US20120159982A1 - Ternary compositions for low-capacity refrigeration - Google Patents
Ternary compositions for low-capacity refrigeration Download PDFInfo
- Publication number
- US20120159982A1 US20120159982A1 US13/393,640 US201013393640A US2012159982A1 US 20120159982 A1 US20120159982 A1 US 20120159982A1 US 201013393640 A US201013393640 A US 201013393640A US 2012159982 A1 US2012159982 A1 US 2012159982A1
- Authority
- US
- United States
- Prior art keywords
- hfc
- weight
- tetrafluoropropene
- composition
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/02—Materials undergoing a change of physical state when used
- C09K5/04—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
- C09K5/041—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
- C09K5/044—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
- C09K5/045—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/14—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
- C08J9/143—Halogen containing compounds
- C08J9/144—Halogen containing compounds containing carbon, halogen and hydrogen only
- C08J9/146—Halogen containing compounds containing carbon, halogen and hydrogen only only fluorine as halogen atoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K23/00—Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
- C09K23/017—Mixtures of compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/30—Materials not provided for elsewhere for aerosols
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2207/00—Foams characterised by their intended use
- C08J2207/04—Aerosol, e.g. polyurethane foam spray
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2205/00—Aspects relating to compounds used in compression type refrigeration systems
- C09K2205/10—Components
- C09K2205/12—Hydrocarbons
- C09K2205/126—Unsaturated fluorinated hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2205/00—Aspects relating to compounds used in compression type refrigeration systems
- C09K2205/22—All components of a mixture being fluoro compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2205/00—Aspects relating to compounds used in compression type refrigeration systems
- C09K2205/40—Replacement mixtures
Definitions
- the present invention relates to compositions containing 2,3,3,3-tetrafluoropropene and uses thereof as heat-transfer fluids, blowing agents, solvents and aerosols.
- HFCs hydrofluorocarbons
- HFC-134a hydrofluorocarbon (1,1,1,2-tetrafluoroethane: HFC-134a) refrigerant which is less harmful to the ozone layer.
- CFC-12 chlorofluorocarbon
- HFC-134a hydrofluorocarbon (1,1,1,2-tetrafluoroethane: HFC-134a) refrigerant which is less harmful to the ozone layer.
- the contribution to the greenhouse effect of a fluid is quantified by a criterion, the GWP (global warming potential) which indexes the warming potential by taking a reference value of 1 for carbon dioxide.
- carbon dioxide Since carbon dioxide is non-toxic and non-flammable and has a very low GWP, it has been proposed as a refrigerant in air-conditioning systems as a replacement for HFC-134a. However, the use of carbon dioxide has several drawbacks, in particular linked to the very high pressure at which it is used as a refrigerant in the existing apparatuses and technologies.
- compositions comprising at least one fluoroalkene having three or four carbon atoms, in particular pentafluoropropene and tetrafluoropropene, preferably having a GWP at most of 150, as heat-transfer fluids.
- Document WO 2005/105947 teaches the addition to tetrafluoropropene, preferably 1,3,3,3-tetrafluoropropene, of a blowing coagent such as difluoromethane, pentafluoroethane, tetrafluoroethane, difluoroethane, heptafluoropropane, hexafluoropropane, pentafluoropropane, pentafluorobutane, water and carbon dioxide.
- a blowing coagent such as difluoromethane, pentafluoroethane, tetrafluoroethane, difluoroethane, heptafluoropropane, hexafluoropropane, pentafluoropropane, pentafluorobutane, water and carbon dioxide.
- Quaternary mixtures comprising 1,1,1,2,3-pentafluoro-propene (HFO-1225ye) in combination with difluoromethane, 2,3,3,3-tetrafluoropropene and HFC-134a were disclosed in this document. However, 1,1,1,2,3-pentafluoropropene is toxic.
- CF 3 I Quaternary mixtures comprising 2,3,3,3-tetrafluoropropene in combination with iodotrifluoromethane (CF 3 I), HFC-32 and HFC-134a have also been disclosed in document WO 2006/094303.
- CF 3 I has a non-zero ODP and poses stability and corrosion problems.
- compositions used as heat-transfer fluid in the present invention have values for the temperatures at the compressor outlet, and pressure levels, equivalent to the values given by HFC-134a.
- the compression ratios are lower. These compositions can replace HFC-134a without changing compressor technology.
- compositions used as a heat-transfer fluid in the present invention have volume capacities which are greater than the volume capacity of HFC-134a (between 116 and 133%). By virtue of these properties, these compositions can use smaller compressors and have the same heating or cooling capacity.
- compositions according to the present invention are characterized in that they essentially contain from 10 to 90% by weight of 2,3,3,3-tetrafluoropropene, from 5 to 80% by weight of HFC-134a and from 5 to 10% by weight of HFC-32.
- compositions essentially contain from 10 to 45% by weight of 2,3,3,3-tetrafluoropropene, from 50 to 80% by weight of HFC-134a and from 5 to 10% by weight of HFC-32.
- compositions according to the present invention can be used as heat-transfer fluids, preferably in compression systems and advantageously with exchangers operating in counterflow mode or in cross-flow mode with counterflow tendency. They are particularly suitable for systems of low-capacity refrigeration per unit volume swept by the compressor.
- heat-transfer fluids In compression systems, the heat exchange between the refrigerant and the heat sources takes place by means of heat-transfer fluids. These heat-transfer fluids are in the gaseous state (the air in air-conditioning and direct expansion refrigeration), liquid state (the water in domestic heat pumps, glycolated water) or two-phase state.
- compositions according to the present invention are advantageously used in stationary air conditioning and heat pumps, preferably as a replacement for HFC-134a.
- compositions according to the present invention can be stabilized.
- the stabilizer preferably represents at most 5% by weight relative to the total composition.
- nitromethane ascorbic acid, terephthalic acid, azoles such as tolutriazole or benzotriazole, phenolic compounds such as tocopherol, hydroquinone, t-butyl hydroquinone or 2,6-di-tert-butyl-4-methylphenol, epoxides (alkyl, optionally fluorinated or perfluorinated, or alkenyl or aromatic) such as n-butyl glycidyl ether, hexanediol diglycidyl ether, allyl glycidyl ether or butylphenyl glycidyl ether, phosphites, phosphates, phosphonates, thiols and lactones.
- epoxides alkyl, optionally fluorinated or perfluorinated, or alkenyl or aromatic
- compositions according to the present invention as a heat-transfer agent, can be employed in the presence of lubricants such as mineral oil, alkylbenzene, polyalkylene glycol and polyvinyl ether.
- compositions according to the present invention can also be used as blowing agents, aerosols and solvents.
- the RK-Soave equation is used for calculating the densities, enthalpies, entropies and liquid/vapor equilibrium data of the mixtures.
- the use of this equation requires knowledge of the properties of the pure bodies used in the mixtures in question and also the interaction coefficients for each binary mixture.
- HFC-32, HFC-134a
- the data of the temperature-pressure curve for HFO-1234yf are measured by the static method.
- the critical temperature and the critical pressure are measured using a C80 calorimeter sold by Setaram.
- the densities, at saturation as a function of temperature, are measured using the vibrating tube densitometer technology developed by the laboratories of the autoimmune des Mines of Paris.
- the RK-Soave equation uses binary interaction coefficients to represent the behavior of the products in mixtures.
- the coefficients are calculated as a function of the experimental liquid/vapor equilibrium data.
- the technique used for the liquid/vapor equilibrium measurements is the static-cell analytical method.
- the equilibrium cell comprises a sapphire tube and is equipped with two electromagnetic ROLSITM samplers. It is immersed in a cryothermostat bath (HUBER HS40). A magnetic stirrer with a field drive rotating at varying speed is used to accelerate reaching the equilibria.
- the analysis of the samples is carried out by gas chromatography (HP5890 series II) using a katharometer (TCD).
- the liquid/vapor equilibrium data for the binary mixture HFC-134a/HFC-32 are available from Refprop. Two isotherms ( ⁇ 20° C. and 20° C.) and one isobar (30 bar) are used to calculate the interaction coefficients for this binary mixture.
- a compression system equipped with a counterflow condenser and evaporator, with a screw compressor and with an expansion valve is considered.
- the system operates with 15° C. of overheat and 5° C. of undercooling.
- the minimum temperature difference between the secondary fluid and the refrigerant is considered to be about 5° C.
- the isentropic efficiency of the compressors depends on the compression ratio. This efficiency is calculated according to the following equation:
- ⁇ isen a - b ⁇ ( ⁇ - c ) 2 - d ⁇ - e . ( 1 )
- the % CAP is the percentage of the ratio of the volumetric capacity supplied by each product over the capacity of HFC-134a.
- the coefficient of performance is defined as being the useful power supplied by the system over the power provided or consumed by the system.
- the Lorenz coefficient of performance (COPLorenz) is a reference coefficient of performance. It is a function of temperatures and is used for comparing the COPs of various fluids.
- the Lorenz coefficient of performance is defined as follows:
- T average condenser T inlet condenser ⁇ T outlet condenser (2)
- T average evaporator T outlet evaporator ⁇ T inlet evaporator (3)
- the Lorenz COP in the case of air-conditioning and refrigeration is:
- the Lorenz COP in the case of heating is:
- the coefficient of performance of the Lorenz cycle is calculated as a function of the corresponding temperatures.
- the %COP/COPLorenz is the ratio of the COP of the system relative to the COP of the corresponding Lorenz cycle.
- the compression system In heating mode, the compression system operates between a temperature for inlet of the refrigerant into the evaporator of ⁇ 5° C. and a temperature for inlet of the refrigerant into the condenser of 50° C.
- the system supplies heat at 45° C.
- compositions according to the invention under the heating mode operating conditions are given in table 1.
- values of the constituents (HFO-1234yf, HFC-32, HFC-134a) for each composition are given as percentage by weight.
- the compression system In cooling mode, the compression system operates between a temperature for inlet of the refrigerant into the evaporator of ⁇ 5° C. and a temperature for inlet of the refrigerant into the condenser of 50° C.
- the system supplies refrigeration at 0° C.
- compositions according to the invention under the cooling mode operating conditions are given in table 2.
- values of the constituents (HFO-1234yf, HFC-32, HFC-134a) for each composition are given as percentage by weight.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Dispersion Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Lubricants (AREA)
- Detergent Compositions (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
The invention relates to compositions containing 2,3,3,3-tetrafluoropropene and to the uses thereof as heat transfer fluid, expansion agents, solvents and aerosol. The invention specifically relates to compositions essentially containing between 10 and 90 wt. % of 2,3,3,3-tetrafluoropropene, between 5 and 80 wt. % of HFC-134a and between 5 and 10 wt. % of HFC-32.
Description
- The present invention relates to compositions containing 2,3,3,3-tetrafluoropropene and uses thereof as heat-transfer fluids, blowing agents, solvents and aerosols.
- The problems posed by substances which delete the atmospheric ozone layer (ODP: ozone depletion potential) were addressed in Montreal, where the protocol imposing a reduction in the production and use of chlorofluorocarbons (CFCs) was signed. This protocol has been the subject of amendments which have required that CFCs be withdrawn and have extended regulatory control to other products, including hydrochlorofluorocarbons (HCFCs).
- The refrigeration and air-conditioning industry has invested a great deal in the replacement of these refrigerants, and as a result, hydrofluorocarbons (HFCs) have been marketed.
- The (hydro)chlorofluorocarbons used as blowing agents or solvents have also been replaced with HFCs.
- In the automotive industry, the air-conditioning systems for vehicles sold in many countries have changed from a chlorofluorocarbon (CFC-12) refrigerant to a hydrofluorocarbon (1,1,1,2-tetrafluoroethane: HFC-134a) refrigerant which is less harmful to the ozone layer. However, from the viewpoint of the objectives set by the Kyoto protocol, HFC-134a (GWP=1300) is considered to have a high warming potential. The contribution to the greenhouse effect of a fluid is quantified by a criterion, the GWP (global warming potential) which indexes the warming potential by taking a reference value of 1 for carbon dioxide.
- Since carbon dioxide is non-toxic and non-flammable and has a very low GWP, it has been proposed as a refrigerant in air-conditioning systems as a replacement for HFC-134a. However, the use of carbon dioxide has several drawbacks, in particular linked to the very high pressure at which it is used as a refrigerant in the existing apparatuses and technologies.
- Document WO 2004/037913 discloses the use of compositions comprising at least one fluoroalkene having three or four carbon atoms, in particular pentafluoropropene and tetrafluoropropene, preferably having a GWP at most of 150, as heat-transfer fluids.
- Document WO 2005/105947 teaches the addition to tetrafluoropropene, preferably 1,3,3,3-tetrafluoropropene, of a blowing coagent such as difluoromethane, pentafluoroethane, tetrafluoroethane, difluoroethane, heptafluoropropane, hexafluoropropane, pentafluoropropane, pentafluorobutane, water and carbon dioxide.
- Document WO 2006/094303 discloses binary compositions of 2,3,3,3-tetrafluoropropene (HFO-1234yf) with difluoromethane (HFC-32), and of 2,3,3,3-tetrafluoropropene with 1,1,1,2-tetrafluoroethane (HFC-134a).
- Quaternary mixtures comprising 1,1,1,2,3-pentafluoro-propene (HFO-1225ye) in combination with difluoromethane, 2,3,3,3-tetrafluoropropene and HFC-134a were disclosed in this document. However, 1,1,1,2,3-pentafluoropropene is toxic.
- Quaternary mixtures comprising 2,3,3,3-tetrafluoropropene in combination with iodotrifluoromethane (CF3I), HFC-32 and HFC-134a have also been disclosed in document WO 2006/094303. However, CF3I has a non-zero ODP and poses stability and corrosion problems.
- The applicant has now developed 2,3,3,3-tetrafluoropropene compositions which do not have the abovementioned drawbacks and have both a zero ODP and a GWP which is lower than that of the existing heat-transfer fluids such as and HFC-134a.
- The compositions used as heat-transfer fluid in the present invention have values for the temperatures at the compressor outlet, and pressure levels, equivalent to the values given by HFC-134a. The compression ratios are lower. These compositions can replace HFC-134a without changing compressor technology.
- The compositions used as a heat-transfer fluid in the present invention have volume capacities which are greater than the volume capacity of HFC-134a (between 116 and 133%). By virtue of these properties, these compositions can use smaller compressors and have the same heating or cooling capacity.
- The compositions according to the present invention are characterized in that they essentially contain from 10 to 90% by weight of 2,3,3,3-tetrafluoropropene, from 5 to 80% by weight of HFC-134a and from 5 to 10% by weight of HFC-32.
- Preferably, the compositions essentially contain from 10 to 45% by weight of 2,3,3,3-tetrafluoropropene, from 50 to 80% by weight of HFC-134a and from 5 to 10% by weight of HFC-32.
- The compositions according to the present invention can be used as heat-transfer fluids, preferably in compression systems and advantageously with exchangers operating in counterflow mode or in cross-flow mode with counterflow tendency. They are particularly suitable for systems of low-capacity refrigeration per unit volume swept by the compressor.
- In compression systems, the heat exchange between the refrigerant and the heat sources takes place by means of heat-transfer fluids. These heat-transfer fluids are in the gaseous state (the air in air-conditioning and direct expansion refrigeration), liquid state (the water in domestic heat pumps, glycolated water) or two-phase state.
- There are various modes of transfer:
-
- the two fluids are arranged in parallel and travel in the same direction: co-flow (antimethodic) mode;
- the two fluids are arranged in parallel but travel in the opposite direction: counterflow (methodic) mode;
- the two fluids are positioned perpendicularly: cross-flow mode. The cross-flow may be with co-flow or counterflow tendency;
- one of the two fluids makes a U-turn in a wider pipe, which the second fluid passes through. This configuration is comparable to a co-flow exchanger over half the length, and for the other half, to a counterflow exchanger: pinhead mode.
- The compositions according to the present invention are advantageously used in stationary air conditioning and heat pumps, preferably as a replacement for HFC-134a.
- The compositions according to the present invention can be stabilized. The stabilizer preferably represents at most 5% by weight relative to the total composition.
- As stabilizers, mention may in particular be made of nitromethane, ascorbic acid, terephthalic acid, azoles such as tolutriazole or benzotriazole, phenolic compounds such as tocopherol, hydroquinone, t-butyl hydroquinone or 2,6-di-tert-butyl-4-methylphenol, epoxides (alkyl, optionally fluorinated or perfluorinated, or alkenyl or aromatic) such as n-butyl glycidyl ether, hexanediol diglycidyl ether, allyl glycidyl ether or butylphenyl glycidyl ether, phosphites, phosphates, phosphonates, thiols and lactones.
- The compositions according to the present invention, as a heat-transfer agent, can be employed in the presence of lubricants such as mineral oil, alkylbenzene, polyalkylene glycol and polyvinyl ether.
- The compositions according to the present invention can also be used as blowing agents, aerosols and solvents.
- Calculation Tools
- The RK-Soave equation is used for calculating the densities, enthalpies, entropies and liquid/vapor equilibrium data of the mixtures. The use of this equation requires knowledge of the properties of the pure bodies used in the mixtures in question and also the interaction coefficients for each binary mixture.
- The data required for each pure body are:
- The boiling point, the critical temperature and the critical pressure, the curve of pressure as a function of temperature starting from the boiling point up to the critical point, and the saturated liquid and saturated vapor densities as a function of temperature.
- HFC-32, HFC-134a:
- The data on these products aer published in the ASHRAE Handbook 2005 chapter 20, and are also available from Refrop (software developed by NIST for calculating the properties of refrigerants).
- HFO-1234yf:
- The data of the temperature-pressure curve for HFO-1234yf are measured by the static method. The critical temperature and the critical pressure are measured using a C80 calorimeter sold by Setaram. The densities, at saturation as a function of temperature, are measured using the vibrating tube densitometer technology developed by the laboratories of the Ecole des Mines of Paris.
- Interaction Coefficient of the Binary Mixtures
- The RK-Soave equation uses binary interaction coefficients to represent the behavior of the products in mixtures. The coefficients are calculated as a function of the experimental liquid/vapor equilibrium data.
- The technique used for the liquid/vapor equilibrium measurements is the static-cell analytical method. The equilibrium cell comprises a sapphire tube and is equipped with two electromagnetic ROLSI™ samplers. It is immersed in a cryothermostat bath (HUBER HS40). A magnetic stirrer with a field drive rotating at varying speed is used to accelerate reaching the equilibria. The analysis of the samples is carried out by gas chromatography (HP5890 series II) using a katharometer (TCD).
- HFC-32/HFO-1234yf, HFC-134a/HFO-1234yf:
- The liquid/vapor equilibrium measurements on the binary mixture HFC-32/HFO-1234yf are carried out for the following isotherms: −10° C., 30° C. and 70° C.
- The liquid/vapor equilibrium measurements on the binary mixture HFC-134a/HFO-1234yf are carried out for the following isotherms: 20° C.
- HFC-32/HFO-134a:
- The liquid/vapor equilibrium data for the binary mixture HFC-134a/HFC-32 are available from Refprop. Two isotherms (−20° C. and 20° C.) and one isobar (30 bar) are used to calculate the interaction coefficients for this binary mixture.
- Compression System
- A compression system equipped with a counterflow condenser and evaporator, with a screw compressor and with an expansion valve is considered.
- The system operates with 15° C. of overheat and 5° C. of undercooling. The minimum temperature difference between the secondary fluid and the refrigerant is considered to be about 5° C.
- The isentropic efficiency of the compressors depends on the compression ratio. This efficiency is calculated according to the following equation:
-
- For a screw compressor, the constants a, b, c, d and e of the isentropic efficiency equation (1) are calculated according to the standard data published in the “Handbook of air conditioning and refrigeration, page 11.52”.
- The % CAP is the percentage of the ratio of the volumetric capacity supplied by each product over the capacity of HFC-134a.
- The coefficient of performance (COP) is defined as being the useful power supplied by the system over the power provided or consumed by the system.
- The Lorenz coefficient of performance (COPLorenz) is a reference coefficient of performance. It is a function of temperatures and is used for comparing the COPs of various fluids.
- The Lorenz coefficient of performance is defined as follows:
- (The temperatures T are in K)
-
T average condenser =T inlet condenser −T outlet condenser (2) -
T average evaporator =T outlet evaporator −T inlet evaporator (3) - The Lorenz COP in the case of air-conditioning and refrigeration is:
-
- The Lorenz COP in the case of heating is:
-
- For each composition, the coefficient of performance of the Lorenz cycle is calculated as a function of the corresponding temperatures.
-
The %COP/COPLorenz is the ratio of the COP of the system relative to the COP of the corresponding Lorenz cycle. - Heating Mode Results
- In heating mode, the compression system operates between a temperature for inlet of the refrigerant into the evaporator of −5° C. and a temperature for inlet of the refrigerant into the condenser of 50° C. The system supplies heat at 45° C.
- The performance levels of the compositions according to the invention under the heating mode operating conditions are given in table 1. The values of the constituents (HFO-1234yf, HFC-32, HFC-134a) for each composition are given as percentage by weight.
-
TABLE 1 HFC-134a HFO- HFC- HFC- Evap outlet Comp outlet Cond outlet Evap P Cond P Ratio Comp % COP/ 1234yf 32 134a temp (° C.) temp (° C.) T (° C.) (bar) (bar) (w/w) Glide efficiency % CAP COPLorenz −5 81 50 2.4 13.2 5.4 0.00 75.9 100 63.3 50 10 40 −2 78 46 3.4 15.6 4.5 2.66 79.4 130 64.7 25 10 65 −2 82 47 3.3 15.4 4.7 2.55 78.7 128 65.0 10 10 80 −3 84 47 3.1 15.1 4.8 2.44 78.3 126 65.1 - Cooling or Air-Conditioning Mode Results
- In cooling mode, the compression system operates between a temperature for inlet of the refrigerant into the evaporator of −5° C. and a temperature for inlet of the refrigerant into the condenser of 50° C. The system supplies refrigeration at 0° C.
- The performance levels of the compositions according to the invention under the cooling mode operating conditions are given in table 2. The values of the constituents (HFO-1234yf, HFC-32, HFC-134a) for each composition are given as percentage by weight.
-
TABLE 2 HFC-134a HFO- HFC- HFC- Evap outlet Comp outlet Cond outlet Evap P Cond P Ratio Comp % COP/ 1234yf 32 134a temp (° C.) temp (° C.) T (° C.) (bar) (bar) (w/w) Glide efficiency % CAP COPLorenz −5 81 50 2.4 13.2 5.4 0.00 75.9 100 54.1 65 10 25 −2 76 45 3.5 15.5 4.4 2.87 79.7 133 55.8 50 10 40 −2 78 46 3.4 15.6 4.5 2.66 79.4 133 56.0 25 10 65 −2 82 47 3.3 15.4 4.7 2.55 78.7 132 56.5 15 5 80 −4 81 48 2.9 14.3 5.0 1.38 77.6 116 55.6 10 10 80 −3 84 47 3.1 15.1 4.8 2.44 78.3 130 56.7
Claims (10)
1. A composition consisting essentially of from 10 to 90% by weight of 2,3,3,3-tetrafluoropropene, from 5 to 80% by weight of HFC-134a and from 5 to 10% by weight of HFC-32.
2. The composition as claimed in claim 1 , characterized in that it consists essentially of from 10 to 45% by weight of 2,3,3,3-tetrafluoropropene, from 50 to 80% by weight of HFC-134a and from 5 to 10% by weight of HFC-32.
3. The composition as claimed in claim 1 , characterized in that it further contains a stabilizer.
4. A heat-transfer fluid comprising the composition as claimed in claim 1 .
5. A compression refrigeration systems, with exchangers operating in counterflow mode containing a heat-transfer fluid as claimed in claim 4 ..
6. (canceled)
7. The compression refrigeration system as claimed in claim 4 characterized in that it further contains a lubricant.
8. Blowing agents comprising the composition as claimed in claim 1 .
9. Solvents comprising the composition as claimed in claim 1 .
10. Aerosols comprising the composition as claimed in claim 1 .
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0956249 | 2009-09-11 | ||
FR0956249A FR2950071B1 (en) | 2009-09-11 | 2009-09-11 | TERNARY COMPOSITIONS FOR LOW CAPACITY REFRIGERATION |
PCT/FR2010/051747 WO2011030032A1 (en) | 2009-09-11 | 2010-08-20 | Ternary compositions for low-capacity refrigeration |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2010/051747 A-371-Of-International WO2011030032A1 (en) | 2009-09-11 | 2010-08-20 | Ternary compositions for low-capacity refrigeration |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/335,281 Continuation US9175203B2 (en) | 2009-09-11 | 2014-07-18 | Ternary compositions for low-capacity refrigeration |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120159982A1 true US20120159982A1 (en) | 2012-06-28 |
Family
ID=42077109
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/393,640 Abandoned US20120159982A1 (en) | 2009-09-11 | 2010-08-20 | Ternary compositions for low-capacity refrigeration |
US14/335,281 Expired - Fee Related US9175203B2 (en) | 2009-09-11 | 2014-07-18 | Ternary compositions for low-capacity refrigeration |
US14/873,891 Active US9505968B2 (en) | 2009-09-11 | 2015-10-02 | Ternary compositions for low-capacity refrigeration |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/335,281 Expired - Fee Related US9175203B2 (en) | 2009-09-11 | 2014-07-18 | Ternary compositions for low-capacity refrigeration |
US14/873,891 Active US9505968B2 (en) | 2009-09-11 | 2015-10-02 | Ternary compositions for low-capacity refrigeration |
Country Status (10)
Country | Link |
---|---|
US (3) | US20120159982A1 (en) |
EP (1) | EP2475733B1 (en) |
JP (2) | JP2013504644A (en) |
CN (2) | CN102482556B (en) |
BR (1) | BR112012005096A2 (en) |
FR (1) | FR2950071B1 (en) |
HK (1) | HK1211610A1 (en) |
PT (1) | PT2475733T (en) |
RU (1) | RU2554180C2 (en) |
WO (1) | WO2011030032A1 (en) |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120151958A1 (en) * | 2009-09-11 | 2012-06-21 | Arkema France | Use of ternary compositions |
US20120151959A1 (en) * | 2009-09-11 | 2012-06-21 | Arkema France | Binary refrigerating fluid |
US20120298909A1 (en) * | 2009-08-28 | 2012-11-29 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
US20130025299A1 (en) * | 2010-04-16 | 2013-01-31 | E I Du Pont De Nemours And Company | Composition comprising 2,3,3,3-tetrafluoropropene and 1,1,1,2-tetrafluoroethane, chillers containing same and methods of producing cooling therein |
US20130055738A1 (en) * | 2010-05-11 | 2013-03-07 | Arkema France | Ternary heat-transfer fluids comprising difluoromethane, pentafluoroethane and tetrafluoropropene |
US20130096218A1 (en) * | 2010-06-22 | 2013-04-18 | Arkema Inc. | Heat transfer compositions of hydrofluorocarbons and a hydrofluoroolefin |
US8940180B2 (en) | 2012-11-21 | 2015-01-27 | Honeywell International Inc. | Low GWP heat transfer compositions |
US9011711B2 (en) | 2009-09-11 | 2015-04-21 | Arkema France | Heat transfer fluid replacing R-410A |
US9028706B2 (en) | 2011-02-10 | 2015-05-12 | Arkema France | Binary compositions of 2,3,3,3-tetrafluoropropene and of ammonia |
US9039922B2 (en) | 2009-09-11 | 2015-05-26 | Arkema France | Low-temperature and average-temperature refrigeration |
US9074115B2 (en) | 2009-08-28 | 2015-07-07 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
US9175203B2 (en) | 2009-09-11 | 2015-11-03 | Arkema France | Ternary compositions for low-capacity refrigeration |
US9267064B2 (en) | 2009-09-11 | 2016-02-23 | Arkema France | Ternary compositions for high-capacity refrigeration |
US9315708B2 (en) | 2011-05-04 | 2016-04-19 | Arkema France | Heat-transfer compositions exhibiting improved miscibility with the lubricating oil |
US9512343B2 (en) | 2010-09-20 | 2016-12-06 | Arkema France | Composition based on 2,3,3,3-tetrafluoropropene |
US9599381B2 (en) | 2008-10-08 | 2017-03-21 | Arkema France | Heat transfer fluid |
US9650551B2 (en) | 2012-12-26 | 2017-05-16 | Arkema France | Composition including 2,3,3,3-tetrafluoropropene |
US9650553B2 (en) | 2012-12-26 | 2017-05-16 | Arkema France | Azeotropic or quasi-azeotropic composition of chloromethane |
US9683157B2 (en) | 2009-09-11 | 2017-06-20 | Arkema France | Heat transfer method |
US9683156B2 (en) | 2013-09-11 | 2017-06-20 | Arkema France | Heat transfer fluids comprising difluoromethane, pentafluoroethane, tetrafluoropropene and optionally propane |
US9683155B2 (en) | 2012-12-26 | 2017-06-20 | Arkema France | Composition containing 2,3,3,3-tetrafluoropropene and 1,2-difluoroethylene |
US9752069B2 (en) | 2012-11-20 | 2017-09-05 | Arkema France | Refrigerant composition |
US9783721B2 (en) | 2012-08-20 | 2017-10-10 | Honeywell International Inc. | Low GWP heat transfer compositions |
US9908828B2 (en) | 2015-03-18 | 2018-03-06 | Arkema France | Stabilization of 1-chloro-3,3,3-trifluoropropene |
US9982180B2 (en) | 2013-02-13 | 2018-05-29 | Honeywell International Inc. | Heat transfer compositions and methods |
US10023780B2 (en) | 2013-07-11 | 2018-07-17 | Arkema France | 2,3,3,3-tetrafluoropropene compositions having improved miscibility |
US10035938B2 (en) | 2009-09-11 | 2018-07-31 | Arkema France | Heat transfer fluid replacing R-134a |
US10119055B2 (en) | 2010-07-09 | 2018-11-06 | Arkema France | Stable 2,3,3,3-tetrafluoropropene composition |
US10252913B2 (en) | 2013-03-20 | 2019-04-09 | Arkema France | Composition comprising HF and 2,3,3,3-tetrafluoropropene |
US10308853B2 (en) | 2009-12-18 | 2019-06-04 | Arkema France | Heat-transfer fluids having reduced flammability |
US10450488B2 (en) | 2012-01-26 | 2019-10-22 | Arkema France | Heat transfer compositions having improved miscibility with lubricating oil |
US10808157B2 (en) | 2008-11-03 | 2020-10-20 | Arkema France | Vehicle heating and/or air conditioning method |
US10858561B2 (en) | 2008-10-16 | 2020-12-08 | Arkema France | Heat transfer method |
US10954467B2 (en) | 2016-10-10 | 2021-03-23 | Arkema France | Use of tetrafluoropropene based compositions |
US11001546B2 (en) | 2018-02-05 | 2021-05-11 | Arkema France | Ternary azeotropic or quasi-azeotropic composition comprising HF, 2,3,3,3-tetrafluoropropene and 1,1,1,2,2-pentafluoropropane |
US11053420B2 (en) | 2017-09-12 | 2021-07-06 | Arkema France | Composition on the basis of hydrochlorofluoroolefin and mineral oil |
US11306232B2 (en) | 2016-10-10 | 2022-04-19 | Arkema France | Tetrafluoropropene-based azeotropic compositions |
US11359122B2 (en) | 2017-03-21 | 2022-06-14 | Arkema France | Method for heating and/or air-conditioning in a vehicle |
US11370948B2 (en) | 2017-03-21 | 2022-06-28 | Arkema France | Tetrafluoropropene-based composition |
US11629278B2 (en) | 2018-02-15 | 2023-04-18 | Arkema France | Heat transfer compositions as replacement for R-134A |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2890867A1 (en) | 2012-11-16 | 2014-05-22 | Basf Se | Lubricant compositions comprising epoxide compounds |
CN106350017A (en) * | 2016-08-26 | 2017-01-25 | 北方工业大学 | Ternary mixed refrigerant and preparation method thereof |
KR102599222B1 (en) * | 2016-10-31 | 2023-11-08 | 한화오션 주식회사 | Cooling apparatus for variable frequency drive and cooling method using the same |
US11209196B2 (en) | 2018-10-26 | 2021-12-28 | The Chemours Company Fc, Llc | HFO-1234ZE, HFO-1225ZC and HFO-1234YF compositions and processes for producing and using the compositions |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080230738A1 (en) * | 2005-03-04 | 2008-09-25 | Barbara Haviland Minor | Compositions comprising a fluoroolefin |
US20090120619A1 (en) * | 2007-05-11 | 2009-05-14 | E. I. Du Pont De Nemours And Company | Method for exchanging heat in vapor compression heat transfer systems |
WO2011023923A1 (en) * | 2009-08-28 | 2011-03-03 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
US20110258147A1 (en) * | 2008-12-02 | 2011-10-20 | Mexichem Amanco Holdings S.A. De C.V. | Heat Transfer Compositions |
US8070977B2 (en) * | 2008-06-11 | 2011-12-06 | Arkema France | Hydrofluoroolefin compositions |
US20120097885A9 (en) * | 2003-10-27 | 2012-04-26 | Honeywell International Inc. | Compositions Containing Difluoromethane and Fluorine Substituted Olefins |
US20120126187A1 (en) * | 2009-04-16 | 2012-05-24 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
US20120151958A1 (en) * | 2009-09-11 | 2012-06-21 | Arkema France | Use of ternary compositions |
US20120153213A1 (en) * | 2009-09-11 | 2012-06-21 | Arkema France | Ternary compositions for high-capacity refrigeration |
US20120255316A1 (en) * | 2009-12-18 | 2012-10-11 | Arkema France | Heat-transfer fluids having reduced flammability |
US20130055739A1 (en) * | 2010-05-11 | 2013-03-07 | Arkema France | Heat-transfer fluids and use thereof in countercurrent heat exchangers |
US20130055733A1 (en) * | 2010-05-11 | 2013-03-07 | Arkema France | Heat-transfer fluids and use thereof in countercurrent heat exchangers |
US20130096218A1 (en) * | 2010-06-22 | 2013-04-18 | Arkema Inc. | Heat transfer compositions of hydrofluorocarbons and a hydrofluoroolefin |
US20130145778A1 (en) * | 2009-05-08 | 2013-06-13 | Honeywell International Inc. | Heat transfer compositions and methods |
Family Cites Families (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH549772A (en) * | 1972-04-29 | 1974-05-31 | Bertrams Ag Hch | CROSS COUNTERFLOW HEAT EXCHANGER AND METHOD OF ITS MANUFACTURING. |
FR2256381A1 (en) * | 1973-12-27 | 1975-07-25 | Tour Agenturer Ab | Arrangement for heating or cooling a flow medium - part of air currents diverted to a circuit containing e.g. ammonia in a heat exchanger |
JPS58104466A (en) | 1981-12-16 | 1983-06-21 | 松下電器産業株式会社 | Heat pump device |
ES2728672T3 (en) * | 2002-10-25 | 2019-10-28 | Honeywell Int Inc | Compositions containing fluorine substituted olefins |
US7279451B2 (en) | 2002-10-25 | 2007-10-09 | Honeywell International Inc. | Compositions containing fluorine substituted olefins |
US20090253820A1 (en) | 2006-03-21 | 2009-10-08 | Honeywell International Inc. | Foaming agents and compositions containing fluorine sustituted olefins and methods of foaming |
US20060243944A1 (en) * | 2005-03-04 | 2006-11-02 | Minor Barbara H | Compositions comprising a fluoroolefin |
ES2580080T3 (en) | 2005-03-18 | 2016-08-19 | Carrier Commercial Refrigeration, Inc. | Multi-part heat exchanger |
DE202007008291U1 (en) | 2006-06-17 | 2007-10-18 | Ineos Fluor Holdings Ltd., Runcorn | Heat transfer compositions |
GB0614080D0 (en) | 2006-07-17 | 2006-08-23 | Ineos Fluor Holdings Ltd | Heat transfer compositions |
WO2008009923A2 (en) * | 2006-07-17 | 2008-01-24 | Ineos Fluor Holdings Limited | Heat transfer compositions |
CA2661007A1 (en) * | 2006-09-01 | 2008-03-06 | E.I. Du Pont De Nemours And Company | Method for circulating selected heat transfer fluids through a closed loop cycle |
EP2064533A2 (en) * | 2006-09-15 | 2009-06-03 | E.I. Du Pont De Nemours And Company | Method of detecting leaks of fluoroolefin compositions and sensors used therefor |
AR067115A1 (en) * | 2007-06-21 | 2009-09-30 | Du Pont | METHOD FOR DETECTING LEAKS IN A HEAT TRANSFER SYSTEM |
FR2932493B1 (en) | 2008-06-11 | 2010-07-30 | Arkema France | COMPOSITIONS BASED ON HYDROFLUOROOLEFINS |
WO2010002023A1 (en) * | 2008-07-01 | 2010-01-07 | Daikin Industries, Ltd. | REFRIGERANT COMPOSITION COMPRISING DIFLUOROMETHANE (HFC32), 2,3,3,3-TETRAFLUOROPROPENE (HFO1234yf) AND 1,1,1,2-TETRAFLUOROETHANE (HFC134a) |
FR2936806B1 (en) | 2008-10-08 | 2012-08-31 | Arkema France | REFRIGERANT FLUID |
FR2937906B1 (en) | 2008-11-03 | 2010-11-19 | Arkema France | METHOD FOR HEATING AND / OR AIR CONDITIONING A VEHICLE |
DE202009019200U1 (en) * | 2008-11-19 | 2018-10-15 | The Chemours Company Fc, Llc | Tetrafluoropropene compositions and their uses |
FR2938550B1 (en) | 2008-11-20 | 2010-11-12 | Arkema France | COMPOSITION COMPRISING 2,3,3,3-TETRAFLUOROPROPENE METHOD FOR HEATING AND / OR AIR CONDITIONING A VEHICLE |
FR2938551B1 (en) | 2008-11-20 | 2010-11-12 | Arkema France | METHOD FOR HEATING AND / OR AIR CONDITIONING A VEHICLE |
FR2942237B1 (en) | 2009-02-13 | 2013-01-04 | Arkema France | METHOD FOR HEATING AND / OR AIR CONDITIONING A VEHICLE |
US9074115B2 (en) * | 2009-08-28 | 2015-07-07 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
FR2950068B1 (en) | 2009-09-11 | 2012-05-18 | Arkema France | HEAT TRANSFER METHOD |
FR2950066B1 (en) | 2009-09-11 | 2011-10-28 | Arkema France | LOW AND MEDIUM TEMPERATURE REFRIGERATION |
FR2950067B1 (en) | 2009-09-11 | 2011-10-28 | Arkema France | HEAT TRANSFER FLUID IN REPLACEMENT OF R-410A |
FR2950065B1 (en) * | 2009-09-11 | 2012-02-03 | Arkema France | BINARY REFRIGERANT FLUID |
FR2950071B1 (en) | 2009-09-11 | 2012-02-03 | Arkema France | TERNARY COMPOSITIONS FOR LOW CAPACITY REFRIGERATION |
FR2962130B1 (en) | 2010-06-30 | 2012-07-20 | Arkema France | COMPOSITION BASED ON 2,3,3,3-TETRAFLUOROPROPENE |
FR2962442B1 (en) | 2010-07-09 | 2016-02-26 | Arkema France | STABLE 2,3,3,3-TETRAFLUOROPROPENE COMPOSITION |
FR2964975B1 (en) | 2010-09-20 | 2012-08-24 | Arkema France | COMPOSITION BASED ON 2,3,3,3-TETRAFLUOROPROPENE |
FR2971512B1 (en) | 2011-02-10 | 2013-01-18 | Arkema France | BINARY COMPOSITIONS OF 2,3,3,3-TETRAFLUOROPROPENE AND AMMONIA |
FR2974812B1 (en) * | 2011-05-04 | 2014-08-08 | Arkema France | HEAT TRANSFER COMPOSITIONS HAVING IMPROVED MISCIBILITY WITH LUBRICATING OIL |
FR2986007B1 (en) | 2012-01-25 | 2015-01-23 | Arkema France | HEAT TRANSFER COMPOSITIONS HAVING IMPROVED MISCIBILITY WITH LUBRICATING OIL |
FR2986236B1 (en) | 2012-01-26 | 2014-01-10 | Arkema France | HEAT TRANSFER COMPOSITIONS HAVING IMPROVED MISCIBILITY WITH LUBRICATING OIL |
FR3000096B1 (en) | 2012-12-26 | 2015-02-20 | Arkema France | COMPOSITION COMPRISING 2,3,3,3-TETRAFLUOROPROPENE |
FR3000095B1 (en) | 2012-12-26 | 2015-02-20 | Arkema France | COMPOSITION COMPRISING 2,3,3,3-TETRAFLUOROPROPENE AND 1,2-DIFLUOROETHYLENE |
FR3000093B1 (en) | 2012-12-26 | 2015-07-17 | Arkema France | AZEOTROPIC OR QUASI-AZEOTROPIC COMPOSITION OF CHLOROMETHANE |
FR3003565B1 (en) | 2013-03-20 | 2018-06-29 | Arkema France | COMPOSITION COMPRISING HF AND 2,3,3,3-TETRAFLUOROPROPENE |
PL3055379T3 (en) * | 2013-10-10 | 2020-04-30 | The Chemours Company Fc, Llc | Compositions comprising difluoromethane, pentafluoroethane, tetrafluoroethane and tetrafluoropropene and uses thereof |
-
2009
- 2009-09-11 FR FR0956249A patent/FR2950071B1/en not_active Expired - Fee Related
-
2010
- 2010-08-20 CN CN201080040351.5A patent/CN102482556B/en not_active Expired - Fee Related
- 2010-08-20 WO PCT/FR2010/051747 patent/WO2011030032A1/en active Application Filing
- 2010-08-20 JP JP2012528413A patent/JP2013504644A/en active Pending
- 2010-08-20 CN CN201510378882.XA patent/CN105018034B/en not_active Expired - Fee Related
- 2010-08-20 PT PT107632168T patent/PT2475733T/en unknown
- 2010-08-20 BR BR112012005096A patent/BR112012005096A2/en not_active IP Right Cessation
- 2010-08-20 RU RU2012114163/05A patent/RU2554180C2/en not_active IP Right Cessation
- 2010-08-20 US US13/393,640 patent/US20120159982A1/en not_active Abandoned
- 2010-08-20 EP EP10763216.8A patent/EP2475733B1/en active Active
-
2014
- 2014-07-18 US US14/335,281 patent/US9175203B2/en not_active Expired - Fee Related
-
2015
- 2015-10-02 US US14/873,891 patent/US9505968B2/en active Active
- 2015-12-18 HK HK15112510.9A patent/HK1211610A1/en not_active IP Right Cessation
-
2016
- 2016-05-26 JP JP2016104907A patent/JP6546563B2/en not_active Expired - Fee Related
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120097885A9 (en) * | 2003-10-27 | 2012-04-26 | Honeywell International Inc. | Compositions Containing Difluoromethane and Fluorine Substituted Olefins |
US20080230738A1 (en) * | 2005-03-04 | 2008-09-25 | Barbara Haviland Minor | Compositions comprising a fluoroolefin |
US20090120619A1 (en) * | 2007-05-11 | 2009-05-14 | E. I. Du Pont De Nemours And Company | Method for exchanging heat in vapor compression heat transfer systems |
US8252198B2 (en) * | 2008-06-11 | 2012-08-28 | Arkema France | Hydrofluoroolefin compositions |
US8070977B2 (en) * | 2008-06-11 | 2011-12-06 | Arkema France | Hydrofluoroolefin compositions |
US20120049104A1 (en) * | 2008-06-11 | 2012-03-01 | Arkema France | Hydrofluoroolefin compositions |
US20110258147A1 (en) * | 2008-12-02 | 2011-10-20 | Mexichem Amanco Holdings S.A. De C.V. | Heat Transfer Compositions |
US20120126187A1 (en) * | 2009-04-16 | 2012-05-24 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
US20130145778A1 (en) * | 2009-05-08 | 2013-06-13 | Honeywell International Inc. | Heat transfer compositions and methods |
US20120298909A1 (en) * | 2009-08-28 | 2012-11-29 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
WO2011023923A1 (en) * | 2009-08-28 | 2011-03-03 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
US20120153213A1 (en) * | 2009-09-11 | 2012-06-21 | Arkema France | Ternary compositions for high-capacity refrigeration |
US20120151958A1 (en) * | 2009-09-11 | 2012-06-21 | Arkema France | Use of ternary compositions |
US20120255316A1 (en) * | 2009-12-18 | 2012-10-11 | Arkema France | Heat-transfer fluids having reduced flammability |
US20130055739A1 (en) * | 2010-05-11 | 2013-03-07 | Arkema France | Heat-transfer fluids and use thereof in countercurrent heat exchangers |
US20130055733A1 (en) * | 2010-05-11 | 2013-03-07 | Arkema France | Heat-transfer fluids and use thereof in countercurrent heat exchangers |
US20130096218A1 (en) * | 2010-06-22 | 2013-04-18 | Arkema Inc. | Heat transfer compositions of hydrofluorocarbons and a hydrofluoroolefin |
Cited By (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11130893B2 (en) | 2008-10-08 | 2021-09-28 | Arkema France | Heat transfer fluid |
US9599381B2 (en) | 2008-10-08 | 2017-03-21 | Arkema France | Heat transfer fluid |
US10858561B2 (en) | 2008-10-16 | 2020-12-08 | Arkema France | Heat transfer method |
US10808157B2 (en) | 2008-11-03 | 2020-10-20 | Arkema France | Vehicle heating and/or air conditioning method |
US8894874B2 (en) * | 2009-08-28 | 2014-11-25 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
US20120298909A1 (en) * | 2009-08-28 | 2012-11-29 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
US9074115B2 (en) | 2009-08-28 | 2015-07-07 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
US10358592B2 (en) | 2009-09-11 | 2019-07-23 | Arkema France | Heat transfer method |
US20120151959A1 (en) * | 2009-09-11 | 2012-06-21 | Arkema France | Binary refrigerating fluid |
US10316231B2 (en) | 2009-09-11 | 2019-06-11 | Arkema France | Low-temperature and average-temperature refrigeration |
US9011711B2 (en) | 2009-09-11 | 2015-04-21 | Arkema France | Heat transfer fluid replacing R-410A |
US9884984B2 (en) | 2009-09-11 | 2018-02-06 | Arkema France | Binary refrigerating fluid |
US9039922B2 (en) | 2009-09-11 | 2015-05-26 | Arkema France | Low-temperature and average-temperature refrigeration |
US10125296B2 (en) | 2009-09-11 | 2018-11-13 | Arkema France | Binary refrigerating fluid |
US20120151958A1 (en) * | 2009-09-11 | 2012-06-21 | Arkema France | Use of ternary compositions |
US9127191B2 (en) | 2009-09-11 | 2015-09-08 | Arkema France | Use of ternary compositions |
US9133379B2 (en) * | 2009-09-11 | 2015-09-15 | Arkema France | Binary refrigerating fluid |
US9175203B2 (en) | 2009-09-11 | 2015-11-03 | Arkema France | Ternary compositions for low-capacity refrigeration |
US9267064B2 (en) | 2009-09-11 | 2016-02-23 | Arkema France | Ternary compositions for high-capacity refrigeration |
US10035938B2 (en) | 2009-09-11 | 2018-07-31 | Arkema France | Heat transfer fluid replacing R-134a |
US8808569B2 (en) * | 2009-09-11 | 2014-08-19 | Arkema France | Use of ternary compositions |
US9399726B2 (en) | 2009-09-11 | 2016-07-26 | Arkema France | Use of ternary compositions |
US10858562B2 (en) | 2009-09-11 | 2020-12-08 | Arkema France | Binary refrigerating fluid |
US9505968B2 (en) | 2009-09-11 | 2016-11-29 | Arkema France | Ternary compositions for low-capacity refrigeration |
US9683157B2 (en) | 2009-09-11 | 2017-06-20 | Arkema France | Heat transfer method |
US9663697B2 (en) | 2009-09-11 | 2017-05-30 | Arkema France | Use of ternary compositions |
US11352533B2 (en) | 2009-12-18 | 2022-06-07 | Arkema France | Heat-transfer fluids having reduced flammability |
US10308853B2 (en) | 2009-12-18 | 2019-06-04 | Arkema France | Heat-transfer fluids having reduced flammability |
US20130025299A1 (en) * | 2010-04-16 | 2013-01-31 | E I Du Pont De Nemours And Company | Composition comprising 2,3,3,3-tetrafluoropropene and 1,1,1,2-tetrafluoroethane, chillers containing same and methods of producing cooling therein |
US8765004B2 (en) * | 2010-04-16 | 2014-07-01 | E I Du Pont De Nemours And Company | Composition comprising 2,3,3,3-tetrafluoropropene and 1,1,1,2-tetrafluoroethane, chillers containing same and methods of producing cooling therein |
US20130055738A1 (en) * | 2010-05-11 | 2013-03-07 | Arkema France | Ternary heat-transfer fluids comprising difluoromethane, pentafluoroethane and tetrafluoropropene |
US9488398B2 (en) | 2010-05-11 | 2016-11-08 | Arkema France | Ternary heat-transfer fluids comprising difluoromethane, pentafluoroethane and tetrafluoropropene |
US9057010B2 (en) * | 2010-05-11 | 2015-06-16 | Arkema France | Ternary heat-transfer fluids comprising difluoromethane, pentafluoroethane and tetrafluoropropene |
US9359540B2 (en) | 2010-05-11 | 2016-06-07 | Arkema France | Ternary heat-transfer fluids comprising difluoromethane, pentafluoroethane and tetrafluoropropene |
US20130096218A1 (en) * | 2010-06-22 | 2013-04-18 | Arkema Inc. | Heat transfer compositions of hydrofluorocarbons and a hydrofluoroolefin |
US10119055B2 (en) | 2010-07-09 | 2018-11-06 | Arkema France | Stable 2,3,3,3-tetrafluoropropene composition |
US10662357B2 (en) | 2010-07-09 | 2020-05-26 | Arkema France | Stable 2,3,3,3-tetrafluoropropene composition |
US9512343B2 (en) | 2010-09-20 | 2016-12-06 | Arkema France | Composition based on 2,3,3,3-tetrafluoropropene |
US9028706B2 (en) | 2011-02-10 | 2015-05-12 | Arkema France | Binary compositions of 2,3,3,3-tetrafluoropropene and of ammonia |
US9315708B2 (en) | 2011-05-04 | 2016-04-19 | Arkema France | Heat-transfer compositions exhibiting improved miscibility with the lubricating oil |
US9676984B2 (en) | 2011-05-04 | 2017-06-13 | Arkema France | Heat-transfer compositions exhibiting improved miscibility with the lubricating oil |
US10450488B2 (en) | 2012-01-26 | 2019-10-22 | Arkema France | Heat transfer compositions having improved miscibility with lubricating oil |
US9783721B2 (en) | 2012-08-20 | 2017-10-10 | Honeywell International Inc. | Low GWP heat transfer compositions |
US9752069B2 (en) | 2012-11-20 | 2017-09-05 | Arkema France | Refrigerant composition |
US8940180B2 (en) | 2012-11-21 | 2015-01-27 | Honeywell International Inc. | Low GWP heat transfer compositions |
US9969918B2 (en) | 2012-12-26 | 2018-05-15 | Arkema France | Azeotropic or quasi-azeotropic composition of chloromethane |
US9650553B2 (en) | 2012-12-26 | 2017-05-16 | Arkema France | Azeotropic or quasi-azeotropic composition of chloromethane |
US10131829B2 (en) | 2012-12-26 | 2018-11-20 | Arkema France | Composition containing 2,3,3,3-tetrafluoropropene and 1,2-difluoroethylene |
US9650551B2 (en) | 2012-12-26 | 2017-05-16 | Arkema France | Composition including 2,3,3,3-tetrafluoropropene |
US9683155B2 (en) | 2012-12-26 | 2017-06-20 | Arkema France | Composition containing 2,3,3,3-tetrafluoropropene and 1,2-difluoroethylene |
US10604690B2 (en) | 2012-12-26 | 2020-03-31 | Arkema France | Composition including 2,3,3,3-tetrafluoropropene |
US9982180B2 (en) | 2013-02-13 | 2018-05-29 | Honeywell International Inc. | Heat transfer compositions and methods |
US10252913B2 (en) | 2013-03-20 | 2019-04-09 | Arkema France | Composition comprising HF and 2,3,3,3-tetrafluoropropene |
US10023780B2 (en) | 2013-07-11 | 2018-07-17 | Arkema France | 2,3,3,3-tetrafluoropropene compositions having improved miscibility |
US10377935B2 (en) | 2013-07-11 | 2019-08-13 | Arkema France | 2,3,3,3-tetrafluoropropene compositions having improved miscibility |
US9683156B2 (en) | 2013-09-11 | 2017-06-20 | Arkema France | Heat transfer fluids comprising difluoromethane, pentafluoroethane, tetrafluoropropene and optionally propane |
US10113093B2 (en) | 2013-09-11 | 2018-10-30 | Arkema France | Heat transfer fluids comprising difluoromethane, pentafluoroethane, tetrafluoropropene and optionally propane |
US10399918B2 (en) | 2015-03-18 | 2019-09-03 | Arkema France | Stabilization of 1-chloro-3,3,3-trifluoropropene |
US10618861B2 (en) | 2015-03-18 | 2020-04-14 | Arkema France | Stabilization of 1-chloro-3,3,3-trifluoropropene |
US9908828B2 (en) | 2015-03-18 | 2018-03-06 | Arkema France | Stabilization of 1-chloro-3,3,3-trifluoropropene |
US11306232B2 (en) | 2016-10-10 | 2022-04-19 | Arkema France | Tetrafluoropropene-based azeotropic compositions |
US10954467B2 (en) | 2016-10-10 | 2021-03-23 | Arkema France | Use of tetrafluoropropene based compositions |
US11359122B2 (en) | 2017-03-21 | 2022-06-14 | Arkema France | Method for heating and/or air-conditioning in a vehicle |
US11370948B2 (en) | 2017-03-21 | 2022-06-28 | Arkema France | Tetrafluoropropene-based composition |
US11053420B2 (en) | 2017-09-12 | 2021-07-06 | Arkema France | Composition on the basis of hydrochlorofluoroolefin and mineral oil |
US11001546B2 (en) | 2018-02-05 | 2021-05-11 | Arkema France | Ternary azeotropic or quasi-azeotropic composition comprising HF, 2,3,3,3-tetrafluoropropene and 1,1,1,2,2-pentafluoropropane |
US11629278B2 (en) | 2018-02-15 | 2023-04-18 | Arkema France | Heat transfer compositions as replacement for R-134A |
Also Published As
Publication number | Publication date |
---|---|
CN102482556B (en) | 2015-07-29 |
CN105018034B (en) | 2018-05-25 |
CN102482556A (en) | 2012-05-30 |
RU2012114163A (en) | 2013-10-20 |
HK1211610A1 (en) | 2016-05-27 |
US9505968B2 (en) | 2016-11-29 |
BR112012005096A2 (en) | 2016-05-03 |
US20140326017A1 (en) | 2014-11-06 |
JP2016194077A (en) | 2016-11-17 |
FR2950071B1 (en) | 2012-02-03 |
EP2475733B1 (en) | 2019-10-02 |
WO2011030032A1 (en) | 2011-03-17 |
FR2950071A1 (en) | 2011-03-18 |
JP6546563B2 (en) | 2019-07-17 |
PT2475733T (en) | 2019-11-05 |
US9175203B2 (en) | 2015-11-03 |
RU2554180C2 (en) | 2015-06-27 |
CN105018034A (en) | 2015-11-04 |
JP2013504644A (en) | 2013-02-07 |
US20160024363A1 (en) | 2016-01-28 |
EP2475733A1 (en) | 2012-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9505968B2 (en) | Ternary compositions for low-capacity refrigeration | |
US9663697B2 (en) | Use of ternary compositions | |
US9267064B2 (en) | Ternary compositions for high-capacity refrigeration | |
US10125296B2 (en) | Binary refrigerating fluid | |
US10358592B2 (en) | Heat transfer method | |
US10035938B2 (en) | Heat transfer fluid replacing R-134a | |
US9011711B2 (en) | Heat transfer fluid replacing R-410A | |
US10316231B2 (en) | Low-temperature and average-temperature refrigeration |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ARKEMA FRANCE, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RACHED, WISSAM;REEL/FRAME:027797/0161 Effective date: 20120221 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |