US20120177162A1 - Symmetric Phase Detector - Google Patents

Symmetric Phase Detector Download PDF

Info

Publication number
US20120177162A1
US20120177162A1 US13/424,728 US201213424728A US2012177162A1 US 20120177162 A1 US20120177162 A1 US 20120177162A1 US 201213424728 A US201213424728 A US 201213424728A US 2012177162 A1 US2012177162 A1 US 2012177162A1
Authority
US
United States
Prior art keywords
cell
input
phase
mixer
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/424,728
Inventor
Nikola Nedovic
H. Anders Kristensson
William W. Walker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to US13/424,728 priority Critical patent/US20120177162A1/en
Assigned to FUJITSU LIMITED reassignment FUJITSU LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NEDOVIC, NIKOLA, WALKER, WILLIAM W., KRISTENSSON, H. ANDERS
Publication of US20120177162A1 publication Critical patent/US20120177162A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D13/00Circuits for comparing the phase or frequency of two mutually-independent oscillations
    • H03D13/007Circuits for comparing the phase or frequency of two mutually-independent oscillations by analog multiplication of the oscillations or by performing a similar analog operation on the oscillations
    • H03D13/008Circuits for comparing the phase or frequency of two mutually-independent oscillations by analog multiplication of the oscillations or by performing a similar analog operation on the oscillations using transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/089Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses

Definitions

  • the present disclosure relates generally to signal communication.
  • a phase-locked loop (PLL)-based CDR circuit is a conventional type of CDR circuit.
  • a phase detector compares the phase between input data bits from a serial input data stream and a clock signal from a voltage-controlled oscillator (VCO). In response to the phase difference between the input data and the clock, the phase detector generates signals UP and DN.
  • a charge pump drives a current to or from a loop filter according to the UP and DN signals.
  • the loop filter generates a control voltage V CTRL for the VCO based on the UP and DN signals.
  • the loop acts as a feedback control system that tracks the phase of input data stream with the phase of the clock that the loop generates.
  • the dynamics of the loop are generally determined by the open loop gain and the location of open loop zeroes and poles (predominantly in the loop filter).
  • DLL delay-locked loops
  • PI phase interpolators
  • phase detectors such as a phase and frequency detector (PFD) or an Alexander Detector
  • PFD phase and frequency detector
  • Alexander Detector an Alexander Detector
  • these conventional phase detectors are designed to output zero for nominal zero input phase offset, and are typically asymmetric in that the output of such phase detectors has a built-in phase offset between its inputs. The phase offset output from the phase detector typically cannot be compensated.
  • FIG. 1 illustrates an example CDR circuit.
  • FIG. 2 illustrates another example CDR circuit.
  • FIG. 3 illustrates an example half-rate CDR circuit.
  • FIG. 4 illustrates another example CDR circuit.
  • FIG. 5 illustrates an example quarter-rate CDR circuit.
  • FIG. 6 illustrate an example phase interpolator block.
  • FIG. 7 illustrates an example phase interpolator.
  • FIG. 8A illustrates an example phase detector
  • FIG. 8B illustrates another example phase detector.
  • FIG. 9A illustrates a circuit schematic of an example Gilbert cell.
  • FIG. 9B illustrates a symbol of an example Gilbert cell equivalent to that of FIG. 7A .
  • FIG. 9C illustrates a phase characteristic of the example Gilbert cell of FIG. 7A .
  • FIG. 10A illustrates an example circuit arrangement of Gilbert cells.
  • FIG. 10B illustrates a phase characteristic of the example arrangement of FIG. 8A .
  • FIG. 11 illustrates an example phase detector circuit.
  • FIG. 12 illustrates an example phase detector circuit.
  • Particular embodiments relate to a clock and data recovery (CDR) circuit.
  • CDR clock and data recovery
  • Particular embodiments relate to a CDR circuit that includes a phase interpolator integrated with a phase detector.
  • Particular embodiments relate to the generation of an 8-phase clock signal from a 4-phase clock signal for use as a sampling clock signal in a 40 Gb/s quarter-rate CDR circuit.
  • Particular embodiments relate to a 10 GHz phase interpolator for a 40 Gb/s CDR circuit.
  • Particular embodiments relate to a phase detector that is symmetric with respect to the inputs to the phase detector.
  • Particular embodiments relate to a high-speed phase detector for periodic input signals (e.g., clock signals).
  • Particular embodiments relate to a phase detector having an output that is zero for a 90° or other non-zero phase offset between the inputs to the phase detector. Particular embodiments further relate to the use of parallel cross-coupled Gilbert cells for use in a phase detector.
  • the signals described below are differential signals where appropriate.
  • various signals described below are periodic signals, where appropriate.
  • FIG. 1 illustrates an example CDR circuit that includes a phase detector (PD) 102 , a charge pump 104 , a loop filter 106 , and a voltage-controlled oscillator (VCO) 108 , each of which may include one or more sub-circuits or sub-blocks.
  • PD 102 receives as input one or more input data streams D in as well as a multi-phase clock signal, VCO.Clk, from VCO 108 .
  • an m-phase clock signal actually includes m clock signals, each having different relative phase and each transmitted over, for example, a corresponding wire to PD 102 .
  • VCO PD 102 is used to sample the data in the one or more input data streams D in multiple times within each VCO.Clk clock cycle, whereas VCO 108 is used to generate the appropriate clock phases for the multi-phase signal VCO.Clk that control the timing of the sampling.
  • the data is sampled twice per cycle: at the data transition point (edge sample) and at the middle of the cycle (center sample).
  • the operating frequency of the CDR may be
  • clock phases e.g., 0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315′.
  • clock phases e.g., 0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315′.
  • phase interpolator generally receives two input signals separated by a phase offset (e.g., 90°) and generates an output signal having a phase in between the phases of the two input signals depending on a control signal.
  • PI block 210 receives as inputs an m-phase clock signal, VCO.Clk, generated from VCO 108 as well as a control input, phAdj, and produces an m-phase clock signal PI.Clk that is then fed to PD 102 for use in sampling the input data stream D in .
  • the input phAdj determines the sign and magnitude of the phase adjustment.
  • FIG. 3 illustrates an example of a half-rate CDR circuit.
  • the circuit of FIG. 3 is a special case of the circuit of FIG. 2 in which VCO 108 generates a 4-phase clock signal VCO.Clk.
  • VCO.Clk includes clock signals ⁇ 0 , ⁇ 90 , ⁇ 180 , and ⁇ 270 , having phases of approximately 0°, 90°, 180°, and 270°, respectively (note that there is a 90° phase difference between the individual signals).
  • PI block 210 receives the clock signals ⁇ 0 , ⁇ 90 , ⁇ 180 , and ⁇ 270 and outputs four phase-interpolated clock signals ⁇ 0 , ⁇ 90 , ⁇ 180 , and ⁇ 270 , which have phases of approximately 0°, 90°, 180°, and 270°, respectively.
  • the four phase-interpolated clock signals may have phase differences with respect to each other that are not 90°.
  • PI block 210 may skew phases (such as, for example, ⁇ 90 and ⁇ 270 with respect to ⁇ 0 and ⁇ 180 ) to support phase adjustment capability, as described above.
  • VCO.Clk represents differential signals
  • ⁇ 0 and ⁇ 180 may represent one differential pair
  • ⁇ 90 and ⁇ 270 may represent one differential pair
  • ⁇ 0 and ⁇ 180 may represent one differential pair
  • ⁇ 90 and ⁇ 270 may represent one differential pair.
  • VCO.Clk may actually include two differential signals in practice.
  • High data rate CDRs are often implemented as quarter-rate architectures with inductor-capacitor (LC)-based VCOs.
  • high data rates may refer to data rates equal or greater than 10 Gb/s, equal or greater than 20 Gb/s, or equal or greater than 40 Gb/s.
  • Quarter-rate CDRs generally require eight or more clock phases, the generation and delivery of which present numerous difficulties using LC-based VCOs, partly due to the number of inductors required.
  • LC-based VCOs can relatively easily produce two or four clock phases, but become difficult to deal with when more phases (e.g., 8, 12 or more) are required.
  • the generation of the extra intermediate phases needed for, by way of example, quarter-rate CDRs is combined with the phase adjustment requirement using a single PI block 410 as illustrated in FIG. 4 .
  • a low noise oscillator such as an LC-based VCO 102 as a k-phase clock generator to generate a k-phase clock signal (where k ⁇ 2) input to PI block 410 .
  • PI block 410 receives the k-phase clock signal from VCO 108 and produces an m-phase clock signal for use by phase detector 402 , where m ⁇ k (unlike previous conventional CDR architectures that produce the same number of phases as are received).
  • FIG. 5 illustrates an example embodiment of a quarter-rate CDR circuit.
  • VCO 508 produces a 4-phase clock signal including clock signals ⁇ 0 , ⁇ 90 , ⁇ 180 , and ⁇ 270 , having phases of approximately 0°, 90°, 180°, and 270°, respectively.
  • clock signals ⁇ 0 , ⁇ 90 , ⁇ 180 , and ⁇ 270 are input to PI block 510 , which, in the illustrated embodiment, outputs an 8-phase clock signal that includes clock signals ⁇ 0 , ⁇ 90 , ⁇ 180 , and ⁇ 270 , having phases of approximately 0°, 90°, 180°, and 270°, respectively, along with four additional intermediately-phased clock signals ⁇ 45 , ⁇ 135 , ⁇ 225 , and ⁇ 315 , having phases of approximately 45°, 135°, 225°, and 315°, respectively.
  • PI block 510 may also be used to adjust the decision clocks based on the phAdj control input by introducing a static phase offset.
  • VCO.Clk represents differential signals
  • ⁇ 0 and ⁇ 180 may represent one differential pair
  • ⁇ 90 and ⁇ 270 may represent one differential pair
  • ⁇ 0 and ⁇ 180 may represent one differential pair
  • ⁇ 90 and ⁇ 270 may represent one differential pair
  • ⁇ 45 and ⁇ 225 may represent one differential pair
  • ⁇ 135 and ⁇ 315 may represent one differential pair.
  • VCO.Clk may actually include two differential signals in practice while PI.Clk may actually include four differential signals in practice.
  • FIG. 6 illustrates an example PI block 610 suitable for use as PI block 410 or 510 .
  • PI block 610 includes one or more phase interpolators (PIs) 612 that receive as input a k-phase clock signal and output an m-phase clock signal.
  • PI block 610 additionally includes one or more phase detectors 614 (hereinafter PD 614 ) in a feedback loop with PI or PIs 612 (hereinafter PI 612 ).
  • PD 614 phase detectors 614
  • PI 612 may include two differential pairs 740 and 742 driven by appropriate input signals (e.g., ⁇ 0 and ⁇ 90 or ⁇ 90 and ⁇ 180 ).
  • the output of PI 612 is the current summation of the differential pair, which is converted to voltage through a resistor.
  • an approximate desired phase is achieved as a weighted sum of the two input signals.
  • the ratio of the tail current will determine the phase and the sum of the tail currents will determine the amplitude of the output signal.
  • the inputs to differential pairs 740 and 742 are the gates of the transistors in the differential pairs 740 and 742 and the outputs are the wires tapping the outputs of the transistors.
  • input signal ⁇ 0 may go the gate of the illustrated left transistor in differential pair 740 ;
  • input signal ⁇ 180 may go the gate of the illustrated right transistor in differential pair 740 ;
  • input signal ⁇ 90 may go the gate of the illustrated left transistor in differential pair 742 ;
  • input signal ⁇ 270 may go the gate of the illustrated right transistor in differential pair 742 .
  • Output signal ⁇ 225 may come from the illustrated vertical wire at the illustrated bottom of differential pair 740
  • output signal ⁇ 45 may come from the illustrated vertical wire at the illustrated bottom of differential pair 742 .
  • PI 612 takes as input the 4-phase clock signal including clock signals ⁇ 0 , ⁇ 90 , ⁇ 180 , and ⁇ 270 , having phases of approximately 0°, 90°, 180°, and 270°, respectively, from VCO 508 .
  • PI 612 uses these signals to generate an 8-phase clock signal that includes clock signals ⁇ 0 , ⁇ 90 , ⁇ 180 , and ⁇ 270 , having phases of approximately 0°, 90°, 180°, and 270°, respectively, along with four additional intermediately-phased clock signals ⁇ 45 , ⁇ 135 , ⁇ 225 , and ⁇ 315 , having phases of approximately 45°, 135°, 225°, and 315°, respectively.
  • PD 614 provides feedback to PI 612 in the form of error (or control) signals that are used by PI 612 to adjust the 8-phase clock signal output.
  • a first PI 612 may use the input signals ⁇ 0 and ⁇ 90 to generate the output signal ⁇ 45 , while other PIs 612 in parallel with the first PI 612 generate the other intermediately-phase clock signals, respectively.
  • FIG. 8A illustrates an example phase detector 802 suitable for use as PD 614 and/or PDs 402 or 502 .
  • PD 802 includes a first PD input that receives (during operation) a first input signal V in1 , a second PD input that receives (during operation) a second input signal V in2 , and a third PD input that receives (during operation) a third input signal V in3 .
  • each of the described inputs, and those described below, may actually include two inputs: one for the described signal and one for the corresponding complement (since the signals are generally differential).
  • input signal V in1 is a first clock signal output by PI 612
  • V in2 is a second clock signal output by PI 612
  • V in3 is a third clock signal output by PI 612
  • the third clock signal V in3 may be referred to as the target phase signal.
  • PD 802 includes a first mixer cell (or circuit/block) 820 and a second mixer cell (or circuit/block) 822 .
  • first mixer cell 820 includes a first MC input, a second MC input, and a first MC output while second mixer cell 822 includes a third MC input, a fourth MC input, and a second MC output.
  • the first PD input is connected to the first MC input
  • the second PD input is connected to the third MC input
  • the third PD input is connected to the second MC input and the fourth MC input.
  • PD 802 further includes an adder 824 that receives the first and second MC output signals and adds the first and second MC output signals to produce a summed output signal.
  • PD 802 additionally includes an integrator 826 that filters the summed output signal to produce an integrated (e.g., DC) output signal that represents the PD output signal V out output over the PD output.
  • the PD output signal V out represents an error signal that is then input to PI 612 and used to adjust the phase of the input signal V in3 .
  • first mixer cell 820 is a multiplying mixer cell and second mixer cell 822 is a multiplying mixer cell.
  • first mixer cell 820 is a Gilbert cell and second mixer cell 822 is a Gilbert cell.
  • a Gilbert cell is an electronic multiplying mixer.
  • the output current of a Gilbert cell is an accurate multiplication of the (differential) base currents of both inputs.
  • FIG. 9A illustrates a circuit schematic of an example Gilbert cell having inputs for receiving two differential signals in 1 (the complement of in 1 is denoted as in 1 ) and in 2 (the complement of in 2 is denoted as in 2 ).
  • FIG. 9B illustrates an accepted equivalent symbol for a Gilbert cell
  • FIG. 9C illustrates the value of the output differential signal I out ⁇ I out as a function of the phase offset ⁇ (in 1 ⁇ in 2 ) between the differential input signals in 1 and in 2 .
  • first mixer cell 820 includes a first Gilbert cell 830 and a second Gilbert cell 832 cross-coupled in parallel, while second mixer cell 822 includes a third Gilbert cell 834 and a fourth Gilbert cell 836 cross-coupled in parallel, as illustrated in FIG. 8B .
  • a first input of first Gilbert cell 830 receives input signal V in1 while a second input of first Gilbert cell 830 receives input signal V in2 .
  • a first input of second Gilbert cell 832 receives input signal V in2 while a second input of second Gilbert cell 832 receives input signal V in1 .
  • the outputs of first and second Gilbert cells 830 and 832 may be connected to provide the first MC output signal, as shown in the illustrate embodiment.
  • a first input of third Gilbert cell 834 receives input signal V in3 while a second input of third Gilbert cell 834 receives input signal V in2 .
  • a first input of fourth Gilbert cell 836 receives input signal V in2 while a second input of fourth Gilbert cell 836 receives input signal V in3 .
  • the outputs of third and fourth Gilbert cells 834 and 836 may be connected to provide the second MC output signal, as shown in the illustrate embodiment.
  • the first MC output signal output from first mixer cell 820 is symmetric with respect to the inputs V in1 and V in2 and the second MC output signal output from second mixer cell 822 is symmetric with respect to the inputs V in2 and V in3 .
  • the delay between the first input of any Gilbert cell and the output of the Gilbert cell is generally different than the delay between the second input of the Gilbert cell and the output of the Gilbert cell. This results in a static phase offset in the output signal output from the Gilbert cell.
  • the static phase offset is cancelled to at least a first approximation.
  • FIG. 10A and 10B illustrates a circuit that includes two Gilbert cells cross-coupled in parallel (as in each mixer cell 820 and 822 ) as well as the circuit's phase characteristic, respectively.
  • the circuit shown in FIG. 10A may itself be used as a phase detector.
  • the inputs to the two Gilbert cells 1002 and 1004 are interchanged: input in is connected to the input A of Gilbert cell 1002 and to input B of Gilbert cell 1004 ; input in 2 is connected to the input B of Gilbert cell 1002 and to input A of Gilbert cell 1004 .
  • the interchanging of the inputs effectively interpolates the outputs of the Gilbert cells and results in zero input offset to a first degree of approximation. Such an arrangement minimizes the phase offset (the phase delay between the inputs for which the output of the arrangement is still equal to zero).
  • the output, V out , of PD 802 represents an error signal that is proportional to the difference in phase between the phase of V in3 and the average of the phases of V in1 and V in2 .
  • V in1 represents ⁇ 0
  • V in2 represents ⁇ 90
  • V in3 represents ⁇ 45 .
  • V out represent an error signal that is proportional to the difference between the phase of ⁇ 45 , which is approximately 45° (as noted above, VCOs have difficulty generating intermediately-phased signals such as 45°, and as such the phase of ⁇ 45 is only roughly equal to) 45°, and the average of the phases of ⁇ 0 and ⁇ 90 , which is approximately 45° since the phase of ⁇ 0 and ⁇ 90 are approximately 0° and 90°, respectively.
  • the error signal, V out is then fed to PI 612 , which then adjusts the phase of ⁇ 45 to eliminate the phase difference (which would then result in a zero-valued error signal), which results in a ⁇ 45 having a phase truer to 45°.
  • PD 614 provides a feedback loop to PI 612 to compensate for the inaccuracy of PI 612 .
  • PD 614 also utilizes this circuit and process to adjust or verify the other intermediately-phased signals ⁇ 135 , ⁇ 225 , and ⁇ 315 generated by PIs 612 .
  • PD 614 generates four error signals V out in parallel to adjust or verify signals ⁇ 45 , ⁇ 135 , ⁇ 225 , and ⁇ 315 .
  • PD 614 may receive ⁇ 90 as V in1 , ⁇ 135 as V in2 , and ⁇ 180 as V in3 .
  • PD 614 may receive ⁇ 180 as V in1 , ⁇ 225 as V in2 , and ⁇ 270 as V in3 .
  • PD 614 may receive ⁇ 270 as V in1 , ⁇ 315 as V in2 and ⁇ 0 as V in3 . Note that since the clock signals are differential signals, the signals may be inverted to obtain signals having 180° phase offsets.
  • this circuit and method may be used to adjust any of the signals ⁇ 0 , ⁇ 45 , ⁇ 90 , ⁇ 135 , ⁇ 180 , ⁇ 225 , ⁇ 270 , and ⁇ 315 , as well as any other signal have any desired intermediate phase in between any of these signals.
  • PD 614 may receive ⁇ 0 as V in1 , an additional signal 6 having phase in the range between ⁇ 0 and ⁇ 45 as V in2 , and ⁇ 45 as V in3 . After a number of iterations, ⁇ will have a phase of approximately 22.5°.
  • phase offset may either be introduced as a weighted difference of the tail currents of the multipliers (Gilbert cells) as illustrated in FIG. 8A or by injecting a current on the output of the Gilbert cell.
  • the current output, I out , of the double Gilbert cell phase detector illustrated in FIG. 10A can be sensed by resistors to transform the output current to an output voltage and subsequently filtered.
  • FIG. 11 shows an implementation of the double Gilbert cell phase detector in a negative feedback configuration.
  • the current outputs of the first and second Gilbert cells 1102 and 1104 can be mirrored and summed in a single node used to modulate the phase between the inputs in 1 and in 2 .
  • Such a configuration forces the phase difference between the inputs to 90°, so that the net current in the V out node is zero.
  • a large capacitor or another form of a loop filter may be needed in such a configuration to filter the transient response of the phase detector and to govern the dynamic behavior of the loop.
  • a VCO, delay line, phase interpolator, or other suitable device can be used to control the phase difference between the two input signals in 1 and in 2 , as represented by box 1110 .
  • FIG. 12 illustrates another embodiment that involves a circuit for adjusting the phase characteristic externally.
  • additional offset current sources 1212 and 1214 that sink or source current to or from the phase detector may be used to offset its phase characteristic.
  • the offset current sources 1212 and 1214 may be externally controlled and can be connected either at the output of the Gilbert cells 1102 and 1104 , or at the voltage summing node V out , as illustrated in FIG. 12 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

In one embodiment, a circuit includes a first mixer cell and a second mixer cell that each have respectively a first cell input, a second cell input, and a cell output. The circuit includes a first circuit input configured to receive a first input signal having a first phase. The first circuit input is connected to the first cell input of the first mixer cell and the second cell input of the second mixer cell. The circuit includes a second circuit input configured to receive a second input signal having a second phase separated from the first phase by a nominal value. The second circuit input is connected to the second cell input of the first mixer cell and the first cell input of the second mixer cell.

Description

    RELATED APPLICATION
  • This application is a continuation under 35 U.S.C. §120 of U.S. patent application Ser. No. 12/511,340, filed 29 Jul. 2009, which claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application No. 61/084,467, filed 29 Jul. 2008, which is incorporated herein by reference.
  • TECHNICAL FIELD
  • The present disclosure relates generally to signal communication.
  • BACKGROUND
  • CDR circuits (or systems) are generally used to sample an incoming data signal, extract the clock from the incoming data signal, and retime the sampled data. A phase-locked loop (PLL)-based CDR circuit is a conventional type of CDR circuit. By way of example, in a conventional PLL based CDR, a phase detector compares the phase between input data bits from a serial input data stream and a clock signal from a voltage-controlled oscillator (VCO). In response to the phase difference between the input data and the clock, the phase detector generates signals UP and DN. A charge pump drives a current to or from a loop filter according to the UP and DN signals. The loop filter generates a control voltage VCTRL for the VCO based on the UP and DN signals. The loop acts as a feedback control system that tracks the phase of input data stream with the phase of the clock that the loop generates. The dynamics of the loop are generally determined by the open loop gain and the location of open loop zeroes and poles (predominantly in the loop filter).
  • When multiple phases of a periodic signal are needed, such as with a clock signal used for clock and data recovery (CDR), a challenge is to accurately generate these multiple phases. Conventionally, delay-locked loops (DLL) and phase interpolators (PI) have been used to generate the needed phases in conjunction with conventional voltage-controlled oscillators. One problem with these devices is the accuracy obtained when generating phases having intermediate degree increments.
  • Various applications such as DLLs, 90 degree shifters, phase interpolators, and generators of adjustable clock phases require a high-speed phase detector whose output is zero for a 90 degree or other non-zero phase offset between inputs. The speed of conventional phase detectors, such as a phase and frequency detector (PFD) or an Alexander Detector, are limited by the speed of the flip-flops which are their integral parts. In addition, these conventional phase detectors are designed to output zero for nominal zero input phase offset, and are typically asymmetric in that the output of such phase detectors has a built-in phase offset between its inputs. The phase offset output from the phase detector typically cannot be compensated.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates an example CDR circuit.
  • FIG. 2 illustrates another example CDR circuit.
  • FIG. 3 illustrates an example half-rate CDR circuit.
  • FIG. 4 illustrates another example CDR circuit.
  • FIG. 5 illustrates an example quarter-rate CDR circuit.
  • FIG. 6 illustrate an example phase interpolator block.
  • FIG. 7 illustrates an example phase interpolator.
  • FIG. 8A illustrates an example phase detector.
  • FIG. 8B illustrates another example phase detector.
  • FIG. 9A illustrates a circuit schematic of an example Gilbert cell.
  • FIG. 9B illustrates a symbol of an example Gilbert cell equivalent to that of FIG. 7A.
  • FIG. 9C illustrates a phase characteristic of the example Gilbert cell of FIG. 7A.
  • FIG. 10A illustrates an example circuit arrangement of Gilbert cells.
  • FIG. 10B illustrates a phase characteristic of the example arrangement of FIG. 8A.
  • FIG. 11 illustrates an example phase detector circuit.
  • FIG. 12 illustrates an example phase detector circuit.
  • DESCRIPTION OF EXAMPLE EMBODIMENTS
  • Particular embodiments relate to a clock and data recovery (CDR) circuit. Particular embodiments relate to a CDR circuit that includes a phase interpolator integrated with a phase detector. Particular embodiments relate to the generation of an 8-phase clock signal from a 4-phase clock signal for use as a sampling clock signal in a 40 Gb/s quarter-rate CDR circuit. Particular embodiments relate to a 10 GHz phase interpolator for a 40 Gb/s CDR circuit. Particular embodiments relate to a phase detector that is symmetric with respect to the inputs to the phase detector. Particular embodiments relate to a high-speed phase detector for periodic input signals (e.g., clock signals). Particular embodiments relate to a phase detector having an output that is zero for a 90° or other non-zero phase offset between the inputs to the phase detector. Particular embodiments further relate to the use of parallel cross-coupled Gilbert cells for use in a phase detector. In particular embodiments, the signals described below are differential signals where appropriate. In particular embodiments, various signals described below are periodic signals, where appropriate.
  • FIG. 1 illustrates an example CDR circuit that includes a phase detector (PD) 102, a charge pump 104, a loop filter 106, and a voltage-controlled oscillator (VCO) 108, each of which may include one or more sub-circuits or sub-blocks. In particular embodiments, PD 102 receives as input one or more input data streams Din as well as a multi-phase clock signal, VCO.Clk, from VCO 108. Here it should be noted that, in general, an m-phase clock signal actually includes m clock signals, each having different relative phase and each transmitted over, for example, a corresponding wire to PD 102. PD 102 is used to sample the data in the one or more input data streams Din multiple times within each VCO.Clk clock cycle, whereas VCO 108 is used to generate the appropriate clock phases for the multi-phase signal VCO.Clk that control the timing of the sampling. In typical CDRs, the data is sampled twice per cycle: at the data transition point (edge sample) and at the middle of the cycle (center sample).
  • In particular embodiments, to relax the bandwidth requirements in PD 102 and VCO 108, the operating frequency of the CDR may be
  • 1 n
  • of the data rate of Din, which requires that PD 102 receive multiple clock phases. By way of example, half-rate CDR architectures require four clock phases
  • ( e . g . , 0 ° , 90 ° ( π / 2 ) , 180 ° ( π ) , and 270 ° ( 3 π / 2 ) )
  • and quarter-rate CDR architectures require eight clock phases (e.g., 0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315′). In general,
  • 1 n
  • -rate CDR architectures require m=2×n clock phases. Furthermore, other CDR architectures may require more than two samples per clock cycle. By way of example, if j samples per clock cycle are required, then the corresponding
  • 1 n
  • -rate CDR would require m=j×n clock phases. For purposes of simplified illustration of example embodiments, the following disclosure focuses on embodiments utilizing conventional CDRs with one edge and one center sample per cycle (m=2×n).
  • Generally, one requirement of a CDR is the capability to adjust the decision phase (i.e., the center sample time relative to the edge sample). In particular embodiments, this phase adjustment functionality may be implemented with the use of a phase interpolator (PI) block 210 connected between PD 102 and VCO 108, as illustrated in FIG. 2. A phase interpolator generally receives two input signals separated by a phase offset (e.g., 90°) and generates an output signal having a phase in between the phases of the two input signals depending on a control signal. In particular embodiments, PI block 210 receives as inputs an m-phase clock signal, VCO.Clk, generated from VCO 108 as well as a control input, phAdj, and produces an m-phase clock signal PI.Clk that is then fed to PD 102 for use in sampling the input data stream Din. The input phAdj determines the sign and magnitude of the phase adjustment.
  • FIG. 3 illustrates an example of a half-rate CDR circuit. The circuit of FIG. 3 is a special case of the circuit of FIG. 2 in which VCO 108 generates a 4-phase clock signal VCO.Clk. VCO.Clk includes clock signals φ0, φ90, φ180, and φ270, having phases of approximately 0°, 90°, 180°, and 270°, respectively (note that there is a 90° phase difference between the individual signals). PI block 210 receives the clock signals φ0, φ90, φ180, and φ270 and outputs four phase-interpolated clock signals Φ0, Φ90, Φ180, and Φ270, which have phases of approximately 0°, 90°, 180°, and 270°, respectively. In particular embodiments, the four phase-interpolated clock signals may have phase differences with respect to each other that are not 90°. PI block 210 may skew phases (such as, for example, Φ90 and Φ270 with respect to Φ0 and Φ180) to support phase adjustment capability, as described above. Note that since VCO.Clk represents differential signals, φ0 and φ180 may represent one differential pair, φ90 and φ270 may represent one differential pair, Φ0 and Φ180 may represent one differential pair, and Φ90 and Φ270 may represent one differential pair. Thus, VCO.Clk may actually include two differential signals in practice.
  • High data rate CDRs are often implemented as quarter-rate architectures with inductor-capacitor (LC)-based VCOs. By way of example, high data rates may refer to data rates equal or greater than 10 Gb/s, equal or greater than 20 Gb/s, or equal or greater than 40 Gb/s. Quarter-rate CDRs generally require eight or more clock phases, the generation and delivery of which present numerous difficulties using LC-based VCOs, partly due to the number of inductors required. LC-based VCOs can relatively easily produce two or four clock phases, but become difficult to deal with when more phases (e.g., 8, 12 or more) are required.
  • In particular embodiments, the generation of the extra intermediate phases needed for, by way of example, quarter-rate CDRs, is combined with the phase adjustment requirement using a single PI block 410 as illustrated in FIG. 4. Particular embodiments use a low noise oscillator such as an LC-based VCO 102 as a k-phase clock generator to generate a k-phase clock signal (where k≧2) input to PI block 410. In particular embodiments, PI block 410 receives the k-phase clock signal from VCO 108 and produces an m-phase clock signal for use by phase detector 402, where m≠k (unlike previous conventional CDR architectures that produce the same number of phases as are received).
  • FIG. 5 illustrates an example embodiment of a quarter-rate CDR circuit. In the illustrated embodiment, VCO 508 produces a 4-phase clock signal including clock signals φ0, φ90, φ180, and φ270, having phases of approximately 0°, 90°, 180°, and 270°, respectively. These four clock signals φ0, φ90, φ180, and φ270 are input to PI block 510, which, in the illustrated embodiment, outputs an 8-phase clock signal that includes clock signals Φ0, Φ90, Φ180, and Φ270, having phases of approximately 0°, 90°, 180°, and 270°, respectively, along with four additional intermediately-phased clock signals Φ45, Φ135, Φ225, and Φ315, having phases of approximately 45°, 135°, 225°, and 315°, respectively. Although this example describes 4-to-8 phase generation, the present disclosure is intended to cover the generation of m=k+l phases from a k-phase clock signal. Using PI block 510 to generate the additional intermediately-phases clock signals reduces/relaxes the requirements of VCO 508 in terms of the number of clock phases output from VCO 508. In particular embodiments, PI block 510 may also be used to adjust the decision clocks based on the phAdj control input by introducing a static phase offset. Again, it should be noted that, in particular embodiments, since VCO.Clk represents differential signals, φ0 and φ180 may represent one differential pair, φ90 and φ270 may represent one differential pair, Φ0 and Φ180 may represent one differential pair, and Φ90 and Φ270 may represent one differential pair, Φ45 and Φ225 may represent one differential pair, and Φ135 and Φ315 may represent one differential pair. Thus, VCO.Clk may actually include two differential signals in practice while PI.Clk may actually include four differential signals in practice.
  • FIG. 6 illustrates an example PI block 610 suitable for use as PI block 410 or 510. In particular embodiments, PI block 610 includes one or more phase interpolators (PIs) 612 that receive as input a k-phase clock signal and output an m-phase clock signal. In the illustrated embodiment, PI block 610 additionally includes one or more phase detectors 614 (hereinafter PD 614) in a feedback loop with PI or PIs 612 (hereinafter PI 612). As illustrated in FIG. 7, PI 612 may include two differential pairs 740 and 742 driven by appropriate input signals (e.g., Φ0 and Φ90 or Φ90 and Φ180). The output of PI 612 is the current summation of the differential pair, which is converted to voltage through a resistor. Thus, an approximate desired phase is achieved as a weighted sum of the two input signals. The ratio of the tail current will determine the phase and the sum of the tail currents will determine the amplitude of the output signal. In particular embodiments, the inputs to differential pairs 740 and 742 are the gates of the transistors in the differential pairs 740 and 742 and the outputs are the wires tapping the outputs of the transistors. As an example and not by way of limitation, input signal Φ0 may go the gate of the illustrated left transistor in differential pair 740; input signal Φ180 may go the gate of the illustrated right transistor in differential pair 740; input signal Φ90 may go the gate of the illustrated left transistor in differential pair 742; and input signal Φ270 may go the gate of the illustrated right transistor in differential pair 742. Output signal Φ225 may come from the illustrated vertical wire at the illustrated bottom of differential pair 740, and output signal Φ45 may come from the illustrated vertical wire at the illustrated bottom of differential pair 742.
  • In particular embodiments, PI 612 takes as input the 4-phase clock signal including clock signals φ0, φ90, φ180, and φ270, having phases of approximately 0°, 90°, 180°, and 270°, respectively, from VCO 508. Using these signals, PI 612 outputs an 8-phase clock signal that includes clock signals Φ0, Φ90, Φ180, and Φ270, having phases of approximately 0°, 90°, 180°, and 270°, respectively, along with four additional intermediately-phased clock signals Φ45, Φ135, Φ225, and Φ315, having phases of approximately 45°, 135°, 225°, and 315°, respectively. As described above, PD 614 provides feedback to PI 612 in the form of error (or control) signals that are used by PI 612 to adjust the 8-phase clock signal output. By way of example, a first PI 612 may use the input signals Φ0 and Φ90 to generate the output signal Φ45, while other PIs 612 in parallel with the first PI 612 generate the other intermediately-phase clock signals, respectively.
  • FIG. 8A illustrates an example phase detector 802 suitable for use as PD 614 and/or PDs 402 or 502. In the illustrated embodiment, PD 802 includes a first PD input that receives (during operation) a first input signal Vin1, a second PD input that receives (during operation) a second input signal Vin2, and a third PD input that receives (during operation) a third input signal Vin3. Note that each of the described inputs, and those described below, may actually include two inputs: one for the described signal and one for the corresponding complement (since the signals are generally differential). In particular embodiments, input signal Vin1 is a first clock signal output by PI 612, Vin2 is a second clock signal output by PI 612, and Vin3 is a third clock signal output by PI 612. In particular embodiments, the third clock signal Vin3 may be referred to as the target phase signal. In particular embodiments, PD 802 includes a first mixer cell (or circuit/block) 820 and a second mixer cell (or circuit/block) 822. In the illustrated embodiment, first mixer cell 820 includes a first MC input, a second MC input, and a first MC output while second mixer cell 822 includes a third MC input, a fourth MC input, and a second MC output. In the illustrated embodiment, the first PD input is connected to the first MC input, the second PD input is connected to the third MC input, and the third PD input is connected to the second MC input and the fourth MC input.
  • In particular embodiments, PD 802 further includes an adder 824 that receives the first and second MC output signals and adds the first and second MC output signals to produce a summed output signal. In particular embodiments, PD 802 additionally includes an integrator 826 that filters the summed output signal to produce an integrated (e.g., DC) output signal that represents the PD output signal Vout output over the PD output. In the embodiment illustrated in FIG. 6, the PD output signal Vout represents an error signal that is then input to PI 612 and used to adjust the phase of the input signal Vin3.
  • In particular embodiments, first mixer cell 820 is a multiplying mixer cell and second mixer cell 822 is a multiplying mixer cell. In more particular embodiments, first mixer cell 820 is a Gilbert cell and second mixer cell 822 is a Gilbert cell. As those of skill in the art may appreciate, a Gilbert cell is an electronic multiplying mixer. By way of reference, the output current of a Gilbert cell is an accurate multiplication of the (differential) base currents of both inputs. FIG. 9A illustrates a circuit schematic of an example Gilbert cell having inputs for receiving two differential signals in1 (the complement of in1 is denoted as in1 ) and in2 (the complement of in2 is denoted as in2 ). FIG. 9B illustrates an accepted equivalent symbol for a Gilbert cell, while FIG. 9C illustrates the value of the output differential signal IoutIout as a function of the phase offset Δφ(in1−in2) between the differential input signals in1 and in2.
  • In even more particular embodiments, first mixer cell 820 includes a first Gilbert cell 830 and a second Gilbert cell 832 cross-coupled in parallel, while second mixer cell 822 includes a third Gilbert cell 834 and a fourth Gilbert cell 836 cross-coupled in parallel, as illustrated in FIG. 8B. In the illustrated embodiment, a first input of first Gilbert cell 830 receives input signal Vin1 while a second input of first Gilbert cell 830 receives input signal Vin2. A first input of second Gilbert cell 832 receives input signal Vin2 while a second input of second Gilbert cell 832 receives input signal Vin1. The outputs of first and second Gilbert cells 830 and 832 may be connected to provide the first MC output signal, as shown in the illustrate embodiment. Similarly, in the illustrated embodiment, a first input of third Gilbert cell 834 receives input signal Vin3 while a second input of third Gilbert cell 834 receives input signal Vin2. A first input of fourth Gilbert cell 836 receives input signal Vin2 while a second input of fourth Gilbert cell 836 receives input signal Vin3. The outputs of third and fourth Gilbert cells 834 and 836 may be connected to provide the second MC output signal, as shown in the illustrate embodiment.
  • In this way, the first MC output signal output from first mixer cell 820 is symmetric with respect to the inputs Vin1 and Vin2 and the second MC output signal output from second mixer cell 822 is symmetric with respect to the inputs Vin2 and Vin3. More specifically, the delay between the first input of any Gilbert cell and the output of the Gilbert cell is generally different than the delay between the second input of the Gilbert cell and the output of the Gilbert cell. This results in a static phase offset in the output signal output from the Gilbert cell. However, by cross-coupling two Gilbert cells in parallel as illustrated in each of the mixer cells 820 and 822 of FIG. 8B, the static phase offset is cancelled to at least a first approximation. FIGS. 10A and 10B illustrates a circuit that includes two Gilbert cells cross-coupled in parallel (as in each mixer cell 820 and 822) as well as the circuit's phase characteristic, respectively. The circuit shown in FIG. 10A may itself be used as a phase detector. As illustrated in FIG. 10A, the inputs to the two Gilbert cells 1002 and 1004 are interchanged: input in is connected to the input A of Gilbert cell 1002 and to input B of Gilbert cell 1004; input in2 is connected to the input B of Gilbert cell 1002 and to input A of Gilbert cell 1004. The interchanging of the inputs effectively interpolates the outputs of the Gilbert cells and results in zero input offset to a first degree of approximation. Such an arrangement minimizes the phase offset (the phase delay between the inputs for which the output of the arrangement is still equal to zero).
  • The output, Vout, of PD 802 represents an error signal that is proportional to the difference in phase between the phase of Vin3 and the average of the phases of Vin1 and Vin2. By way of example, assume Vin1 represents Φ0, Vin2 represents Φ90, and Vin3 represents Φ45. In this example, Vout represent an error signal that is proportional to the difference between the phase of Φ45, which is approximately 45° (as noted above, VCOs have difficulty generating intermediately-phased signals such as 45°, and as such the phase of Φ45 is only roughly equal to) 45°, and the average of the phases of Φ0 and Φ90, which is approximately 45° since the phase of Φ0 and Φ90 are approximately 0° and 90°, respectively. The error signal, Vout, is then fed to PI 612, which then adjusts the phase of Φ45 to eliminate the phase difference (which would then result in a zero-valued error signal), which results in a Φ45 having a phase truer to 45°. In this manner, PD 614 provides a feedback loop to PI 612 to compensate for the inaccuracy of PI 612.
  • In particular embodiments, PD 614 also utilizes this circuit and process to adjust or verify the other intermediately-phased signals Φ135, Φ225, and Φ315 generated by PIs 612. In particular embodiments, PD 614 generates four error signals Vout in parallel to adjust or verify signals Φ45, Φ135, Φ225, and Φ315. By way of example, to adjust or verify Φ135, PD 614 may receive Φ90 as Vin1, Φ135 as Vin2, and Φ180 as Vin3. To adjust or verify Φ225, PD 614 may receive Φ180 as Vin1, Φ225 as Vin2, and Φ270 as Vin3. To adjust or verify Φ315, PD 614 may receive Φ270 as Vin1, Φ315 as Vin2 and Φ0 as Vin3. Note that since the clock signals are differential signals, the signals may be inverted to obtain signals having 180° phase offsets.
  • It should also be appreciated that this circuit and method may be used to adjust any of the signals Φ0, Φ45, Φ90, Φ135, Φ180, Φ225, Φ270, and Φ315, as well as any other signal have any desired intermediate phase in between any of these signals. By way of example, PD 614 may receive Φ0 as Vin1, an additional signal 6 having phase in the range between Φ0 and Φ45 as Vin2, and Φ45 as Vin3. After a number of iterations, δ will have a phase of approximately 22.5°. Additionally, by adding deliberate offsets in the feedback path an arbitrary phase (other than, for example, 45° and 135°) may be created. By way of example, the phases offset may either be introduced as a weighted difference of the tail currents of the multipliers (Gilbert cells) as illustrated in FIG. 8A or by injecting a current on the output of the Gilbert cell.
  • Referring back to FIG. 10A, in alternate embodiments (potentially unrelated to those described above), the current output, Iout, of the double Gilbert cell phase detector illustrated in FIG. 10A can be sensed by resistors to transform the output current to an output voltage and subsequently filtered. Alternatively, FIG. 11 shows an implementation of the double Gilbert cell phase detector in a negative feedback configuration. In such a configuration, the current outputs of the first and second Gilbert cells 1102 and 1104 can be mirrored and summed in a single node used to modulate the phase between the inputs in1 and in2. Such a configuration forces the phase difference between the inputs to 90°, so that the net current in the Vout node is zero. A large capacitor or another form of a loop filter may be needed in such a configuration to filter the transient response of the phase detector and to govern the dynamic behavior of the loop. If used in a feedback loop, as illustrated in FIG. 11, a VCO, delay line, phase interpolator, or other suitable device can be used to control the phase difference between the two input signals in1 and in2, as represented by box 1110.
  • FIG. 12 illustrates another embodiment that involves a circuit for adjusting the phase characteristic externally. By way of example, in cases where a phase difference between the inputs in1 and in2 other than 90° is desired, such as for generating boundary and data clock phases in a CDR with a phase adjustment requirement, additional offset current sources 1212 and 1214 that sink or source current to or from the phase detector may be used to offset its phase characteristic. The offset current sources 1212 and 1214 may be externally controlled and can be connected either at the output of the Gilbert cells 1102 and 1104, or at the voltage summing node Vout, as illustrated in FIG. 12.
  • The present disclosure encompasses all changes, substitutions, variations, alterations, and modifications to the example embodiments herein that a person having ordinary skill in the art would comprehend. Similarly, where appropriate, the appended claims encompass all changes, substitutions, variations, alterations, and modifications to the example embodiments herein that a person having ordinary skill in the art would comprehend.

Claims (13)

1. A circuit comprising:
a first mixer cell and a second mixer cell, each having respectively a first cell input, a second cell input, and a cell output;
a first circuit input configured to receive a first input signal having a first phase, the first circuit input being connected to the first cell input of the first mixer cell and the second cell input of the second mixer cell;
a second circuit input configured to receive a second input signal having a second phase separated from the first phase by a nominal value, the second circuit input being connected to the second cell input of the first mixer cell and the first cell input of the second mixer cell; and
a circuit output configured to receive a combined output from respective cell outputs of the first mixer cell and the second mixer cell and output the combined output, the combined output having a current that is proportional to an error offset from the nominal value.
2. The circuit of claim 1, wherein the nominal value is 90 degrees.
3. The circuit of claim 1, wherein each of the first mixer cell and the second mixer cell comprises a multiplying mixer cell.
4. The circuit of claim 3, wherein the multiplying mixer cell comprises a Gilbert cell.
5. The circuit of claim 1, wherein the circuit is a phase detector.
6. The circuit of claim 1, further comprising a current mirror configured to mirror respective currents from cell outputs of the first mixer cell and the second mixer cell, wherein the combined output being a sum of the respective mirrored currents.
7. The circuit of claim 1, further comprising one or more current sources configured to adjust the combined output.
8. A method comprising:
receiving at a first circuit input a first input signal having a first phase, the first circuit input being connect to a first cell input of a first mixer cell and a second cell input of a second mixer cell, the first mixer cell and the second mixer cell each having respectively a first cell input, a second cell input and a cell output;
receiving at a second circuit input a second input signal having a second phase separated from the first phase by a nominal value, the second circuit input being connected to the second cell input of the first mixer cell and the first cell input of the second mixer cell; and
receiving at a circuit output a combined output from respective cell outputs of the first mixer cell and the second mixer cell and output the combined output, the combined output having a current that is proportional to an error offset from the nominal value.
9. The method of claim 8, wherein the nominal value is 90 degrees.
10. The method of claim 8, wherein each of the first mixer cell and the second mixer cell comprises a multiplying mixer cell.
11. The method of claim 10, wherein the multiplying mixer cell comprises a Gilbert cell.
12. The method of claim 8, further comprising mirroring by a current mirror respective currents from cell outputs of the first mixer cell and the second mixer cell, wherein the combined output being a sum of the respective mirrored currents.
13. The method of claim 8, further comprising adjusting by one or more current sources the combined output.
US13/424,728 2008-07-29 2012-03-20 Symmetric Phase Detector Abandoned US20120177162A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/424,728 US20120177162A1 (en) 2008-07-29 2012-03-20 Symmetric Phase Detector

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US8446708P 2008-07-29 2008-07-29
US12/511,340 US8138798B2 (en) 2008-07-29 2009-07-29 Symmetric phase detector
US13/424,728 US20120177162A1 (en) 2008-07-29 2012-03-20 Symmetric Phase Detector

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/511,340 Continuation US8138798B2 (en) 2008-07-29 2009-07-29 Symmetric phase detector

Publications (1)

Publication Number Publication Date
US20120177162A1 true US20120177162A1 (en) 2012-07-12

Family

ID=42098298

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/511,340 Expired - Fee Related US8138798B2 (en) 2008-07-29 2009-07-29 Symmetric phase detector
US13/424,728 Abandoned US20120177162A1 (en) 2008-07-29 2012-03-20 Symmetric Phase Detector

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/511,340 Expired - Fee Related US8138798B2 (en) 2008-07-29 2009-07-29 Symmetric phase detector

Country Status (1)

Country Link
US (2) US8138798B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150042387A1 (en) * 2013-08-09 2015-02-12 Industry-University Cooperation Foundation Hanyang University Data recovery circuit and operating method thereof
US20160044270A1 (en) * 2014-08-05 2016-02-11 Postech Academy-Industry Foundation Method and appartus for modulating data and recording medium thereof

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8058914B2 (en) * 2008-07-29 2011-11-15 Fujitsu Limited Generating multiple clock phases
US8718217B2 (en) * 2008-07-29 2014-05-06 Fujitsu Limited Clock and data recovery (CDR) using phase interpolation
US20100085086A1 (en) * 2008-07-29 2010-04-08 Fujitsu Limited Digital Frequency Detector
US8138798B2 (en) 2008-07-29 2012-03-20 Fujitsu Limited Symmetric phase detector
US8300754B2 (en) * 2008-07-29 2012-10-30 Fujitsu Limited Clock and data recovery with a data aligner
US8300753B2 (en) * 2008-07-29 2012-10-30 Fujitsu Limited Triple loop clock and data recovery (CDR)
US8411782B2 (en) * 2008-07-29 2013-04-02 Fujitsu Limited Parallel generation and matching of a deskew channel
KR20100037427A (en) * 2008-10-01 2010-04-09 삼성전자주식회사 Ac coupling phase interpolator and dll using it
US8320770B2 (en) * 2009-03-20 2012-11-27 Fujitsu Limited Clock and data recovery for differential quadrature phase shift keying
US8638896B2 (en) * 2010-03-19 2014-01-28 Netlogic Microsystems, Inc. Repeate architecture with single clock multiplier unit
US8497708B2 (en) * 2011-05-06 2013-07-30 National Semiconductor Corporation Fractional-rate phase frequency detector
US9030236B2 (en) * 2011-08-09 2015-05-12 National Semiconductor Corporation Phase detector
US9094028B2 (en) 2012-04-11 2015-07-28 Rambus Inc. Wide range frequency synthesizer with quadrature generation and spur cancellation
KR101947814B1 (en) * 2012-09-06 2019-02-14 한국전자통신연구원 Delay-time control circuit of controlling delay time and controll method thereof
TWI543596B (en) 2013-12-26 2016-07-21 晨星半導體股份有限公司 Multimedia interface receiving circuit
US9651591B2 (en) 2014-06-11 2017-05-16 Catena Holding B.V. Method for using an accurate adjustable high-frequency phase-detector
CN115051705A (en) 2016-04-22 2022-09-13 康杜实验室公司 High performance phase locked loop
US10193716B2 (en) 2016-04-28 2019-01-29 Kandou Labs, S.A. Clock data recovery with decision feedback equalization
US10411922B2 (en) 2016-09-16 2019-09-10 Kandou Labs, S.A. Data-driven phase detector element for phase locked loops
US10044356B2 (en) * 2017-01-04 2018-08-07 Himax Technologies Limited Band selected clock data recovery circuit and associated method
CA3056626A1 (en) 2017-03-20 2018-09-27 Blue Danube Systems, Inc. Precision high frequency phase adders
CN115333530A (en) 2017-05-22 2022-11-11 康杜实验室公司 Multi-mode data-driven clock recovery method and apparatus
US10554380B2 (en) 2018-01-26 2020-02-04 Kandou Labs, S.A. Dynamically weighted exclusive or gate having weighted output segments for phase detection and phase interpolation
KR102445856B1 (en) 2018-06-12 2022-09-21 칸도우 랩스 에스에이 Low Latency Combination Clock Data Recovery Logic Circuitry and Charge Pump Circuitry
US10958251B2 (en) 2019-04-08 2021-03-23 Kandou Labs, S.A. Multiple adjacent slicewise layout of voltage-controlled oscillator
US10630272B1 (en) 2019-04-08 2020-04-21 Kandou Labs, S.A. Measurement and correction of multiphase clock duty cycle and skew
US11463092B1 (en) 2021-04-01 2022-10-04 Kanou Labs Sa Clock and data recovery lock detection circuit for verifying lock condition in presence of imbalanced early to late vote ratios
US11563605B2 (en) 2021-04-07 2023-01-24 Kandou Labs SA Horizontal centering of sampling point using multiple vertical voltage measurements
US11496282B1 (en) 2021-06-04 2022-11-08 Kandou Labs, S.A. Horizontal centering of sampling point using vertical vernier

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4920278A (en) * 1987-05-26 1990-04-24 Nec Corporation Phase comparator
US5039889A (en) * 1989-08-19 1991-08-13 U.S. Philips Corp. Phase comparison circuit
US5343097A (en) * 1991-09-13 1994-08-30 Nec Corporation Phase comparator circuit and phase locked loop (PLL) circuit using the same
US6496077B2 (en) * 2000-11-23 2002-12-17 Samsung Electronics Co., Ltd. Phase detector for automatically controlling offset current and phase locked loop including the same
WO2008018034A2 (en) * 2006-08-10 2008-02-14 Nxp B.V. Dual gilbert cell mixer with offset cancellation
US8138798B2 (en) * 2008-07-29 2012-03-20 Fujitsu Limited Symmetric phase detector

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7515656B2 (en) * 2002-04-15 2009-04-07 Fujitsu Limited Clock recovery circuit and data receiving circuit
US7467335B2 (en) * 2005-07-01 2008-12-16 Alcatel-Lucent Usa Inc. Method and apparatus for synchronizing data channels using an alternating parity deskew channel
JP4516501B2 (en) * 2005-08-25 2010-08-04 富士通オプティカルコンポーネンツ株式会社 DQPSK optical receiver circuit
US7432750B1 (en) * 2005-12-07 2008-10-07 Netlogic Microsystems, Inc. Methods and apparatus for frequency synthesis with feedback interpolation
DE102007027070B4 (en) * 2007-06-12 2009-10-15 Texas Instruments Deutschland Gmbh Electronic device and method for on-chip measurement of jitter
US8093930B2 (en) * 2008-03-19 2012-01-10 Integrated Device Technology, Inc High frequency fractional-N divider
US8411782B2 (en) * 2008-07-29 2013-04-02 Fujitsu Limited Parallel generation and matching of a deskew channel
US8058914B2 (en) * 2008-07-29 2011-11-15 Fujitsu Limited Generating multiple clock phases
US8300754B2 (en) * 2008-07-29 2012-10-30 Fujitsu Limited Clock and data recovery with a data aligner
US8300753B2 (en) * 2008-07-29 2012-10-30 Fujitsu Limited Triple loop clock and data recovery (CDR)
US8718217B2 (en) * 2008-07-29 2014-05-06 Fujitsu Limited Clock and data recovery (CDR) using phase interpolation
US20100085086A1 (en) * 2008-07-29 2010-04-08 Fujitsu Limited Digital Frequency Detector

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4920278A (en) * 1987-05-26 1990-04-24 Nec Corporation Phase comparator
US5039889A (en) * 1989-08-19 1991-08-13 U.S. Philips Corp. Phase comparison circuit
US5343097A (en) * 1991-09-13 1994-08-30 Nec Corporation Phase comparator circuit and phase locked loop (PLL) circuit using the same
US6496077B2 (en) * 2000-11-23 2002-12-17 Samsung Electronics Co., Ltd. Phase detector for automatically controlling offset current and phase locked loop including the same
WO2008018034A2 (en) * 2006-08-10 2008-02-14 Nxp B.V. Dual gilbert cell mixer with offset cancellation
US20090149149A1 (en) * 2006-08-10 2009-06-11 Ruijs Leonardus C H Dual Gilbert Cell Mixer with Offset Cancellation
US8138798B2 (en) * 2008-07-29 2012-03-20 Fujitsu Limited Symmetric phase detector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150042387A1 (en) * 2013-08-09 2015-02-12 Industry-University Cooperation Foundation Hanyang University Data recovery circuit and operating method thereof
US9018991B2 (en) * 2013-08-09 2015-04-28 SK Hynix Inc. Data recovery circuit and operating method thereof
US20160044270A1 (en) * 2014-08-05 2016-02-11 Postech Academy-Industry Foundation Method and appartus for modulating data and recording medium thereof
US9961629B2 (en) * 2014-08-05 2018-05-01 Samsung Electronics Co., Ltd. Method and apparatus for modulating data and recording medium thereof

Also Published As

Publication number Publication date
US8138798B2 (en) 2012-03-20
US20100090723A1 (en) 2010-04-15

Similar Documents

Publication Publication Date Title
US8138798B2 (en) Symmetric phase detector
US8718217B2 (en) Clock and data recovery (CDR) using phase interpolation
US8058914B2 (en) Generating multiple clock phases
Moon et al. An all-analog multiphase delay-locked loop using a replica delay line for wide-range operation and low-jitter performance
US7724862B2 (en) Phase locked loop apparatus with adjustable phase shift
US10200188B2 (en) Quadrature and duty cycle error correction in matrix phase lock loop
US6211741B1 (en) Clock and data recovery PLL based on parallel architecture
US20060076993A1 (en) High speed clock and data recovery system
US8873693B2 (en) Phase averaging-based clock and data recovery
Yang Delay-locked loops-an overview
US20090189657A1 (en) Delay locked loop circuit and method for eliminating jitter and offset therein
Larsson A 2-1600 MHz 1.2-2.5 V CMOS clock-recovery PLL with feedback phase-selection and averaging phase-interpolation for jitter reduction
US20070152759A1 (en) Phase-locked loop with tunable-transfer function
US9076366B2 (en) Clock recovery system
Ramezani et al. Analysis of a half-rate bang-bang phase-locked-loop
JP5708355B2 (en) Method and circuit for generating polyphase signals
JP5811933B2 (en) Method, circuit and system for generating polyphase signals
US8885787B2 (en) Clock and data recovery using LC voltage controlled oscillator and delay locked loop
Liu et al. Design and modeling of PLL-based clock and data recovery circuits with periodically embedded clock encoding for intra-panel interfaces
Yim An integer-N charge-pump phase-locked loop with controllable phase offset
Biswas et al. Spurs in subsampling fractional PLLs
Rhee et al. Phase-Locked Loops: System Perspectives and Circuit Design Aspects
Pan Detection and Mitigation of Jitter Using Clock and Data Recovery Circuits in Multi-Gigahertz Communication Channels
Chung et al. A forwarded-clock receiver with constant and wide-range jitter-tracking bandwidth
Dash et al. Design analysis of PLL components

Legal Events

Date Code Title Description
AS Assignment

Owner name: FUJITSU LIMITED, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NEDOVIC, NIKOLA;KRISTENSSON, H. ANDERS;WALKER, WILLIAM W.;SIGNING DATES FROM 20091027 TO 20091112;REEL/FRAME:027894/0224

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION