US20120158306A1 - System and method for preparing near-surface heavy oil for extraction using microbial degradation - Google Patents

System and method for preparing near-surface heavy oil for extraction using microbial degradation Download PDF

Info

Publication number
US20120158306A1
US20120158306A1 US13/402,504 US201213402504A US2012158306A1 US 20120158306 A1 US20120158306 A1 US 20120158306A1 US 201213402504 A US201213402504 A US 201213402504A US 2012158306 A1 US2012158306 A1 US 2012158306A1
Authority
US
United States
Prior art keywords
data
underground
oil extraction
extraction environment
crude oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/402,504
Inventor
Frederick D. Busche
John B. Rollins
Harold J. Noyes
James G. Bush
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Priority to US13/402,504 priority Critical patent/US20120158306A1/en
Publication of US20120158306A1 publication Critical patent/US20120158306A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B45/00ICT specially adapted for bioinformatics-related data visualisation, e.g. displaying of maps or networks
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B5/00ICT specially adapted for modelling or simulations in systems biology, e.g. gene-regulatory networks, protein interaction networks or metabolic networks
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B50/00ICT programming tools or database systems specially adapted for bioinformatics

Abstract

In one embodiment, the invention provides an analytical processing system for enhancing the recovery of heavy oil in an underground, near-surface crude oil extraction environment, comprising: a data collection engine configured for receiving data relating to the underground, near-surface crude oil extraction environment, wherein the data includes in situ microbial species data, oil properties data and in situ nutrient information that are identified as being germane to the underground, near-surface crude oil extraction environment; a data warehouse for storing data collected from the data collection engine; and a data modeling system for analyzing data stored in the data warehouse and facilitating an identity of a preferred microbial species from the underground, near-surface crude oil extraction environment that can transform the heavy oil into a lighter oil.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional application of co-pending U.S. patent application Ser. No. 12/973,766, filed 20 Dec. 2010, which is hereby incorporated herein.
  • BACKGROUND
  • The invention relates generally to microbial degradation, and more specifically relates to a system and method for preparing near-surface heavy oil for extraction using microbial degradation, as well as an analytical infrastructure to support the extraction process.
  • Heavy oil and bitumen deposits are found in many areas of the world, including Alaska, Canada, Siberia and the Nordic countries. Typically, deposits of heavy oil are mixed with deposits of lighter oil. Enhanced recovery of the heavy oil deposits generally require a reduction in viscosity, which refers to the propensity of a fluid to flow. Thus, in order to recover heavy oil, it must first be processed in some manner to reduce its viscosity to allow the oil to flow.
  • Currently, viscosity reduction is often accomplished either by: (1) increasing oil temperature through (a) injecting steam with or without gaseous additives such as methane, propane, natural gas, nitrogen, or CO2, or (b) in-situ combustion through injecting oxygen-containing gases such as air; or (2) dilution of the oil through injecting low-viscosity hydrocarbon solvents. Enhanced oil recovery (EOR) on the North Slope of Alaska and similar locations is usually done with the use of heated steam injection. Heavy oils have such high viscosity at reservoir conditions that recovery rates by typical EOR methods are much lower than for lighter oils. Thus, the recovery of heavy oils has marginal economics or is uneconomical altogether. Challenges exist with EOR methods even when the oil reaches the well bore and production facilities because of asphaltic precipitation and the formation of emulsions. Although current technology is improving, the recovery of heavy oil remains costly to the point that many deposits are not economic to produce.
  • Today, long-reach, multilateral drilling techniques developed during the last 10 years are improving the economics of heavy oil production in areas such as the North Slope. At present, four percent of the oil in the trans-Alaska oil pipeline, some 35,000 barrels per day, is now heavy oil. This heavy oil is recovered using primarily CO2 injection and gravity flow from horizontal production wells at formation depths of up to several thousand feet where formation temperatures range from around 70 degrees Fahrenheit to less than 100 degrees Fahrenheit. The heavy oil resource just on the North Slope is huge: the 20-25 billion barrels of heavy oil in place is more than was present at Prudhoe Bay before production started. While North Slope natural gas is the undeveloped resource that gets most of the attention from producers, there is actually more resource in heavy oil than there is in gas in Prudhoe, Point Thomson, and all the other gas discoveries on the North Slope in the greater Prudhoe Bay area.
  • Since CO2 commonly occurs with natural gas, including as a component of natural gas, frequently there is an inexpensive way of obtaining the CO2 that is needed to mobilize the oil. However, in many areas this supply is dwindling and now requires the piping of CO2 from outside many of the fields to be used as a mobilizer for the oil. The production of steam to be used to mobilize the oil is also somewhat inefficient because of the energy that is necessary to create the heat to heat the water to produce steam is generally a poor substitute for CO2. Since both processes have an inherent dependence upon the pathway through the formation to get to the heavy oil to be transported, there is a great deal of difficulty in focusing the solutions on the heavy oil to be transported. The heavy oil will either block the pore spaces or, as a result of some of the heavy oil being mobilized, create a channeling effect in the formation. In addition, with pressure buildup when forcing either CO2 or steam into the formation containing the oil there is a great deal of potential that the formation will be fractured and thereby communication from the injection and recovery wells could be lost.
  • Accordingly, there is a need to alleviate the complications associated with tertiary recovery methods of heavy oil using CO2 and steam.
  • SUMMARY
  • The present invention addresses the above-mentioned problems, as well as others, by providing a system and method for preparing near-surface heavy oil for extraction using microbial degradation, as well as an analytical infrastructure to support the extraction process. As noted, heavy oil has both light and heavy fractions, and the present invention selectively enhances microbes (bacteria and/or fungi) that will metabolize only the heavy ends of the oil spectrum.
  • In a first aspect, the invention provides a method for enhancing the recovery of heavy oil in an oil extraction environment, comprising: sampling and identifying microbial species that reside in the oil extraction environment; collecting oil property data from the oil extraction environment; collecting nutrient data from the oil extraction environment; identifying a preferred microbial species from the oil extraction environment that can transform the heavy oil into a lighter oil; identifying a nutrient from the oil extraction environment that promotes a proliferation of the preferred microbial species; and introducing the nutrient into the oil extraction environment.
  • In a second aspect, the invention provides an analytical processing system for enhancing the recovery of heavy oil in an oil extraction environment, comprising: a data collection engine configured for receiving data relating to the oil extraction environment, wherein the data includes microbial species data, oil properties data and nutrient information that are identified as being germane to the oil extraction environment; a data warehouse for storing data collected from the data collection engine; and a data modeling system for analyzing data stored in the data warehouse and facilitating an identity of a preferred microbial species from the oil extraction environment that can transform the heavy oil into a lighter oil.
  • In a third aspect, the invention provides a computer program product stored on a computer usable medium for enhancing the recovery of heavy oil in an oil extraction environment, comprising: program code configured for receiving data relating to the oil extraction environment, wherein the data includes microbial species data, oil properties data and nutrient information that are identified as being germane to the oil extraction environment; program code configured for storing the received data in a data warehouse; and program code configured for analyzing data stored in the data warehouse and facilitating an identity of a preferred microbial species from the oil extraction environment that can transform the heavy oil into a lighter oil.
  • In a fourth aspect, the invention provides a method for implementing an application for enhancing the recovery of heavy oil in an oil extraction environment, comprising: providing a computer infrastructure being operable to: receive data relating to the oil extraction environment, wherein the data includes microbial species data, oil properties data and nutrient information that are identified as being germane to the oil extraction environment; store the received data in a data warehouse; and analyze data stored in the data warehouse to facilitate an identity of a preferred microbial species from the oil extraction environment that can transform the heavy oil into a lighter oil.
  • In a fifth aspect, the invention provides a system comprising: at least one computing device for enhancing the recovery of heavy oil in an underground, near-surface crude oil extraction environment by performing a method comprising: sampling and identifying microbial species (bacteria and/or fungi) that reside in the underground, near-surface crude oil extraction environment; collecting rock and fluid property data from the underground, near-surface crude oil extraction environment; collecting nutrient data from the underground, near-surface crude oil extraction environment; identifying a preferred microbial species from the underground, near-surface crude oil extraction environment that can transform the heavy oil into a lighter oil; identifying a nutrient from the underground, near-surface crude oil extraction environment that promotes a proliferation of the preferred microbial species; and introducing the nutrient into the underground, near-surface crude oil extraction environment.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These and other features of this invention will be more readily understood from the following detailed description of the various aspects of the invention taken in conjunction with the accompanying drawings in which:
  • FIG. 1 depicts a flow diagram depicting a method of obtaining heavy oil in accordance with the present invention.
  • FIG. 2 depicts an analytical processing system for implementing a heavy oil recovery process in accordance with the present invention.
  • DETAILED DESCRIPTION Microbial Degradation Overview
  • Given that the heavy oil on the North Slope and other places around the Arctic Circle is located in a near-surface environment similar to that associated with near-surface petroleum product spills, the present invention proposes the use of a process similar to the ones used to clean up those spills (referred to as biological remediation or simply bioremediation) to enhance the recovery of heavy oil.
  • Biological remediation is the process of using microbes or microorganisms to clean up and detoxify a subsurface environment that contains toxic chemicals such as petroleum as well as crude oil. These microbes are typically bacteria from the phyla such as Actinobacteria, Aquificae, Bacteroidetes/ChlorobiChlamydiae/Verrucomicrobia, Chloroflexi, Chrysiogenetes, Cyanobacteria, Deferribacteres, Deinococcus-Thermus, Dictyoglomi, Fibrobacteres/Acidobacteria, Firmicutes, Fusobacteria, Gemmatimonadetes, Nitrospirae, Omnibacteria, Planctomycetes, Proteobacteria, Spirochaetes, Thermodesulfobacteria, Thermomicrobia, and Thermotogae. Such bacteria are able to thrive in such an environment and synthesize harmful substances into energy.
  • Biochemical reactions, or pathways, in an organism that result in activity, growth, and reproduction are what drive the remediation. These processes include degradation (catabolic) and biosynthetic (anabolic) processes. Catabolic processes break down larger molecules into simpler components, producing energy for microbial growth and reproduction. Organic contaminants can be transformed into less harmful forms or degraded completely (mineralized) to inorganic components through these catabolic processes.
  • Some of the most important factors that control the metabolic process include: (1) the chemicals in the environment that serve as nutrient and energy sources; (2) enzymes, which are catalysts to the metabolic reactions that occur in the cell; and (3) oxidation-reduction reactions, which allow release and biological conservation of energy. Metals can serve important roles as electron donors or electron acceptors in these reactions.
  • Carbon, nitrogen, and phosphorus are the basic elemental components of the most common molecules in a cell (proteins, sugars, and nucleic acids). Organisms that require an organic or complex source of carbon are called heterotrophs. Those that use inorganic sources of carbon like carbon dioxide (CO2) are called autotrophs. Most microorganisms need nitrogen because it is a major constituent of proteins and nucleic acids. Nitrogen can be found in nature in both organic and inorganic forms. However, the most abundant forms of nitrogen in nature are inorganic—either ammonia (NH3), nitrate (NO3—), or nitrogen gas (N2). Most microbes can use either ammonia or nitrate as their sole nitrogen source. All of these potential nutrients occur naturally within the North Slope formations. The methodology of stimulating the growth of in-situ bacteria has been used with particular success with petroleum product and crude oil spills into soils and formations that are in the near surface environment.
  • Transformation Process
  • The heavy oil recovery process that is described herein involves the utilization of in-situ microbial species (e.g., bacteria or funcgi) in near-surface heavy oil containing formations (such as the North Slope) in order to reduce the viscosity of the heavy oil. The process involves the feeding of a microbial species that is specific to the heavy fractions in the oil in order to convert heavy oil into lighter oil. Although the invention could be practiced in any heavy oil environment, the process is particularly applicable to deposits having low pressure and near surface temperatures, such as those found in the North Slope deposits. These conditions, which allow for the growth of species, are rather uncommon in deeper oil reservoirs because of their higher pressures and temperatures.
  • An illustrative flow diagram for implementing the process is shown in FIG. 1. The process begins at steps S1, S2 and S3 with the collection and sampling of data germane to a specific heavy oil producing formation (i.e., environment). Namely, at step S1, data is collected and sampled relating to the identification of the microbial species that naturally occur within the various interstices or pore spaces in the producing formation of interest. In addition, at step S2, data is collected and sampled relating to the chemistry, molecular structure, and physical properties of the rock and fluid system to provide an assessment of the controls on viscosity, such as pH levels, redox conditions, clay components, mineralogy, etc. Also, at step S3, the nutrient availability within these formations is sampled and measured. Analysis of core samples may be utilized to obtain some of the aforementioned data including microscopic as well as chemical and physical property measurements.
  • In order to assess the species diversity (step S1) and the nutrient availability (step S3), extreme care should be taken in collecting formation samples. The samples must be preserved such that their in-situ environment is not disturbed paying particular attention to the preservation of the reservoir temperature and pressure of the sample as well as its oxidation-reduction state, organic species diversity and gaseous components. Once the samples have been returned to the laboratory, each microbial species must be identified as well as the pertinent information about the in-situ environment.
  • At step S4, data captured from the samples is entered into a data warehouse. The resulting data warehouse will thus provide a data repository of the biological, physical, chemical and geological information associated with the formation.
  • That data is then analyzed and modeled at step S6 to facilitate: (1) the identification of a set of microbial species from all of the identified species, which are capable of transforming heavy oil into lighter oil within a specific range of reservoir conditions, i.e., a set of “degradation species,” and (2) the type and amount of nutrients required to feed the identified species to achieve the desired type and rate of transformation such that fluid flow is not impaired by an overabundance of microbiological organisms.
  • Along with the data analysis and modeling, the microbial species samples must be tested in a simulated reservoir environment at step S5 to identify those species that preferentially feed upon the heavy fractions of the oil within those interstices found in the heavy oil environment. Ultimately, based on the data analysis and lab testing, one (or more) preferred microbial species is identified that can most effectively convert heavy oil into lighter oil. Next, at step S7, lab testing of the preferred species must be performed to understand their acceptance of supplemental nutrition that may be provided to them. This testing will allow for an assessment of the amount of additional nutrients that must be added to the formation to allow for the preferential growth of the preferred microbial species that would preferentially degrade the heavy oil fractions. The information collected and analyzed in steps S5, S6, and S7 can be fed back into the data warehouse to allow for continued analysis and modeling.
  • Because of the many variables that exist as a result of this characterization, it may be necessary to use statistical as well as discovery-based analysis (such as associations, sequential patterns, and clustering analysis) to adequately understand the data produced, using a tool such as IBM's INTELLIGENT MINER™ (IM). Again, before hypotheses have been formulated, analysis of the data at step S6 using such predictive algorithms as “transform regression” analysis must be conducted on the data for a thorough understanding of what would be predicted to take place and what attributes would be necessary to define success.
  • Once the data has been analyzed and a successful identification of a preferred species and required nutrients has occurred, then field testing is implemented at step S8 in order to pilot the frequency of nutrient supply, rest states necessary for the reactions to take place, and production efficiencies that are realized. Once the complete process has been defined, then scale-up to production occurs and the transformation process is implemented at step S9, in which the introduction of supplemental nutrients into the environment should cause the identified species to propagate and transform the heavy oil into lighter oil. The introduction of nutrients may be done in existing wells.
  • At step S10, the in-situ environment is monitored such that transformation data is collected and is stored in the data warehouse. The transformation data is then analyzed and modeled at step S10 in order to, among other things, track the transformation and predict future behavior. If a correction is required, a recovery control process can be implemented to address the issue at step S11. The recovery control process may include a reduction in or cessation of feeding.
  • The advantages of this approach over current methods to reduce oil viscosity are:
  • The process can utilize existing wells.
  • The process should reduce or eliminate the usage of CO2 or steam injection.
  • There will be a reduction in the risk associated with undesired formation fracturing and surface and subsurface environmental disturbance.
  • Because nutrients will be delivered using a pulsing technique (delivery a slug of nutrients followed by a rest period to allow the bacteria to process the nutrients), there may be a reduced need for continuous operation and therefore a cost savings associated with the oil recovery.
  • Stimulation of bacteria with nutrients may have the additional benefit that the bacteria will produce surfactants that will enhance the flow of the oil.
  • The process will reduce the gravity (or increase the API gravity) of the oil in place, thus enabling the oil to flow better through the formation.
  • As a result of the analysis of the data before the process begins, modeling of results can be done to lessen the possibility of failure and predict the conditions that will contribute to optimization of oil production.
  • Referring now to FIG. 2, an analytical processing system 10 is shown for managing a transformation process, such as that described above in FIG. 1. On the left hand side of the diagram an oil extraction environment 20 is shown in three stages in which a heavy oil component 26 is transformed into a lighter oil component 30. In the first stage, a sampling process 22 at the oil extraction environment 20 is used to collect a set of sample data 24, which is imported into the analytical processing system 10 via a data collection engine 12. Once imported, the data is stored in a data warehouse 18. Additional data resulting from, e.g., ongoing lab and field testing 40, data previously obtained from drilling in the environment 20, data previously gathered regarding microbial species, nutrients, geological data, etc., may also be imported into the data warehouse 18.
  • As noted above, the ultimate goal of the process is to identify nutrients 28 that can be introduced into the oil extraction environment 20 to feed a preferred microbial species to result in a transformation by causing the preferred species to propagate and degrade the heavy oil 26 into lighter oil 30. In the second stage, transformation implementation system 14 is utilized to model the environment in order to identify a preferred species, select nutrients 28 to enhance growth of the preferred species, and predict the resulting impact on the oil extraction environment 20. In order to achieve this, various data models and analysis tools 42 may be utilized.
  • Examples of these data models and analysis tools 42 may for example include: (1) an association analysis system 44 to, e.g., track how the subsurface environment varies from well to well in the extraction environment 20 with regard to associated attributes both geologic and biologic; (2) a geostatistical analysis system 46 to estimate the conditions between bore holes to ascertain the rate of change of conditions and therefore the possible speciation change that might occur from well to well across the field as well as changes in flow well communication that might be present in the field; (3) a sequential patterns analysis system 48 that provides for analysis and prediction, and in which operation protocols can be modified automatically to control changes that are or may occur across the environment during operation; and (4) a transform regression analysis system 50. In one illustrative embodiment, a data model may be derived from mining operations involving production and exploration data models.
  • In the third stage, once the transformation has taken place, and the heavy oil gets converted to lighter oil 30, a monitoring process 32 is utilized to generate transformation data 34, which is likewise imported into the analytical processing system 10 via the data collection engine 12, and stored in data warehouse 18. Transformation data 34 may include any information related to conditions (e.g., microbiological changes, pH levels, etc.) and production (e.g., flow rates). Transformation data 34 may also be collected in any manner, e.g., electrical monitoring devices, etc. The transformation data 34 is also continuously analyzed by the data models and analysis tools 42 to ensure that the transformation process is behaving as predicted. Predictive modeling may be implemented to predict any negative outcomes before they occur. Based on the results of these models, corrective measures 36 may be introduced back into the oil extraction environment 20 by recovery control system 16 to address current problems or head off any predicted problems (e.g., adjusting the amount or type of nutrients). This process allows for the understanding of progress both negatively and positively across the heavy oil accumulation to be monitored such that control of results can be semi-controlled. The introduction of corrective measures 36 may first be investigated under laboratory conditions such that a predictive model could be produced and then applied to the geostatistical assessment of the underlying geology to predict what changes might take place.
  • In general, analytical processing system 10 may comprise any type of computing environment, and could be implemented as part of a client and/or server. Analytical processing system 10 may utilize one or more computers that generally include processors, input/output (I/O) devices, and memory. Processing capabilities may be implemented in a single processing unit, or be distributed across one or more processing units in one or more locations, e.g., on a client and server. Memory may comprise any known type of data storage and/or transmission media, including magnetic media, optical media, random-access memory (RAM), read-only memory (ROM), a data cache, a data object, etc. Moreover, data warehouse 18 may reside at a single physical location, comprising one or more types of data storage, or be distributed across a plurality of physical systems in various forms.
  • I/O devices may comprise any system for exchanging information to/from an external resource. External devices/resources may comprise any known type of external device, including a monitor/display, speakers, storage, another computer system, a hand-held device, keyboard, mouse, voice recognition system, speech output system, printer, facsimile, pager, etc. Although not shown, additional components, such as cache memory, communication systems, system software, etc., may be incorporated into analytical processing system 10.
  • Access to analytical processing system 10 may be provided over a network such as the Internet, a local area network (LAN), a wide area network (WAN), a virtual private network (VPN), etc. Communication could occur via a direct hardwired connection (e.g., serial port), or via an addressable connection that may utilize any combination of wireline and/or wireless transmission methods. Moreover, conventional network connectivity, such as Token Ring, Ethernet, WiFi or other conventional communications standards could be used. Still yet, connectivity could be provided by conventional TCP/IP sockets-based protocol. In this instance, an Internet service provider could be used to establish interconnectivity. Further, as indicated above, communication could occur in a client-server or server-server environment.
  • It should be appreciated that the teachings of the present invention could be offered as a business method on a subscription or fee basis. For example, an analytical processing system 10 comprising a data warehouse 18, transformation analysis system 14, and/or recovery control system 16 could be created, maintained and/or deployed by a service provider that offers the functions described herein for customers. That is, a service provider could offer to provide a data processing system for supporting near-surface heavy oil extraction using microbial degradation as described above.
  • It is understood that the systems, functions, mechanisms, methods, engines and modules described herein can be implemented in hardware, software, or a combination of hardware and software. They may be implemented by any type of computer system or other apparatus adapted for carrying out the methods described herein. A typical combination of hardware and software could be a general-purpose computer system with a computer program that, when loaded and executed, controls the computer system such that it carries out the methods described herein. Alternatively, a specific use computer, containing specialized hardware for carrying out one or more of the functional tasks of the invention could be utilized. In a further embodiment, part or all of the invention could be implemented in a distributed manner, e.g., over a network such as the Internet.
  • The present invention can also be embedded in a computer program product, which comprises all the features enabling the implementation of the methods and functions described herein, and which—when loaded in a computer system—is able to carry out these methods and functions. Terms such as computer program, software program, program, program product, software, etc., in the present context mean any expression, in any language, code or notation, of a set of instructions intended to cause a system having an information processing capability to perform a particular function either directly or after either or both of the following: (a) conversion to another language, code or notation; and/or (b) reproduction in a different material form.
  • The foregoing description of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and obviously, many modifications and variations are possible. Such modifications and variations that may be apparent to a person skilled in the art are intended to be included within the scope of this invention as defined by the accompanying claims.

Claims (14)

1. An analytical processing system for enhancing the recovery of heavy oil in an underground, near-surface crude oil extraction environment, comprising:
a data collection engine configured for receiving data relating to an underground, near-surface crude oil extraction environment, wherein the data include in situ microbial species data, oil properties data, and in situ nutrient information that are identified as being germane to the underground, near-surface crude oil extraction environment;
a data warehouse for storing data collected from the data collection engine; and
a data modeling system for analyzing data stored in the data warehouse and facilitating an identification of a preferred microbial species from the underground, near-surface crude oil extraction environment that can transform a heavy oil into a lighter oil.
2. The analytical processing system of claim 1, further comprising a second data modeling system for facilitating an identification of a nutrient from the underground, near-surface crude oil extraction environment that promotes a proliferation of the preferred microbial species.
3. The analytical processing system of claim 1, wherein the data collection engine is further configured to receive transformation data obtained by monitoring the underground, near-surface crude oil extraction environment.
4. The analytical processing system of claim 3, further comprising a third data modeling system for analyzing the transformation data and generating a predictive outcome.
5. The analytical processing system of claim 4, further comprising a recovery control system for facilitating an identity of a corrective measure that can be introduced to the underground, near-surface crude oil extraction environment to address a negative outcome.
6. The analytical processing system of claim 4, wherein the first, second, and third data modeling systems are each independently selected from a group consisting of: an association analysis system, a geostatistical analysis system, a sequential pattern analysis system, and a transform regression analysis system.
7. The analytical processing system of claim 1, wherein the preferred microbial species is selected from a group consisting of bacteria and fungi.
8. A computer program product stored on a computer-readable storage medium for enhancing the recovery of heavy oil in an underground, near-surface crude oil extraction environment by performing a method comprising:
receiving data relating to an underground, near-surface crude oil extraction environment, wherein the data include in situ microbial species data, fluid properties data, and in situ nutrient information that are identified as being germane to the underground, near-surface crude oil extraction environment;
storing the received data in a data warehouse; and
analyzing data stored in the data warehouse and facilitating an identification of a preferred microbial species from the underground, near-surface oil extraction environment that can transform the heavy oil into a lighter oil.
9. The computer program product of claim 8, wherein the method further comprises:
facilitating an identification of a nutrient from the underground, near-surface crude oil extraction environment that promotes a proliferation of the preferred microbial species.
10. The computer program product of claim 8, wherein the method further comprises:
receiving transformation data obtained by monitoring the underground, near-surface crude oil extraction environment during a transformation.
11. The computer program product of claim 10, wherein the method further comprises:
analyzing the transformation data and generating a predictive outcome.
12. The computer program product of claim 11, wherein the method further comprises:
facilitating an identification of a corrective measure that can be introduced to the underground, near-surface crude oil extraction environment to address a predictive outcome that is negative.
13. The computer program product of claim 11, wherein the method further comprises:
modeling data stored in the data warehouse using a technique selected from a group consisting of: an association analysis, a geostatistical analysis, a sequential pattern analysis, and a transform regression analysis.
14. The computer program product of claim 8, wherein the method further comprises:
receiving laboratory test data obtained from testing samples collected from the underground, near-surface crude oil extraction environment.
US13/402,504 2006-02-08 2012-02-22 System and method for preparing near-surface heavy oil for extraction using microbial degradation Abandoned US20120158306A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/402,504 US20120158306A1 (en) 2006-02-08 2012-02-22 System and method for preparing near-surface heavy oil for extraction using microbial degradation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/350,206 US7922893B2 (en) 2006-02-08 2006-02-08 System and method for preparing near-surface heavy oil for extraction using microbial degradation
US12/973,766 US9664010B2 (en) 2006-02-08 2010-12-20 Preparing near-surface heavy oil for extraction using microbial degradation
US13/402,504 US20120158306A1 (en) 2006-02-08 2012-02-22 System and method for preparing near-surface heavy oil for extraction using microbial degradation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/973,766 Division US9664010B2 (en) 2006-02-08 2010-12-20 Preparing near-surface heavy oil for extraction using microbial degradation

Publications (1)

Publication Number Publication Date
US20120158306A1 true US20120158306A1 (en) 2012-06-21

Family

ID=38332818

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/350,206 Expired - Fee Related US7922893B2 (en) 2006-02-08 2006-02-08 System and method for preparing near-surface heavy oil for extraction using microbial degradation
US12/973,766 Active 2028-05-05 US9664010B2 (en) 2006-02-08 2010-12-20 Preparing near-surface heavy oil for extraction using microbial degradation
US13/402,504 Abandoned US20120158306A1 (en) 2006-02-08 2012-02-22 System and method for preparing near-surface heavy oil for extraction using microbial degradation

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US11/350,206 Expired - Fee Related US7922893B2 (en) 2006-02-08 2006-02-08 System and method for preparing near-surface heavy oil for extraction using microbial degradation
US12/973,766 Active 2028-05-05 US9664010B2 (en) 2006-02-08 2010-12-20 Preparing near-surface heavy oil for extraction using microbial degradation

Country Status (1)

Country Link
US (3) US7922893B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018005522A1 (en) 2016-07-01 2018-01-04 Exxonmobil Upstream Research Company Methods for identifying hydrocarbon reservoirs
US10132144B2 (en) 2016-09-02 2018-11-20 Exxonmobil Upstream Research Company Geochemical methods for monitoring and evaluating microbial enhanced recovery operations
US10724108B2 (en) 2016-05-31 2020-07-28 Exxonmobil Upstream Research Company Methods for isolating nucleic acids from samples
US11649478B2 (en) 2018-05-21 2023-05-16 ExxonMobil Technology and Engineering Company Identification of hot environments using biomarkers from cold-shock proteins of thermophilic and hyperthermophilic microorganisms

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005254781C1 (en) * 2004-06-17 2009-12-03 Equinor Energy As Well treatment
WO2006114623A2 (en) 2005-04-26 2006-11-02 Statoilhydro Asa Method of well treatment and construction
US7922893B2 (en) * 2006-02-08 2011-04-12 International Business Machines Corporation System and method for preparing near-surface heavy oil for extraction using microbial degradation
GB2450502B (en) * 2007-06-26 2012-03-07 Statoil Asa Microbial enhanced oil recovery
US8528634B2 (en) * 2009-02-23 2013-09-10 E.I. Du Pont De Nemours And Company Method of improving oil recovery from an oil reservoir using an enriched anaerobic steady state microbial consortium
US8517092B2 (en) * 2009-09-17 2013-08-27 Mriglobal Method for growing and metabolizing microbes
CN101699025B (en) * 2009-10-30 2012-11-14 华东理工大学 Method for regulating and controlling microbial enhanced oil recovery
MX336364B (en) * 2009-12-21 2015-11-06 Inst Mexicano Del Petróleo Biotechnological process for hydrocarbon recovery in low permeability porous media.
BR112012019720A2 (en) * 2010-02-12 2016-05-10 Bp Exploration Operating method and system for predicting the effect of microbial injection in an oil reservoir.
CN101818634B (en) * 2010-04-23 2013-04-03 中国石油化工股份有限公司 Method for regulating and controlling microbial community for oil extraction
MX2010012349A (en) 2010-11-12 2012-05-15 Mexicano Inst Petrol Heavy oil recovery process using extremophile anaerobic indigenous microorganisms.
US10808530B1 (en) * 2012-08-07 2020-10-20 University of Alaska, Anchorage Mineral isotopes in water, methods and uses thereof
CN107976529B (en) * 2017-12-28 2023-09-29 中国华能集团公司 Multifunctional reaction kettle experiment system and experiment method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005115649A1 (en) * 2004-05-28 2005-12-08 University Of Newcastle Upon Tyne Process for stimulating production of methane from petroleum in subterranean formations

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4522261A (en) * 1983-04-05 1985-06-11 The Board Of Regents For The University Of Oklahoma Biosurfactant and enhanced oil recovery
US4610302A (en) * 1985-07-03 1986-09-09 Phillips Petroleum Company Oil recovery processes
WO1987007316A1 (en) * 1986-05-29 1987-12-03 Zapadno-Sibirsky Nauchno-Issledovatelsky Geologora Bacterial composition and method for purifying water and soil of oil pollution
US4799545A (en) * 1987-03-06 1989-01-24 Chevron Research Company Bacteria and its use in a microbial profile modification process
US4971151A (en) * 1988-04-19 1990-11-20 B.W.N. Live-Oil Pty. Ltd. Recovery of oil from oil reservoirs
US4905761A (en) * 1988-07-29 1990-03-06 Iit Research Institute Microbial enhanced oil recovery and compositions therefor
US5044435A (en) * 1990-07-16 1991-09-03 Injectech, Inc. Enhanced oil recovery using denitrifying microorganisms
GB2252342B (en) * 1991-01-29 1995-01-11 Norske Stats Oljeselskap Method of microbial enhanced oil recovery
US5339254A (en) * 1991-03-01 1994-08-16 Archer Daniels Midland Company Instrument for determining the stability of fat or oil
CA2299854A1 (en) * 1999-03-29 2000-09-29 Technology Licensing Organization, Inc. Method of degrading heavy oil using bacteria mixtures
GB9926157D0 (en) * 1999-11-04 2000-01-12 Norske Stats Oljeselskap Method of microbial enhanced oil recovery
FR2830646B1 (en) * 2001-10-05 2004-02-13 Inst Francais Du Petrole METHOD FOR MODELING THE BIODEGRADATION OF HYDROCARBONS IN A PETROLEUM FACILITY
US20040006040A1 (en) * 2002-02-14 2004-01-08 Pyro Pharmaceuticals, Inc. Method for the identification and treatment of pathogenic microorganism infections by inhibiting one or more enzymes in an essential metabolic pathway and compounds and pharmaceutical compositions useful therefor
US7922893B2 (en) * 2006-02-08 2011-04-12 International Business Machines Corporation System and method for preparing near-surface heavy oil for extraction using microbial degradation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005115649A1 (en) * 2004-05-28 2005-12-08 University Of Newcastle Upon Tyne Process for stimulating production of methane from petroleum in subterranean formations

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10724108B2 (en) 2016-05-31 2020-07-28 Exxonmobil Upstream Research Company Methods for isolating nucleic acids from samples
WO2018005522A1 (en) 2016-07-01 2018-01-04 Exxonmobil Upstream Research Company Methods for identifying hydrocarbon reservoirs
WO2018005517A1 (en) 2016-07-01 2018-01-04 Exxonmobil Upstream Research Company Methods to determine conditions of a hydrocarbon reservoir
WO2018005514A1 (en) 2016-07-01 2018-01-04 Exxonmobil Upstream Research Company Methods to determine conditions of a hydrocarbon reservoir
US10570735B2 (en) 2016-07-01 2020-02-25 Exxonmobil Upstream Research Comapny Methods to determine conditions of a hydrocarbon reservoir
US10663618B2 (en) 2016-07-01 2020-05-26 Exxonmobil Upstream Research Company Methods to determine conditions of a hydrocarbon reservoir
US10895666B2 (en) 2016-07-01 2021-01-19 Exxonmobil Upstream Research Company Methods for identifying hydrocarbon reservoirs
US10132144B2 (en) 2016-09-02 2018-11-20 Exxonmobil Upstream Research Company Geochemical methods for monitoring and evaluating microbial enhanced recovery operations
US11649478B2 (en) 2018-05-21 2023-05-16 ExxonMobil Technology and Engineering Company Identification of hot environments using biomarkers from cold-shock proteins of thermophilic and hyperthermophilic microorganisms

Also Published As

Publication number Publication date
US9664010B2 (en) 2017-05-30
US7922893B2 (en) 2011-04-12
US20110083843A1 (en) 2011-04-14
US20070181300A1 (en) 2007-08-09

Similar Documents

Publication Publication Date Title
US9664010B2 (en) Preparing near-surface heavy oil for extraction using microbial degradation
Hashemi et al. Pore-scale modelling and sensitivity analyses of hydrogen-brine multiphase flow in geological porous media
Alfarge et al. CO2-EOR mechanisms in huff-n-puff operations in shale oil reservoirs based on history matching results
EP2776866B1 (en) Method for determining the location, size, and fluid composition of a subsurface hydrocarbon accumulation
Zuo et al. Diffusion model coupled with the Flory–Huggins–Zuo equation of state and Yen–Mullins model accounts for large viscosity and asphaltene variations in a reservoir undergoing active biodegradation
WO2011061662A1 (en) Methods for optimizing petroleum reservoir analysis
RU2010114583A (en) METHODS FOR OPTIMIZING AN ANALYSIS OF THE COLLECTOR
US10415379B2 (en) Applications of advanced isotope geochemistry of hydrocarbons and inert gases to petroleum production engineering
US10132144B2 (en) Geochemical methods for monitoring and evaluating microbial enhanced recovery operations
Ren et al. Analytical modelling of hysteretic constitutive relations governing spontaneous imbibition of fracturing fluid in shale
US10983968B2 (en) Method for petroleum recovery and carbon dioxide sequestration in residual oil zones
Phanikumar et al. A multi-species reactive transport model to estimate biogeochemical rates based on single-well push–pull test data
Zhang et al. Semianalytical method of two‐phase liquid transport in shale reservoirs and its application in fracture characterization
Yoo et al. Improved wormhole prediction model considering propagation characteristics of wormhole head in carbonate acidizing
Lee et al. Effects of Aqueous Solubility and Geochemistry on CO2 Injection for Shale Gas Reservoirs
Lu et al. Effects of gas saturation and reservoir heterogeneity on thermochemical sulfate reduction reaction in a dolomite reservoir, Puguang gas field, China
Gharbi Economic optimization of EOR processes using knowledge-based system: case studies
Shi et al. Advances in multiphase flow and transport in the subsurface environment
Zhou et al. Identification and illustration of relationships between produced gas and water in marcellus under different spatial and temporal domains through data-driven analytics-Nonparametric model
Hou et al. Prediction of Fracturing Pressure and Parameter Evaluations at Field Practical Scales
Sapronova et al. Correlational Analysis of MWD Data for Rock Mass Characterization and Risk Assessment
Liu Numerical simulation of ultra-low permeability reservoirs: progress and challenges
Cortes Design Of An IT Tool To Select New Technologies To Stimulate Unconventional Reservoirs In Ecopetrol’s Wells
Alimohammadi et al. Improvement to Gravity Drainage Recovery by Repressurization as a Criterion to Screen and Rank Naturally Fractured Reservoirs for Gas Injection
Poeymarie et al. Evidence of Extreme Overpressure Generated by Source Rock Maturation: Case Study, Deep-Offshore GOM, USA

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION