 2-[(2-methylphenyl)amino]-5,7-dihydro-6H-pyrido[3,4-b]pyrimido[4,5-d]azepin-6-one
    • I-369 2-anilino-5,7-dihydro-6H-pyrido[3,4-b]pyrimido[4,5-d]azepin-6-one
    • I-370 9-chloro-7-ethyl-2-[(4-{[3-(methylamino)pyrrolidin-1-yl]carbonyl}phenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-371 9-chloro-7-isopropyl-2-[(4-{[3-(methylamino)pyrrolidin-1-yl]carbonyl}phenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-372 N-(3-isopropoxypropyl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-373 N-isopropyl-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-374 N-(4-fluorobenzyl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-375 2-{[4-(pyrrolidin-1-ylcarbonyl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-376 4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(tetrahydrofuran-2-ylmethyl)benzamide
    • I-377 2-{[4-(morpholin-4-ylcarbonyl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-378 N,N-diethyl-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-379 2-({4-[(4-methylpiperidin-1-yl)carbonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-380 N-isobutyl-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-381 N-(3,5-dimethylisoxazol-4-yl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-382 N-[(1R)-1-cyclohexylethyl]-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-383 N-(1-ethynylcyclohexyl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-384 2-({4-[(4-acetylpiperazin-1-yl)carbonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-385 4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-thienylmethyl)benzamide
    • I-386 N-[2-(1-methylpyrrolidin-2-yl)ethyl]-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-387 4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(tetrahydro-2H-pyran-4-ylmethyl)benzamide
    • I-388 N-(2-furylmethyl)-N-methyl-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-389 4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[2-(2-thienyl)ethyl]benzamide
    • I-390 2-[(4-{[(3R)-3-(dimethylamino)pyrrolidin-1-yl]carbonyl}phenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-391 N-[(5-methyl-2-furyl)methyl]-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-392 4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-pyridin-3-ylbenzamide
    • I-393 N-cyclopentyl-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-394 4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(3-propoxypropyl)benzamide
    • I-395 4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-phenylethyl)benzamide
    • I-396 N-[(1R,2R,4S)-bicyclo[2.2.1]hept-2-yl]-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-397 4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(1,3,5-trimethyl-1H-pyrazol-4-yl)benzamide
    • I-398 N-(4-methoxyphenyl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-399 2-({4-[(4-ethylpiperazin-1-yl)carbonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-400 N-(2-methoxy-1-methylethyl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-401 4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-pyridin-2-ylethyl)benzamide
    • I-402 N-[(1-ethylpyrrolidin-3-yl)methyl]-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-403 2-({4-[(3-oxopiperazin-1-yl)carbonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-404 4-{4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzoyl}-1,4-diazepane-1-carbaldehyde
    • I-405 N-(cyclohexylmethyl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-406 N-(3-furylmethyl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-407 2-({4-[(2-ethylpyrrolidin-1-yl)carbonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-408 N-(3-methylbutyl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-409 N-(2-cyanoethyl)-N-cyclopropyl-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-410 N-(cyclopropylmethyl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-411 2-[(4-{[(2S)-2-(methoxymethyl)pyrrolidin-1-yl]carbonyl}phenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-412 2-({4-[(4-methylpiperazin-1-yl)carbonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-413 N-cyclohexyl-N-methyl-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-414 N-(2-cyanoethyl)-N-methyl-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-415 2-{[4-(1,3-dihydro-2H-isoindol-2-ylcarbonyl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-416 N-[3-(1H-imidazol-1-yl)propyl]-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-417 N-methyl-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-prop-2-yn-1-ylbenzamide
    • I-418 N-[2-(dimethylamino)ethyl]-N-ethyl-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-419 N[2-(acetylamino)ethyl]-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-420 N-(2-methoxyethyl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-421 4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-piperidin-1-ylethyl)benzamide
    • I-422 N-cyclohexyl-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-423 N-[2-(dimethylamino)ethyl]-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-424 4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(pyridin-2-ylmethyl)benzamide
    • I-425 N-[2-(diethylamino)ethyl]-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-426 N-methyl-N-(1-methylpiperidin-4-yl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-427 N-[2-(dimethylamino)ethyl]-N-methyl-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-428 N-methyl-N-(1-methylpyrrolidin-3-yl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-429 2-{[4-(piperidin-1-ylcarbonyl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-430 N-[(2-methyl-1,3-thiazol-4-yl)methyl]-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-431 4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(3-pyrrolidin-1-ylpropyl)benzamide
    • I-432 2-{[4-(azetidin-1-ylcarbonyl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-433 4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(pyridin-4-ylmethyl)benzamide
    • I-434 N-(2-isopropoxyethyl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-435 2-({4-[(2-isobutylpyrrolidin-1-yl)carbonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-436 N-(4,6-dimethylpyridin-2-yl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-437 N-(2-morpholin-4-ylethyl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-438 2-({4-[(5-ethyl-2-methylpiperidin-1-yl)carbonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-439 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-methyl-N-(1-methylpyrrolidin-3-yl)benzamide
    • I-440 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2,2-dimethylpropyl)benzamide
    • I-441 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-ethoxyethyl)benzamide
    • I-442 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[2-(diethylamino)ethyl]benzamide
    • I-443 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-cyclohexylbenzamide
    • I-444 2-{[4-(azetidin-1-ylcarbonyl)phenyl]amino}-9-chloro-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-445 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(1H-imidazol-2-ylmethyl)benzamide
    • I-446 9-chloro-2-({4-[(3,5-dimethylpiperidin-1-yl)carbonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-447 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-cyclopropylbenzamide
    • I-448 9-chloro-2-{[4-(piperidin-1-ylcarbonyl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-449 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(tetrahydrofuran-2-ylmethyl)benzamide
    • I-450 9-chloro-2-({4-[(3-methoxypiperidin-1-yl)carbonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-451 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[(4-methyl-1H-imidazol-2-yl)methyl]benzamide
    • I-452 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-propylbenzamide
    • I-453 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(1-methylbutyl)benzamide
    • I-454 N-butyl-4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-455 9-chloro-2-{[4-(pyrrolidin-1-ylcarbonyl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-456 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-pyridin-4-ylbenzamide
    • I-457 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[2-(dimethylamino)ethyl]-N-methylbenzamide
    • I-458 N-[2-(acetylamino)ethyl]-4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-459 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(1,3-dioxolan-2-ylmethyl)-N-methylbenzamide
    • I-460 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(tetrahydro-2H-pyran-4-ylmethyl)benzamide
    • I-461 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(4-methylcyclohexyl)benzamide
    • I-462 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-cyclohexyl-N-methylbenzamide
    • I-463 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-isopropoxyethyl)benzamide
    • I-464 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(pyrimidin-4-ylmethyl)benzamide
    • I-465 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-pyridin-2-ylethyl)benzamide
    • I-466 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-cyanoethyl)-N-cyclopropylbenzamide
    • I-467 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(3,3-dimethylbutyl)benzamide
    • I-468 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-furylmethyl)-N-methylbenzamide
    • I-469 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-cyclopentylbenzamide
    • I-470 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(4-methylbenzyl)benzamide
    • I-471 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-isobutylbenzamide
    • I-472 9-chloro-2-[(4-{[(2R,6S)-2,6-dimethylmorpholin-4-yl]carbonyl}phenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-473 N-[1R,2R,4S)-bicyclo[2.2.1]hept-2-yl]-4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-474 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(3-isopropoxypropyl)benzamide
    • I-475 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(1,3-dioxolan-2-ylmethyl)benzamide
    • I-476 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(4-methyl-1,3-oxazol-2-yl)benzamide
    • I-477 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(1H-imidazol-2-ylmethyl)-N-methylbenzamide
    • I-478 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(3-methylbutyl)benzamide
    • I-479 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-methylbenzyl)benzamide
    • I-480 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(pyridin-2-ylmethyl)benzamide
    • I-481 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-isopropylbenzamide
    • I-482 9-chloro-2-({4-[(2-ethylpyrrolidin-1-yl)carbonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-483 N-benzyl-4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-484 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[2-(dimethylamino)-1-methylethyl]benzamide
    • I-485 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N,N-diethylbenzamide
    • I-486 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(1,3-dimethyl-1H-pyrazol-5-yl)benzamide
    • I-487 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(3-methoxyphenyl)benzamide
    • I-488 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(3-thienylmethyl)benzamide
    • I-489 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(1-phenylethyl)benzamide
    • I-490 9-chloro-2-({4-[(4-methylpiperidin-1-yl)carbonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-491 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N[1-(methoxymethyl)propyl]benzamide
    • I-492 9-chloro-2-({4-[(2-methylpyrrolidin-1-yl)carbonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-493 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-methoxy-1-methylethyl)benzamide
    • I-494 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-methyl-N-prop-2-yn-1-ylbenzamide
    • I-495 9-chloro-2-({4-[(4-methylpiperazin-1-yl)carbonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-496 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(3,5-dimethylisoxazol-4-yl)benzamide
    • I-497 9-chloro-2-({4-[(4-ethylpiperazin-1-yl)carbonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-498 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[3-(dimethylamino)propyl]-N-methylbenzamide
    • I-499 9-chloro-2-({4-[(3,4-dimethylpiperazin-1-yl)carbonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-500 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-pyridin-3-ylbenzamide
    • I-501 9-chloro-2-[(4-1[(2S)-2-(methoxymethyl)pyrrolidin-1-yl]carbonyl]phenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-502 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(cyclopropylmethyl)benzamide
    • I-503 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-isopropyl-N-methylbenzamide
    • I-504 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(3-methoxypropyl)benzamide
    • I-505 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(3-ethoxypropyl)benzamide
    • I-506 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-cyanoethyl)-N-methylbenzamide
    • I-507 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-methoxyethyl)benzamide
    • I-508 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-1H-indol-5-ylbenzamide
    • I-509 N-1,3-benzodioxol-5-yl-4-[(9-chloro-6-oxo-6,7-dihydro-51′-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-510 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-methyl-N-[(5-methyl-1H-pyrazol-3-yl)methyl]benzamide
    • I-511 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(3-isobutoxypropyl)benzamide
    • I-512 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[(1R)-1-cyclohexylethyl]benzamide
    • I-513 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[1-(4-methyl-1,3-thiazol-2-yl)ethyl]benzamide
    • I-514 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[2-(methylsulfonyl)ethyl]benzamide
    • I-515 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-methyl-N-(3-thienylmethyl)benzamide
    • I-516 9-chloro-2-({4-[(5-fluoro-2,3-dihydro-1H-indol-1-yl)carbonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-517 2-({4-[(4-acetylpiperazin-1-yl)carbonyl]phenyl}amino)-9-chloro-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-518 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(3-fluoro-4-methoxyphenyl)benzamide
    • I-519 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2,5-difluorobenzyl)benzamide
    • I-520 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[(1-ethylpyrrolidin-3-yl)methyl]benzamide
    • I-521 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[1-(2-methyl-1,3-thiazol-4-yl)ethyl]benzamide
    • I-522 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2,3-dihydro-1-benzofuran-5-ylmethyl)benzamide
    • I-523 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[3-(2-oxopyrrolidin-1-yl)propyl]benzamide
    • I-524 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[2-(5-methyl-4H-1,2,4-triazol-3-yl)ethyl]benzamide
    • I-525 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[(1S)-1-(4-methylphenyl)ethyl]benzamide
    • I-526 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(1,3,5-trimethyl-1H-pyrazol-4-yl)benzamide
    • I-527 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-methoxy-5-methylphenyl)benzamide
    • I-528 9-chloro-2-[(4-{[2-(2-furyl)pyrrolidin-1-yl]carbonyl}phenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-529 9-chloro-2-({4-[(3-pyridin-3-ylpyrrolidin-1-yl)carbonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-530 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[2-(1-methylpyrrolidin-2-yl)ethyl]benzamide
    • I-531 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[3-(1H-imidazol-1-yl)propyl]benzamide
    • I-532 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-methyl-N-(1-methylpiperidin-4-yl)benzamide
    • I-533 N-1-azabicyclo[2.2.2]oct-3-yl-4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-534 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[3-(dimethylamino)phenyl]benzamide
    • I-535 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-methyl-N-(tetrahydro-2H-pyran-4-ylmethyl)benzamide
    • I-536 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(4-methoxy-2-methylphenyl)benzamide
    • I-537 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-piperidin-1-ylethyl)benzamide
    • I-538 9-chloro-2-({4-[(4-propylpiperazin-1-yl)carbonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-539 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[1-(5-methyl-4H-1,2,4-triazol-3-yl)ethyl]benzamide
    • I-540 9-chloro-2-[(4-{[3-(methylsulfonyl)pyrrolidin-1-yl]carbonyl}phenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-541 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[2-(3-fluorophenyl)ethyl]benzamide
    • I-542 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[2-(diisopropylamino)ethyl]benzamide
    • I-543 9-chloro-2-[(4-{[3-(diethylamino)pyrrolidin-1-yl]carbonyl}phenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-544 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-methoxybenzyl)benzamide
    • I-545 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(3-methoxybenzyl)benzamide
    • I-546 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N[4-(dimethylamino)phenyl]benzamide
    • I-547 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[2-(2-thienyl)ethyl]benzamide
    • I-548 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[(2-methyl-1,3-thiazol-4-yl)methyl]benzamide
    • I-549 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[(3,5-dimethyl-1H-pyrazol-4-yl)methyl]benzamide
    • I-550 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2,2-diethoxyethyl)benzamide
    • I-551 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-morpholin-4-ylethyl)benzamide
    • I-552 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-methyl-N-[(4-methyl-1H-imidazol-2-yl)methyl]benzamide
    • I-553 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(5-ethyl-1,3,4-thiadiazol-2-yl)benzamide
    • I-554 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(1-ethynylcyclohexyl)benzamide
    • I-555 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(4-methoxyphenyl)benzamide
    • I-556 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-methyl-N-[(3-methylisoxazol-5-yl)methyl]benzamide
    • I-557 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[2-(3,5-dimethyl-1H-pyrazol-1-yl)ethyl]benzamide
    • I-558 2-({4-[(3-acetylpiperidin-1-yl)carbonyl]phenyl}amino)-9-chloro-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-559 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-oxo-2-phenylethyl)benzamide
    • I-560 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N,N-dimethylbenzamide
    • I-561 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[2-(diethylamino)ethyl]-N-methylbenzamide
    • I-562 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(3-morpholin-4-ylpropyl)benzamide
    • I-563 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[(1S)-2-phenylcyclopropyl]benzamide
    • I-564 9-chloro-2-({4-[(2-isobutylpyrrolidin-1-yl)carbonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-565 9-chloro-2-({4-[(5-ethyl-2-methylpiperidin-1-yl)carbonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-566 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(6-methoxypyridin-3-yl)benzamide
    • I-567 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N[3-(dimethylamino)-2,2-dimethylpropyl]benzamide
    • I-568 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(3-pyrrolidin-1-ylpropyl)benzamide
    • I-569 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[1-(4-fluorophenyl)ethyl]benzamide
    • I-570 9-chloro-2-[(4-morpholin-4-ylbenzyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-571 N-isopropyl-N-methyl-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-572 2-({4-[(2-methylaziridin-1-yl)carbonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-573 2-({4-[(2-methylpyrrolidin-1-yl)carbonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-574 4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-phenylbenzamide
    • I-575 9-chloro-2-{[2-(1-methylpyrrolidin-2-yl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-576 2-({4-[(2-pyridin-4-ylpyrrolidin-1-yl)carbonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-577 4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[3-(2-oxopyrrolidin-1-yl)propyl]benzamide
    • I-578 N-(3-isobutoxypropyl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-579 N-(2-fluorobenzyl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-580 N-[(1S)-1-(4-methylphenyl)ethyl]-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-581 N-(2-fluorophenyl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-582 2-{[4-(2,3-dihydro-1H-indol-1-ylcarbonyl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-583 N-1,3-benzodioxol-5-yl-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-584 2-({4-[(3-methylpiperidin-1-yl)carbonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-585 N-(1,3-dihydro-2-benzofuran-5-yl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino[benzamide
    • I-586 N-(4-methoxybenzyl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-587 N-[2-(diethylamino)ethyl]-N-methyl-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-588 N-(3-morpholin-4-ylpropyl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-589 N-[3-(dimethylamino)propyl]-N-methyl-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-590 2-{[4-(3,4-dihydroisoquinolin-2(1H)-ylcarbonyl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-591 N-(2,4-dimethylbenzyl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-592 N-[3-(dimethylamino)-2,2-dimethylpropyl]-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-593 4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-pyridin-4-ylbenzamide
    • I-594 4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-phenoxyethyl)benzamide
    • I-595 2-({4-[(2-pyridin-2-ylpyrrolidin-1-yl)carbonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-596 N-(2-cyanoethyl)-N-cyclopentyl-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-597 N-methyl-N-(1-{4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzoyl}pyrrolidin-3-yl)acetamide
    • I-598 N-[2-(3,4-dimethylphenyl)ethyl]-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-599 N-(2,5-difluorobenzyl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-600 N-1H-indol-5-yl-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-601 N-(4-methyl-1,3-thiazol-2-yl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-602 2-[(4-{[3-(diethylamino)pyrrolidin-1-yl]carbonyl}phenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-603 N-(5-cyclopropyl-1,3,4-thiadiazol-2-yl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-604 2-({4-[(5-fluoro-2,3-dihydro-1H-indol-1-yl)carbonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-605 N-(2-methyl-1H-indol-5-yl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-606 4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-phenylpropyl)benzamide
    • I-607 N-(3-methoxyphenyl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-608 N-ethyl-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(pyridin-4-ylmethyl)benzamide
    • I-609 N-(3-methoxybenzyl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-610 N-[1-(4-fluorophenyl)ethyl]-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-611 2-({4-[(3-pyridin-3-ylpyrrolidin-1-yl)carbonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-612 2-({4-[(4-butylpiperazin-1-yl)carbonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-613 N-[4-(dimethylamino)phenyl]-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-614 4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-quinolin-3-ylbenzamide
    • I-615 N-(4-fluorobenzyl)-N-methyl-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-616 N-(cyclopropylmethyl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-propylbenzamide
    • I-617 2-[(4-{[3-(methylsulfonyl)pyrrolidin-1-yl]carbonyl}phenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-618 N-[2-(diisopropylamino)ethyl]-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-619 N-methyl-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-pyridin-2-ylethyl)benzamide
    • I-620 N-ethyl-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-pyridin-2-ylethyl)benzamide
    • I-621 N-[2-(diethylamino)ethyl]-N-ethyl-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-622 N-(5-methyl-1,3-thiazol-2-yl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-623 N-(4-chlorobenzyl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-624 4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(4-pyrrolidin-1-ylbutyl)benzamide
    • I-625 2-{[2-(2-fluorophenyl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-626 2-{[2-(trifluoromethyl)benzyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-627 2-{[(1S)-1-(3-methoxyphenyl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-628 2-[(2-fluoro-5-methylphenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-629 2-[(2-methoxy-1-methylethyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-630 2-[(6-chloropyridin-3-yl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-1-6-one
    • I-631 2-(cyclohexylamino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-632 2-[(2-phenylpropyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-633 2-[(4-methylpyridin-2-yl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-634 2-[(2,6-dimethoxypyridin-3-yl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-635 2-(cyclobutylamino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-636 2-[(3-isopropoxypropyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-637 2-{[4-(trifluoromethyl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-638 2-[(4-morpholin-4-ylphenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-639 2-(2,3-dihydro-1,4-benzodioxin-6-ylamino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-640 2-{[3-(trifluoromethyl)benzyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-641 2-[(3-pyrrolidin-1-ylpropyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-642 2-[(2-isopropoxyethyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-643 2-{[(1S,2R)-2-hydroxy-1-methyl-2-phenylethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-644 2-{[(1S)-1-phenylethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-645 2-[(2,4-difluorophenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-646 2-[(3-methylbutyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-647 2-[(3-bromo-5-methylpyridin-2-yl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-648 2-[(6-methoxypyridin-3-yl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-649 2-[(3,5-dimethoxyphenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-650 2-(1,3-benzodioxol-5-ylamino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-651 2-[(trans-4-hydroxycyclohexyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-652 2-{[1-(4-chlorobenzyl)-2-hydroxyethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-653 2-(pyrimidin-2-ylamino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-654 2-[(4-methoxy-2-methylphenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-655 2-[(3-chloro-4-fluorophenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-656 2-{[3-(2-oxopyrrolidin-1-yl)propyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-657 2-{[3-(2-methylpiperidin-1-yl)propyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-658 2-{[2-(difluoromethoxy)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-659 2-{[3-fluoro-5-(trifluoromethyl)benzyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-660 2-[(5-chloropyridin-2-yl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-661 ethyl 4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]piperidine-1-carboxylate
    • I-662 2-{[2-(trifluoromethyl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-663 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[2-(3,5-dimethyl-1H-pyrazol-4-yl)ethyl]benzamide
    • I-664 9-chloro-2-{[4-(morpholin-4-ylcarbonyl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-665 9-chloro-2-{[4-(3,4-dihydroisoquinolin-2(1H)-ylcarbonyl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-666 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[2-(1,3-dioxolan-2-yl)ethyl]benzamide
    • I-667 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-methyl-N-phenylbenzamide
    • I-668 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(1,3-dihydro-2-benzofuran-5-yl)benzamide
    • I-669 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[1-(hydroxymethyl)-2-methylpropyl]benzamide
    • I-670 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[2-(dimethylamino)ethyl]benzamide
    • I-671 N-(3-acetylphenyl)-4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-672 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2,2-dimethoxyethyl)-N-methylbenzamide
    • I-673 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-cyclobutylbenzamide
    • I-674 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(6-methylpyridin-2-yl)benzamide
    • I-675 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-fluorobenzyl)benzamide
    • I-676 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-methylbenzamide
    • I-677 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-methyl-N-(2-thienylmethyl)benzamide
    • I-678 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(4,5-dihydro-1,3-thiazol-2-yl)benzamide
    • I-679 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[(1R)-2,3-dihydro-1H-inden-1-yl]benzamide
    • I-680 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[cyano(phenyl)methyl]benzamide
    • I-681 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2,3-dimethylcyclohexyl)benzamide
    • I-682 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(4-fluoro-2-methylphenyl)benzamide
    • I-683 2-[(3-methoxypropyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-684 2-[(2-phenylethyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-685 2-{[2-(diethylamino)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-686 2-[(2-methoxyphenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-687 2-[(2-methoxybenzyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-688 2-({3-[methyl(phenyl)amino]propyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-689 2-[(2-phenoxyethyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-690 2-[(2,2-dimethylpropyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-691 2-[(tetrahydrofuran-2-ylmethyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-692 2-(cyclopentylamino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-693 2-(propylamino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-694 2-(prop-2-yn-1-ylamino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-695 2-[(3,3-dimethylbutyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-696 2-[(1,3,5-trimethyl-1H-pyrazol-4-yl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-697 2-{[2-(3,4-dimethylphenyl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-698 2-[(3-morpholin-4-ylpropyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-699 2-[(2-ethoxyethyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-700 2-[(2-piperidin-1-ylethyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-701 2-[(pyridin-2-ylmethyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-702 2-[(2-fluorobenzyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-703 2-[(4-chloro-2-fluorophenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-704 2-(isopropylamino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-705 2-[(cyclohexylmethyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-706 2-[(1H-benzimidazol-2-ylmethyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-707 2-{[1-(4-methyl-1,3-thiazol-2-yl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-708 2-{[1-(methoxymethyl)propyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-709 2-{[(2-bromo-3-thienyl)methyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-710 2-{[3-(trifluoromethoxy)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-711 2-{[2-(4-fluorophenyl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-712 2-{[2-(methylsulfonyl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-713 2-{[(3-methyl-2-thienyl)methyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-714 2-{[2-(2,4-dichlorophenyl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-715 2-[(2,5-difluorobenzyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-716 2-{[4-(methylsulfanyl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-717 2-(1H-indol-5-ylamino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-718 2-[(3-fluoro-4-methoxyphenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-719 2-{[2-(2,5-dimethylphenyl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-720 2-{[2-(5-chloro-1H-indol-3-yl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-721 2-[(1R)-2,3-dihydro-1H-inden-1-ylamino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-722 2-{[(1R)-1-cyclohexylethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-723 2-[(cyclopropylmethyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-724 2-{[(1-ethylpyrrolidin-3-yl)methyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-725 2-{[2-(5-chloro-1H-benzimidazol-2-yl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-726 2-{[2-(4-aminophenyl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-727 2-[(4-fluorobenzyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-728 2-{[2-(2-thienyl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-729 2-[(1-methylbutyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-730 2-{[2-(3-fluorophenyl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-731 2-{[(5-chloro-1-benzothien-3-yl)methyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-732 2-{[2-(3,5-dimethyl-1H-pyrazol-4-yl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-733 2-{[2-(diisopropylamino)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-734 2-{[2-(2,4-dimethylphenyl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-735 2-{[2-(3,4-dimethoxyphenyl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-736 2-[(3-methoxybenzyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-737 2-[(2-methylcyclohexyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-738 2-methyl-3-{2-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]ethyl}-1H-indole-5-carbonitrile
    • I-739 2-{[2-(5-methoxy-1H-indol-3-yl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-740 2-[(1,3-benzodioxol-5-ylmethyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-741 2-(quinolin-3-ylamino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-742 2-{[3-(1H-imidazol-1-yl)propyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-743 2-(benzylamino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-744 2-{[(1S)-2-phenylcyclopropyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-745 2-(ethylamino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-746 2-[(4-methylcyclohexyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-747 2-{[3-(dimethylamino)-2,2-dimethylpropyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-748 2-[(2-chloro-4-methylphenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-749 2-{[3-(dimethylamino)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-750 2-{[2-(4-methylphenyl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-751 2-{[(5-methyl-2-furyl)methyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-752 2-[(2-furylmethyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-753 2-{[2-(dimethylamino)-1-methylethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-754 2-(1,3-dihydro-2-benzofuran-5-ylamino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-755 N-cyclohexyl-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-756 N-[2-(dimethylamino)ethyl]-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-757 N-methyl-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-pyridin-2-ylethyl)benzamide
    • I-758 N-isopropyl-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-759 N-[2-(dimethylamino)ethyl]-N-ethyl-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-760 4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-quinolin-2-ylbenzamide
    • I-761 N-(3-isopropoxypropyl)-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-762 2-({4-[(4-acetylpiperazin-1-yl)carbonyl]phenyl}amino)-7-methyl-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-763 4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-piperidin-1-ylethyl)benzamide
    • I-764 N-(1-ethynylcyclohexyl)-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-765 N-(4-methoxybenzyl)-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-766 4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-phenylethyl)benzamide
    • I-767 N-cyclohexyl-N-methyl-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-768 4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(4-methyl-1,3-thiazol-2-yl)benzamide
    • I-769 7-methyl-2-({4-[(4-methylpiperidin-1-yl)carbonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-770 N-1H-indol-5-yl-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-771 N-(2-isopropoxyethyl)-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-772 N-(cyclopropylmethyl)-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-773 4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(1,3,5-trimethyl-1H-pyrazol-4-yl)benzamide
    • I-774 N-[4-(dimethylamino)phenyl]-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-775 2-[(4-{[3-(diethylamino)pyrrolidin-1-yl]carbonyl}phenyl)amino]-7-methyl-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-776 2-[(4-{[(2S)-2-(methoxymethyl)pyrrolidin-1-yl]carbonyl}phenyl)amino]-7-methyl-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-777 N-[2-(diethylamino)ethyl]-N-ethyl-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-778 N-(3,5-dimethylisoxazol-4-yl)-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-779 N-(2-fluorobenzyl)-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-780 2-[(4-{[(3R)-3-(dimethylamino)pyrrolidin-1-yl]carbonyl}phenyl)amino]-7-methyl-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-781 2-({4-[(4-butylpiperazin-1-yl)carbonyl]phenyl}amino)-7-methyl-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-782 4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(pyridin-4-ylmethyl)benzamide
    • I-783 4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-pyridin-4-ylbenzamide
    • I-784 N-(2-methoxy-1-methylethyl)-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-785 2-{[4-(2,3-dihydro-1H-indol-1-ylcarbonyl)phenyl]amino}-7-methyl-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-786 4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[(1S)-1-(4-methylphenyl)ethyl]benzamide
    • I-787 N-(2,4-dimethylbenzyl)-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-788 4-{4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzoyl}-1,4-diazepane-1-carbaldehyde
    • I-789 N-[(1R)-2,3-dihydro-1H-inden-1-yl]-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-790 N-ethyl-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(pyridin-4-ylmethyl)benzamide
    • I-791 N-[2-(acetylamino)ethyl]-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-792 7-methyl-2-{[4-(morpholin-4-ylcarbonyl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-793 N-(4-methoxyphenyl)-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-794 N-[(1-ethylpyrrolidin-3-yl)methyl]-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-795 N-[(5-methyl-2-furyl)methyl]-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-796 7-methyl-2-({4-[(3-oxopiperazin-1-yl)carbonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-797 N-cyclopentyl-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-798 4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[2-(2-thienyl)ethyl]benzamide
    • I-799 N-[(1R,2R,4S)-bicyclo[2.2.1]hept-2-yl]-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-800 2-{[4-(3,4-dihydroisoquinolin-2(1H)-ylcarbonyl)phenyl]amino}-7-methyl-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-801 N-methyl-N-(1-{4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzoyl}pyrrolidin-3-yl]acetamide
    • I-802 N-(3-methylbutyl)-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-803 N-(2-cyanoethyl)-N-cyclopropyl-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-804 N,N-diethyl-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-805 N-[3-(1H-imidazol-1-yl)propyl]-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-806 N-[3-(dimethylamino)-2,2-dimethylpropyl]-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-807 N-ethyl-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-pyridin-2-ylethyl)benzamide
    • I-808 7-methyl-2-{[4-(pyrrolidin-1-ylcarbonyl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-809 N-(4-fluorobenzyl)-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-810 2-({4-[(2-isobutylpyrrolidin-1-yl)carbonyl]phenyl}amino)-7-methyl-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-811 7-methyl-2-({4-[(4-methylpiperazin-1-yl)carbonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-812 4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(tetrahydrofuran-2-ylmethyl)benzamide
    • I-813 N-(2-methyl-1H-indol-5-yl)-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-814 N-(2-furylmethyl)-N-methyl-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-815 N-(cyclohexylmethyl)-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-816 4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-phenoxyethyl)benzamide
    • I-817 2-({4-[(5-ethyl-2-methylpiperidin-1-yl)carbonyl]phenyl}amino)-7-methyl-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-818 N-(2-methoxyethyl)-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-819 N-(2-cyanoethyl)-N-methyl-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-820 N-(3-isobutoxypropyl)-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-821 2-{[4-(1,3-dihydro-2H-isoindol-2-ylcarbonyl)phenyl]amino}-7-methyl-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-822 4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(3-propoxypropyl)benzamide
    • I-823 4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[4-(methylsulfanyl)phenyl]benzamide
    • I-824 4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-pyridin-3-ylbenzamide
    • I-825 2-({4-[(5-fluoro-2,3-dihydro-1H-indol-1-yl)carbonyl]phenyl}amino)-7-methyl-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-826 2-({4-[(2-ethylpyrrolidin-1-yl)carbonyl]phenyl}amino)-7-methyl-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-827 N-[2-(diisopropylamino)ethyl]-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-828 N-(2-cyanoethyl)-N-cyclopentyl-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-829 4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[3-(2-oxopyrrolidin-1-yl)propyl]benzamide
    • I-830 7-methyl-2-({4-[(3-methylpiperidin-1-yl)carbonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-831 7-methyl-2-{[4-(piperidin-1-ylcarbonyl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-832 N-(4-chlorobenzyl)-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-833 N-(2,5-difluorobenzyl)-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-834 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[(1,3,5-trimethyl-1H-pyrazol-4-yl)methyl]benzamide
    • I-835 2-({4-[(4-butylpiperazin-1-yl)carbonyl]phenyl}amino)-9-chloro-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-836 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-ethyl-N-(2-pyridin-2-ylethyl)benzamide
    • I-837 4-{4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzoyl}-1,4-diazepane-1-carbaldehyde
    • I-838 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(4-fluoro-3-methylphenyl)benzamide
    • I-839 9-chloro-2-{[4-(1,4-dioxa-8-azaspiro[4.5]dec-8-ylcarbonyl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-840 N-(1-{4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzoyl}pyrrolidin-3-yl)-N-methylacetamide
    • I-841 N-(2-chloro-4-methylphenyl)-4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-842 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-methyl-1H-benzimidazol-6-yl)benzamide
    • I-843 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(3-ethoxyphenyl)benzamide
    • I-844 N-butyl-4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-cyanoethyl)benzamide
    • I-845 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(4-fluorobenzyl)benzamide
    • I-846 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-chloropyridin-4-yl)benzamide
    • I-847 N-(1H-benzimidazol-2-ylmethyl)-4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-848 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(4-ethylbenzyl)-N-methylbenzamide
    • I-849 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-phenoxyethyl)benzamide
    • I-850 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-ethoxyphenyl)benzamide
    • I-851 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(cyclopropylmethyl)-N-propylbenzamide
    • I-852 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N[2-(dimethylamino)ethyl]-N-ethylbenzamide
    • I-853 9-chloro-2-({4-[(6-methyl-3,4-dihydroquinolin-1(2H)-yl)carbonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-854 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-isoquinolin-1-ylbenzamide
    • I-855 9-chloro-2-({4-[(2-pyridin-4-ylpyrrolidin-1-yl)carbonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-856 9-chloro-2-({4-[(2-ethylpiperidin-1-yl)carbonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-857 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(4-fluorobenzyl)-N-methylbenzamide
    • I-858 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-phenylbenzamide
    • I-859 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(4-chlorophenyl)-N-methylbenzamide
    • I-860 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2,4-difluorophenyl)-N-methylbenzamide
    • I-861 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-methoxyphenyl)benzamide
    • I-862 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(3-ethyl-6-methylpyridin-2-yl)benzamide
    • I-863 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(4-chlorophenyl)benzamide
    • I-864 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-methyl-N-(2-pyridin-2-ylethyl)benzamide
    • I-865 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(3-phenylpropyl)benzamide
    • I-866 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[2-(2,5-dimethylphenyl)ethyl]benzamide
    • I-867 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(1-phenylpropyl)benzamide
    • I-868 9-chloro-2-[(4-{[2-(2-methoxyethyl)piperidin-1-yl]carbonyl}phenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-869 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[2-(4-fluorophenyl)ethyl]benzamide
    • I-870 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-fluoro-5-methylphenyl)benzamide
    • I-871 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(3,3,5-trimethylcyclohexyl)benzamide
    • I-872 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-methyl-N-[(2-methyl-1,3-thiazol-4-yl)methyl]benzamide
    • I-873 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(4-methoxybenzyl)benzamide
    • I-874 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]ben zazepin-2-yl)amino]-N-(2-phenylpropyl)benzamide
    • I-875 9-chloro-2-({4-[(2-pyridin-3-ylpyrrolidin-1-yl)carbonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-876 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-cyclohexyl-N-ethylbenzamide
    • I-877 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(1,2,3,4-tetrahydronaphthalen-1-yl)benzamide
    • I-878 N-(4-chlorobenzyl)-4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-879 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(4-pyrrolidin-1-ylbutyl)benzamide
    • I-880 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(3-furylmethyl)benzamide
    • I-881 9-chloro-2-({4-[(2-pyridin-2-ylpyrrolidin-1-yl)carbonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-882 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(6-chloropyridin-3-yl)benzamide
    • I-883 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[2-(3,4-dimethylphenyl)ethyl]benzamide
    • I-884 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[2-(2-fluorophenyl)ethyl]benzamide
    • I-885 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(4-isopropylphenyl)benzamide
    • I-886 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-cyclooctylbenzamide
    • I-887 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[2-(1,3-dioxolan-2-yl)ethyl]-N-methylbenzamide
    • I-888 9-chloro-2-({4-[(2-methyl-2,3-dihydro-1H-indol-1-yl)carbonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-889 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-methyl-N-[1-(2-thienyl)ethyl]benzamide
    • I-890 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(4-methylpyridin-2-yl)benzamide
    • I-891 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-methyl-N-(4-methylbenzyl)benzamide
    • I-892 2-{[4-(6-azabicyclo[3.2.1]oct-6-ylcarbonyl)phenyl]amino}-9-chloro-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-893 7-methyl-2-{[4-(morpholin-4-ylsulfonyl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-894 N-cyclopentyl-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-895 4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[(2R)-2-phenylpropyl]benzamide
    • I-896 2-[(4-{[(2R,6S)-2,6-dimethylmorpholin-4-yl]carbonyl}phenyl)amino]-7-methyl-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-897 2-({4-[(4-ethylpiperazin-1-yl)carbonyl]phenyl}amino)-7-methyl-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-898 N-{2-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]ethyl}acetamide
    • I-899 2-{[2-(4-ethylphenyl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-900 2-({[(2S)-1-ethylpyrrolidin-2-yl]methyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-901 2-{[2-(3-chlorophenyl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-902 2-[(2-pyridin-2-ylethyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-903 2-{[2-(4-chlorophenyl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-904 2-{[2-(3-methoxyphenyl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-905 2-{[2-(4-methoxyphenoxy)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-906 2-(2,1,3-benzoxadiazol-4-ylamino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-907 2-{[2-(4-phenoxyphenyl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-908 2-{[2-(2-phenoxyphenyl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-909 2-{[2-(3-ethoxyphenyl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-910 2-(quinolin-6-ylamino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-911 2-[(3-isobutoxypropyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-912 2-[(2-cyclohex-1-en-1-ylethyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-913 2-{[2-(3,5-dimethoxyphenyl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-914 2-{[2-(3-ethoxy-4-methoxyphenyl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-915 2-[(3-ethoxypropyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-916 2-{[2-(2,6-dichlorophenyl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-917 2-{[2-(3,5-dimethyl-1H-pyrazol-1-yl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-918 2-{[2-(3-bromo-4-methoxyphenyl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-919 2-{[2-(1-methylpyrrolidin-2-yl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-920 2-{[2-(2-chlorophenyl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-921 2-{[3-(cyclohexylamino)propyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-922 2-[(3-phenylpropyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-923 2-({2-pyrrolidin-1-yl-2-[4-(trifluoromethyl)phenyl]ethyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-924 2-{[2-(4-bromophenyl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-925 2-{[1-(hydroxymethyl)-2-methylpropyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-926 2-{[2-(4-ethoxyphenyl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-927 2-{[2-(pyridin-3-yloxy)propyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-928 2-({2-(dimethylamino)-2-[4-(trifluoromethyl)phenyl]ethyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-929 2-({[5-methyl-2-(trifluoromethyl)-3-furyl]methyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-930 2-[(4-pyrrolidin-1-ylbutyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-931 2-([2-[3-(dimethylamino)phenoxy]propyl]amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-932 2-{[4-(diethylamino)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-933 2-{[2,4-dimethoxy-5-(trifluoromethyl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-934 2-{[2-(2-fluorophenoxy)pyridin-3-yl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-935 2-[(tetrahydro-2H-pyran-4-ylmethyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-936 2-[(4-piperidin-1-ylphenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-937 2-[(2-pyrrolidin-1-ylethyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-938 N,N-dimethyl-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-939 2-[(2-anilinophenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-940 2-({2-[ethyl(3-methylphenyl)amino]ethyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-941 2-{[4-(1,3-oxazol-5-yl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-942 2-[(pyridin-4-ylmethyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-943 2-{[2-(2,3-dimethylphenoxy)pyridin-3-yl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-944 2-{[4-(4-methylpiperazin-1-yl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-945 2-{[3-methoxy-5-(trifluoromethyl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-946 (2S)-1-({4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]phenyl}sulfonyl)pyrrolidine-2-carboxamide
    • I-947 N-[3-(dimethylamino)propyl]-N-methyl-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-948 4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-prop-2-yn-1-ylbenzenesulfonamide
    • I-949 4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(3-morpholin-4-ylpropyl)benzenesulfonamide
    • I-950 N-(2-cyanoethyl)-N-cyclopentyl-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-951 4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-phenylethyl)benzenesulfonamide
    • I-952 N-(4-fluorobenzyl)-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-953 2-({4-[(2-ethylpyrrolidin-1-yl)sulfonyl]phenyl}amino)-7-methyl-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-954 2-[(4-{[(3R)-3-(dimethylamino)pyrrolidin-1-yl]sulfonyl}phenyl)amino]-7-methyl-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-955 N-[2-(3,4-dimethylphenyl)ethyl]-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-956 7-methyl-2-({4-[(3-methylpiperidin-1-yl)sulfonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-957 N-(3-methylbutyl)-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-958 N-(3-isopropoxypropyl)-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-959 N-methyl-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(1-methylpyrrolidin-3-yl)benzenesulfonamide
    • I-960 N-[1-(methoxymethyl)propyl]-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-961 4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(pyridin-4-ylmethyl)benzenesulfonamide
    • I-962 N-[2-(diethylamino)ethyl]-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-963 N-methyl-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-prop-2-yn-1-ylbenzenesulfonamide
    • I-964 N-cyclohexyl-N-methyl-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-965 4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-phenylbenzenesulfonamide
    • I-966 7-methyl-2-({4-[(2-methylpyrrolidin-1-yl)sulfonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-967 N-[2-(dimethylamino)ethyl]-N-methyl-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-968 4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(tetrahydrofuran-2-ylmethyl)benzenesulfonamide
    • I-969 N-methyl-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(1-methylpiperidin-4-yl)benzenesulfonamide
    • I-970 N-cyclohexyl-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-971 N-benzyl-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-972 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[(1-ethylpyrrolidin-3-yl)methyl]benzenesulfonamide
    • I-973 N-[2-(diisopropylamino)ethyl]-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-974 9-chloro-2-({4-[(2-methylpyrrolidin-1-yl)sulfonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-975 N,N-diethyl-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-976 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-phenylethyl)benzenesulfonamide
    • I-977 N-methyl-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-pyridin-2-ylethyl)benzenesulfonamide
    • I-978 9-chloro-2-[(4-{[(2S)-2-(methoxymethyl)pyrrolidin-1-yl]sulfonyl}phenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-979 N-(2-methoxy-1-methylethyl)-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-980 4-({4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]phenyl}sulfonyl)piperazine-1-carbaldehyde
    • I-981 N-{2-[({4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]phenyl}sulfonyl)amino]ethyl}acetamide
    • I-982 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-furylmethyl)-N-methylbenzenesulfonamide
    • I-983 N-ethyl-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-pyridin-2-ylethyl)benzenesulfonamide
    • I-984 2-({4-[(4-butylpiperazin-1-yl)sulfonyl]phenyl}amino)-9-chloro-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-985 N-(1-ethynylcyclohexyl)-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-986 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(3-methylbutyl)benzenesulfonamide
    • I-987 4-({4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]phenyl}sulfonyl)piperazine-1-carbaldehyde
    • I-988 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[3-(1H-imidazol-1-yl)propyl]benzenesulfonamide
    • I-989 4-({4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]phenyl}sulfonyl)-1,4-diazepane-1-carbaldehyde
    • I-990 9-chloro-2-({4-[(5-fluoro-2,3-dihydro-1H-indol-1-yl)sulfonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-991 2-{[4-(2,3-dihydro-1H-indol-1-ylsulfonyl)phenyl]amino}-7-methyl-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-992 9-chloro-2-{[4-(piperidin-1-ylsulfonyl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-993 7-methyl-2-({4-[(3-oxopiperazin-1-yl)sulfonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-994 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-methyl-N-(1-methylpiperidin-4-yl)benzenesulfonamide
    • I-995 N-benzyl-4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-996 2-[(4-{[(2S)-2-(methoxymethyl)pyrrolidin-1-yl]sulfonyl}phenyl)amino]-7-methyl-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-997 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N[1-(methoxymethyl)propyl]benzenesulfonamide
    • I-998 7-methyl-2-({4-[(4-methylpiperazin-1-yl)sulfonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-999 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-phenylbenzenesulfonamide
    • I-1000 N-[2-(3-fluorophenyl)ethyl]-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1001 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-propylbenzenesulfonamide
    • I-1002 N-[(1-ethylpyrrolidin-3-yl)methyl]-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1003 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N,N-diethylbenzenesulfonamide
    • I-1004 4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[(2-methyl-1,3-thiazol-4-yl)methyl]benzenesulfonamide
    • I-1005 N-{2-[({4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]phenyl}sulfonyl)amino]ethyl}acetamide
    • I-1006 2-({4-[(5-ethyl-2-methylpiperidin-1-yl)sulfonyl]phenyl}amino)-7-methyl-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1007 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[4-(dimethylamino)phenyl]benzenesulfonamide
    • I-1008 4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[(1S)-1-(4-methylphenyl)ethyl]benzenesulfonamide
    • I-1009 9-chloro-2-({4-[(4-ethylpiperazin-1-yl)sulfonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1010 N-[1-(4-fluorophenyl)ethyl]-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1011 9-chloro-2-{[4-(pyrrolidin-1-ylsulfonyl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1012 4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-phenoxyethyl)benzenesulfonamide
    • I-1013 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-methyl-N-prop-2-yn-1-ylbenzenesulfonamide
    • I-1014 4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(3-pyrrolidin-1-ylpropyl)benzenesulfonamide
    • I-1015 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-ethyl-N-(2-pyridin-2-ylethyl)benzenesulfonamide
    • I-1016 N-(cyclopropylmethyl)-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-propylbenzenesulfonamide
    • I-1017 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(cyclopropylmethyl)-N-propylbenzenesulfonamide
    • I-1018 4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(pyridin-2-ylmethyl)benzenesulfonamide
    • I-1019 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N[2-(dimethylamino)-1-methylethyl]benzenesulfonamide
    • I-1020 7-methyl-2-({4-[(4-methylpiperidin-1-yl)sulfonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1021 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-1H-indol-5-ylbenzenesulfonamide
    • I-1022 4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-piperidin-1-ylethyl)benzenesulfonamide
    • I-1023 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-cyclohexylbenzenesulfonamide
    • I-1024 2-[(4-{[3-(diethylamino)pyrrolidin-1-yl]sulfonyl}phenyl)amino]-7-methyl-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1025 9-chloro-2-[(4-{[(3R)-3-(dimethylamino)pyrrolidin-1-yl]sulfonyl}phenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1026 N-(2-methoxyethyl)-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1027 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[(1S)-1-(4-methylphenyl)ethyl]benzenesulfonamide
    • I-1028 2-{[4-(3,4-dihydroisoquinolin-2(1H)-ylsulfonyl)phenyl]amino}-7-methyl-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1029 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(4-fluorobenzyl)benzenesulfonamide
    • I-1030 N-(cyclopropylmethyl)-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1031 9-chloro-2-{[4-(1,3-dihydro-2H-isoindol-2-ylsulfonyl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1032 N-(2-cyanoethyl)-N-cyclopropyl-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1033 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-prop-2-yn-1-ylbenzenesulfonamide
    • I-1034 4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[3-(2-oxopyrrolidin-1-yl)propyl]benzenesulfonamide
    • I-1035 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-methoxy-1-methylethyl)benzenesulfonamide
    • I-1036 2-({4-[(4-butylpiperazin-1-yl)sulfonyl]phenyl}amino)-7-methyl-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1037 N-[1-({4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]phenyl}sulfonyl)pyrrolidin-3-yl]-N-methylacetamide
    • I-1038 2-({4-[(4-ethylpiperazin-1-yl)sulfonyl]phenyl}amino)-7-methyl-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1039 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[2-(diisopropylamino)ethyl]benzenesulfonamide
    • I-1040 N-[3-(1H-imidazol-1-yl)propyl]-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1041 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[(1R)-2,3-dihydro-1H-inden-1-yl]benzenesulfonamide
    • I-1042 N-(cyclohexylmethyl)-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1043 9-chloro-2-({4-[(4-methylpiperazin-1-yl)sulfonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1044 N-[(5-methyl-2-furyl)methyl]-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1045 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(cyclopropylmethyl)benzenesulfonamide
    • I-1046 2-[(4-{[(2R,6S)-2,6-dimethylmorpholin-4-yl]sulfonyl}phenyl)amino]-7-methyl-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1047 9-chloro-2-({4-[(3-methylpiperidin-1-yl)sulfonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1048 N-[2-(dimethylamino)-1-methylethyl]-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1049 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-cyclopentylbenzenesulfonamide
    • I-1050 N-isopropyl-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1051 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[2-(diethylamino)ethyl]-N-ethylbenzenesulfonamide
    • I-1052 N-(2-isopropoxyethyl)-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1053 N-(4-chlorobenzyl)-4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1054 2-{[4-(azetidin-1-ylsulfonyl)phenyl]amino}-7-methyl-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1055 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(3-pyrrolidin-1-ylpropyl)benzenesulfonamide
    • I-1056 N-[(1R)-1-cyclohexylethyl]-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1057 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[3-(dimethylamino)-2,2-dimethylpropyl]benzenesulfonamide
    • I-1058 N-(2-cyanoethyl)-N-methyl-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1059 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[(5-methyl-2-furyl)methyl]benzenesulfonamide
    • I-1060 7-methyl-2-{[4-(pyrrolidin-1-ylsulfonyl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1061 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[2-(diethylamino)ethyl]benzenesulfonamide
    • I-1062 2-{[4-(1,3-dihydro-2H-isoindol-2-ylsulfonyl)phenyl]amino}-7-methyl-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1063 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[2-(3,4-dimethylphenyl)ethyl]benzenesulfonamide
    • I-1064 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-cyanoethyl)-N-cyclopentylbenzenesulfonamide
    • I-1065 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(1-ethynylcyclohexyl)benzenesulfonamide
    • I-1066 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-ethyl-N-(pyridin-4-ylmethyl)benzenesulfonamide
    • I-1067 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2,3-dihydro-1-benzofuran-5-ylmethyl)benzenesulfonamide
    • I-1068 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[(2-methyl-1,3-thiazol-4-yl)methyl]benzenesulfonamide
    • I-1069 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[2-(3-fluorophenyl)ethyl]benzenesulfonamide
    • I-1070 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-cyanoethyl)-N-methylbenzenesulfonamide
    • I-1071 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(3-isopropoxypropyl)benzenesulfonamide
    • I-1072 9-chloro-2-({4-[(4-methylpiperidin-1-yl)sulfonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1073 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-cyanoethyl)-N-cyclopropylbenzenesulfonamide
    • I-1074 2-{[4-(azetidin-1-ylsulfonyl)phenyl]amino}-9-chloro-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1075 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[1-(4-fluorophenyl)ethyl]benzenesulfonamide
    • I-1076 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-isopropylbenzenesulfonamide
    • I-1077 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-methyl-N-(1-methylpyrrolidin-3-yl)benzenesulfonamide
    • I-1078 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-1-N-[2-(2-thienyl)ethyl]benzenesulfonamide
    • I-1079 9-chloro-2-[(4-{[3-(diethylamino)pyrrolidin-1-yl]sulfonyl}phenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1080 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-piperidin-1-ylethyl)benzenesulfonamide
    • I-1081 9-chloro-2-({4-[(4,4-dimethyl-1,3-oxazolidin-3-yl)sulfonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1082 9-chloro-2-[(4-{[(2R,6S)-2,6-dimethylmorpholin-4-yl]sulfonyl}phenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1083 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N[2-(dimethylamino)ethyl]-N-methylbenzenesulfonamide
    • I-1084 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(4-methoxybenzyl)benzenesulfonamide
    • I-1085 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-methylbutyl)benzenesulfonamide
    • I-1086 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(3-methoxybenzyl)benzenesulfonamide
    • I-1087 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-methyl-N-(2-pyridin-2-ylethyl)benzenesulfonamide
    • I-1088 (2S)-1-({4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]phenyl}sulfonyl)pyrrolidine-2-carboxamide
    • I-1089 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(cyclohexylmethyl)benzenesulfonamide
    • I-1090 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-methyl-1H-indol-5-yl)benzenesulfonamide
    • I-1091 N-[(1R,2R,4S)-bicyclo[2.2.1]hept-2-yl]-4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1092 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[2-(dimethylamino)ethyl]benzenesulfonamide
    • I-1093 N-(cyclopropylmethyl)-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-propylbenzamide
    • I-1094 N-[2-(3,4-dimethylphenyl)ethyl]-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-1095 N-(3-ethyl-6-methylpyridin-2-yl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-1096 N-[1-(4-fluorophenyl)ethyl]-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-1097 N-[(1R)-1-cyclohexylethyl]-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-1098 4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(3-morpholin-4-ylpropyl)benzamide
    • I-1099 N-[(1R)-2,3-dihydro-1H-inden-1-yl]-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-1100 9-chloro-2-[(4-{[4-(2-chlorophenyl)piperazin-1-yl]carbonyl}phenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1101 9-chloro-2-[(4-{[4-(3-hydroxyphenyl)piperazin-1-yl]carbonyl}phenyl)amino]5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1102 4-(4-{4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzoyl}piperazin-1-yl)benzonitrile
    • I-1103 9-chloro-2-[(4-{[(2S)-2-(pyrrolidin-1-ylmethyl)pyrrolidin-1-yl]carbonyl}phenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1104 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[2-(dimethylamino)-244-(trifluoromethyl)phenyl]ethyl]benzamide
    • I-1105 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[4-(diethylamino)phenyl]benzamide
    • I-1106 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-pyridin-3-yl-2-pyrrolidin-1-ylethyl)benzamide
    • I-1107 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[(5-pyridin-2-yl-2-thienyl)methyl]benzamide
    • I-1108 9-chloro-2-({4-[(4-pyrrolidin-1-ylpiperidin-1-yl)carbonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1109 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[2-(4-methoxyphenyl)-2-morpholin-4-ylethyl]benzamide
    • I-1110 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-methyl-N-[(3-phenyl-1,2,4-oxadiazol-5-yl)methyl]benzamide
    • I-1111 9-chloro-2-[(4-{[4-(tetrahydrofuran-2-ylcarbonyl)piperazin-1-yl]carbonyl}phenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1112 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[3-(2-methylpiperidin-1-yl)propyl]benzamide
    • I-1113 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[2-(4-methylpiperazin-1-yl)-1-phenylethyl]benzamide
    • I-1114 9-chloro-2-[(4-{[4-(3,5-dimethoxyphenyl)piperazin-1-yl]carbonyl}phenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1115 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-cyanoethyl)-N-cyclopentylbenzamide
    • I-1116 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-methyl-2-morpholin-4-ylpropyl)benzamide
    • I-1117 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[2-(2-chlorophenyl)-2-(dimethylamino)ethyl]benzamide
    • I-1118 9-chloro-2-[(4-{[4-(4-methoxyphenyl)piperazin-1-yl]carbonyl}phenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1119 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-β-(4-methylpiperazin-1-yl)phenyl]benzamide
    • I-1120 tert-butyl [3-({4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzoyl}amino)-2,2-dimethylpropyl]carbamate
    • I-1121 9-chloro-2-[(4-{[4-(2-ethoxyphenyl)piperazin-1-yl]carbonyl}phenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1122 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-{5-[(dimethylamino)sulfonyl]-2-methylphenyl}benzamide
    • I-1123 N-[2-(4-benzylpiperazin-1-yl)ethyl]-4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-1124 9-chloro-2-[(4-{[4-(3,4-dichlorophenyl)piperazin-1-yl]carbonyl}phenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1125 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-{2-[3-(dimethylamino)phenoxy]propyl}benzamide
    • I-1126 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(4-piperidin-1-ylphenyl)benzamide
    • I-1127-9 chloro-2-({4-[(4-pyrimidin-2-ylpiperazin-1-yl)carbonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1128 9-chloro-2-[(4-{[4-(2-methylphenyl)piperazin-1-yl]carbonyl}phenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1129 9-chloro-2-[(4-{[4-(4-fluorophenyl)piperazin-1-yl]carbonyl}phenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1130 9-chloro-2-[(4-{[4-(3-methoxyphenyl)piperazin-1-yl]carbonyl}phenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1131 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(cyanomethyl)-N-methylbenzamide
    • I-1132 N-(1-benzylpyrrolidin-3-yl)-4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-1133 N-[(1-benzyl-4H-pyrazol-4-yl)methyl]-4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-1134 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[2-(dimethylamino)-2-phenylethyl]benzamide
    • I-1135 9-chloro-2-[(4-{[4-(5-chloro-2-methoxyphenyl)piperazin-1-yl]carbonyl}phenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1136 1-{4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzoyl}-N,N-diethylpiperidine-3-carboxamide
    • I-1137 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[2-(dimethylamino)-2-pyridin-3-ylethyl]benzamide
    • I-1138 9-chloro-2-{[4-({4-[(2R,6S)-2,6-dimethylmorpholin-4-yl]piperidin-1-yl}carbonyl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1139 9-chloro-2-{[4-({4-[2-(methylsulfonyl)ethyl]piperazin-1-yl}carbonyl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1140 ethyl (4-{4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzoyl}piperazin-1-yl)acetate
    • I-1141 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-{2-pyrrolidin-1-yl-2-[4-(trifluoromethyl)phenyl]ethyl}benzamide
    • I-1142 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(pyridin-4-ylmethyl)benzamide
    • I-1143 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[2-(dimethylamino)-2-(4-methoxyphenyl)ethyl]benzamide
    • I-1144 2-{[4-(1H-pyrazol-1-yl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1145 2-(1H-indazol-5-ylamino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1146 2-({-4-[ethyl(2-hydroxyethyl)amino]-2-methylphenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1147 2-{[2-(phenylsulfonyl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1148 2-{[(1-pyrimidin-2-ylpiperidin-3-yl)methyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1149 2-[(4′-fluorobiphenyl-3-yl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1150 2-{[2-(benzylsulfanyl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1151 2-{[(2-phenyl-2H-1,2,3-triazol-4-yl)methyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1152 2-[(2-phenyl-2-pyrrolidin-1-ylethyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1153 2-{[2-(5-bromo-2-methoxyphenyl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1154 2-[(4-{[(2R,6S)-2,6-dimethylmorpholin-4-yl]sulfonyl}phenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1155 2-({4-[(4-acetylpiperazin-1-yl)sulfonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1156 N-[(2-methyl-1,3-thiazol-4-yl)methyl]-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1157 4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(pyridin-2-ylmethyl)benzenesulfonamide
    • I-1158 N-[2-(dimethylamino)-1-methylethyl]-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1159 N-[(1S)-1-(4-methylphenyl)ethyl]-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1160 N,N-diethyl-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1161 N-{2-[({4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]phenyl}sulfonyl)amino]ethyl}acetamide
    • I-1162 N-(cyclopropylmethyl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1163 4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(pyridin-4-ylmethyl)benzenesulfonamide
    • I-1164 N-(3-morpholin-4-ylpropyl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1165 4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-propylbenzenesulfonamide
    • I-1166 N-(3-isopropoxypropyl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1167 2-{[4-(pyrrolidin-1-ylsulfonyl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1168 4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(3-pyrrolidin-1-ylpropyl)benzenesulfonamide
    • I-1169 2-({4-[(4-butylpiperazin-1-yl)sulfonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1170 2-[(4-{[(2S)-2-(methoxymethyl)pyrrolidin-1-yl]sulfonyl}phenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1171 2-({4-[(3-methylpiperidin-1-yl)sulfonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1172 4-({4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]phenyl}sulfonyl)-1,4-diazepane-1-carbaldehyde
    • I-1173 2-[(4-{[(3R)-3-(dimethylamino)pyrrolidin-1-yl]sulfonyl}phenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1174 N-methyl-N-(1-methylpiperidin-4-yl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1175 N-(cyclopropylmethyl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-propylbenzenesulfonamide
    • I-1176 N-ethyl-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-pyridin-2-ylethyl)benzenesulfonamide
    • I-1177 N-(2-methoxy-1-methylethyl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1178 N-(2-cyanoethyl)-N-cyclopentyl-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1179 N-benzyl-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1180 N-isopropyl-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1181 N-[(1-ethylpyrrolidin-3-yl)methyl]-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1182 N-[2-(diethylamino)ethyl]-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1183 2-{[4-(3,4-dihydroisoquinolin-2(1H)-ylsulfonyl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1184 N-(2-methyl-1H-indol-5-yl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1185 N-(4-fluorobenzyl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1186 N-[(1R,2R,4S)-bicyclo[2.2.1]hept-2-yl]-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1187 N-[3-(1H-imidazol-1-yl)propyl]-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1188 2-{[4-(1,3-dihydro-2H-isoindol-2-ylsulfonyl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1189 N-[(1R)-1-cyclohexylethyl]-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1190 4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-phenylbenzenesulfonamide
    • I-1191 N-[2-(dimethylamino)ethyl]-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1192 N-[3-(dimethylamino)-2,2-dimethylpropyl]-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1193 4-({4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]phenyl}sulfonyl)piperazine-1-carbaldehyde
    • I-1194 N-[2-(diisopropylamino)ethyl]-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1195 2-({4-[(5-ethyl-2-methylpiperidin-1-yl)sulfonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1196 4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-prop-2-yn-1-ylbenzenesulfonamide
    • I-1197 N-(2-furylmethyl)-N-methyl-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1198 N-[1-(4-fluorophenyl)ethyl]-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1199 N-[2-(3-fluorophenyl)ethyl]-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1200 2-({4-[(2-ethylpyrrolidin-1-yl)sulfonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1201 N-(3-methylbutyl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1202 2-({4-[(4-methylpiperazin-1-yl)sulfonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1203 N-[2-(diethylamino)ethyl]-N-ethyl-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1204 N-[2-(dimethylamino)ethyl]-N-methyl-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1205 N-cyclopentyl-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1206 N-(4-methoxybenzyl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1207 2-({4-[(4-methylpiperidin-1-yl)sulfonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1208 (2S)-1-({4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]phenyl}sulfonyl)pyrrolidine-2-carboxamide
    • I-1209 2-{[4-(piperidin-1-ylsulfonyl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1210 4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[3-(2-oxopyrrolidin-1-yl)propyl]benzenesulfonamide
    • I-1211 2-[(4-{[3-(diethylamino)pyrrolidin-1-yl]sulfonyl}phenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1212 4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[2-(2-thienyl)ethyl]benzenesulfonamide
    • I-1213 N-[3-(dimethylamino)propyl]-N-methyl-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1214 N-(4-chlorobenzyl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1215 2-({4-[(3-oxopiperazin-1-yl)sulfonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1216 4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(tetrahydrofuran-2-ylmethyl)benzenesulfonamide
    • I-1217 N-methyl-N-(1-methylpyrrolidin-3-yl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1218 N-[(1R)-2,3-dihydro-1H-inden-1-yl]-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1219 2-{[4-(azetidin-1-ylsulfonyl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1220 N-methyl-N-[1-({4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]phenyl}sulfonyl)pyrrolidin-3-yl]acetamide
    • I-1221 4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-phenoxyethyl)benzenesulfonamide
    • I-1222 2-({4-[(4-ethylpiperazin-1-yl)sulfonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1223 N-cyclohexyl-N-methyl-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1224 N-(2,3-dihydro-1-benzofuran-5-ylmethyl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1225 4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-piperidin-1-ylethyl)benzenesulfonamide
    • I-1226 2-({4-[(2-methylpyrrolidin-1-yl)sulfonyl]phenyl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1227 N-(2-isopropoxyethyl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1228 N-ethyl-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(pyridin-4-ylmethyl)benzenesulfonamide
    • I-1229 N-methyl-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-pyridin-2-ylethyl)benzenesulfonamide
    • I-1230 2-{[2-(1H-pyrrol-1-yl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1231 2-{[(6-fluoro-4H-1,3-benzodioxin-8-yl)methyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1232 2-{[2-(2-chlorophenyl)-2-(dimethylamino)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1233 2-{[2-(4-methylpiperazin-1-yl)-1-phenylethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1234 2-{[(1-piperidin-1-ylcyclohexyl)methyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1235 2-{[(5-methyl-3-phenylisoxazol-4-yl)methyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1236 2-{[2-(2-methoxyphenyl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1237 2-{[2-(4-ethoxy-3-methoxyphenyl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1238 2-[(3,4-dimethylisoxazol-5-yl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1239 2-[(3-oxo-1,3-dihydro-2-benzofuran-5-yl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1240 2-[(1-phenyl-2-pyrrolidin-1-ylethyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1241 2-{[2-(4-methoxyphenyl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1242 2-[(1-benzylpyrrolidin-3-yl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1243 2-{[5-fluoro-2-(1H-imidazol-1-yl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1244 2-[(pyridin-3-ylmethyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-1-6-one
    • I-1245 2-[(2-methyl-1,3-benzothiazol-6-yl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1246 2-[(4-methoxyphenyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1247 2-[(9-ethyl-9H-carbazol-3-yl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1248 2-[(2-anilinoethyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1249 2-{[4-(trifluoromethyl)pyrimidin-2-yl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1250 2-{[2-(2,4-difluorophenoxy)pyridin-3-yl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1251 2-[(1-benzylpiperidin-4-yl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1252 N,N,4-trimethyl-3-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1253 2-{[2-(4-benzylpiperazin-1-yl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1254 2-{[3-(4-bromo-1-methyl-1H-pyrazol-3-yl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1255 2-[(2-methyl-2-morpholin-4-ylpropyl)amino]-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1256 2-{[2-(2,5-dimethoxyphenyl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1257 2-({6-[3-(trifluoromethyl)phenoxy]pyridin-3-yl}amino)-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1258 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(3-methyl-1-phenylbutyl)benzamide
    • I-1259 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[1-(4-hydroxyphenyl)ethyl]benzamide
    • I-1260 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(1-methyl-1-phenylethyl)benzamide
    • I-1261 4-[(9-iodo-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(1-methyl-1-phenylethyl)benzamide
    • I-1262 N-[1-(4-fluorophenyl)ethyl]-4-[(9-iodo-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-1263 4-[(9-iodo-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(1-phenylethyl)benzamide
    • I-1264 N-methyl-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-prop-2-yn-1-ylbenzenesulfonamide
    • I-1265 9-chloro-2-{[4-(morpholin-4-ylsulfonyl)phenyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one
    • I-1266 N-(2-methoxyethyl)-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1267 N-[(5-methyl-2-furyl)methyl]-4-[(6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonamide
    • I-1268 4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzenesulfonic acid
    • I-1269 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[2-(dimethylamino)-1-phenylethyl]benzamide
    • I-1270 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(1-phenyl-2-pyrrolidin-1-ylethyl)benzamide
    • I-1271 4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzoic acid
    • I-1272 4-({4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-c][1]benzazepin-2-yl)amino]phenyl}sulfonyl)-1,4-diazepane-1-carbaldehyde
    • I-1273 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-[3-(2-oxopyrrolidin-1-yl)propyl]benzenesulfonamide
    • I-1274 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(2-isopropoxyethyl)benzenesulfonamide
    • I-1275 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(pyridin-4-ylmethyl)benzenesulfonamide
    • I-1276 N-(2,3-dihydro-1-benzofuran-5-ylmethyl)-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-1277 N-(1,3-dihydro-2-benzofuran-5-yl)-4-[(7-methyl-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]benzamide
    • I-1278 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(pyridin-2-ylmethyl)benzenesulfonamide
    • I-1279 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]N-(3-morpholin-4-ylpropyl)benzenesulfonamide
    General Synthetic Methodology
  • The compounds of the present invention can be prepared by methods known to one of ordinary skill in the art and/or by reference to the schemes shown below and the synthetic examples that follow. Exemplary synthetic routes are set forth in Schemes 1-12 below, and in the Examples.
  • Figure US20120178739A1-20120712-C01293
  • Scheme 1 above shows a general route for preparing compounds of formula (II-A). Those of ordinary skill in the art will recognize that compounds of formula (I) wherein Ring A is other than phenyl can be prepared by the same general route, beginning with appropriate starting materials analogous to i.
  • Methods for the synthesis of substituted amino benzoic acid methyl esters such as formula i are known. As shown in Scheme 1, conversion of i to the acylated amino benzoic acid methyl ester of formula ii can be accomplished by coupling with the appropriately substituted acyl chloride. Compound iii can be prepared from ii by cyclization with a suitable base, such as KOt-Bu. Decarboxylation of iii to provide iv can be effected by microwave irradiation in DMF/H2O, according to Method C. Alternatively, iii can be converted to iv by heating in DMSO/H2O with NaCl (Method D) or without NaCl (Method E). Those skilled in the art will appreciate that the lactam nitrogen of formula iv can be alkylated using a suitable base, such as Cs2CO3, and an alkyl halide as described in Method W. Alternatively, iv can be arylated using aryl halides through a CuI-mediated process.
  • Treatment of iv with N,N-dimethylformamide dimethyl acetal in refluxing THF affords v, according to Method F. Alternatively, the reaction may be performed by treatment of iv with N,N-dimethylformamide dimethyl acetal in DMF followed by microwave irradiation, according to Method G. Enamine v is converted to the pyrimido compound vi by treatment with an aryl or alkyl guanidine. The reaction may be performed in the presence of a mild base in ethanol or DMF utilizing heat or microwave irradiation, according to Method H and Method I.
  • Figure US20120178739A1-20120712-C01294
  • As an alternative procedure to using guanidines to provide compounds of formula (II-A), a leaving group, such as a sulfone, can be directly displaced by alkyl and aryl amines. As shown in Scheme 2, treatment of v with 2-methylisothiourea using Method I, provides compounds of formula vii. Treatment of vii with an oxidizing agent, such as MCPBA, provides the sulfone viii. Compounds of formula viii can then be reacted with substituted amines or anilines in the presence of AlMe3 to provide compounds of formula vi (Method J). The conversion of compounds viii to vi (formula (I)) is amenable to solution phase library synthesis.
  • Figure US20120178739A1-20120712-C01295
    Figure US20120178739A1-20120712-C01296
  • Compounds of formula vi where Ring A is substituted with a halogen, such as iodide, can be converted to a variety of compounds exemplified through formulae ix-xvii in Scheme 3. Thus, Stille coupling of vi-a with an allyl halide according to Method L provides compounds of formula ix, which can be converted to the aldehyde x through standard oxidation/cleavage conditions. Substituted amines of formula xi are obtained from x through reductive amination. Those skilled in the art will appreciate that the aldehyde x can be oxidized using a suitable reagent to provide the acid, which can be further elaborated to provide alternate substitutions, such as esters or amides. Aldehyde x can also be reduced using a suitable reagent to provide the alcohol, which can be further elaborated to provide alternate substitutions, such as ethers or nitriles.
  • Alternatively, compounds of formula vi-a can be converted to xii through a palladium-mediated process outlined in Method M. The xii acid can be further elaborated to the amides xiii according to Method N using a standard coupling reagent, such as TBTU, and the desired amine. Those skilled in the art will appreciate that the acid xii can be converted to the ester and/or reduced using a suitable reagent to provide the alcohol, which can be further elaborated to provide alternate substitutions, such as ethers or nitriles. The alcohol could then be oxidized to the aldehyde, which could undergo reductive amination with a variety of substituted amines.
  • Compounds of formula vi-a readily undergo Sonogashira reactions with substituted acetylenes according to Method O to provide compounds of formula xiv. When treated with a suitable reducing agent, such as Pd/C according to Method P, compounds xiv are converted to compounds of formula xv. One skilled in the art will recognize that R# can represent a variety of groups, including H and substituted alkyls, such as —CH2N(R+)2, and —CH2OH. The compounds xiv and xv, derived from reaction of vi with propargyl alcohol, can be oxidized using a suitable reagent to the acid, which can be further elaborated to amides or esters. Alternatively, the alcohol can be oxidized using a suitable reagent to the aldehyde, which can undergo reductive amination to provide substituted amines.
  • Lastly, compounds of formula vi can be converted to the cyano-substituted compound xvi according to Method Q. Using a suitable reducing agent, such as Raney nickel according to Method R, compounds of formula xvii are prepared from xvi.
  • Figure US20120178739A1-20120712-C01297
  • The guanidines used for the preparation of compounds of formula xix are either commercially available, or they can be prepared through the literature methods described in Scheme 4 (Methods S or T or U).
  • Figure US20120178739A1-20120712-C01298
  • Compounds of formula xx (Scheme 5) can be prepared from v using guanidines xix wherein Ra is an aryl iodide. In methods analogous to those described above for Scheme 3, a Sonogashira reaction with substituted acetylenes provides compounds of formula xxi. Using a suitable reducing agent, such as Pd/C, converts xxi to the saturated compounds xxii. One skilled in the art will recognize that R# can represent a variety of groups, including H and substituted alkyls, such as —CH2N(R+)2, and —CH2OH. The compounds xxi and xxii, derived from reaction of xx with propargyl alcohol, can be oxidized using a suitable reagent to the acid, which can be further elaborated to amides or esters. Alternatively, the alcohol can be oxidized using a suitable reagent to the aldehyde, which can undergo reductive amination to provide substituted amines.
  • Figure US20120178739A1-20120712-C01299
  • Compounds of formula xxiii (Scheme 6) can be prepared from v according to the method depicted in Scheme 1, using guanidines xix, where Ra is a phenyl group substituted with the appropriate alcohol. From the alcohols xxiii, aldehydes xxiv can be prepared using a suitable oxidizing agent, such as Dess-Martin periodinane. Compounds of formula xxiv can be further elaborated to amines such as xxv through reductive amination a suitable reducing agent, such as NaHB(OAc)3. Additionally, alcohols xxiii can be converted to cyano compounds such as xxvi, which can be further elaborated to the amines xxvii using a suitable reducing agent, such as Raney nickel, as outlined in Method R.
  • Figure US20120178739A1-20120712-C01300
  • Compounds of formula xxviii (Scheme 7) can be prepared from v according to methods depicted in Scheme 1, using guanidines xix, where Ra is a phenyl group substituted with the appropriate carboxylic acid. The acids can be further elaborated to the amides xxix according to Method N using a standard coupling reagent, such as TBTU, and the desired amine.
  • Figure US20120178739A1-20120712-C01301
  • Thioamides of formula xxx (corresponding to Formula (II-D)) can be prepared from vi according to Scheme 8 using a suitable reagent, such as Lawesson's Reagent. Similarly, the thioamides of Formulae (II-E) and (II-F) can be prepared from compounds of Formulae (II-B) and (II-C).
  • Figure US20120178739A1-20120712-C01302
  • As outlined in Scheme 9, compounds of formula xxxv can be prepared from xxxi using a 4-step sequence. Compound xxxi is converted to xxxii using a suitable chlorinating agent, such as POCl3. The dichloro pyrimidine is then coupled with the appropriately substituted aniline using a palladium-catalyzed procedure to provide xxxiii. The ester xxxiii can be hydrolyzed and coupled to the aniline using a suitable reagent, such as AcOH, to provide the lactam xxxiv. Finally, chloro pyrimidine xxxiv can be displaced with the appropriately substituted amine or aniline to provide compounds of formula xxxv.
  • Figure US20120178739A1-20120712-C01303
  • As outlined in Scheme 10, compounds of formula xxxix can be prepared from xxxvi using a 3-step sequence. The dichloro pyrimidine xxxvi is coupled with the appropriately substituted aniline using a palladium-catalyzed procedure to provide xxxvii. Subsequently, the chloro pyrimidine xxxvii can be displaced with the appropriately substituted amine to provide cyano compound xxxviii, which can be hydrolyzed and coupled to the aniline using a suitable reagent, such as NaOH, to provide the lactam xxxix.
  • Figure US20120178739A1-20120712-C01304
  • Preparation of compounds of formula (II-B), wherein Y2 is CRe, is achieved as shown in Scheme 11. The keto-intermediate iv undergoes a-bromination followed by conversion to the nitrile xli. Subsequent treatment with an appropriate methylating agent, such as diazomethane, provides enol ether xlii, which when condensed with substituted guanidines results in the 4-amino-substituted compound xliii. One skilled in the art will recognize that compounds of formula xliii can be further elaborated to the substituted amines or amides. Compound xliii can also be converted to the iodide xliv. Those skilled in the art will appreciate that the iodide xliv can undergo a variety of transformations, including the Sonogashira reactions mentioned above, as well as other palladium couplings.
  • Figure US20120178739A1-20120712-C01305
  • As outlined in Scheme 12, compounds of formula xlv can be prepared from compound vi-a by palladium-mediated coupling with an amine.
  • Uses, Formulation, and Administration
  • As discussed above, the present invention provides compounds that are inhibitors of protein kinases. The compounds can be assayed in vitro or in vivo for their ability to bind to and/or inhibit a protein kinase. In vitro assays include assays to determine inhibition of the ability of the kinase to phosphorylate a substrate protein or peptide. Alternate in vitro assays quantitate the ability of the compound to bind to the kinase. Inhibitor binding may be measured by radiolabelling the inhibitor prior to binding, isolating the inhibitor/kinase complex and determining the amount of radiolabel bound. Alternatively, inhibitor binding may be determined by running a competition experiment in which new inhibitors are incubated with the kinase bound to a known radioligand. The compounds also can be assayed for their ability to affect cellular or physiological functions mediated by protein kinase activity. Assays for each of these activities are described in the Examples and/or are known in the art. Nonlimiting examples of protein kinases that are inhibited by the compounds of the invention include Chk-1, Aurora kinase, PLK, Chk-2, LCK, CDK1, CDK2E, PKA. In some embodiments, the compound of formula (I) inhibits a protein kinase selected from the group consisting of Chk-1, Aurora kinase, and PLK.
  • In another aspect, therefore, the invention provides a method for inhibiting protein kinase activity in a cell, comprising contacting a cell in which inhibition of a protein kinase is desired with a compound of formula (I). In some embodiments, the compound of formula (I) interacts with and reduces the activity of more than one protein kinase enzyme in the cell. By way of example, when assayed against Chk-1, Aurora kinase, and PLK, some compounds of formula (I) show inhibition of all three enzymes.
  • In some embodiments, the compound of formula (I) is selective, i.e., the concentration of the compound that is required for inhibition of one or several protein kinase enzymes is lower, preferably at least 2-fold, 5-fold, 10-fold, or 50-fold lower, than the concentration of the compound required for inhibition of other protein kinase enzymes. In some such embodiments, the compound of formula (I) inhibits one or two of Chk-1, Aurora kinase, and PLK at a concentration that is lower than that required for inhibition of the other enzyme(s).
  • In some embodiments, the compound of formula (I) inhibits one or more protein kinase enzymes involved in cell cycle regulation or cell division. The invention thus provides a method for inhibiting cell proliferation, comprising contacting a cell in which such inhibition is desired with a compound of formula (I). The phrase “inhibiting cell proliferation” is used to denote the ability of a compound of formula (I) to inhibit cell number or cell growth in contacted cells as compared to cells not contacted with the inhibitor. An assessment of cell proliferation can be made by counting cells using a cell counter or by an assay of cell viability, e.g., an MTT or WST assay. Where the cells are in a solid growth (e.g., a solid tumor or organ), such an assessment of cell proliferation can be made by measuring the growth, e.g., with calipers, and comparing the size of the growth of contacted cells with non-contacted cells.
  • Preferably, the growth of cells contacted with the inhibitor is retarded by at least about 50% as compared to growth of non-contacted cells. In various embodiments, cell proliferation of contacted cells is inhibited by at least about 75%, at least about 90%, or at least about 95% as compared to non-contacted cells. In some embodiments, the phrase “inhibiting cell proliferation” includes a reduction in the number of contacted cells, as compare to non-contacted cells. Thus, a kinase inhibitor that inhibits cell proliferation in a contacted cell may induce the contacted cell to undergo growth retardation, to undergo growth arrest, to undergo programmed cell death (i.e., apoptosis), or to undergo necrotic cell death.
  • In another aspect, the invention provides a pharmaceutical composition comprising a compound of formula (I) as defined above, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
  • If pharmaceutically acceptable salts of the compounds of the invention are utilized in these compositions, the salts preferably are derived from inorganic or organic acids and bases. For reviews of suitable salts, see, e.g., Berge et al, J. Pharm. Sci. 66:1-19 (1977) and Remington: The Science and Practice of Pharmacy, 20th Ed., ed. A. Gennaro, Lippincott Williams & Wilkins, 2000.
  • Nonlimiting examples of suitable acid addition salts include the following: acetate, adipate, alginate, aspartate, benzoate, benzene sulfonate, bisulfate, butyrate, citrate, camphorate, camphor sulfonate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, fumarate, lucoheptanoate, glycerophosphate, hemisulfate, heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, lactate, maleate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, oxalate, pamoate, pectinate, persulfate, 3-phenyl-propionate, picrate, pivalate, propionate, succinate, tartrate, thiocyanate, tosylate and undecanoate.
  • Suitable base addition salts include, without limitation, ammonium salts, alkali metal salts, such as sodium and potassium salts, alkaline earth metal salts, such as calcium and magnesium salts, salts with organic bases, such as dicyclohexylamine salts, N-methyl-D-glucamine, and salts with amino acids such as arginine, lysine, and so forth.
  • Also, basic nitrogen-containing groups may be quaternized with such agents as lower alkyl halides, such as methyl, ethyl, propyl, and butyl chloride, bromides and iodides; dialkyl sulfates, such as dimethyl, diethyl, dibutyl and diamyl sulfates, long chain halides such as decyl, lauryl, myristyl and stearyl chlorides, bromides and iodides, aralkyl halides, such as benzyl and phenethyl bromides and others. Water or oil-soluble or dispersible products are thereby obtained.
  • The term “pharmaceutically acceptable carrier” is used herein to refer to a material that is compatible with a recipient subject, preferably a mammal, more preferably a human, and is suitable for delivering an active agent to the target site without terminating the activity of the agent. The toxicity or adverse effects, if any, associated with the carrier preferably are commensurate with a reasonable risk/benefit ratio for the intended use of the active agent.
  • The pharmaceutical compositions of the invention can be manufactured by methods well known in the art such as conventional granulating, mixing, dissolving, encapsulating, lyophilizing, or emulsifying processes, among others. Compositions may be produced in various forms, including granules, precipitates, or particulates, powders, including freeze dried, rotary dried or spray dried powders, amorphous powders, tablets, capsules, syrup, suppositories, injections, emulsions, elixirs, suspensions or solutions. Formulations may optionally contain stabilizers, pH modifiers, surfactants, bioavailability modifiers and combinations of these.
  • Pharmaceutical formulations may be prepared as liquid suspensions or solutions using a liquid, such as, but not limited to, an oil, water, an alcohol, and combinations of these. Pharmaceutically suitable surfactants, suspending agents, or emulsifying agents, may be added for oral or parenteral administration. Suspensions may include oils, such as but not limited to, peanut oil, sesame oil, cottonseed oil, corn oil and olive oil. Suspension preparation may also contain esters of fatty acids such as ethyl oleate, isopropyl myristate, fatty acid glycerides and acetylated fatty acid glycerides. Suspension formulations may include alcohols, such as, but not limited to, ethanol, isopropyl alcohol, hexadecyl alcohol, glycerol and propylene glycol. Ethers, such as but not limited to, poly(ethyleneglycol), petroleum hydrocarbons such as mineral oil and petrolatum; and water may also be used in suspension formulations.
  • Pharmaceutically acceptable carriers that may be used in these compositions include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene-polyoxypropylene-block polymers, polyethylene glycol and wool fat.
  • According to a preferred embodiment, the compositions of this invention are formulated for pharmaceutical administration to a mammal, preferably a human being. Such pharmaceutical compositions of the present invention may be administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir. The term “parenteral” as used herein includes subcutaneous, intravenous, intramuscular, intra-articular, intra-synovial, intrasternal, intrathecal, intrahepatic, intralesional and intracranial injection or infusion techniques. Preferably, the compositions are administered orally, intravenously, or subcutaneously. The formulations of the invention may be designed to be short-acting, fast-releasing, or long-acting. Still further, compounds can be administered in a local rather than systemic means, such as administration (e.g., by injection) at a tumor site.
  • Sterile injectable forms of the compositions of this invention may be aqueous or oleaginous suspension. These suspensions may be formulated according to techniques known in the art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, for example as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose, any bland fixed oil may be employed including synthetic mono- or di-glycerides. Fatty acids, such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions. These oil solutions or suspensions may also contain a long-chain alcohol diluent or dispersant, such as carboxymethyl cellulose or similar dispersing agents which are commonly used in the formulation of pharmaceutically acceptable dosage forms including emulsions and suspensions. Other commonly used surfactants, such as Tweens, Spans and other emulsifying agents or bioavailability enhancers which are commonly used in the manufacture of pharmaceutically acceptable solid, liquid, or other dosage forms may also be used for the purposes of formulation. Compounds may be formulated for parenteral administration by injection such as by bolus injection or continuous infusion. A unit dosage form for injection may be in ampoules or in multi-dose containers.
  • The pharmaceutical compositions of this invention may be orally administered in any orally acceptable dosage form including, but not limited to, capsules, tablets, aqueous suspensions or solutions. In the case of tablets for oral use, carriers that are commonly used include lactose and corn starch. Lubricating agents, such as magnesium stearate, are also typically added. For oral administration in a capsule form, useful diluents include lactose and dried cornstarch. When aqueous suspensions are required for oral use, the active ingredient is combined with emulsifying and suspending agents. If desired, certain sweetening, flavoring or coloring agents may also be added.
  • Alternatively, the pharmaceutical compositions of this invention may be administered in the form of suppositories for rectal administration. These may be prepared by mixing the agent with a suitable non-irritating excipient which is solid at room temperature but liquid at rectal temperature and therefore will melt in the rectum to release the drug. Such materials include cocoa butter, beeswax and polyethylene glycols.
  • The pharmaceutical compositions of this invention may also be administered topically, especially when the target of treatment includes areas or organs readily accessible by topical application, including diseases of the eye, the skin, or the lower intestinal tract. Suitable topical formulations are readily prepared for each of these areas or organs.
  • Topical application for the lower intestinal tract may be effected in a rectal suppository formulation (see above) or in a suitable enema formulation. Topically-transdermal patches may also be used. For topical applications, the pharmaceutical compositions may be formulated in a suitable ointment containing the active component suspended or dissolved in one or more carriers. Carriers for topical administration of the compounds of this invention include, but are not limited to, mineral oil, liquid petrolatum, white petrolatum, propylene glycol, polyoxyethylene, polyoxypropylene compound, emulsifying wax and water. Alternatively, the pharmaceutical compositions may be formulated in a suitable lotion or cream containing the active components suspended or dissolved in one or more pharmaceutically acceptable carriers. Suitable carriers include, but are not limited to, mineral oil, sorbitan monostearate, polysorbate 60, cetyl esters wax, cetearyl alcohol, 2-octyldodecanol, benzyl alcohol and water.
  • For ophthalmic use, the pharmaceutical compositions may be formulated as micronized suspensions in isotonic, pH adjusted sterile saline, or, preferably, as solutions in isotonic, pH adjusted sterile saline, either with our without a preservative such as benzylalkonium chloride. Alternatively, for ophthalmic uses, the pharmaceutical compositions may be formulated in an ointment such as petrolatum.
  • The pharmaceutical compositions of this invention may also be administered by nasal aerosol or inhalation. Such compositions are prepared according to techniques well known in the art of pharmaceutical formulation and may be prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other conventional solubilizing or dispersing agents.
  • The pharmaceutical compositions of the invention preferably are formulated for administration to a patient having, or at risk of developing or experiencing a recurrence of, a protein kinase-mediated disorder. The term “patient”, as used herein, means an animal, preferably a mammal, more preferably a human. Preferred pharmaceutical compositions of the invention are those formulated for oral, intravenous, or subcutaneous administration. However, any of the above dosage forms containing a therapeutically effective amount of a compound of the invention are well within the bounds of routine experimentation and therefore, well within the scope of the instant invention. In some embodiments, the pharmaceutical composition of the invention may further comprise another therapeutic agent. In some embodiments, such other therapeutic agent is one that is normally administered to patients with the disease or condition being treated.
  • By “therapeutically effective amount” is meant an amount sufficient to cause a detectable decrease in protein kinase activity or the severity of a protein kinase-mediated disorder. The amount of protein kinase inhibitor needed will depend on the effectiveness of the inhibitor for the given cell type and the length of time required to treat the disorder. It should also be understood that a specific dosage and treatment regimen for any particular patient will depend upon a variety of factors, including the activity of the specific compound employed, the age, body weight, general health, sex, and diet of the patient, time of administration, rate of excretion, drug combinations, the judgment of the treating physician, and the severity of the particular disease being treated. The amount of additional therapeutic agent present in a composition of this invention typically will be no more than the amount that would normally be administered in a composition comprising that therapeutic agent as the only active agent. Preferably, the amount of additional therapeutic agent will range from about 50% to about 100% of the amount normally present in a composition comprising that agent as the only therapeutically active agent.
  • In another aspect, the invention provides a method for treating a patient having, or at risk of developing or experiencing a recurrence of, a protein kinase-mediated disorder. As used herein, the term “protein kinase-mediated disorder” includes any disorder, disease or condition which is caused or characterized by an increase in kinase expression or activity, or which requires kinase activity. The term “protein kinase-mediated disorder” also includes any disorder, disease or condition in which inhibition of protein kinase activity is beneficial. In some embodiments, the protein kinase-mediated disorder is one in which inhibition of Chk-1, Aurora kinase, or PLK activity is beneficial.
  • The protein kinase inhibitors of the invention can be used to achieve a beneficial therapeutic or prophylactic effect, for example, in subjects with a proliferative disorder. Non-limiting examples of proliferative disorders include chronic inflammatory proliferative disorders, e.g., psoriasis and rheumatoid arthritis; proliferative ocular disorders, e.g., diabetic retinopathy; benign proliferative disorders, e.g., hemangiomas; and cancer. As used herein, the term “cancer” refers to a cellular disorder characterized by uncontrolled or disregulated cell proliferation, decreased cellular differentiation, inappropriate ability to invade surrounding tissue, and/or ability to establish new growth at ectopic sites. The term “cancer” includes, but is not limited to, solid tumors and bloodborne tumors. The term “cancer” encompasses diseases of skin, tissues, organs, bone, cartilage, blood, and vessels. The term “cancer” further encompasses primary and metastatic cancers.
  • Non-limiting examples of solid tumors that can be treated with the disclosed protein kinase inhibitors include pancreatic cancer; bladder cancer; colorectal cancer; breast cancer, including metastatic breast cancer; prostate cancer, including androgen-dependent and androgen-independent prostate cancer; renal cancer, including, e.g., metastatic renal cell carcinoma; hepatocellular cancer; lung cancer, including, e.g., non-small cell lung cancer (NSCLC), bronchioloalveolar carcinoma (BAC), and adenocarcinoma of the lung; ovarian cancer, including, e.g., progressive epithelial or primary peritoneal cancer; cervical cancer; gastric cancer; esophageal cancer; head and neck cancer, including, e.g., squamous cell carcinoma of the head and neck; melanoma; neuroendocrine cancer, including metastatic neuroendocrine tumors; brain tumors, including, e.g., glioma, anaplastic oligodendroglioma, adult glioblastoma multiforme, and adult anaplastic astrocytoma; bone cancer; and soft tissue sarcoma.
  • Non-limiting examples of hematologic malignancies that can be treated with the disclosed protein kinase inhibitors include acute myeloid leukemia (A ML); chronic myelogenous leukemia (C ML), including accelerated C ML and C ML blast phase (C ML-BP); acute lymphoblastic leukemia (ALL); chronic lymphocytic leukemia (CLL); Hodgkin's disease (HD); non-Hodgkin's lymphoma (NHL), including follicular lymphoma and mantle cell lymphoma; B-cell lymphoma; T-cell lymphoma; multiple myeloma (MM); Waldenstrom's macroglobulinemia; myelodysplastic syndromes (MDS), including refractory anemia (RA), refractory anemia with ringed siderblasts (RARS), (refractory anemia with excess blasts (RAEB), and RAEB in transformation (RAEB-T); and myeloproliferative syndromes.
  • The compounds of formula (I) are particularly useful in the treatment of cancers or cell types in which protein kinase activity is upregulated. The compounds of the invention are especially useful in the treatment of cancers or cell types in which Chk-1, Aurora, or PLK activity is upregulated, including, in particular, rapidly proliferating cells. Chk-1 also is upregulated in drug-resistant cells (Shyjan et al., U.S. Pat. No. 6,723,498 (2004)), as well as retinoblastomas such as Rb negative or inactivated cells (Gottifredi et al., Mol. Cell. Biol., 21:1066 (2001)), or cells in which the ARFp14/p19 locus has been inactivated or misregulated. The disclosed Chk-1 inhibitors also are particularly useful in the treatment of cancers or cell types in which another checkpoint pathway has been mutated or abrogated, including, without limitation, cancers or cell types in which p53 or the p53 pathway has been inactivated or abrogated.
  • In some embodiments, the compound or composition of the invention is used to treat a patient having or at risk of developing or experiencing a recurrence in a cancer selected from the group consisting of colorectal cancer, ovarian cancer, breast cancer, gastric cancer, prostate cancer, and pancreatic cancer. In certain embodiments, the cancer is selected from the group consisting of breast cancer, colorectal cancer, and pancreatic cancer.
  • In some embodiments, the protein kinase inhibitor of the invention is administered in conjunction with another therapeutic agent. The other therapeutic agent may inhibit the same or a different protein kinase, or may operate by a different mechanism. In some embodiments, the other therapeutic agent is one that is normally administered to patients with the disease or condition being treated. The protein kinase inhibitor of the invention may be administered with the other therapeutic agent in a single dosage form or as a separate dosage form. When administered as a separate dosage form, the other therapeutic agent may be administered prior to, at the same time as, or following administration of the protein kinase inhibitor of the invention.
  • In some embodiments, a protein kinase inhibitor of formula (I) is administered in conjunction with an anticancer agent. As used herein, the term “anticancer agent” refers to any agent that is administered to a subject with cancer for purposes of treating the cancer. Nonlimiting examples anticancer agents include: radiotherapy; immunotherapy; DNA damaging chemotherapeutic agents; and chemotherapeutic agents that disrupt cell replication.
  • Non-limiting examples of DNA damaging chemotherapeutic agents include topoisomerase I inhibitors (e.g., irinotecan, topotecan, camptothecin and analogs or metabolites thereof, and doxorubicin); topoisomerase II inhibitors (e.g., etoposide, teniposide, and daunorubicin); alkylating agents (e.g., melphalan, chlorambucil, busulfan, thiotepa, ifosfamide, carmustine, lomustine, semustine, streptozocin, decarbazine, methotrexate, mitomycin C, and cyclophosphamide); DNA intercalators (e.g., cisplatin, oxaliplatin, and carboplatin); DNA intercalators and free radical generators such as bleomycin; and nucleoside mimetics (e.g., 5-fluorouracil, capecitibine, gemcitabine, fludarabine, cytarabine, mercaptopurine, thioguanine, pentostatin, and hydroxyurea).
  • Chemotherapeutic agents that disrupt cell replication include: paclitaxel, docetaxel, and related analogs; vincristine, vinblastin, and related analogs; thalidomide and related analogs (e.g., CC-5013 and CC-4047); protein tyrosine kinase inhibitors (e.g., imatinib mesylate and gefitinib); proteasome inhibitors (e.g., bortezomib); NF-κB inhibitors, including inhibitors of IκB kinase; antibodies which bind to proteins overexpressed in cancers and thereby downregulate cell replication (e.g., trastuzumab, rituximab, cetuximab, and bevacizumab); and other inhibitors of proteins or enzymes known to be upregulated, over-expressed or activated in cancers, the inhibition of which downregulates cell replication.
  • In some embodiments, a compound of formula (I) that inhibits Chk-1 is used in combination with radiation therapy or a chemotherapeutic agent that acts by causing damage to the genetic material of cells (collectively referred to herein as “DNA damaging agents”). In some embodiments, the combination of a Chk-1 inhibitor of formula (I) with a DNA damaging agent is used to treat a subject with a multi-drug resistant cancer. A cancer is resistant to a drug when it resumes a normal rate of tumor growth while undergoing treatment with the drug after the tumor had initially responded to the drug. A tumor “responds to a drug” when it exhibits a decrease in tumor mass or a decrease in the rate of tumor growth. The term “multi-drug resistant cancer” refers to cancer that is resistant to two or more drugs, often as many as five or more.
  • When used in combination with a DNA damaging agent, an “effective amount” of a Chk-1 inhibitor is the quantity of the inhibitor at which a greater response is achieved when the Chk-1 inhibitor is co-administered with the DNA damaging anti-cancer drug and/or radiation therapy than is achieved when the DNA damaging anti-cancer drug and/or radiation therapy is administered alone.
  • In order that this invention be more fully understood, the following preparative and testing examples are set forth. These examples illustrate how to make or test specific compounds, and are not to be construed as limiting the scope of the invention in any way.
  • EXAMPLES Definitions
    • AcOH acetic acid
    • ATP adenosine triphosphate
    • BINAP 2,2′-bis(diphenylphosphino)-1,1′-binaphthyl
    • Boc tert-butoxycarbonyl
    • BSA bovine serum albumin
    • DMAP 4-dimethylaminopyridine
    • DMF dimethylformamide
    • DMF-DMA dimethylformamide dimethylacetal
    • DMSO dimethylsulfoxide
    • DTT dithiothreitol
    • EDTA ethylenediaminetetraacetic acid
    • EtOAc ethyl acetate
    • EtOH ethanol
    • MCPBA meta-chloroperbenzoic acid
    • MeOH methanol
    • MTT methylthiazoletetrazolium
    • WST (4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate sodium salt)
    • PKA cAMP-dependent protein kinase
    • tBu tert-butyl
    • THF tetrahydrofuran
    • TBTU O-(benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium tetrafluoroborate
    • h hours
    • min minutes
    • m/z mass to charge
    • MS mass spectrum
    • RP LC-MS reverse phase liquid chromatography-mass spectrometry
    • HRMS high resolution mass spectrum
  • Compounds I-1 to I-93 and I-135 to I-1279 in Table 1 were prepared by methods generally analogous to those described in Schemes 1-12 above and Examples 1-24 below. Mass spectra matched calculated values.
  • HRMS data were collected on a Sciex Qstar time of flight mass spectrometer coupled to an Agilent HPLC. Experimentally determined (M+H)+ were within 10 ppm error of calculated (M+H)+.
  • LCMS conditions: spectra were run on a Phenominex Luna 5 μm C18 50×4.6 mm column on a Hewlett-Packard HP1100 at 2.5 mL/min for a 3 minute run using the following gradients:
  • Method Formic Acid (FA): Acetonitrile containing zero to 100 percent 0.1% formic acid in water.
  • Method Ammonium Acetate (AA): Acetonitrile containing zero to 100 percent 10 mM ammonium acetate in water.
  • Example 1 Representative Synthesis of Compounds of Formula i (see Scheme 1)
  • Figure US20120178739A1-20120712-C01306
  • 5-Iodo-2-methyl-phenylamine (b)
  • To a solution of 4-iodo-1-methyl-2-nitro-benzene (25.0 g, 107 mmol) in 300 mL of ethanol was added sulfided platinum (3.00 g) and ammonium formate (20.3 g, 321 mmol). The mixture was heated to reflux for 12 hand then cooled to 22° C., filtered through Celite® and concentrated in vacuo. The resulting residue was diluted with H2O (300 mL) and extracted with 3×200 mL CH2Cl2. The organic fractions were combined, washed with brine, dried over Na2SO4 and concentrated in vacuo to give b (21.1 g, 95%): MS m/z=234 (M+H).
  • N-(5-Iodo-2-methyl-phenyl)-acetamide (c)
  • A solution of 5-iodo-2-methyl-phenylamine (20.4 g, 87.6 mmol) in 200 mL of dry CH2Cl2 was cooled to 0° C. and acetic anhydride (16.5 mL, 175 mmol) was added dropwise. The mixture was heated to 50° C. for 2 h and then cooled to 22° C. The resulting white precipitate was filtered to give c (18.4 g, 76%): MS m/z=276 (M+H).
  • 2-Acetylamino-4-iodo-benzoic acid (d)
  • To a suspension of N-(5-iodo-2-methyl-phenyl)-acetamide (18.9 g, 68.9 mmol) in 200 mL H2O was added magnesium sulfate (10.8 g, 89.7 mmol). The mixture was heated to 100° C., and potassium permanganate (32.7 g, 206 mmol) was added. After 1 h, an additional portion of potassium permanganate (10.9 g, 68.9 mmol) was added. Again after 1 h, a final portion of potassium permanganate (10.9 g, 68.9 mmol) was added and the reaction was stirred 12 h. The mixture was then cooled to 22° C. and filtered through a pad of Celite®. The filtrate was acidified with 1 N HCl, and the resulting white precipitate was filtered to give d (14.8 g, 70%): MS m/z=304 (M−H).
  • 2-Amino-4-iodo-benzoic acid methyl ester (i-b)
  • To 2-acetylamino-4-iodo-benzoic acid (13.8 g, 45.3 mmol) in 200 mL of dry methanol was added SOCl2 (32.7 mL, 453 mmol) dropwise at 0° C. The reaction mixture was then heated at 65° C. for 2 h. The reaction was then cooled to 0° C., an additional portion of SOCl2 (10 mL, 137 mmol) was added, and the reaction was heated at 65° C. for 2 h. The reaction was then cooled to 0° C., a final portion of SOCl2 (10 mL, 137 mmol) was added, and the reaction was heated at 65° C. for 48 h. The reaction was then cooled to 22° C. and concentrated in vacuo The resulting residue was diluted with H2O and extracted with 3×150 mL CH2Cl2. The combined organic fractions were washed with brine and dried over Na2SO4 to give i-b (11.7 g, 93%): MS m/z=278 (M+H).
  • Methyl 2-amino-5-methoxybenzoate (i-e)
  • Hydrogen chloride gas was bubbled through a solution of 2-amino-5-methoxybenzoic acid (5.0 g, 30 mmol) in MeOH (200 mL) for 30 minutes. The solution was heated at 60° C. overnight. The reaction was cooled and the solvent removed in vacuo. The residue was dissolved in water, basified with 5M NaOH and extracted twice with ether. The ether extracts were washed with 5M NaOH and water, dried (MgSO4), filtered and concentrated in vacuo to give i-e (4.25 g, 78%): MS m/z=182 (M+H).
  • Methyl 2-amino-5-fluorobenzoate (i-f)
  • In a manner similar to that described above for methyl 2-amino-5-methoxybenzoate, 7.82 g of 2-amino-5-fluorobenzoic acid was converted to 1-f (40%):
  • MS m/z=170 (M+H).
  • Methyl 2-amino-4-methylbenzoate (i-g)
  • In a manner similar to that described above for methyl 2-amino-5-methoxybenzoate, 1.90 g of 2-amino-4-methylbenzoic acid was converted to i-g (94%):
  • MS m/z=166 (M+H).
  • Esters i-a, i-c, i-d, i-j, and i-k are commercially available. Ester i-h was not prepared; ii-h was prepared as described below.
  • Example 2 Method A for the Synthesis of Compounds of Formula II (see Scheme 1)
  • Figure US20120178739A1-20120712-C01307
  • 2-(3-Ethoxycarbonyl-propionylamino)-5-iodo-benzoic acid methyl ester (ii-a)
  • To methyl 2-amino-5-iodobenzoate (i-a) (15 g, 54 mmol) was added 200 mL of CH2Cl2, followed by DIEA (9.4 mL, 54 mmol) and a catalytic amount of DMAP. Ethyl 4-chloro-4-oxobutanoate (Rc=Rd=H) (8.5 mL, 60 mmol) was added, and the reaction mixture was allowed to stir at room temperature overnight. The reaction mixture was then poured into 250 mL H2O, and the organic layer was washed with brine, dried over MgSO4, filtered, and concentrated in vacuo to afford ii-a (22 g, 99%) as a pale yellow solid: MS m/z=406 (M+H).
  • 2-(3-Ethoxycarbonyl-propionylamino)-4-iodo-benzoic acid methyl ester (ii-b)
  • In a manner similar to that described for method A, 2-amino-4-iodobenzoic acid methyl ester (1-b) was converted to ii-b (99%): MS m/z=406 (M+H).
  • 2-(3-Ethoxycarbonyl-propionylamino)-benzoic acid methyl ester (ii-c)
  • In a manner similar to that described for method A, 2-amino-benzoic acid methyl ester (i-c) was converted to ii-c (93%): MS m/z=280 (M+H).
  • 5-Chloro-2-(3-ethoxycarbonyl-propionylamino)-benzoic acid methyl ester (ii-d)
  • In a manner similar to that described in method A, 2-amino-5-chloro-benzoic acid methyl ester (i-d) was converted to ii-d (90%): MS m/z=314 (M+H).
  • Methyl 2-(4-ethoxy-4-oxobutanamido)-5-methoxybenzoate (ii-e)
  • In a manner similar to that described for method A, methyl 2-amino-5-methoxybenzoate (i-e) was converted to ii-e (93%): MS m/z=310 (M+H).
  • Methyl 2-(4-ethoxy-4-oxobutanamido)-5-fluorobenzoate (ii-f)
  • In a manner similar to that described for method A, methyl 2-amino-5-fluorobenzoate (i-f) was converted to ii-f (95%): MS m/z=298 (M+H).
  • Methyl 2-(4-ethoxy-4-oxobutanamido)-4-methylbenzoate (ii-g)
  • In a manner similar to that described for method A, methyl 2-amino-4-methylbenzoate (i-g) was converted to ii-g (97%): MS m/z=294 (M+H).
  • 2-(4-Methoxy-4-oxobutanamido)nicotinic acid (ii-h-1)
  • In a manner similar to method A, 2-aminonicotinic acid was converted to ii-h-1 (46%).
  • Methyl 2-(4-methoxy-4-oxobutanamido)nicotinate (ii-h)
  • 2-(4-Methoxy-4-oxobutanamido)nicotinic acid (ii-h-1) (1.28 g, 4.8 mmol) was dissolved in an equimolar mixture of CH2Cl2 and methanol (20 mL) and cooled to 0° C. TMS diazomethane (2M solution in diethyl ether; 5.2 mL, 10.6 mmol) was added dropwise. The mixture was stirred for 1 h and warmed to 23° C. Volatiles were removed under reduced pressure to provide as a pale yellow solid (1.37 g, 100%)
  • MS m/z=267 (M+1).
  • 4-Chloro-2-(3-methoxycarbonyl-2(R)-methyl-propionylamino)-benzoic acid methyl ester (ii-i)
  • (R)-(+)-2-Methylsuccinic acid 4-methyl ester (1 g, 6.8 mmol) was dissolved in CH2Cl2 (40 mL). Oxalyl chloride [2M in CH2Cl2 (3.7 mL, 7.4 mmol)] was then added followed by a few drops of DMF (0.1 mL). The mixture was stirred at 22° C. for 3 h, after which it was concentrated under reduced pressure. The resulting residue was then suspended in CH2Cl2 (10 mL) and added slowly to a stirring solution of methyl 2-amino-4-chlorobenzoate (i-i) (1.26 g, 6.8 mmol) in triethylamine (3.76 mL, 27.2 mmol) in CH2Cl2 (40 mL). The reaction mixture was allowed to stir at 22° C. for 1 h. The mixture was then partitioned between CH2Cl2 (50 mL) and H2O (50 mL). The aqueous layer was extracted with CH2Cl2 (3×50 mL) and the combined organic layers were washed with brine, dried over MgSO4, filtered and concentrated to dryness. The resulting orange residue was purified by column chromatography, eluting with 20% ethyl acetate in hexane to give ii-i as a clear oil (1.8 g, 85% yield): MS m/z=314 (M+H).
  • 4-Chloro-2-(3-ethoxycarbonyl-propionylamino)-benzoic acid methyl ester (ii-j)
  • In a manner similar to that described in method A, 2-amino-5-chloro-benzoic acid methyl ester (i-j) was converted to ii-j (90%): MS m/z=314 (M+H).
  • 5-Bromo-2-(3-ethoxycarbonyl-propionylamino)-benzoic acid methyl ester (ii-k)
  • In a manner similar to that described for method A, 2-amino-5-bromo-benzoic acid methyl ester (i-k) was converted to ii-k (100%): MS m/z=358 (M+H), 360 (M+2H).
  • Example 3 Method B for the Synthesis of Compounds of Formula iii (see Scheme 1)
  • Figure US20120178739A1-20120712-C01308
  • 7-Iodo-2,5-dioxo-2,3,4,5-tetrahydro-1H-benzo[b]azepine-4-carboxylic acid ethyl ester (iii-a)
  • To a solution of methyl 2-(4-ethoxy-4-oxobutanamido)-5-iodobenzoate (ii-a) (22.0 g, 54 mmol) in 125 mL of THF was added a 1 M solution of KOt-Bu in THF (119 mL, 119 mmol). The reaction was complete after 2.5 h at 22° C. H2O (250 mL) and 1N HCl (60 mL) were added to the solution, and the resulting precipitate was filtered, washed with 2×50 mL Et2O, and dried in vacuo to give iii-a (16.1 g, 83%) as a whitish/gray solid as a mixture of ethyl and methyl esters: MS m/z=374 (M+H) and 360 (M+H).
  • 8-Iodo-2,5-dioxo-2,3,4,5-tetrahydro-1H-benzo[b]azepine-4-carboxylic acid ethyl ester (iii-b)
  • In a manner similar to that described for method B, 2-(3-ethoxycarbonyl-propionylamino)-4-iodo-benzoic acid methyl ester (ii-b) was converted to iii-b (89% yield mixture methyl and ethyl esters): MS m/z=374 (M+H) and 360 (M+H).
  • 2,5-Dioxo-2,3,4,5-tetrahydro-1H-benzo[b]azepine-4-carboxylic acid ethyl ester (iii-c)
  • In a manner similar to that described in method B, 2-(3-ethoxycarbonyl-propionylamino)-benzoic acid methyl ester (ii-c) was converted to iii-c (87%): MS m/z=248 (M+H).
  • 7-Chloro-2,5-dioxo-2,3,4,5-tetrahydro-1H-benzo[b]azepine-4-carboxylic acid ethyl ester (iii-d)
  • In a manner similar to that described in method B, 5-chloro-2-(3-ethoxycarbonyl-propionylamino)-benzoic acid methyl ester (ii-d) was converted to iii-d (84%): MS m/z=282 (M+H).
  • 7-Methoxy-2,5-dioxo-2,3,4,5-tetrahydro-1H-benzo[b]azepine-4-carboxylic acid, mixture of methyl and ethyl esters (iii-e)
  • In a manner similar to that described for method B, methyl 2-(4-ethoxy-4-oxobutanamido)-5-methoxybenzoate (ii-e) was converted to iii-e (59%, recrystallized from EtOH): MS m/z=264 and 278 (M+H).
  • 7-Fluoro-2,5-dioxo-2,3,4,5-tetrahydro-1H-benzo[b]azepine-4-carboxylic acid, mixture of methyl and ethyl esters (iii-f)
  • In a manner similar to that described for method B, methyl 2-(4-ethoxy-4-oxobutanamido)-5-fluorobenzoate (ii-f) was converted to iii-f (57%, recrystallized from EtOH): MS m/z=252 and 266 (M+H).
  • 8-Methyl-2,5-dioxo-2,3,4,5-tetrahydro-1H-benzo[b]azepine-4-carboxylic acid, mixture of methyl and ethyl esters (iii-g)
  • In a manner similar to that described for method B, methyl 2-(4-ethoxy-4-oxobutanamido)-4-methylbenzoate (ii-g) was converted to iii-g (49%, recrystallized from EtOH): MS m/z=248 and 262 (M+H).
  • Methyl 5,8-dioxo-6,7,8,9-tetrahydro-5H-pyrido[2,3-b]azepine-6-carboxylate (iii-h)
  • In a manner similar to method B, methyl 2-(4-methoxy-4-oxobutanamido nicotinate (ii-h) was converted to iii-h (47%): MS m/z=235 (M+H).
  • 8-Chloro-3-methyl-2,5-dioxo-2,3,4,5-tetrahydro-1H-benzo[b]azepine-4-carboxylic acid methyl ester (iii-i)
  • In a manner similar to that described for method B, 4-chloro-2-(3-methoxycarbonyl-2-methyl-propionylamino)-benzoic acid methyl ester (ii-i) was converted to iii-i (78%): MS m/z=282 (M+H).
  • 8-Chloro-2,5-dioxo-2,3,4,5-tetrahydro-1H-benzo[b]azepine-4-carboxylic acid methyl ester (iii-j)
  • In a manner similar to that described for method B, 4-chloro-2-(3-ethoxycarbonyl-propionylamino)-benzoic acid methyl ester (ii-j) was converted to iii-j (81%): MS m/z=268 (M+H).
  • 7-Bromo-2,5-dioxo-2,3,4,5-tetrahydro-1H-benzo[b]azepine-4-carboxylic acid ethyl ester (iii-k)
  • In a manner similar to that described for method B, 5-bromo-2-(3-ethoxycarbonyl-propionylamino)-benzoic acid methyl ester (ii-k) was converted to iii-k (60% yield mixture methyl and ethyl esters): MS m/z=312 (M+H), 314 (M+2H) and 326 (M+H), 328 (M+2H).
  • Example 4 Method C for the Synthesis of Compounds of Formula iv (see Scheme 1)
  • Figure US20120178739A1-20120712-C01309
  • 8-Chloro-3-methyl-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (iv-i)
  • To a solution of 8-chloro-3-methyl-2,5-dioxo-2,3,4,5-tetrahydro-1H-benzo[b]azepine-4-carboxylic acid methyl ester (iii-i) (0.2 g, 0.7 mmol) in DMF (2 mL) was added H2O (0.3 mL) and the reaction mixture heated to 230° C. in a microwave reactor for 5 minutes. H2O (20 mL) was added to the reaction mixture and the resulting precipitate was filtered and washed with H2O. The solid was dried under reduced pressure at 40° C. for 16 h to afford iv-i (0.12 g, 77%) as a white solid: MS m/z=224 (M+H).
  • 8-Iodo-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (iv-b)
  • In a manner similar to that described for method C, 8-iodo-2,5-dioxo-2,3,4,5-tetrahydro-1H-benzo[b]azepine-4-carboxylic acid ethyl ester (iii-b) was converted to iv-b (69%): MS m/z=300 (M−H).
  • 3,4-Dihydro-1H-benzo[b]azepine-2,5-dione (iv-c)
  • In a manner similar to that described for method C, 2,5-dioxo-2,3,4,5-tetrahydro-1H-benzo[b]azepine-4-carboxylic acid ethyl ester (iii-c) was converted to iv-c (48%): MS m/z=174 (M−H).
  • 7-Chloro-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (iv-d)
  • In a manner similar to that described for method C, 7-chloro-2,5-dioxo-2,3,4,5-tetrahydro-1H-benzo[b]azepine-4-carboxylic acid ethyl ester (iii-d) was converted to iv-d (29%): MS m/z=208 (M−H).
  • 8-Chloro-3,4-dihydro-1H-benzo[17]azepine-2,5-dione (iv-j)
  • In a manner similar to that described for method C, 8-chloro-2,5-dioxo-2,3,4,5-tetrahydro-1H-benzo[b]azepine-4-carboxylic acid methyl ester (iii-j) was converted to iv-j (80%): MS m/z=210 (M+H).
  • 7-Bromo-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (iv-k)
  • In a manner similar to that described for method C, 7-bromo-2,5-dioxo-2,3,4,5-tetrahydro-1H-benzo[b]azepine-4-carboxylic acid ethyl ester (iii-k) was converted to iv-k (89%): MS m/z=254 (M+H), 256 (M+2H).
  • Example 5 Method D for the Synthesis of Compounds of Formula iv (see Scheme 1)
  • Figure US20120178739A1-20120712-C01310
  • 7-Iodo-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (iv-a)
  • To a solution of ethyl 7-iodo-2,5-dioxo-2,3,4,5-tetrahydro-1H-benzo[b]azepine-4-carboxylate (iii-a) (4.84 g, 13.2 mmol) in dimethyl sulfoxide (66 mL) was added a solution of NaCl (81 mg, 15.9 mmol) in H2O (475 μL, 26.4 mmol). The reaction mixture was heated to 150° C. for 2 h, and subsequently cooled to 0° C. for 30 min. H2O (120 mL) was added and the solution was allowed to stir for an additional 1.5 h at 0° C. The resulting precipitate was filtered to provide iv-a (3.2 g, 81%) as a purple/brown solid: MS m/z=302 (M+H).
  • 6,7-Dihydro-9H-pyrido[2,3-b]azepine-5,8-dione (iv-h)
  • In a manner similar to method D, methyl-5,8-dioxo-6,7,8,9-tetrahydro-5H-pyrido[2,3-b]azepine-6-carboxylate (iii-h) was converted to iv-h (50%): MS m/z=177 (M+H).
  • Example 6 Method E for the Synthesis of Compounds of Formula iv (see Scheme 1)
  • Figure US20120178739A1-20120712-C01311
  • 8-Methyl-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (iv-g)
  • To a solution of iii-g (mixture of methyl and ethyl esters) (1.32 g, 5.19 mmol) in DMSO (50 mL) was added H2O (2.4 mL) and the resulting solution was heated to 150° C. for 1 h. An additional portion of H2O (2.4 mL) was added and the solution heated at 150° C. for 1 h. A third portion of H2O (2.4 mL) was added and the solution heated at 150° C. for 2 h. The reaction mixture was cooled to room temperature and diluted with H2O (50 mL). The solution was extracted with CH2Cl2 (3×50 mL) and the combined organics were washed with H2O (2×50 mL). The organics were dried (MgSO4), filtered and evaporated in vacuo to give the crude product, which was recrystallized from ethanol to give pure iv-g (641 mg, 65%) as a white powder.
  • 7-Methoxy-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (iv-e)
  • In a manner similar to that described for Method E, iii-e was converted to iv-e (76%, recrystallized from EtOH): MS m/z=206 (M+H).
  • 7-Fluoro-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (iv-f)
  • In a manner similar to that described for Method E, iii-f was converted to iv-f (62%, recrystallized from EtOH): MS m/z=194 (M+H).
  • Example 7 Method F for the Synthesis of Compounds of Formula v (see Scheme 1)
  • Figure US20120178739A1-20120712-C01312
  • 4-Dimethylaminomethylene-7-iodo-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-a)
  • To a solution of 7-iodo-3,4-dihydro-/H-benzo[b]azepine-2,5-dione (iv-a) (1.67 g, 5.54 mmol) in THF (15 mL) was added dimethylformamide dimethylacetal (4.0 mL, 27.7 mmol) and the reaction mixture heated to 70° C. for 1 h. The reaction mixture was cooled to 22° C., treated with Et2O (50 mL), and the resulting precipitate filtered and dried in vacuo to give v-a (1.64 g, 83%) as a brown powder: MS m/z=357 (M+H).
  • 4-Dimethylaminomethylene-8-iodo-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-b)
  • In a manner similar to that described for method F, 8-iodo-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (iv-b) was converted to v-b (66%): MS m/z=357 (M+H).
  • 4-Dimethylaminomethylene-7-methoxy-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-e)
  • To a flask containing iv-e (1.9 g) was added DMF-DMA (15 mL) and the mixture was heated to 110° C. for 1 h. The mixture was cooled to 0° C., filtered, washed with ether and dried to give v-e (2.2 g, 91%): MS m/z=261 (M+H).
  • 4-Dimethylaminomethylene-7-fluoro-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-f)
  • In a manner similar to that described above for 4-dimethylamino-methylene-7-methoxy-3,4-dihydro-1H-benzo[b]azepine-2,5-dione, 7-fluoro-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (iv-f) was converted to v-f (85%): MS m/z=249 (M+H).
  • 4-Dimethylaminomethylene-8-methyl-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-g)
  • In a manner similar to that described above for 4-dimethylamino-methylene-7-methoxy-3,4-dihydro-1H-benzo[b]azepine-2,5-dione, 7-fluoro-3,4-dihydro-1H-benzo[b]azepine-2,5-dione, 0.64 g of 8-methyl-3,4-dihydro-1H-benzo[b]azepine-2,5-dione was converted to v-g (87%): MS m/z=245 (M+H).
  • (Z)-6-Dimethylaminomethylene-6,7-dihydro-9H-pyrido[2,3-b]azepine-5,8-dione (v-h)
  • In a manner similar to method F (CH2Cl2 used in place of THF), 6,7-dihydro-9H-pyrido[2,3-b]azepine-5,8-dione (iv-h) was converted to v-h (100%): MS m/z=232 (M+H).
  • 7-Bromo-4-dimethylaminomethylene-3,4-dihydro-1H-benzo azepine-2,5-dione (v-k)
  • In a manner similar to that described for method F, 7-bromo-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (iv-k) was converted to v-k (63%): MS m/z=309 (M+H), 311 (M+2H).
  • 8-Chloro-1-phenyl-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-l-1)
  • 8-Chloro-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (iv-j) (500 mg, 2.4 mmol) was combined with K2CO3 (660 mg, 4.8 mmol) under an atmosphere of argon. Phenylbromide (370 mg, 2.4 mmol) and N,N′-Dimethyl-ethane-1,2-diamine (21 mg, 0.24 mmol, 10 mol %) were added, followed by 10 mL of toluene. The mixture was degassed with an argon sparge for 10 min. CuI (23 mg, 0.12 mmol, 5 mol %) was added and the reaction was heated to 110° C. for 48 h. The mixture was filtered and volatiles removed in vacuo. Chromatographic purification provided the desired product contaminated with 10% 8-chloro-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (172 mg, 34%) MS m/z=286 (M+1).
  • 8-Chloro-4-dimethylaminomethylene-1-phenyl-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-l)
  • In a manner similar to method F (toluene used in place of THF) 8-chloro-1-phenyl-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-l-1) was converted to v-1: MS m/z=341 (M+H).
  • Example 8 Method G for the Synthesis of Compounds of Formula v (see Scheme 1)
  • Figure US20120178739A1-20120712-C01313
  • 8-Chloro-4-dimethylaminomethylene-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-j)
  • To a solution of iv-j (0.15 g, 0.72 mmol) in DMF (5 mL) was added dimethylformamide dimethylacetal (0.11 mL, 0.79 mmol) and the reaction mixture heated at 200° C. for 100 s in the microwave. The reaction mixture was cooled to 22° C., treated with Et2O (5 mL), and the resulting precipitate filtered and dried in vacuo to give v-j (0.062 g, 33%) as a brown powder: MS m/z=265 (M+H).
  • 4-Dimethylaminomethylene-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-c)
  • In a manner similar to that described for method G, 3,4-dihydro-1H-benzo[b]azepine-2,5-dione (iv-c) was converted to v-c (95%): MS m/z=231 (M+H).
  • 7-Chloro-4-dimethylaminomethylene-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-d)
  • In a manner similar to that described for method G, 7-chloro-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (iv-d) was converted to v-d (24%): MS m/z=265 (M+H).
  • 8-Chloro-4-dimethylaminomethylene-3-methyl-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-i)
  • In a manner similar to that described for method G, 8-chloro-3-methyl-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (iv-i) was converted to v-i (100%): MS m/z=279 (M+H).
  • 8-Chloro-4-dimethylaminomethylene-1-methyl-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-m)
  • In a manner similar to that described for method G, 8-chloro-1-methyl-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-m-1, prepared by Method W, as described below) was converted to v-m (100% yield): MS m/z=279 (M+H).
  • 1-Benzyl-8-chloro-4-dimethylaminomethylene-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-n)
  • In a manner similar to that described for method G, 1-benzyl-8-chloro-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-n-1, prepared by Method W, as described below) was converted to v-n (100%): MS m/z=355 (M+H).
  • 8-Chloro-4-dimethylaminomethylene-1,3-dimethyl-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-o)
  • In a manner similar to that described for method G, 8-chloro-1,3-dimethyl-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (prepared from iv-i in a manner similar to that described for Method W below) was converted to v-o (100% yield): MS m/z=293 (M+H).
  • Example 9 Method W for Lactam Alkylation 8-Chloro-1-methyl-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-m-1)
  • 8-Chloro-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (iv-j) (0.2 g, 1 mmol) was dissolved in a mixture of THF (10 mL) and DMF (2 mL). Cesium carbonate (0.98 g, 3 mmol) and methyl iodide (0.069 mL, 1.1 mmol) were added and the reaction mixture was stirred at room temperature for 3 h. The mixture was concentrated under reduced pressure and dichloromethane (10 mL) was added. The inorganic precipitate was filtered and the filtrate was concentrated under reduced pressure to give a viscous residue. This residue was purified utilizing column chromatography, eluting with 50% ethyl acetate/hexane to afford the title compound as a white solid (0.1 g, 45%): MS m/z=224 (M+H).
  • 1-Benzyl-8-chloro-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-n-1)
  • In a manner similar to that described for Method W, 8-chloro-3,4-dihydro-1H-benzo[b]azepine-2,5-dione and benzyl bromide were converted to the title compound (38%): MS m/z=300 (M+H).
  • Example 10 Method H for the Synthesis of Compounds of Formula vi (see Scheme 1)
  • Figure US20120178739A1-20120712-C01314
  • 2-(3,4-Dimethoxy-phenylamino)-10-iodo-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-26)
  • To a solution of 4-dimethylaminomethylene-7-iodo-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-a) (1.64 g, 4.6 mmol) in 50 mL EtOH was added K2CO3 (1.82 g, 11.04 mmol) and 1-(3,4-dimethoxyphenyl)guanidine (1.31 g, 5.06 mmol), and the reaction was heated to 80° C. for 12 h. The reaction was then cooled to 22° C., diluted with H2O, and treated with 1 M HCl to pH 3. The resulting solid was filtered and washed with H2O, followed by EtOH and Et2O. The crude product was dried in vacuo to give I-26 (1.8 g, 81%): HRMS Calcd. for C20H17IN4O3: 489.0423, Found 489.0431.
  • Example 11 Method I for the Synthesis of Compounds of Formula vi (see Scheme 1)
  • Figure US20120178739A1-20120712-C01315
  • 4-(9-Chloro-5-methyl-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino)-benzoic acid (I-69)
  • 8-Chloro-4-dimethylamino-methylene-3-methyl-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-i) (0.125 g, 0.45 mmol) was dissolved in ethanol (5 mL), then 4-guanidinebenzoic acid hydrochloride (0.116 g, 0.54 mmol) and potassium carbonate (0.153 g, 1.08 mmol) were added. The mixture was heated to 140° C. in a microwave reactor for 10 minutes, after which it was poured into water (10 mL). Using 1M aqueous HCl, the mixture was acidified to pH 4. The solid was filtered and washed with water and diethyl ether, then dried under reduced pressure at 40° C. for 16 h to give 1-69 (5% yield) after purification by C-18 RP LC-MS chromatography: HRMS Calcd. for C20H15ClN4O3: 395.0910, Found 395.0938.
  • Figure US20120178739A1-20120712-C01316
  • 4-(9-Chloro-6-oxo-6,7-dihydro-5H-benzopyrimido[4,5]azepin-2-ylamino)-benzoic acid methyl ester (I-4)
  • In a manner similar to that described for Method I, (N-methyl-pyrrolidinone and NaHCO3 used in place of EtOH and K2CO3), 8-chloro-4-dimethyl-aminomethylene-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-j) and methyl 4-guanidinobenzoate hydrochloride were converted to 1-4 (59%): HRMS Calcd. for C20H15ClN4O3: 395.0910, Found 395.0917.
  • Figure US20120178739A1-20120712-C01317
  • 4-(9-Chloro-7-methyl-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino)-benzoic acid (I-7)
  • In a manner similar to that described for method I, 8-chloro-4-dimethylaminomethylene-1-methyl-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-m) and 4-guanidinobenzoic acid were converted to I-7 (30%): HRMS Calcd. for C20H15ClN4O3: 395.0910, Found 395.0923.
  • Figure US20120178739A1-20120712-C01318
  • 4-(7-Benzyl-9-chloro-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino)-benzoic acid (I-6)
  • In a manner similar to that described for method I, 1-benzyl-8-chloro-4-dimethylaminomethylene-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-n) and 4-guanidinobenzoic acid were converted to 1-6 (26%): MS m/z=471 (M+H)HRMS Calcd. for C26H19ClN4O3: 471.1223, Found 471.1310.
  • Figure US20120178739A1-20120712-C01319
  • 4-(9-Chloro-5,7-dimethyl-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino)-benzoic acid (I-68)
  • In a manner similar to that described for method I, 8-chloro-4-dimethylaminomethylene-1,3-dimethyl-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-o) and 4-guanidinobenzoic acid were converted to I-68 (6%) after purification by C-18 RP LC-MS chromatography: HRMS Calcd. for C21H17ClN4O3: 409.1067, Found 409.1052.
  • Figure US20120178739A1-20120712-C01320
  • 4-(9-Chloro-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino)-benzoic acid (I-3)
  • In a manner similar to method I (DMF and NaHCO3 were used in place of EtOH and K2CO3), 8-chloro-4-dimethylaminomethylene-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-j) and 4-guanidinobenzoic acid were converted to I-3 (68%): HRMS Calcd. for C19H13ClN4O3: 381.0754, Found 381.0721.
  • Figure US20120178739A1-20120712-C01321
  • 4-(9-Chloro-6-oxo-7-phenyl-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino)-benzoic acid (I-10)
  • In a manner similar to method I (DMF and NaHCO3 were used in place of EtOH and K2CO3), 8-chloro-4-dimethylaminomethylene-1-phenyl-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-1) and 4-guanidinobenzoic acid were converted to I-10 (61%): HRMS Calcd. for C25H17ClN4O3: 457.1067, Found 457.1076.
  • Figure US20120178739A1-20120712-C01322
  • 9-Chloro-2-(3,4-dimethoxy-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-2)
  • In a manner similar to method I (DMF and NaHCO3 were used in place of EtOH and K2CO3), 8-chloro-4-dimethylaminomethylene-3,4-dihydro-1H-benzo[b]-azepine-2,5-dione (v-j) and 1-(3,4-dimethoxyphenyl)guanidine were converted to I-2 (87%): HRMS Calcd. for C20H17ClN4O3: 397.1067, Found 397.109.
  • Figure US20120178739A1-20120712-C01323
  • 2-(3,4-Dimethoxy-phenylamino)-5,7-dihydro-1,3,7,8-tetraaza-dibenzo[a,c]cyclohepten-6-one (I-1)
  • In a manner similar to method H (NaHCO3 used in place of K2CO3) (Z)-6-dimethylaminomethylene-6,7-dihydro-9H-pyrido[2,3-b]azepine-5,8-dione (v-h) and 1-(3,4-dimethoxyphenyl)guanidine were converted to I-1 (85%): MS Rt=1.3 min. m/z 364 (M+H).
  • Figure US20120178739A1-20120712-C01324
  • 4-(10-Methoxy-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino)-benzoic acid (I-8)
  • In a manner similar to that described for Method H, 4-dimethylamino-methylene-7-methoxy-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-e) and 4-guanidinobenzoic acid were converted to I-8 (48%): HRMS Calcd. for C20H16N4O4: 377.1249, Found 377.1231.
  • Figure US20120178739A1-20120712-C01325
  • 4-(10-Fluoro-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino)-benzoic acid (I-5)
  • In a manner similar to that described for Method H, 4-dimethylaminomethylene-7-fluoro-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-f) and 4-guanidinobenzoic acid were converted to 1-5 (98%): HRMS Calcd. for C19F13FN4O3: 365.1049, Found 365.1069.
  • Figure US20120178739A1-20120712-C01326
  • 4-(9-Methyl-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino)-benzoic acid (I-9)
  • In a manner similar to that described for Method H, 4-dimethylamino-methylene-8-methyl-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-g) and 4-guanidinobenzoic acid were converted to I-9 (36%): HRMS Calcd. for C20H16N4O3: 361.1300, Found 361.1306.
  • Figure US20120178739A1-20120712-C01327
  • 2-Amino-10-bromo-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-44)
  • In a manner similar to that described in method H, 7-bromo-4-dimethylaminomethylene-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-k) and guanidine were converted to I-44 (79%): HRMS Calcd. for C12H9BrN4O: 305.0037, Found 305.0042.
  • Figure US20120178739A1-20120712-C01328
  • 2-Amino-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepine-10-carboxylic acid (I-84)
  • In a manner similar to Method M, 2-amino-10-bromo-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-44) was converted to I-84 (97%) after purification by C-18 RP LC-MS chromatography. MS (FA) Rt=0.99 min, m/z=271 (M+H).
  • Figure US20120178739A1-20120712-C01329
  • 2-Amino-10-iodo-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-51)
  • In a manner similar to that described in method H, 7-iodo-4-dimethylaminomethylene-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-a) and guanidine were converted to I-51 (79%): HRMS Calcd. for C12H91N4O: 352.9899, Found 352.9900.
  • Figure US20120178739A1-20120712-C01330
  • N-(10-Iodo-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-yl)-benzamide (I-83)
  • 2-Amino-10-iodo-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-51) (69.7 mg, 0.20 mmol) was dissolved in pyridine (800 μL) and benzoyl chloride (23 mL, 0.20 mmol). The mixture was stirred at 110° C. for 1 h, then cooled to 22° C. Et2O was added and the product was filtered from the solution to give I-83 (37%): MS (FA) Rt=1.49 min, m/z=457 (M+H).
  • Example 12 Method M for the Synthesis of Compounds of Formula xii (see Scheme 3)
  • Figure US20120178739A1-20120712-C01331
  • 2-(3,4-Dimethoxy-phenylamino)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepine-9-carboxylic acid (I-53)
  • To a solution of 2-(3,4-dimethoxy-phenylamino)-9-iodo-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-30) (0.60 g, 1.20 mmol) in dry DMF (8 mL) was added Ac2O (0.23 mL, 2.44 mmol), HCOOLi (0.19 g, 3.66 mmol), LiCl (0.155 g, 3.66 mmol), and Pd(OAc)2 (0.01 g, 0.06 mmol). Lastly, i-Pr2NEt (0.42 mL, 2.44 mmol) was added and the mixture heated for 16 h at 80° C. in a sealed tube. The reaction mixture was then diluted with CH2Cl2 (30 mL), and the organic layer was washed with H2O (3×30 mL), dried over MgSO4, filtered and concentrated in vacuo to give crude product as a yellow solid. The solid was treated with EtOAc and sonicated to provide a white solid which was collected by filtration to provide I-53 (0.33 g, 71%): HRMS Calcd. for C21H18N4O5: 407.1355, Found 407.1364.
  • Figure US20120178739A1-20120712-C01332
  • 2-(3,4-Dimethoxy-phenylamino)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepine-10-carboxylic acid (I-43)
  • In a manner similar to Method M, 2-(3,4-dimethoxy-phenylamino)-10-iodo-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-26) was converted to I-43 (100%): HRMS Calcd. for C21H18N4O5: 407.1355, Found 407.1357.
  • Example 13 Method N for the Synthesis of Compounds of Formula xiii and xxix (see Schemes 3 and 7)
  • Figure US20120178739A1-20120712-C01333
  • (2-{[2-(3,4-Dimethoxy-phenylamino)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepine-9-carbonyl]-amino}-ethyl)-carbamic acid tert-butyl ester (I-71-a)
  • To a solution of 2-(3,4-dimethoxy-phenylamino)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepine-9-carboxylic acid (I-53) (75 mg, 0.18 mmol) in DMF (5 mL) was added N,N-diisopropylethylamine (0.10 mL, 0.55 mmol), TBTU (65 mg, 0.20 mmol), and tert-butyl 2-aminoethylcarbamate (35.5 mg, 0.22 mmol). The reaction stirred at 22° C. overnight. The reaction mixture was diluted with H2O, and the precipitate that formed was filtered, washed with H2O and dried to give I-71-a [MS m/z=549 (M+H)] which was carried on crude to the deprotection.
  • Example 14 Method K for Boc-deprotections
  • Figure US20120178739A1-20120712-C01334
  • 2-(3,4-Dimethoxy-phenylamino)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepine-9-carboxylic acid (2-amino-ethyl)-amide (I-71)
  • To a mixture of (2-{[2-(3,4-dimethoxy-phenylamino)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepine-9-carbonyl]-amino}-ethyl)-carbamic acid tert-butyl ester (I-71-a) (0.18 mmol) in 1:1 mixture of CH2Cl2:MeOH (4 mL) was added 4M HCl in dioxane (2 mL). The mixture stirred overnight and was concentrated. The mixture was purified by C-18 RP LC-MS chromatography to give I-71 (17%): HRMS Calcd. for C23H24N6O4: 449.1937, Found 449.1935.
  • Figure US20120178739A1-20120712-C01335
  • 2-(3,4-Dimethoxy-phenylamino)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepine-10-carboxylic acid (3-pyrrolidin-1-yl-propyl)-amide (I-77)
  • In a manner similar to that described in Method N, 2-(3,4-dimethoxy-phenylamino)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepine-10-carboxylic acid (I-43) and 3-(pyrrolidin-1-yl)propan-1-amine were converted to 1-77 (6%) after purification by C-18 RP LC-MS chromatography. HRMS Calcd. for C28H32N6O4: 517.2563, Found 517.2552.
  • Figure US20120178739A1-20120712-C01336
  • 2-(3,4-Dimethoxy-phenylamino)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepine-10-carboxylic acid (3-amino-propyl)-amide (I-76)
  • In a manner similar to that described in Method N, 2-(3,4-dimethoxy-phenylamino)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepine-10-carboxylic acid (I-43) and 3-amino-propyl-carbamic acid tert-butyl ester were converted to (3-{[2-(3,4-dimethoxy-phenylamino)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepine-10-carbonyl]-amino}-propyl)-carbamic acid tert-butyl ester, which was subsequently deprotected (Method K) and purified by C-18 RP LC-MS chromatography to give I-76 (14%): HRMS Calcd. for C24H26N6O4: 463.2093, Found 463.2085.
  • Figure US20120178739A1-20120712-C01337
  • 2-(3,4-Dimethoxy-phenylamino)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepine-10-carboxylic acid (2-pyrrolidin-1-yl-ethyl)-amide (I-75)
  • In a manner similar to that described for Method N, 2-(3,4-dimethoxy-phenylamino)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepine-10-carboxylic acid (I-43) and 2-(pyrrolidin-1-yl)ethanamine were converted to I-75 (6%) after purification by C-18 RP LC-MS chromatography. HRMS Calcd. for C27H30N6O4: 503.2406, Found 503.2399.
  • Figure US20120178739A1-20120712-C01338
  • 10-(4-Amino-piperidine-1-carbonyl)-2-(3,4-dimethoxy-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-74)
  • In a manner similar to that described for Method N, 2-(3,4-dimethoxy-phenylamino)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepine-10-carboxylic acid (I-43) and piperidin-4-yl-carbamic acid tert-butyl ester were converted to {1-[2-(3,4-dimethoxy-phenylamino)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepine-10-carbonyl]-piperidin-4-yl}-carbamic acid tert-butyl ester, which was subsequently deprotected according to Method K. Purification by C-18 RP LC-MS chromatography afforded I-74 (19%): HRMS Calcd. for C26H28N6O4: 489.2250, Found 489.2253.
  • Figure US20120178739A1-20120712-C01339
  • 2-(3,4-Dimethoxy-phenylamino)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepine-10-carboxylic acid (2-pyridin-4-yl-ethyl)-amide (I-48)
  • In a manner similar to that described for Method N, 2-(3,4-dimethoxy-phenylamino)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepine-10-carboxylic acid (I-43) and 2-(pyridin-4-yl)ethanamine were converted I-48 (6%): HRMS Calcd. for C28H26N6O4: 551.2093, Found 511.2098.
  • Figure US20120178739A1-20120712-C01340
  • 4-(10-Bromo-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino)-benzoic acid (I-25)
  • In a manner similar to method I, 7-bromo-4-dimethylaminomethylene-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-k) and 4-guanidinobenzoic acid were converted to 1-25 (22%): HRMS Calcd. for C19H13BrN4O3: 425.0249, Found 425.0269.
  • Figure US20120178739A1-20120712-C01341
  • 10-Bromo-2-(3,4-dimethoxy-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-18)
  • In a manner similar to method I (NaHCO3 used instead of K2CO3), 7-bromo-4-dimethylaminomethylene-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-k) and 1-(3,4-dimethoxyphenyl)-guanidine were converted to 1-18 (74%): HRMS Calcd. for C20H17BrN4O3: 441.0562, Found 441.0548.
  • Figure US20120178739A1-20120712-C01342
  • 10-Bromo-2-(methyl-phenyl-amino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-85)
  • A mixture of 10-bromo-2-methanesulfinyl-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (100 mg) was stirred with N-methyl aniline (1 mL) and refluxed overnight at 150° C. Water was added and the product was extracted with methylene chloride, dried over MgSO4, filtered and concentrated. Purification by C-18 RP LC-MS chromatography afforded 1-85 (10%): MS m/z=395 (M+H).
  • Figure US20120178739A1-20120712-C01343
  • 9-Chloro-2-(3-hydroxymethyl-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]-azepine-6-one (I-79)
  • In a manner similar to method I, 8-chloro-4-((dimethylamino)methylene)-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-j) and 1-(3-(hydroxymethyl)phenyl)-guanidine were converted to 1-79 (51%): HRMS Calcd. for C19H15ClN4O2: 367.0961, Found 367.0973.
  • Figure US20120178739A1-20120712-C01344
  • 9-Chloro-2-(4-chloro-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-11)
  • In a manner similar to that described for method I, 8-chloro-4-dimethylaminomethylene-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-j) and 1-(4-chlorophenyl)guanidine were converted to I-11 (23%): HRMS Calcd. for C18H12Cl2N4O: 371.0466, Found 371.0471.
  • Figure US20120178739A1-20120712-C01345
  • 9-Chloro-2-(3-chloro-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-13)
  • In a manner similar to that described for method I, 8-chloro-4-dimethylaminomethylene-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-j) and 1-(3-chlorophenyl)guanidine were converted to 1-13 (26%): HRMS Calcd. for C18H12Cl2N4O: 371.0466, Found 371.0489.
  • Figure US20120178739A1-20120712-C01346
  • 9-Chloro-2-(2-chloro-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-12)
  • In a manner similar to that described for method I, 8-chloro-4-dimethylaminomethylene-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-j) and 1-(2-chlorophenyl)guanidine were converted to I-12 (26%): HRMS Calcd. for C18H12Cl2N4O: 371.0466, Found 371.0467.
  • Figure US20120178739A1-20120712-C01347
  • 9-Chloro-2-(4-methoxy-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-14)
  • In a manner similar to that described for method I, 8-chloro-4-dimethylaminomethylene-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-j) and 1-(4-methoxyphenyl)guanidine were converted to I-14 (39%): HRMS Calcd. for C19H15ClN4O2: 367.0960, Found 367.0975.
  • Figure US20120178739A1-20120712-C01348
  • 9-Chloro-2-(3-methoxy-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-15)
  • In a manner similar to that described for method I, 8-chloro-4-dimethylaminomethylene-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-j) and 1-(3-methoxyphenyl)guanidine were converted to I-15 (25%): HRMS Calcd. for C19H15ClN4O2: 367.0961, Found 367.0961.
  • Figure US20120178739A1-20120712-C01349
  • 9-Chloro-2-(2-methoxy-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-16)
  • In a manner similar to that described for method I, 8-chloro-4-dimethylaminomethylene-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-j) and 1-(2-methoxyphenyl)guanidine were converted to I-16 (39%): HRMS Calcd. for C19F15ClN4O2: 367.0961, Found 367.0947.
  • Figure US20120178739A1-20120712-C01350
  • N′-(9-Chloro-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-yl)-N,N-dimethyl-guanidine (I-21)
  • In a manner similar to that described for method I, 8-chloro-4-dimethylaminomethylene-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-j) and 1,1-dimethylbiguanidine hydrochloride were converted to I-21 (9%): HRMS Calcd. for C15H15ClN6O: 331.1074, Found 331.1063.
  • Figure US20120178739A1-20120712-C01351
  • 9-Chloro-2-methylamino-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-20)
  • In a manner similar to that described for method I, 8-chloro-4-dimethylaminomethylene-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-j) and N-methylguanidine hydrochloride were converted to I-20 (32%): HRMS Calcd. for C13H11ClN4O: 275.0699, Found 275.0708.
  • Figure US20120178739A1-20120712-C01352
  • 4-(9-Chloro-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino)-butyric acid (I-19)
  • In a manner similar to that described for method I, 8-chloro-4-dimethylaminomethylene-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-j) and 4-guanidino butyric acid were converted to I-19 (6%): HRMS Calcd. for C16H15ClN4O3: 347.091, Found 347.092.
  • Figure US20120178739A1-20120712-C01353
  • 9-Chloro-2-dimethylamino-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-22)
  • In a manner similar to that described for method I, 8-chloro-4-dimethylaminomethylene-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-j) and 1,1-dimethylguanidine sulfate were converted to I-22 (42%): HRMS Calcd. for C14H13ClN4O: 289.0856, Found 289.0843.
  • Figure US20120178739A1-20120712-C01354
  • 10-Chloro-2-(3,4-dimethoxy-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-24)
  • In a manner similar to that described for method I, 7-chloro-4-dimethylaminomethylene-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-d) and N-(3,4-dimethoxyphenyl)guanidine nitrate were converted to I-24 (67%): HRMS Calcd. for C20H17ClN4O3: 397.1067, Found 397.1059.
  • Figure US20120178739A1-20120712-C01355
  • 2-(3,4-Dimethoxy-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-27)
  • In a manner similar to that described for method I, 4-dimethylaminomethylene-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-c) and N-(3,4-dimethoxyphenyl)guanidine nitrate were converted to I-27 (58%): HRMS Calcd. for C20H18N4O3: 363.1457, Found 363.1441.
  • Figure US20120178739A1-20120712-C01356
  • 9-Chloro-2-(2,3-dihydro-benzo[1,4]dioxin-6-ylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-28)
  • In a manner similar to that described for method I, 8-chloro-4-dimethylaminomethylene-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-j) and N-(2,3-dihydro-benzo[1,4]dioxin-6-yl)-guanidine nitrate were converted to I-28 (71%): HRMS Calcd. for C20H15ClN4O3: 395.091, Found 395.0912.
  • Figure US20120178739A1-20120712-C01357
  • 9-Chloro-2-(3,4-dimethyl-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-29)
  • In a manner similar to that described for method I, 8-chloro-4-dimethylaminomethylene-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-j) and N-(3,4-dimethyl-phenyl)-guanidine nitrate were converted to I-29 (59%): HRMS Calcd. for C20H17ClN4O: 365.1169, Found 365.1143.
  • Figure US20120178739A1-20120712-C01358
  • 2-(Benzo[1,3]dioxol-5-ylamino)-9-chloro-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
  • In a manner similar to that described for method I, 8-chloro-4-dimethylaminomethylene-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-j) and N-benzo[1,3]dioxol-5-yl-guanidine nitrate were converted to I-34 (32%): HRMS Calcd. for C19H13ClN4O3: 381.0754, Found 381.0759.
  • Figure US20120178739A1-20120712-C01359
  • 9-Chloro-2-(3,5-dimethyl-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
  • In a manner similar to that described for method I, 8-chloro-4-dimethylaminomethylene-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-j) and N-(3,5-dimethyl-phenyl)-guanidine nitrate were converted to I-35 (71%): HRMS Calcd. for C20H17ClN4O: 365.1169, Found 365.1190.
  • Figure US20120178739A1-20120712-C01360
  • 9-Chloro-2-(4-iodo-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-36)
  • In a manner similar to that described for method I, 8-chloro-4-dimethylaminomethylene-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-j) and N-(4-iodo-phenyl)-guanidine nitrate were converted to I-36 (62%): HRMS Calcd. for C18H12ClIN4O: 462.9822, Found 462.9818.
  • Example 15 Method O for the Synthesis of Compounds of Formula xiv and xxi (see Schemes 3 and 5)
  • Figure US20120178739A1-20120712-C01361
  • 2-(3,4-Dimethoxy-phenylamino)-9-trimethylsilanylethynyl-5H,7H-benzo[b]-pyrimido[4,5-d]azepin-6-one (I-33-a)
  • To a solution of 2-(3,4-dimethoxy-phenylamino)-9-iodo-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-30) (300 mg, 0.614 mmol) in 4 mL DMF at 22° C. was added dichlorobis(triphenylphosphine)palladium (15 mg, 0.02 mmol), copper iodide (9 mg, 0.05 mmol), and triethylamine (0.34 mL, 2.45 mmol). The solution was degassed with argon, and stirred at 22° C. for 1 h. (Trimethylsilyl)acetylene (120 mg, 1.22 mmol) was added and the solution was stirred at 22° C. for 2 h. Water was added to the reaction mixture, and the resulting precipitate was filtered and purified by silica gel chromatography (ISCO, elution with 30-100% ethyl acetate in hexanes) to give I-33-a (180 mg, 64%): MS m/z=459 (M+H).
  • Example 16 Method for Ethynyl Trimethylsilane Deprotection
  • Figure US20120178739A1-20120712-C01362
  • 2-(3,4-Dimethoxy-phenylamino)-9-ethynyl-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-33)
  • To a solution of 2-(3,4-dimethoxy-phenylamino)-9-trimethylsilanyl-ethynyl-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-33-a) (180 mg, 0.39 mmol) in methanol (4 mL) was added potassium carbonate (217 mg, 1.57 mmol). The reaction stirred at 22° C. overnight. The mixture was then concentrated in vacuo, redissolved in water (100 mL) and extracted with methylene chloride (3×100 mL). The organic fractions were combined, washed with brine, dried over Na2SO4 and concentrated in vacuo to give I-33 (50 mg, 99%): HRMS Calcd. for C22H18N4O3: 387.1457, Found 387.1451.
  • Figure US20120178739A1-20120712-C01363
  • 9-Chloro-2-(4-ethynyl-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-45)
  • In a manner similar to that described for Method O, 9-chloro-2-(4-iodo-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-36) and ethynyltrimethylsilane were converted to 9-chloro-2-(4-trimethylsilanylethynyl-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one, which was deprotected in a manner similar to 1-33 to give 1-45 (38%): HRMS Calcd. for C20H13ClN4O: 361.0856, Found 361.0848.
  • Figure US20120178739A1-20120712-C01364
  • 2-[4-(3-Amino-prop-1-ynyl)-phenylamino]-9-chloro-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (HCl salt) (I-46)
  • In a manner similar to that described for Method O, 9-chloro-2-(4-iodo-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-36) and tert-butyl prop-2-ynylcarbamate were converted to {3-[4-(9-chloro-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino)-phenyl]-prop-2-ynyl}-carbamic acid tert-butyl ester, which was deprotected according to Method K to give I-46 (29%): HRMS Calcd. for C21H16ClN5O: 390.1121, Found 390.1120.
  • Figure US20120178739A1-20120712-C01365
  • 9-Chloro-2-[4-(3-pyrrolidin-1-yl-prop-1-ynyl)-phenylamino]-5H,7H-benzo[b]-pyrimido[4,5-d]azepin-6-one (I-47)
  • In a manner similar to that described for Method O, 9-chloro-2-(4-iodo-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-36) and 1-(prop-2-ynyl)pyrrolidine were converted to I-47 (52%): HRMS Calcd. for C25H22ClN5O: 444.1591, Found 444.1589.
  • Figure US20120178739A1-20120712-C01366
  • 9-Chloro-2-[4-(3-hydroxy-prop-1-ynyl)-phenylamino]-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-54)
  • In a manner similar to that described for Method O, 9-chloro-2-(4-iodo-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-36) and prop-2-yn-1-ol were converted to I-54 (86%): HRMS Calcd. for C21H15ClN4O2: 391.0961, Found 391.0960.
  • Figure US20120178739A1-20120712-C01367
  • 9-Chloro-2-(3,5-dimethoxy-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-55)
  • In a manner similar to that described for method I, 8-chloro-4-dimethylaminomethylene-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-j) and N-(3,5-dimethoxy-phenyl)-guanidine nitrate were converted to I-55 (62%): HRMS Calcd. for C20H17ClN4O3: 397.1067, Found 397.1056.
  • Example 17 Method P for the Synthesis of Compounds of Formula xv and xxii (see Schemes 3 and 5)
  • Figure US20120178739A1-20120712-C01368
  • 9-Chloro-2-[4-(3-pyrrolidin-1-yl-propyl)-phenylamino]-5H,7H-benzo[b]pyrimido[4,5-d]-azepin-6-one (I-66)
  • To a solution of 9-chloro-2,4-(3-pyrrolidin-1-yl-prop-1-ynyl)-phenylamino]-5H,7H benzo[b]pyrimido[4,5-d]azepin-6-one (I-47) (0.082 g, 0.19 mmol) in EtOH (5 mL) was added Pd/C (10% wt, ˜50% H2O, 0.01 g) and the mixture was placed under H2 (1 atm) and stirred for 12 h at 22° C. The reaction mixture was filtered through Celite® and the filtrate concentrated in vacuo to give crude product as a yellow oil. Purification by C-18 RP LC-MS chromatography afforded I-66 (0.046 g, 56%): HRMS Calcd. for C25H26ClN5O: 448.1904, Found 448.1907.
  • Figure US20120178739A1-20120712-C01369
  • 2-[4-(3-Amino-propyl)-phenylamino]-9-chloro-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-57)
  • In a manner similar to that described for Method P, 2-[4-(3-amino-prop-1-ynyl)-phenylamino]-9-chloro-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-46) was converted to 1-57 (24%): HRMS Calcd. for C21H20ClN5O: 394.1434, Found 394.1448.
  • Figure US20120178739A1-20120712-C01370
  • 9-Chloro-2-(3-iodo-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-58)
  • In a manner similar to that described for method I, 8-chloro-4-dimethylaminomethylene-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-j) and N-(3-iodo-phenyl)-guanidine nitrate were converted to 1-58 (50%): HRMS Calcd. for C18H12ClIN4O: 462.9822, Found 462.9838.
  • Figure US20120178739A1-20120712-C01371
  • 9-Chloro-2-(3-hydroxy-4-methoxy-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-65)
  • In a manner similar to that described for method I, 8-chloro-4-dimethylaminomethylene-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-j) and N-(3-hydroxy-4-methoxy-phenyl)-guanidine nitrate were converted to I-65 (69%): HRMS Calcd. for C19H15ClN4O3: 383.091, Found 383.0913.
  • Figure US20120178739A1-20120712-C01372
  • 2-[3-(3-Amino-prop-1-ynyl)-phenylamino-1-9-chloro-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-67)
  • In a manner similar to that described for Method O, 9-chloro-2-(3-iodo-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-58) and tert-butyl prop-2-ynylcarbamate was converted to {3-[3-(9-chloro-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino)-phenyl]-prop-2-ynyl}-carbamic acid tert-butyl ester, which was subsequently deprotected according to Method K to give I-67 (62%): HRMS Calcd. for C21H16ClN5O: 390.1121, Found 390.1117.
  • Figure US20120178739A1-20120712-C01373
  • [3-(9-Chloro-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino)-phenyl]-acetonitrile (I-78)
  • In a manner similar to that described for method I, 8-chloro-4-dimethylaminomethylene-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-j) and N-(3-cyanomethyl-phenyl)-guanidine nitrate were converted to I-78 (6%): HRMS Calcd. for C20H14ClN5O: 376.0965, Found 376.0994.
  • Figure US20120178739A1-20120712-C01374
  • 9-Chloro-2-[3-(2-hydroxy-ethyl)phenylamino]-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-80)
  • In a manner similar to that described for method I, 8-chloro-4-dimethylaminomethylene-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-j) and N-[3-(2-hydroxy-ethyl)-phenyl]-guanidine nitrate were converted to I-80 (65%): HRMS Calcd. for C20H17ClN4O2: 381.1118, Found 381.1126.
  • Figure US20120178739A1-20120712-C01375
  • 9-Chloro-2-[3-(3-pyrrolidin-1-yl-prop-1-ynyl)-phenylamino]-5H,7H-benzo[b]-pyrimido[4,5-d]azepin-6-one (I-89)
  • In a manner similar to that described for Method O, 9-chloro-2-(3-iodo-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (v-j) and 1-(prop-2-ynyl)pyrrolidine were converted to I-89 (46%): MS (AA) Rt=1.32 min, m/z=444 (M+H).
  • Figure US20120178739A1-20120712-C01376
  • 3-(9-Chloro-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino)-benzonitrile (I-90)
  • In a manner similar to that described for method I, 8-chloro-4-dimethylaminomethylene-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-j) and N-(3-cyano-phenyl)-guanidine nitrate were converted to I-90 (58%): MS (AA) Rt=1.79 min, m/z=362 (M+H).
  • Example 18 Method R for the Reduction of Nitriles
  • Figure US20120178739A1-20120712-C01377
  • 2-[3-(2-Amino-ethyl)phenylamino-1-9-chloro-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-86)
  • To a solution of [3-(9-chloro-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino)-phenyl]-acetonitrile (I-78) (0.131 g, 0.349 mmol) in saturated NH3 in MeOH solution (50 mL) was added a catalytic amount of Raney 2800 Ni in H2O and the mixture was placed under H2 (50 psi) and stirred for 12 h at 22° C. The reaction mixture was filtered through Celite® and the filtrate concentrated in vacuo to give crude product as a yellow oil. Purification by C-18 RP LC-MS chromatography afforded I-86 (0.019 g, 14%): MS (AA) Rt=1.25 min, m/z=380 (M+H).
  • Figure US20120178739A1-20120712-C01378
  • 2-(3,4-Dimethoxy-phenylamino)-9-iodo-5H,7H-benzolblpyrimido[4,5-d]azepin-6-one (I-30)
  • In a manner similar to that described for method H, 4-dimethylaminomethylene-8-iodo-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-b) was converted to I-30 (84%): HRMS Calcd. for C20H17IN4O3: 489.0423, Found 489.0443.
  • Figure US20120178739A1-20120712-C01379
  • 2-(3,4-Dimethoxy-phenylamino)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepine-9-carboxylic acid amide (I-70)
  • In a manner similar to that described for Method N, 2-(3,4-dimethoxy-phenylamino)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepine-9-carboxylic acid (I-53) and NH3 gas were converted to 2-(3,4-dimethoxy-phenylamino)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepine-9-carboxylic acid amide. The mixture was purified by C-18 RP LC-MS chromatography to afford pure I-70 (6%): HRMS Calcd. for C21H19N5O4: 406.1515, Found 406.1519.
  • Figure US20120178739A1-20120712-C01380
  • 2-(3,4-Dimethoxy-phenylamino)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepine-9-carboxylic acid (3-amino-propyl)-amide (I-72)
  • In a manner similar to that described for Method N, 2-(3,4-dimethoxy-phenylamino)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepine-9-carboxylic acid (I-53) and tert-butyl 4-aminopropylcarbamate were converted to (2-{[2-(3,4-dimethoxy-phenylamino)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepine-9-carbonyl]-amino}-ethyl)-carbamic acid tert-butyl ester, which was subsequently deprotected (Method K) to give I-72 (30%): HRMS Calcd. for C24H26N6O4: 463.2093, Found 463.2078.
  • Figure US20120178739A1-20120712-C01381
  • 2-(3,4-Dimethoxy-phenylamino)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepine-9-carboxylic acid (4-amino-butyl)-amide (I-73)
  • In a manner similar to that described Method N, 2-(3,4-dimethoxy-phenylamino)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepine-9-carboxylic acid (I-53) and tert-butyl 4-aminobutylcarbamate were converted to (2-{[2-(3,4-dimethoxy-phenylamino)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepine-9-carbonyl]-amino}-ethyl)-carbamic acid tert-butyl ester, which was subsequently deprotected (Method K) to give I-73 (25%): HRMS Calcd. for C25H28N6O4: 477.2250, Found 477.2250.
  • Figure US20120178739A1-20120712-C01382
  • 3-(9-Chloro-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino)-benzoic acid (I-62-a)
  • In a manner similar to method I, 8-chloro-4-((dimethylamino)methylene)-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-j) and 3-guanidino-benzoic acid were converted to I-62-a (72%): MS m/z=381 (M+H).
  • Figure US20120178739A1-20120712-C01383
  • N-(2-Amino-ethyl)-3-(9-chloro-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino)-benzamide (I-62)
  • In a manner similar to Method N, 3-(9-chloro-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino)-benzoic acid (I-62-a) and tert-butyl 4-aminoethylcarbamate were converted to {3-[3-(9-chloro-6-oxo-6,7-dihydro-H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino)-benzoylamino]-ethyl}-carbamic acid tert-butyl ester. Subsequent deprotection (Method K) and purification by C-18 RP LC-MS chromatography afforded I-62 (13%): HRMS Calcd. for C21H19ClN6O2: 423.1336, Found 423.1346.
  • Figure US20120178739A1-20120712-C01384
  • N-(3-Amino-propyl)-3-(9-chloro-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino)-benzamide (I-63)
  • In a manner similar to Method N, 3-(9-chloro-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino)-benzoic acid (I-62-a) and tert-butyl 4-aminopropylcarbamate were converted to {3-[3-(9-chloro-6-oxo-6,7-dihydro-H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino)-benzoylamino]-propyl}-carbamic acid tert-butyl ester. Subsequent deprotection (Method K) and purification by C-18 RP LC-MS chromatography afforded I-63 (16%): HRMS Calcd. for C22H21ClN6O2: 437.1492, Found 437.1480.
  • Figure US20120178739A1-20120712-C01385
  • N-(4-Amino-butyl)-3-(9-chloro-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino)-benzamide (I-64)
  • In a manner similar to Method N, 3-(9-chloro-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino)-benzoic acid (I-62-a) and tert-butyl 4-aminobutylcarbamate were converted to {4-[3-(9-chloro-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino)-benzoylamino]-butyl}-carbamic acid tert-butyl ester. Subsequent deprotection (Method K) and purification by C-18 RP LC-MS chromatography afforded I-64 (10%): HRMS Calcd. for C23H23ClN6O2: 451.1649, Found 451.1668.
  • Figure US20120178739A1-20120712-C01386
  • 9-Chloro-2-(3,4-dimethoxybenzyl)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-17)
  • In a manner similar to method I, 8-chloro-4-((dimethylamino)methylene)-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-j) and 1-(3,4-dimethoxybenzyl)guanidine were converted to I-17 (41%): HRMS Calcd. for C21H19ClN4O3: 411.1223, Found 411.1241.
  • Figure US20120178739A1-20120712-C01387
  • 2-(3,4-Dimethoxy-phenylamino)-9-ethyl-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-37)
  • In a manner similar to that described for Method P, 2-(3,4-dimethoxy-phenylamino)-9-ethynyl-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (1-33) was converted to 1-37 (23%): HRMS Calcd. for C22H22N4O3: 391.1770, Found 391.1796.
  • Figure US20120178739A1-20120712-C01388
  • 2-(3,4-Dimethoxy-phenylamino)-9-(3-pyrrolidin-1-yl-prop-1-ynyl)-5H,7H benzo[b]pyrimido[4,5-d]azepin-6-one (I-32)
  • In a manner similar to that described above for Method O, 2-(3,4-dimethoxy-phenylamino)-9-iodo-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-30) and 1-(prop-2-ynyl)pyrrolidine were converted to I-32 (42%): HRMS Calcd. for C27H27N5O3: 470.2192, Found 470.2192.
  • Figure US20120178739A1-20120712-C01389
  • 2-(3,4-Dimethoxy-phenylamino)-9-(3-pyrrolidin-1-yl-propyl)-5H,7H-benzo[b]-pyrimido[4,5-d]azepin-6-one (HCl) (I-49)
  • In a manner similar to that described above for Method P, dimethoxy-phenylamino)-9-(3-pyrrolidin-1-yl-prop-1-ynyl)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (1-32) was converted to 2-(3,4-dimethoxy-phenylamino)-9-(3-pyrrolidin-1-yl-propyl)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one, which was then converted to the HCl salt as described in Method K to give I-49 (9%): HRMS Calcd. for C27H31N5O3: 474.2505, Found 474.2491.
  • Figure US20120178739A1-20120712-C01390
  • {3-[2-(3,4-Dimethoxy-phenylamino)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-9-yl]-prop-2-ynyl}-carbamic acid tert-butyl ester (I-39)
  • In a manner similar to that described for Method O, 2-(3,4-dimethoxy-phenylamino)-9-iodo-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-30) and tert-butyl prop-2-ynylcarbamate were converted to I-39 (31%): HRMS Calcd. for C28H29N5O5: 516.2246, Found 516.2244.
  • Figure US20120178739A1-20120712-C01391
  • 9-(3-Amino-prop-1-ynyl)-2-(3,4-dimethoxy-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (HCl) (I-38)
  • In a manner similar to that described for Method K, {3-[2-(3,4-dimethoxy-phenylamino)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-9-yl]-prop-2-ynyl}-carbamic acid tert-butyl ester (I-39) was converted to the HCl salt of I-38 (30%): HRMS Calcd. for C23H21N5O3: 416.1720, Found 416.1722.
  • Figure US20120178739A1-20120712-C01392
  • 9-(3-Amino-propyl)-2-(3,4-dimethoxy-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-50)
  • In a manner similar to that described for Method P, {3-[2-(3,4-dimethoxy-phenylamino)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-9-yl]-prop-2-ynyl}-carbamic acid tert-butyl ester (I-39) was converted to {3-[2-(3,4-dimethoxy-phenylamino)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-9-yl]-propyl}-carbamic acid tert-butyl ester (I-41: HRMS Calcd. for C28H33N5O5: 520.2559, found 520.2551), which was subsequently deprotected (Method K) to give I-50 (80%) HRMS Calcd. for C23H25N5O3: 420.2035, Found 420.2045.
  • Figure US20120178739A1-20120712-C01393
  • 2-(3,4-Dimethoxy-phenylamino)-9-(3-hydroxy-prop-1-ynyl)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-52)
  • In a manner similar to that described for Method O, 2-(3,4-dimethoxy-phenylamino)-9-iodo-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-30) and prop-2-yn-1-ol were converted to I-52 (38%): HRMS Calcd. for C23H20N4O4: 417.1562, Found 417.1551.
  • Figure US20120178739A1-20120712-C01394
  • 2-(3,4-Dimethoxy-phenylamino)-9-(3-hydroxy-propyl)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-81) and 2-(3,4-Dimethoxy-phenylamino)-9-propyl-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-82)
  • In a manner similar to that described for Method P (50 psi H2), 2-(3,4-dimethoxy-phenylamino)-9-(3-hydroxy-prop-1-ynyl)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (1-52) was converted to I-81 (8% yield): HRMS Calcd. for C23H24N4O4: 421.1875, Found 421.1881 and I-82 (8% yield) HRMS Calcd. for C23H24N4O3: 405.1926, Found 405.1930. The two compounds were separated by column chromatography in 0%-10% MeOH/CH2Cl2.
  • Figure US20120178739A1-20120712-C01395
  • 2-(3,4-Dimethoxy-phenylamino)-9-(3-dimethylamino-prop-1-ynyl)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-91)
  • In a manner similar to that described for Method O, 2-(3,4-dimethoxy-phenylamino)-9-iodo-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (1-30) and N,N-dimethylprop-2-yn-1-amine were converted to 2-(3,4-dimethoxy-phenylamino)-9-(3-dimethylamino-prop-1-ynyl)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one, which was purified by C-18 RP LC-MS chromatography to afford pure I-91 (16%): MS (FA) Rt=0.98 min, m/z=444 (M+H).
  • Figure US20120178739A1-20120712-C01396
  • 2-(3,4-Dimethoxy-phenylamino)-9-(3-dimethylamino-propyl)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-88)
  • In a manner similar to that described for Method P, 2-(3,4-dimethoxy-phenylamino)-9-(3-dimethylamino-prop-1-ynyl)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-91) was converted to I-88 (72%): MS Rt=1.01 min, m/z=448 (M+H).
  • Figure US20120178739A1-20120712-C01397
  • 2-(3,4-Dimethoxy-phenylamino)-9-(3-methylamino-propyl)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (HCl) (I-87)
  • In a manner similar to that described for Method O, 2-(3,4-dimethoxy-phenylamino)-9-iodo-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-30) and N-methylprop-2-yn-1-amine were converted to 2-(3,4-dimethoxy-phenylamino)-9-(3-methylamino-prop-1-ynyl)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one. The crude product (unstable) was carried on in a similar manner to that described for Method P to give I-87, which was converted to the HCl salt (40%): MS Rt=0.98 min, m/z=434 (M+H).
  • Example 19 Method Q for the Preparation of Compounds of Formula xvi
  • Figure US20120178739A1-20120712-C01398
  • 2-(3,4-Dimethoxy-phenylamino)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepine-9-carbonitrile (I-92)
  • To a solution of 2-(3,4-dimethoxy-phenylamino)-9-iodo-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-30) (100 mg, 0.210 mmol) in 4 mL anhydrous DMF at room temperature was added zinc cyanide (14 mg, 0.120 mmol), tris(dibenzylideneacetone)dipalladium (9.5 mg, 0.01 mmol), 1,1′-bis(diphenyl-phosphino)ferrocene (14.0 mg, 0.02 mmol) and a drop of H2O. The solution was degassed with argon then stirred at 1° C. for 16 h. The solution was allowed to cool to 22° C., then diluted with EtOAc and saturated aqueous sodium bicarbonate. The organic layer was then washed with H2O and brine, dried over Na2SO4, and concentrated in vacuo. The product was recrystallized in methanol and CH2Cl2 to give I-92 (92%): MS Rt=2.49 min, m/z=388 (M+H).
  • Figure US20120178739A1-20120712-C01399
  • 2-(3,4-Dimethoxy-phenylamino)-10-(3-pyrrolidin-1-yl-prop-1-ynyl)-5H,7H-benzo pyrimido[4,5-d]azepin-6-one (I-31)
  • In a manner similar to Method O, 2-(3,4-dimethoxy-phenylamino)-10-iodo-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (1-26) and 1-(prop-2-ynyl)pyrrolidine were converted to I-31 (29%): HRMS Calcd. for C27H27N5O3: 470.2192, Found 470.2185.
  • Figure US20120178739A1-20120712-C01400
  • 2-(3,4-Dimethoxy-phenylamino)-10(3-pyrrolidin-1-yl-propyl)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-56)
  • In a manner similar to Method P, 2-(3,4-dimethoxy-phenylamino)-10-(3-pyrrolidin-1-yl-prop-1-ynyl)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-31) was converted to I-56 (42%): HRMS Calcd. for C27H31N5O3: 474.2505, Found 474.2498.
  • Figure US20120178739A1-20120712-C01401
  • 10-(3-Amino-prop-1-ynyl)-2-(3,4-dimethoxy-phenylamino)-5H,7H-benzo[b]-pyrimido[4,5-d]azepin-6-one (HCl) (I-59)
  • In a manner similar to Method O, 2-(3,4-dimethoxy-phenylamino)-10-iodo-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-26) and tert-butyl prop-2-ynylcarbamate were converted to {3-[2-(3,4-dimethoxy-phenylamino)-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-10-yl]-prop-2-ynyl}-carbamic acid tert-butyl ester. Subsequent deprotection (Method K) and purification by C-18 RP LC-MS chromatography afforded the HCl salt of I-59 (24%): HRMS Calcd. for C23H21N5O3: 416.1722, Found 416.1725.
  • Figure US20120178739A1-20120712-C01402
  • 10-(3-Amino-propyl)-2-(3,4-dimethoxy-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-60)
  • In a manner similar to Method P, 10-(3-amino-prop-1-ynyl)-2-(3,4-dimethoxy-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (1-59) was converted to I-60 (41%): HRMS Calcd. for C23H25N5O3: 420.2035, Found 420.2043.
  • Figure US20120178739A1-20120712-C01403
  • 2-(3,4-Dimethoxy-phenylamino)-9-methyl-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-42)
  • In a manner similar to method 1,4-((dimethylamino)methylene)-8-methyl-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-g) and 1-(3,4-dimethoxyphenyl)guanidine were converted to I-42 (57%): HRMS Calcd. for C21H20N4O3: 377.1613, Found 377.1613.
  • Figure US20120178739A1-20120712-C01404
  • 9-Chloro-2-phenylamino-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-61)
  • To a solution of 2-amino-9-chloro-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-23) (148 mg, 0.568 mmol), 1-bromobenzene (0.072 mL, 0.681 mmol), Cs2CO3 (333 mg, 1.02 mmol), and BINAP (53 mg, 0.085 mmol) in 4 mL toluene was added Pd(OAc)2 (12.8 mg, 0.057 mmol), and the reaction was stirred at 100° C. for 12 h. The reaction mixture was then treated with H2O and extracted with CH2Cl2 (2×30 mL). The organic fractions were combined, filtered, dried over MgSO4 and concentrated in vacuo to give an orange oil which was purified by C-18 RP LC-MS chromatography to afford I-61 (0.9%): HRMS Calcd. for C18H13ClN4O: 337.0856, Found 337.0853.
  • Figure US20120178739A1-20120712-C01405
  • 2-Amino-9-chloro-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-23)
  • In a manner similar to that described for method I (NaHCO3 used instead of K2CO3), guanidine hydrochloride and 8-chloro-4-((dimethylamino)methylene)-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (v-j) were converted to I-23 (72%): HRMS Calcd. for C12H9ClN4O: 261.0543, Found 261.0543.
  • Figure US20120178739A1-20120712-C01406
  • 8-Chloro-1-(3-(1,3-dioxoisoindolin-2-yl)propyl)-3,4-dihydro-1H-benzo[b]azepine-2,5-dione(I-40-a)
  • To a stirring solution of 8-chloro-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (iv-j) (1.2 g, 5.7 mmol) in DMF (75 mL) was added cesium carbonate (5.63 g, 17.3 mmol) and 2-(3-bromopropyl)isoindoline-1,3-dione (1.7 g, 6.34 mmol). The solution was stirred at room temperature for 12 h and then sodium iodide (100 mg) was added. The reaction was stirred at room temperature for 72 h. The solution was then diluted with dichloromethane and washed with water. The organics were dried over magnesium sulfate and concentrated. Column chromatography (1:1 ethyl acetate/hexanes) yielded I-40-a which was carried on crude: MS m/z=397 (M+H).
  • Figure US20120178739A1-20120712-C01407
  • 8-Chloro-4-((dimethylamino)methylene)-1-(3-(1,3-dioxoisoindolin-2-yl)propyl)-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (I-40-b)
  • In a manner similar to that described for method G, 8-chloro-1-(3-(1,3-dioxoisoindolin-2-yl)propyl)-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (I-40-a) and DMF-DMA were converted to I-40-b and carried on crude: MS m/z=452 (M+H).
  • Figure US20120178739A1-20120712-C01408
  • 2-{3-[9-Chloro-2-(3,4-dimethoxy-phenylamino)-6-oxo-5,6-dihydro benzo[b]pyrimido[4,5-d}azepin-7-yl]-propyl]-isoindole-1,3-dione(I-40-c)
  • In a manner similar to that described for method I (NaHCO3 used instead of K2CO3), 1-(3,4-dimethoxyphenyl)guanidine and 8-chloro-4-((dimethylamino)-methylene)-1-(3-(1,3-dioxoisoindolin-2-yl)propyl)-3,4-dihydro-1H-benzo[b]azepine-2,5-dione (I-40-b) were converted to I-40-c and carried on crude: MS m/z=584 (M+H).
  • Figure US20120178739A1-20120712-C01409
  • 7-(3-Amino-propyl)-9-chloro-2-(3,4-dimethoxy-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-40)
  • To a stirring solution of 2-{3-[9-chloro-2-(3,4-dimethoxy-phenylamino)-6-oxo-5,6-dihydrobenzo[b]pyrimido[4,5-d]azepin-7-yl]-propyl}-isoindole-1,3-dione (I-40-c) (51 mg, 0.09 mmol) in ethanol (1.5 mL) was added methylamine (40% by wt in H2O, 0.5 mL). After stirring for 2.5 h at room temperature, the solution was diluted with dichloromethane and washed with water. The organics were dried over magnesium sulfate and concentrated. Preparative HPLC gave I-40: MS Rt=1.32 min. m/z=454 (M+H).
  • Figure US20120178739A1-20120712-C01410
  • 9-Chloro-2-methanesulfonyl-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one(I-14-a)
  • Sodium ethoxide (340 mL, 1.05 mmol) and S-methyl-isothiourea-hemisulfate (146 mg, 1.05 mmol) was suspended in absolute EtOH (3 mL). The suspension was stirred for 1 h, then the Na2SO4 was removed by filtration. The filtrate was then added to enamine v-j (253 mg, 0.956 mmol) in absolute EtOH (1 mL). The reaction mixture was microwaved at 160° C. for 20 min. EtOH was removed and the remaining solid was treated with water. The resulting precipitate was filtered, washed with water and ether, and dried to give 243 mg of the crude sulfide (87% crude).
  • To a suspension of crude sulfide (96 mg, 0.33 mmol) in anhydrous CH2Cl2 (6.5 mL) was added MCPBA (342 mg, 1.98 mmol). After the reaction was stirred at 22° C. for 12 h, the reaction mixture was washed with 1N NaOH (0.35 mL) and water (15 mL). The aqueous layer was extracted with CH2Cl2 and then EtOAc. The combined organic layers were dried (MgSO4), concentrated and chromatographed to give 63 mg of pale yellow solid I-14-a (51% over two steps). MS 324/326 (M+H).
  • Example 20 Method J for the Preparation of Compounds of Formula vi
  • Figure US20120178739A1-20120712-C01411
  • 9-Chloro-2-(4-trifluoromethoxy-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one
  • In a glovebox, to a vial containing 4-(trifluoromethoxy)aniline (531 mg, 3 mmol) in THF (0.8 mL) and toluene (2.4 mL), was slowly added 2M solution of AlMe3 in toluene (1.5 mL, 3 mmol). The solution was stirred at 50° C. for 2 h. The resulting solution was then added to a vial containing sulfone viii (97 mg, 0.3 mmol). The reaction mixture was stirred at 60° C. overnight, and then concentrated. A fine suspension of KF (192 mg, 3.3 mmol) in DCM (1.6 mL) was added to the dried residue in the vial, followed by H2O (0.05 mL). The suspension was sonicated for 20 min, and then a spatula-full of Celite® was added to the vial, followed by another 20 min of sonication. The suspension was filtered and washed with EtOAc and MeOH, and the filtrate was evaporated. To the resulting residue was added DCM (10 mL) and DMF (5 mL), PL-CHO resin (Polymer Laboratories, Inc., Amherst, Mass.) (2.4 g, 7.2 mmol), and 1M AcOH in DCM (0.72 mL, 0.72 mmol). The resin mixture was shaken at rt overnight. The resin was filtered off and the filtrate was concentrated. The resulting mixture was purified by C-18 RP LC-MS chromatography to provide 9-Chloro-2-(4-trifluoro-methoxyphenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (25.5%): 1H NMR (300 MHz, acetone-d6): δ 8.53 (s, 1H), 8.18 (d, J=9.0 Hz, 1H), 8.05 (d, J=9.0 Hz, 1H), 8.03-8.06 (m, 1H), 7.38-7.41 (m, 2H), 7.28-7.31 (m, 2H), 3.49 (s, 2H), 2.84 (br. s, 1H); MS m/z=421 (M+H).
  • Figure US20120178739A1-20120712-C01412
  • Example 21 Method J for the Preparation of Compounds of Formula vi—Library Synthesis
  • To each vial containing sulfone viii (48 mg, 0.15 mmol), was added 0.2M solution of an amine in THF/toluene (1:1) (0.3-0.6 mmol). For insoluble amines, DMF (0.2 mL to 1.6 mL) was added; and for amine salts, Hunig's base was added to neutralize the amine. Hunig's base (0.15 mL) was added to the solution. The solutions were shaken at 70° C. overnight. The reaction mixtures were concentrated, and the residues were dissolved in DCM (1.0 mL) and DMF (1.0 mL). PL-CHO resins (Polymer Laboratories, Inc., Amherst, Mass.) (400 mg, 1.2 mmol), and 1M AcOH in DCM (0.12 mL, 0.12 mmol) were added to the solution. The resin mixtures were shaken at rt overnight. The resins were filtered off and the filtrates were concentrated. Each resulting residue was purified by reverse phase HPLC using an Agilent HPLC equipped with a SunFire™ column (Waters Corporation), Method Formic Acid.
  • Figure US20120178739A1-20120712-C01413
  • 9-Chloro-2-{[2-(1H-imidazol-5-yl)ethyl]amino}-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-one (I-236)
  • To a vial containing sulfone viii (48 mg, 0.15 mmol), was added 0.2M solution of 2-(4-imidazolyl)ethylamine in THF/toluene (1:1) (0.15-0.30 mL, 0.3-0.6 mmol). Hunig's base (0.15 mL) was added to the solution. The solution was shaken at 70° C. overnight. The reaction mixture was concentrated, and the residue was dissolved in DCM (1.0 mL) and DMF (1.0 mL). PL-CHO resins (400 mg, 1.2 mmol), and 1M AcOH in DCM (0.12 mL, 0.12 mmol) were added to the solution. The resin mixture was shaken at room temperature overnight. The resins were filtered off and the filtrate was concentrated. The resulting residue was purified by RP-HPLC using an Agilent HPLC equipped with a SunFire™ column (Waters Corporation), Method Formic Acid, to give compound I-236 (47.0%): 1H NMR (300 MHz, CD3OD): δ 8.29-7.98 (m, 4H), 7.28-7.06 (m, 4H), 3.68 (br. t., 2H), 3.28 (s, 2H), 2.93 (br. t, 2H); MS m/z=355 (M+H).
  • Example 22 Method S for Guanidine Synthesis
  • Figure US20120178739A1-20120712-C01414
  • 1-(3,4-Dimethoxyphenyl)guanidine (HNO3 salt) (xix-a)
  • To a vigorously stirred solution of 3,4-dimethoxyaniline (15.3 g, 0.1 mol) in EtOH (60 mL) at 0° C. was added nitric acid (69%, 9.0 mL, 0.1 mol) dropwise. A solution of cyanamide (4.6 g, 0.1 mol) in H2O (8.5 mL) was added and the solution was heated at reflux for 3 h. The mixture was then diluted with EtOH (50 mL), cooled to 4° C. The resulting golden needles were collected and dried in vacuo to provide xix-a as the nitric acid salt (14.7 g, 57%): MS m/z=196 (M+H).
  • Figure US20120178739A1-20120712-C01415
  • 3-Guanidino-benzoic Acid (HNO3 Salt)(xix-b)
  • In a manner similar to that described for method S, 3-amino-benzoic acid was converted to xix-b (78%): MS m/z=178 (M−H).
  • Figure US20120178739A1-20120712-C01416
  • N-(2,3-Dihydro-benzo[1,4]dioxin-6-yl)-guanidine (HNO3 salt) (xix-c)
  • In a manner similar to that described in method S, 2,3-dihydro-benzo[1,4]dioxin-6-ylamine was converted to xix-c (23%): MS m/z=194 (M−H).
  • Figure US20120178739A1-20120712-C01417
  • N-(3,4-Dimethyl-phenyl)-guanidine (HNO3 salt) (xix-d)
  • In a manner similar to that described in method S, 3,4-dimethyl-phenylamine was converted to xix-d (31%): MS m/z=164 (M−H).
  • Figure US20120178739A1-20120712-C01418
  • N-(3,5-Dimethyl-phenyl)-guanidine (HNO3 salt) (xix-e)
  • In a manner similar to that described in method S, 3,5-dimethyl-phenylamine was converted to xix-e (20%): MS m/z=164 (M−H).
  • Figure US20120178739A1-20120712-C01419
  • N-(3,5-Dimethoxy-phenyl)-guanidine (HNO3 salt) (xix-f)
  • In a manner similar to that described in method S, 3,5-dimethoxy-phenylamine was converted to xix-f (39%): MS m/z=196 (M−H).
  • Figure US20120178739A1-20120712-C01420
  • N-(4-Iodo-phenyl)-guanidine (HNO3 salt) (xix-g)
  • In a manner similar to that described in method S, 4-iodo-phenylamine was converted to xix-g (99%): MS m/z=262 (M−H).
  • Figure US20120178739A1-20120712-C01421
  • N-(3-Iodo-phenyl)-guanidine (HNO3 salt) (xix-h)
  • In a manner similar to that described in method S, 3-iodo-phenylamine was converted to xix-h (42%): MS m/z=262 (M−H).
  • Figure US20120178739A1-20120712-C01422
  • N-(3-Hydroxy-4-methoxy-phenyl)-guanidine (HNO3 salt) (xix-i)
  • In a manner similar to that described in method S, 5-amino-2-methoxy-phenol was converted to xix-i (27%): MS m/z=182 (M−H).
  • Figure US20120178739A1-20120712-C01423
  • N-Benzo[1,3]dioxol-5-yl-guanidine (HNO3 salt) (xix-i)
  • In a manner similar to that described in method S, benzo[1,3]dioxol-5-ylamine was converted to xix-j (59%): MS m/z=180 (M−H).
  • Figure US20120178739A1-20120712-C01424
  • 1-(3-(Hydroxymethyl)phenyl)guanidine (HNO3 salt) (xix-k)
  • In a manner similar to that described for method S, (3-aminophenyl)-methanol was converted to xix-k: MS m/z=166 (M−H).
  • Example 23 Method V for Nitro-group Reduction
  • Figure US20120178739A1-20120712-C01425
  • (3-Amino-phenyl)-acetonitrile (xix-1-1)
  • To a solution of 3-nitro-phenyl-acetonitrile (3.20 g, 19.7 mmol) in MeOH (50 mL) was added Pd/C (10% wt, ˜50% H2O, 0.32 g) and the mixture was placed under H2 (80 psi) and stirred for 2 days at 22° C. The reaction mixture was filtered through Celite® and the filtrate concentrated in vacuo to give crude product as a yellow oil. The residue was purified by silica gel chromatography (ISCO, elution with 0-10% ethyl acetate in hexanes) to give xix-l-1 (1.15 g, 44%): MS m/z=133 (M−H).
  • Figure US20120178739A1-20120712-C01426
  • N-(3-Cyanomethyl-phenyl)-guanidine (HNO3 salt) (xix-l)
  • In a manner similar to that described in method S, 3-amino-phenyl-acetonitrile was converted to xix-l (81%): MS m/z=175 (M−H).
  • Figure US20120178739A1-20120712-C01427
  • 2-(3-Amino-phenyl)-ethanol (xix-m-1)
  • In a manner similar to that described for method V, 2-(3-nitrophenyl)-ethanol was converted to xix-m-1 (89%): MS m/z=138 (M−H).
  • Figure US20120178739A1-20120712-C01428
  • N-[3-(2-Hydroxy-ethyl)-phenyl]-guanidine (HNO3 salt) (xix-m)
  • In a manner similar to that described in method S, 2-(3-amino-phenyl)-ethanol was converted to xix-m: MS m/z=180 (M−H).
  • Figure US20120178739A1-20120712-C01429
  • N-(3-Cyano-phenyl)-guanidine (HNO3 salt) (xix-n)
  • In a manner similar to that described in method S, 3-amino-benzonitrile was converted to xix-n (42%): MS m/z=161 (M−H).
  • Example 24 Method T for Guanidine Synthesis
  • Figure US20120178739A1-20120712-C01430
  • 1-(3,4-Dimethoxybenzyl)guanidine (H2SO3 salt) (xix-o)
  • Formamidinesulfinic acid (2.65 g, 24.5 mmol) was dissolved in acetic acid (8.3 mL) and cooled to 10° C. Peracetic acid (5.7 mL, 27 mmol) was slowly added to the cooled solution. After addition was complete, the reaction was warmed slowly to 22° C. and stirred for 3 h. The solid was filtered and washed with ethanol (200 proof) then dried in vacuo to give an unstable intermediate 2.44 g (80%). The intermediate was dissolved in mixture of CH3CN (5 mL) and MeOH (10 mL). Then (3,4-dimethoxy-phenyl)methanamine (1.27 mL, 8.39 mmol) was added slowly and stirred at 22° C. The reaction was stirred for 12 h and then concentrated in vacuo to give xix-o (2.44 g, 99%).
  • Figure US20120178739A1-20120712-C01431
  • 4-Guanidino-benzoic acid methyl ester (HCl salt) (xix-p)
  • 4-guanidine-benzoic acid (1.12 g) was dissolved in anhydrous methanol (25 mL) and HCl in diethyl ether was added (1M; 800 μL). The mixture was heated in a sealed tube for 16 hours. Solvents were removed under reduced pressure to provide xix-p as a white solid (1.17 g, 99%).
  • Example 25 Method U for Guanidine Synthesis
  • Figure US20120178739A1-20120712-C01432
  • N-(3,4-dimethylisoxazol-5-yl)guanidine (trifluoroacetic acid salt) (xix-187)
  • To PS-carbodiimide resin (Argonaut Technologies) (1.069 g, 1.71 mmol, 1.6 mmol/g) placed in a 20 mL vial was added anhydrous 1,2-dichloroethane (6.0 mL), N,N′-bis(tert-butoxycarbonyl)thiourea (235 mg, 0.85 mmol) in anhydrous 1,2-dichloroethane (2.0 mL), and 5-amino-3,4-dimethylisoxazole (63.9 mg, 0.57 mmol) solution or dispersion in anhydrous 1,2-dichloroethane (1.0 mL). The reaction mixture was shaken at 50° C. until the reaction completed, typically for 36 hours. The reaction mixture was brought to room temperature and PS-trisamine (317 mg, 1.14 mmol, 3.6 mmol/g) was added. The reaction mixture was shaken at room temperature for 24 hours. The resin was removed by filtration and washed with 1,2-dichloroethane (3.0 mL) and methanol (3.0 mL). The combined organic layers were dried in a Genevac at 40° C. The resultant crude reaction mixture was mixed with TFA in dichloromethane (25% vol., 5.0 mL) and shaken at room temperature for 6 hours followed by evaporation in Genevac 40° C. to give crude xxix-187 (152 mg, 99%).: MS m/z=155 (M+H).
  • Guanidines xix listed in Table 2 were prepared in a manner similar to Example 25, utilizing method U.
  • TABLE 2
    Guanidines
    Figure US20120178739A1-20120712-C01433
    xix-1
    Figure US20120178739A1-20120712-C01434
    xix-2
    Figure US20120178739A1-20120712-C01435
    xix-3
    Figure US20120178739A1-20120712-C01436
    xix-4
    Figure US20120178739A1-20120712-C01437
    xix-5
    Figure US20120178739A1-20120712-C01438
    xix-6
    Figure US20120178739A1-20120712-C01439
    xix-7
    Figure US20120178739A1-20120712-C01440
    xix-8
    Figure US20120178739A1-20120712-C01441
    xix-9
    Figure US20120178739A1-20120712-C01442
    xix-10
    Figure US20120178739A1-20120712-C01443
    xix-11
    Figure US20120178739A1-20120712-C01444
    xix-12
    Figure US20120178739A1-20120712-C01445
    xix-13
    Figure US20120178739A1-20120712-C01446
    xix-14
    Figure US20120178739A1-20120712-C01447
    xix-15
    Figure US20120178739A1-20120712-C01448
    xix-16
    Figure US20120178739A1-20120712-C01449
    xix-17
    Figure US20120178739A1-20120712-C01450
    xix-18
    Figure US20120178739A1-20120712-C01451
    xix-19
    Figure US20120178739A1-20120712-C01452
    xix-20
    Figure US20120178739A1-20120712-C01453
    xix-21
    Figure US20120178739A1-20120712-C01454
    xix-22
    Figure US20120178739A1-20120712-C01455
    xix-23
    Figure US20120178739A1-20120712-C01456
    xix-24
    Figure US20120178739A1-20120712-C01457
    xix-25
    Figure US20120178739A1-20120712-C01458
    xix-26
    Figure US20120178739A1-20120712-C01459
    xix-27
    Figure US20120178739A1-20120712-C01460
    xix-28
    Figure US20120178739A1-20120712-C01461
    xix-29
    Figure US20120178739A1-20120712-C01462
    xix-30
    Figure US20120178739A1-20120712-C01463
    xix-31
    Figure US20120178739A1-20120712-C01464
    xix-32
    Figure US20120178739A1-20120712-C01465
    xix-33
    Figure US20120178739A1-20120712-C01466
    xix-34
    Figure US20120178739A1-20120712-C01467
    xix-35
    Figure US20120178739A1-20120712-C01468
    xix-36
    Figure US20120178739A1-20120712-C01469
    xix-37
    Figure US20120178739A1-20120712-C01470
    xix-38
    Figure US20120178739A1-20120712-C01471
    xix-39
    Figure US20120178739A1-20120712-C01472
    xix-40
    Figure US20120178739A1-20120712-C01473
    xix-41
    Figure US20120178739A1-20120712-C01474
    xix-42
    Figure US20120178739A1-20120712-C01475
    xix-43
    Figure US20120178739A1-20120712-C01476
    xix-44
    Figure US20120178739A1-20120712-C01477
    xix-45
    Figure US20120178739A1-20120712-C01478
    xix-46
    Figure US20120178739A1-20120712-C01479
    xix-47
    Figure US20120178739A1-20120712-C01480
    xix-48
    Figure US20120178739A1-20120712-C01481
    xix-49
    Figure US20120178739A1-20120712-C01482
    xix-50
    Figure US20120178739A1-20120712-C01483
    xix-51
    Figure US20120178739A1-20120712-C01484
    xix-52
    Figure US20120178739A1-20120712-C01485
    xix-53
    Figure US20120178739A1-20120712-C01486
    xix-54
    Figure US20120178739A1-20120712-C01487
    xix-55
    Figure US20120178739A1-20120712-C01488
    xix-56
    Figure US20120178739A1-20120712-C01489
    xix-57
    Figure US20120178739A1-20120712-C01490
    xix-58
    Figure US20120178739A1-20120712-C01491
    xix-59
    Figure US20120178739A1-20120712-C01492
    xix-60
    Figure US20120178739A1-20120712-C01493
    xix-61
    Figure US20120178739A1-20120712-C01494
    xix-62
    Figure US20120178739A1-20120712-C01495
    xix-63
    Figure US20120178739A1-20120712-C01496
    xix-64
    Figure US20120178739A1-20120712-C01497
    xix-65
    Figure US20120178739A1-20120712-C01498
    xix-66
    Figure US20120178739A1-20120712-C01499
    xix-67
    Figure US20120178739A1-20120712-C01500
    xix-68
    Figure US20120178739A1-20120712-C01501
    xix-69
    Figure US20120178739A1-20120712-C01502
    xix-70
    Figure US20120178739A1-20120712-C01503
    xix-71
    Figure US20120178739A1-20120712-C01504
    xix-72
    Figure US20120178739A1-20120712-C01505
    xix-73
    Figure US20120178739A1-20120712-C01506
    xix-74
    Figure US20120178739A1-20120712-C01507
    xix-75
    Figure US20120178739A1-20120712-C01508
    xix-76
    Figure US20120178739A1-20120712-C01509
    xix-77
    Figure US20120178739A1-20120712-C01510
    xix-78
    Figure US20120178739A1-20120712-C01511
    xix-79
    Figure US20120178739A1-20120712-C01512
    xix-80
    Figure US20120178739A1-20120712-C01513
    xix-81
    Figure US20120178739A1-20120712-C01514
    xix-82
    Figure US20120178739A1-20120712-C01515
    xix-83
    Figure US20120178739A1-20120712-C01516
    xix-84
    Figure US20120178739A1-20120712-C01517
    xix-85
    Figure US20120178739A1-20120712-C01518
    xix-86
    Figure US20120178739A1-20120712-C01519
    xix-87
    Figure US20120178739A1-20120712-C01520
    xix-88
    Figure US20120178739A1-20120712-C01521
    xix-89
    Figure US20120178739A1-20120712-C01522
    xix-90
    Figure US20120178739A1-20120712-C01523
    xix-91
    Figure US20120178739A1-20120712-C01524
    xix-92
    Figure US20120178739A1-20120712-C01525
    xix-93
    Figure US20120178739A1-20120712-C01526
    xix-94
    Figure US20120178739A1-20120712-C01527
    xix-95
    Figure US20120178739A1-20120712-C01528
    xix-96
    Figure US20120178739A1-20120712-C01529
    xix-97
    Figure US20120178739A1-20120712-C01530
    xix-98
    Figure US20120178739A1-20120712-C01531
    xix-99
    Figure US20120178739A1-20120712-C01532
    xix-100
    Figure US20120178739A1-20120712-C01533
    xix-101
    Figure US20120178739A1-20120712-C01534
    xix-102
    Figure US20120178739A1-20120712-C01535
    xix-103
    Figure US20120178739A1-20120712-C01536
    xix-104
    Figure US20120178739A1-20120712-C01537
    xix-105
    Figure US20120178739A1-20120712-C01538
    xix-106
    Figure US20120178739A1-20120712-C01539
    xix-107
    Figure US20120178739A1-20120712-C01540
    xix-108
    Figure US20120178739A1-20120712-C01541
    xix-109
    Figure US20120178739A1-20120712-C01542
    xix-110
    Figure US20120178739A1-20120712-C01543
    xix-111
    Figure US20120178739A1-20120712-C01544
    xix-112
    Figure US20120178739A1-20120712-C01545
    xix-113
    Figure US20120178739A1-20120712-C01546
    xix-114
    Figure US20120178739A1-20120712-C01547
    xix-115
    Figure US20120178739A1-20120712-C01548
    xix-116
    Figure US20120178739A1-20120712-C01549
    xix-117
    Figure US20120178739A1-20120712-C01550
    xix-118
    Figure US20120178739A1-20120712-C01551
    xix-119
    Figure US20120178739A1-20120712-C01552
    xix-120
    Figure US20120178739A1-20120712-C01553
    xix-121
    Figure US20120178739A1-20120712-C01554
    xix-122
    Figure US20120178739A1-20120712-C01555
    xix-123
    Figure US20120178739A1-20120712-C01556
    xix-124
    Figure US20120178739A1-20120712-C01557
    xix-125
    Figure US20120178739A1-20120712-C01558
    xix-126
    Figure US20120178739A1-20120712-C01559
    xix-127
    Figure US20120178739A1-20120712-C01560
    xix-128
    Figure US20120178739A1-20120712-C01561
    xix-129
    Figure US20120178739A1-20120712-C01562
    xix-130
    Figure US20120178739A1-20120712-C01563
    xix-131
    Figure US20120178739A1-20120712-C01564
    xix-132
    Figure US20120178739A1-20120712-C01565
    xix-133
    Figure US20120178739A1-20120712-C01566
    xix-134
    Figure US20120178739A1-20120712-C01567
    xix-135
    Figure US20120178739A1-20120712-C01568
    xix-136
    Figure US20120178739A1-20120712-C01569
    xix-137
    Figure US20120178739A1-20120712-C01570
    xix-138
    Figure US20120178739A1-20120712-C01571
    xix-139
    Figure US20120178739A1-20120712-C01572
    xix-140
    Figure US20120178739A1-20120712-C01573
    xix-141
    Figure US20120178739A1-20120712-C01574
    xix-142
    Figure US20120178739A1-20120712-C01575
    xix-143
    Figure US20120178739A1-20120712-C01576
    xix-144
    Figure US20120178739A1-20120712-C01577
    xix-145
    Figure US20120178739A1-20120712-C01578
    xix-146
    Figure US20120178739A1-20120712-C01579
    xix-147
    Figure US20120178739A1-20120712-C01580
    xix-148
    Figure US20120178739A1-20120712-C01581
    xix-149
    Figure US20120178739A1-20120712-C01582
    xix-150
    Figure US20120178739A1-20120712-C01583
    xix-151
    Figure US20120178739A1-20120712-C01584
    xix-152
    Figure US20120178739A1-20120712-C01585
    xix-153
    Figure US20120178739A1-20120712-C01586
    xix-154
    Figure US20120178739A1-20120712-C01587
    xix-155
    Figure US20120178739A1-20120712-C01588
    xix-156
    Figure US20120178739A1-20120712-C01589
    xix-157
    Figure US20120178739A1-20120712-C01590
    xix-158
    Figure US20120178739A1-20120712-C01591
    xix-159
    Figure US20120178739A1-20120712-C01592
    xix-160
    Figure US20120178739A1-20120712-C01593
    xix-161
    Figure US20120178739A1-20120712-C01594
    xix-162
    Figure US20120178739A1-20120712-C01595
    xix-163
    Figure US20120178739A1-20120712-C01596
    xix-164
    Figure US20120178739A1-20120712-C01597
    xix-165
    Figure US20120178739A1-20120712-C01598
    xix-166
    Figure US20120178739A1-20120712-C01599
    xix-167
    Figure US20120178739A1-20120712-C01600
    xix-168
    Figure US20120178739A1-20120712-C01601
    xix-169
    Figure US20120178739A1-20120712-C01602
    xix-170
    Figure US20120178739A1-20120712-C01603
    xix-171
    Figure US20120178739A1-20120712-C01604
    xix-172
    Figure US20120178739A1-20120712-C01605
    xix-173
    Figure US20120178739A1-20120712-C01606
    xix-174
    Figure US20120178739A1-20120712-C01607
    xix-175
    Figure US20120178739A1-20120712-C01608
    xix-176
    Figure US20120178739A1-20120712-C01609
    xix-177
    Figure US20120178739A1-20120712-C01610
    xix-178
    Figure US20120178739A1-20120712-C01611
    xix-179
    Figure US20120178739A1-20120712-C01612
    xix-180
    Figure US20120178739A1-20120712-C01613
    xix-181
    Figure US20120178739A1-20120712-C01614
    xix-182
    Figure US20120178739A1-20120712-C01615
    xix-183
    Figure US20120178739A1-20120712-C01616
    xix-184
    Figure US20120178739A1-20120712-C01617
    xix-185
    Figure US20120178739A1-20120712-C01618
    xix-186
    Figure US20120178739A1-20120712-C01619
    xix-187
    Figure US20120178739A1-20120712-C01620
    xix-188
    Figure US20120178739A1-20120712-C01621
    xix-189
    Figure US20120178739A1-20120712-C01622
    xix-190
    Figure US20120178739A1-20120712-C01623
    xix-191
    Figure US20120178739A1-20120712-C01624
    xix-192
    Figure US20120178739A1-20120712-C01625
    xix-193
    Figure US20120178739A1-20120712-C01626
    xix-194
  • Guanidines xix listed in Table 3 were prepared in a manner similar to Method S.
  • TABLE 3
    Guanidines
    Figure US20120178739A1-20120712-C01627
    xix-195
    Figure US20120178739A1-20120712-C01628
    xix-196
    Figure US20120178739A1-20120712-C01629
    xix-197
    Figure US20120178739A1-20120712-C01630
    xix-198
    Figure US20120178739A1-20120712-C01631
    xix-199
    Figure US20120178739A1-20120712-C01632
    xix-200
    Figure US20120178739A1-20120712-C01633
    xix-201
    Figure US20120178739A1-20120712-C01634
    xix-202
    Figure US20120178739A1-20120712-C01635
    xix-203
    Figure US20120178739A1-20120712-C01636
    xix-204
  • Example 26 Method X for the Synthesis of Sulfonamides
  • Figure US20120178739A1-20120712-C01637
  • 4-[(9-chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(3-morpholin-4-ylpropyl)benzenesulfonamide (I-1279)
  • To a well in a sealed reaction block containing PL-TPP resins (1.5 mmol/g, 200 mg per well, 0.3 mmol per well), was added a mixture of sulfonic acid (29 mg, 0.07 mmol) and trichloroacetonitrile (40 mg, 0.28 mmol) in DMA (2.5 mL). The reaction block was shaken at rt for 1 h. To the reaction mixture was added Et3N (0.07 mL), followed by N-aminopropylmorpholine (14 mg, 0.10 mmol) in DMA (0.3 mL). (When low-boiling amines were used in this Method, 0.35 mmol of the amine were added.) The reaction block was shaken at rt for overnight. The resins were then filtered off, and were washed with DMF (2×1.5 mL). The filtrate was concentrated in vacuo. The residue was purified by RP-HPLC using an Agilent HPLC equipped with a SunFire™ column (Waters Corporation), Method Formic Acid, or equipped with a Symmetry® column (Waters Corporation), Method Ammonium Acetate, to give compound I-1279 (15.6%): 1H NMR (300 MHz, CD3OD): δ 8.44 (s, 1H), 8.12 (d, J=8.4 Hz, 1H), 7.98-7.94 (m, 2H), 7.75-7.71 (m, 2H), 7.35 (dd, J=2.1, 8.5 Hz, 1H), 7.23 (d, J=2.1 Hz, 1H), 3.78 (br. t., 4H), 3.42 (s, 2H), 3.05-3.00 (br. m., 6H), 2.93 (t, J=6.3 Hz, 2H), 1.88-1.78 (m, 2H); MS m/z=543 (M+H).
  • Example 27 Method Y for Solid Phase Amide Coupling
  • Figure US20120178739A1-20120712-C01638
  • 4-[(9-Chloro-6-oxo-6,7-dihydro-5H-pyrimido[5,4-d][1]benzazepin-2-yl)amino]-N-(4-methoxyphenyl)benzamide (I-555)
  • To a pre swelled PL-TPP resin [200 mg, 0.3 mmol, (Polymer labs, 1.5 mmol/gram loading)] in DMA (1.0 mL) was added a mixture of 4-(9-Chloro-6-oxo-6,7-dihydro-5H-benzo[b]pyrimido[4,5-d]azepin-2-ylamino)-benzoic acid (1-3) (25 mg 0.066 mmol), DMA (1.5 mL) and trichloroacetonitrile (0.53 mmol). After agitating for three hours at room temperature, triethylamine (46 μL, 0.33 mmol) was added, followed by p-anisidine (8.1 mg, 0.066 mmol). The reaction mixture was stirred at 22° C. overnight. The reaction mixture was filtered and the resin was washed with DMF, DMA, and MeOH (1×1 mL). The combined organic layers were concentrated and the crude product was purified by RP-HPLC using an Agilent HPLC equipped with a SunFire™ column (Waters Corporation), Method Formic Acid, to give 1-555 (22 mg, 69%). 1H NMR (DMSO): δ 10.38 (s, 1H), 10.32 (s, 1H), 9.93 (s, 1H), 8.59 (s, 1H), 8.10 (d, J=8.9 Hz, 1H), 7.92 (s, 1H), 7.64 (d, J=9.3 Hz, 1H), 7.42 (d, J=8.1 Hz, 1H), 7.29 (s, 1H), 6.89 9d, J=8.5 Hz, 1H), 3.73 (s, 2H), 3.43 (s, 1H), 3.32 (s, 3H); MS Rt=2.70 min (m/z) 466 (M+1),
  • Example 28 Method for Pd-mediated Amine Coupling
  • Figure US20120178739A1-20120712-C01639
  • 2-Amino-9-(3-methoxy-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-225)
  • 2-Amino-9-iodo-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (200 mg, 0.568 mmol, 1.0 equiv), anhydrous K3PO4 powder (241 mg, 1.14 mmol, 2.0 equiv) and palladium bis-tri-t-butyl phosphine (58 mg, 0.1136 mmol, 20 mol %) were combined in a sealable vial with a magnetic stir bar under a nitrogen atmosphere (glove box). 3-Methoxyaniline (209 mg, 1.70 mmol, 3.0 equiv) was added, followed by 6 mL of anhydrous N-methylpyrrolidinone. The vial was sealed with a silicone lined crimp cap and removed from the glove box. The vial was sonicated for 2 minutes and then heated to 90° C. (oil bath temperature) for 18 hours. The dark brown solution was diluted with 50 mL of water and the brown solids were collected by filtration and washed with water and then diethyl ether. Purification by silica gel chromatography (10% methanol, 85% dichloromethane, 5% formic acid) afforded an orange powder, which was recrystallized from methanol and diethyl ether to yield 120 mg (61%) of 2-amino-9-(3-methoxy-phenylamino)-5H,7H-benzo[b]pyrimido[4,5-d]azepin-6-one (I-225) as a yellow-orange powder.
  • Example 29 Expression and Purification of Protein Kinase Enzymes Aurora A Enzyme Expression and Purification
  • Recombinant mouse Aurora A with an amino-terminus hexahistidine tag (His-Aurora A) was expressed using a standard baculovirus vector and insect cell expression system (Bac-to-Bac®, Invitrogen).
  • Soluble, recombinant mouse Aurora A was purified from insect cells using Ni-NTA agarose (Qiagen) as described by the manufacturer and further purified over an S75 size exclusion column (Amersham Pharmacia Biotech).
  • Aurora B Enzyme Expression and Purification
  • Recombinant mouse Aurora B with an amino-terminus hexahistidine tag (His-Aurora B) was expressed using a standard baculovirus vector and insect cell expression system (Bac-to-Bac®, Invitrogen).
  • Soluble, recombinant mouse Aurora B was purified from insect cells using Ni-NTA agarose (Qiagen) as described by the manufacturer.
  • Chk-1 Enzyme Expression and Purification:
  • Recombinant human Chk-1 was expressed as a fusion protein with glutathione S-transferase at the amino-terminus (GST-Chk1) using standard baculovirus vectors and (Bac-to-Bac®) insect cell expression system purchased from GIBCO™ Invitrogen. Recombinant protein expressed in insect cells was purified using glutathione sepharose (Amersham Biotech) using standard procedures described by the manufacturer.
  • PLK1 Enzyme Expression and Purification:
  • Recombinant human PLK1 was expressed in E. coli as an N-terminal Smt fusion protein using a proprietary vector (pSGX4) by Structural Genomics (SGX). The fusion partner was removed through cleavage with Ulp1 after an initial purification using a Ni2+ affinity column.
  • Example 30 Protein Kinase Enzyme Assays Aurora A DELFIA® Kinase Assay
  • The mouse Aurora A enzymatic reaction totaled 25 μL, and contained 25 mM Tris-HCl (pH 8.5), 2.5 mM MgCl2, 0.05% Surfact-AMPS-20, 5 mM Sodium Fluoride, 5 mM DTT, 1 mM ATP, 3 μM peptide substrate (Biotin-β-Ala-QTRRKSTGGKAPR-NH2), and 20 nM recombinant murine Aurora A enzyme. The enzymatic reaction mixture, with and without Aurora inhibitors, was incubated for 10 minutes at room temperature before termination with 100 μL of stop buffer (1% BSA, 0.05% Surfact-AMPS-20, and 100 mM EDTA). A total of 100 μL of the enzyme reaction mixture was transferred to wells of a Neutravidin-coated 96-well plate (Pierce) and incubated at room temperature for 30 minutes. The wells were washed with wash buffer (25 mM Tris, 150 mM sodium chloride, and 0.1% Tween 20) and incubated for 1 hour with 100 μL of antibody reaction mixture containing 1% BSA, 0.05% Surfact-AMPS-20, anti-phospho-PKA rabbit polyclonal antibody (1:2000, New England Biolabs), and europium labeled anti-rabbit IgG (1:2000, Perkin Elmer). The wells were washed and then the bound europium was liberated using 100 μL of Enhancement Solution (Perkin Elmer). Quantification of europium was done using a Wallac™ EnVision (Perkin Elmer).
  • Compounds of the invention were shown to inhibit Aurora A using the assay method described above. For example, compounds I-1 to I-93 provided the following test results: I-1 to I-10, I-14 to I-15, I-18, I-24 to I-28, I-30, I-32 to I-33, I-37 to I-42, I-46, to I-47, I-49 to I-50, I-52 to I-57, I-59 to I-60, I-62 to I-67, I-70 to I-73, I-78 to I-79, I-81 to I-82, I-86 to I-89, and I-91 were shown to have IC50 values in this assay of less than or equal to 5.0 μM, and compounds I-2, I-3, I-7, I-9, I-10, I-27, I-30, I-32, I-33, I-37, I-38, I-42, I-47, I-49, I-50, I-53, I-57, I-62, I-64, I-66, I-67, I-70, I-71 to I-73, I-82, I-86 to I-89, and I-91 were shown to have IC50 values in this assay of less than or equal to 0.5 μM.
  • Aurora B DELFIA® Kinase Assay
  • The mouse Aurora B enzymatic reaction totaling 25 μL contained 25 mM Tris-HCl (pH 8.5), 2.5 mM MgCl2, 0.025% Surfact-AMPS-20 (Pierce), 1% Glycerol, 1 mM DTT, 1 mM ATP, 3 μM peptide substrate (Biotin-β-Ala-QTRRKSTGGKAPR—NH2), and 20 nM recombinant murine Aurora B enzyme. The enzymatic reaction mixture, with or without Aurora inhibitors, was incubated for 3 hours at room temperature before termination with 100 μL of stop buffer (1% BSA, 0.05% Surfact-AMPS-20, and 100 mM EDTA). A total of 100 μL of the enzyme reaction mixture was transferred to wells of a Neutravidin-coated 96-well plate (Pierce) and incubated at room temperature for 30 minutes. The wells were washed with wash buffer (25 mM Tris, 150 mM sodium chloride, and 0.1% Tween 20) and incubated for 1 hour with 100 μL of antibody reaction mix containing 1% BSA, 0.05% Surfact-AMPS-20, anti-phospho-PKA rabbit polyclonal antibody (1:2000, New England Biolabs), and europium labeled anti-rabbit IgG (1:2000, Perkin Elmer). The wells were washed and then the bound europium was liberated using 100 μL of Enhancement Solution (Perkin Elmer). Quantification of europium was done using a Wallac™ EnVision (Perkin Elmer).
  • Chk-1 DELFIA® Kinase Assay:
  • Assays (25 μL) utilized 1.94 nM GST-Chk-1 containing 10 mM Tris, pH 7.5, 0.1% BSA (TBS), 50 mM NaCl2, 0.01% Surfact-Amps® 20.1 μM peptide substrate (Biotin-GLYRSPSMPEN-amide), 2 mM DTT, 4% DMSO, 50 or 600 μM ATP (depending on potency), 10 mM MgCl2 and were reacted for 90 minutes at room temperature. Reactions were terminated with 120 μL of Stop buffer containing 1% BSA (TBS), 100 mM EDTA, pH 8.0, 0.05% Surfact-Amps® 20. Stopped reactions (100 4) were transferred to 96 well neutravidin plates (Pierce) to capture the biotin-peptide substrate during a 45 minute room temperature incubation. Wells were washed and reacted with 100 μL Perkin-Elmer Wallac™ Assay Buffer containing 22 ng/mL anti-phospho-Ser216-Cdc25c rabbit polyclonal antibody from Cell Signaling Technology (Beverly, Mass.) and 405 ng/mL europium labeled anti-rabbit-IgG for 1 hour at room temperature. Wells were washed and europium released from the bound antibody by addition of Enhancement Solution (100 μL) (Perkin-Elmer Wallac) and detected using a Wallac Victor2™ and standard manufacturer settings.
  • Compounds of the invention were shown to inhibit Chk-1 using the assay method described above. For example, compounds I-1 to I-93 provided the following test results: compounds I-1 to I-3, I-5, I-6, I-9, I-14, I-15, I-18, I-24, I-26, I-27, I-30 to I-33, I-37 to I-42, I-46, I-47, I-49, I-50, I-52 to I-54, I-56, I-57, I-59 to I-67, I-69 to I-73, I-76, I-78, I-79, I-81, I-82, and I-86 to I-92 were shown to have IC50 values in this assay of less than or equal to 5 μM, and compounds I-1 to I-3, I-9, I-18, I-24, I-27, I-30, I-32, I-33, I-37, I-38, I-41, I-42, I-46, I-47, I-49, I-50, I-52, I-53, I-56, I-57, I-60, I-62 to I-67, I-70 to I-73, I-77 to I-79, I-81, I-82, I-86 to I-89, I-91, and I-92 were shown to have IC50 values in this assay of less than or equal to 0.5 μM.
  • PLK1 Flash Plate Assay
  • The human PLK1 enzymatic reaction totaling 30 4 contained 50 mM Tris-HCl (pH 8.0), 10 mM MgCl2, 0.02% BSA, 10% glycerol, 1 mM DTT, 100 mM NaCl, 3.3% DMSO, 8 μM ATP, 0.2 μCi [γ-33P]-ATP, 4 μM peptide substrate (Biotin-AHX-LDETGHLDSSGLQEVHLA-CONH2) and 10 nM recombinant human PLK1[2-369]T210D. The enzymatic reaction mixture, with or without PLK inhibitors, was incubated for 2.5 hours at 30° C. before termination with 20 μL of 150 mM EDTA. 25 μL of the stopped enzyme reaction mixture was transferred to a 384-well streptavidin coated Image FlashPlate® (Perkin Elmer) and incubated at room temperature for 3 hours. The Image Flash Plate® wells were washed 3 times with 0.02% Tween-20 and then read on the Perkin Elmer Viewlux™.
  • Compounds of the invention were shown to inhibit PLK using the assay described above. For example, compounds I-1 to 1-93 provided the following test results: compounds I-2, I-3, I-5, I-7 to I-9, I-11 to I-18, I-24 to I-30, I-32 to I-38, I-41, I-42, I-45 to I-47, I-49, I-50, I-52 to I-56, I-65 to I-73, I-78 to I-82, and I-86 to I-89 were shown to have an IC50 of less than or equal to 5 μM in this assay, and compounds I-2, I-3, I-5, I-7, I-9, I-11 to I-15, I-18, I-24, I-27 to I-30, I-33 to I-37, I-42, I-45 to I-47, I-49, I-50, I-54 to I-56, I-65 to I-67, I-69, I-70, I-78, I-79, I-81, I-82, and I-86 to I-89 were shown to have an IC50 of less than or equal to 0.5 μM in this assay.
  • Example 31 Cellular Assay Aurora Phosphorylation Assays
  • Inhibition of Aurora A or Aurora B activity in whole cell systems can be assessed by determination of decreased phosphorylation of Aurora substrates. For example, determining decreased phosphorylation of histone H3 on Serine 10, an Aurora B substrate can be used to measure inhibition of Aurora B activity in a whole cell system. Alternatively, any known Aurora B substrate can be used in similar assay methods to assess inhibition of Aurora B activity. Similarly, Aurora A inhibition can be determined using analogous methods and known Aurora A substrates for detection.
  • In a specific example, HeLa cells were seeded in a 96-well cell culture plate (10×103 cells/well) and incubated overnight at 37° C. Cells were incubated with Aurora inhibitors for 1 hour at 37° C., fixed with 4% paraformaldehyde for 10 minutes and then permeabilized with 0.5% TritonX-100 in PBS. Cells were incubated with mouse anti-pH is H3 (1:120, Cell Signaling Technologies) and rabbit anti-mitotic marker (1:120, Millennium Pharmaceuticals Inc.) antibodies for 1 hour at room temperature. After washing with PBS the cells were stained with anti-rabbit IgG Alexa 488 (1:180, Molecular Probes) and anti-mouse IgG Alexa 594 (1:180) for 1 hour at room temperature. DNA was then stained with Hoechst solution (2 μg/mL). The percentage of pH is H3 and anti-mitotic positive cells were quantified using Discovery I and MetaMorph (Universal Imaging Corp.). Aurora B inhibition was determined by calculating the decrease of pH is H3 positive cells.
  • Anti-proliferation Assays
  • HCT-116 (1000) or other tumor cells in 100 μl of appropriate cell culture medium (McCoy's 5A for HCT-116, Invitrogen) supplemented with 10% fetal bovine serum (Invitrogen) was seeded in wells of a 96-well cell culture plate and incubated overnight at 37 C. Test compounds were added to the wells and the plates were incubated for 96 hours at 37° C. MTT or WST reagent (10 Roche) was added to each well and incubated for 4 hours at 37° C. as described by the manufacturer. For MTT the metabolized dye was solublized overnight according to manufacturer's instructions (Roche). The optical density for each well was read at 595 nm (primary) and 690 nm (reference) for the MTT and 450 nm for the WST using a spectrophotometer (Molecular Devices). For the MTT the reference optical density values were subtracted from the values of the primary wavelength. Percent inhibition was calculated using the values from a DMSO control set to 100%.
  • sAnti-proliferation Assay-Combination of Test Compound and DNA Damaging Agent
  • HT29, HCT116 (5000 cells/well) or other cells were seeded (75 μL) to 96 well clear bottom plates at densities which provide linear growth curves for 72 hours. Cells were cultured under sterile conditions in appropriate media; for HT29 and HCT116, this media was McCoy's 5A containing 10% Fetal Bovine Serum (FBS). Following the initial seeding of cells they were incubated at 37° C., 5% CO2 from 17 to 24 hours at which time the appropriate DNA damaging agents (camptothecins, 5-fluorouracil, doxorubicin, and etoposide) were added at increasing concentrations to a point which is capable of causing at least 80% cell killing with in 48 hours. Final volume of all DNA damaging agent and test compound additions was 25 μL and assays contained <1% DMSO final. At the same time as DNA damaging agent addition, the test compound was added at fixed concentrations to each DNA damaging agent titration to observe enhancement of cell killing. In addition, toxicity of each test compound alone was observed. By doing this over a range of test compound concentrations, compounds were identified which maximally enhance (2-30 fold) cell killing by each DNA damaging agent and generated ≦80% cell killing by the compound alone. Cell viability/cell killing under the conditions described above was determined by addition WST reagent (Roche) according to the manufacturer at 47 hours following DNA damage & Chk-1 inhibitor addition and following a 3.5 hour or 2.5 hour incubation at 37 C, 5% CO2, OD450 was measured.
  • Example 32 In vivo Assays In Vivo Tumor Efficacy Model
  • HCT-116 (1×106) or other tumor cells in 100 μL of phosphate buffered saline are aseptically injected into the subcutaneous space in the right dorsal flank of female CD-1 nude mice (age 5-8 weeks, Charles River) using a 23-ga needle. Beginning at day 7 after inoculation tumors are measured twice weekly using a vernier caliper. Tumor volumes are calculated using standard procedures (0.5×(length×width2)). When the tumors reach a volume of approximately 200 mm3 mice are injected i.v. in the tail vein with test compound (100 μl) at various doses and schedules. All control groups receive vehicle alone. Tumor size and body weight are measured twice a week and the study is terminated when the control tumors reach approximately 2000 mm3.
  • In Vivo Tumor Efficacy Model—Combination of Test Compound and DNA Damaging Agent
  • HT29 human colon cancer cells with p53 deficiency are cultured with 10% FBS in McCoy's 3A medium and incubated at 5% CO2. The cells are trypsinized and resuspended in Hanks buffer at 2×107 cells/mL. 100 μL of the cell suspension (2×106 cells) is aseptically implanted into the subcutaneous space in the right dorsal flank of male NCR nude mice (age 5-8 weeks, Taconic) using a 23-ga needle. Seven days after implantation, the tumors are measured in two dimensions (length and width) with a caliper and the animal body weight is measured with a balance. Tumor volume is calculated with the following formula: tumor volume=L×W2×0.5. When the average tumor volume reaches about 200 mm3, the individual animals are assigned to different study groups using a random number generation method. The typical study consists of vehicle control, CPT-11 alone (i.v.), Chk-1 inhibitor alone (i.p.), and CPT-11 in combination with Chk-1 inhibitor groups at various doses and schedules. Tumor size and body weight are measured twice a week for four weeks. Once the tumor volume reaches over 10% of the body weight of the animal, or the mouse body weight loss is more than 20%, the mouse is euthanized. Data is collected only from those study groups in which there are five or more animals.
  • While the foregoing invention has been described in some detail for purposes of clarity and understanding, these particular embodiments are to be considered as illustrative and not restrictive. It will be appreciated by one skilled in the art from a reading of this disclosure that various changes in form and detail can be made without departing from the true scope of the invention, which is to be defined by the appended claims rather than by the specific embodiments.
  • The patent and scientific literature referred to herein establishes knowledge that is available to those with skill in the art. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The issued patents, applications, and references that are cited herein are hereby incorporated by reference to the same extent as if each was specifically and individually indicated to be incorporated by reference. In the case of inconsistencies, the present disclosure, including definitions, will control.

Claims (25)

1-22. (canceled)
23. A method for inhibiting kinase activity in a cell, comprising contacting the cell with a compound of formula (I):
Figure US20120178739A1-20120712-C01640
or a pharmaceutically acceptable salt thereof;
wherein:
Ring A is an optionally substituted 5- or 6-membered aryl or heteroaryl ring;
G1 is C═O, C═S, or S(═O)2;
Y1 is N or CH and Y2 is N or CRe, provided that at least one of Y1 and Y2 is N;
Ra is hydrogen, —C(O)R5a, —C(O)N(R4a)2, —CO2R6a, —SO2R6a, —SO2N(R4a)2, an optionally substituted C1-10 aliphatic, or an optionally substituted aryl, heteroaryl, or heterocyclyl
Rb is hydrogen or an optionally substituted aliphatic, aryl, heteroaryl, or heterocyclyl group;
Rc is hydrogen, fluoro, —OR5, —N(R4)2, or an optionally substituted C1-4aliphatic;
Rd is hydrogen, fluoro, C1-4aliphatic or C1-4-fluoroaliphatic; or Rc and Rd, taken together with the carbon atom to which they are attached, form an optionally substituted 3- to 6-membered carbocyclic ring;
Re is hydrogen, halo, —NO2, —CN, —C(R5)═C(R5)2, —C≡C—R5, —C(R5)═C(R5)(R10), —C≡C—R10, —OR5, —N(R4)2, —NR4C(O)R5, —NR4C(O)N(R4)2, —NR4CO2R6, —C(O)R5, —C(O)N(R4)2, —N(R4)SO2R6, —N(R4)SO2N(R4)2, or an optionally substituted C1-4aliphatic;
each R4 independently is hydrogen or an optionally substituted aliphatic, aryl, heteroaryl, or heterocyclyl group; or two R4 on the same nitrogen atom, taken together with the nitrogen atom, form an optionally substituted 4- to 8-membered heterocyclyl ring having, in addition to the nitrogen atom, 0-2 ring heteroatoms selected from N, O, and S;
each R4a independently is hydrogen or an optionally substituted aliphatic, aryl, heteroaryl, or heterocyclyl group, or two R4a on the same nitrogen atom, taken together with the nitrogen atom, form an optionally substituted 4- to 8-membered heterocyclyl ring having, in addition to the nitrogen atom, 0-2 ring heteroatoms selected from N, O, and S;
each R5 independently is hydrogen or an optionally substituted aliphatic, aryl, heteroaryl, or heterocyclyl group;
each R5a independently is hydrogen or an optionally substituted aliphatic, aryl, heteroaryl, or heterocyclyl group;
each R6 independently is an optionally substituted aliphatic or aryl group;
each R6a independently is an optionally substituted aliphatic or aryl group; and
R10 is —CO2R5 or —C(O)N(R4)2.
24. The method of claim 23, wherein the kinase is selected from the group consisting of Chk-1, Aurora, and PLK.
25. A method for treating cancer in a patient in need thereof, comprising administering to the patient a therapeutically effective amount of a compound of formula (I):
Figure US20120178739A1-20120712-C01641
or a pharmaceutically acceptable salt thereof;
wherein:
Ring A is an optionally substituted 5- or 6-membered aryl or heteroaryl ring;
G1 is C═O, C═S, or S(═O)2;
Y1 is N or CH and Y2 is N or CRe, provided that at least one of Y1 and Y2 is N;
Ra is hydrogen, —C(O)R5a, —C(O)N(R4a)2, —CO2R6a, —SO2R6a, —SO2N(R4a)2, an optionally substituted C1-10 aliphatic, or an optionally substituted aryl, heteroaryl, or heterocyclyl ring;
Rb is hydrogen or an optionally substituted aliphatic, aryl, heteroaryl, or heterocyclyl group;
Rc is hydrogen, fluoro, —OR5, —N(R4)2, or an optionally substituted C1-4aliphatic;
Rd is hydrogen, fluoro, C1-4aliphatic or C1-4-fluoroaliphatic; or Re and Rd, taken together with the carbon atom to which they are attached, form an optionally substituted 3- to 6-membered carbocyclic ring;
Re is hydrogen, halo, —NO2, —CN, —C(R5)═C(R5)2, —C≡C—R5, —C(R5)═C(R5)(R10), —C≡C—R10, —OR5, —N(R4)2, —NR4C(O)R5, —NR4C(O)N(R4)2, —NR4CO2R6, —C(O)R5, —C(O)N(R4)2, —N(R4)SO2R6, —N(R4)SO2N(R4)2, or an optionally substituted C1-4aliphatic;
each R4 independently is hydrogen or an optionally substituted aliphatic, aryl, heteroaryl, or heterocyclyl group; or two R4 on the same nitrogen atom, taken together with the nitrogen atom, form an optionally substituted 4- to 8-membered heterocyclyl ring having, in addition to the nitrogen atom, 0-2 ring heteroatoms selected from N, O, and S;
each R4a independently is hydrogen or an optionally substituted aliphatic, aryl, heteroaryl, or heterocyclyl group; or two R4a on the same nitrogen atom, taken together with the nitrogen atom, form an optionally substituted 4- to 8-membered heterocyclyl ring having, in addition to the nitrogen atom, 0-2 ring heteroatoms selected from N, O, and S;
each R5 independently is hydrogen or an optionally substituted aliphatic, aryl, heteroaryl, or heterocyclyl group;
each R5a independently is hydrogen or an optionally substituted aliphatic, aryl, heteroaryl, or heterocyclyl group;
each R6 independently is an optionally substituted aliphatic or aryl group;
each R6a independently is an optionally substituted aliphatic or aryl group; and
R10 is —CO2R5 or —C(O)N(R4)2.
26. The method of claim 25, further comprising administering to the patient a cytotoxic agent selected from the group consisting of chemotherapeutic agents and radiation therapy.
27. The method of claim 25, wherein the compound is characterized by one or more of the following features (a)-(e):
a. Y1 is N;
b. Y2 is CRe, where Re is selected from the group consisting of hydrogen, C1-4aliphatic, C1-4-fluoroaliphatic, -halo, —OR5, —N(R4)2, —CN, —CO2R5, —C(O)N(R4)2, —C(R5)═C(R5)2, —C(R5)═C(R5)(R10), —C≡C—R5, and —C≡C—R10;
c. G1 is C═O;
d. Rc is selected from the group consisting of hydrogen, fluoro, —OR5, —N(R4)2, and C1-4aliphatic optionally substituted with one or two groups independently selected from C1-3aliphatic, fluoro, —N(R4)2, —CO2R5, —C(O)N(R4)2, and optionally substituted 5- or 6-membered aryl or heteroaryl; and
e. Rd is hydrogen.
28. The method of claim 25, wherein in the compound Ring A is a substituted or unsubstituted 5- or 6-membered aryl or heteroaryl ring selected from the group consisting of furano, thieno, pyrrolo, oxazolo, thiazolo, imidazolo, pyrazolo, isoxazolo, isothiazolo, oxadiazolo, triazolo, thiadiazolo, benzo, pyridino, pyridazino, pyrimidino, pyrazino, and triazine.
29. The method of claim 28, wherein in the compound:
Ring A is substituted with 0-2 Rh and 0-2 R8h;
each Rh independently is selected from the group consisting of C1-6aliphatic, C1-6-fluoroaliphatic, halo, —R1h, —R2h, -T4—R2h, -T4—R1h, —V3-R4-R1h, and—V3-T4-R2h, or two adjacent Rh, taken together with the intervening ring atoms, form an optionally substituted fused 4- to 8-membered aromatic or non-aromatic ring having 0-3 ring heteroatoms selected from the group consisting of O, N, and S;
T4 is a C1-6alkylene chain optionally substituted with one or two independently selected R3a or R3b, wherein the alkylene chain optionally is interrupted by —C(R5)═C(R5)—, —C≡C—, —O—, —S—, —S(O)—, —S(O)2—, —SO2N(R4)—, —N(R4)—, —N(R4)C(O)—, —NR4C(O)N(R4)—, —N(R4)CO2—, —C(O)N(R4)—, —C(O)—, —C(O)—C(O)—, —CO2—, —OC(O)—, —OC(O)O—, —OC(O)N(R4)—, —N(R4)SO2—, or —SO2N(R4);
V3 is —C(R5)═C(R5)—, —C≡C—, —O—, —S—, —S(O)—, —S(O)2—, —SO2N(R4)—, —N(R4)—, —N(R4)C(O)—, —NR4C(O)N(R4)—, —N(R4)CO2—, —C(O)N(R4)—, —C(O)—, —C(O)—C(O)—, —CO2—, —OC(O)—, —OC(O)O—, —OC(O)N(R4)—, —C(NR4)═N—, —C(OR5)═N—, —N(R4)SO2—, —N(R4)SO2N(R4)—, —P(O)(R5)—, —P(O)(OR5)—O—, —P(O)—O—, or —P(O)(NR5)—N(R5)—;
each R1h independently is an optionally substituted aryl, heteroaryl, heterocyclyl, or cycloaliphatic ring;
each R2h independently is —NO2, —CN, —C(R5)═C(R5)2, —C≡C—R5, —C(R5)═C(R5)(R10), —C≡C—R10, —OR5, —S(O)R6, —SO2R6, SO3R5, —SO2N(R4)2, —N(R4)2, —NR4C(O)R5, —NR4C(O)N(R4)2, —NR4CO2R6, —O—CO2R5, —OC(O)N(R4)2, —O—C(O)R5, —CO2R5, —C(O)—C(O)R5, —C(O)R5, —C(O)N(R4)2, —C(O)N(R4)C(═NR4)—N(R4)2, —N(R4)—C(═NR4)—N(R4)—C(O), —C(═NR4)—N(R4)2, —C(═NR4)—OR5, —C(R6)═N—OR5, —N(R4)C(═NR4)—N(R4)2, —N(R4)SO2R6, —N(R4)SO2N(R4)2, —P(O)(R5)2, or —P(O)(OR5)2;
each R3a independently is selected from the group consisting of —F, —OH, —O(C1-3alkyl), —CN, —N(R4)2, —C(O)(C1-3alkyl), —CO2H, —CO2(C1-3alkyl), —C(O)NH2, and —C(O)NH(C1-3alkyl);
each R3b independently is a C1-3aliphatic optionally substituted with R3a or R7, or two substituents R3b on the same or adjacent carbon atom(s), taken together with the carbon atom(s) to which they are attached, form a 3- to 6-membered carbocyclic ring;
each R7 independently is an optionally substituted aryl or heteroaryl ring; and
each R8h independently is selected from the group consisting of C1-4aliphatic, C1-4-fluoroaliphatic, -halo, and —O(C1-4aliphatic).
30. The method of claim 29, wherein the compound is represented by the structure of formula (II):
Figure US20120178739A1-20120712-C01642
or a pharmaceutically acceptable salt thereof;
wherein Ring A is substituted with 0-2 Rh and 0-2 R8h.
31. The method of claim 30, wherein in the compound Ring A is substituted with 0-2 R8h substituents independently selected from the group consisting of C1-4aliphatic, C1-4-fluoroaliphatic, -halo, and —O(C1-4aliphatic), or two adjacent substituents, taken together with the intervening ring atoms, form a fused dioxolane or dioxane ring.
32. The method of claim 30, wherein in the compound Ring A has the formula A-i, A-ii, or A-iii
Figure US20120178739A1-20120712-C01643
wherein m is 0, 1, or 2.
33. The method of claim 31, wherein in the compound Rh is —CN, —CO2R5, —C(O)N(R4)2, —N(R4)2, or —OR5.
34. The method of claim 31, wherein:
Rh is -T4-R2h, —V3-T4-R2h, or—Cy-T4-R2h;
V3 is —C≡C—, —C(R5)═C(R5)—, or —C(O)N(R4)—;
Cy is a 5- or 6-membered arylene or heteroarylene;
T4 is a C1-4alkylene chain; and
R2h is —OR5, —N(R4)2, or —C(O)N(R4)2.
35. The method of claim 34, wherein in the compound Rb is hydrogen.
36. The method of claim 25, wherein in the compound Ra is hydrogen, C1-6aliphatic, -T11-R1a, -T11-R21a, -T12-R22a, —V1-T11-R1a, —V1-T11-R21a, —V1-T11-R22a, or—R1a;
V1 is —C(O)—, —C(O)N(R4a)—, —C(O)O—, —SO2—, or —SO2N(R4a)—;
T11 is a C1-6alkylene chain optionally substituted with one or two independently selected R3a or R3b, wherein the alkylene chain optionally is interrupted by —C(R5)═C(R5)— or —C≡C—;
T12 is a C2-6alkylene chain optionally substituted with one or two independently selected R3a or R3b, wherein the alkylene chain optionally is interrupted by —C(R5)═C(R5)— or —C≡C—;
each R3a independently is selected from the group consisting of —F, —OH, —O(C1-3alkyl), —CN, —N(R4)2, —C(O)(C1-3alkyl), —CO2H, —CO2(C1-3alkyl), —C(O)NH2, and —C(O)NH(C1-3alkyl);
each R3b independently is a C1-3aliphatic optionally substituted with R3a or R7, or two substituents R3b on the same or adjacent carbon atom(s), taken together with the carbon atom(s) to which they are attached, form a 3- to 6-membered carbocyclic ring;
R21a is —C(R5a)═C(R5a)2, —C≡C—R5a, —S(O)R6a, —SO2R6a, —SO3R5a, —SO2N(R4a)2, —CO2R5a, —C(O)—C(O)R5a, —C(O)R5a, —C(O)N(R4a)2, —C(O)N(R4a)C(═NR4a)—N(R4a)2, —C(═NR4a)—N(R4a)2, —C(═NR4a)—OR5a, —C(R6a)═N—OR5a, —P(O)(R5a)2, or —P(O)(OR5a)2;
R22a is —NO2, —CN, —OR5a, —SR6a, —N(R4a)2, —NR4aC(O)R5a, —NR4aC(O)N(R4a)2, —NR4aCO2R6a, —O—CO2R5a, —OC(O)N(R4)2, —O—C(O)R5a, —N(R4a)C(═NR4a)—N(R4a)2, —N(R4a)C(═NR4a)—N(R4a)—C(O)R5, —N(R4a)SO2R6a, or —N(R4a)SO2N(R4a)2;
each R7 independently is an optionally substituted aryl or heteroaryl ring; and
R1a is an optionally substituted aryl, heteroaryl, heterocyclyl, or cycloaliphatic ring.
37. The method of claim 36, wherein the compound is represented by formula (III):
Figure US20120178739A1-20120712-C01644
or a pharmaceutically acceptable salt thereof;
wherein Ring B is substituted with 0-2 Rj and 0-2 R8j.
each R1 independently is selected from the group consisting of C1-6aliphatic, C1-6-fluoroaliphatic, halo, —R1j, —R2j, -T5-R2j, -T5-R1j, —V4-T5-R1j, and—V4-T5-R2j; or two adjacent Rj, taken together with the intervening ring atoms, form an optionally substituted fused 4- to 8-membered aromatic or non-aromatic ring having 0-3 ring heteroatoms selected from the group consisting of O, N, and S;
T5 is a C1-6alkylene chain optionally substituted with one or two independently selected R3a or R3b, wherein the alkylene chain optionally is interrupted by —C(R5)═C(R5)—, —C≡C—, —O—, —S—, —S(O)—, —S(O)2—, —SO2N(R4)—, —N(R4)—, —N(R4)C(O)—, —NR4C(O)N(R4)—, —N(R4)CO2—, —C(O)N(R4)—, —C(O)—, —C(O)—C(O)—, —CO2—, —OC(O)—, —OC(O)O—, —OC(O)N(R4)—, —N(R4)SO2—, or —SO2N(R4);
V4 is —C(R5)═C(R5)—, —C≡C—, —O—, —S—, —S(O)—, —S(O)2—, —SO2N(R4)—, —N(R4)—, —N(R4)C(O)—, —NR4C(O)N(R4)—, —N(R4)CO2—, —C(O)N(R4)—, —C(O)—, —C(O)—C(O)—, —CO2—, —OC(O)—, —OC(O)O—, —OC(O)N(R4)—, —C(NR4)═N—, —C(OR5)═N—, —N(R4)SO2—, —N(R4)SO2N(R4)—, —P(O)(R5)—, —P(O)(OR5)—O—, —P(O)—O—, or —P(O)(NR5)—N(R5)—;
each R1j independently is an optionally substituted aryl, heteroaryl, heterocyclyl, or cycloaliphatic ring;
each R2j independently is —NO2, —CN, —C(R5)═C(R5)2, —C≡C—R5, —C(R5)═C(R5)(R10), —C≡C—R10, —OR5, —SR6, —S(O)R6, —SO2R6, —SO3R5, —SO2N(R4)2, —N(R4)2, —NR4C(O)R5, —NR4C(O)N(R4)2, —NR4CO2R6, —O—CO2R5, —OC(O)N(R4)2, —O—C(O)R5, —CO2R5, —C(O)—C(O)R5, —C(O)R5, —C(O)N(R4)2, —C(O)N(R4)C(═NR4)—N(R4)2, —N(R4)C(═NR4)—N(R4)—C(O), —C(═NR4)—N(R4)2, —C(═NR4)—OR5, —N(R4)C(═NR4)—N(R4)2, —N(R4)SO2R6, —N(R4)SO2N(R4)2, —P(O)(R5)2, or —P(O)(OR5)2;
each R3a independently is selected from the group consisting of —F, —OH, —O(C1-3alkyl), —CN, —N(R4)2, —C(O)(C1-3alkyl), —CO2H, —CO2(C1-3 alkyl), —C(O)NH2, and —C(O)NH(C1-3alkyl);
each R3b independently is a C1-3aliphatic optionally substituted with R3a or R7, or two substituents R3b on the same or adjacent carbon atom(s), taken together with the carbon atom(s) to which they are attached, form a 3- to 6-membered carbocyclic ring;
each R7 independently is an optionally substituted aryl or heteroaryl ring; and
each R8j independently is selected from the group consisting of C1-4aliphatic, C1-4-fluoroaliphatic, -halo, —CO2H, —CO2(C1-4aliphatic), —OH, and —O(C1-4aliphatic).
38. The method of claim 37, wherein in the compound Ring B has the formula B-i, B-ii, or B-iii:
Figure US20120178739A1-20120712-C01645
wherein n is 0, 1, or 2.
39. The method of claim 38, wherein in the compound:
Rj is -T5-R2j or —V4-T5-R2j;
V4 is —C≡C—, or —C(R5)═C(R5)—; and
R2j is —OR5 or —N(R4)2.
40. The method of claim 38, wherein in the compound Rj is —V4-T5-R2j or —V4-T5-R1j;
V4 is —C(O)N(R4)— or —SO2N(R4)—; and
T5 is a C2-4alkylene chain, optionally substituted with —F or C1-4aliphatic.
41. The method of claim 25, wherein in the compound Rb is hydrogen or C1-6aliphatic.
42. The method of claim 25, wherein in the compound:
Rb is -T21-R1b, -T21-R21b, or -T22-R22b;
T21 is a C1-6alkylene chain optionally substituted with one or two R3, wherein the alkylene chain optionally is interrupted by —C(R5)═C(R5)— or —C═C—;
T22 is a C2-6alkylene chain optionally substituted with one or two R3, wherein the alkylene chain optionally is interrupted by —C(R5)═C(R5)— or —C≡C—;
R1b is an optionally substituted aryl, heteroaryl, heterocyclyl, or cycloaliphatic ring;
each R3 independently is selected from the group consisting of C1-3aliphatic, -fluoro, —OH, and —O(C1-3 alkyl), or two substituents R3 on the same carbon atom, taken together with the carbon atom to which they are attached, form a 3- to 6-membered carbocyclic ring; and
R21b is —C(R5)═C(R5)2, —C≡C—R5, —C(R5)═C(R5)(R10), —S(O)R6, —SO2R6, —SO3R5, —SO2N(R4)2, —CO2R5, —C(O)—C(O)R5, —C(O)R5, —C(O)N(R4)2, —C(O)N(R4)C(═NR4)—N(R4)2, —C(═NR4)—N(R4)2, —C(═NR4)—OR5, —C(R6)═N—OR5, —P(O)(R5)2, or —P(O)(OR5)2;
R22b is —NO2, —CN, —OR5, —SR6, —N(R4)2, —NR4C(O)R5, —NR4C(O)N(R4)2, —NR4CO2R6, —O—COR5, —OC(O)N(R4)2, —O—C(O)R5, —N(R4)C(═NR4)—N(R4), —N(R4)C(═NR4)—N(R4)—C(O)R5, —N(R4)SO2R6, or —N(R4)SO2N(R4)2.
43. The method of claim 25, wherein in the compound Rb is an optionally substituted aryl, heteroaryl, or heterocyclyl ring.
44. The method of claim 43, wherein the compound is represented by formula (IV)
Figure US20120178739A1-20120712-C01646
or a pharmaceutically acceptable salt thereof;
wherein Ring C is substituted with 0-2 Rk and 0-2 R8k;
each Rk independently is selected from the group consisting of C1-6aliphatic, C1-6-fluoroaliphatic, -halo, —R1k, —R2k, -T6-R2k, -T6-R1k, —V5-R6-R1k, and —V5-T6-R2k; or two adjacent Rk, taken together with the intervening ring atoms, form an optionally substituted fused 4- to 8-membered aromatic or non-aromatic ring having 0-3 ring heteroatoms selected from the group consisting of O, N, and S;
T6 is a C1-6alkylene chain optionally substituted with one or two independently selected R3a or R3b, wherein the alkylene chain optionally is interrupted by —C(R5)═C(R5)—, —C≡C—, —O—, —S—, —S(O)—, —S(O)2—, —SO2N(R4)—, —N(R4)—, —N(R4)C(O)—, —NR4C(O)N(R4)—, —N(R4)CO2—, —C(O)N(R4)—, —C(O)—, —C(O)—C(O)—, —OC(O)—, —OC(O)O—, —OC(O)N(R4)—, —N(R4)SO2—, or —SO2N(R4);
V5 is —C(R5)═C(R5)—, —C≡C—, —O—, —S—, —S(O)—, —S(O)2—, —SO2N(R4)—, —N(R4)—, —N(R4)C(O)—, —NR4C(O)N(R4)—, —N(R4)CO2—, —C(O)N(R4)—, —C(O)—, —C(O)—C(O)—, —CO2—, —OC(O)—, —OC(O)O—, —OC(O)N(R4)—, —C(NR4)═N—, —C(OR5)═N—, —N(R4)SO2—, —N(R4)SO2N(R4)—, —P(O)(R5)—, —P(O)(OR5)—O—, —P(O)—O—, or —P(O)(NR5)—N(R5)—;
each R1k independently is an optionally substituted aryl, heteroaryl, heterocyclyl, or cycloaliphatic ring;
each R2k independently is —NO2, —CN, —C(R5)═C(R5)2, —C≡C—R5, —C(R5)═C(R5)(R10), —C≡C—R10, —OR5, —SR6, —S(O)R6, —SO2R6, —SO3R5, —SO2N(R4)2, —N(R4)2, —NR4C(O)R5, —NR4C(O)N(R4)2, —NR4CO2R6, —O—CO2R5, —OC(O)N(R4)2, —O—C(O)R5, —CO2R5, —C(O)—C(O)R5, —C(O)R5, —C(O)N(R4)2, —C(O)N(R4)C(═NR4)—N(R4)2, —N(R4)C(═NR4)—N(R4)—C(O), —C(═NR4)—N(R4)2, —C(═NR4)—OR5, —N(R4)C(═NR4)—N(R4)2, —N(R4)SO2R6, —N(R4)SO2N(R4)2, —P(O)(R5)2, or —P(O)(OR5)2;
each R3a independently is selected from the group consisting of—F, —OH, —O(C1-3alkyl), —CN, —N(R4)2, —C(O)(C1-3alkyl), —CO2H, —CO2(C1-3alkyl), —C(O)NH2, and —C(O)NH(C1-3alkyl);
each R3b independently is a C1-3aliphatic optionally substituted with R3a or R7, or two substituents R3b on the same or adjacent carbon atom(s), taken together with the carbon atom(s) to which they are attached, form a 3- to 6-membered carbocyclic ring;
each R7 independently is an optionally substituted aryl or heteroaryl ring; and
each R8k independently is selected from the group consisting of C1-4aliphatic, C1-4-fluoroaliphatic, -halo, and —O(C1-4aliphatic).
45. The method of claim 44, wherein in the compound Ring C is substituted with 0-2 substituents independently selected from the group consisting of C1-4aliphatic, C1-4-fluoroaliphatic, -halo, and —O(C1-4aliphatic).
46. A method for treating cancer in a patient in need thereof, comprising administering to the patient a therapeutically effective amount of a compound of formula (V):
Figure US20120178739A1-20120712-C01647
or a pharmaceutically acceptable salt thereof; wherein:
Ring A is substituted with 0-2 Rh and 0-2 R8h;
Ring B is substituted with 0-2 Rj and 0-2 R8h;
G1 is C═O, C═S, or S(═O)2;
Y′ is N or CH;
Y2 is N or CRe;
Rb is hydrogen or an optionally substituted aliphatic, aryl, heteroaryl, or heterocyclyl group;
Rc is hydrogen, fluoro, —ORS, —N(R4)2, or an optionally substituted C1-4aliphatic;
Rd is hydrogen, fluoro, or C1-4aliphatic; or Rc and Rd, taken together with the carbon atom to which they are attached, form an optionally substituted 3- to 6-membered carbocyclic ring;
Re is hydrogen, halo, C1-4aliphatic, C1-4-fluoroaliphatic, —R2e, -T3-R1e, -T3-R2e, —V2-T3-R1e, or —V2-T3-R2e;
T3 is a C1-4alkylene chain optionally substituted with one or two R3;
V2 is —C(R5)═C(R5)— or —C≡C—;
R1e is an optionally substituted aryl, heteroaryl, heterocyclyl, or cycloaliphatic ring;
R2e is —NO2, —CN, —C(R5)═C(R5)2, —C(R5)═C(R5)(R10, —C≡C—R5, —C≡C—R10, —OR5, —N(R4)2, —NR4C(O)R5, —NR4C(O)N(R4)2, —NR4—CO2R5, —C(O)R5, —C(O)N(R4)2, —N(R4)SO2R6, or —N(R4)SO2N(R4)2;
each Rh independently is selected from the group consisting of C1-6aliphatic, C1-6-fluoroaliphatic, halo, —R1h, —R2h, -T4-R2h, -T4-R1h, —V3-T4-R1h, and —V3-T4-R2h, or two adjacent Rh, taken together with the intervening ring atoms, form an optionally substituted fused 4- to 8-membered aromatic or non-aromatic ring having 0-3 ring heteroatoms selected from the group consisting of O, N, and S;
T4 is a C1-6alkylene chain optionally substituted with one or two independently selected R3a or R3b, wherein the alkylene chain optionally is interrupted by —C(R5)═C(R5)—, —C≡C—, —O—, —S—, —S(O)—, —S(O)2—, —SO2N(R4)—, —N(R4)—, —N(R4)C(O)—, —NR4C(O)N(R4)—, —N(R4)CO2—, —C(O)N(R4)—, —C(O)—, —C(O)—C(O)—, —CO2—, —OC(O)—, —OC(O)O—, —OC(O)N(R4)—, —N(R4)SO2—, or —SO2N(R4);
V3 is —C(R5)═C(R5)—, —C≡C—, —O—, —S—, —S(O)—, —S(O)2—, —SO2N(R4)—, —N(R4)—, —N(R4)C(O)—, —NR4C(O)N(R4)—, —N(R4)CO2—, —C(O)N(R4)—, —C(O)—, —C(O)—C(O)—, —CO2—, —OC(O)—, —OC(O)O—, —OC(O)N(R4)—, —C(NR4)═N—, —C(OR5)═N—, —N(R4)SO2—, —N(R4)SO2N(R4)—, —P(O)(R5)—, —P(O)(OR5)—O—, —P(O)—O—, or —P(O)(NR5)—N(R5)—;
each R1h independently is an optionally substituted aryl, heteroaryl, heterocyclyl, or cycloaliphatic ring;
each R2h independently is —NO2, —CN, —C(R5)═C(R5)2, —C≡C—R5, —C(R5)═C(R5)(R10), —C≡C—R10, −OR5, —SR6, —S(O)R6, —SO2R6, —SO3R5, —SO2N(R4)2, —N(R4)2, —NR4C(O)R5, —NR4C(O)N(R4)2, —NR4CO2R6, —O—CO2R5, —OC(O)N(R4)2, —O—C(O)R5, —CO2R5, —C(O)—C(O)R5, —C(O)R5, —C(O)N(R4)2, —C(O)N(R4)C(═NR4)—N(R4)2, —N(R4)C(═NR4)—N(R4)—C(O), —C(═NR4)—N(R4)2, —C(═NR4)—OR5, —C(R6)═N—OR5, —N(R4)C(═NR4)—N(R4)2, —N(R4)SO2R6, —N(R4)SO2N(R4)2, —P(O)(R5)2, or —P(O)(OR5)2;
each Rj independently is selected from the group consisting of C1-6aliphatic, C1-6-fluoroaliphatic, halo, —R1j, —R2j, -T5-R2j, -T5-R1j, —V4-T5-R1j, and —V4-T5-R2j; or two adjacent Rj, taken together with the intervening ring atoms, form an optionally substituted fused 4- to 8-membered aromatic or non-aromatic ring having 0-3 ring heteroatoms selected from the group consisting of O, N, and S;
T5 is a C1-6alkylene chain optionally substituted with one or two independently selected R3a or R3b, wherein the alkylene chain optionally is interrupted by —C(R5)═C(R5)—, —C≡C—, —O—, —S—, —S(O)—, —S(O)2—, —SO2N(R4)—, —N(R4)—, —N(R4)C(O)—, —NR4C(O)N(R4)—, —N(R4)CO2—, —C(O)N(R4)—, —C(O)—, —C(O)—C(O)—, —CO2—, —OC(O)—, —OC(O)O—, —OC(O)N(R4)—, —N(R4)SO2—, or —SO2N(R4);
V4 is —C(R5)═C(R5)—, —O—, —S—, —S(O)—, —S(O)2—, —SO2N(R4)—, —N(R4)—, —N(R4)C(O)—, —NR4C(O)N(R4)—, —N(R4)CO2—, —C(O)N(R4)—, —C(O)—, —C(O)—C(O)—, —CO2—, —OC(O)—, —OC(O)O—, —OC(O)N(R4)—, —C(NR4)═N—, —C(OR5)═N—, —N(R4)SO2—, —N(R4)SO2N(R4)—, —P(O)(R5)—, —P(O)(OR5)—O—, —P(O)—O—, or —P(O)(NR5)—N(R5)—;
each R1j independently is an optionally substituted aryl, heteroaryl, heterocyclyl, or cycloaliphatic ring;
each R2j independently is —NO2, —CN, —C(R5)═C(R5)2, —C≡C—R5, —C(R5)═C(R5)(R10), —C≡C—R10, —OR5, —SR6, —S(O)R6, —SO2R6, —SO3R5, —SO2N(R4)2, —N(R4)2, —NR4C(O)R5, —NR4C(O)N(R4)2, —NR4CO2R6, —O—CO2R5, —OC(O)N(R4)2, —O—C(O)R5, —CO2R5, —C(O)—C(O)R5, —C(O)R5, —C(O)N(R4)2, —C(O)N(R4)C(═NR4)N(R4)2, —N(R4)C(═NR4)—N(R4)—C(O), —C(═NR4)—N(R4)2, —C(═NR4)—OR5, —N(R4)C(═NR4)—N(R4)2, —N(R4)SO2R6, —N(R4)SO2N(R4)2, —P(O)(R5)2, or —P(O)(OR5)2;
each R3 independently is selected from the group consisting of C1-3aliphatic, —F, —OH, and —O(C1-3alkyl), or two substituents R3 on the same carbon atom, taken together with the carbon atom to which they are attached, form a 3- to 6-membered carbocyclic ring;
each R3a independently is selected from the group consisting of—F, —OH, —O(C1-3alkyl), —CN, —N(R4)2, —C(O)(C1-3alkyl), —CO2H, —CO2(C1-3alkyl), —C(O)NH2, and —C(O)NH(C1-3alkyl);
each R3b independently is a C1-3aliphatic optionally substituted with R3a or R7, or two substituents R3b on the same or adjacent carbon atom(s), taken together with the carbon atom(s) to which they are attached, form a 3- to 6-membered carbocyclic ring; and
each R4 independently is hydrogen or an optionally substituted aliphatic, aryl, heteroaryl, or heterocyclyl group; or two R4 on the same nitrogen atom, taken together with the nitrogen atom, form an optionally substituted 4- to 8-membered heterocyclyl ring having, in addition to the nitrogen atom, 0-2 ring heteroatoms selected from N, O, and S;
each R4a independently is hydrogen or an optionally substituted aliphatic, aryl, heteroaryl, or heterocyclyl group; or two R4a on the same nitrogen atom, taken together with the nitrogen atom, form an optionally substituted 4- to 8-membered heterocyclyl ring having, in addition to the nitrogen atom, 0-2 ring heteroatoms selected from N, O, and S;
each R5 independently is hydrogen or an optionally substituted aliphatic, aryl, heteroaryl, or heterocyclyl group;
each R5a independently is hydrogen or an optionally substituted aliphatic, aryl, heteroaryl, or heterocyclyl group;
each R6 independently is an optionally substituted aliphatic or aryl group;
each R6a independently is an optionally substituted aliphatic or aryl group;
each R7 independently is an optionally substituted aryl or heteroaryl ring;
each R8h independently is selected from the group consisting of C1-4aliphatic, C1-4-fluoroaliphatic, -halo, and —O(C1-4aliphatic);
each R8j independently is selected from the group consisting of C1-4aliphatic, C1-4-fluoroaliphatic, -halo, —CO2H, —CO2(C1-4aliphatic), —OH, and —O(C1-4aliphatic); and
R10 is —CO2R5 or —C(O)N(R4)2.
US13/419,663 2004-10-04 2012-03-14 Lactam compounds useful as protein kinase inhibitors Abandoned US20120178739A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/419,663 US20120178739A1 (en) 2004-10-04 2012-03-14 Lactam compounds useful as protein kinase inhibitors

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US61576104P 2004-10-04 2004-10-04
US11/242,413 US7459448B2 (en) 2004-10-04 2005-10-03 Lactam compounds useful as protein kinase inhibitors
US12/231,661 US7935694B2 (en) 2004-10-04 2008-09-04 Lactam compounds useful as protein kinase inhibitors
US12/903,370 US20110039820A1 (en) 2004-10-04 2010-10-13 Lactam compounds useful as protein kinase inhibitors
US13/419,663 US20120178739A1 (en) 2004-10-04 2012-03-14 Lactam compounds useful as protein kinase inhibitors

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/903,370 Continuation US20110039820A1 (en) 2004-10-04 2010-10-13 Lactam compounds useful as protein kinase inhibitors

Publications (1)

Publication Number Publication Date
US20120178739A1 true US20120178739A1 (en) 2012-07-12

Family

ID=35789256

Family Applications (4)

Application Number Title Priority Date Filing Date
US11/242,413 Active US7459448B2 (en) 2004-10-04 2005-10-03 Lactam compounds useful as protein kinase inhibitors
US12/231,661 Active US7935694B2 (en) 2004-10-04 2008-09-04 Lactam compounds useful as protein kinase inhibitors
US12/903,370 Abandoned US20110039820A1 (en) 2004-10-04 2010-10-13 Lactam compounds useful as protein kinase inhibitors
US13/419,663 Abandoned US20120178739A1 (en) 2004-10-04 2012-03-14 Lactam compounds useful as protein kinase inhibitors

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US11/242,413 Active US7459448B2 (en) 2004-10-04 2005-10-03 Lactam compounds useful as protein kinase inhibitors
US12/231,661 Active US7935694B2 (en) 2004-10-04 2008-09-04 Lactam compounds useful as protein kinase inhibitors
US12/903,370 Abandoned US20110039820A1 (en) 2004-10-04 2010-10-13 Lactam compounds useful as protein kinase inhibitors

Country Status (7)

Country Link
US (4) US7459448B2 (en)
EP (2) EP1799684B1 (en)
JP (2) JP5002460B2 (en)
CN (2) CN102766142A (en)
AU (1) AU2005294575B2 (en)
CA (1) CA2582235A1 (en)
WO (1) WO2006041773A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017070235A1 (en) * 2015-10-19 2017-04-27 Attenua, Inc. Antitussive compositions and methods
US10399951B2 (en) 2013-03-13 2019-09-03 Forma Therapeutics, Inc. Compounds and compositions for inhibition of FASN
US10793554B2 (en) 2018-10-29 2020-10-06 Forma Therapeutics, Inc. Solid forms of 4-(2-fluoro-4-(1-methyl-1H-benzo[d]imidazol-5-yl)benzoyl)piperazin-1-yl)(1-hydroxycyclopropyl)methanone

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5002460B2 (en) * 2004-10-04 2012-08-15 ミレニアム ファーマシューティカルズ, インコーポレイテッド Lactam compounds useful as protein kinase inhibitors
US8119655B2 (en) 2005-10-07 2012-02-21 Takeda Pharmaceutical Company Limited Kinase inhibitors
PE20080145A1 (en) * 2006-03-21 2008-02-11 Janssen Pharmaceutica Nv TETRAHYDRO-PYRIMIDOAZEPINE AS MODULATORS OF TRPV1
US8735411B2 (en) * 2006-10-02 2014-05-27 Abbvie Inc. Macrocyclic benzofused pyrimidine derivatives
US7985745B2 (en) * 2006-10-02 2011-07-26 Abbott Laboratories Method for pain treatment
US20100120717A1 (en) 2006-10-09 2010-05-13 Brown Jason W Kinase inhibitors
US8461149B2 (en) 2007-08-15 2013-06-11 Vertex Pharmaceuticals Incorporated Compounds useful as protein kinase inhibitors
CN101878216B (en) * 2007-09-28 2013-07-10 西克拉塞尔有限公司 Pyrimidine derivatives as protein kinase inhibitors
PE20091102A1 (en) 2007-12-17 2009-07-25 Janssen Pharmaceutica Nv IMIDAZOLO-, OXAZOLO-, AND THIAZOLOPYRIMIDINE MODULATORS OF TRPV1
WO2009081222A1 (en) 2007-12-21 2009-07-02 Glenmark Pharmaceuticals, S.A. Substituted tricyclic pyridine or pyrimidine vanilloid receptor ligands
GB0800383D0 (en) * 2008-01-10 2008-02-20 Univ Strathclyde Weight reducing compounds
EP2100894A1 (en) 2008-03-12 2009-09-16 4Sc Ag Pyridopyrimidines used as Plk1 (polo-like kinase) inhibitors
US7998952B2 (en) 2008-12-05 2011-08-16 Millennium Pharmaceuticals, Inc. Thiolactams and uses thereof
NZ619259A (en) 2009-06-17 2015-07-31 Vertex Pharma Inhibitors of influenza viruses replication
JP2013545816A (en) 2010-12-16 2013-12-26 バーテックス ファーマシューティカルズ インコーポレイテッド Influenza virus replication inhibitor
JP5959537B2 (en) * 2011-01-28 2016-08-02 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Substituted pyridinyl-pyrimidines and their use as pharmaceuticals
CN102174016A (en) * 2011-03-02 2011-09-07 宁波人健药业集团有限公司 Method for preparing 7-chloro-2,3,4,5-tetrahydro-1H-1-benzoazepine-2,5-diketone
UA118010C2 (en) 2011-08-01 2018-11-12 Вертекс Фармасьютікалз Інкорпорейтед INFLUENCES OF INFLUENZA VIRUS REPLICATION
WO2013033093A1 (en) * 2011-08-29 2013-03-07 Biocryst Pharmaceuticals, Inc. Heterocyclic compounds as janus kinase inhibitors
BR112016010576B1 (en) 2013-11-13 2022-05-24 Vertex Pharmaceuticals Incorporated METHODS OF PREPARATION OF INFLUENZA VIRUS REPLICATION INHIBITORS
ME03460B (en) 2013-11-13 2020-01-20 Vertex Pharma Inhibitors of influenza viruses replication
CN103601678B (en) * 2013-11-21 2015-02-11 爱斯特(成都)医药技术有限公司 Synthetic method of 7-chloro-1,2,3,4-tetrahydrobenzo[b]azepine-5-one
WO2015160220A1 (en) 2014-04-17 2015-10-22 Hanall Biopharma Co., Ltd. Guanidine compounds and use thereof
JP6704416B2 (en) 2015-05-13 2020-06-03 バーテックス ファーマシューティカルズ インコーポレイテッドVertex Pharmaceuticals Incorporated Methods for preparing inhibitors of influenza virus replication
MA42422A (en) 2015-05-13 2018-05-23 Vertex Pharma INHIBITORS OF INFLUENZA VIRUS REPLICATION
RS63116B1 (en) 2016-05-06 2022-05-31 Shanghai De Novo Pharmatech Co Ltd Benzazepine derivative, preparation method, pharmaceutical composition and use thereof

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06172355A (en) 1992-04-14 1994-06-21 Mect Corp Pyrimidine derivative and platelet aggregation preventing agent containing the same as active ingredient
DE4332168A1 (en) * 1993-02-22 1995-03-23 Thomae Gmbh Dr K Cyclic derivatives, pharmaceutical compositions containing these compounds and process for their preparation
US5686445A (en) 1993-07-29 1997-11-11 American Cyanamid Company Pyridobenzoxazepine and pyridobenzothiazepine vasopressin antagonists
US5428040A (en) 1993-08-31 1995-06-27 The Du Pont Merck Pharmaceutical Company Carbocyclic fused-ring quinolinecarboxylic acids useful as immunosuppressive agents
AU2980797A (en) 1996-06-11 1998-01-07 Yoshitomi Pharmaceutical Industries, Ltd. Fused heterocyclic compounds and medicinal uses thereof
WO1997047624A1 (en) 1996-06-13 1997-12-18 American Cyanamid Company Tricyclic benzazepine vasopressin antagonists
EP0946523A1 (en) * 1996-12-23 1999-10-06 Celltech Therapeutics Limited Fused polycyclic 2-aminopyrimidine derivatives, their preparation and their use as protein tyrosine kinase inhibitors
US6723498B1 (en) 1999-06-30 2004-04-20 Millennium Pharmaceuticals, Inc. Chk1 and uses thereof
FR2804959B1 (en) 2000-02-15 2006-04-28 Centre Nat Rech Scient USE OF PAULLON DERIVATIVES FOR THE MANUFACTURE OF MEDICAMENTS
US6369222B1 (en) 2000-07-18 2002-04-09 Hoffmann-La Roche Inc. mGluR antagonists and a method for their synthesis
US6610677B2 (en) * 2000-09-15 2003-08-26 Vertex Pharmaceuticals Incorporated Pyrazole compounds useful as protein kinase inhibitors
US7105667B2 (en) * 2001-05-01 2006-09-12 Bristol-Myers Squibb Co. Fused heterocyclic compounds and use thereof
WO2002088079A2 (en) 2001-05-01 2002-11-07 Bristol-Myers Squibb Company Dual inhibitors of pde 7 and pde 4
US6686352B2 (en) 2001-05-18 2004-02-03 Hoffmann-La Roche Inc. Substituted imidazo [1,5-a] pyrimido [5,4-d] [1] benzazepine derivatives
JPWO2003104230A1 (en) 2002-06-07 2005-10-06 協和醗酵工業株式会社 Bicyclic pyrimidine derivatives
EP1606268B1 (en) 2003-02-27 2015-05-20 AbbVie Inc. 5,10-dihydro-11h-dibenzo[b,e][1,4]diazepin-11-one as kinase inhibitors
MXPA06000785A (en) * 2003-07-21 2006-04-18 Pfizer Prod Inc Nicotine addiction reducing heteroaryl fused azapolycyclic compounds.
CN1897950A (en) 2003-10-14 2007-01-17 惠氏公司 Fused-aryl and heteroaryl derivatives and methods of their use
EP2719698B1 (en) * 2004-05-14 2016-10-05 Millennium Pharmaceuticals, Inc. Methods for preparing aurora kinase inhibitors
JP5002460B2 (en) * 2004-10-04 2012-08-15 ミレニアム ファーマシューティカルズ, インコーポレイテッド Lactam compounds useful as protein kinase inhibitors
PE20070171A1 (en) 2005-06-30 2007-03-08 Boehringer Ingelheim Int SUBSTITUTE GLYCINAMIDES WITH ANTITHROMBOTIC EFFECT AND INHIBITOR OF FACTOR Xa
US7998952B2 (en) * 2008-12-05 2011-08-16 Millennium Pharmaceuticals, Inc. Thiolactams and uses thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10399951B2 (en) 2013-03-13 2019-09-03 Forma Therapeutics, Inc. Compounds and compositions for inhibition of FASN
US10450286B2 (en) 2013-03-13 2019-10-22 Forma Therapeutics, Inc. Compounds and compositions for inhibition of FASN
US10457655B2 (en) 2013-03-13 2019-10-29 Forma Therapeutics, Inc. Compounds and compositions for inhibition of FASN
US10472342B2 (en) 2013-03-13 2019-11-12 Forma Therapeutics, Inc. Compounds and compositions for inhibition of FASN
US10800750B2 (en) 2013-03-13 2020-10-13 Forma Therapeutics, Inc. Compounds and compositions for inhibition of FASN
US10995078B2 (en) 2013-03-13 2021-05-04 Forma Therapeutics, Inc. Compounds and compositions for inhibition of FASN
WO2017070235A1 (en) * 2015-10-19 2017-04-27 Attenua, Inc. Antitussive compositions and methods
US10793554B2 (en) 2018-10-29 2020-10-06 Forma Therapeutics, Inc. Solid forms of 4-(2-fluoro-4-(1-methyl-1H-benzo[d]imidazol-5-yl)benzoyl)piperazin-1-yl)(1-hydroxycyclopropyl)methanone
US11267805B2 (en) 2018-10-29 2022-03-08 Forma Therapeutics, Inc. Solid forms of (4-(2-fluoro-4-(1-methyl-1H-benzo[d]imidazol-5-yl)benzoyl) piperazine-1-yl)(1-hydroxycyclopropyl)methanone

Also Published As

Publication number Publication date
US7459448B2 (en) 2008-12-02
WO2006041773A2 (en) 2006-04-20
WO2006041773A3 (en) 2006-05-18
US7935694B2 (en) 2011-05-03
US20060100194A1 (en) 2006-05-11
US20110039820A1 (en) 2011-02-17
CN102766142A (en) 2012-11-07
JP2012092143A (en) 2012-05-17
AU2005294575A1 (en) 2006-04-20
JP2008515798A (en) 2008-05-15
CN101068815B (en) 2012-09-05
EP1799684B1 (en) 2014-12-03
EP1799684A2 (en) 2007-06-27
CA2582235A1 (en) 2006-04-20
CN101068815A (en) 2007-11-07
JP5002460B2 (en) 2012-08-15
US20090105213A1 (en) 2009-04-23
EP2439207A1 (en) 2012-04-11
AU2005294575B2 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
US7935694B2 (en) Lactam compounds useful as protein kinase inhibitors
US11014928B2 (en) Compounds and methods for inhibiting mitotic progression
JP2007537268A5 (en)
EP1905773B1 (en) Compounds and methods for inhibiting mitotic progression by inhibition of aurora kinase

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION